1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 137 const DeclStmt *PreInits; 138 CodeGenFunction::OMPMapVars PreCondVars; 139 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 140 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 141 for (const auto *E : LD->counters()) { 142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 143 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 144 (void)PreCondVars.setVarAddr( 145 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 146 } 147 // Mark private vars as undefs. 148 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 149 for (const Expr *IRef : C->varlists()) { 150 const auto *OrigVD = 151 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 152 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 153 (void)PreCondVars.setVarAddr( 154 CGF, OrigVD, 155 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 156 CGF.getContext().getPointerType( 157 OrigVD->getType().getNonReferenceType()))), 158 CGF.getContext().getDeclAlign(OrigVD))); 159 } 160 } 161 } 162 (void)PreCondVars.apply(CGF); 163 // Emit init, __range and __end variables for C++ range loops. 164 (void)OMPLoopBasedDirective::doForAllLoops( 165 LD->getInnermostCapturedStmt()->getCapturedStmt(), 166 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 167 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 168 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 169 if (const Stmt *Init = CXXFor->getInit()) 170 CGF.EmitStmt(Init); 171 CGF.EmitStmt(CXXFor->getRangeStmt()); 172 CGF.EmitStmt(CXXFor->getEndStmt()); 173 } 174 return false; 175 }); 176 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 177 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 178 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 179 } else { 180 llvm_unreachable("Unknown loop-based directive kind."); 181 } 182 if (PreInits) { 183 for (const auto *I : PreInits->decls()) 184 CGF.EmitVarDecl(cast<VarDecl>(*I)); 185 } 186 PreCondVars.restore(CGF); 187 } 188 189 public: 190 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 191 : CodeGenFunction::RunCleanupsScope(CGF) { 192 emitPreInitStmt(CGF, S); 193 } 194 }; 195 196 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 197 CodeGenFunction::OMPPrivateScope InlinedShareds; 198 199 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 200 return CGF.LambdaCaptureFields.lookup(VD) || 201 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 202 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 203 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 204 } 205 206 public: 207 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 208 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 209 InlinedShareds(CGF) { 210 for (const auto *C : S.clauses()) { 211 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 212 if (const auto *PreInit = 213 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 214 for (const auto *I : PreInit->decls()) { 215 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 216 CGF.EmitVarDecl(cast<VarDecl>(*I)); 217 } else { 218 CodeGenFunction::AutoVarEmission Emission = 219 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 220 CGF.EmitAutoVarCleanups(Emission); 221 } 222 } 223 } 224 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 225 for (const Expr *E : UDP->varlists()) { 226 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 227 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 228 CGF.EmitVarDecl(*OED); 229 } 230 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 231 for (const Expr *E : UDP->varlists()) { 232 const Decl *D = getBaseDecl(E); 233 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 234 CGF.EmitVarDecl(*OED); 235 } 236 } 237 } 238 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 239 CGF.EmitOMPPrivateClause(S, InlinedShareds); 240 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 241 if (const Expr *E = TG->getReductionRef()) 242 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 243 } 244 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 245 while (CS) { 246 for (auto &C : CS->captures()) { 247 if (C.capturesVariable() || C.capturesVariableByCopy()) { 248 auto *VD = C.getCapturedVar(); 249 assert(VD == VD->getCanonicalDecl() && 250 "Canonical decl must be captured."); 251 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 252 isCapturedVar(CGF, VD) || 253 (CGF.CapturedStmtInfo && 254 InlinedShareds.isGlobalVarCaptured(VD)), 255 VD->getType().getNonReferenceType(), VK_LValue, 256 C.getLocation()); 257 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 258 return CGF.EmitLValue(&DRE).getAddress(CGF); 259 }); 260 } 261 } 262 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 263 } 264 (void)InlinedShareds.Privatize(); 265 } 266 }; 267 268 } // namespace 269 270 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 271 const OMPExecutableDirective &S, 272 const RegionCodeGenTy &CodeGen); 273 274 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 275 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 276 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 277 OrigVD = OrigVD->getCanonicalDecl(); 278 bool IsCaptured = 279 LambdaCaptureFields.lookup(OrigVD) || 280 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 281 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 282 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 283 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 284 return EmitLValue(&DRE); 285 } 286 } 287 return EmitLValue(E); 288 } 289 290 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 291 ASTContext &C = getContext(); 292 llvm::Value *Size = nullptr; 293 auto SizeInChars = C.getTypeSizeInChars(Ty); 294 if (SizeInChars.isZero()) { 295 // getTypeSizeInChars() returns 0 for a VLA. 296 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 297 VlaSizePair VlaSize = getVLASize(VAT); 298 Ty = VlaSize.Type; 299 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 300 : VlaSize.NumElts; 301 } 302 SizeInChars = C.getTypeSizeInChars(Ty); 303 if (SizeInChars.isZero()) 304 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 305 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 306 } 307 return CGM.getSize(SizeInChars); 308 } 309 310 void CodeGenFunction::GenerateOpenMPCapturedVars( 311 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 312 const RecordDecl *RD = S.getCapturedRecordDecl(); 313 auto CurField = RD->field_begin(); 314 auto CurCap = S.captures().begin(); 315 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 316 E = S.capture_init_end(); 317 I != E; ++I, ++CurField, ++CurCap) { 318 if (CurField->hasCapturedVLAType()) { 319 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 320 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 321 CapturedVars.push_back(Val); 322 } else if (CurCap->capturesThis()) { 323 CapturedVars.push_back(CXXThisValue); 324 } else if (CurCap->capturesVariableByCopy()) { 325 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 326 327 // If the field is not a pointer, we need to save the actual value 328 // and load it as a void pointer. 329 if (!CurField->getType()->isAnyPointerType()) { 330 ASTContext &Ctx = getContext(); 331 Address DstAddr = CreateMemTemp( 332 Ctx.getUIntPtrType(), 333 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 334 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 335 336 llvm::Value *SrcAddrVal = EmitScalarConversion( 337 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 338 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 339 LValue SrcLV = 340 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 341 342 // Store the value using the source type pointer. 343 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 344 345 // Load the value using the destination type pointer. 346 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 347 } 348 CapturedVars.push_back(CV); 349 } else { 350 assert(CurCap->capturesVariable() && "Expected capture by reference."); 351 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 352 } 353 } 354 } 355 356 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 357 QualType DstType, StringRef Name, 358 LValue AddrLV) { 359 ASTContext &Ctx = CGF.getContext(); 360 361 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 362 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 363 Ctx.getPointerType(DstType), Loc); 364 Address TmpAddr = 365 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 366 .getAddress(CGF); 367 return TmpAddr; 368 } 369 370 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 371 if (T->isLValueReferenceType()) 372 return C.getLValueReferenceType( 373 getCanonicalParamType(C, T.getNonReferenceType()), 374 /*SpelledAsLValue=*/false); 375 if (T->isPointerType()) 376 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 377 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 378 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 379 return getCanonicalParamType(C, VLA->getElementType()); 380 if (!A->isVariablyModifiedType()) 381 return C.getCanonicalType(T); 382 } 383 return C.getCanonicalParamType(T); 384 } 385 386 namespace { 387 /// Contains required data for proper outlined function codegen. 388 struct FunctionOptions { 389 /// Captured statement for which the function is generated. 390 const CapturedStmt *S = nullptr; 391 /// true if cast to/from UIntPtr is required for variables captured by 392 /// value. 393 const bool UIntPtrCastRequired = true; 394 /// true if only casted arguments must be registered as local args or VLA 395 /// sizes. 396 const bool RegisterCastedArgsOnly = false; 397 /// Name of the generated function. 398 const StringRef FunctionName; 399 /// Location of the non-debug version of the outlined function. 400 SourceLocation Loc; 401 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 402 bool RegisterCastedArgsOnly, StringRef FunctionName, 403 SourceLocation Loc) 404 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 405 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 406 FunctionName(FunctionName), Loc(Loc) {} 407 }; 408 } // namespace 409 410 static llvm::Function *emitOutlinedFunctionPrologue( 411 CodeGenFunction &CGF, FunctionArgList &Args, 412 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 413 &LocalAddrs, 414 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 415 &VLASizes, 416 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 417 const CapturedDecl *CD = FO.S->getCapturedDecl(); 418 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 419 assert(CD->hasBody() && "missing CapturedDecl body"); 420 421 CXXThisValue = nullptr; 422 // Build the argument list. 423 CodeGenModule &CGM = CGF.CGM; 424 ASTContext &Ctx = CGM.getContext(); 425 FunctionArgList TargetArgs; 426 Args.append(CD->param_begin(), 427 std::next(CD->param_begin(), CD->getContextParamPosition())); 428 TargetArgs.append( 429 CD->param_begin(), 430 std::next(CD->param_begin(), CD->getContextParamPosition())); 431 auto I = FO.S->captures().begin(); 432 FunctionDecl *DebugFunctionDecl = nullptr; 433 if (!FO.UIntPtrCastRequired) { 434 FunctionProtoType::ExtProtoInfo EPI; 435 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 436 DebugFunctionDecl = FunctionDecl::Create( 437 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 438 SourceLocation(), DeclarationName(), FunctionTy, 439 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 440 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 441 } 442 for (const FieldDecl *FD : RD->fields()) { 443 QualType ArgType = FD->getType(); 444 IdentifierInfo *II = nullptr; 445 VarDecl *CapVar = nullptr; 446 447 // If this is a capture by copy and the type is not a pointer, the outlined 448 // function argument type should be uintptr and the value properly casted to 449 // uintptr. This is necessary given that the runtime library is only able to 450 // deal with pointers. We can pass in the same way the VLA type sizes to the 451 // outlined function. 