1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/Basic/OpenMPKinds.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "llvm/Frontend/OpenMP/OMPConstants.h" 27 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/Support/AtomicOrdering.h" 31 using namespace clang; 32 using namespace CodeGen; 33 using namespace llvm::omp; 34 35 static const VarDecl *getBaseDecl(const Expr *Ref); 36 37 namespace { 38 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 39 /// for captured expressions. 40 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 41 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 42 for (const auto *C : S.clauses()) { 43 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 44 if (const auto *PreInit = 45 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 46 for (const auto *I : PreInit->decls()) { 47 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 48 CGF.EmitVarDecl(cast<VarDecl>(*I)); 49 } else { 50 CodeGenFunction::AutoVarEmission Emission = 51 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 52 CGF.EmitAutoVarCleanups(Emission); 53 } 54 } 55 } 56 } 57 } 58 } 59 CodeGenFunction::OMPPrivateScope InlinedShareds; 60 61 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 62 return CGF.LambdaCaptureFields.lookup(VD) || 63 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 64 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 65 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 66 } 67 68 public: 69 OMPLexicalScope( 70 CodeGenFunction &CGF, const OMPExecutableDirective &S, 71 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 72 const bool EmitPreInitStmt = true) 73 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 74 InlinedShareds(CGF) { 75 if (EmitPreInitStmt) 76 emitPreInitStmt(CGF, S); 77 if (!CapturedRegion.hasValue()) 78 return; 79 assert(S.hasAssociatedStmt() && 80 "Expected associated statement for inlined directive."); 81 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 82 for (const auto &C : CS->captures()) { 83 if (C.capturesVariable() || C.capturesVariableByCopy()) { 84 auto *VD = C.getCapturedVar(); 85 assert(VD == VD->getCanonicalDecl() && 86 "Canonical decl must be captured."); 87 DeclRefExpr DRE( 88 CGF.getContext(), const_cast<VarDecl *>(VD), 89 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 90 InlinedShareds.isGlobalVarCaptured(VD)), 91 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 92 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 93 return CGF.EmitLValue(&DRE).getAddress(CGF); 94 }); 95 } 96 } 97 (void)InlinedShareds.Privatize(); 98 } 99 }; 100 101 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 102 /// for captured expressions. 103 class OMPParallelScope final : public OMPLexicalScope { 104 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 105 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 106 return !(isOpenMPTargetExecutionDirective(Kind) || 107 isOpenMPLoopBoundSharingDirective(Kind)) && 108 isOpenMPParallelDirective(Kind); 109 } 110 111 public: 112 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 113 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 114 EmitPreInitStmt(S)) {} 115 }; 116 117 /// Lexical scope for OpenMP teams construct, that handles correct codegen 118 /// for captured expressions. 119 class OMPTeamsScope final : public OMPLexicalScope { 120 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 121 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 122 return !isOpenMPTargetExecutionDirective(Kind) && 123 isOpenMPTeamsDirective(Kind); 124 } 125 126 public: 127 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 128 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 129 EmitPreInitStmt(S)) {} 130 }; 131 132 /// Private scope for OpenMP loop-based directives, that supports capturing 133 /// of used expression from loop statement. 134 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 135 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 136 CodeGenFunction::OMPMapVars PreCondVars; 137 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 138 for (const auto *E : S.counters()) { 139 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 140 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 141 (void)PreCondVars.setVarAddr( 142 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 143 } 144 // Mark private vars as undefs. 145 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 146 for (const Expr *IRef : C->varlists()) { 147 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 148 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 149 (void)PreCondVars.setVarAddr( 150 CGF, OrigVD, 151 Address(llvm::UndefValue::get( 152 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 153 OrigVD->getType().getNonReferenceType()))), 154 CGF.getContext().getDeclAlign(OrigVD))); 155 } 156 } 157 } 158 (void)PreCondVars.apply(CGF); 159 // Emit init, __range and __end variables for C++ range loops. 160 const Stmt *Body = 161 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 162 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 163 Body = OMPLoopDirective::tryToFindNextInnerLoop( 164 Body, /*TryImperfectlyNestedLoops=*/true); 165 if (auto *For = dyn_cast<ForStmt>(Body)) { 166 Body = For->getBody(); 167 } else { 168 assert(isa<CXXForRangeStmt>(Body) && 169 "Expected canonical for loop or range-based for loop."); 170 auto *CXXFor = cast<CXXForRangeStmt>(Body); 171 if (const Stmt *Init = CXXFor->getInit()) 172 CGF.EmitStmt(Init); 173 CGF.EmitStmt(CXXFor->getRangeStmt()); 174 CGF.EmitStmt(CXXFor->getEndStmt()); 175 Body = CXXFor->getBody(); 176 } 177 } 178 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 179 for (const auto *I : PreInits->decls()) 180 CGF.EmitVarDecl(cast<VarDecl>(*I)); 181 } 182 PreCondVars.restore(CGF); 183 } 184 185 public: 186 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 187 : CodeGenFunction::RunCleanupsScope(CGF) { 188 emitPreInitStmt(CGF, S); 189 } 190 }; 191 192 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 193 CodeGenFunction::OMPPrivateScope InlinedShareds; 194 195 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 196 return CGF.LambdaCaptureFields.lookup(VD) || 197 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 198 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 199 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 200 } 201 202 public: 203 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 204 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 205 InlinedShareds(CGF) { 206 for (const auto *C : S.clauses()) { 207 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 208 if (const auto *PreInit = 209 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 210 for (const auto *I : PreInit->decls()) { 211 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 212 CGF.EmitVarDecl(cast<VarDecl>(*I)); 213 } else { 214 CodeGenFunction::AutoVarEmission Emission = 215 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 216 CGF.EmitAutoVarCleanups(Emission); 217 } 218 } 219 } 220 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 221 for (const Expr *E : UDP->varlists()) { 222 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 223 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 224 CGF.EmitVarDecl(*OED); 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = getBaseDecl(E); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } 233 } 234 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 235 CGF.EmitOMPPrivateClause(S, InlinedShareds); 236 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 237 if (const Expr *E = TG->getReductionRef()) 238 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 239 } 240 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 241 while (CS) { 242 for (auto &C : CS->captures()) { 243 if (C.capturesVariable() || C.capturesVariableByCopy()) { 244 auto *VD = C.getCapturedVar(); 245 assert(VD == VD->getCanonicalDecl() && 246 "Canonical decl must be captured."); 247 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 248 isCapturedVar(CGF, VD) || 249 (CGF.CapturedStmtInfo && 250 InlinedShareds.isGlobalVarCaptured(VD)), 251 VD->getType().getNonReferenceType(), VK_LValue, 252 C.getLocation()); 253 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 254 return CGF.EmitLValue(&DRE).getAddress(CGF); 255 }); 256 } 257 } 258 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 259 } 260 (void)InlinedShareds.Privatize(); 261 } 262 }; 263 264 } // namespace 265 266 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 267 const OMPExecutableDirective &S, 268 const RegionCodeGenTy &CodeGen); 269 270 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 271 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 272 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 273 OrigVD = OrigVD->getCanonicalDecl(); 274 bool IsCaptured = 275 LambdaCaptureFields.lookup(OrigVD) || 276 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 277 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 278 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 279 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 280 return EmitLValue(&DRE); 281 } 282 } 283 return EmitLValue(E); 284 } 285 286 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 287 ASTContext &C = getContext(); 288 llvm::Value *Size = nullptr; 289 auto SizeInChars = C.getTypeSizeInChars(Ty); 290 if (SizeInChars.isZero()) { 291 // getTypeSizeInChars() returns 0 for a VLA. 292 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 293 VlaSizePair VlaSize = getVLASize(VAT); 294 Ty = VlaSize.Type; 295 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 296 : VlaSize.NumElts; 297 } 298 SizeInChars = C.getTypeSizeInChars(Ty); 299 if (SizeInChars.isZero()) 300 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 301 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 302 } 303 return CGM.getSize(SizeInChars); 304 } 305 306 void CodeGenFunction::GenerateOpenMPCapturedVars( 307 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 308 const RecordDecl *RD = S.getCapturedRecordDecl(); 309 auto CurField = RD->field_begin(); 310 auto CurCap = S.captures().begin(); 311 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 312 E = S.capture_init_end(); 313 I != E; ++I, ++CurField, ++CurCap) { 314 if (CurField->hasCapturedVLAType()) { 315 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 316 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 317 CapturedVars.push_back(Val); 318 } else if (CurCap->capturesThis()) { 319 CapturedVars.push_back(CXXThisValue); 320 } else if (CurCap->capturesVariableByCopy()) { 321 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 322 323 // If the field is not a pointer, we need to save the actual value 324 // and load it as a void pointer. 325 if (!CurField->getType()->isAnyPointerType()) { 326 ASTContext &Ctx = getContext(); 327 Address DstAddr = CreateMemTemp( 328 Ctx.getUIntPtrType(), 329 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 330 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 331 332 llvm::Value *SrcAddrVal = EmitScalarConversion( 333 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 334 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 335 LValue SrcLV = 336 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 337 338 // Store the value using the source type pointer. 339 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 340 341 // Load the value using the destination type pointer. 342 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 343 } 344 CapturedVars.push_back(CV); 345 } else { 346 assert(CurCap->capturesVariable() && "Expected capture by reference."); 347 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 348 } 349 } 350 } 351 352 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 353 QualType DstType, StringRef Name, 354 LValue AddrLV) { 355 ASTContext &Ctx = CGF.getContext(); 356 357 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 358 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 359 Ctx.getPointerType(DstType), Loc); 360 Address TmpAddr = 361 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 362 .getAddress(CGF); 363 return TmpAddr; 364 } 365 366 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 367 if (T->isLValueReferenceType()) 368 return C.getLValueReferenceType( 369 getCanonicalParamType(C, T.getNonReferenceType()), 370 /*SpelledAsLValue=*/false); 371 if (T->isPointerType()) 372 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 373 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 374 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 375 return getCanonicalParamType(C, VLA->getElementType()); 376 if (!A->isVariablyModifiedType()) 377 return C.getCanonicalType(T); 378 } 379 return C.getCanonicalParamType(T); 380 } 381 382 namespace { 383 /// Contains required data for proper outlined function codegen. 384 struct FunctionOptions { 385 /// Captured statement for which the function is generated. 386 const CapturedStmt *S = nullptr; 387 /// true if cast to/from UIntPtr is required for variables captured by 388 /// value. 389 const bool UIntPtrCastRequired = true; 390 /// true if only casted arguments must be registered as local args or VLA 391 /// sizes. 392 const bool RegisterCastedArgsOnly = false; 393 /// Name of the generated function. 394 const StringRef FunctionName; 395 /// Location of the non-debug version of the outlined function. 396 SourceLocation Loc; 397 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 398 bool RegisterCastedArgsOnly, StringRef FunctionName, 399 SourceLocation Loc) 400 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 401 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 402 FunctionName(FunctionName), Loc(Loc) {} 403 }; 404 } // namespace 405 406 static llvm::Function *emitOutlinedFunctionPrologue( 407 CodeGenFunction &CGF, FunctionArgList &Args, 408 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 409 &LocalAddrs, 410 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 411 &VLASizes, 412 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 413 const CapturedDecl *CD = FO.S->getCapturedDecl(); 414 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 415 assert(CD->hasBody() && "missing CapturedDecl body"); 416 417 CXXThisValue = nullptr; 418 // Build the argument list. 419 CodeGenModule &CGM = CGF.CGM; 420 ASTContext &Ctx = CGM.getContext(); 421 FunctionArgList TargetArgs; 422 Args.append(CD->param_begin(), 423 std::next(CD->param_begin(), CD->getContextParamPosition())); 424 TargetArgs.append( 425 CD->param_begin(), 426 std::next(CD->param_begin(), CD->getContextParamPosition())); 427 auto I = FO.S->captures().begin(); 428 FunctionDecl *DebugFunctionDecl = nullptr; 429 if (!FO.UIntPtrCastRequired) { 430 FunctionProtoType::ExtProtoInfo EPI; 431 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 432 DebugFunctionDecl = FunctionDecl::Create( 433 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 434 SourceLocation(), DeclarationName(), FunctionTy, 435 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 436 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 437 } 438 for (const FieldDecl *FD : RD->fields()) { 439 QualType ArgType = FD->getType(); 440 IdentifierInfo *II = nullptr; 441 VarDecl *CapVar = nullptr; 442 443 // If this is a capture by copy and the type is not a pointer, the outlined 444 // function argument type should be uintptr and the value properly casted to 445 // uintptr. This is necessary given that the runtime library is only able to 446 // deal with pointers. We can pass in the same way the VLA type sizes to the 447 // outlined function. 448 if (FO.UIntPtrCastRequired && 449 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 450 I->capturesVariableArrayType())) 451 ArgType = Ctx.getUIntPtrType(); 452 453 if (I->capturesVariable() || I->capturesVariableByCopy()) { 454 CapVar = I->getCapturedVar(); 455 II = CapVar->getIdentifier(); 456 } else if (I->capturesThis()) { 457 II = &Ctx.Idents.get("this"); 458 } else { 459 assert(I->capturesVariableArrayType()); 460 II = &Ctx.Idents.get("vla"); 461 } 462 if (ArgType->isVariablyModifiedType()) 463 ArgType = getCanonicalParamType(Ctx, ArgType); 464 VarDecl *Arg; 465 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 466 Arg = ParmVarDecl::Create( 467 Ctx, DebugFunctionDecl, 468 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 469 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 470 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 471 } else { 472 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 473 II, ArgType, ImplicitParamDecl::Other); 474 } 475 Args.emplace_back(Arg); 476 // Do not cast arguments if we emit function with non-original types. 477 TargetArgs.emplace_back( 478 FO.UIntPtrCastRequired 479 ? Arg 480 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 481 ++I; 482 } 483 Args.append( 484 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 485 CD->param_end()); 486 TargetArgs.append( 487 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 488 CD->param_end()); 489 490 // Create the function declaration. 491 const CGFunctionInfo &FuncInfo = 492 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 493 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 494 495 auto *F = 496 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 497 FO.FunctionName, &CGM.getModule()); 498 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 499 if (CD->isNothrow()) 500 F->setDoesNotThrow(); 501 F->setDoesNotRecurse(); 502 503 // Generate the function. 504 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 505 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 506 FO.UIntPtrCastRequired ? FO.Loc 507 : CD->getBody()->getBeginLoc()); 508 unsigned Cnt = CD->getContextParamPosition(); 509 I = FO.S->captures().begin(); 510 for (const FieldDecl *FD : RD->fields()) { 511 // Do not map arguments if we emit function with non-original types. 512 Address LocalAddr(Address::invalid()); 513 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 514 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 515 TargetArgs[Cnt]); 516 } else { 517 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 518 } 519 // If we are capturing a pointer by copy we don't need to do anything, just 520 // use the value that we get from the arguments. 521 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 522 const VarDecl *CurVD = I->getCapturedVar(); 523 if (!FO.RegisterCastedArgsOnly) 524 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 525 ++Cnt; 526 ++I; 527 continue; 528 } 529 530 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 531 AlignmentSource::Decl); 532 if (FD->hasCapturedVLAType()) { 533 if (FO.UIntPtrCastRequired) { 534 ArgLVal = CGF.MakeAddrLValue( 535 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 536 Args[Cnt]->getName(), ArgLVal), 537 FD->getType(), AlignmentSource::Decl); 538 } 539 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 540 const VariableArrayType *VAT = FD->getCapturedVLAType(); 541 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 542 } else if (I->capturesVariable()) { 543 const VarDecl *Var = I->getCapturedVar(); 544 QualType VarTy = Var->getType(); 545 Address ArgAddr = ArgLVal.getAddress(CGF); 546 if (ArgLVal.getType()->isLValueReferenceType()) { 547 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 548 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 549 assert(ArgLVal.getType()->isPointerType()); 550 ArgAddr = CGF.EmitLoadOfPointer( 551 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 552 } 553 if (!FO.RegisterCastedArgsOnly) { 554 LocalAddrs.insert( 555 {Args[Cnt], 556 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 557 } 558 } else if (I->capturesVariableByCopy()) { 559 assert(!FD->getType()->isAnyPointerType() && 560 "Not expecting a captured pointer."); 561 const VarDecl *Var = I->getCapturedVar(); 562 LocalAddrs.insert({Args[Cnt], 563 {Var, FO.UIntPtrCastRequired 564 ? castValueFromUintptr( 565 CGF, I->getLocation(), FD->getType(), 566 Args[Cnt]->getName(), ArgLVal) 567 : ArgLVal.getAddress(CGF)}}); 568 } else { 569 // If 'this' is captured, load it into CXXThisValue. 570 assert(I->capturesThis()); 571 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 572 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 573 } 574 ++Cnt; 575 ++I; 576 } 577 578 return F; 579 } 580 581 llvm::Function * 582 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 583 SourceLocation Loc) { 584 assert( 585 CapturedStmtInfo && 586 "CapturedStmtInfo should be set when generating the captured function"); 587 const CapturedDecl *CD = S.getCapturedDecl(); 588 // Build the argument list. 589 bool NeedWrapperFunction = 590 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 591 FunctionArgList Args; 592 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 593 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 594 SmallString<256> Buffer; 595 llvm::raw_svector_ostream Out(Buffer); 596 Out << CapturedStmtInfo->getHelperName(); 597 if (NeedWrapperFunction) 598 Out << "_debug__"; 599 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 600 Out.str(), Loc); 601 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 602 VLASizes, CXXThisValue, FO); 603 CodeGenFunction::OMPPrivateScope LocalScope(*this); 604 for (const auto &LocalAddrPair : LocalAddrs) { 605 if (LocalAddrPair.second.first) { 606 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 607 return LocalAddrPair.second.second; 608 }); 609 } 610 } 611 (void)LocalScope.Privatize(); 612 for (const auto &VLASizePair : VLASizes) 613 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 614 PGO.assignRegionCounters(GlobalDecl(CD), F); 615 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 616 (void)LocalScope.ForceCleanup(); 617 FinishFunction(CD->getBodyRBrace()); 618 if (!NeedWrapperFunction) 619 return F; 620 621 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 622 /*RegisterCastedArgsOnly=*/true, 623 CapturedStmtInfo->getHelperName(), Loc); 624 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 625 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 626 Args.clear(); 627 LocalAddrs.clear(); 628 VLASizes.clear(); 629 llvm::Function *WrapperF = 630 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 631 WrapperCGF.CXXThisValue, WrapperFO); 632 llvm::SmallVector<llvm::Value *, 4> CallArgs; 633 for (const auto *Arg : Args) { 634 llvm::Value *CallArg; 635 auto I = LocalAddrs.find(Arg); 636 if (I != LocalAddrs.end()) { 637 LValue LV = WrapperCGF.MakeAddrLValue( 638 I->second.second, 639 I->second.first ? I->second.first->getType() : Arg->getType(), 640 AlignmentSource::Decl); 641 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 642 } else { 643 auto EI = VLASizes.find(Arg); 644 if (EI != VLASizes.end()) { 645 CallArg = EI->second.second; 646 } else { 647 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 648 Arg->getType(), 649 AlignmentSource::Decl); 650 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 651 } 652 } 653 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 654 } 655 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 656 WrapperCGF.FinishFunction(); 657 return WrapperF; 658 } 659 660 //===----------------------------------------------------------------------===// 661 // OpenMP Directive Emission 662 //===----------------------------------------------------------------------===// 663 void CodeGenFunction::EmitOMPAggregateAssign( 664 Address DestAddr, Address SrcAddr, QualType OriginalType, 665 const llvm::function_ref<void(Address, Address)> CopyGen) { 666 // Perform element-by-element initialization. 667 QualType ElementTy; 668 669 // Drill down to the base element type on both arrays. 670 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 671 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 672 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 673 674 llvm::Value *SrcBegin = SrcAddr.getPointer(); 675 llvm::Value *DestBegin = DestAddr.getPointer(); 676 // Cast from pointer to array type to pointer to single element. 677 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 678 // The basic structure here is a while-do loop. 679 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 680 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 681 llvm::Value *IsEmpty = 682 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 683 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 684 685 // Enter the loop body, making that address the current address. 686 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 687 EmitBlock(BodyBB); 688 689 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 690 691 llvm::PHINode *SrcElementPHI = 692 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 693 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 694 Address SrcElementCurrent = 695 Address(SrcElementPHI, 696 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 697 698 llvm::PHINode *DestElementPHI = 699 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 700 DestElementPHI->addIncoming(DestBegin, EntryBB); 701 Address DestElementCurrent = 702 Address(DestElementPHI, 703 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 704 705 // Emit copy. 706 CopyGen(DestElementCurrent, SrcElementCurrent); 707 708 // Shift the address forward by one element. 709 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 710 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 711 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 712 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 713 // Check whether we've reached the end. 714 llvm::Value *Done = 715 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 716 Builder.CreateCondBr(Done, DoneBB, BodyBB); 717 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 718 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 719 720 // Done. 721 EmitBlock(DoneBB, /*IsFinished=*/true); 722 } 723 724 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 725 Address SrcAddr, const VarDecl *DestVD, 726 const VarDecl *SrcVD, const Expr *Copy) { 727 if (OriginalType->isArrayType()) { 728 const auto *BO = dyn_cast<BinaryOperator>(Copy); 729 if (BO && BO->getOpcode() == BO_Assign) { 730 // Perform simple memcpy for simple copying. 731 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 732 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 733 EmitAggregateAssign(Dest, Src, OriginalType); 734 } else { 735 // For arrays with complex element types perform element by element 736 // copying. 737 EmitOMPAggregateAssign( 738 DestAddr, SrcAddr, OriginalType, 739 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 740 // Working with the single array element, so have to remap 741 // destination and source variables to corresponding array 742 // elements. 743 CodeGenFunction::OMPPrivateScope Remap(*this); 744 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 745 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 746 (void)Remap.Privatize(); 747 EmitIgnoredExpr(Copy); 748 }); 749 } 750 } else { 751 // Remap pseudo source variable to private copy. 752 CodeGenFunction::OMPPrivateScope Remap(*this); 753 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 754 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 755 (void)Remap.Privatize(); 756 // Emit copying of the whole variable. 757 EmitIgnoredExpr(Copy); 758 } 759 } 760 761 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 762 OMPPrivateScope &PrivateScope) { 763 if (!HaveInsertPoint()) 764 return false; 765 bool DeviceConstTarget = 766 getLangOpts().OpenMPIsDevice && 767 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 768 bool FirstprivateIsLastprivate = false; 769 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 770 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 771 for (const auto *D : C->varlists()) 772 Lastprivates.try_emplace( 773 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 774 C->getKind()); 775 } 776 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 777 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 778 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 779 // Force emission of the firstprivate copy if the directive does not emit 780 // outlined function, like omp for, omp simd, omp distribute etc. 781 bool MustEmitFirstprivateCopy = 782 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 783 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 784 const auto *IRef = C->varlist_begin(); 785 const auto *InitsRef = C->inits().begin(); 786 for (const Expr *IInit : C->private_copies()) { 787 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 788 bool ThisFirstprivateIsLastprivate = 789 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 790 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 791 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 792 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 793 !FD->getType()->isReferenceType() && 794 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 795 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 796 ++IRef; 797 ++InitsRef; 798 continue; 799 } 800 // Do not emit copy for firstprivate constant variables in target regions, 801 // captured by reference. 802 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 803 FD && FD->getType()->isReferenceType() && 804 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 805 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 806 OrigVD); 807 ++IRef; 808 ++InitsRef; 809 continue; 810 } 811 FirstprivateIsLastprivate = 812 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 813 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 814 const auto *VDInit = 815 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 816 bool IsRegistered; 817 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 818 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 819 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 820 LValue OriginalLVal; 821 if (!FD) { 822 // Check if the firstprivate variable is just a constant value. 823 ConstantEmission CE = tryEmitAsConstant(&DRE); 824 if (CE && !CE.isReference()) { 825 // Constant value, no need to create a copy. 826 ++IRef; 827 ++InitsRef; 828 continue; 829 } 830 if (CE && CE.isReference()) { 831 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 832 } else { 833 assert(!CE && "Expected non-constant firstprivate."); 834 OriginalLVal = EmitLValue(&DRE); 835 } 836 } else { 837 OriginalLVal = EmitLValue(&DRE); 838 } 839 QualType Type = VD->getType(); 840 if (Type->isArrayType()) { 841 // Emit VarDecl with copy init for arrays. 842 // Get the address of the original variable captured in current 843 // captured region. 844 IsRegistered = PrivateScope.addPrivate( 845 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 846 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 847 const Expr *Init = VD->getInit(); 848 if (!isa<CXXConstructExpr>(Init) || 849 isTrivialInitializer(Init)) { 850 // Perform simple memcpy. 851 LValue Dest = 852 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 853 EmitAggregateAssign(Dest, OriginalLVal, Type); 854 } else { 855 EmitOMPAggregateAssign( 856 Emission.getAllocatedAddress(), 857 OriginalLVal.getAddress(*this), Type, 858 [this, VDInit, Init](Address DestElement, 859 Address SrcElement) { 860 // Clean up any temporaries needed by the 861 // initialization. 862 RunCleanupsScope InitScope(*this); 863 // Emit initialization for single element. 