452 if (FO.UIntPtrCastRequired && 453 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 454 I->capturesVariableArrayType())) 455 ArgType = Ctx.getUIntPtrType(); 456 457 if (I->capturesVariable() || I->capturesVariableByCopy()) { 458 CapVar = I->getCapturedVar(); 459 II = CapVar->getIdentifier(); 460 } else if (I->capturesThis()) { 461 II = &Ctx.Idents.get("this"); 462 } else { 463 assert(I->capturesVariableArrayType()); 464 II = &Ctx.Idents.get("vla"); 465 } 466 if (ArgType->isVariablyModifiedType()) 467 ArgType = getCanonicalParamType(Ctx, ArgType); 468 VarDecl *Arg; 469 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 470 Arg = ParmVarDecl::Create( 471 Ctx, DebugFunctionDecl, 472 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 473 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 474 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 475 } else { 476 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 477 II, ArgType, ImplicitParamDecl::Other); 478 } 479 Args.emplace_back(Arg); 480 // Do not cast arguments if we emit function with non-original types. 481 TargetArgs.emplace_back( 482 FO.UIntPtrCastRequired 483 ? Arg 484 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 485 ++I; 486 } 487 Args.append( 488 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 489 CD->param_end()); 490 TargetArgs.append( 491 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 492 CD->param_end()); 493 494 // Create the function declaration. 495 const CGFunctionInfo &FuncInfo = 496 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 497 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 498 499 auto *F = 500 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 501 FO.FunctionName, &CGM.getModule()); 502 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 503 if (CD->isNothrow()) 504 F->setDoesNotThrow(); 505 F->setDoesNotRecurse(); 506 507 // Generate the function. 508 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 509 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 510 FO.UIntPtrCastRequired ? FO.Loc 511 : CD->getBody()->getBeginLoc()); 512 unsigned Cnt = CD->getContextParamPosition(); 513 I = FO.S->captures().begin(); 514 for (const FieldDecl *FD : RD->fields()) { 515 // Do not map arguments if we emit function with non-original types. 516 Address LocalAddr(Address::invalid()); 517 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 518 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 519 TargetArgs[Cnt]); 520 } else { 521 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 522 } 523 // If we are capturing a pointer by copy we don't need to do anything, just 524 // use the value that we get from the arguments. 525 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 526 const VarDecl *CurVD = I->getCapturedVar(); 527 if (!FO.RegisterCastedArgsOnly) 528 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 529 ++Cnt; 530 ++I; 531 continue; 532 } 533 534 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 535 AlignmentSource::Decl); 536 if (FD->hasCapturedVLAType()) { 537 if (FO.UIntPtrCastRequired) { 538 ArgLVal = CGF.MakeAddrLValue( 539 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 540 Args[Cnt]->getName(), ArgLVal), 541 FD->getType(), AlignmentSource::Decl); 542 } 543 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 544 const VariableArrayType *VAT = FD->getCapturedVLAType(); 545 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 546 } else if (I->capturesVariable()) { 547 const VarDecl *Var = I->getCapturedVar(); 548 QualType VarTy = Var->getType(); 549 Address ArgAddr = ArgLVal.getAddress(CGF); 550 if (ArgLVal.getType()->isLValueReferenceType()) { 551 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 552 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 553 assert(ArgLVal.getType()->isPointerType()); 554 ArgAddr = CGF.EmitLoadOfPointer( 555 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 556 } 557 if (!FO.RegisterCastedArgsOnly) { 558 LocalAddrs.insert( 559 {Args[Cnt], 560 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 561 } 562 } else if (I->capturesVariableByCopy()) { 563 assert(!FD->getType()->isAnyPointerType() && 564 "Not expecting a captured pointer."); 565 const VarDecl *Var = I->getCapturedVar(); 566 LocalAddrs.insert({Args[Cnt], 567 {Var, FO.UIntPtrCastRequired 568 ? castValueFromUintptr( 569 CGF, I->getLocation(), FD->getType(), 570 Args[Cnt]->getName(), ArgLVal) 571 : ArgLVal.getAddress(CGF)}}); 572 } else { 573 // If 'this' is captured, load it into CXXThisValue. 574 assert(I->capturesThis()); 575 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 576 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 577 } 578 ++Cnt; 579 ++I; 580 } 581 582 return F; 583 } 584 585 llvm::Function * 586 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 587 SourceLocation Loc) { 588 assert( 589 CapturedStmtInfo && 590 "CapturedStmtInfo should be set when generating the captured function"); 591 const CapturedDecl *CD = S.getCapturedDecl(); 592 // Build the argument list. 593 bool NeedWrapperFunction = 594 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 595 FunctionArgList Args; 596 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 597 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 598 SmallString<256> Buffer; 599 llvm::raw_svector_ostream Out(Buffer); 600 Out << CapturedStmtInfo->getHelperName(); 601 if (NeedWrapperFunction) 602 Out << "_debug__"; 603 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 604 Out.str(), Loc); 605 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 606 VLASizes, CXXThisValue, FO); 607 CodeGenFunction::OMPPrivateScope LocalScope(*this); 608 for (const auto &LocalAddrPair : LocalAddrs) { 609 if (LocalAddrPair.second.first) { 610 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 611 return LocalAddrPair.second.second; 612 }); 613 } 614 } 615 (void)LocalScope.Privatize(); 616 for (const auto &VLASizePair : VLASizes) 617 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 618 PGO.assignRegionCounters(GlobalDecl(CD), F); 619 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 620 (void)LocalScope.ForceCleanup(); 621 FinishFunction(CD->getBodyRBrace()); 622 if (!NeedWrapperFunction) 623 return F; 624 625 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 626 /*RegisterCastedArgsOnly=*/true, 627 CapturedStmtInfo->getHelperName(), Loc); 628 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 629 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 630 Args.clear(); 631 LocalAddrs.clear(); 632 VLASizes.clear(); 633 llvm::Function *WrapperF = 634 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 635 WrapperCGF.CXXThisValue, WrapperFO); 636 llvm::SmallVector<llvm::Value *, 4> CallArgs; 637 for (const auto *Arg : Args) { 638 llvm::Value *CallArg; 639 auto I = LocalAddrs.find(Arg); 640 if (I != LocalAddrs.end()) { 641 LValue LV = WrapperCGF.MakeAddrLValue( 642 I->second.second, 643 I->second.first ? I->second.first->getType() : Arg->getType(), 644 AlignmentSource::Decl); 645 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 646 } else { 647 auto EI = VLASizes.find(Arg); 648 if (EI != VLASizes.end()) { 649 CallArg = EI->second.second; 650 } else { 651 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 652 Arg->getType(), 653 AlignmentSource::Decl); 654 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 655 } 656 } 657 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 658 } 659 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 660 WrapperCGF.FinishFunction(); 661 return WrapperF; 662 } 663 664 //===----------------------------------------------------------------------===// 665 // OpenMP Directive Emission 666 //===----------------------------------------------------------------------===// 667 void CodeGenFunction::EmitOMPAggregateAssign( 668 Address DestAddr, Address SrcAddr, QualType OriginalType, 669 const llvm::function_ref<void(Address, Address)> CopyGen) { 670 // Perform element-by-element initialization. 671 QualType ElementTy; 672 673 // Drill down to the base element type on both arrays. 674 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 675 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 676 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 677 678 llvm::Value *SrcBegin = SrcAddr.getPointer(); 679 llvm::Value *DestBegin = DestAddr.getPointer(); 680 // Cast from pointer to array type to pointer to single element. 681 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 682 // The basic structure here is a while-do loop. 683 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 684 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 685 llvm::Value *IsEmpty = 686 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 687 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 688 689 // Enter the loop body, making that address the current address. 690 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 691 EmitBlock(BodyBB); 692 693 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 694 695 llvm::PHINode *SrcElementPHI = 696 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 697 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 698 Address SrcElementCurrent = 699 Address(SrcElementPHI, 700 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 701 702 llvm::PHINode *DestElementPHI = 703 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 704 DestElementPHI->addIncoming(DestBegin, EntryBB); 705 Address DestElementCurrent = 706 Address(DestElementPHI, 707 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 708 709 // Emit copy. 710 CopyGen(DestElementCurrent, SrcElementCurrent); 711 712 // Shift the address forward by one element. 713 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 714 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 715 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 716 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 717 // Check whether we've reached the end. 718 llvm::Value *Done = 719 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 720 Builder.CreateCondBr(Done, DoneBB, BodyBB); 721 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 722 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 723 724 // Done. 725 EmitBlock(DoneBB, /*IsFinished=*/true); 726 } 727 728 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 729 Address SrcAddr, const VarDecl *DestVD, 730 const VarDecl *SrcVD, const Expr *Copy) { 731 if (OriginalType->isArrayType()) { 732 const auto *BO = dyn_cast<BinaryOperator>(Copy); 733 if (BO && BO->getOpcode() == BO_Assign) { 734 // Perform simple memcpy for simple copying. 735 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 736 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 737 EmitAggregateAssign(Dest, Src, OriginalType); 738 } else { 739 // For arrays with complex element types perform element by element 740 // copying. 741 EmitOMPAggregateAssign( 742 DestAddr, SrcAddr, OriginalType, 743 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 744 // Working with the single array element, so have to remap 745 // destination and source variables to corresponding array 746 // elements. 747 CodeGenFunction::OMPPrivateScope Remap(*this); 748 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 749 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 750 (void)Remap.Privatize(); 751 EmitIgnoredExpr(Copy); 752 }); 753 } 754 } else { 755 // Remap pseudo source variable to private copy. 756 CodeGenFunction::OMPPrivateScope Remap(*this); 757 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 758 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 759 (void)Remap.Privatize(); 760 // Emit copying of the whole variable. 