864 setAddrOfLocalVar(VDInit, SrcElement); 865 EmitAnyExprToMem(Init, DestElement, 866 Init->getType().getQualifiers(), 867 /*IsInitializer*/ false); 868 LocalDeclMap.erase(VDInit); 869 }); 870 } 871 EmitAutoVarCleanups(Emission); 872 return Emission.getAllocatedAddress(); 873 }); 874 } else { 875 Address OriginalAddr = OriginalLVal.getAddress(*this); 876 IsRegistered = 877 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 878 ThisFirstprivateIsLastprivate, 879 OrigVD, &Lastprivates, IRef]() { 880 // Emit private VarDecl with copy init. 881 // Remap temp VDInit variable to the address of the original 882 // variable (for proper handling of captured global variables). 883 setAddrOfLocalVar(VDInit, OriginalAddr); 884 EmitDecl(*VD); 885 LocalDeclMap.erase(VDInit); 886 if (ThisFirstprivateIsLastprivate && 887 Lastprivates[OrigVD->getCanonicalDecl()] == 888 OMPC_LASTPRIVATE_conditional) { 889 // Create/init special variable for lastprivate conditionals. 890 Address VDAddr = 891 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 892 *this, OrigVD); 893 llvm::Value *V = EmitLoadOfScalar( 894 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 895 AlignmentSource::Decl), 896 (*IRef)->getExprLoc()); 897 EmitStoreOfScalar(V, 898 MakeAddrLValue(VDAddr, (*IRef)->getType(), 899 AlignmentSource::Decl)); 900 LocalDeclMap.erase(VD); 901 setAddrOfLocalVar(VD, VDAddr); 902 return VDAddr; 903 } 904 return GetAddrOfLocalVar(VD); 905 }); 906 } 907 assert(IsRegistered && 908 "firstprivate var already registered as private"); 909 // Silence the warning about unused variable. 910 (void)IsRegistered; 911 } 912 ++IRef; 913 ++InitsRef; 914 } 915 } 916 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 917 } 918 919 void CodeGenFunction::EmitOMPPrivateClause( 920 const OMPExecutableDirective &D, 921 CodeGenFunction::OMPPrivateScope &PrivateScope) { 922 if (!HaveInsertPoint()) 923 return; 924 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 925 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 926 auto IRef = C->varlist_begin(); 927 for (const Expr *IInit : C->private_copies()) { 928 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 929 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 930 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 931 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 932 // Emit private VarDecl with copy init. 933 EmitDecl(*VD); 934 return GetAddrOfLocalVar(VD); 935 }); 936 assert(IsRegistered && "private var already registered as private"); 937 // Silence the warning about unused variable. 938 (void)IsRegistered; 939 } 940 ++IRef; 941 } 942 } 943 } 944 945 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 946 if (!HaveInsertPoint()) 947 return false; 948 // threadprivate_var1 = master_threadprivate_var1; 949 // operator=(threadprivate_var2, master_threadprivate_var2); 950 // ... 951 // __kmpc_barrier(&loc, global_tid); 952 llvm::DenseSet<const VarDecl *> CopiedVars; 953 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 954 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 955 auto IRef = C->varlist_begin(); 956 auto ISrcRef = C->source_exprs().begin(); 957 auto IDestRef = C->destination_exprs().begin(); 958 for (const Expr *AssignOp : C->assignment_ops()) { 959 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 QualType Type = VD->getType(); 961 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 962 // Get the address of the master variable. If we are emitting code with 963 // TLS support, the address is passed from the master as field in the 964 // captured declaration. 965 Address MasterAddr = Address::invalid(); 966 if (getLangOpts().OpenMPUseTLS && 967 getContext().getTargetInfo().isTLSSupported()) { 968 assert(CapturedStmtInfo->lookup(VD) && 969 "Copyin threadprivates should have been captured!"); 970 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 971 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 972 MasterAddr = EmitLValue(&DRE).getAddress(*this); 973 LocalDeclMap.erase(VD); 974 } else { 975 MasterAddr = 976 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 977 : CGM.GetAddrOfGlobal(VD), 978 getContext().getDeclAlign(VD)); 979 } 980 // Get the address of the threadprivate variable. 981 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 982 if (CopiedVars.size() == 1) { 983 // At first check if current thread is a master thread. If it is, no 984 // need to copy data. 985 CopyBegin = createBasicBlock("copyin.not.master"); 986 CopyEnd = createBasicBlock("copyin.not.master.end"); 987 Builder.CreateCondBr( 988 Builder.CreateICmpNE( 989 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 990 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 991 CGM.IntPtrTy)), 992 CopyBegin, CopyEnd); 993 EmitBlock(CopyBegin); 994 } 995 const auto *SrcVD = 996 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 997 const auto *DestVD = 998 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 999 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1000 } 1001 ++IRef; 1002 ++ISrcRef; 1003 ++IDestRef; 1004 } 1005 } 1006 if (CopyEnd) { 1007 // Exit out of copying procedure for non-master thread. 1008 EmitBlock(CopyEnd, /*IsFinished=*/true); 1009 return true; 1010 } 1011 return false; 1012 } 1013 1014 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1015 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1016 if (!HaveInsertPoint()) 1017 return false; 1018 bool HasAtLeastOneLastprivate = false; 1019 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1020 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1021 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1022 for (const Expr *C : LoopDirective->counters()) { 1023 SIMDLCVs.insert( 1024 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1025 } 1026 } 1027 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1028 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1029 HasAtLeastOneLastprivate = true; 1030 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1031 !getLangOpts().OpenMPSimd) 1032 break; 1033 const auto *IRef = C->varlist_begin(); 1034 const auto *IDestRef = C->destination_exprs().begin(); 1035 for (const Expr *IInit : C->private_copies()) { 1036 // Keep the address of the original variable for future update at the end 1037 // of the loop. 1038 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1039 // Taskloops do not require additional initialization, it is done in 1040 // runtime support library. 1041 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1042 const auto *DestVD = 1043 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1044 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1045 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1046 /*RefersToEnclosingVariableOrCapture=*/ 1047 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1048 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1049 return EmitLValue(&DRE).getAddress(*this); 1050 }); 1051 // Check if the variable is also a firstprivate: in this case IInit is 1052 // not generated. Initialization of this variable will happen in codegen 1053 // for 'firstprivate' clause. 1054 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1055 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1056 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1057 OrigVD]() { 1058 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1059 Address VDAddr = 1060 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1061 OrigVD); 1062 setAddrOfLocalVar(VD, VDAddr); 1063 return VDAddr; 1064 } 1065 // Emit private VarDecl with copy init. 1066 EmitDecl(*VD); 1067 return GetAddrOfLocalVar(VD); 1068 }); 1069 assert(IsRegistered && 1070 "lastprivate var already registered as private"); 1071 (void)IsRegistered; 1072 } 1073 } 1074 ++IRef; 1075 ++IDestRef; 1076 } 1077 } 1078 return HasAtLeastOneLastprivate; 1079 } 1080 1081 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1082 const OMPExecutableDirective &D, bool NoFinals, 1083 llvm::Value *IsLastIterCond) { 1084 if (!HaveInsertPoint()) 1085 return; 1086 // Emit following code: 1087 // if (<IsLastIterCond>) { 1088 // orig_var1 = private_orig_var1; 1089 // ... 1090 // orig_varn = private_orig_varn; 1091 // } 1092 llvm::BasicBlock *ThenBB = nullptr; 1093 llvm::BasicBlock *DoneBB = nullptr; 1094 if (IsLastIterCond) { 1095 // Emit implicit barrier if at least one lastprivate conditional is found 1096 // and this is not a simd mode. 1097 if (!getLangOpts().OpenMPSimd && 1098 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1099 [](const OMPLastprivateClause *C) { 1100 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1101 })) { 1102 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1103 OMPD_unknown, 1104 /*EmitChecks=*/false, 1105 /*ForceSimpleCall=*/true); 1106 } 1107 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1108 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1109 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1110 EmitBlock(ThenBB); 1111 } 1112 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1113 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1114 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1115 auto IC = LoopDirective->counters().begin(); 1116 for (const Expr *F : LoopDirective->finals()) { 1117 const auto *D = 1118 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1119 if (NoFinals) 1120 AlreadyEmittedVars.insert(D); 1121 else 1122 LoopCountersAndUpdates[D] = F; 1123 ++IC; 1124 } 1125 } 1126 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1127 auto IRef = C->varlist_begin(); 1128 auto ISrcRef = C->source_exprs().begin(); 1129 auto IDestRef = C->destination_exprs().begin(); 1130 for (const Expr *AssignOp : C->assignment_ops()) { 1131 const auto *PrivateVD = 1132 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1133 QualType Type = PrivateVD->getType(); 1134 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1135 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1136 // If lastprivate variable is a loop control variable for loop-based 1137 // directive, update its value before copyin back to original 1138 // variable. 1139 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1140 EmitIgnoredExpr(FinalExpr); 1141 const auto *SrcVD = 1142 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1143 const auto *DestVD = 1144 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1145 // Get the address of the private variable. 1146 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1147 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1148 PrivateAddr = 1149 Address(Builder.CreateLoad(PrivateAddr), 1150 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1151 // Store the last value to the private copy in the last iteration. 1152 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1153 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1154 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1155 (*IRef)->getExprLoc()); 1156 // Get the address of the original variable. 1157 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1158 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1159 } 1160 ++IRef; 1161 ++ISrcRef; 1162 ++IDestRef; 1163 } 1164 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1165 EmitIgnoredExpr(PostUpdate); 1166 } 1167 if (IsLastIterCond) 1168 EmitBlock(DoneBB, /*IsFinished=*/true); 1169 } 1170 1171 void CodeGenFunction::EmitOMPReductionClauseInit( 1172 const OMPExecutableDirective &D, 1173 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1174 if (!HaveInsertPoint()) 1175 return; 1176 SmallVector<const Expr *, 4> Shareds; 1177 SmallVector<const Expr *, 4> Privates; 1178 SmallVector<const Expr *, 4> ReductionOps; 1179 SmallVector<const Expr *, 4> LHSs; 1180 SmallVector<const Expr *, 4> RHSs; 1181 OMPTaskDataTy Data; 1182 SmallVector<const Expr *, 4> TaskLHSs; 1183 SmallVector<const Expr *, 4> TaskRHSs; 1184 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1185 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1186 continue; 1187 Shareds.append(C->varlist_begin(), C->varlist_end()); 1188 Privates.append(C->privates().begin(), C->privates().end()); 1189 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1190 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1191 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1192 if (C->getModifier() == OMPC_REDUCTION_task) { 1193 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1194 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1195 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1196 Data.ReductionOps.append(C->reduction_ops().begin(), 1197 C->reduction_ops().end()); 1198 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1199 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1200 } 1201 } 1202 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1203 unsigned Count = 0; 1204 auto *ILHS = LHSs.begin(); 1205 auto *IRHS = RHSs.begin(); 1206 auto *IPriv = Privates.begin(); 1207 for (const Expr *IRef : Shareds) { 1208 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1209 // Emit private VarDecl with reduction init. 1210 RedCG.emitSharedOrigLValue(*this, Count); 1211 RedCG.emitAggregateType(*this, Count); 1212 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1213 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1214 RedCG.getSharedLValue(Count), 1215 [&Emission](CodeGenFunction &CGF) { 1216 CGF.EmitAutoVarInit(Emission); 1217 return true; 1218 }); 1219 EmitAutoVarCleanups(Emission); 1220 Address BaseAddr = RedCG.adjustPrivateAddress( 1221 *this, Count, Emission.getAllocatedAddress()); 1222 bool IsRegistered = PrivateScope.addPrivate( 1223 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1224 assert(IsRegistered && "private var already registered as private"); 1225 // Silence the warning about unused variable. 1226 (void)IsRegistered; 1227 1228 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1229 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1230 QualType Type = PrivateVD->getType(); 1231 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1232 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1233 // Store the address of the original variable associated with the LHS 1234 // implicit variable. 1235 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1236 return RedCG.getSharedLValue(Count).getAddress(*this); 1237 }); 1238 PrivateScope.addPrivate( 1239 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1240 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1241 isa<ArraySubscriptExpr>(IRef)) { 1242 // Store the address of the original variable associated with the LHS 1243 // implicit variable. 1244 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1245 return RedCG.getSharedLValue(Count).getAddress(*this); 1246 }); 1247 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1248 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1249 ConvertTypeForMem(RHSVD->getType()), 1250 "rhs.begin"); 1251 }); 1252 } else { 1253 QualType Type = PrivateVD->getType(); 1254 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1255 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1256 // Store the address of the original variable associated with the LHS 1257 // implicit variable. 1258 if (IsArray) { 1259 OriginalAddr = Builder.CreateElementBitCast( 1260 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1261 } 1262 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1263 PrivateScope.addPrivate( 1264 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1265 return IsArray 1266 ? Builder.CreateElementBitCast( 1267 GetAddrOfLocalVar(PrivateVD), 1268 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1269 : GetAddrOfLocalVar(PrivateVD); 1270 }); 1271 } 1272 ++ILHS; 1273 ++IRHS; 1274 ++IPriv; 1275 ++Count; 1276 } 1277 if (!Data.ReductionVars.empty()) { 1278 Data.IsReductionWithTaskMod = true; 1279 Data.IsWorksharingReduction = 1280 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1281 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1282 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1283 const Expr *TaskRedRef = nullptr; 1284 switch (D.getDirectiveKind()) { 1285 case OMPD_parallel: 1286 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1287 break; 1288 case OMPD_for: 1289 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1290 break; 1291 case OMPD_sections: 1292 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1293 break; 1294 case OMPD_parallel_for: 1295 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1296 break; 1297 case OMPD_parallel_master: 1298 TaskRedRef = 1299 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1300 break; 1301 case OMPD_parallel_sections: 1302 TaskRedRef = 1303 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1304 break; 1305 case OMPD_target_parallel: 1306 TaskRedRef = 1307 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1308 break; 1309 case OMPD_target_parallel_for: 1310 TaskRedRef = 1311 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1312 break; 1313 case OMPD_distribute_parallel_for: 1314 TaskRedRef = 1315 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1316 break; 1317 case OMPD_teams_distribute_parallel_for: 1318 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1319 .getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_target_teams_distribute_parallel_for: 1322 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1323 .getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_simd: 1326 case OMPD_for_simd: 1327 case OMPD_section: 1328 case OMPD_single: 1329 case OMPD_master: 1330 case OMPD_critical: 1331 case OMPD_parallel_for_simd: 1332 case OMPD_task: 1333 case OMPD_taskyield: 1334 case OMPD_barrier: 1335 case OMPD_taskwait: 1336 case OMPD_taskgroup: 1337 case OMPD_flush: 1338 case OMPD_depobj: 1339 case OMPD_scan: 1340 case OMPD_ordered: 1341 case OMPD_atomic: 1342 case OMPD_teams: 1343 case OMPD_target: 1344 case OMPD_cancellation_point: 1345 case OMPD_cancel: 1346 case OMPD_target_data: 1347 case OMPD_target_enter_data: 1348 case OMPD_target_exit_data: 1349 case OMPD_taskloop: 1350 case OMPD_taskloop_simd: 1351 case OMPD_master_taskloop: 1352 case OMPD_master_taskloop_simd: 1353 case OMPD_parallel_master_taskloop: 1354 case OMPD_parallel_master_taskloop_simd: 1355 case OMPD_distribute: 1356 case OMPD_target_update: 1357 case OMPD_distribute_parallel_for_simd: 1358 case OMPD_distribute_simd: 1359 case OMPD_target_parallel_for_simd: 1360 case OMPD_target_simd: 1361 case OMPD_teams_distribute: 1362 case OMPD_teams_distribute_simd: 1363 case OMPD_teams_distribute_parallel_for_simd: 1364 case OMPD_target_teams: 1365 case OMPD_target_teams_distribute: 1366 case OMPD_target_teams_distribute_parallel_for_simd: 1367 case OMPD_target_teams_distribute_simd: 1368 case OMPD_declare_target: 1369 case OMPD_end_declare_target: 1370 case OMPD_threadprivate: 1371 case OMPD_allocate: 1372 case OMPD_declare_reduction: 1373 case OMPD_declare_mapper: 1374 case OMPD_declare_simd: 1375 case OMPD_requires: 1376 case OMPD_declare_variant: 1377 case OMPD_begin_declare_variant: 1378 case OMPD_end_declare_variant: 1379 case OMPD_unknown: 1380 llvm_unreachable("Enexpected directive with task reductions."); 1381 } 1382 1383 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1384 EmitVarDecl(*VD); 1385 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1386 /*Volatile=*/false, TaskRedRef->getType()); 1387 } 1388 } 1389 1390 void CodeGenFunction::EmitOMPReductionClauseFinal( 1391 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1392 if (!HaveInsertPoint()) 1393 return; 1394 llvm::SmallVector<const Expr *, 8> Privates; 1395 llvm::SmallVector<const Expr *, 8> LHSExprs; 1396 llvm::SmallVector<const Expr *, 8> RHSExprs; 1397 llvm::SmallVector<const Expr *, 8> ReductionOps; 1398 bool HasAtLeastOneReduction = false; 1399 bool IsReductionWithTaskMod = false; 1400 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1401 // Do not emit for inscan reductions. 1402 if (C->getModifier() == OMPC_REDUCTION_inscan) 1403 continue; 1404 HasAtLeastOneReduction = true; 1405 Privates.append(C->privates().begin(), C->privates().end()); 1406 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1407 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1408 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1409 IsReductionWithTaskMod = 1410 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1411 } 1412 if (HasAtLeastOneReduction) { 1413 if (IsReductionWithTaskMod) { 1414 CGM.getOpenMPRuntime().emitTaskReductionFini( 1415 *this, D.getBeginLoc(), 1416 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1417 } 1418 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1419 isOpenMPParallelDirective(D.getDirectiveKind()) || 1420 ReductionKind == OMPD_simd; 1421 bool SimpleReduction = ReductionKind == OMPD_simd; 1422 // Emit nowait reduction if nowait clause is present or directive is a 1423 // parallel directive (it always has implicit barrier). 1424 CGM.getOpenMPRuntime().emitReduction( 1425 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1426 {WithNowait, SimpleReduction, ReductionKind}); 1427 } 1428 } 1429 1430 static void emitPostUpdateForReductionClause( 1431 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1432 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1433 if (!CGF.HaveInsertPoint()) 1434 return; 1435 llvm::BasicBlock *DoneBB = nullptr; 1436 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1437 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1438 if (!DoneBB) { 1439 if (llvm::Value *Cond = CondGen(CGF)) { 1440 // If the first post-update expression is found, emit conditional 1441 // block if it was requested. 1442 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1443 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1444 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1445 CGF.EmitBlock(ThenBB); 1446 } 1447 } 1448 CGF.EmitIgnoredExpr(PostUpdate); 1449 } 1450 } 1451 if (DoneBB) 1452 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1453 } 1454 1455 namespace { 1456 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1457 /// parallel function. This is necessary for combined constructs such as 1458 /// 'distribute parallel for' 1459 typedef llvm::function_ref<void(CodeGenFunction &, 1460 const OMPExecutableDirective &, 1461 llvm::SmallVectorImpl<llvm::Value *> &)> 1462 CodeGenBoundParametersTy; 1463 } // anonymous namespace 1464 1465 static void 1466 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1467 const OMPExecutableDirective &S) { 1468 if (CGF.getLangOpts().OpenMP < 50) 1469 return; 1470 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1471 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1472 for (const Expr *Ref : C->varlists()) { 1473 if (!Ref->getType()->isScalarType()) 1474 continue; 1475 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1476 if (!DRE) 1477 continue; 1478 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1479 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1480 } 1481 } 1482 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1483 for (const Expr *Ref : C->varlists()) { 1484 if (!Ref->getType()->isScalarType()) 1485 continue; 1486 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1487 if (!DRE) 1488 continue; 1489 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1490 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1491 } 1492 } 1493 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1494 for (const Expr *Ref : C->varlists()) { 1495 if (!Ref->getType()->isScalarType()) 1496 continue; 1497 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1498 if (!DRE) 1499 continue; 1500 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1501 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1502 } 1503 } 1504 // Privates should ne analyzed since they are not captured at all. 1505 // Task reductions may be skipped - tasks are ignored. 1506 // Firstprivates do not return value but may be passed by reference - no need 1507 // to check for updated lastprivate conditional. 1508 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1509 for (const Expr *Ref : C->varlists()) { 1510 if (!Ref->getType()->isScalarType()) 1511 continue; 1512 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1513 if (!DRE) 1514 continue; 1515 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1516 } 1517 } 1518 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1519 CGF, S, PrivateDecls); 1520 } 1521 1522 static void emitCommonOMPParallelDirective( 1523 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1524 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1525 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1526 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1527 llvm::Function *OutlinedFn = 1528 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1529 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1530 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1531 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1532 llvm::Value *NumThreads = 1533 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1534 /*IgnoreResultAssign=*/true); 1535 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1536 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1537 } 1538 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1539 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1540 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1541 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1542 } 1543 const Expr *IfCond = nullptr; 1544 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1545 if (C->getNameModifier() == OMPD_unknown || 1546 C->getNameModifier() == OMPD_parallel) { 1547 IfCond = C->getCondition(); 1548 break; 1549 } 1550 } 1551 1552 OMPParallelScope Scope(CGF, S); 1553 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1554 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1555 // lower and upper bounds with the pragma 'for' chunking mechanism. 1556 // The following lambda takes care of appending the lower and upper bound 1557 // parameters when necessary 1558 CodeGenBoundParameters(CGF, S, CapturedVars); 1559 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1560 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1561 CapturedVars, IfCond); 1562 } 1563 1564 static void emitEmptyBoundParameters(CodeGenFunction &, 1565 const OMPExecutableDirective &, 1566 llvm::SmallVectorImpl<llvm::Value *> &) {} 1567 1568 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1569 CodeGenFunction &CGF, const VarDecl *VD) { 1570 CodeGenModule &CGM = CGF.CGM; 1571 auto OMPBuilder = CGM.getOpenMPIRBuilder(); 1572 assert(OMPBuilder && "OMPIRBuilder does not exist!"); 1573 1574 if (!VD) 1575 return Address::invalid(); 1576 const VarDecl *CVD = VD->getCanonicalDecl(); 1577 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1578 return Address::invalid(); 1579 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1580 // Use the default allocation. 1581 if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc && 1582 !AA->getAllocator()) 1583 return Address::invalid(); 1584 llvm::Value *Size; 1585 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1586 if (CVD->getType()->isVariablyModifiedType()) { 1587 Size = CGF.getTypeSize(CVD->getType()); 1588 // Align the size: ((size + align - 1) / align) * align 1589 Size = CGF.Builder.CreateNUWAdd( 1590 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1591 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1592 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1593 } else { 1594 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1595 Size = CGM.getSize(Sz.alignTo(Align)); 1596 } 1597 1598 assert(AA->getAllocator() && 1599 "Expected allocator expression for non-default allocator."); 1600 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1601 // According to the standard, the original allocator type is a enum (integer). 1602 // Convert to pointer type, if required. 1603 if (Allocator->getType()->isIntegerTy()) 1604 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1605 else if (Allocator->getType()->isPointerTy()) 1606 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1607 CGM.VoidPtrTy); 1608 1609 llvm::Value *Addr = OMPBuilder->CreateOMPAlloc( 1610 CGF.Builder, Size, Allocator, 1611 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1612 llvm::CallInst *FreeCI = 1613 OMPBuilder->CreateOMPFree(CGF.Builder, Addr, Allocator); 1614 1615 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1616 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1617 Addr, 1618 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1619 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1620 return Address(Addr, Align); 1621 } 1622 1623 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1624 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1625 SourceLocation Loc) { 1626 CodeGenModule &CGM = CGF.CGM; 1627 if (CGM.getLangOpts().OpenMPUseTLS && 1628 CGM.getContext().getTargetInfo().isTLSSupported()) 1629 return VDAddr; 1630 1631 llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder(); 1632 assert(OMPBuilder && "OpenMPIRBuilder is not initialized or used."); 1633 1634 llvm::Type *VarTy = VDAddr.getElementType(); 1635 llvm::Value *Data = 1636 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1637 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1638 std::string Suffix = getNameWithSeparators({"cache", ""}); 1639 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1640 1641 llvm::CallInst *ThreadPrivateCacheCall = 1642 OMPBuilder->CreateCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1643 1644 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1645 } 1646 1647 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1648 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1649 SmallString<128> Buffer; 1650 llvm::raw_svector_ostream OS(Buffer); 1651 StringRef Sep = FirstSeparator; 1652 for (StringRef Part : Parts) { 1653 OS << Sep << Part; 1654 Sep = Separator; 1655 } 1656 return OS.str().str(); 1657 } 1658 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1659 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1660 // Check if we have any if clause associated with the directive. 1661 llvm::Value *IfCond = nullptr; 1662 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1663 IfCond = EmitScalarExpr(C->getCondition(), 1664 /*IgnoreResultAssign=*/true); 1665 1666 llvm::Value *NumThreads = nullptr; 1667 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1668 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1669 /*IgnoreResultAssign=*/true); 1670 1671 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1672 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1673 ProcBind = ProcBindClause->getProcBindKind(); 1674 1675 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1676 1677 // The cleanup callback that finalizes all variabels at the given location, 1678 // thus calls destructors etc. 1679 auto FiniCB = [this](InsertPointTy IP) { 1680 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1681 }; 1682 1683 // Privatization callback that performs appropriate action for 1684 // shared/private/firstprivate/lastprivate/copyin/... variables. 1685 // 1686 // TODO: This defaults to shared right now. 1687 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1688 llvm::Value &Val, llvm::Value *&ReplVal) { 1689 // The next line is appropriate only for variables (Val) with the 1690 // data-sharing attribute "shared". 1691 ReplVal = &Val; 1692 1693 return CodeGenIP; 1694 }; 1695 1696 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1697 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1698 1699 auto BodyGenCB = [ParallelRegionBodyStmt, 1700 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1701 llvm::BasicBlock &ContinuationBB) { 1702 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1703 ContinuationBB); 1704 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1705 CodeGenIP, ContinuationBB); 1706 }; 1707 1708 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1709 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1710 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1711 FiniCB, IfCond, NumThreads, 1712 ProcBind, S.hasCancel())); 1713 return; 1714 } 1715 1716 // Emit parallel region as a standalone region. 1717 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1718 Action.Enter(CGF); 1719 OMPPrivateScope PrivateScope(CGF); 1720 bool Copyins = CGF.EmitOMPCopyinClause(S); 1721 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1722 if (Copyins) { 1723 // Emit implicit barrier to synchronize threads and avoid data races on 1724 // propagation master's thread values of threadprivate variables to local 1725 // instances of that variables of all other implicit threads. 1726 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1727 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1728 /*ForceSimpleCall=*/true); 1729 } 1730 CGF.EmitOMPPrivateClause(S, PrivateScope); 1731 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1732 (void)PrivateScope.Privatize(); 1733 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1734 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1735 }; 1736 { 1737 auto LPCRegion = 1738 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1739 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1740 emitEmptyBoundParameters); 1741 emitPostUpdateForReductionClause(*this, S, 1742 [](CodeGenFunction &) { return nullptr; }); 1743 } 1744 // Check for outer lastprivate conditional update. 1745 checkForLastprivateConditionalUpdate(*this, S); 1746 } 1747 1748 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1749 int MaxLevel, int Level = 0) { 1750 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1751 const Stmt *SimplifiedS = S->IgnoreContainers(); 1752 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1753 PrettyStackTraceLoc CrashInfo( 1754 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1755 "LLVM IR generation of compound statement ('{}')"); 1756 1757 // Keep track of the current cleanup stack depth, including debug scopes. 1758 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1759 for (const Stmt *CurStmt : CS->body()) 1760 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1761 return; 1762 } 1763 if (SimplifiedS == NextLoop) { 1764 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1765 S = For->getBody(); 1766 } else { 1767 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1768 "Expected canonical for loop or range-based for loop."); 1769 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1770 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1771 S = CXXFor->getBody(); 1772 } 1773 if (Level + 1 < MaxLevel) { 1774 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1775 S, /*TryImperfectlyNestedLoops=*/true); 1776 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1777 return; 1778 } 1779 } 1780 CGF.EmitStmt(S); 1781 } 1782 1783 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1784 JumpDest LoopExit) { 1785 RunCleanupsScope BodyScope(*this); 1786 // Update counters values on current iteration. 1787 for (const Expr *UE : D.updates()) 1788 EmitIgnoredExpr(UE); 1789 // Update the linear variables. 1790 // In distribute directives only loop counters may be marked as linear, no 1791 // need to generate the code for them. 1792 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1793 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1794 for (const Expr *UE : C->updates()) 1795 EmitIgnoredExpr(UE); 1796 } 1797 } 1798 1799 // On a continue in the body, jump to the end. 1800 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1801 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1802 for (const Expr *E : D.finals_conditions()) { 1803 if (!E) 1804 continue; 1805 // Check that loop counter in non-rectangular nest fits into the iteration 1806 // space. 1807 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1808 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1809 getProfileCount(D.getBody())); 1810 EmitBlock(NextBB); 1811 } 1812 1813 OMPPrivateScope InscanScope(*this); 1814 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1815 bool IsInscanRegion = InscanScope.Privatize(); 1816 if (IsInscanRegion) { 1817 // Need to remember the block before and after scan directive 1818 // to dispatch them correctly depending on the clause used in 1819 // this directive, inclusive or exclusive. For inclusive scan the natural 1820 // order of the blocks is used, for exclusive clause the blocks must be 1821 // executed in reverse order. 1822 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1823 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1824 // No need to allocate inscan exit block, in simd mode it is selected in the 1825 // codegen for the scan directive. 1826 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1827 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1828 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1829 EmitBranch(OMPScanDispatch); 1830 EmitBlock(OMPBeforeScanBlock); 1831 } 1832 1833 // Emit loop variables for C++ range loops. 1834 const Stmt *Body = 1835 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1836 // Emit loop body. 1837 emitBody(*this, Body, 1838 OMPLoopDirective::tryToFindNextInnerLoop( 1839 Body, /*TryImperfectlyNestedLoops=*/true), 1840 D.getCollapsedNumber()); 1841 1842 // Jump to the dispatcher at the end of the loop body. 1843 if (IsInscanRegion) 1844 EmitBranch(OMPScanExitBlock); 1845 1846 // The end (updates/cleanups). 1847 EmitBlock(Continue.getBlock()); 1848 BreakContinueStack.pop_back(); 1849 } 1850 1851 void CodeGenFunction::EmitOMPInnerLoop( 1852 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 1853 const Expr *IncExpr, 1854 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1855 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1856 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1857 1858 // Start the loop with a block that tests the condition. 1859 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1860 EmitBlock(CondBlock); 1861 const SourceRange R = S.getSourceRange(); 1862 1863 // If attributes are attached, push to the basic block with them. 1864 const auto &OMPED = cast<OMPExecutableDirective>(S); 1865 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 1866 const Stmt *SS = ICS->getCapturedStmt(); 1867 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 1868 if (AS) 1869 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 1870 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 1871 SourceLocToDebugLoc(R.getEnd())); 1872 else 1873 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1874 SourceLocToDebugLoc(R.getEnd())); 1875 1876 // If there are any cleanups between here and the loop-exit scope, 1877 // create a block to stage a loop exit along. 1878 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1879 if (RequiresCleanup) 1880 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1881 1882 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1883 1884 // Emit condition. 1885 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1886 if (ExitBlock != LoopExit.getBlock()) { 1887 EmitBlock(ExitBlock); 1888 EmitBranchThroughCleanup(LoopExit); 1889 } 1890 1891 EmitBlock(LoopBody); 1892 incrementProfileCounter(&S); 1893 1894 // Create a block for the increment. 1895 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1896 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1897 1898 BodyGen(*this); 1899 1900 // Emit "IV = IV + 1" and a back-edge to the condition block. 1901 EmitBlock(Continue.getBlock()); 1902 EmitIgnoredExpr(IncExpr); 1903 PostIncGen(*this); 1904 BreakContinueStack.pop_back(); 1905 EmitBranch(CondBlock); 1906 LoopStack.pop(); 1907 // Emit the fall-through block. 1908 EmitBlock(LoopExit.getBlock()); 1909 } 1910 1911 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1912 if (!HaveInsertPoint()) 1913 return false; 1914 // Emit inits for the linear variables. 1915 bool HasLinears = false; 1916 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1917 for (const Expr *Init : C->inits()) { 1918 HasLinears = true; 1919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1920 if (const auto *Ref = 1921 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1922 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1923 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1924 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1925 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1926 VD->getInit()->getType(), VK_LValue, 1927 VD->getInit()->getExprLoc()); 1928 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1929 VD->getType()), 1930 /*capturedByInit=*/false); 1931 EmitAutoVarCleanups(Emission); 1932 } else { 1933 EmitVarDecl(*VD); 1934 } 1935 } 1936 // Emit the linear steps for the linear clauses. 1937 // If a step is not constant, it is pre-calculated before the loop. 1938 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1939 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1940 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1941 // Emit calculation of the linear step. 1942 EmitIgnoredExpr(CS); 1943 } 1944 } 1945 return HasLinears; 1946 } 1947 1948 void CodeGenFunction::EmitOMPLinearClauseFinal( 1949 const OMPLoopDirective &D, 1950 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1951 if (!HaveInsertPoint()) 1952 return; 1953 llvm::BasicBlock *DoneBB = nullptr; 1954 // Emit the final values of the linear variables. 1955 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1956 auto IC = C->varlist_begin(); 1957 for (const Expr *F : C->finals()) { 1958 if (!DoneBB) { 1959 if (llvm::Value *Cond = CondGen(*this)) { 1960 // If the first post-update expression is found, emit conditional 1961 // block if it was requested. 1962 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1963 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1964 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1965 EmitBlock(ThenBB); 1966 } 1967 } 1968 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1969 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1970 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1971 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1972 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1973 CodeGenFunction::OMPPrivateScope VarScope(*this); 1974 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1975 (void)VarScope.Privatize(); 1976 EmitIgnoredExpr(F); 1977 ++IC; 1978 } 1979 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1980 EmitIgnoredExpr(PostUpdate); 1981 } 1982 if (DoneBB) 1983 EmitBlock(DoneBB, /*IsFinished=*/true); 1984 } 1985 1986 static void emitAlignedClause(CodeGenFunction &CGF, 1987 const OMPExecutableDirective &D) { 1988 if (!CGF.HaveInsertPoint()) 1989 return; 1990 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1991 llvm::APInt ClauseAlignment(64, 0); 1992 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1993 auto *AlignmentCI = 1994 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1995 ClauseAlignment = AlignmentCI->getValue(); 1996 } 1997 for (const Expr *E : Clause->varlists()) { 1998 llvm::APInt Alignment(ClauseAlignment); 1999 if (Alignment == 0) { 2000 // OpenMP [2.8.1, Description] 2001 // If no optional parameter is specified, implementation-defined default 2002 // alignments for SIMD instructions on the target platforms are assumed. 2003 Alignment = 2004 CGF.getContext() 2005 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2006 E->getType()->getPointeeType())) 2007 .getQuantity(); 2008 } 2009 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2010 "alignment is not power of 2"); 2011 if (Alignment != 0) { 2012 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2013 CGF.emitAlignmentAssumption( 2014 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2015 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2016 } 2017 } 2018 } 2019 } 2020 2021 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2022 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2023 if (!HaveInsertPoint()) 2024 return; 2025 auto I = S.private_counters().begin(); 2026 for (const Expr *E : S.counters()) { 2027 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2028 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2029 // Emit var without initialization. 2030 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2031 EmitAutoVarCleanups(VarEmission); 2032 LocalDeclMap.erase(PrivateVD); 2033 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2034 return VarEmission.getAllocatedAddress(); 2035 }); 2036 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2037 VD->hasGlobalStorage()) { 2038 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2039 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2040 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2041 E->getType(), VK_LValue, E->getExprLoc()); 2042 return EmitLValue(&DRE).getAddress(*this); 2043 }); 2044 } else { 2045 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2046 return VarEmission.getAllocatedAddress(); 2047 }); 2048 } 2049 ++I; 2050 } 2051 // Privatize extra loop counters used in loops for ordered(n) clauses. 2052 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2053 if (!C->getNumForLoops()) 2054 continue; 2055 for (unsigned I = S.getCollapsedNumber(), 2056 E = C->getLoopNumIterations().size(); 2057 I < E; ++I) { 2058 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2059 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2060 // Override only those variables that can be captured to avoid re-emission 2061 // of the variables declared within the loops. 2062 if (DRE->refersToEnclosingVariableOrCapture()) { 2063 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2064 return CreateMemTemp(DRE->getType(), VD->getName()); 2065 }); 2066 } 2067 } 2068 } 2069 } 2070 2071 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2072 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2073 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2074 if (!CGF.HaveInsertPoint()) 2075 return; 2076 { 2077 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2078 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2079 (void)PreCondScope.Privatize(); 2080 // Get initial values of real counters. 2081 for (const Expr *I : S.inits()) { 2082 CGF.EmitIgnoredExpr(I); 2083 } 2084 } 2085 // Create temp loop control variables with their init values to support 2086 // non-rectangular loops. 2087 CodeGenFunction::OMPMapVars PreCondVars; 2088 for (const Expr * E: S.dependent_counters()) { 2089 if (!E) 2090 continue; 2091 assert(!E->getType().getNonReferenceType()->isRecordType() && 2092 "dependent counter must not be an iterator."); 2093 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2094 Address CounterAddr = 2095 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2096 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2097 } 2098 (void)PreCondVars.apply(CGF); 2099 for (const Expr *E : S.dependent_inits()) { 2100 if (!E) 2101 continue; 2102 CGF.EmitIgnoredExpr(E); 2103 } 2104 // Check that loop is executed at least one time. 2105 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2106 PreCondVars.restore(CGF); 2107 } 2108 2109 void CodeGenFunction::EmitOMPLinearClause( 2110 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2111 if (!HaveInsertPoint()) 2112 return; 2113 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2114 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2115 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2116 for (const Expr *C : LoopDirective->counters()) { 2117 SIMDLCVs.insert( 2118 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2119 } 2120 } 2121 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2122 auto CurPrivate = C->privates().begin(); 2123 for (const Expr *E : C->varlists()) { 2124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2125 const auto *PrivateVD = 2126 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2127 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2128 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2129 // Emit private VarDecl with copy init. 2130 EmitVarDecl(*PrivateVD); 2131 return GetAddrOfLocalVar(PrivateVD); 2132 }); 2133 assert(IsRegistered && "linear var already registered as private"); 2134 // Silence the warning about unused variable. 2135 (void)IsRegistered; 2136 } else { 2137 EmitVarDecl(*PrivateVD); 2138 } 2139 ++CurPrivate; 2140 } 2141 } 2142 } 2143 2144 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2145 const OMPExecutableDirective &D, 2146 bool IsMonotonic) { 2147 if (!CGF.HaveInsertPoint()) 2148 return; 2149 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2150 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2151 /*ignoreResult=*/true); 2152 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2153 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2154 // In presence of finite 'safelen', it may be unsafe to mark all 2155 // the memory instructions parallel, because loop-carried 2156 // dependences of 'safelen' iterations are possible. 2157 if (!IsMonotonic) 2158 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2159 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2160 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2161 /*ignoreResult=*/true); 2162 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2163 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2164 // In presence of finite 'safelen', it may be unsafe to mark all 2165 // the memory instructions parallel, because loop-carried 2166 // dependences of 'safelen' iterations are possible. 2167 CGF.LoopStack.setParallel(/*Enable=*/false); 2168 } 2169 } 2170 2171 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 2172 bool IsMonotonic) { 2173 // Walk clauses and process safelen/lastprivate. 2174 LoopStack.setParallel(!IsMonotonic); 2175 LoopStack.setVectorizeEnable(); 2176 emitSimdlenSafelenClause(*this, D, IsMonotonic); 2177 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2178 if (C->getKind() == OMPC_ORDER_concurrent) 2179 LoopStack.setParallel(/*Enable=*/true); 2180 if ((D.getDirectiveKind() == OMPD_simd || 2181 (getLangOpts().OpenMPSimd && 2182 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2183 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2184 [](const OMPReductionClause *C) { 2185 return C->getModifier() == OMPC_REDUCTION_inscan; 2186 })) 2187 // Disable parallel access in case of prefix sum. 2188 LoopStack.setParallel(/*Enable=*/false); 2189 } 2190 2191 void CodeGenFunction::EmitOMPSimdFinal( 2192 const OMPLoopDirective &D, 2193 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2194 if (!HaveInsertPoint()) 2195 return; 2196 llvm::BasicBlock *DoneBB = nullptr; 2197 auto IC = D.counters().begin(); 2198 auto IPC = D.private_counters().begin(); 2199 for (const Expr *F : D.finals()) { 2200 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2201 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2202 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2203 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2204 OrigVD->hasGlobalStorage() || CED) { 2205 if (!DoneBB) { 2206 if (llvm::Value *Cond = CondGen(*this)) { 2207 // If the first post-update expression is found, emit conditional 2208 // block if it was requested. 2209 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2210 DoneBB = createBasicBlock(".omp.final.done"); 2211 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2212 EmitBlock(ThenBB); 2213 } 2214 } 2215 Address OrigAddr = Address::invalid(); 2216 if (CED) { 2217 OrigAddr = 2218 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2219 } else { 2220 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2221 /*RefersToEnclosingVariableOrCapture=*/false, 2222 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2223 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2224 } 2225 OMPPrivateScope VarScope(*this); 2226 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2227 (void)VarScope.Privatize(); 2228 EmitIgnoredExpr(F); 2229 } 2230 ++IC; 2231 ++IPC; 2232 } 2233 if (DoneBB) 2234 EmitBlock(DoneBB, /*IsFinished=*/true); 2235 } 2236 2237 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2238 const OMPLoopDirective &S, 2239 CodeGenFunction::JumpDest LoopExit) { 2240 CGF.EmitOMPLoopBody(S, LoopExit); 2241 CGF.EmitStopPoint(&S); 2242 } 2243 2244 /// Emit a helper variable and return corresponding lvalue. 2245 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2246 const DeclRefExpr *Helper) { 2247 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2248 CGF.EmitVarDecl(*VDecl); 2249 return CGF.EmitLValue(Helper); 2250 } 2251 2252 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2253 const RegionCodeGenTy &SimdInitGen, 2254 const RegionCodeGenTy &BodyCodeGen) { 2255 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2256 PrePostActionTy &) { 2257 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2258 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2259 SimdInitGen(CGF); 2260 2261 BodyCodeGen(CGF); 2262 }; 2263 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2264 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2265 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2266 2267 BodyCodeGen(CGF); 2268 }; 2269 const Expr *IfCond = nullptr; 2270 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2271 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2272 if (CGF.getLangOpts().OpenMP >= 50 && 2273 (C->getNameModifier() == OMPD_unknown || 2274 C->getNameModifier() == OMPD_simd)) { 2275 IfCond = C->getCondition(); 2276 break; 2277 } 2278 } 2279 } 2280 if (IfCond) { 2281 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2282 } else { 2283 RegionCodeGenTy ThenRCG(ThenGen); 2284 ThenRCG(CGF); 2285 } 2286 } 2287 2288 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2289 PrePostActionTy &Action) { 2290 Action.Enter(CGF); 2291 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2292 "Expected simd directive"); 2293 OMPLoopScope PreInitScope(CGF, S); 2294 // if (PreCond) { 2295 // for (IV in 0..LastIteration) BODY; 2296 // <Final counter/linear vars updates>; 2297 // } 2298 // 2299 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2300 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2301 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2302 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2303 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2304 } 2305 2306 // Emit: if (PreCond) - begin. 2307 // If the condition constant folds and can be elided, avoid emitting the 2308 // whole loop. 2309 bool CondConstant; 2310 llvm::BasicBlock *ContBlock = nullptr; 2311 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2312 if (!CondConstant) 2313 return; 2314 } else { 2315 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2316 ContBlock = CGF.createBasicBlock("simd.if.end"); 2317 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2318 CGF.getProfileCount(&S)); 2319 CGF.EmitBlock(ThenBlock); 2320 CGF.incrementProfileCounter(&S); 2321 } 2322 2323 // Emit the loop iteration variable. 2324 const Expr *IVExpr = S.getIterationVariable(); 2325 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2326 CGF.EmitVarDecl(*IVDecl); 2327 CGF.EmitIgnoredExpr(S.getInit()); 2328 2329 // Emit the iterations count variable. 2330 // If it is not a variable, Sema decided to calculate iterations count on 2331 // each iteration (e.g., it is foldable into a constant). 2332 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2333 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2334 // Emit calculation of the iterations count. 2335 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2336 } 2337 2338 emitAlignedClause(CGF, S); 2339 (void)CGF.EmitOMPLinearClauseInit(S); 2340 { 2341 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2342 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2343 CGF.EmitOMPLinearClause(S, LoopScope); 2344 CGF.EmitOMPPrivateClause(S, LoopScope); 2345 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2346 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2347 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2348 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2349 (void)LoopScope.Privatize(); 2350 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2351 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2352 2353 emitCommonSimdLoop( 2354 CGF, S, 2355 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2356 CGF.EmitOMPSimdInit(S); 2357 }, 2358 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2359 CGF.EmitOMPInnerLoop( 2360 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2361 [&S](CodeGenFunction &CGF) { 2362 emitOMPLoopBodyWithStopPoint(CGF, S, 2363 CodeGenFunction::JumpDest()); 2364 }, 2365 [](CodeGenFunction &) {}); 2366 }); 2367 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2368 // Emit final copy of the lastprivate variables at the end of loops. 2369 if (HasLastprivateClause) 2370 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2371 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2372 emitPostUpdateForReductionClause(CGF, S, 2373 [](CodeGenFunction &) { return nullptr; }); 2374 } 2375 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2376 // Emit: if (PreCond) - end. 2377 if (ContBlock) { 2378 CGF.EmitBranch(ContBlock); 2379 CGF.EmitBlock(ContBlock, true); 2380 } 2381 } 2382 2383 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2384 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2385 OMPFirstScanLoop = true; 2386 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2387 emitOMPSimdRegion(CGF, S, Action); 2388 }; 2389 { 2390 auto LPCRegion = 2391 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2392 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2393 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2394 } 2395 // Check for outer lastprivate conditional update. 2396 checkForLastprivateConditionalUpdate(*this, S); 2397 } 2398 2399 void CodeGenFunction::EmitOMPOuterLoop( 2400 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2401 CodeGenFunction::OMPPrivateScope &LoopScope, 2402 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2403 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2404 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2405 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2406 2407 const Expr *IVExpr = S.getIterationVariable(); 2408 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2409 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2410 2411 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2412 2413 // Start the loop with a block that tests the condition. 2414 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2415 EmitBlock(CondBlock); 2416 const SourceRange R = S.getSourceRange(); 2417 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2418 SourceLocToDebugLoc(R.getEnd())); 2419 2420 llvm::Value *BoolCondVal = nullptr; 2421 if (!DynamicOrOrdered) { 2422 // UB = min(UB, GlobalUB) or 2423 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2424 // 'distribute parallel for') 2425 EmitIgnoredExpr(LoopArgs.EUB); 2426 // IV = LB 2427 EmitIgnoredExpr(LoopArgs.Init); 2428 // IV < UB 2429 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2430 } else { 2431 BoolCondVal = 2432 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2433 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2434 } 2435 2436 // If there are any cleanups between here and the loop-exit scope, 2437 // create a block to stage a loop exit along. 2438 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2439 if (LoopScope.requiresCleanups()) 2440 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2441 2442 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2443 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2444 if (ExitBlock != LoopExit.getBlock()) { 2445 EmitBlock(ExitBlock); 2446 EmitBranchThroughCleanup(LoopExit); 2447 } 2448 EmitBlock(LoopBody); 2449 2450 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2451 // LB for loop condition and emitted it above). 2452 if (DynamicOrOrdered) 2453 EmitIgnoredExpr(LoopArgs.Init); 2454 2455 // Create a block for the increment. 2456 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2457 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2458 2459 emitCommonSimdLoop( 2460 *this, S, 2461 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2462 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2463 // with dynamic/guided scheduling and without ordered clause. 2464 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2465 CGF.LoopStack.setParallel(!IsMonotonic); 2466 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2467 if (C->getKind() == OMPC_ORDER_concurrent) 2468 CGF.LoopStack.setParallel(/*Enable=*/true); 2469 } else { 2470 CGF.EmitOMPSimdInit(S, IsMonotonic); 2471 } 2472 }, 2473 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2474 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2475 SourceLocation Loc = S.getBeginLoc(); 2476 // when 'distribute' is not combined with a 'for': 2477 // while (idx <= UB) { BODY; ++idx; } 2478 // when 'distribute' is combined with a 'for' 2479 // (e.g. 'distribute parallel for') 2480 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2481 CGF.EmitOMPInnerLoop( 2482 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2483 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2484 CodeGenLoop(CGF, S, LoopExit); 2485 }, 2486 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2487 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2488 }); 2489 }); 2490 2491 EmitBlock(Continue.getBlock()); 2492 BreakContinueStack.pop_back(); 2493 if (!DynamicOrOrdered) { 2494 // Emit "LB = LB + Stride", "UB = UB + Stride". 2495 EmitIgnoredExpr(LoopArgs.NextLB); 2496 EmitIgnoredExpr(LoopArgs.NextUB); 2497 } 2498 2499 EmitBranch(CondBlock); 2500 LoopStack.pop(); 2501 // Emit the fall-through block. 2502 EmitBlock(LoopExit.getBlock()); 2503 2504 // Tell the runtime we are done. 2505 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2506 if (!DynamicOrOrdered) 2507 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2508 S.getDirectiveKind()); 2509 }; 2510 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2511 } 2512 2513 void CodeGenFunction::EmitOMPForOuterLoop( 2514 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2515 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2516 const OMPLoopArguments &LoopArgs, 2517 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2518 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2519 2520 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2521 const bool DynamicOrOrdered = 2522 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2523 2524 assert((Ordered || 2525 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2526 LoopArgs.Chunk != nullptr)) && 2527 "static non-chunked schedule does not need outer loop"); 2528 2529 // Emit outer loop. 2530 // 2531 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2532 // When schedule(dynamic,chunk_size) is specified, the iterations are 2533 // distributed to threads in the team in chunks as the threads request them. 2534 // Each thread executes a chunk of iterations, then requests another chunk, 2535 // until no chunks remain to be distributed. Each chunk contains chunk_size 2536 // iterations, except for the last chunk to be distributed, which may have 2537 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2538 // 2539 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2540 // to threads in the team in chunks as the executing threads request them. 2541 // Each thread executes a chunk of iterations, then requests another chunk, 2542 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2543 // each chunk is proportional to the number of unassigned iterations divided 2544 // by the number of threads in the team, decreasing to 1. For a chunk_size 2545 // with value k (greater than 1), the size of each chunk is determined in the 2546 // same way, with the restriction that the chunks do not contain fewer than k 2547 // iterations (except for the last chunk to be assigned, which may have fewer 2548 // than k iterations). 