761 EmitIgnoredExpr(Copy); 762 } 763 } 764 765 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 766 OMPPrivateScope &PrivateScope) { 767 if (!HaveInsertPoint()) 768 return false; 769 bool DeviceConstTarget = 770 getLangOpts().OpenMPIsDevice && 771 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 772 bool FirstprivateIsLastprivate = false; 773 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 774 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 775 for (const auto *D : C->varlists()) 776 Lastprivates.try_emplace( 777 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 778 C->getKind()); 779 } 780 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 781 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 782 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 783 // Force emission of the firstprivate copy if the directive does not emit 784 // outlined function, like omp for, omp simd, omp distribute etc. 785 bool MustEmitFirstprivateCopy = 786 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 787 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 788 const auto *IRef = C->varlist_begin(); 789 const auto *InitsRef = C->inits().begin(); 790 for (const Expr *IInit : C->private_copies()) { 791 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 792 bool ThisFirstprivateIsLastprivate = 793 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 794 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 795 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 796 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 797 !FD->getType()->isReferenceType() && 798 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 799 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 800 ++IRef; 801 ++InitsRef; 802 continue; 803 } 804 // Do not emit copy for firstprivate constant variables in target regions, 805 // captured by reference. 806 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 807 FD && FD->getType()->isReferenceType() && 808 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 809 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 810 OrigVD); 811 ++IRef; 812 ++InitsRef; 813 continue; 814 } 815 FirstprivateIsLastprivate = 816 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 817 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 818 const auto *VDInit = 819 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 820 bool IsRegistered; 821 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 822 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 823 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 824 LValue OriginalLVal; 825 if (!FD) { 826 // Check if the firstprivate variable is just a constant value. 827 ConstantEmission CE = tryEmitAsConstant(&DRE); 828 if (CE && !CE.isReference()) { 829 // Constant value, no need to create a copy. 830 ++IRef; 831 ++InitsRef; 832 continue; 833 } 834 if (CE && CE.isReference()) { 835 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 836 } else { 837 assert(!CE && "Expected non-constant firstprivate."); 838 OriginalLVal = EmitLValue(&DRE); 839 } 840 } else { 841 OriginalLVal = EmitLValue(&DRE); 842 } 843 QualType Type = VD->getType(); 844 if (Type->isArrayType()) { 845 // Emit VarDecl with copy init for arrays. 846 // Get the address of the original variable captured in current 847 // captured region. 848 IsRegistered = PrivateScope.addPrivate( 849 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 850 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 851 const Expr *Init = VD->getInit(); 852 if (!isa<CXXConstructExpr>(Init) || 853 isTrivialInitializer(Init)) { 854 // Perform simple memcpy. 855 LValue Dest = 856 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 857 EmitAggregateAssign(Dest, OriginalLVal, Type); 858 } else { 859 EmitOMPAggregateAssign( 860 Emission.getAllocatedAddress(), 861 OriginalLVal.getAddress(*this), Type, 862 [this, VDInit, Init](Address DestElement, 863 Address SrcElement) { 864 // Clean up any temporaries needed by the 865 // initialization. 866 RunCleanupsScope InitScope(*this); 867 // Emit initialization for single element. 868 setAddrOfLocalVar(VDInit, SrcElement); 869 EmitAnyExprToMem(Init, DestElement, 870 Init->getType().getQualifiers(), 871 /*IsInitializer*/ false); 872 LocalDeclMap.erase(VDInit); 873 }); 874 } 875 EmitAutoVarCleanups(Emission); 876 return Emission.getAllocatedAddress(); 877 }); 878 } else { 879 Address OriginalAddr = OriginalLVal.getAddress(*this); 880 IsRegistered = 881 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 882 ThisFirstprivateIsLastprivate, 883 OrigVD, &Lastprivates, IRef]() { 884 // Emit private VarDecl with copy init. 885 // Remap temp VDInit variable to the address of the original 886 // variable (for proper handling of captured global variables). 887 setAddrOfLocalVar(VDInit, OriginalAddr); 888 EmitDecl(*VD); 889 LocalDeclMap.erase(VDInit); 890 if (ThisFirstprivateIsLastprivate && 891 Lastprivates[OrigVD->getCanonicalDecl()] == 892 OMPC_LASTPRIVATE_conditional) { 893 // Create/init special variable for lastprivate conditionals. 894 Address VDAddr = 895 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 896 *this, OrigVD); 897 llvm::Value *V = EmitLoadOfScalar( 898 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 899 AlignmentSource::Decl), 900 (*IRef)->getExprLoc()); 901 EmitStoreOfScalar(V, 902 MakeAddrLValue(VDAddr, (*IRef)->getType(), 903 AlignmentSource::Decl)); 904 LocalDeclMap.erase(VD); 905 setAddrOfLocalVar(VD, VDAddr); 906 return VDAddr; 907 } 908 return GetAddrOfLocalVar(VD); 909 }); 910 } 911 assert(IsRegistered && 912 "firstprivate var already registered as private"); 913 // Silence the warning about unused variable. 914 (void)IsRegistered; 915 } 916 ++IRef; 917 ++InitsRef; 918 } 919 } 920 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 921 } 922 923 void CodeGenFunction::EmitOMPPrivateClause( 924 const OMPExecutableDirective &D, 925 CodeGenFunction::OMPPrivateScope &PrivateScope) { 926 if (!HaveInsertPoint()) 927 return; 928 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 929 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 930 auto IRef = C->varlist_begin(); 931 for (const Expr *IInit : C->private_copies()) { 932 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 933 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 934 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 935 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 936 // Emit private VarDecl with copy init. 937 EmitDecl(*VD); 938 return GetAddrOfLocalVar(VD); 939 }); 940 assert(IsRegistered && "private var already registered as private"); 941 // Silence the warning about unused variable. 942 (void)IsRegistered; 943 } 944 ++IRef; 945 } 946 } 947 } 948 949 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 950 if (!HaveInsertPoint()) 951 return false; 952 // threadprivate_var1 = master_threadprivate_var1; 953 // operator=(threadprivate_var2, master_threadprivate_var2); 954 // ... 955 // __kmpc_barrier(&loc, global_tid); 956 llvm::DenseSet<const VarDecl *> CopiedVars; 957 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 958 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 959 auto IRef = C->varlist_begin(); 960 auto ISrcRef = C->source_exprs().begin(); 961 auto IDestRef = C->destination_exprs().begin(); 962 for (const Expr *AssignOp : C->assignment_ops()) { 963 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 964 QualType Type = VD->getType(); 965 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 966 // Get the address of the master variable. If we are emitting code with 967 // TLS support, the address is passed from the master as field in the 968 // captured declaration. 969 Address MasterAddr = Address::invalid(); 970 if (getLangOpts().OpenMPUseTLS && 971 getContext().getTargetInfo().isTLSSupported()) { 972 assert(CapturedStmtInfo->lookup(VD) && 973 "Copyin threadprivates should have been captured!"); 974 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 975 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 976 MasterAddr = EmitLValue(&DRE).getAddress(*this); 977 LocalDeclMap.erase(VD); 978 } else { 979 MasterAddr = 980 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 981 : CGM.GetAddrOfGlobal(VD), 982 getContext().getDeclAlign(VD)); 983 } 984 // Get the address of the threadprivate variable. 985 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 986 if (CopiedVars.size() == 1) { 987 // At first check if current thread is a master thread. If it is, no 988 // need to copy data. 989 CopyBegin = createBasicBlock("copyin.not.master"); 990 CopyEnd = createBasicBlock("copyin.not.master.end"); 991 Builder.CreateCondBr( 992 Builder.CreateICmpNE( 993 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 994 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 995 CGM.IntPtrTy)), 996 CopyBegin, CopyEnd); 997 EmitBlock(CopyBegin); 998 } 999 const auto *SrcVD = 1000 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1001 const auto *DestVD = 1002 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1003 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1004 } 1005 ++IRef; 1006 ++ISrcRef; 1007 ++IDestRef; 1008 } 1009 } 1010 if (CopyEnd) { 1011 // Exit out of copying procedure for non-master thread. 1012 EmitBlock(CopyEnd, /*IsFinished=*/true); 1013 return true; 1014 } 1015 return false; 1016 } 1017 1018 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1019 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1020 if (!HaveInsertPoint()) 1021 return false; 1022 bool HasAtLeastOneLastprivate = false; 1023 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1024 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1025 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1026 for (const Expr *C : LoopDirective->counters()) { 1027 SIMDLCVs.insert( 1028 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1029 } 1030 } 1031 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1032 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1033 HasAtLeastOneLastprivate = true; 1034 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1035 !getLangOpts().OpenMPSimd) 1036 break; 1037 const auto *IRef = C->varlist_begin(); 1038 const auto *IDestRef = C->destination_exprs().begin(); 1039 for (const Expr *IInit : C->private_copies()) { 1040 // Keep the address of the original variable for future update at the end 1041 // of the loop. 1042 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1043 // Taskloops do not require additional initialization, it is done in 1044 // runtime support library. 1045 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1046 const auto *DestVD = 1047 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1048 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1049 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1050 /*RefersToEnclosingVariableOrCapture=*/ 1051 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1052 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1053 return EmitLValue(&DRE).getAddress(*this); 1054 }); 1055 // Check if the variable is also a firstprivate: in this case IInit is 1056 // not generated. Initialization of this variable will happen in codegen 1057 // for 'firstprivate' clause. 1058 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1059 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1060 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1061 OrigVD]() { 1062 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1063 Address VDAddr = 1064 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1065 OrigVD); 1066 setAddrOfLocalVar(VD, VDAddr); 1067 return VDAddr; 1068 } 1069 // Emit private VarDecl with copy init. 1070 EmitDecl(*VD); 1071 return GetAddrOfLocalVar(VD); 1072 }); 1073 assert(IsRegistered && 1074 "lastprivate var already registered as private"); 1075 (void)IsRegistered; 1076 } 1077 } 1078 ++IRef; 1079 ++IDestRef; 1080 } 1081 } 1082 return HasAtLeastOneLastprivate; 1083 } 1084 1085 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1086 const OMPExecutableDirective &D, bool NoFinals, 1087 llvm::Value *IsLastIterCond) { 1088 if (!HaveInsertPoint()) 1089 return; 1090 // Emit following code: 1091 // if (<IsLastIterCond>) { 1092 // orig_var1 = private_orig_var1; 1093 // ... 