2549 // 2550 // When schedule(auto) is specified, the decision regarding scheduling is 2551 // delegated to the compiler and/or runtime system. The programmer gives the 2552 // implementation the freedom to choose any possible mapping of iterations to 2553 // threads in the team. 2554 // 2555 // When schedule(runtime) is specified, the decision regarding scheduling is 2556 // deferred until run time, and the schedule and chunk size are taken from the 2557 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2558 // implementation defined 2559 // 2560 // while(__kmpc_dispatch_next(&LB, &UB)) { 2561 // idx = LB; 2562 // while (idx <= UB) { BODY; ++idx; 2563 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2564 // } // inner loop 2565 // } 2566 // 2567 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2568 // When schedule(static, chunk_size) is specified, iterations are divided into 2569 // chunks of size chunk_size, and the chunks are assigned to the threads in 2570 // the team in a round-robin fashion in the order of the thread number. 2571 // 2572 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2573 // while (idx <= UB) { BODY; ++idx; } // inner loop 2574 // LB = LB + ST; 2575 // UB = UB + ST; 2576 // } 2577 // 2578 2579 const Expr *IVExpr = S.getIterationVariable(); 2580 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2581 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2582 2583 if (DynamicOrOrdered) { 2584 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2585 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2586 llvm::Value *LBVal = DispatchBounds.first; 2587 llvm::Value *UBVal = DispatchBounds.second; 2588 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2589 LoopArgs.Chunk}; 2590 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2591 IVSigned, Ordered, DipatchRTInputValues); 2592 } else { 2593 CGOpenMPRuntime::StaticRTInput StaticInit( 2594 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2595 LoopArgs.ST, LoopArgs.Chunk); 2596 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2597 ScheduleKind, StaticInit); 2598 } 2599 2600 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2601 const unsigned IVSize, 2602 const bool IVSigned) { 2603 if (Ordered) { 2604 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2605 IVSigned); 2606 } 2607 }; 2608 2609 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2610 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2611 OuterLoopArgs.IncExpr = S.getInc(); 2612 OuterLoopArgs.Init = S.getInit(); 2613 OuterLoopArgs.Cond = S.getCond(); 2614 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2615 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2616 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2617 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2618 } 2619 2620 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2621 const unsigned IVSize, const bool IVSigned) {} 2622 2623 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2624 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2625 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2626 const CodeGenLoopTy &CodeGenLoopContent) { 2627 2628 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2629 2630 // Emit outer loop. 2631 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2632 // dynamic 2633 // 2634 2635 const Expr *IVExpr = S.getIterationVariable(); 2636 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2637 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2638 2639 CGOpenMPRuntime::StaticRTInput StaticInit( 2640 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2641 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2642 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2643 2644 // for combined 'distribute' and 'for' the increment expression of distribute 2645 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2646 Expr *IncExpr; 2647 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2648 IncExpr = S.getDistInc(); 2649 else 2650 IncExpr = S.getInc(); 2651 2652 // this routine is shared by 'omp distribute parallel for' and 2653 // 'omp distribute': select the right EUB expression depending on the 2654 // directive 2655 OMPLoopArguments OuterLoopArgs; 2656 OuterLoopArgs.LB = LoopArgs.LB; 2657 OuterLoopArgs.UB = LoopArgs.UB; 2658 OuterLoopArgs.ST = LoopArgs.ST; 2659 OuterLoopArgs.IL = LoopArgs.IL; 2660 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2661 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2662 ? S.getCombinedEnsureUpperBound() 2663 : S.getEnsureUpperBound(); 2664 OuterLoopArgs.IncExpr = IncExpr; 2665 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2666 ? S.getCombinedInit() 2667 : S.getInit(); 2668 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2669 ? S.getCombinedCond() 2670 : S.getCond(); 2671 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2672 ? S.getCombinedNextLowerBound() 2673 : S.getNextLowerBound(); 2674 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2675 ? S.getCombinedNextUpperBound() 2676 : S.getNextUpperBound(); 2677 2678 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2679 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2680 emitEmptyOrdered); 2681 } 2682 2683 static std::pair<LValue, LValue> 2684 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2685 const OMPExecutableDirective &S) { 2686 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2687 LValue LB = 2688 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2689 LValue UB = 2690 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2691 2692 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2693 // parallel for') we need to use the 'distribute' 2694 // chunk lower and upper bounds rather than the whole loop iteration 2695 // space. These are parameters to the outlined function for 'parallel' 2696 // and we copy the bounds of the previous schedule into the 2697 // the current ones. 2698 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2699 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2700 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2701 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2702 PrevLBVal = CGF.EmitScalarConversion( 2703 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2704 LS.getIterationVariable()->getType(), 2705 LS.getPrevLowerBoundVariable()->getExprLoc()); 2706 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2707 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2708 PrevUBVal = CGF.EmitScalarConversion( 2709 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2710 LS.getIterationVariable()->getType(), 2711 LS.getPrevUpperBoundVariable()->getExprLoc()); 2712 2713 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2714 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2715 2716 return {LB, UB}; 2717 } 2718 2719 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2720 /// we need to use the LB and UB expressions generated by the worksharing 2721 /// code generation support, whereas in non combined situations we would 2722 /// just emit 0 and the LastIteration expression 2723 /// This function is necessary due to the difference of the LB and UB 2724 /// types for the RT emission routines for 'for_static_init' and 2725 /// 'for_dispatch_init' 2726 static std::pair<llvm::Value *, llvm::Value *> 2727 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2728 const OMPExecutableDirective &S, 2729 Address LB, Address UB) { 2730 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2731 const Expr *IVExpr = LS.getIterationVariable(); 2732 // when implementing a dynamic schedule for a 'for' combined with a 2733 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2734 // is not normalized as each team only executes its own assigned 2735 // distribute chunk 2736 QualType IteratorTy = IVExpr->getType(); 2737 llvm::Value *LBVal = 2738 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2739 llvm::Value *UBVal = 2740 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2741 return {LBVal, UBVal}; 2742 } 2743 2744 static void emitDistributeParallelForDistributeInnerBoundParams( 2745 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2746 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2747 const auto &Dir = cast<OMPLoopDirective>(S); 2748 LValue LB = 2749 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2750 llvm::Value *LBCast = 2751 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2752 CGF.SizeTy, /*isSigned=*/false); 2753 CapturedVars.push_back(LBCast); 2754 LValue UB = 2755 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2756 2757 llvm::Value *UBCast = 2758 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2759 CGF.SizeTy, /*isSigned=*/false); 2760 CapturedVars.push_back(UBCast); 2761 } 2762 2763 static void 2764 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2765 const OMPLoopDirective &S, 2766 CodeGenFunction::JumpDest LoopExit) { 2767 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2768 PrePostActionTy &Action) { 2769 Action.Enter(CGF); 2770 bool HasCancel = false; 2771 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2772 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2773 HasCancel = D->hasCancel(); 2774 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2775 HasCancel = D->hasCancel(); 2776 else if (const auto *D = 2777 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2778 HasCancel = D->hasCancel(); 2779 } 2780 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2781 HasCancel); 2782 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2783 emitDistributeParallelForInnerBounds, 2784 emitDistributeParallelForDispatchBounds); 2785 }; 2786 2787 emitCommonOMPParallelDirective( 2788 CGF, S, 2789 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2790 CGInlinedWorksharingLoop, 2791 emitDistributeParallelForDistributeInnerBoundParams); 2792 } 2793 2794 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2795 const OMPDistributeParallelForDirective &S) { 2796 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2797 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2798 S.getDistInc()); 2799 }; 2800 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2801 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2802 } 2803 2804 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2805 const OMPDistributeParallelForSimdDirective &S) { 2806 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2807 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2808 S.getDistInc()); 2809 }; 2810 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2811 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2812 } 2813 2814 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2815 const OMPDistributeSimdDirective &S) { 2816 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2817 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2818 }; 2819 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2820 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2821 } 2822 2823 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2824 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2825 // Emit SPMD target parallel for region as a standalone region. 2826 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2827 emitOMPSimdRegion(CGF, S, Action); 2828 }; 2829 llvm::Function *Fn; 2830 llvm::Constant *Addr; 2831 // Emit target region as a standalone region. 2832 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2833 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2834 assert(Fn && Addr && "Target device function emission failed."); 2835 } 2836 2837 void CodeGenFunction::EmitOMPTargetSimdDirective( 2838 const OMPTargetSimdDirective &S) { 2839 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2840 emitOMPSimdRegion(CGF, S, Action); 2841 }; 2842 emitCommonOMPTargetDirective(*this, S, CodeGen); 2843 } 2844 2845 namespace { 2846 struct ScheduleKindModifiersTy { 2847 OpenMPScheduleClauseKind Kind; 2848 OpenMPScheduleClauseModifier M1; 2849 OpenMPScheduleClauseModifier M2; 2850 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2851 OpenMPScheduleClauseModifier M1, 2852 OpenMPScheduleClauseModifier M2) 2853 : Kind(Kind), M1(M1), M2(M2) {} 2854 }; 2855 } // namespace 2856 2857 bool CodeGenFunction::EmitOMPWorksharingLoop( 2858 const OMPLoopDirective &S, Expr *EUB, 2859 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2860 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2861 // Emit the loop iteration variable. 2862 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2863 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2864 EmitVarDecl(*IVDecl); 2865 2866 // Emit the iterations count variable. 2867 // If it is not a variable, Sema decided to calculate iterations count on each 2868 // iteration (e.g., it is foldable into a constant). 2869 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2870 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2871 // Emit calculation of the iterations count. 2872 EmitIgnoredExpr(S.getCalcLastIteration()); 2873 } 2874 2875 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2876 2877 bool HasLastprivateClause; 2878 // Check pre-condition. 2879 { 2880 OMPLoopScope PreInitScope(*this, S); 2881 // Skip the entire loop if we don't meet the precondition. 2882 // If the condition constant folds and can be elided, avoid emitting the 2883 // whole loop. 2884 bool CondConstant; 2885 llvm::BasicBlock *ContBlock = nullptr; 2886 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2887 if (!CondConstant) 2888 return false; 2889 } else { 2890 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2891 ContBlock = createBasicBlock("omp.precond.end"); 2892 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2893 getProfileCount(&S)); 2894 EmitBlock(ThenBlock); 2895 incrementProfileCounter(&S); 2896 } 2897 2898 RunCleanupsScope DoacrossCleanupScope(*this); 2899 bool Ordered = false; 2900 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2901 if (OrderedClause->getNumForLoops()) 2902 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2903 else 2904 Ordered = true; 2905 } 2906 2907 llvm::DenseSet<const Expr *> EmittedFinals; 2908 emitAlignedClause(*this, S); 2909 bool HasLinears = EmitOMPLinearClauseInit(S); 2910 // Emit helper vars inits. 2911 2912 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2913 LValue LB = Bounds.first; 2914 LValue UB = Bounds.second; 2915 LValue ST = 2916 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2917 LValue IL = 2918 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2919 2920 // Emit 'then' code. 2921 { 2922 OMPPrivateScope LoopScope(*this); 2923 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2924 // Emit implicit barrier to synchronize threads and avoid data races on 2925 // initialization of firstprivate variables and post-update of 2926 // lastprivate variables. 2927 CGM.getOpenMPRuntime().emitBarrierCall( 2928 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2929 /*ForceSimpleCall=*/true); 2930 } 2931 EmitOMPPrivateClause(S, LoopScope); 2932 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2933 *this, S, EmitLValue(S.getIterationVariable())); 2934 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2935 EmitOMPReductionClauseInit(S, LoopScope); 2936 EmitOMPPrivateLoopCounters(S, LoopScope); 2937 EmitOMPLinearClause(S, LoopScope); 2938 (void)LoopScope.Privatize(); 2939 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2940 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2941 2942 // Detect the loop schedule kind and chunk. 2943 const Expr *ChunkExpr = nullptr; 2944 OpenMPScheduleTy ScheduleKind; 2945 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2946 ScheduleKind.Schedule = C->getScheduleKind(); 2947 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2948 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2949 ChunkExpr = C->getChunkSize(); 2950 } else { 2951 // Default behaviour for schedule clause. 2952 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2953 *this, S, ScheduleKind.Schedule, ChunkExpr); 2954 } 2955 bool HasChunkSizeOne = false; 2956 llvm::Value *Chunk = nullptr; 2957 if (ChunkExpr) { 2958 Chunk = EmitScalarExpr(ChunkExpr); 2959 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2960 S.getIterationVariable()->getType(), 2961 S.getBeginLoc()); 2962 Expr::EvalResult Result; 2963 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2964 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2965 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2966 } 2967 } 2968 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2969 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2970 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2971 // If the static schedule kind is specified or if the ordered clause is 2972 // specified, and if no monotonic modifier is specified, the effect will 2973 // be as if the monotonic modifier was specified. 2974 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2975 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2976 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2977 bool IsMonotonic = 2978 Ordered || 2979 ((ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2980 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) && 2981 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 2982 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 2983 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2984 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2985 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2986 /* Chunked */ Chunk != nullptr) || 2987 StaticChunkedOne) && 2988 !Ordered) { 2989 JumpDest LoopExit = 2990 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2991 emitCommonSimdLoop( 2992 *this, S, 2993 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2994 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2995 CGF.EmitOMPSimdInit(S, IsMonotonic); 2996 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2997 if (C->getKind() == OMPC_ORDER_concurrent) 2998 CGF.LoopStack.setParallel(/*Enable=*/true); 2999 } 3000 }, 3001 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3002 &S, ScheduleKind, LoopExit, 3003 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3004 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3005 // When no chunk_size is specified, the iteration space is divided 3006 // into chunks that are approximately equal in size, and at most 3007 // one chunk is distributed to each thread. Note that the size of 3008 // the chunks is unspecified in this case. 3009 CGOpenMPRuntime::StaticRTInput StaticInit( 3010 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3011 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3012 StaticChunkedOne ? Chunk : nullptr); 3013 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3014 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3015 StaticInit); 3016 // UB = min(UB, GlobalUB); 3017 if (!StaticChunkedOne) 3018 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3019 // IV = LB; 3020 CGF.EmitIgnoredExpr(S.getInit()); 3021 // For unchunked static schedule generate: 3022 // 3023 // while (idx <= UB) { 3024 // BODY; 3025 // ++idx; 3026 // } 3027 // 3028 // For static schedule with chunk one: 3029 // 3030 // while (IV <= PrevUB) { 3031 // BODY; 3032 // IV += ST; 3033 // } 3034 CGF.EmitOMPInnerLoop( 3035 S, LoopScope.requiresCleanups(), 3036 StaticChunkedOne ? S.getCombinedParForInDistCond() 3037 : S.getCond(), 3038 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3039 [&S, LoopExit](CodeGenFunction &CGF) { 3040 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3041 }, 3042 [](CodeGenFunction &) {}); 3043 }); 3044 EmitBlock(LoopExit.getBlock()); 3045 // Tell the runtime we are done. 3046 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3047 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3048 S.getDirectiveKind()); 3049 }; 3050 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3051 } else { 3052 // Emit the outer loop, which requests its work chunk [LB..UB] from 3053 // runtime and runs the inner loop to process it. 3054 const OMPLoopArguments LoopArguments( 3055 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3056 IL.getAddress(*this), Chunk, EUB); 3057 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3058 LoopArguments, CGDispatchBounds); 3059 } 3060 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3061 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3062 return CGF.Builder.CreateIsNotNull( 3063 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3064 }); 3065 } 3066 EmitOMPReductionClauseFinal( 3067 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3068 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3069 : /*Parallel only*/ OMPD_parallel); 3070 // Emit post-update of the reduction variables if IsLastIter != 0. 3071 emitPostUpdateForReductionClause( 3072 *this, S, [IL, &S](CodeGenFunction &CGF) { 3073 return CGF.Builder.CreateIsNotNull( 3074 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3075 }); 3076 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3077 if (HasLastprivateClause) 3078 EmitOMPLastprivateClauseFinal( 3079 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3080 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3081 } 3082 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3083 return CGF.Builder.CreateIsNotNull( 3084 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3085 }); 3086 DoacrossCleanupScope.ForceCleanup(); 3087 // We're now done with the loop, so jump to the continuation block. 3088 if (ContBlock) { 3089 EmitBranch(ContBlock); 3090 EmitBlock(ContBlock, /*IsFinished=*/true); 3091 } 3092 } 3093 return HasLastprivateClause; 3094 } 3095 3096 /// The following two functions generate expressions for the loop lower 3097 /// and upper bounds in case of static and dynamic (dispatch) schedule 3098 /// of the associated 'for' or 'distribute' loop. 3099 static std::pair<LValue, LValue> 3100 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3101 const auto &LS = cast<OMPLoopDirective>(S); 3102 LValue LB = 3103 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3104 LValue UB = 3105 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3106 return {LB, UB}; 3107 } 3108 3109 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3110 /// consider the lower and upper bound expressions generated by the 3111 /// worksharing loop support, but we use 0 and the iteration space size as 3112 /// constants 3113 static std::pair<llvm::Value *, llvm::Value *> 3114 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3115 Address LB, Address UB) { 3116 const auto &LS = cast<OMPLoopDirective>(S); 3117 const Expr *IVExpr = LS.getIterationVariable(); 3118 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3119 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3120 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3121 return {LBVal, UBVal}; 3122 } 3123 3124 /// Emits the code for the directive with inscan reductions. 3125 /// The code is the following: 3126 /// \code 3127 /// size num_iters = <num_iters>; 3128 /// <type> buffer[num_iters]; 3129 /// #pragma omp ... 3130 /// for (i: 0..<num_iters>) { 3131 /// <input phase>; 3132 /// buffer[i] = red; 3133 /// } 3134 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3135 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3136 /// buffer[i] op= buffer[i-pow(2,k)]; 3137 /// #pragma omp ... 3138 /// for (0..<num_iters>) { 3139 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3140 /// <scan phase>; 3141 /// } 3142 /// \endcode 3143 static void emitScanBasedDirective( 3144 CodeGenFunction &CGF, const OMPLoopDirective &S, 3145 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3146 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3147 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3148 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3149 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3150 SmallVector<const Expr *, 4> Shareds; 3151 SmallVector<const Expr *, 4> Privates; 3152 SmallVector<const Expr *, 4> ReductionOps; 3153 SmallVector<const Expr *, 4> LHSs; 3154 SmallVector<const Expr *, 4> RHSs; 3155 SmallVector<const Expr *, 4> CopyOps; 3156 SmallVector<const Expr *, 4> CopyArrayTemps; 3157 SmallVector<const Expr *, 4> CopyArrayElems; 3158 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3159 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3160 "Only inscan reductions are expected."); 3161 Shareds.append(C->varlist_begin(), C->varlist_end()); 3162 Privates.append(C->privates().begin(), C->privates().end()); 3163 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3164 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3165 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3166 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3167 CopyArrayTemps.append(C->copy_array_temps().begin(), 3168 C->copy_array_temps().end()); 3169 CopyArrayElems.append(C->copy_array_elems().begin(), 3170 C->copy_array_elems().end()); 3171 } 3172 { 3173 // Emit buffers for each reduction variables. 3174 // ReductionCodeGen is required to emit correctly the code for array 3175 // reductions. 3176 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3177 unsigned Count = 0; 3178 auto *ITA = CopyArrayTemps.begin(); 3179 for (const Expr *IRef : Privates) { 3180 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3181 // Emit variably modified arrays, used for arrays/array sections 3182 // reductions. 3183 if (PrivateVD->getType()->isVariablyModifiedType()) { 3184 RedCG.emitSharedOrigLValue(CGF, Count); 3185 RedCG.emitAggregateType(CGF, Count); 3186 } 3187 CodeGenFunction::OpaqueValueMapping DimMapping( 3188 CGF, 3189 cast<OpaqueValueExpr>( 3190 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3191 ->getSizeExpr()), 3192 RValue::get(OMPScanNumIterations)); 3193 // Emit temp buffer. 3194 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3195 ++ITA; 3196 ++Count; 3197 } 3198 } 3199 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3200 { 3201 // Emit loop with input phase: 3202 // #pragma omp ... 3203 // for (i: 0..<num_iters>) { 3204 // <input phase>; 3205 // buffer[i] = red; 3206 // } 3207 CGF.OMPFirstScanLoop = true; 3208 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3209 FirstGen(CGF); 3210 } 3211 // Emit prefix reduction: 3212 // for (int k = 0; k <= ceil(log2(n)); ++k) 3213 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3214 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3215 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3216 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3217 llvm::Value *Arg = 3218 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3219 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3220 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3221 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3222 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3223 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3224 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3225 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3226 CGF.EmitBlock(LoopBB); 3227 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3228 // size pow2k = 1; 3229 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3230 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3231 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3232 // for (size i = n - 1; i >= 2 ^ k; --i) 3233 // tmp[i] op= tmp[i-pow2k]; 3234 llvm::BasicBlock *InnerLoopBB = 3235 CGF.createBasicBlock("omp.inner.log.scan.body"); 3236 llvm::BasicBlock *InnerExitBB = 3237 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3238 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3239 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3240 CGF.EmitBlock(InnerLoopBB); 3241 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3242 IVal->addIncoming(NMin1, LoopBB); 3243 { 3244 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3245 auto *ILHS = LHSs.begin(); 3246 auto *IRHS = RHSs.begin(); 3247 for (const Expr *CopyArrayElem : CopyArrayElems) { 3248 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3249 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3250 Address LHSAddr = Address::invalid(); 3251 { 3252 CodeGenFunction::OpaqueValueMapping IdxMapping( 3253 CGF, 3254 cast<OpaqueValueExpr>( 3255 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3256 RValue::get(IVal)); 3257 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3258 } 3259 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3260 Address RHSAddr = Address::invalid(); 3261 { 3262 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3263 CodeGenFunction::OpaqueValueMapping IdxMapping( 3264 CGF, 3265 cast<OpaqueValueExpr>( 3266 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3267 RValue::get(OffsetIVal)); 3268 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3269 } 3270 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3271 ++ILHS; 3272 ++IRHS; 3273 } 3274 PrivScope.Privatize(); 3275 CGF.CGM.getOpenMPRuntime().emitReduction( 3276 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3277 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3278 } 3279 llvm::Value *NextIVal = 3280 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3281 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3282 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3283 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3284 CGF.EmitBlock(InnerExitBB); 3285 llvm::Value *Next = 3286 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3287 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3288 // pow2k <<= 1; 3289 llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3290 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3291 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3292 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3293 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3294 CGF.EmitBlock(ExitBB); 3295 3296 CGF.OMPFirstScanLoop = false; 3297 SecondGen(CGF); 3298 } 3299 3300 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3301 const OMPLoopDirective &S, 3302 bool HasCancel) { 3303 bool HasLastprivates; 3304 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3305 [](const OMPReductionClause *C) { 3306 return C->getModifier() == OMPC_REDUCTION_inscan; 3307 })) { 3308 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3309 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3310 OMPLoopScope LoopScope(CGF, S); 3311 return CGF.EmitScalarExpr(S.getNumIterations()); 3312 }; 3313 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3314 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3315 CGF, S.getDirectiveKind(), HasCancel); 3316 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3317 emitForLoopBounds, 3318 emitDispatchForLoopBounds); 3319 // Emit an implicit barrier at the end. 3320 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3321 OMPD_for); 3322 }; 3323 const auto &&SecondGen = [&S, HasCancel, 3324 &HasLastprivates](CodeGenFunction &CGF) { 3325 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3326 CGF, S.getDirectiveKind(), HasCancel); 3327 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3328 emitForLoopBounds, 3329 emitDispatchForLoopBounds); 3330 }; 3331 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3332 } else { 3333 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3334 HasCancel); 3335 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3336 emitForLoopBounds, 3337 emitDispatchForLoopBounds); 3338 } 3339 return HasLastprivates; 3340 } 3341 3342 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3343 bool HasLastprivates = false; 3344 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3345 PrePostActionTy &) { 3346 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3347 }; 3348 { 3349 auto LPCRegion = 3350 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3351 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3352 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3353 S.hasCancel()); 3354 } 3355 3356 // Emit an implicit barrier at the end. 3357 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3358 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3359 // Check for outer lastprivate conditional update. 3360 checkForLastprivateConditionalUpdate(*this, S); 3361 } 3362 3363 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3364 bool HasLastprivates = false; 3365 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3366 PrePostActionTy &) { 3367 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3368 }; 3369 { 3370 auto LPCRegion = 3371 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3372 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3373 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3374 } 3375 3376 // Emit an implicit barrier at the end. 3377 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3378 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3379 // Check for outer lastprivate conditional update. 3380 checkForLastprivateConditionalUpdate(*this, S); 3381 } 3382 3383 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3384 const Twine &Name, 3385 llvm::Value *Init = nullptr) { 3386 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3387 if (Init) 3388 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3389 return LVal; 3390 } 3391 3392 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3393 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3394 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3395 bool HasLastprivates = false; 3396 auto &&CodeGen = [&S, CapturedStmt, CS, 3397 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3398 const ASTContext &C = CGF.getContext(); 3399 QualType KmpInt32Ty = 3400 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3401 // Emit helper vars inits. 3402 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3403 CGF.Builder.getInt32(0)); 3404 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3405 ? CGF.Builder.getInt32(CS->size() - 1) 3406 : CGF.Builder.getInt32(0); 3407 LValue UB = 3408 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3409 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3410 CGF.Builder.getInt32(1)); 3411 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3412 CGF.Builder.getInt32(0)); 3413 // Loop counter. 3414 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3415 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3416 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3417 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3418 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3419 // Generate condition for loop. 3420 BinaryOperator *Cond = BinaryOperator::Create( 3421 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary, 3422 S.getBeginLoc(), FPOptionsOverride()); 3423 // Increment for loop counter. 3424 UnaryOperator *Inc = UnaryOperator::Create( 3425 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 3426 S.getBeginLoc(), true, FPOptionsOverride()); 3427 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3428 // Iterate through all sections and emit a switch construct: 3429 // switch (IV) { 3430 // case 0: 3431 // <SectionStmt[0]>; 3432 // break; 3433 // ... 3434 // case <NumSection> - 1: 3435 // <SectionStmt[<NumSection> - 1]>; 3436 // break; 3437 // } 3438 // .omp.sections.exit: 3439 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3440 llvm::SwitchInst *SwitchStmt = 3441 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3442 ExitBB, CS == nullptr ? 1 : CS->size()); 3443 if (CS) { 3444 unsigned CaseNumber = 0; 3445 for (const Stmt *SubStmt : CS->children()) { 3446 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3447 CGF.EmitBlock(CaseBB); 3448 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3449 CGF.EmitStmt(SubStmt); 3450 CGF.EmitBranch(ExitBB); 3451 ++CaseNumber; 3452 } 3453 } else { 3454 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3455 CGF.EmitBlock(CaseBB); 3456 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3457 CGF.EmitStmt(CapturedStmt); 3458 CGF.EmitBranch(ExitBB); 3459 } 3460 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3461 }; 3462 3463 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3464 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3465 // Emit implicit barrier to synchronize threads and avoid data races on 3466 // initialization of firstprivate variables and post-update of lastprivate 3467 // variables. 3468 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3469 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3470 /*ForceSimpleCall=*/true); 3471 } 3472 CGF.EmitOMPPrivateClause(S, LoopScope); 3473 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3474 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3475 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3476 (void)LoopScope.Privatize(); 3477 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3478 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3479 3480 // Emit static non-chunked loop. 3481 OpenMPScheduleTy ScheduleKind; 3482 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3483 CGOpenMPRuntime::StaticRTInput StaticInit( 3484 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3485 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3486 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3487 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3488 // UB = min(UB, GlobalUB); 3489 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3490 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3491 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3492 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3493 // IV = LB; 3494 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3495 // while (idx <= UB) { BODY; ++idx; } 3496 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3497 [](CodeGenFunction &) {}); 3498 // Tell the runtime we are done. 3499 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3500 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3501 S.getDirectiveKind()); 3502 }; 3503 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3504 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3505 // Emit post-update of the reduction variables if IsLastIter != 0. 3506 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3507 return CGF.Builder.CreateIsNotNull( 3508 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3509 }); 3510 3511 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3512 if (HasLastprivates) 3513 CGF.EmitOMPLastprivateClauseFinal( 3514 S, /*NoFinals=*/false, 3515 CGF.Builder.CreateIsNotNull( 3516 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3517 }; 3518 3519 bool HasCancel = false; 3520 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3521 HasCancel = OSD->hasCancel(); 3522 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3523 HasCancel = OPSD->hasCancel(); 3524 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3525 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3526 HasCancel); 3527 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3528 // clause. Otherwise the barrier will be generated by the codegen for the 3529 // directive. 3530 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3531 // Emit implicit barrier to synchronize threads and avoid data races on 3532 // initialization of firstprivate variables. 3533 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3534 OMPD_unknown); 3535 } 3536 } 3537 3538 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3539 { 3540 auto LPCRegion = 3541 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3542 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3543 EmitSections(S); 3544 } 3545 // Emit an implicit barrier at the end. 3546 if (!S.getSingleClause<OMPNowaitClause>()) { 3547 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3548 OMPD_sections); 3549 } 3550 // Check for outer lastprivate conditional update. 3551 checkForLastprivateConditionalUpdate(*this, S); 3552 } 3553 3554 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3555 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3556 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3557 }; 3558 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3559 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 3560 S.hasCancel()); 3561 } 3562 3563 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3564 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3565 llvm::SmallVector<const Expr *, 8> DestExprs; 3566 llvm::SmallVector<const Expr *, 8> SrcExprs; 3567 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3568 // Check if there are any 'copyprivate' clauses associated with this 3569 // 'single' construct. 3570 // Build a list of copyprivate variables along with helper expressions 3571 // (<source>, <destination>, <destination>=<source> expressions) 3572 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3573 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3574 DestExprs.append(C->destination_exprs().begin(), 3575 C->destination_exprs().end()); 3576 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3577 AssignmentOps.append(C->assignment_ops().begin(), 3578 C->assignment_ops().end()); 3579 } 3580 // Emit code for 'single' region along with 'copyprivate' clauses 3581 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3582 Action.Enter(CGF); 3583 OMPPrivateScope SingleScope(CGF); 3584 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3585 CGF.EmitOMPPrivateClause(S, SingleScope); 3586 (void)SingleScope.Privatize(); 3587 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3588 }; 3589 { 3590 auto LPCRegion = 3591 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3592 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3593 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3594 CopyprivateVars, DestExprs, 3595 SrcExprs, AssignmentOps); 3596 } 3597 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3598 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3599 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3600 CGM.getOpenMPRuntime().emitBarrierCall( 3601 *this, S.getBeginLoc(), 3602 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3603 } 3604 // Check for outer lastprivate conditional update. 3605 checkForLastprivateConditionalUpdate(*this, S); 3606 } 3607 3608 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3609 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3610 Action.Enter(CGF); 3611 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3612 }; 3613 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3614 } 3615 3616 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3617 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 3618 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3619 3620 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3621 const Stmt *MasterRegionBodyStmt = CS->getCapturedStmt(); 3622 3623 auto FiniCB = [this](InsertPointTy IP) { 3624 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3625 }; 3626 3627 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3628 InsertPointTy CodeGenIP, 3629 llvm::BasicBlock &FiniBB) { 3630 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3631 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3632 CodeGenIP, FiniBB); 3633 }; 3634 3635 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3636 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3637 Builder.restoreIP(OMPBuilder->CreateMaster(Builder, BodyGenCB, FiniCB)); 3638 3639 return; 3640 } 3641 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3642 emitMaster(*this, S); 3643 } 3644 3645 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3646 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 3647 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3648 3649 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3650 const Stmt *CriticalRegionBodyStmt = CS->getCapturedStmt(); 3651 const Expr *Hint = nullptr; 3652 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3653 Hint = HintClause->getHint(); 3654 3655 // TODO: This is slightly different from what's currently being done in 3656 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 3657 // about typing is final. 3658 llvm::Value *HintInst = nullptr; 3659 if (Hint) 3660 HintInst = 3661 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 3662 3663 auto FiniCB = [this](InsertPointTy IP) { 3664 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3665 }; 3666 3667 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 3668 InsertPointTy CodeGenIP, 3669 llvm::BasicBlock &FiniBB) { 3670 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3671 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 3672 CodeGenIP, FiniBB); 3673 }; 3674 3675 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3676 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3677 Builder.restoreIP(OMPBuilder->CreateCritical( 3678 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 3679 HintInst)); 3680 3681 return; 3682 } 3683 3684 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3685 Action.Enter(CGF); 3686 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3687 }; 3688 const Expr *Hint = nullptr; 3689 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3690 Hint = HintClause->getHint(); 3691 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3692 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3693 S.getDirectiveName().getAsString(), 3694 CodeGen, S.getBeginLoc(), Hint); 3695 } 3696 3697 void CodeGenFunction::EmitOMPParallelForDirective( 3698 const OMPParallelForDirective &S) { 3699 // Emit directive as a combined directive that consists of two implicit 3700 // directives: 'parallel' with 'for' directive. 3701 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3702 Action.Enter(CGF); 3703 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 3704 }; 3705 { 3706 auto LPCRegion = 3707 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3708 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3709 emitEmptyBoundParameters); 3710 } 3711 // Check for outer lastprivate conditional update. 3712 checkForLastprivateConditionalUpdate(*this, S); 3713 } 3714 3715 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3716 const OMPParallelForSimdDirective &S) { 3717 // Emit directive as a combined directive that consists of two implicit 3718 // directives: 'parallel' with 'for' directive. 3719 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3720 Action.Enter(CGF); 3721 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3722 }; 3723 { 3724 auto LPCRegion = 3725 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3726 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 3727 emitEmptyBoundParameters); 3728 } 3729 // Check for outer lastprivate conditional update. 3730 checkForLastprivateConditionalUpdate(*this, S); 3731 } 3732 3733 void CodeGenFunction::EmitOMPParallelMasterDirective( 3734 const OMPParallelMasterDirective &S) { 3735 // Emit directive as a combined directive that consists of two implicit 3736 // directives: 'parallel' with 'master' directive. 3737 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3738 Action.Enter(CGF); 3739 OMPPrivateScope PrivateScope(CGF); 3740 bool Copyins = CGF.EmitOMPCopyinClause(S); 3741 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3742 if (Copyins) { 3743 // Emit implicit barrier to synchronize threads and avoid data races on 3744 // propagation master's thread values of threadprivate variables to local 3745 // instances of that variables of all other implicit threads. 3746 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3747 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3748 /*ForceSimpleCall=*/true); 3749 } 3750 CGF.EmitOMPPrivateClause(S, PrivateScope); 3751 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3752 (void)PrivateScope.Privatize(); 3753 emitMaster(CGF, S); 3754 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3755 }; 3756 { 3757 auto LPCRegion = 3758 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3759 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3760 emitEmptyBoundParameters); 3761 emitPostUpdateForReductionClause(*this, S, 3762 [](CodeGenFunction &) { return nullptr; }); 3763 } 3764 // Check for outer lastprivate conditional update. 3765 checkForLastprivateConditionalUpdate(*this, S); 3766 } 3767 3768 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3769 const OMPParallelSectionsDirective &S) { 3770 // Emit directive as a combined directive that consists of two implicit 3771 // directives: 'parallel' with 'sections' directive. 3772 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3773 Action.Enter(CGF); 3774 CGF.EmitSections(S); 3775 }; 3776 { 3777 auto LPCRegion = 3778 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3779 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3780 emitEmptyBoundParameters); 3781 } 3782 // Check for outer lastprivate conditional update. 3783 checkForLastprivateConditionalUpdate(*this, S); 3784 } 3785 3786 void CodeGenFunction::EmitOMPTaskBasedDirective( 3787 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3788 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3789 OMPTaskDataTy &Data) { 3790 // Emit outlined function for task construct. 3791 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3792 auto I = CS->getCapturedDecl()->param_begin(); 3793 auto PartId = std::next(I); 3794 auto TaskT = std::next(I, 4); 3795 // Check if the task is final 3796 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3797 // If the condition constant folds and can be elided, try to avoid emitting 3798 // the condition and the dead arm of the if/else. 3799 const Expr *Cond = Clause->getCondition(); 3800 bool CondConstant; 3801 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3802 Data.Final.setInt(CondConstant); 3803 else 3804 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3805 } else { 3806 // By default the task is not final. 3807 Data.Final.setInt(/*IntVal=*/false); 3808 } 3809 // Check if the task has 'priority' clause. 3810 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3811 const Expr *Prio = Clause->getPriority(); 3812 Data.Priority.setInt(/*IntVal=*/true); 3813 Data.Priority.setPointer(EmitScalarConversion( 3814 EmitScalarExpr(Prio), Prio->getType(), 3815 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3816 Prio->getExprLoc())); 3817 } 3818 // The first function argument for tasks is a thread id, the second one is a 3819 // part id (0 for tied tasks, >=0 for untied task). 3820 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3821 // Get list of private variables. 3822 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3823 auto IRef = C->varlist_begin(); 3824 for (const Expr *IInit : C->private_copies()) { 3825 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3826 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3827 Data.PrivateVars.push_back(*IRef); 3828 Data.PrivateCopies.push_back(IInit); 3829 } 3830 ++IRef; 3831 } 3832 } 3833 EmittedAsPrivate.clear(); 3834 // Get list of firstprivate variables. 3835 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3836 auto IRef = C->varlist_begin(); 3837 auto IElemInitRef = C->inits().begin(); 3838 for (const Expr *IInit : C->private_copies()) { 3839 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3840 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3841 Data.FirstprivateVars.push_back(*IRef); 3842 Data.FirstprivateCopies.push_back(IInit); 3843 Data.FirstprivateInits.push_back(*IElemInitRef); 3844 } 3845 ++IRef; 3846 ++IElemInitRef; 3847 } 3848 } 3849 // Get list of lastprivate variables (for taskloops). 3850 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3851 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3852 auto IRef = C->varlist_begin(); 3853 auto ID = C->destination_exprs().begin(); 3854 for (const Expr *IInit : C->private_copies()) { 3855 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3856 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3857 Data.LastprivateVars.push_back(*IRef); 3858 Data.LastprivateCopies.push_back(IInit); 3859 } 3860 LastprivateDstsOrigs.insert( 3861 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3862 cast<DeclRefExpr>(*IRef)}); 3863 ++IRef; 3864 ++ID; 3865 } 3866 } 3867 SmallVector<const Expr *, 4> LHSs; 3868 SmallVector<const Expr *, 4> RHSs; 3869 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3870 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3871 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3872 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3873 Data.ReductionOps.append(C->reduction_ops().begin(), 3874 C->reduction_ops().end()); 3875 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3876 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3877 } 3878 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3879 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3880 // Build list of dependences. 3881 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3882 OMPTaskDataTy::DependData &DD = 3883 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3884 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3885 } 3886 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3887 CapturedRegion](CodeGenFunction &CGF, 3888 PrePostActionTy &Action) { 3889 // Set proper addresses for generated private copies. 3890 OMPPrivateScope Scope(CGF); 3891 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 3892 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3893 !Data.LastprivateVars.empty()) { 3894 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3895 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3896 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3897 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3898 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3899 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3900 CS->getCapturedDecl()->getParam(PrivatesParam))); 3901 // Map privates. 3902 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3903 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3904 CallArgs.push_back(PrivatesPtr); 3905 for (const Expr *E : Data.PrivateVars) { 3906 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3907 Address PrivatePtr = CGF.CreateMemTemp( 3908 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3909 PrivatePtrs.emplace_back(VD, PrivatePtr); 3910 CallArgs.push_back(PrivatePtr.getPointer()); 3911 } 3912 for (const Expr *E : Data.FirstprivateVars) { 3913 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3914 Address PrivatePtr = 3915 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3916 ".firstpriv.ptr.addr"); 3917 PrivatePtrs.emplace_back(VD, PrivatePtr); 3918 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 3919 CallArgs.push_back(PrivatePtr.getPointer()); 3920 } 3921 for (const Expr *E : Data.LastprivateVars) { 3922 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3923 Address PrivatePtr = 3924 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3925 ".lastpriv.ptr.addr"); 3926 PrivatePtrs.emplace_back(VD, PrivatePtr); 3927 CallArgs.push_back(PrivatePtr.getPointer()); 3928 } 3929 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3930 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3931 for (const auto &Pair : LastprivateDstsOrigs) { 3932 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3933 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3934 /*RefersToEnclosingVariableOrCapture=*/ 3935 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3936 Pair.second->getType(), VK_LValue, 3937 Pair.second->getExprLoc()); 3938 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3939 return CGF.EmitLValue(&DRE).getAddress(CGF); 3940 }); 3941 } 3942 for (const auto &Pair : PrivatePtrs) { 3943 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3944 CGF.getContext().getDeclAlign(Pair.first)); 3945 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3946 } 3947 } 3948 if (Data.Reductions) { 3949 OMPPrivateScope FirstprivateScope(CGF); 3950 for (const auto &Pair : FirstprivatePtrs) { 3951 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3952 CGF.getContext().getDeclAlign(Pair.first)); 3953 FirstprivateScope.addPrivate(Pair.first, 3954 [Replacement]() { return Replacement; }); 3955 } 3956 (void)FirstprivateScope.Privatize(); 3957 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3958 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 3959 Data.ReductionCopies, Data.ReductionOps); 3960 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3961 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3962 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3963 RedCG.emitSharedOrigLValue(CGF, Cnt); 3964 RedCG.emitAggregateType(CGF, Cnt); 3965 // FIXME: This must removed once the runtime library is fixed. 3966 // Emit required threadprivate variables for 3967 // initializer/combiner/finalizer. 3968 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3969 RedCG, Cnt); 3970 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3971 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3972 Replacement = 3973 Address(CGF.EmitScalarConversion( 3974 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3975 CGF.getContext().getPointerType( 3976 Data.ReductionCopies[Cnt]->getType()), 3977 Data.ReductionCopies[Cnt]->getExprLoc()), 3978 Replacement.getAlignment()); 3979 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3980 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3981 [Replacement]() { return Replacement; }); 3982 } 3983 } 3984 // Privatize all private variables except for in_reduction items. 3985 (void)Scope.Privatize(); 3986 SmallVector<const Expr *, 4> InRedVars; 3987 SmallVector<const Expr *, 4> InRedPrivs; 3988 SmallVector<const Expr *, 4> InRedOps; 3989 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3990 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3991 auto IPriv = C->privates().begin(); 3992 auto IRed = C->reduction_ops().begin(); 3993 auto ITD = C->taskgroup_descriptors().begin(); 3994 for (const Expr *Ref : C->varlists()) { 3995 InRedVars.emplace_back(Ref); 3996 InRedPrivs.emplace_back(*IPriv); 3997 InRedOps.emplace_back(*IRed); 3998 TaskgroupDescriptors.emplace_back(*ITD); 3999 std::advance(IPriv, 1); 4000 std::advance(IRed, 1); 4001 std::advance(ITD, 1); 4002 } 4003 } 4004 // Privatize in_reduction items here, because taskgroup descriptors must be 4005 // privatized earlier. 4006 OMPPrivateScope InRedScope(CGF); 4007 if (!InRedVars.empty()) { 4008 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4009 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4010 RedCG.emitSharedOrigLValue(CGF, Cnt); 4011 RedCG.emitAggregateType(CGF, Cnt); 4012 // The taskgroup descriptor variable is always implicit firstprivate and 4013 // privatized already during processing of the firstprivates. 4014 // FIXME: This must removed once the runtime library is fixed. 4015 // Emit required threadprivate variables for 4016 // initializer/combiner/finalizer. 4017 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4018 RedCG, Cnt); 4019 llvm::Value *ReductionsPtr; 4020 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4021 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4022 TRExpr->getExprLoc()); 4023 } else { 4024 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4025 } 4026 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4027 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4028 Replacement = Address( 4029 CGF.EmitScalarConversion( 4030 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4031 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4032 InRedPrivs[Cnt]->getExprLoc()), 4033 Replacement.getAlignment()); 4034 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4035 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4036 [Replacement]() { return Replacement; }); 4037 } 4038 } 4039 (void)InRedScope.Privatize(); 4040 4041 Action.Enter(CGF); 4042 BodyGen(CGF); 4043 }; 4044 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4045 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4046 Data.NumberOfParts); 4047 OMPLexicalScope Scope(*this, S, llvm::None, 4048 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4049 !isOpenMPSimdDirective(S.getDirectiveKind())); 4050 TaskGen(*this, OutlinedFn, Data); 4051 } 4052 4053 static ImplicitParamDecl * 4054 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4055 QualType Ty, CapturedDecl *CD, 4056 SourceLocation Loc) { 4057 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4058 ImplicitParamDecl::Other); 4059 auto *OrigRef = DeclRefExpr::Create( 4060 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4061 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4062 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4063 ImplicitParamDecl::Other); 4064 auto *PrivateRef = DeclRefExpr::Create( 4065 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4066 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4067 QualType ElemType = C.getBaseElementType(Ty); 4068 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4069 ImplicitParamDecl::Other); 4070 auto *InitRef = DeclRefExpr::Create( 4071 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4072 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4073 PrivateVD->setInitStyle(VarDecl::CInit); 4074 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4075 InitRef, /*BasePath=*/nullptr, 4076 VK_RValue)); 4077 Data.FirstprivateVars.emplace_back(OrigRef); 4078 Data.FirstprivateCopies.emplace_back(PrivateRef); 4079 Data.FirstprivateInits.emplace_back(InitRef); 4080 return OrigVD; 4081 } 4082 4083 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4084 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4085 OMPTargetDataInfo &InputInfo) { 4086 // Emit outlined function for task construct. 4087 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4088 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4089 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4090 auto I = CS->getCapturedDecl()->param_begin(); 4091 auto PartId = std::next(I); 4092 auto TaskT = std::next(I, 4); 4093 OMPTaskDataTy Data; 4094 // The task is not final. 4095 Data.Final.setInt(/*IntVal=*/false); 4096 // Get list of firstprivate variables. 4097 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4098 auto IRef = C->varlist_begin(); 4099 auto IElemInitRef = C->inits().begin(); 4100 for (auto *IInit : C->private_copies()) { 4101 Data.FirstprivateVars.push_back(*IRef); 4102 Data.FirstprivateCopies.push_back(IInit); 4103 Data.FirstprivateInits.push_back(*IElemInitRef); 4104 ++IRef; 4105 ++IElemInitRef; 4106 } 4107 } 4108 OMPPrivateScope TargetScope(*this); 4109 VarDecl *BPVD = nullptr; 4110 VarDecl *PVD = nullptr; 4111 VarDecl *SVD = nullptr; 4112 if (InputInfo.NumberOfTargetItems > 0) { 4113 auto *CD = CapturedDecl::Create( 4114 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4115 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4116 QualType BaseAndPointersType = getContext().getConstantArrayType( 4117 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4118 /*IndexTypeQuals=*/0); 4119 BPVD = createImplicitFirstprivateForType( 4120 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 4121 PVD = createImplicitFirstprivateForType( 4122 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 4123 QualType SizesType = getContext().getConstantArrayType( 4124 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4125 ArrSize, nullptr, ArrayType::Normal, 4126 /*IndexTypeQuals=*/0); 4127 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4128 S.getBeginLoc()); 4129 TargetScope.addPrivate( 4130 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4131 TargetScope.addPrivate(PVD, 4132 [&InputInfo]() { return InputInfo.PointersArray; }); 4133 TargetScope.addPrivate(SVD, 4134 [&InputInfo]() { return InputInfo.SizesArray; }); 4135 } 4136 (void)TargetScope.Privatize(); 4137 // Build list of dependences. 