1094 // orig_varn = private_orig_varn; 1095 // } 1096 llvm::BasicBlock *ThenBB = nullptr; 1097 llvm::BasicBlock *DoneBB = nullptr; 1098 if (IsLastIterCond) { 1099 // Emit implicit barrier if at least one lastprivate conditional is found 1100 // and this is not a simd mode. 1101 if (!getLangOpts().OpenMPSimd && 1102 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1103 [](const OMPLastprivateClause *C) { 1104 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1105 })) { 1106 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1107 OMPD_unknown, 1108 /*EmitChecks=*/false, 1109 /*ForceSimpleCall=*/true); 1110 } 1111 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1112 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1113 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1114 EmitBlock(ThenBB); 1115 } 1116 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1117 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1118 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1119 auto IC = LoopDirective->counters().begin(); 1120 for (const Expr *F : LoopDirective->finals()) { 1121 const auto *D = 1122 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1123 if (NoFinals) 1124 AlreadyEmittedVars.insert(D); 1125 else 1126 LoopCountersAndUpdates[D] = F; 1127 ++IC; 1128 } 1129 } 1130 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1131 auto IRef = C->varlist_begin(); 1132 auto ISrcRef = C->source_exprs().begin(); 1133 auto IDestRef = C->destination_exprs().begin(); 1134 for (const Expr *AssignOp : C->assignment_ops()) { 1135 const auto *PrivateVD = 1136 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1137 QualType Type = PrivateVD->getType(); 1138 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1139 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1140 // If lastprivate variable is a loop control variable for loop-based 1141 // directive, update its value before copyin back to original 1142 // variable. 1143 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1144 EmitIgnoredExpr(FinalExpr); 1145 const auto *SrcVD = 1146 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1147 const auto *DestVD = 1148 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1149 // Get the address of the private variable. 1150 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1151 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1152 PrivateAddr = 1153 Address(Builder.CreateLoad(PrivateAddr), 1154 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1155 // Store the last value to the private copy in the last iteration. 1156 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1157 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1158 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1159 (*IRef)->getExprLoc()); 1160 // Get the address of the original variable. 1161 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1162 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1163 } 1164 ++IRef; 1165 ++ISrcRef; 1166 ++IDestRef; 1167 } 1168 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1169 EmitIgnoredExpr(PostUpdate); 1170 } 1171 if (IsLastIterCond) 1172 EmitBlock(DoneBB, /*IsFinished=*/true); 1173 } 1174 1175 void CodeGenFunction::EmitOMPReductionClauseInit( 1176 const OMPExecutableDirective &D, 1177 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1178 if (!HaveInsertPoint()) 1179 return; 1180 SmallVector<const Expr *, 4> Shareds; 1181 SmallVector<const Expr *, 4> Privates; 1182 SmallVector<const Expr *, 4> ReductionOps; 1183 SmallVector<const Expr *, 4> LHSs; 1184 SmallVector<const Expr *, 4> RHSs; 1185 OMPTaskDataTy Data; 1186 SmallVector<const Expr *, 4> TaskLHSs; 1187 SmallVector<const Expr *, 4> TaskRHSs; 1188 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1189 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1190 continue; 1191 Shareds.append(C->varlist_begin(), C->varlist_end()); 1192 Privates.append(C->privates().begin(), C->privates().end()); 1193 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1194 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1195 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1196 if (C->getModifier() == OMPC_REDUCTION_task) { 1197 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1198 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1199 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1200 Data.ReductionOps.append(C->reduction_ops().begin(), 1201 C->reduction_ops().end()); 1202 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1203 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1204 } 1205 } 1206 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1207 unsigned Count = 0; 1208 auto *ILHS = LHSs.begin(); 1209 auto *IRHS = RHSs.begin(); 1210 auto *IPriv = Privates.begin(); 1211 for (const Expr *IRef : Shareds) { 1212 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1213 // Emit private VarDecl with reduction init. 1214 RedCG.emitSharedOrigLValue(*this, Count); 1215 RedCG.emitAggregateType(*this, Count); 1216 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1217 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1218 RedCG.getSharedLValue(Count), 1219 [&Emission](CodeGenFunction &CGF) { 1220 CGF.EmitAutoVarInit(Emission); 1221 return true; 1222 }); 1223 EmitAutoVarCleanups(Emission); 1224 Address BaseAddr = RedCG.adjustPrivateAddress( 1225 *this, Count, Emission.getAllocatedAddress()); 1226 bool IsRegistered = PrivateScope.addPrivate( 1227 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1228 assert(IsRegistered && "private var already registered as private"); 1229 // Silence the warning about unused variable. 1230 (void)IsRegistered; 1231 1232 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1233 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1234 QualType Type = PrivateVD->getType(); 1235 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1236 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1237 // Store the address of the original variable associated with the LHS 1238 // implicit variable. 1239 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1240 return RedCG.getSharedLValue(Count).getAddress(*this); 1241 }); 1242 PrivateScope.addPrivate( 1243 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1244 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1245 isa<ArraySubscriptExpr>(IRef)) { 1246 // Store the address of the original variable associated with the LHS 1247 // implicit variable. 1248 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1249 return RedCG.getSharedLValue(Count).getAddress(*this); 1250 }); 1251 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1252 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1253 ConvertTypeForMem(RHSVD->getType()), 1254 "rhs.begin"); 1255 }); 1256 } else { 1257 QualType Type = PrivateVD->getType(); 1258 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1259 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1260 // Store the address of the original variable associated with the LHS 1261 // implicit variable. 1262 if (IsArray) { 1263 OriginalAddr = Builder.CreateElementBitCast( 1264 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1265 } 1266 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1267 PrivateScope.addPrivate( 1268 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1269 return IsArray 1270 ? Builder.CreateElementBitCast( 1271 GetAddrOfLocalVar(PrivateVD), 1272 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1273 : GetAddrOfLocalVar(PrivateVD); 1274 }); 1275 } 1276 ++ILHS; 1277 ++IRHS; 1278 ++IPriv; 1279 ++Count; 1280 } 1281 if (!Data.ReductionVars.empty()) { 1282 Data.IsReductionWithTaskMod = true; 1283 Data.IsWorksharingReduction = 1284 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1285 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1286 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1287 const Expr *TaskRedRef = nullptr; 1288 switch (D.getDirectiveKind()) { 1289 case OMPD_parallel: 1290 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1291 break; 1292 case OMPD_for: 1293 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1294 break; 1295 case OMPD_sections: 1296 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1297 break; 1298 case OMPD_parallel_for: 1299 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1300 break; 1301 case OMPD_parallel_master: 1302 TaskRedRef = 1303 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1304 break; 1305 case OMPD_parallel_sections: 1306 TaskRedRef = 1307 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1308 break; 1309 case OMPD_target_parallel: 1310 TaskRedRef = 1311 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1312 break; 1313 case OMPD_target_parallel_for: 1314 TaskRedRef = 1315 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1316 break; 1317 case OMPD_distribute_parallel_for: 1318 TaskRedRef = 1319 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_teams_distribute_parallel_for: 1322 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1323 .getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_target_teams_distribute_parallel_for: 1326 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1327 .getTaskReductionRefExpr(); 1328 break; 1329 case OMPD_simd: 1330 case OMPD_for_simd: 1331 case OMPD_section: 1332 case OMPD_single: 1333 case OMPD_master: 1334 case OMPD_critical: 1335 case OMPD_parallel_for_simd: 1336 case OMPD_task: 1337 case OMPD_taskyield: 1338 case OMPD_barrier: 1339 case OMPD_taskwait: 1340 case OMPD_taskgroup: 1341 case OMPD_flush: 1342 case OMPD_depobj: 1343 case OMPD_scan: 1344 case OMPD_ordered: 1345 case OMPD_atomic: 1346 case OMPD_teams: 1347 case OMPD_target: 1348 case OMPD_cancellation_point: 1349 case OMPD_cancel: 1350 case OMPD_target_data: 1351 case OMPD_target_enter_data: 1352 case OMPD_target_exit_data: 1353 case OMPD_taskloop: 1354 case OMPD_taskloop_simd: 1355 case OMPD_master_taskloop: 1356 case OMPD_master_taskloop_simd: 1357 case OMPD_parallel_master_taskloop: 1358 case OMPD_parallel_master_taskloop_simd: 1359 case OMPD_distribute: 1360 case OMPD_target_update: 1361 case OMPD_distribute_parallel_for_simd: 1362 case OMPD_distribute_simd: 1363 case OMPD_target_parallel_for_simd: 1364 case OMPD_target_simd: 1365 case OMPD_teams_distribute: 1366 case OMPD_teams_distribute_simd: 1367 case OMPD_teams_distribute_parallel_for_simd: 1368 case OMPD_target_teams: 1369 case OMPD_target_teams_distribute: 1370 case OMPD_target_teams_distribute_parallel_for_simd: 1371 case OMPD_target_teams_distribute_simd: 1372 case OMPD_declare_target: 1373 case OMPD_end_declare_target: 1374 case OMPD_threadprivate: 1375 case OMPD_allocate: 1376 case OMPD_declare_reduction: 1377 case OMPD_declare_mapper: 1378 case OMPD_declare_simd: 1379 case OMPD_requires: 1380 case OMPD_declare_variant: 1381 case OMPD_begin_declare_variant: 1382 case OMPD_end_declare_variant: 1383 case OMPD_unknown: 1384 default: 1385 llvm_unreachable("Enexpected directive with task reductions."); 1386 } 1387 1388 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1389 EmitVarDecl(*VD); 1390 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1391 /*Volatile=*/false, TaskRedRef->getType()); 1392 } 1393 } 1394 1395 void CodeGenFunction::EmitOMPReductionClauseFinal( 1396 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1397 if (!HaveInsertPoint()) 1398 return; 1399 llvm::SmallVector<const Expr *, 8> Privates; 1400 llvm::SmallVector<const Expr *, 8> LHSExprs; 1401 llvm::SmallVector<const Expr *, 8> RHSExprs; 1402 llvm::SmallVector<const Expr *, 8> ReductionOps; 1403 bool HasAtLeastOneReduction = false; 1404 bool IsReductionWithTaskMod = false; 1405 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1406 // Do not emit for inscan reductions. 1407 if (C->getModifier() == OMPC_REDUCTION_inscan) 1408 continue; 1409 HasAtLeastOneReduction = true; 1410 Privates.append(C->privates().begin(), C->privates().end()); 1411 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1412 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1413 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1414 IsReductionWithTaskMod = 1415 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1416 } 1417 if (HasAtLeastOneReduction) { 1418 if (IsReductionWithTaskMod) { 1419 CGM.getOpenMPRuntime().emitTaskReductionFini( 1420 *this, D.getBeginLoc(), 1421 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1422 } 1423 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1424 isOpenMPParallelDirective(D.getDirectiveKind()) || 1425 ReductionKind == OMPD_simd; 1426 bool SimpleReduction = ReductionKind == OMPD_simd; 1427 // Emit nowait reduction if nowait clause is present or directive is a 1428 // parallel directive (it always has implicit barrier). 1429 CGM.getOpenMPRuntime().emitReduction( 1430 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1431 {WithNowait, SimpleReduction, ReductionKind}); 1432 } 1433 } 1434 1435 static void emitPostUpdateForReductionClause( 1436 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1437 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1438 if (!CGF.HaveInsertPoint()) 1439 return; 1440 llvm::BasicBlock *DoneBB = nullptr; 1441 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1442 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1443 if (!DoneBB) { 1444 if (llvm::Value *Cond = CondGen(CGF)) { 1445 // If the first post-update expression is found, emit conditional 1446 // block if it was requested. 1447 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1448 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1449 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1450 CGF.EmitBlock(ThenBB); 1451 } 1452 } 1453 CGF.EmitIgnoredExpr(PostUpdate); 1454 } 1455 } 1456 if (DoneBB) 1457 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1458 } 1459 1460 namespace { 1461 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1462 /// parallel function. This is necessary for combined constructs such as 1463 /// 'distribute parallel for' 1464 typedef llvm::function_ref<void(CodeGenFunction &, 1465 const OMPExecutableDirective &, 1466 llvm::SmallVectorImpl<llvm::Value *> &)> 1467 CodeGenBoundParametersTy; 1468 } // anonymous namespace 1469 1470 static void 1471 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1472 const OMPExecutableDirective &S) { 1473 if (CGF.getLangOpts().OpenMP < 50) 1474 return; 1475 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1476 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1477 for (const Expr *Ref : C->varlists()) { 1478 if (!Ref->getType()->isScalarType()) 1479 continue; 1480 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1481 if (!DRE) 1482 continue; 1483 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1484 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1485 } 1486 } 1487 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1488 for (const Expr *Ref : C->varlists()) { 1489 if (!Ref->getType()->isScalarType()) 1490 continue; 1491 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1492 if (!DRE) 1493 continue; 1494 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1495 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1496 } 1497 } 1498 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1499 for (const Expr *Ref : C->varlists()) { 1500 if (!Ref->getType()->isScalarType()) 1501 continue; 1502 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1503 if (!DRE) 1504 continue; 1505 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1506 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1507 } 1508 } 1509 // Privates should ne analyzed since they are not captured at all. 1510 // Task reductions may be skipped - tasks are ignored. 1511 // Firstprivates do not return value but may be passed by reference - no need 1512 // to check for updated lastprivate conditional. 1513 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1514 for (const Expr *Ref : C->varlists()) { 1515 if (!Ref->getType()->isScalarType()) 1516 continue; 1517 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1518 if (!DRE) 1519 continue; 1520 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1521 } 1522 } 1523 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1524 CGF, S, PrivateDecls); 1525 } 1526 1527 static void emitCommonOMPParallelDirective( 1528 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1529 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1530 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1531 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1532 llvm::Function *OutlinedFn = 1533 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1534 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1535 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1536 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1537 llvm::Value *NumThreads = 1538 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1539 /*IgnoreResultAssign=*/true); 1540 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1541 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1542 } 1543 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1544 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1545 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1546 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1547 } 1548 const Expr *IfCond = nullptr; 1549 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1550 if (C->getNameModifier() == OMPD_unknown || 1551 C->getNameModifier() == OMPD_parallel) { 1552 IfCond = C->getCondition(); 1553 break; 1554 } 1555 } 1556 1557 OMPParallelScope Scope(CGF, S); 1558 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1559 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1560 // lower and upper bounds with the pragma 'for' chunking mechanism. 1561 // The following lambda takes care of appending the lower and upper bound 1562 // parameters when necessary 1563 CodeGenBoundParameters(CGF, S, CapturedVars); 1564 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1565 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1566 CapturedVars, IfCond); 1567 } 1568 1569 static bool isAllocatableDecl(const VarDecl *VD) { 1570 const VarDecl *CVD = VD->getCanonicalDecl(); 1571 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1572 return false; 1573 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1574 // Use the default allocation. 1575 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1576 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1577 !AA->getAllocator()); 1578 } 1579 1580 static void emitEmptyBoundParameters(CodeGenFunction &, 1581 const OMPExecutableDirective &, 1582 llvm::SmallVectorImpl<llvm::Value *> &) {} 1583 1584 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1585 CodeGenFunction &CGF, const VarDecl *VD) { 1586 CodeGenModule &CGM = CGF.CGM; 1587 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1588 1589 if (!VD) 1590 return Address::invalid(); 1591 const VarDecl *CVD = VD->getCanonicalDecl(); 1592 if (!isAllocatableDecl(CVD)) 1593 return Address::invalid(); 1594 llvm::Value *Size; 1595 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1596 if (CVD->getType()->isVariablyModifiedType()) { 1597 Size = CGF.getTypeSize(CVD->getType()); 1598 // Align the size: ((size + align - 1) / align) * align 1599 Size = CGF.Builder.CreateNUWAdd( 1600 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1601 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1602 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1603 } else { 1604 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1605 Size = CGM.getSize(Sz.alignTo(Align)); 1606 } 1607 1608 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1609 assert(AA->getAllocator() && 1610 "Expected allocator expression for non-default allocator."); 1611 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1612 // According to the standard, the original allocator type is a enum (integer). 1613 // Convert to pointer type, if required. 1614 if (Allocator->getType()->isIntegerTy()) 1615 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1616 else if (Allocator->getType()->isPointerTy()) 1617 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1618 CGM.VoidPtrTy); 1619 1620 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1621 CGF.Builder, Size, Allocator, 1622 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1623 llvm::CallInst *FreeCI = 1624 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1625 1626 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1627 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1628 Addr, 1629 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1630 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1631 return Address(Addr, Align); 1632 } 1633 1634 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1635 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1636 SourceLocation Loc) { 1637 CodeGenModule &CGM = CGF.CGM; 1638 if (CGM.getLangOpts().OpenMPUseTLS && 1639 CGM.getContext().getTargetInfo().isTLSSupported()) 1640 return VDAddr; 1641 1642 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1643 1644 llvm::Type *VarTy = VDAddr.getElementType(); 1645 llvm::Value *Data = 1646 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1647 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1648 std::string Suffix = getNameWithSeparators({"cache", ""}); 1649 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1650 1651 llvm::CallInst *ThreadPrivateCacheCall = 1652 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1653 1654 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1655 } 1656 1657 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1658 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1659 SmallString<128> Buffer; 1660 llvm::raw_svector_ostream OS(Buffer); 1661 StringRef Sep = FirstSeparator; 1662 for (StringRef Part : Parts) { 1663 OS << Sep << Part; 1664 Sep = Separator; 1665 } 1666 return OS.str().str(); 1667 } 1668 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1669 if (CGM.getLangOpts().OpenMPIRBuilder) { 1670 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1671 // Check if we have any if clause associated with the directive. 1672 llvm::Value *IfCond = nullptr; 1673 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1674 IfCond = EmitScalarExpr(C->getCondition(), 1675 /*IgnoreResultAssign=*/true); 1676 1677 llvm::Value *NumThreads = nullptr; 1678 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1679 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1680 /*IgnoreResultAssign=*/true); 1681 1682 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1683 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1684 ProcBind = ProcBindClause->getProcBindKind(); 1685 1686 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1687 1688 // The cleanup callback that finalizes all variabels at the given location, 1689 // thus calls destructors etc. 1690 auto FiniCB = [this](InsertPointTy IP) { 1691 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1692 }; 1693 1694 // Privatization callback that performs appropriate action for 1695 // shared/private/firstprivate/lastprivate/copyin/... variables. 1696 // 1697 // TODO: This defaults to shared right now. 1698 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1699 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1700 // The next line is appropriate only for variables (Val) with the 1701 // data-sharing attribute "shared". 1702 ReplVal = &Val; 1703 1704 return CodeGenIP; 1705 }; 1706 1707 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1708 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1709 1710 auto BodyGenCB = [ParallelRegionBodyStmt, 1711 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1712 llvm::BasicBlock &ContinuationBB) { 1713 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1714 ContinuationBB); 1715 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1716 CodeGenIP, ContinuationBB); 1717 }; 1718 1719 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1720 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1721 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1722 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1723 Builder.restoreIP( 1724 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1725 IfCond, NumThreads, ProcBind, S.hasCancel())); 1726 return; 1727 } 1728 1729 // Emit parallel region as a standalone region. 1730 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1731 Action.Enter(CGF); 1732 OMPPrivateScope PrivateScope(CGF); 1733 bool Copyins = CGF.EmitOMPCopyinClause(S); 1734 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1735 if (Copyins) { 1736 // Emit implicit barrier to synchronize threads and avoid data races on 1737 // propagation master's thread values of threadprivate variables to local 1738 // instances of that variables of all other implicit threads. 1739 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1740 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1741 /*ForceSimpleCall=*/true); 1742 } 1743 CGF.EmitOMPPrivateClause(S, PrivateScope); 1744 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1745 (void)PrivateScope.Privatize(); 1746 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1747 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1748 }; 1749 { 1750 auto LPCRegion = 1751 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1752 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1753 emitEmptyBoundParameters); 1754 emitPostUpdateForReductionClause(*this, S, 1755 [](CodeGenFunction &) { return nullptr; }); 1756 } 1757 // Check for outer lastprivate conditional update. 