4138 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4139 OMPTaskDataTy::DependData &DD = 4140 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4141 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4142 } 4143 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 4144 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4145 // Set proper addresses for generated private copies. 4146 OMPPrivateScope Scope(CGF); 4147 if (!Data.FirstprivateVars.empty()) { 4148 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 4149 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 4150 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4151 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4152 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4153 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4154 CS->getCapturedDecl()->getParam(PrivatesParam))); 4155 // Map privates. 4156 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4157 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4158 CallArgs.push_back(PrivatesPtr); 4159 for (const Expr *E : Data.FirstprivateVars) { 4160 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4161 Address PrivatePtr = 4162 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4163 ".firstpriv.ptr.addr"); 4164 PrivatePtrs.emplace_back(VD, PrivatePtr); 4165 CallArgs.push_back(PrivatePtr.getPointer()); 4166 } 4167 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4168 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4169 for (const auto &Pair : PrivatePtrs) { 4170 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4171 CGF.getContext().getDeclAlign(Pair.first)); 4172 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4173 } 4174 } 4175 // Privatize all private variables except for in_reduction items. 4176 (void)Scope.Privatize(); 4177 if (InputInfo.NumberOfTargetItems > 0) { 4178 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4179 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4180 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4181 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4182 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4183 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4184 } 4185 4186 Action.Enter(CGF); 4187 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4188 BodyGen(CGF); 4189 }; 4190 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4191 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4192 Data.NumberOfParts); 4193 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4194 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4195 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4196 SourceLocation()); 4197 4198 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4199 SharedsTy, CapturedStruct, &IfCond, Data); 4200 } 4201 4202 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4203 // Emit outlined function for task construct. 4204 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4205 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4206 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4207 const Expr *IfCond = nullptr; 4208 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4209 if (C->getNameModifier() == OMPD_unknown || 4210 C->getNameModifier() == OMPD_task) { 4211 IfCond = C->getCondition(); 4212 break; 4213 } 4214 } 4215 4216 OMPTaskDataTy Data; 4217 // Check if we should emit tied or untied task. 4218 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4219 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4220 CGF.EmitStmt(CS->getCapturedStmt()); 4221 }; 4222 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4223 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4224 const OMPTaskDataTy &Data) { 4225 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4226 SharedsTy, CapturedStruct, IfCond, 4227 Data); 4228 }; 4229 auto LPCRegion = 4230 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4231 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4232 } 4233 4234 void CodeGenFunction::EmitOMPTaskyieldDirective( 4235 const OMPTaskyieldDirective &S) { 4236 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4237 } 4238 4239 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4240 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4241 } 4242 4243 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4244 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4245 } 4246 4247 void CodeGenFunction::EmitOMPTaskgroupDirective( 4248 const OMPTaskgroupDirective &S) { 4249 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4250 Action.Enter(CGF); 4251 if (const Expr *E = S.getReductionRef()) { 4252 SmallVector<const Expr *, 4> LHSs; 4253 SmallVector<const Expr *, 4> RHSs; 4254 OMPTaskDataTy Data; 4255 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4256 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4257 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4258 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4259 Data.ReductionOps.append(C->reduction_ops().begin(), 4260 C->reduction_ops().end()); 4261 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4262 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4263 } 4264 llvm::Value *ReductionDesc = 4265 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4266 LHSs, RHSs, Data); 4267 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4268 CGF.EmitVarDecl(*VD); 4269 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4270 /*Volatile=*/false, E->getType()); 4271 } 4272 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4273 }; 4274 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4275 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4276 } 4277 4278 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4279 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4280 ? llvm::AtomicOrdering::NotAtomic 4281 : llvm::AtomicOrdering::AcquireRelease; 4282 CGM.getOpenMPRuntime().emitFlush( 4283 *this, 4284 [&S]() -> ArrayRef<const Expr *> { 4285 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4286 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4287 FlushClause->varlist_end()); 4288 return llvm::None; 4289 }(), 4290 S.getBeginLoc(), AO); 4291 } 4292 4293 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4294 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4295 LValue DOLVal = EmitLValue(DO->getDepobj()); 4296 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4297 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4298 DC->getModifier()); 4299 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4300 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4301 *this, Dependencies, DC->getBeginLoc()); 4302 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4303 return; 4304 } 4305 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4306 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4307 return; 4308 } 4309 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4310 CGM.getOpenMPRuntime().emitUpdateClause( 4311 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4312 return; 4313 } 4314 } 4315 4316 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4317 if (!OMPParentLoopDirectiveForScan) 4318 return; 4319 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4320 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4321 SmallVector<const Expr *, 4> Shareds; 4322 SmallVector<const Expr *, 4> Privates; 4323 SmallVector<const Expr *, 4> LHSs; 4324 SmallVector<const Expr *, 4> RHSs; 4325 SmallVector<const Expr *, 4> ReductionOps; 4326 SmallVector<const Expr *, 4> CopyOps; 4327 SmallVector<const Expr *, 4> CopyArrayTemps; 4328 SmallVector<const Expr *, 4> CopyArrayElems; 4329 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4330 if (C->getModifier() != OMPC_REDUCTION_inscan) 4331 continue; 4332 Shareds.append(C->varlist_begin(), C->varlist_end()); 4333 Privates.append(C->privates().begin(), C->privates().end()); 4334 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4335 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4336 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4337 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4338 CopyArrayTemps.append(C->copy_array_temps().begin(), 4339 C->copy_array_temps().end()); 4340 CopyArrayElems.append(C->copy_array_elems().begin(), 4341 C->copy_array_elems().end()); 4342 } 4343 if (ParentDir.getDirectiveKind() == OMPD_simd || 4344 (getLangOpts().OpenMPSimd && 4345 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4346 // For simd directive and simd-based directives in simd only mode, use the 4347 // following codegen: 4348 // int x = 0; 4349 // #pragma omp simd reduction(inscan, +: x) 4350 // for (..) { 4351 // <first part> 4352 // #pragma omp scan inclusive(x) 4353 // <second part> 4354 // } 4355 // is transformed to: 4356 // int x = 0; 4357 // for (..) { 4358 // int x_priv = 0; 4359 // <first part> 4360 // x = x_priv + x; 4361 // x_priv = x; 4362 // <second part> 4363 // } 4364 // and 4365 // int x = 0; 4366 // #pragma omp simd reduction(inscan, +: x) 4367 // for (..) { 4368 // <first part> 4369 // #pragma omp scan exclusive(x) 4370 // <second part> 4371 // } 4372 // to 4373 // int x = 0; 4374 // for (..) { 4375 // int x_priv = 0; 4376 // <second part> 4377 // int temp = x; 4378 // x = x_priv + x; 4379 // x_priv = temp; 4380 // <first part> 4381 // } 4382 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4383 EmitBranch(IsInclusive 4384 ? OMPScanReduce 4385 : BreakContinueStack.back().ContinueBlock.getBlock()); 4386 EmitBlock(OMPScanDispatch); 4387 { 4388 // New scope for correct construction/destruction of temp variables for 4389 // exclusive scan. 4390 LexicalScope Scope(*this, S.getSourceRange()); 4391 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4392 EmitBlock(OMPScanReduce); 4393 if (!IsInclusive) { 4394 // Create temp var and copy LHS value to this temp value. 4395 // TMP = LHS; 4396 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4397 const Expr *PrivateExpr = Privates[I]; 4398 const Expr *TempExpr = CopyArrayTemps[I]; 4399 EmitAutoVarDecl( 4400 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4401 LValue DestLVal = EmitLValue(TempExpr); 4402 LValue SrcLVal = EmitLValue(LHSs[I]); 4403 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4404 SrcLVal.getAddress(*this), 4405 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4406 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4407 CopyOps[I]); 4408 } 4409 } 4410 CGM.getOpenMPRuntime().emitReduction( 4411 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4412 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4413 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4414 const Expr *PrivateExpr = Privates[I]; 4415 LValue DestLVal; 4416 LValue SrcLVal; 4417 if (IsInclusive) { 4418 DestLVal = EmitLValue(RHSs[I]); 4419 SrcLVal = EmitLValue(LHSs[I]); 4420 } else { 4421 const Expr *TempExpr = CopyArrayTemps[I]; 4422 DestLVal = EmitLValue(RHSs[I]); 4423 SrcLVal = EmitLValue(TempExpr); 4424 } 4425 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4426 SrcLVal.getAddress(*this), 4427 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4428 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4429 CopyOps[I]); 4430 } 4431 } 4432 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4433 OMPScanExitBlock = IsInclusive 4434 ? BreakContinueStack.back().ContinueBlock.getBlock() 4435 : OMPScanReduce; 4436 EmitBlock(OMPAfterScanBlock); 4437 return; 4438 } 4439 if (!IsInclusive) { 4440 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4441 EmitBlock(OMPScanExitBlock); 4442 } 4443 if (OMPFirstScanLoop) { 4444 // Emit buffer[i] = red; at the end of the input phase. 4445 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4446 .getIterationVariable() 4447 ->IgnoreParenImpCasts(); 4448 LValue IdxLVal = EmitLValue(IVExpr); 4449 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4450 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4451 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4452 const Expr *PrivateExpr = Privates[I]; 4453 const Expr *OrigExpr = Shareds[I]; 4454 const Expr *CopyArrayElem = CopyArrayElems[I]; 4455 OpaqueValueMapping IdxMapping( 4456 *this, 4457 cast<OpaqueValueExpr>( 4458 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4459 RValue::get(IdxVal)); 4460 LValue DestLVal = EmitLValue(CopyArrayElem); 4461 LValue SrcLVal = EmitLValue(OrigExpr); 4462 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4463 SrcLVal.getAddress(*this), 4464 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4465 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4466 CopyOps[I]); 4467 } 4468 } 4469 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4470 if (IsInclusive) { 4471 EmitBlock(OMPScanExitBlock); 4472 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4473 } 4474 EmitBlock(OMPScanDispatch); 4475 if (!OMPFirstScanLoop) { 4476 // Emit red = buffer[i]; at the entrance to the scan phase. 4477 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4478 .getIterationVariable() 4479 ->IgnoreParenImpCasts(); 4480 LValue IdxLVal = EmitLValue(IVExpr); 4481 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4482 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4483 llvm::BasicBlock *ExclusiveExitBB = nullptr; 4484 if (!IsInclusive) { 4485 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 4486 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 4487 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 4488 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 4489 EmitBlock(ContBB); 4490 // Use idx - 1 iteration for exclusive scan. 4491 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 4492 } 4493 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4494 const Expr *PrivateExpr = Privates[I]; 4495 const Expr *OrigExpr = Shareds[I]; 4496 const Expr *CopyArrayElem = CopyArrayElems[I]; 4497 OpaqueValueMapping IdxMapping( 4498 *this, 4499 cast<OpaqueValueExpr>( 4500 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4501 RValue::get(IdxVal)); 4502 LValue SrcLVal = EmitLValue(CopyArrayElem); 4503 LValue DestLVal = EmitLValue(OrigExpr); 4504 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4505 SrcLVal.getAddress(*this), 4506 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4507 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4508 CopyOps[I]); 4509 } 4510 if (!IsInclusive) { 4511 EmitBlock(ExclusiveExitBB); 4512 } 4513 } 4514 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 4515 : OMPAfterScanBlock); 4516 EmitBlock(OMPAfterScanBlock); 4517 } 4518 4519 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 4520 const CodeGenLoopTy &CodeGenLoop, 4521 Expr *IncExpr) { 4522 // Emit the loop iteration variable. 4523 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 4524 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 4525 EmitVarDecl(*IVDecl); 4526 4527 // Emit the iterations count variable. 4528 // If it is not a variable, Sema decided to calculate iterations count on each 4529 // iteration (e.g., it is foldable into a constant). 4530 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4531 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4532 // Emit calculation of the iterations count. 4533 EmitIgnoredExpr(S.getCalcLastIteration()); 4534 } 4535 4536 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 4537 4538 bool HasLastprivateClause = false; 4539 // Check pre-condition. 4540 { 4541 OMPLoopScope PreInitScope(*this, S); 4542 // Skip the entire loop if we don't meet the precondition. 4543 // If the condition constant folds and can be elided, avoid emitting the 4544 // whole loop. 4545 bool CondConstant; 4546 llvm::BasicBlock *ContBlock = nullptr; 4547 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4548 if (!CondConstant) 4549 return; 4550 } else { 4551 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 4552 ContBlock = createBasicBlock("omp.precond.end"); 4553 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 4554 getProfileCount(&S)); 4555 EmitBlock(ThenBlock); 4556 incrementProfileCounter(&S); 4557 } 4558 4559 emitAlignedClause(*this, S); 4560 // Emit 'then' code. 4561 { 4562 // Emit helper vars inits. 4563 4564 LValue LB = EmitOMPHelperVar( 4565 *this, cast<DeclRefExpr>( 4566 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4567 ? S.getCombinedLowerBoundVariable() 4568 : S.getLowerBoundVariable()))); 4569 LValue UB = EmitOMPHelperVar( 4570 *this, cast<DeclRefExpr>( 4571 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4572 ? S.getCombinedUpperBoundVariable() 4573 : S.getUpperBoundVariable()))); 4574 LValue ST = 4575 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 4576 LValue IL = 4577 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 4578 4579 OMPPrivateScope LoopScope(*this); 4580 if (EmitOMPFirstprivateClause(S, LoopScope)) { 4581 // Emit implicit barrier to synchronize threads and avoid data races 4582 // on initialization of firstprivate variables and post-update of 4583 // lastprivate variables. 4584 CGM.getOpenMPRuntime().emitBarrierCall( 4585 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4586 /*ForceSimpleCall=*/true); 4587 } 4588 EmitOMPPrivateClause(S, LoopScope); 4589 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4590 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4591 !isOpenMPTeamsDirective(S.getDirectiveKind())) 4592 EmitOMPReductionClauseInit(S, LoopScope); 4593 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 4594 EmitOMPPrivateLoopCounters(S, LoopScope); 4595 (void)LoopScope.Privatize(); 4596 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4597 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 4598 4599 // Detect the distribute schedule kind and chunk. 4600 llvm::Value *Chunk = nullptr; 4601 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 4602 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 4603 ScheduleKind = C->getDistScheduleKind(); 4604 if (const Expr *Ch = C->getChunkSize()) { 4605 Chunk = EmitScalarExpr(Ch); 4606 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 4607 S.getIterationVariable()->getType(), 4608 S.getBeginLoc()); 4609 } 4610 } else { 4611 // Default behaviour for dist_schedule clause. 4612 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 4613 *this, S, ScheduleKind, Chunk); 4614 } 4615 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 4616 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 4617 4618 // OpenMP [2.10.8, distribute Construct, Description] 4619 // If dist_schedule is specified, kind must be static. If specified, 4620 // iterations are divided into chunks of size chunk_size, chunks are 4621 // assigned to the teams of the league in a round-robin fashion in the 4622 // order of the team number. When no chunk_size is specified, the 4623 // iteration space is divided into chunks that are approximately equal 4624 // in size, and at most one chunk is distributed to each team of the 4625 // league. The size of the chunks is unspecified in this case. 4626 bool StaticChunked = RT.isStaticChunked( 4627 ScheduleKind, /* Chunked */ Chunk != nullptr) && 4628 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 4629 if (RT.isStaticNonchunked(ScheduleKind, 4630 /* Chunked */ Chunk != nullptr) || 4631 StaticChunked) { 4632 CGOpenMPRuntime::StaticRTInput StaticInit( 4633 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 4634 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4635 StaticChunked ? Chunk : nullptr); 4636 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 4637 StaticInit); 4638 JumpDest LoopExit = 4639 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 4640 // UB = min(UB, GlobalUB); 4641 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4642 ? S.getCombinedEnsureUpperBound() 4643 : S.getEnsureUpperBound()); 4644 // IV = LB; 4645 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4646 ? S.getCombinedInit() 4647 : S.getInit()); 4648 4649 const Expr *Cond = 4650 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4651 ? S.getCombinedCond() 4652 : S.getCond(); 4653 4654 if (StaticChunked) 4655 Cond = S.getCombinedDistCond(); 4656 4657 // For static unchunked schedules generate: 4658 // 4659 // 1. For distribute alone, codegen 4660 // while (idx <= UB) { 4661 // BODY; 4662 // ++idx; 4663 // } 4664 // 4665 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 4666 // while (idx <= UB) { 4667 // <CodeGen rest of pragma>(LB, UB); 4668 // idx += ST; 4669 // } 4670 // 4671 // For static chunk one schedule generate: 4672 // 4673 // while (IV <= GlobalUB) { 4674 // <CodeGen rest of pragma>(LB, UB); 4675 // LB += ST; 4676 // UB += ST; 4677 // UB = min(UB, GlobalUB); 4678 // IV = LB; 4679 // } 4680 // 4681 emitCommonSimdLoop( 4682 *this, S, 4683 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4684 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4685 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 4686 }, 4687 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 4688 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 4689 CGF.EmitOMPInnerLoop( 4690 S, LoopScope.requiresCleanups(), Cond, IncExpr, 4691 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 4692 CodeGenLoop(CGF, S, LoopExit); 4693 }, 4694 [&S, StaticChunked](CodeGenFunction &CGF) { 4695 if (StaticChunked) { 4696 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 4697 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 4698 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 4699 CGF.EmitIgnoredExpr(S.getCombinedInit()); 4700 } 4701 }); 4702 }); 4703 EmitBlock(LoopExit.getBlock()); 4704 // Tell the runtime we are done. 4705 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 4706 } else { 4707 // Emit the outer loop, which requests its work chunk [LB..UB] from 4708 // runtime and runs the inner loop to process it. 4709 const OMPLoopArguments LoopArguments = { 4710 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4711 IL.getAddress(*this), Chunk}; 4712 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 4713 CodeGenLoop); 4714 } 4715 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 4716 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 4717 return CGF.Builder.CreateIsNotNull( 4718 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4719 }); 4720 } 4721 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4722 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4723 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 4724 EmitOMPReductionClauseFinal(S, OMPD_simd); 4725 // Emit post-update of the reduction variables if IsLastIter != 0. 4726 emitPostUpdateForReductionClause( 4727 *this, S, [IL, &S](CodeGenFunction &CGF) { 4728 return CGF.Builder.CreateIsNotNull( 4729 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4730 }); 4731 } 4732 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4733 if (HasLastprivateClause) { 4734 EmitOMPLastprivateClauseFinal( 4735 S, /*NoFinals=*/false, 4736 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 4737 } 4738 } 4739 4740 // We're now done with the loop, so jump to the continuation block. 4741 if (ContBlock) { 4742 EmitBranch(ContBlock); 4743 EmitBlock(ContBlock, true); 4744 } 4745 } 4746 } 4747 4748 void CodeGenFunction::EmitOMPDistributeDirective( 4749 const OMPDistributeDirective &S) { 4750 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4751 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4752 }; 4753 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4754 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 4755 } 4756 4757 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4758 const CapturedStmt *S, 4759 SourceLocation Loc) { 4760 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4761 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4762 CGF.CapturedStmtInfo = &CapStmtInfo; 4763 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4764 Fn->setDoesNotRecurse(); 4765 return Fn; 4766 } 4767 4768 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4769 if (S.hasClausesOfKind<OMPDependClause>()) { 4770 assert(!S.getAssociatedStmt() && 4771 "No associated statement must be in ordered depend construct."); 4772 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4773 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4774 return; 4775 } 4776 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4777 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4778 PrePostActionTy &Action) { 4779 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4780 if (C) { 4781 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4782 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4783 llvm::Function *OutlinedFn = 4784 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4785 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4786 OutlinedFn, CapturedVars); 4787 } else { 4788 Action.Enter(CGF); 4789 CGF.EmitStmt(CS->getCapturedStmt()); 4790 } 4791 }; 4792 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4793 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4794 } 4795 4796 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4797 QualType SrcType, QualType DestType, 4798 SourceLocation Loc) { 4799 assert(CGF.hasScalarEvaluationKind(DestType) && 4800 "DestType must have scalar evaluation kind."); 4801 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4802 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4803 DestType, Loc) 4804 : CGF.EmitComplexToScalarConversion( 4805 Val.getComplexVal(), SrcType, DestType, Loc); 4806 } 4807 4808 static CodeGenFunction::ComplexPairTy 4809 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4810 QualType DestType, SourceLocation Loc) { 4811 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4812 "DestType must have complex evaluation kind."); 4813 CodeGenFunction::ComplexPairTy ComplexVal; 4814 if (Val.isScalar()) { 4815 // Convert the input element to the element type of the complex. 4816 QualType DestElementType = 4817 DestType->castAs<ComplexType>()->getElementType(); 4818 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4819 Val.getScalarVal(), SrcType, DestElementType, Loc); 4820 ComplexVal = CodeGenFunction::ComplexPairTy( 4821 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4822 } else { 4823 assert(Val.isComplex() && "Must be a scalar or complex."); 4824 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4825 QualType DestElementType = 4826 DestType->castAs<ComplexType>()->getElementType(); 4827 ComplexVal.first = CGF.EmitScalarConversion( 4828 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4829 ComplexVal.second = CGF.EmitScalarConversion( 4830 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4831 } 4832 return ComplexVal; 4833 } 4834 4835 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4836 LValue LVal, RValue RVal) { 4837 if (LVal.isGlobalReg()) 4838 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4839 else 4840 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4841 } 4842 4843 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4844 llvm::AtomicOrdering AO, LValue LVal, 4845 SourceLocation Loc) { 4846 if (LVal.isGlobalReg()) 4847 return CGF.EmitLoadOfLValue(LVal, Loc); 4848 return CGF.EmitAtomicLoad( 4849 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4850 LVal.isVolatile()); 4851 } 4852 4853 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4854 QualType RValTy, SourceLocation Loc) { 4855 switch (getEvaluationKind(LVal.getType())) { 4856 case TEK_Scalar: 4857 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4858 *this, RVal, RValTy, LVal.getType(), Loc)), 4859 LVal); 4860 break; 4861 case TEK_Complex: 4862 EmitStoreOfComplex( 4863 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4864 /*isInit=*/false); 4865 break; 4866 case TEK_Aggregate: 4867 llvm_unreachable("Must be a scalar or complex."); 4868 } 4869 } 4870 4871 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4872 const Expr *X, const Expr *V, 4873 SourceLocation Loc) { 4874 // v = x; 4875 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4876 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4877 LValue XLValue = CGF.EmitLValue(X); 4878 LValue VLValue = CGF.EmitLValue(V); 4879 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 4880 // OpenMP, 2.17.7, atomic Construct 4881 // If the read or capture clause is specified and the acquire, acq_rel, or 4882 // seq_cst clause is specified then the strong flush on exit from the atomic 4883 // operation is also an acquire flush. 4884 switch (AO) { 4885 case llvm::AtomicOrdering::Acquire: 4886 case llvm::AtomicOrdering::AcquireRelease: 4887 case llvm::AtomicOrdering::SequentiallyConsistent: 4888 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4889 llvm::AtomicOrdering::Acquire); 4890 break; 4891 case llvm::AtomicOrdering::Monotonic: 4892 case llvm::AtomicOrdering::Release: 4893 break; 4894 case llvm::AtomicOrdering::NotAtomic: 4895 case llvm::AtomicOrdering::Unordered: 4896 llvm_unreachable("Unexpected ordering."); 4897 } 4898 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4899 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4900 } 4901 4902 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 4903 llvm::AtomicOrdering AO, const Expr *X, 4904 const Expr *E, SourceLocation Loc) { 4905 // x = expr; 4906 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4907 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4908 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4909 // OpenMP, 2.17.7, atomic Construct 4910 // If the write, update, or capture clause is specified and the release, 4911 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4912 // the atomic operation is also a release flush. 4913 switch (AO) { 4914 case llvm::AtomicOrdering::Release: 4915 case llvm::AtomicOrdering::AcquireRelease: 4916 case llvm::AtomicOrdering::SequentiallyConsistent: 4917 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4918 llvm::AtomicOrdering::Release); 4919 break; 4920 case llvm::AtomicOrdering::Acquire: 4921 case llvm::AtomicOrdering::Monotonic: 4922 break; 4923 case llvm::AtomicOrdering::NotAtomic: 4924 case llvm::AtomicOrdering::Unordered: 4925 llvm_unreachable("Unexpected ordering."); 4926 } 4927 } 4928 4929 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 4930 RValue Update, 4931 BinaryOperatorKind BO, 4932 llvm::AtomicOrdering AO, 4933 bool IsXLHSInRHSPart) { 4934 ASTContext &Context = CGF.getContext(); 4935 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4936 // expression is simple and atomic is allowed for the given type for the 4937 // target platform. 