1758 checkForLastprivateConditionalUpdate(*this, S); 1759 } 1760 1761 namespace { 1762 /// RAII to handle scopes for loop transformation directives. 1763 class OMPTransformDirectiveScopeRAII { 1764 OMPLoopScope *Scope = nullptr; 1765 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1766 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1767 1768 public: 1769 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1770 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1771 Scope = new OMPLoopScope(CGF, *Dir); 1772 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1773 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1774 } 1775 } 1776 ~OMPTransformDirectiveScopeRAII() { 1777 if (!Scope) 1778 return; 1779 delete CapInfoRAII; 1780 delete CGSI; 1781 delete Scope; 1782 } 1783 }; 1784 } // namespace 1785 1786 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1787 int MaxLevel, int Level = 0) { 1788 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1789 const Stmt *SimplifiedS = S->IgnoreContainers(); 1790 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1791 PrettyStackTraceLoc CrashInfo( 1792 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1793 "LLVM IR generation of compound statement ('{}')"); 1794 1795 // Keep track of the current cleanup stack depth, including debug scopes. 1796 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1797 for (const Stmt *CurStmt : CS->body()) 1798 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1799 return; 1800 } 1801 if (SimplifiedS == NextLoop) { 1802 OMPTransformDirectiveScopeRAII PossiblyTransformDirectiveScope(CGF, 1803 SimplifiedS); 1804 if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS)) 1805 SimplifiedS = Dir->getTransformedStmt(); 1806 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1807 S = For->getBody(); 1808 } else { 1809 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1810 "Expected canonical for loop or range-based for loop."); 1811 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1812 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1813 S = CXXFor->getBody(); 1814 } 1815 if (Level + 1 < MaxLevel) { 1816 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1817 S, /*TryImperfectlyNestedLoops=*/true); 1818 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1819 return; 1820 } 1821 } 1822 CGF.EmitStmt(S); 1823 } 1824 1825 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1826 JumpDest LoopExit) { 1827 RunCleanupsScope BodyScope(*this); 1828 // Update counters values on current iteration. 1829 for (const Expr *UE : D.updates()) 1830 EmitIgnoredExpr(UE); 1831 // Update the linear variables. 1832 // In distribute directives only loop counters may be marked as linear, no 1833 // need to generate the code for them. 1834 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1835 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1836 for (const Expr *UE : C->updates()) 1837 EmitIgnoredExpr(UE); 1838 } 1839 } 1840 1841 // On a continue in the body, jump to the end. 1842 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1843 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1844 for (const Expr *E : D.finals_conditions()) { 1845 if (!E) 1846 continue; 1847 // Check that loop counter in non-rectangular nest fits into the iteration 1848 // space. 1849 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1850 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1851 getProfileCount(D.getBody())); 1852 EmitBlock(NextBB); 1853 } 1854 1855 OMPPrivateScope InscanScope(*this); 1856 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1857 bool IsInscanRegion = InscanScope.Privatize(); 1858 if (IsInscanRegion) { 1859 // Need to remember the block before and after scan directive 1860 // to dispatch them correctly depending on the clause used in 1861 // this directive, inclusive or exclusive. For inclusive scan the natural 1862 // order of the blocks is used, for exclusive clause the blocks must be 1863 // executed in reverse order. 1864 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1865 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1866 // No need to allocate inscan exit block, in simd mode it is selected in the 1867 // codegen for the scan directive. 1868 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1869 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1870 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1871 EmitBranch(OMPScanDispatch); 1872 EmitBlock(OMPBeforeScanBlock); 1873 } 1874 1875 // Emit loop variables for C++ range loops. 1876 const Stmt *Body = 1877 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1878 // Emit loop body. 1879 emitBody(*this, Body, 1880 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1881 Body, /*TryImperfectlyNestedLoops=*/true), 1882 D.getLoopsNumber()); 1883 1884 // Jump to the dispatcher at the end of the loop body. 1885 if (IsInscanRegion) 1886 EmitBranch(OMPScanExitBlock); 1887 1888 // The end (updates/cleanups). 1889 EmitBlock(Continue.getBlock()); 1890 BreakContinueStack.pop_back(); 1891 } 1892 1893 void CodeGenFunction::EmitOMPInnerLoop( 1894 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 1895 const Expr *IncExpr, 1896 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1897 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1898 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1899 1900 // Start the loop with a block that tests the condition. 1901 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1902 EmitBlock(CondBlock); 1903 const SourceRange R = S.getSourceRange(); 1904 1905 // If attributes are attached, push to the basic block with them. 1906 const auto &OMPED = cast<OMPExecutableDirective>(S); 1907 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 1908 const Stmt *SS = ICS->getCapturedStmt(); 1909 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 1910 if (AS) 1911 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 1912 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 1913 SourceLocToDebugLoc(R.getEnd())); 1914 else 1915 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1916 SourceLocToDebugLoc(R.getEnd())); 1917 1918 // If there are any cleanups between here and the loop-exit scope, 1919 // create a block to stage a loop exit along. 1920 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1921 if (RequiresCleanup) 1922 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1923 1924 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1925 1926 // Emit condition. 1927 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1928 if (ExitBlock != LoopExit.getBlock()) { 1929 EmitBlock(ExitBlock); 1930 EmitBranchThroughCleanup(LoopExit); 1931 } 1932 1933 EmitBlock(LoopBody); 1934 incrementProfileCounter(&S); 1935 1936 // Create a block for the increment. 1937 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1938 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1939 1940 BodyGen(*this); 1941 1942 // Emit "IV = IV + 1" and a back-edge to the condition block. 1943 EmitBlock(Continue.getBlock()); 1944 EmitIgnoredExpr(IncExpr); 1945 PostIncGen(*this); 1946 BreakContinueStack.pop_back(); 1947 EmitBranch(CondBlock); 1948 LoopStack.pop(); 1949 // Emit the fall-through block. 1950 EmitBlock(LoopExit.getBlock()); 1951 } 1952 1953 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1954 if (!HaveInsertPoint()) 1955 return false; 1956 // Emit inits for the linear variables. 1957 bool HasLinears = false; 1958 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1959 for (const Expr *Init : C->inits()) { 1960 HasLinears = true; 1961 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1962 if (const auto *Ref = 1963 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1964 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1965 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1966 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1967 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1968 VD->getInit()->getType(), VK_LValue, 1969 VD->getInit()->getExprLoc()); 1970 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1971 VD->getType()), 1972 /*capturedByInit=*/false); 1973 EmitAutoVarCleanups(Emission); 1974 } else { 1975 EmitVarDecl(*VD); 1976 } 1977 } 1978 // Emit the linear steps for the linear clauses. 1979 // If a step is not constant, it is pre-calculated before the loop. 1980 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1981 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1982 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1983 // Emit calculation of the linear step. 1984 EmitIgnoredExpr(CS); 1985 } 1986 } 1987 return HasLinears; 1988 } 1989 1990 void CodeGenFunction::EmitOMPLinearClauseFinal( 1991 const OMPLoopDirective &D, 1992 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1993 if (!HaveInsertPoint()) 1994 return; 1995 llvm::BasicBlock *DoneBB = nullptr; 1996 // Emit the final values of the linear variables. 1997 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1998 auto IC = C->varlist_begin(); 1999 for (const Expr *F : C->finals()) { 2000 if (!DoneBB) { 2001 if (llvm::Value *Cond = CondGen(*this)) { 2002 // If the first post-update expression is found, emit conditional 2003 // block if it was requested. 2004 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2005 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2006 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2007 EmitBlock(ThenBB); 2008 } 2009 } 2010 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2011 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2012 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2013 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2014 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2015 CodeGenFunction::OMPPrivateScope VarScope(*this); 2016 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2017 (void)VarScope.Privatize(); 2018 EmitIgnoredExpr(F); 2019 ++IC; 2020 } 2021 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2022 EmitIgnoredExpr(PostUpdate); 2023 } 2024 if (DoneBB) 2025 EmitBlock(DoneBB, /*IsFinished=*/true); 2026 } 2027 2028 static void emitAlignedClause(CodeGenFunction &CGF, 2029 const OMPExecutableDirective &D) { 2030 if (!CGF.HaveInsertPoint()) 2031 return; 2032 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2033 llvm::APInt ClauseAlignment(64, 0); 2034 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2035 auto *AlignmentCI = 2036 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2037 ClauseAlignment = AlignmentCI->getValue(); 2038 } 2039 for (const Expr *E : Clause->varlists()) { 2040 llvm::APInt Alignment(ClauseAlignment); 2041 if (Alignment == 0) { 2042 // OpenMP [2.8.1, Description] 2043 // If no optional parameter is specified, implementation-defined default 2044 // alignments for SIMD instructions on the target platforms are assumed. 2045 Alignment = 2046 CGF.getContext() 2047 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2048 E->getType()->getPointeeType())) 2049 .getQuantity(); 2050 } 2051 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2052 "alignment is not power of 2"); 2053 if (Alignment != 0) { 2054 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2055 CGF.emitAlignmentAssumption( 2056 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2057 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2058 } 2059 } 2060 } 2061 } 2062 2063 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2064 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2065 if (!HaveInsertPoint()) 2066 return; 2067 auto I = S.private_counters().begin(); 2068 for (const Expr *E : S.counters()) { 2069 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2070 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2071 // Emit var without initialization. 2072 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2073 EmitAutoVarCleanups(VarEmission); 2074 LocalDeclMap.erase(PrivateVD); 2075 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2076 return VarEmission.getAllocatedAddress(); 2077 }); 2078 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2079 VD->hasGlobalStorage()) { 2080 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2081 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2082 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2083 E->getType(), VK_LValue, E->getExprLoc()); 2084 return EmitLValue(&DRE).getAddress(*this); 2085 }); 2086 } else { 2087 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2088 return VarEmission.getAllocatedAddress(); 2089 }); 2090 } 2091 ++I; 2092 } 2093 // Privatize extra loop counters used in loops for ordered(n) clauses. 2094 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2095 if (!C->getNumForLoops()) 2096 continue; 2097 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2098 I < E; ++I) { 2099 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2100 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2101 // Override only those variables that can be captured to avoid re-emission 2102 // of the variables declared within the loops. 2103 if (DRE->refersToEnclosingVariableOrCapture()) { 2104 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2105 return CreateMemTemp(DRE->getType(), VD->getName()); 2106 }); 2107 } 2108 } 2109 } 2110 } 2111 2112 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2113 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2114 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2115 if (!CGF.HaveInsertPoint()) 2116 return; 2117 { 2118 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2119 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2120 (void)PreCondScope.Privatize(); 2121 // Get initial values of real counters. 2122 for (const Expr *I : S.inits()) { 2123 CGF.EmitIgnoredExpr(I); 2124 } 2125 } 2126 // Create temp loop control variables with their init values to support 2127 // non-rectangular loops. 2128 CodeGenFunction::OMPMapVars PreCondVars; 2129 for (const Expr * E: S.dependent_counters()) { 2130 if (!E) 2131 continue; 2132 assert(!E->getType().getNonReferenceType()->isRecordType() && 2133 "dependent counter must not be an iterator."); 2134 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2135 Address CounterAddr = 2136 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2137 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2138 } 2139 (void)PreCondVars.apply(CGF); 2140 for (const Expr *E : S.dependent_inits()) { 2141 if (!E) 2142 continue; 2143 CGF.EmitIgnoredExpr(E); 2144 } 2145 // Check that loop is executed at least one time. 2146 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2147 PreCondVars.restore(CGF); 2148 } 2149 2150 void CodeGenFunction::EmitOMPLinearClause( 2151 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2152 if (!HaveInsertPoint()) 2153 return; 2154 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2155 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2156 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2157 for (const Expr *C : LoopDirective->counters()) { 2158 SIMDLCVs.insert( 2159 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2160 } 2161 } 2162 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2163 auto CurPrivate = C->privates().begin(); 2164 for (const Expr *E : C->varlists()) { 2165 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2166 const auto *PrivateVD = 2167 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2168 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2169 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2170 // Emit private VarDecl with copy init. 2171 EmitVarDecl(*PrivateVD); 2172 return GetAddrOfLocalVar(PrivateVD); 2173 }); 2174 assert(IsRegistered && "linear var already registered as private"); 2175 // Silence the warning about unused variable. 2176 (void)IsRegistered; 2177 } else { 2178 EmitVarDecl(*PrivateVD); 2179 } 2180 ++CurPrivate; 2181 } 2182 } 2183 } 2184 2185 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2186 const OMPExecutableDirective &D, 2187 bool IsMonotonic) { 2188 if (!CGF.HaveInsertPoint()) 2189 return; 2190 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2191 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2192 /*ignoreResult=*/true); 2193 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2194 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2195 // In presence of finite 'safelen', it may be unsafe to mark all 2196 // the memory instructions parallel, because loop-carried 2197 // dependences of 'safelen' iterations are possible. 2198 if (!IsMonotonic) 2199 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2200 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2201 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2202 /*ignoreResult=*/true); 2203 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2204 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2205 // In presence of finite 'safelen', it may be unsafe to mark all 2206 // the memory instructions parallel, because loop-carried 2207 // dependences of 'safelen' iterations are possible. 2208 CGF.LoopStack.setParallel(/*Enable=*/false); 2209 } 2210 } 2211 2212 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 2213 bool IsMonotonic) { 2214 // Walk clauses and process safelen/lastprivate. 2215 LoopStack.setParallel(!IsMonotonic); 2216 LoopStack.setVectorizeEnable(); 2217 emitSimdlenSafelenClause(*this, D, IsMonotonic); 2218 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2219 if (C->getKind() == OMPC_ORDER_concurrent) 2220 LoopStack.setParallel(/*Enable=*/true); 2221 if ((D.getDirectiveKind() == OMPD_simd || 2222 (getLangOpts().OpenMPSimd && 2223 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2224 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2225 [](const OMPReductionClause *C) { 2226 return C->getModifier() == OMPC_REDUCTION_inscan; 2227 })) 2228 // Disable parallel access in case of prefix sum. 2229 LoopStack.setParallel(/*Enable=*/false); 2230 } 2231 2232 void CodeGenFunction::EmitOMPSimdFinal( 2233 const OMPLoopDirective &D, 2234 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2235 if (!HaveInsertPoint()) 2236 return; 2237 llvm::BasicBlock *DoneBB = nullptr; 2238 auto IC = D.counters().begin(); 2239 auto IPC = D.private_counters().begin(); 2240 for (const Expr *F : D.finals()) { 2241 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2242 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2243 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2244 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2245 OrigVD->hasGlobalStorage() || CED) { 2246 if (!DoneBB) { 2247 if (llvm::Value *Cond = CondGen(*this)) { 2248 // If the first post-update expression is found, emit conditional 2249 // block if it was requested. 2250 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2251 DoneBB = createBasicBlock(".omp.final.done"); 2252 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2253 EmitBlock(ThenBB); 2254 } 2255 } 2256 Address OrigAddr = Address::invalid(); 2257 if (CED) { 2258 OrigAddr = 2259 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2260 } else { 2261 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2262 /*RefersToEnclosingVariableOrCapture=*/false, 2263 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2264 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2265 } 2266 OMPPrivateScope VarScope(*this); 2267 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2268 (void)VarScope.Privatize(); 2269 EmitIgnoredExpr(F); 2270 } 2271 ++IC; 2272 ++IPC; 2273 } 2274 if (DoneBB) 2275 EmitBlock(DoneBB, /*IsFinished=*/true); 2276 } 2277 2278 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2279 const OMPLoopDirective &S, 2280 CodeGenFunction::JumpDest LoopExit) { 2281 CGF.EmitOMPLoopBody(S, LoopExit); 2282 CGF.EmitStopPoint(&S); 2283 } 2284 2285 /// Emit a helper variable and return corresponding lvalue. 2286 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2287 const DeclRefExpr *Helper) { 2288 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2289 CGF.EmitVarDecl(*VDecl); 2290 return CGF.EmitLValue(Helper); 2291 } 2292 2293 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2294 const RegionCodeGenTy &SimdInitGen, 2295 const RegionCodeGenTy &BodyCodeGen) { 2296 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2297 PrePostActionTy &) { 2298 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2299 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2300 SimdInitGen(CGF); 2301 2302 BodyCodeGen(CGF); 2303 }; 2304 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2305 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2306 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2307 2308 BodyCodeGen(CGF); 2309 }; 2310 const Expr *IfCond = nullptr; 2311 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2312 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2313 if (CGF.getLangOpts().OpenMP >= 50 && 2314 (C->getNameModifier() == OMPD_unknown || 2315 C->getNameModifier() == OMPD_simd)) { 2316 IfCond = C->getCondition(); 2317 break; 2318 } 2319 } 2320 } 2321 if (IfCond) { 2322 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2323 } else { 2324 RegionCodeGenTy ThenRCG(ThenGen); 2325 ThenRCG(CGF); 2326 } 2327 } 2328 2329 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2330 PrePostActionTy &Action) { 2331 Action.Enter(CGF); 2332 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2333 "Expected simd directive"); 2334 OMPLoopScope PreInitScope(CGF, S); 2335 // if (PreCond) { 2336 // for (IV in 0..LastIteration) BODY; 2337 // <Final counter/linear vars updates>; 2338 // } 2339 // 2340 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2341 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2342 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2343 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2344 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2345 } 2346 2347 // Emit: if (PreCond) - begin. 2348 // If the condition constant folds and can be elided, avoid emitting the 2349 // whole loop. 2350 bool CondConstant; 2351 llvm::BasicBlock *ContBlock = nullptr; 2352 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2353 if (!CondConstant) 2354 return; 2355 } else { 2356 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2357 ContBlock = CGF.createBasicBlock("simd.if.end"); 2358 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2359 CGF.getProfileCount(&S)); 2360 CGF.EmitBlock(ThenBlock); 2361 CGF.incrementProfileCounter(&S); 2362 } 2363 2364 // Emit the loop iteration variable. 2365 const Expr *IVExpr = S.getIterationVariable(); 2366 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2367 CGF.EmitVarDecl(*IVDecl); 2368 CGF.EmitIgnoredExpr(S.getInit()); 2369 2370 // Emit the iterations count variable. 2371 // If it is not a variable, Sema decided to calculate iterations count on 2372 // each iteration (e.g., it is foldable into a constant). 2373 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2374 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2375 // Emit calculation of the iterations count. 2376 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2377 } 2378 2379 emitAlignedClause(CGF, S); 2380 (void)CGF.EmitOMPLinearClauseInit(S); 2381 { 2382 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2383 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2384 CGF.EmitOMPLinearClause(S, LoopScope); 2385 CGF.EmitOMPPrivateClause(S, LoopScope); 2386 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2387 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2388 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2389 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2390 (void)LoopScope.Privatize(); 2391 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2392 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2393 2394 emitCommonSimdLoop( 2395 CGF, S, 2396 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2397 CGF.EmitOMPSimdInit(S); 2398 }, 2399 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2400 CGF.EmitOMPInnerLoop( 2401 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2402 [&S](CodeGenFunction &CGF) { 2403 emitOMPLoopBodyWithStopPoint(CGF, S, 2404 CodeGenFunction::JumpDest()); 2405 }, 2406 [](CodeGenFunction &) {}); 2407 }); 2408 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2409 // Emit final copy of the lastprivate variables at the end of loops. 