4938 if (BO == BO_Comma || !Update.isScalar() || 4939 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4940 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4941 (Update.getScalarVal()->getType() != 4942 X.getAddress(CGF).getElementType())) || 4943 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4944 !Context.getTargetInfo().hasBuiltinAtomic( 4945 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4946 return std::make_pair(false, RValue::get(nullptr)); 4947 4948 llvm::AtomicRMWInst::BinOp RMWOp; 4949 switch (BO) { 4950 case BO_Add: 4951 RMWOp = llvm::AtomicRMWInst::Add; 4952 break; 4953 case BO_Sub: 4954 if (!IsXLHSInRHSPart) 4955 return std::make_pair(false, RValue::get(nullptr)); 4956 RMWOp = llvm::AtomicRMWInst::Sub; 4957 break; 4958 case BO_And: 4959 RMWOp = llvm::AtomicRMWInst::And; 4960 break; 4961 case BO_Or: 4962 RMWOp = llvm::AtomicRMWInst::Or; 4963 break; 4964 case BO_Xor: 4965 RMWOp = llvm::AtomicRMWInst::Xor; 4966 break; 4967 case BO_LT: 4968 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4969 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4970 : llvm::AtomicRMWInst::Max) 4971 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4972 : llvm::AtomicRMWInst::UMax); 4973 break; 4974 case BO_GT: 4975 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4976 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4977 : llvm::AtomicRMWInst::Min) 4978 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4979 : llvm::AtomicRMWInst::UMin); 4980 break; 4981 case BO_Assign: 4982 RMWOp = llvm::AtomicRMWInst::Xchg; 4983 break; 4984 case BO_Mul: 4985 case BO_Div: 4986 case BO_Rem: 4987 case BO_Shl: 4988 case BO_Shr: 4989 case BO_LAnd: 4990 case BO_LOr: 4991 return std::make_pair(false, RValue::get(nullptr)); 4992 case BO_PtrMemD: 4993 case BO_PtrMemI: 4994 case BO_LE: 4995 case BO_GE: 4996 case BO_EQ: 4997 case BO_NE: 4998 case BO_Cmp: 4999 case BO_AddAssign: 5000 case BO_SubAssign: 5001 case BO_AndAssign: 5002 case BO_OrAssign: 5003 case BO_XorAssign: 5004 case BO_MulAssign: 5005 case BO_DivAssign: 5006 case BO_RemAssign: 5007 case BO_ShlAssign: 5008 case BO_ShrAssign: 5009 case BO_Comma: 5010 llvm_unreachable("Unsupported atomic update operation"); 5011 } 5012 llvm::Value *UpdateVal = Update.getScalarVal(); 5013 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5014 UpdateVal = CGF.Builder.CreateIntCast( 5015 IC, X.getAddress(CGF).getElementType(), 5016 X.getType()->hasSignedIntegerRepresentation()); 5017 } 5018 llvm::Value *Res = 5019 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5020 return std::make_pair(true, RValue::get(Res)); 5021 } 5022 5023 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5024 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5025 llvm::AtomicOrdering AO, SourceLocation Loc, 5026 const llvm::function_ref<RValue(RValue)> CommonGen) { 5027 // Update expressions are allowed to have the following forms: 5028 // x binop= expr; -> xrval + expr; 5029 // x++, ++x -> xrval + 1; 5030 // x--, --x -> xrval - 1; 5031 // x = x binop expr; -> xrval binop expr 5032 // x = expr Op x; - > expr binop xrval; 5033 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5034 if (!Res.first) { 5035 if (X.isGlobalReg()) { 5036 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5037 // 'xrval'. 5038 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5039 } else { 5040 // Perform compare-and-swap procedure. 5041 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5042 } 5043 } 5044 return Res; 5045 } 5046 5047 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5048 llvm::AtomicOrdering AO, const Expr *X, 5049 const Expr *E, const Expr *UE, 5050 bool IsXLHSInRHSPart, SourceLocation Loc) { 5051 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5052 "Update expr in 'atomic update' must be a binary operator."); 5053 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5054 // Update expressions are allowed to have the following forms: 5055 // x binop= expr; -> xrval + expr; 5056 // x++, ++x -> xrval + 1; 5057 // x--, --x -> xrval - 1; 5058 // x = x binop expr; -> xrval binop expr 5059 // x = expr Op x; - > expr binop xrval; 5060 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5061 LValue XLValue = CGF.EmitLValue(X); 5062 RValue ExprRValue = CGF.EmitAnyExpr(E); 5063 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5064 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5065 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5066 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5067 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5068 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5069 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5070 return CGF.EmitAnyExpr(UE); 5071 }; 5072 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5073 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5074 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5075 // OpenMP, 2.17.7, atomic Construct 5076 // If the write, update, or capture clause is specified and the release, 5077 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5078 // the atomic operation is also a release flush. 5079 switch (AO) { 5080 case llvm::AtomicOrdering::Release: 5081 case llvm::AtomicOrdering::AcquireRelease: 5082 case llvm::AtomicOrdering::SequentiallyConsistent: 5083 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5084 llvm::AtomicOrdering::Release); 5085 break; 5086 case llvm::AtomicOrdering::Acquire: 5087 case llvm::AtomicOrdering::Monotonic: 5088 break; 5089 case llvm::AtomicOrdering::NotAtomic: 5090 case llvm::AtomicOrdering::Unordered: 5091 llvm_unreachable("Unexpected ordering."); 5092 } 5093 } 5094 5095 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5096 QualType SourceType, QualType ResType, 5097 SourceLocation Loc) { 5098 switch (CGF.getEvaluationKind(ResType)) { 5099 case TEK_Scalar: 5100 return RValue::get( 5101 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5102 case TEK_Complex: { 5103 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5104 return RValue::getComplex(Res.first, Res.second); 5105 } 5106 case TEK_Aggregate: 5107 break; 5108 } 5109 llvm_unreachable("Must be a scalar or complex."); 5110 } 5111 5112 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5113 llvm::AtomicOrdering AO, 5114 bool IsPostfixUpdate, const Expr *V, 5115 const Expr *X, const Expr *E, 5116 const Expr *UE, bool IsXLHSInRHSPart, 5117 SourceLocation Loc) { 5118 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5119 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5120 RValue NewVVal; 5121 LValue VLValue = CGF.EmitLValue(V); 5122 LValue XLValue = CGF.EmitLValue(X); 5123 RValue ExprRValue = CGF.EmitAnyExpr(E); 5124 QualType NewVValType; 5125 if (UE) { 5126 // 'x' is updated with some additional value. 5127 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5128 "Update expr in 'atomic capture' must be a binary operator."); 5129 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5130 // Update expressions are allowed to have the following forms: 5131 // x binop= expr; -> xrval + expr; 5132 // x++, ++x -> xrval + 1; 5133 // x--, --x -> xrval - 1; 5134 // x = x binop expr; -> xrval binop expr 5135 // x = expr Op x; - > expr binop xrval; 5136 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5137 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5138 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5139 NewVValType = XRValExpr->getType(); 5140 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5141 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5142 IsPostfixUpdate](RValue XRValue) { 5143 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5144 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5145 RValue Res = CGF.EmitAnyExpr(UE); 5146 NewVVal = IsPostfixUpdate ? XRValue : Res; 5147 return Res; 5148 }; 5149 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5150 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5151 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5152 if (Res.first) { 5153 // 'atomicrmw' instruction was generated. 5154 if (IsPostfixUpdate) { 5155 // Use old value from 'atomicrmw'. 5156 NewVVal = Res.second; 5157 } else { 5158 // 'atomicrmw' does not provide new value, so evaluate it using old 5159 // value of 'x'. 5160 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5161 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5162 NewVVal = CGF.EmitAnyExpr(UE); 5163 } 5164 } 5165 } else { 5166 // 'x' is simply rewritten with some 'expr'. 5167 NewVValType = X->getType().getNonReferenceType(); 5168 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5169 X->getType().getNonReferenceType(), Loc); 5170 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5171 NewVVal = XRValue; 5172 return ExprRValue; 5173 }; 5174 // Try to perform atomicrmw xchg, otherwise simple exchange. 5175 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5176 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5177 Loc, Gen); 5178 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5179 if (Res.first) { 5180 // 'atomicrmw' instruction was generated. 5181 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5182 } 5183 } 5184 // Emit post-update store to 'v' of old/new 'x' value. 5185 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5186 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5187 // OpenMP, 2.17.7, atomic Construct 5188 // If the write, update, or capture clause is specified and the release, 5189 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5190 // the atomic operation is also a release flush. 5191 // If the read or capture clause is specified and the acquire, acq_rel, or 5192 // seq_cst clause is specified then the strong flush on exit from the atomic 5193 // operation is also an acquire flush. 5194 switch (AO) { 5195 case llvm::AtomicOrdering::Release: 5196 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5197 llvm::AtomicOrdering::Release); 5198 break; 5199 case llvm::AtomicOrdering::Acquire: 5200 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5201 llvm::AtomicOrdering::Acquire); 5202 break; 5203 case llvm::AtomicOrdering::AcquireRelease: 5204 case llvm::AtomicOrdering::SequentiallyConsistent: 5205 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5206 llvm::AtomicOrdering::AcquireRelease); 5207 break; 5208 case llvm::AtomicOrdering::Monotonic: 5209 break; 5210 case llvm::AtomicOrdering::NotAtomic: 5211 case llvm::AtomicOrdering::Unordered: 5212 llvm_unreachable("Unexpected ordering."); 5213 } 5214 } 5215 5216 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5217 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5218 const Expr *X, const Expr *V, const Expr *E, 5219 const Expr *UE, bool IsXLHSInRHSPart, 5220 SourceLocation Loc) { 5221 switch (Kind) { 5222 case OMPC_read: 5223 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5224 break; 5225 case OMPC_write: 5226 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5227 break; 5228 case OMPC_unknown: 5229 case OMPC_update: 5230 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5231 break; 5232 case OMPC_capture: 5233 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5234 IsXLHSInRHSPart, Loc); 5235 break; 5236 case OMPC_if: 5237 case OMPC_final: 5238 case OMPC_num_threads: 5239 case OMPC_private: 5240 case OMPC_firstprivate: 5241 case OMPC_lastprivate: 5242 case OMPC_reduction: 5243 case OMPC_task_reduction: 5244 case OMPC_in_reduction: 5245 case OMPC_safelen: 5246 case OMPC_simdlen: 5247 case OMPC_allocator: 5248 case OMPC_allocate: 5249 case OMPC_collapse: 5250 case OMPC_default: 5251 case OMPC_seq_cst: 5252 case OMPC_acq_rel: 5253 case OMPC_acquire: 5254 case OMPC_release: 5255 case OMPC_relaxed: 5256 case OMPC_shared: 5257 case OMPC_linear: 5258 case OMPC_aligned: 5259 case OMPC_copyin: 5260 case OMPC_copyprivate: 5261 case OMPC_flush: 5262 case OMPC_depobj: 5263 case OMPC_proc_bind: 5264 case OMPC_schedule: 5265 case OMPC_ordered: 5266 case OMPC_nowait: 5267 case OMPC_untied: 5268 case OMPC_threadprivate: 5269 case OMPC_depend: 5270 case OMPC_mergeable: 5271 case OMPC_device: 5272 case OMPC_threads: 5273 case OMPC_simd: 5274 case OMPC_map: 5275 case OMPC_num_teams: 5276 case OMPC_thread_limit: 5277 case OMPC_priority: 5278 case OMPC_grainsize: 5279 case OMPC_nogroup: 5280 case OMPC_num_tasks: 5281 case OMPC_hint: 5282 case OMPC_dist_schedule: 5283 case OMPC_defaultmap: 5284 case OMPC_uniform: 5285 case OMPC_to: 5286 case OMPC_from: 5287 case OMPC_use_device_ptr: 5288 case OMPC_use_device_addr: 5289 case OMPC_is_device_ptr: 5290 case OMPC_unified_address: 5291 case OMPC_unified_shared_memory: 5292 case OMPC_reverse_offload: 5293 case OMPC_dynamic_allocators: 5294 case OMPC_atomic_default_mem_order: 5295 case OMPC_device_type: 5296 case OMPC_match: 5297 case OMPC_nontemporal: 5298 case OMPC_order: 5299 case OMPC_destroy: 5300 case OMPC_detach: 5301 case OMPC_inclusive: 5302 case OMPC_exclusive: 5303 case OMPC_uses_allocators: 5304 case OMPC_affinity: 5305 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5306 } 5307 } 5308 5309 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5310 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5311 bool MemOrderingSpecified = false; 5312 if (S.getSingleClause<OMPSeqCstClause>()) { 5313 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5314 MemOrderingSpecified = true; 5315 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5316 AO = llvm::AtomicOrdering::AcquireRelease; 5317 MemOrderingSpecified = true; 5318 } else if (S.getSingleClause<OMPAcquireClause>()) { 5319 AO = llvm::AtomicOrdering::Acquire; 5320 MemOrderingSpecified = true; 5321 } else if (S.getSingleClause<OMPReleaseClause>()) { 5322 AO = llvm::AtomicOrdering::Release; 5323 MemOrderingSpecified = true; 5324 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5325 AO = llvm::AtomicOrdering::Monotonic; 5326 MemOrderingSpecified = true; 5327 } 5328 OpenMPClauseKind Kind = OMPC_unknown; 5329 for (const OMPClause *C : S.clauses()) { 5330 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5331 // if it is first). 5332 if (C->getClauseKind() != OMPC_seq_cst && 5333 C->getClauseKind() != OMPC_acq_rel && 5334 C->getClauseKind() != OMPC_acquire && 5335 C->getClauseKind() != OMPC_release && 5336 C->getClauseKind() != OMPC_relaxed) { 5337 Kind = C->getClauseKind(); 5338 break; 5339 } 5340 } 5341 if (!MemOrderingSpecified) { 5342 llvm::AtomicOrdering DefaultOrder = 5343 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5344 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5345 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5346 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5347 Kind == OMPC_capture)) { 5348 AO = DefaultOrder; 5349 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5350 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5351 AO = llvm::AtomicOrdering::Release; 5352 } else if (Kind == OMPC_read) { 5353 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5354 AO = llvm::AtomicOrdering::Acquire; 5355 } 5356 } 5357 } 5358 5359 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 5360 5361 auto &&CodeGen = [&S, Kind, AO, CS](CodeGenFunction &CGF, 5362 PrePostActionTy &) { 5363 CGF.EmitStopPoint(CS); 5364 emitOMPAtomicExpr(CGF, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5365 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5366 S.getBeginLoc()); 5367 }; 5368 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5369 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 5370 } 5371 5372 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5373 const OMPExecutableDirective &S, 5374 const RegionCodeGenTy &CodeGen) { 5375 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5376 CodeGenModule &CGM = CGF.CGM; 5377 5378 // On device emit this construct as inlined code. 5379 if (CGM.getLangOpts().OpenMPIsDevice) { 5380 OMPLexicalScope Scope(CGF, S, OMPD_target); 5381 CGM.getOpenMPRuntime().emitInlinedDirective( 5382 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5383 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5384 }); 5385 return; 5386 } 5387 5388 auto LPCRegion = 5389 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5390 llvm::Function *Fn = nullptr; 5391 llvm::Constant *FnID = nullptr; 5392 5393 const Expr *IfCond = nullptr; 5394 // Check for the at most one if clause associated with the target region. 5395 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5396 if (C->getNameModifier() == OMPD_unknown || 5397 C->getNameModifier() == OMPD_target) { 5398 IfCond = C->getCondition(); 5399 break; 5400 } 5401 } 5402 5403 // Check if we have any device clause associated with the directive. 5404 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5405 nullptr, OMPC_DEVICE_unknown); 5406 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5407 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5408 5409 // Check if we have an if clause whose conditional always evaluates to false 5410 // or if we do not have any targets specified. If so the target region is not 5411 // an offload entry point. 5412 bool IsOffloadEntry = true; 5413 if (IfCond) { 5414 bool Val; 5415 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5416 IsOffloadEntry = false; 5417 } 5418 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5419 IsOffloadEntry = false; 5420 5421 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5422 StringRef ParentName; 5423 // In case we have Ctors/Dtors we use the complete type variant to produce 5424 // the mangling of the device outlined kernel. 5425 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5426 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5427 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5428 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5429 else 5430 ParentName = 5431 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5432 5433 // Emit target region as a standalone region. 5434 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5435 IsOffloadEntry, CodeGen); 5436 OMPLexicalScope Scope(CGF, S, OMPD_task); 5437 auto &&SizeEmitter = 5438 [IsOffloadEntry](CodeGenFunction &CGF, 5439 const OMPLoopDirective &D) -> llvm::Value * { 5440 if (IsOffloadEntry) { 5441 OMPLoopScope(CGF, D); 5442 // Emit calculation of the iterations count. 5443 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 5444 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 5445 /*isSigned=*/false); 5446 return NumIterations; 5447 } 5448 return nullptr; 5449 }; 5450 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 5451 SizeEmitter); 5452 } 5453 5454 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 5455 PrePostActionTy &Action) { 5456 Action.Enter(CGF); 5457 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5458 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5459 CGF.EmitOMPPrivateClause(S, PrivateScope); 5460 (void)PrivateScope.Privatize(); 5461 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5462 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5463 5464 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 5465 } 5466 5467 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 5468 StringRef ParentName, 5469 const OMPTargetDirective &S) { 5470 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5471 emitTargetRegion(CGF, S, Action); 5472 }; 5473 llvm::Function *Fn; 5474 llvm::Constant *Addr; 5475 // Emit target region as a standalone region. 5476 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5477 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5478 assert(Fn && Addr && "Target device function emission failed."); 5479 } 5480 5481 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 5482 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5483 emitTargetRegion(CGF, S, Action); 5484 }; 5485 emitCommonOMPTargetDirective(*this, S, CodeGen); 5486 } 5487 5488 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 5489 const OMPExecutableDirective &S, 5490 OpenMPDirectiveKind InnermostKind, 5491 const RegionCodeGenTy &CodeGen) { 5492 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 5493 llvm::Function *OutlinedFn = 5494 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 5495 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 5496 5497 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 5498 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 5499 if (NT || TL) { 5500 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 5501 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 5502 5503 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 5504 S.getBeginLoc()); 5505 } 5506 5507 OMPTeamsScope Scope(CGF, S); 5508 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5509 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5510 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 5511 CapturedVars); 5512 } 5513 5514 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 5515 // Emit teams region as a standalone region. 5516 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5517 Action.Enter(CGF); 5518 OMPPrivateScope PrivateScope(CGF); 5519 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5520 CGF.EmitOMPPrivateClause(S, PrivateScope); 5521 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5522 (void)PrivateScope.Privatize(); 5523 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 5524 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5525 }; 5526 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5527 emitPostUpdateForReductionClause(*this, S, 5528 [](CodeGenFunction &) { return nullptr; }); 5529 } 5530 5531 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5532 const OMPTargetTeamsDirective &S) { 5533 auto *CS = S.getCapturedStmt(OMPD_teams); 5534 Action.Enter(CGF); 5535 // Emit teams region as a standalone region. 5536 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5537 Action.Enter(CGF); 5538 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5539 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5540 CGF.EmitOMPPrivateClause(S, PrivateScope); 5541 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5542 (void)PrivateScope.Privatize(); 5543 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5544 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5545 CGF.EmitStmt(CS->getCapturedStmt()); 5546 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5547 }; 5548 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 5549 emitPostUpdateForReductionClause(CGF, S, 5550 [](CodeGenFunction &) { return nullptr; }); 5551 } 5552 5553 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 5554 CodeGenModule &CGM, StringRef ParentName, 5555 const OMPTargetTeamsDirective &S) { 5556 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5557 emitTargetTeamsRegion(CGF, Action, S); 5558 }; 5559 llvm::Function *Fn; 5560 llvm::Constant *Addr; 5561 // Emit target region as a standalone region. 5562 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5563 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5564 assert(Fn && Addr && "Target device function emission failed."); 5565 } 5566 5567 void CodeGenFunction::EmitOMPTargetTeamsDirective( 5568 const OMPTargetTeamsDirective &S) { 5569 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5570 emitTargetTeamsRegion(CGF, Action, S); 5571 }; 5572 emitCommonOMPTargetDirective(*this, S, CodeGen); 5573 } 5574 5575 static void 5576 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5577 const OMPTargetTeamsDistributeDirective &S) { 5578 Action.Enter(CGF); 5579 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5580 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5581 }; 5582 5583 // Emit teams region as a standalone region. 5584 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5585 PrePostActionTy &Action) { 5586 Action.Enter(CGF); 5587 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5588 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5589 (void)PrivateScope.Privatize(); 5590 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5591 CodeGenDistribute); 5592 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5593 }; 5594 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 5595 emitPostUpdateForReductionClause(CGF, S, 5596 [](CodeGenFunction &) { return nullptr; }); 5597 } 5598 5599 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 5600 CodeGenModule &CGM, StringRef ParentName, 5601 const OMPTargetTeamsDistributeDirective &S) { 5602 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5603 emitTargetTeamsDistributeRegion(CGF, Action, S); 5604 }; 5605 llvm::Function *Fn; 5606 llvm::Constant *Addr; 5607 // Emit target region as a standalone region. 5608 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5609 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5610 assert(Fn && Addr && "Target device function emission failed."); 5611 } 5612 5613 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 5614 const OMPTargetTeamsDistributeDirective &S) { 5615 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5616 emitTargetTeamsDistributeRegion(CGF, Action, S); 5617 }; 5618 emitCommonOMPTargetDirective(*this, S, CodeGen); 5619 } 5620 5621 static void emitTargetTeamsDistributeSimdRegion( 5622 CodeGenFunction &CGF, PrePostActionTy &Action, 5623 const OMPTargetTeamsDistributeSimdDirective &S) { 5624 Action.Enter(CGF); 5625 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5626 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5627 }; 5628 5629 // Emit teams region as a standalone region. 5630 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5631 PrePostActionTy &Action) { 5632 Action.Enter(CGF); 5633 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5634 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5635 (void)PrivateScope.Privatize(); 5636 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5637 CodeGenDistribute); 5638 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5639 }; 5640 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 5641 emitPostUpdateForReductionClause(CGF, S, 5642 [](CodeGenFunction &) { return nullptr; }); 5643 } 5644 5645 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 5646 CodeGenModule &CGM, StringRef ParentName, 5647 const OMPTargetTeamsDistributeSimdDirective &S) { 5648 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5649 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5650 }; 5651 llvm::Function *Fn; 5652 llvm::Constant *Addr; 5653 // Emit target region as a standalone region. 5654 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5655 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5656 assert(Fn && Addr && "Target device function emission failed."); 5657 } 5658 5659 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 5660 const OMPTargetTeamsDistributeSimdDirective &S) { 5661 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5662 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5663 }; 5664 emitCommonOMPTargetDirective(*this, S, CodeGen); 5665 } 5666 5667 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 5668 const OMPTeamsDistributeDirective &S) { 5669 5670 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5671 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5672 }; 5673 5674 // Emit teams region as a standalone region. 5675 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5676 PrePostActionTy &Action) { 5677 Action.Enter(CGF); 5678 OMPPrivateScope PrivateScope(CGF); 5679 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5680 (void)PrivateScope.Privatize(); 5681 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5682 CodeGenDistribute); 5683 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5684 }; 5685 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5686 emitPostUpdateForReductionClause(*this, S, 5687 [](CodeGenFunction &) { return nullptr; }); 5688 } 5689 5690 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 5691 const OMPTeamsDistributeSimdDirective &S) { 5692 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5693 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5694 }; 5695 5696 // Emit teams region as a standalone region. 5697 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5698 PrePostActionTy &Action) { 5699 Action.Enter(CGF); 5700 OMPPrivateScope PrivateScope(CGF); 5701 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5702 (void)PrivateScope.Privatize(); 5703 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 5704 CodeGenDistribute); 5705 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5706 }; 5707 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 5708 emitPostUpdateForReductionClause(*this, S, 5709 [](CodeGenFunction &) { return nullptr; }); 5710 } 5711 5712 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 5713 const OMPTeamsDistributeParallelForDirective &S) { 5714 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5715 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5716 S.getDistInc()); 5717 }; 5718 5719 // Emit teams region as a standalone region. 5720 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5721 PrePostActionTy &Action) { 5722 Action.Enter(CGF); 5723 OMPPrivateScope PrivateScope(CGF); 5724 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5725 (void)PrivateScope.Privatize(); 5726 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5727 CodeGenDistribute); 5728 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5729 }; 5730 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 5731 emitPostUpdateForReductionClause(*this, S, 5732 [](CodeGenFunction &) { return nullptr; }); 5733 } 5734 5735 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 5736 const OMPTeamsDistributeParallelForSimdDirective &S) { 5737 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5738 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5739 S.getDistInc()); 5740 }; 5741 5742 // Emit teams region as a standalone region. 5743 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5744 PrePostActionTy &Action) { 5745 Action.Enter(CGF); 5746 OMPPrivateScope PrivateScope(CGF); 5747 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5748 (void)PrivateScope.Privatize(); 5749 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5750 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5751 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5752 }; 5753 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 5754 CodeGen); 5755 emitPostUpdateForReductionClause(*this, S, 5756 [](CodeGenFunction &) { return nullptr; }); 5757 } 5758 5759 static void emitTargetTeamsDistributeParallelForRegion( 5760 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 5761 PrePostActionTy &Action) { 5762 Action.Enter(CGF); 5763 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5764 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5765 S.getDistInc()); 5766 }; 5767 5768 // Emit teams region as a standalone region. 5769 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5770 PrePostActionTy &Action) { 5771 Action.Enter(CGF); 5772 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5773 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5774 (void)PrivateScope.Privatize(); 5775 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5776 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5777 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5778 }; 5779 5780 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 5781 CodeGenTeams); 5782 emitPostUpdateForReductionClause(CGF, S, 5783 [](CodeGenFunction &) { return nullptr; }); 5784 } 5785 5786 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5787 CodeGenModule &CGM, StringRef ParentName, 5788 const OMPTargetTeamsDistributeParallelForDirective &S) { 5789 // Emit SPMD target teams distribute parallel for region as a standalone 5790 // region. 5791 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5792 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5793 }; 5794 llvm::Function *Fn; 5795 llvm::Constant *Addr; 5796 // Emit target region as a standalone region. 5797 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5798 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5799 assert(Fn && Addr && "Target device function emission failed."); 5800 } 5801 5802 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5803 const OMPTargetTeamsDistributeParallelForDirective &S) { 5804 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5805 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5806 }; 5807 emitCommonOMPTargetDirective(*this, S, CodeGen); 5808 } 5809 5810 static void emitTargetTeamsDistributeParallelForSimdRegion( 5811 CodeGenFunction &CGF, 5812 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5813 PrePostActionTy &Action) { 5814 Action.Enter(CGF); 5815 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5816 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5817 S.getDistInc()); 5818 }; 5819 5820 // Emit teams region as a standalone region. 5821 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5822 PrePostActionTy &Action) { 5823 Action.Enter(CGF); 5824 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5825 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5826 (void)PrivateScope.Privatize(); 5827 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5828 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5829 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5830 }; 5831 5832 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5833 CodeGenTeams); 5834 emitPostUpdateForReductionClause(CGF, S, 5835 [](CodeGenFunction &) { return nullptr; }); 5836 } 5837 5838 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5839 CodeGenModule &CGM, StringRef ParentName, 5840 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5841 // Emit SPMD target teams distribute parallel for simd region as a standalone 5842 // region. 5843 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5844 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5845 }; 5846 llvm::Function *Fn; 5847 llvm::Constant *Addr; 5848 // Emit target region as a standalone region. 5849 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5850 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5851 assert(Fn && Addr && "Target device function emission failed."); 5852 } 5853 5854 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5855 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5856 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5857 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5858 }; 5859 emitCommonOMPTargetDirective(*this, S, CodeGen); 5860 } 5861 5862 void CodeGenFunction::EmitOMPCancellationPointDirective( 5863 const OMPCancellationPointDirective &S) { 5864 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5865 S.getCancelRegion()); 5866 } 5867 5868 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5869 const Expr *IfCond = nullptr; 5870 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5871 if (C->getNameModifier() == OMPD_unknown || 5872 C->getNameModifier() == OMPD_cancel) { 5873 IfCond = C->getCondition(); 5874 break; 5875 } 5876 } 5877 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 5878 // TODO: This check is necessary as we only generate `omp parallel` through 5879 // the OpenMPIRBuilder for now. 5880 if (S.getCancelRegion() == OMPD_parallel) { 5881 llvm::Value *IfCondition = nullptr; 5882 if (IfCond) 5883 IfCondition = EmitScalarExpr(IfCond, 5884 /*IgnoreResultAssign=*/true); 5885 return Builder.restoreIP( 5886 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5887 } 5888 } 5889 5890 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5891 S.getCancelRegion()); 5892 } 5893 5894 CodeGenFunction::JumpDest 5895 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5896 if (Kind == OMPD_parallel || Kind == OMPD_task || 5897 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 5898 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 5899 return ReturnBlock; 5900 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5901 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5902 Kind == OMPD_distribute_parallel_for || 5903 Kind == OMPD_target_parallel_for || 5904 Kind == OMPD_teams_distribute_parallel_for || 5905 Kind == OMPD_target_teams_distribute_parallel_for); 5906 return OMPCancelStack.getExitBlock(); 5907 } 5908 5909 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5910 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 5911 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5912 auto OrigVarIt = C.varlist_begin(); 5913 auto InitIt = C.inits().begin(); 5914 for (const Expr *PvtVarIt : C.private_copies()) { 5915 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 5916 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 5917 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 5918 5919 // In order to identify the right initializer we need to match the 5920 // declaration used by the mapping logic. In some cases we may get 5921 // OMPCapturedExprDecl that refers to the original declaration. 5922 const ValueDecl *MatchingVD = OrigVD; 5923 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5924 // OMPCapturedExprDecl are used to privative fields of the current 5925 // structure. 5926 const auto *ME = cast<MemberExpr>(OED->getInit()); 5927 assert(isa<CXXThisExpr>(ME->getBase()) && 5928 "Base should be the current struct!"); 5929 MatchingVD = ME->getMemberDecl(); 5930 } 5931 5932 // If we don't have information about the current list item, move on to 5933 // the next one. 5934 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 5935 if (InitAddrIt == CaptureDeviceAddrMap.end()) 5936 continue; 5937 5938 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 5939 InitAddrIt, InitVD, 5940 PvtVD]() { 5941 // Initialize the temporary initialization variable with the address we 5942 // get from the runtime library. We have to cast the source address 5943 // because it is always a void *. References are materialized in the 5944 // privatization scope, so the initialization here disregards the fact 5945 // the original variable is a reference. 5946 QualType AddrQTy = 5947 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 5948 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 5949 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 5950 setAddrOfLocalVar(InitVD, InitAddr); 5951 5952 // Emit private declaration, it will be initialized by the value we 5953 // declaration we just added to the local declarations map. 5954 EmitDecl(*PvtVD); 5955 5956 // The initialization variables reached its purpose in the emission 5957 // of the previous declaration, so we don't need it anymore. 5958 LocalDeclMap.erase(InitVD); 5959 5960 // Return the address of the private variable. 5961 return GetAddrOfLocalVar(PvtVD); 5962 }); 5963 assert(IsRegistered && "firstprivate var already registered as private"); 5964 // Silence the warning about unused variable. 5965 (void)IsRegistered; 5966 5967 ++OrigVarIt; 5968 ++InitIt; 5969 } 5970 } 5971 5972 static const VarDecl *getBaseDecl(const Expr *Ref) { 5973 const Expr *Base = Ref->IgnoreParenImpCasts(); 5974 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 5975 Base = OASE->getBase()->IgnoreParenImpCasts(); 5976 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 5977 Base = ASE->getBase()->IgnoreParenImpCasts(); 5978 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 5979 } 5980 5981 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 5982 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 5983 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5984 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 5985 for (const Expr *Ref : C.varlists()) { 5986 const VarDecl *OrigVD = getBaseDecl(Ref); 5987 if (!Processed.insert(OrigVD).second) 5988 continue; 5989 // In order to identify the right initializer we need to match the 5990 // declaration used by the mapping logic. In some cases we may get 5991 // OMPCapturedExprDecl that refers to the original declaration. 5992 const ValueDecl *MatchingVD = OrigVD; 5993 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5994 // OMPCapturedExprDecl are used to privative fields of the current 5995 // structure. 5996 const auto *ME = cast<MemberExpr>(OED->getInit()); 5997 assert(isa<CXXThisExpr>(ME->getBase()) && 5998 "Base should be the current struct!"); 5999 MatchingVD = ME->getMemberDecl(); 6000 } 6001 6002 // If we don't have information about the current list item, move on to 6003 // the next one. 6004 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6005 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6006 continue; 6007 6008 Address PrivAddr = InitAddrIt->getSecond(); 6009 // For declrefs and variable length array need to load the pointer for 6010 // correct mapping, since the pointer to the data was passed to the runtime. 6011 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6012 MatchingVD->getType()->isArrayType()) 6013 PrivAddr = 6014 EmitLoadOfPointer(PrivAddr, getContext() 6015 .getPointerType(OrigVD->getType()) 6016 ->castAs<PointerType>()); 6017 llvm::Type *RealTy = 6018 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6019 ->getPointerTo(); 6020 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6021 6022 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6023 } 6024 } 6025 6026 // Generate the instructions for '#pragma omp target data' directive. 6027 void CodeGenFunction::EmitOMPTargetDataDirective( 6028 const OMPTargetDataDirective &S) { 6029 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 6030 6031 // Create a pre/post action to signal the privatization of the device pointer. 6032 // This action can be replaced by the OpenMP runtime code generation to 6033 // deactivate privatization. 6034 bool PrivatizeDevicePointers = false; 6035 class DevicePointerPrivActionTy : public PrePostActionTy { 6036 bool &PrivatizeDevicePointers; 6037 6038 public: 6039 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6040 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6041 void Enter(CodeGenFunction &CGF) override { 6042 PrivatizeDevicePointers = true; 6043 } 6044 }; 6045 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6046 6047 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6048 CodeGenFunction &CGF, PrePostActionTy &Action) { 6049 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6050 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6051 }; 6052 6053 // Codegen that selects whether to generate the privatization code or not. 6054 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6055 &InnermostCodeGen](CodeGenFunction &CGF, 6056 PrePostActionTy &Action) { 6057 RegionCodeGenTy RCG(InnermostCodeGen); 6058 PrivatizeDevicePointers = false; 6059 6060 // Call the pre-action to change the status of PrivatizeDevicePointers if 6061 // needed. 6062 Action.Enter(CGF); 6063 6064 if (PrivatizeDevicePointers) { 6065 OMPPrivateScope PrivateScope(CGF); 6066 // Emit all instances of the use_device_ptr clause. 6067 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6068 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6069 Info.CaptureDeviceAddrMap); 6070 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6071 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6072 Info.CaptureDeviceAddrMap); 6073 (void)PrivateScope.Privatize(); 6074 RCG(CGF); 6075 } else { 6076 RCG(CGF); 6077 } 6078 }; 6079 6080 // Forward the provided action to the privatization codegen. 6081 RegionCodeGenTy PrivRCG(PrivCodeGen); 6082 PrivRCG.setAction(Action); 6083 6084 // Notwithstanding the body of the region is emitted as inlined directive, 6085 // we don't use an inline scope as changes in the references inside the 6086 // region are expected to be visible outside, so we do not privative them. 6087 OMPLexicalScope Scope(CGF, S); 6088 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6089 PrivRCG); 6090 }; 6091 6092 RegionCodeGenTy RCG(CodeGen); 6093 6094 // If we don't have target devices, don't bother emitting the data mapping 6095 // code. 6096 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6097 RCG(*this); 6098 return; 6099 } 6100 6101 // Check if we have any if clause associated with the directive. 6102 const Expr *IfCond = nullptr; 6103 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6104 IfCond = C->getCondition(); 6105 6106 // Check if we have any device clause associated with the directive. 6107 const Expr *Device = nullptr; 6108 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6109 Device = C->getDevice(); 6110 6111 // Set the action to signal privatization of device pointers. 6112 RCG.setAction(PrivAction); 6113 6114 // Emit region code. 6115 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6116 Info); 6117 } 6118 6119 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6120 const OMPTargetEnterDataDirective &S) { 6121 // If we don't have target devices, don't bother emitting the data mapping 6122 // code. 6123 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6124 return; 6125 6126 // Check if we have any if clause associated with the directive. 6127 const Expr *IfCond = nullptr; 6128 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6129 IfCond = C->getCondition(); 6130 6131 // Check if we have any device clause associated with the directive. 6132 const Expr *Device = nullptr; 6133 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6134 Device = C->getDevice(); 6135 6136 OMPLexicalScope Scope(*this, S, OMPD_task); 6137 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6138 } 6139 6140 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6141 const OMPTargetExitDataDirective &S) { 6142 // If we don't have target devices, don't bother emitting the data mapping 6143 // code. 6144 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6145 return; 6146 6147 // Check if we have any if clause associated with the directive. 6148 const Expr *IfCond = nullptr; 6149 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6150 IfCond = C->getCondition(); 6151 6152 // Check if we have any device clause associated with the directive. 6153 const Expr *Device = nullptr; 6154 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6155 Device = C->getDevice(); 6156 6157 OMPLexicalScope Scope(*this, S, OMPD_task); 6158 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6159 } 6160 6161 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6162 const OMPTargetParallelDirective &S, 6163 PrePostActionTy &Action) { 6164 // Get the captured statement associated with the 'parallel' region. 6165 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6166 Action.Enter(CGF); 6167 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6168 Action.Enter(CGF); 6169 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6170 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6171 CGF.EmitOMPPrivateClause(S, PrivateScope); 6172 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6173 (void)PrivateScope.Privatize(); 6174 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6175 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6176 // TODO: Add support for clauses. 6177 CGF.EmitStmt(CS->getCapturedStmt()); 6178 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6179 }; 6180 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6181 emitEmptyBoundParameters); 6182 emitPostUpdateForReductionClause(CGF, S, 6183 [](CodeGenFunction &) { return nullptr; }); 6184 } 6185 6186 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6187 CodeGenModule &CGM, StringRef ParentName, 6188 const OMPTargetParallelDirective &S) { 6189 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6190 emitTargetParallelRegion(CGF, S, Action); 6191 }; 6192 llvm::Function *Fn; 6193 llvm::Constant *Addr; 6194 // Emit target region as a standalone region. 6195 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6196 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6197 assert(Fn && Addr && "Target device function emission failed."); 6198 } 6199 6200 void CodeGenFunction::EmitOMPTargetParallelDirective( 6201 const OMPTargetParallelDirective &S) { 6202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6203 emitTargetParallelRegion(CGF, S, Action); 6204 }; 6205 emitCommonOMPTargetDirective(*this, S, CodeGen); 6206 } 6207 6208 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6209 const OMPTargetParallelForDirective &S, 6210 PrePostActionTy &Action) { 6211 Action.Enter(CGF); 6212 // Emit directive as a combined directive that consists of two implicit 6213 // directives: 'parallel' with 'for' directive. 6214 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6215 Action.Enter(CGF); 6216 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6217 CGF, OMPD_target_parallel_for, S.hasCancel()); 6218 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6219 emitDispatchForLoopBounds); 6220 }; 6221 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6222 emitEmptyBoundParameters); 6223 } 6224 6225 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6226 CodeGenModule &CGM, StringRef ParentName, 6227 const OMPTargetParallelForDirective &S) { 6228 // Emit SPMD target parallel for region as a standalone region. 6229 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6230 emitTargetParallelForRegion(CGF, S, Action); 6231 }; 6232 llvm::Function *Fn; 6233 llvm::Constant *Addr; 6234 // Emit target region as a standalone region. 6235 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6236 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6237 assert(Fn && Addr && "Target device function emission failed."); 6238 } 6239 6240 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6241 const OMPTargetParallelForDirective &S) { 6242 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6243 emitTargetParallelForRegion(CGF, S, Action); 6244 }; 6245 emitCommonOMPTargetDirective(*this, S, CodeGen); 6246 } 6247 6248 static void 6249 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6250 const OMPTargetParallelForSimdDirective &S, 6251 PrePostActionTy &Action) { 6252 Action.Enter(CGF); 6253 // Emit directive as a combined directive that consists of two implicit 6254 // directives: 'parallel' with 'for' directive. 6255 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6256 Action.Enter(CGF); 6257 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6258 emitDispatchForLoopBounds); 6259 }; 6260 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6261 emitEmptyBoundParameters); 6262 } 6263 6264 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6265 CodeGenModule &CGM, StringRef ParentName, 6266 const OMPTargetParallelForSimdDirective &S) { 6267 // Emit SPMD target parallel for region as a standalone region. 6268 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6269 emitTargetParallelForSimdRegion(CGF, S, Action); 6270 }; 6271 llvm::Function *Fn; 6272 llvm::Constant *Addr; 6273 // Emit target region as a standalone region. 6274 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6275 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6276 assert(Fn && Addr && "Target device function emission failed."); 6277 } 6278 6279 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6280 const OMPTargetParallelForSimdDirective &S) { 6281 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6282 emitTargetParallelForSimdRegion(CGF, S, Action); 6283 }; 6284 emitCommonOMPTargetDirective(*this, S, CodeGen); 6285 } 6286 6287 /// Emit a helper variable and return corresponding lvalue. 6288 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6289 const ImplicitParamDecl *PVD, 6290 CodeGenFunction::OMPPrivateScope &Privates) { 6291 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6292 Privates.addPrivate(VDecl, 6293 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6294 } 6295 6296 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6297 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6298 // Emit outlined function for task construct. 6299 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6300 Address CapturedStruct = Address::invalid(); 6301 { 6302 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6303 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6304 } 6305 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6306 const Expr *IfCond = nullptr; 6307 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6308 if (C->getNameModifier() == OMPD_unknown || 6309 C->getNameModifier() == OMPD_taskloop) { 6310 IfCond = C->getCondition(); 6311 break; 6312 } 6313 } 6314 6315 OMPTaskDataTy Data; 6316 // Check if taskloop must be emitted without taskgroup. 6317 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6318 // TODO: Check if we should emit tied or untied task. 6319 Data.Tied = true; 6320 // Set scheduling for taskloop 6321 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6322 // grainsize clause 6323 Data.Schedule.setInt(/*IntVal=*/false); 6324 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6325 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6326 // num_tasks clause 6327 Data.Schedule.setInt(/*IntVal=*/true); 6328 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6329 } 6330 6331 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6332 // if (PreCond) { 6333 // for (IV in 0..LastIteration) BODY; 6334 // <Final counter/linear vars updates>; 6335 // } 6336 // 6337 6338 // Emit: if (PreCond) - begin. 6339 // If the condition constant folds and can be elided, avoid emitting the 6340 // whole loop. 6341 bool CondConstant; 6342 llvm::BasicBlock *ContBlock = nullptr; 6343 OMPLoopScope PreInitScope(CGF, S); 6344 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6345 if (!CondConstant) 6346 return; 6347 } else { 6348 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6349 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6350 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6351 CGF.getProfileCount(&S)); 6352 CGF.EmitBlock(ThenBlock); 6353 CGF.incrementProfileCounter(&S); 6354 } 6355 6356 (void)CGF.EmitOMPLinearClauseInit(S); 6357 6358 OMPPrivateScope LoopScope(CGF); 6359 // Emit helper vars inits. 6360 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6361 auto *I = CS->getCapturedDecl()->param_begin(); 6362 auto *LBP = std::next(I, LowerBound); 6363 auto *UBP = std::next(I, UpperBound); 6364 auto *STP = std::next(I, Stride); 6365 auto *LIP = std::next(I, LastIter); 6366 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6367 LoopScope); 6368 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6369 LoopScope); 6370 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6371 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6372 LoopScope); 6373 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6374 CGF.EmitOMPLinearClause(S, LoopScope); 6375 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6376 (void)LoopScope.Privatize(); 6377 // Emit the loop iteration variable. 6378 const Expr *IVExpr = S.getIterationVariable(); 6379 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6380 CGF.EmitVarDecl(*IVDecl); 6381 CGF.EmitIgnoredExpr(S.getInit()); 6382 6383 // Emit the iterations count variable. 6384 // If it is not a variable, Sema decided to calculate iterations count on 6385 // each iteration (e.g., it is foldable into a constant). 6386 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6387 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6388 // Emit calculation of the iterations count. 6389 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6390 } 6391 6392 { 6393 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6394 emitCommonSimdLoop( 6395 CGF, S, 6396 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6397 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6398 CGF.EmitOMPSimdInit(S); 6399 }, 6400 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6401 CGF.EmitOMPInnerLoop( 6402 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6403 [&S](CodeGenFunction &CGF) { 6404 emitOMPLoopBodyWithStopPoint(CGF, S, 6405 CodeGenFunction::JumpDest()); 6406 }, 6407 [](CodeGenFunction &) {}); 6408 }); 6409 } 6410 // Emit: if (PreCond) - end. 6411 if (ContBlock) { 6412 CGF.EmitBranch(ContBlock); 6413 CGF.EmitBlock(ContBlock, true); 6414 } 6415 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6416 if (HasLastprivateClause) { 6417 CGF.EmitOMPLastprivateClauseFinal( 6418 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6419 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6420 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6421 (*LIP)->getType(), S.getBeginLoc()))); 6422 } 6423 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6424 return CGF.Builder.CreateIsNotNull( 6425 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6426 (*LIP)->getType(), S.getBeginLoc())); 6427 }); 6428 }; 6429 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6430 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6431 const OMPTaskDataTy &Data) { 6432 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6433 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6434 OMPLoopScope PreInitScope(CGF, S); 6435 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6436 OutlinedFn, SharedsTy, 6437 CapturedStruct, IfCond, Data); 6438 }; 6439 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 6440 CodeGen); 6441 }; 6442 if (Data.Nogroup) { 6443 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 6444 } else { 6445 CGM.getOpenMPRuntime().emitTaskgroupRegion( 6446 *this, 6447 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 6448 PrePostActionTy &Action) { 6449 Action.Enter(CGF); 6450 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 6451 Data); 6452 }, 6453 S.getBeginLoc()); 6454 } 6455 } 6456 6457 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 6458 auto LPCRegion = 6459 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6460 EmitOMPTaskLoopBasedDirective(S); 6461 } 6462 6463 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 6464 const OMPTaskLoopSimdDirective &S) { 6465 auto LPCRegion = 6466 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6467 OMPLexicalScope Scope(*this, S); 6468 EmitOMPTaskLoopBasedDirective(S); 6469 } 6470 6471 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 6472 const OMPMasterTaskLoopDirective &S) { 6473 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6474 Action.Enter(CGF); 6475 EmitOMPTaskLoopBasedDirective(S); 6476 }; 6477 auto LPCRegion = 6478 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6479 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 6480 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6481 } 6482 6483 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 6484 const OMPMasterTaskLoopSimdDirective &S) { 6485 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6486 Action.Enter(CGF); 6487 EmitOMPTaskLoopBasedDirective(S); 6488 }; 6489 auto LPCRegion = 6490 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6491 OMPLexicalScope Scope(*this, S); 6492 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6493 } 6494 6495 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 6496 const OMPParallelMasterTaskLoopDirective &S) { 6497 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6498 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6499 PrePostActionTy &Action) { 6500 Action.Enter(CGF); 6501 CGF.EmitOMPTaskLoopBasedDirective(S); 6502 }; 6503 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6504 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6505 S.getBeginLoc()); 6506 }; 6507 auto LPCRegion = 6508 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6509 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 6510 emitEmptyBoundParameters); 6511 } 6512 6513 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 6514 const OMPParallelMasterTaskLoopSimdDirective &S) { 6515 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6516 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6517 PrePostActionTy &Action) { 6518 Action.Enter(CGF); 6519 CGF.EmitOMPTaskLoopBasedDirective(S); 6520 }; 6521 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6522 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6523 S.getBeginLoc()); 6524 }; 6525 auto LPCRegion = 6526 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6527 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 6528 emitEmptyBoundParameters); 6529 } 6530 6531 // Generate the instructions for '#pragma omp target update' directive. 6532 void CodeGenFunction::EmitOMPTargetUpdateDirective( 6533 const OMPTargetUpdateDirective &S) { 6534 // If we don't have target devices, don't bother emitting the data mapping 6535 // code. 6536 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6537 return; 6538 6539 // Check if we have any if clause associated with the directive. 6540 const Expr *IfCond = nullptr; 6541 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6542 IfCond = C->getCondition(); 6543 6544 // Check if we have any device clause associated with the directive. 6545 const Expr *Device = nullptr; 6546 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6547 Device = C->getDevice(); 6548 6549 OMPLexicalScope Scope(*this, S, OMPD_task); 6550 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6551 } 6552 6553 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 6554 const OMPExecutableDirective &D) { 6555 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 6556 EmitOMPScanDirective(*SD); 6557 return; 6558 } 6559 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 6560 return; 6561 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 6562 OMPPrivateScope GlobalsScope(CGF); 6563 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 6564 // Capture global firstprivates to avoid crash. 6565 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 6566 for (const Expr *Ref : C->varlists()) { 6567 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 6568 if (!DRE) 6569 continue; 6570 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6571 if (!VD || VD->hasLocalStorage()) 6572 continue; 6573 if (!CGF.LocalDeclMap.count(VD)) { 6574 LValue GlobLVal = CGF.EmitLValue(Ref); 6575 GlobalsScope.addPrivate( 6576 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6577 } 6578 } 6579 } 6580 } 6581 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 6582 (void)GlobalsScope.Privatize(); 6583 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 6584 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 6585 } else { 6586 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 6587 for (const Expr *E : LD->counters()) { 6588 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 6589 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 6590 LValue GlobLVal = CGF.EmitLValue(E); 6591 GlobalsScope.addPrivate( 6592 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6593 } 6594 if (isa<OMPCapturedExprDecl>(VD)) { 6595 // Emit only those that were not explicitly referenced in clauses. 6596 if (!CGF.LocalDeclMap.count(VD)) 6597 CGF.EmitVarDecl(*VD); 6598 } 6599 } 6600 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 6601 if (!C->getNumForLoops()) 6602 continue; 6603 for (unsigned I = LD->getCollapsedNumber(), 6604 E = C->getLoopNumIterations().size(); 6605 I < E; ++I) { 6606 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 6607 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 6608 // Emit only those that were not explicitly referenced in clauses. 6609 if (!CGF.LocalDeclMap.count(VD)) 6610 CGF.EmitVarDecl(*VD); 6611 } 6612 } 6613 } 6614 } 6615 (void)GlobalsScope.Privatize(); 6616 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 6617 } 6618 }; 6619 { 6620 auto LPCRegion = 6621 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 6622 OMPSimdLexicalScope Scope(*this, D); 6623 CGM.getOpenMPRuntime().emitInlinedDirective( 6624 *this, 6625 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 6626 : D.getDirectiveKind(), 6627 CodeGen); 6628 } 6629 // Check for outer lastprivate conditional update. 6630 checkForLastprivateConditionalUpdate(*this, D); 6631 } 6632