2410 if (HasLastprivateClause) 2411 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2412 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2413 emitPostUpdateForReductionClause(CGF, S, 2414 [](CodeGenFunction &) { return nullptr; }); 2415 } 2416 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2417 // Emit: if (PreCond) - end. 2418 if (ContBlock) { 2419 CGF.EmitBranch(ContBlock); 2420 CGF.EmitBlock(ContBlock, true); 2421 } 2422 } 2423 2424 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2425 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2426 OMPFirstScanLoop = true; 2427 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2428 emitOMPSimdRegion(CGF, S, Action); 2429 }; 2430 { 2431 auto LPCRegion = 2432 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2433 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2434 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2435 } 2436 // Check for outer lastprivate conditional update. 2437 checkForLastprivateConditionalUpdate(*this, S); 2438 } 2439 2440 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2441 // Emit the de-sugared statement. 2442 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2443 EmitStmt(S.getTransformedStmt()); 2444 } 2445 2446 void CodeGenFunction::EmitOMPOuterLoop( 2447 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2448 CodeGenFunction::OMPPrivateScope &LoopScope, 2449 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2450 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2451 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2452 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2453 2454 const Expr *IVExpr = S.getIterationVariable(); 2455 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2456 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2457 2458 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2459 2460 // Start the loop with a block that tests the condition. 2461 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2462 EmitBlock(CondBlock); 2463 const SourceRange R = S.getSourceRange(); 2464 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2465 SourceLocToDebugLoc(R.getEnd())); 2466 2467 llvm::Value *BoolCondVal = nullptr; 2468 if (!DynamicOrOrdered) { 2469 // UB = min(UB, GlobalUB) or 2470 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2471 // 'distribute parallel for') 2472 EmitIgnoredExpr(LoopArgs.EUB); 2473 // IV = LB 2474 EmitIgnoredExpr(LoopArgs.Init); 2475 // IV < UB 2476 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2477 } else { 2478 BoolCondVal = 2479 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2480 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2481 } 2482 2483 // If there are any cleanups between here and the loop-exit scope, 2484 // create a block to stage a loop exit along. 2485 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2486 if (LoopScope.requiresCleanups()) 2487 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2488 2489 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2490 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2491 if (ExitBlock != LoopExit.getBlock()) { 2492 EmitBlock(ExitBlock); 2493 EmitBranchThroughCleanup(LoopExit); 2494 } 2495 EmitBlock(LoopBody); 2496 2497 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2498 // LB for loop condition and emitted it above). 2499 if (DynamicOrOrdered) 2500 EmitIgnoredExpr(LoopArgs.Init); 2501 2502 // Create a block for the increment. 2503 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2504 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2505 2506 emitCommonSimdLoop( 2507 *this, S, 2508 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2509 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2510 // with dynamic/guided scheduling and without ordered clause. 2511 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2512 CGF.LoopStack.setParallel(!IsMonotonic); 2513 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2514 if (C->getKind() == OMPC_ORDER_concurrent) 2515 CGF.LoopStack.setParallel(/*Enable=*/true); 2516 } else { 2517 CGF.EmitOMPSimdInit(S, IsMonotonic); 2518 } 2519 }, 2520 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2521 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2522 SourceLocation Loc = S.getBeginLoc(); 2523 // when 'distribute' is not combined with a 'for': 2524 // while (idx <= UB) { BODY; ++idx; } 2525 // when 'distribute' is combined with a 'for' 2526 // (e.g. 'distribute parallel for') 2527 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2528 CGF.EmitOMPInnerLoop( 2529 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2530 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2531 CodeGenLoop(CGF, S, LoopExit); 2532 }, 2533 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2534 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2535 }); 2536 }); 2537 2538 EmitBlock(Continue.getBlock()); 2539 BreakContinueStack.pop_back(); 2540 if (!DynamicOrOrdered) { 2541 // Emit "LB = LB + Stride", "UB = UB + Stride". 2542 EmitIgnoredExpr(LoopArgs.NextLB); 2543 EmitIgnoredExpr(LoopArgs.NextUB); 2544 } 2545 2546 EmitBranch(CondBlock); 2547 LoopStack.pop(); 2548 // Emit the fall-through block. 2549 EmitBlock(LoopExit.getBlock()); 2550 2551 // Tell the runtime we are done. 2552 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2553 if (!DynamicOrOrdered) 2554 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2555 S.getDirectiveKind()); 2556 }; 2557 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2558 } 2559 2560 void CodeGenFunction::EmitOMPForOuterLoop( 2561 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2562 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2563 const OMPLoopArguments &LoopArgs, 2564 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2565 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2566 2567 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2568 const bool DynamicOrOrdered = 2569 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2570 2571 assert((Ordered || 2572 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2573 LoopArgs.Chunk != nullptr)) && 2574 "static non-chunked schedule does not need outer loop"); 2575 2576 // Emit outer loop. 2577 // 2578 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2579 // When schedule(dynamic,chunk_size) is specified, the iterations are 2580 // distributed to threads in the team in chunks as the threads request them. 2581 // Each thread executes a chunk of iterations, then requests another chunk, 2582 // until no chunks remain to be distributed. Each chunk contains chunk_size 2583 // iterations, except for the last chunk to be distributed, which may have 2584 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2585 // 2586 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2587 // to threads in the team in chunks as the executing threads request them. 2588 // Each thread executes a chunk of iterations, then requests another chunk, 2589 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2590 // each chunk is proportional to the number of unassigned iterations divided 2591 // by the number of threads in the team, decreasing to 1. For a chunk_size 2592 // with value k (greater than 1), the size of each chunk is determined in the 2593 // same way, with the restriction that the chunks do not contain fewer than k 2594 // iterations (except for the last chunk to be assigned, which may have fewer 2595 // than k iterations). 2596 // 2597 // When schedule(auto) is specified, the decision regarding scheduling is 2598 // delegated to the compiler and/or runtime system. The programmer gives the 2599 // implementation the freedom to choose any possible mapping of iterations to 2600 // threads in the team. 2601 // 2602 // When schedule(runtime) is specified, the decision regarding scheduling is 2603 // deferred until run time, and the schedule and chunk size are taken from the 2604 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2605 // implementation defined 2606 // 2607 // while(__kmpc_dispatch_next(&LB, &UB)) { 2608 // idx = LB; 2609 // while (idx <= UB) { BODY; ++idx; 2610 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2611 // } // inner loop 2612 // } 2613 // 2614 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2615 // When schedule(static, chunk_size) is specified, iterations are divided into 2616 // chunks of size chunk_size, and the chunks are assigned to the threads in 2617 // the team in a round-robin fashion in the order of the thread number. 2618 // 2619 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2620 // while (idx <= UB) { BODY; ++idx; } // inner loop 2621 // LB = LB + ST; 2622 // UB = UB + ST; 2623 // } 2624 // 2625 2626 const Expr *IVExpr = S.getIterationVariable(); 2627 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2628 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2629 2630 if (DynamicOrOrdered) { 2631 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2632 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2633 llvm::Value *LBVal = DispatchBounds.first; 2634 llvm::Value *UBVal = DispatchBounds.second; 2635 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2636 LoopArgs.Chunk}; 2637 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2638 IVSigned, Ordered, DipatchRTInputValues); 2639 } else { 2640 CGOpenMPRuntime::StaticRTInput StaticInit( 2641 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2642 LoopArgs.ST, LoopArgs.Chunk); 2643 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2644 ScheduleKind, StaticInit); 2645 } 2646 2647 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2648 const unsigned IVSize, 2649 const bool IVSigned) { 2650 if (Ordered) { 2651 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2652 IVSigned); 2653 } 2654 }; 2655 2656 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2657 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2658 OuterLoopArgs.IncExpr = S.getInc(); 2659 OuterLoopArgs.Init = S.getInit(); 2660 OuterLoopArgs.Cond = S.getCond(); 2661 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2662 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2663 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2664 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2665 } 2666 2667 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2668 const unsigned IVSize, const bool IVSigned) {} 2669 2670 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2671 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2672 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2673 const CodeGenLoopTy &CodeGenLoopContent) { 2674 2675 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2676 2677 // Emit outer loop. 2678 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2679 // dynamic 2680 // 2681 2682 const Expr *IVExpr = S.getIterationVariable(); 2683 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2684 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2685 2686 CGOpenMPRuntime::StaticRTInput StaticInit( 2687 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2688 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2689 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2690 2691 // for combined 'distribute' and 'for' the increment expression of distribute 2692 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2693 Expr *IncExpr; 2694 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2695 IncExpr = S.getDistInc(); 2696 else 2697 IncExpr = S.getInc(); 2698 2699 // this routine is shared by 'omp distribute parallel for' and 2700 // 'omp distribute': select the right EUB expression depending on the 2701 // directive 2702 OMPLoopArguments OuterLoopArgs; 2703 OuterLoopArgs.LB = LoopArgs.LB; 2704 OuterLoopArgs.UB = LoopArgs.UB; 2705 OuterLoopArgs.ST = LoopArgs.ST; 2706 OuterLoopArgs.IL = LoopArgs.IL; 2707 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2708 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2709 ? S.getCombinedEnsureUpperBound() 2710 : S.getEnsureUpperBound(); 2711 OuterLoopArgs.IncExpr = IncExpr; 2712 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2713 ? S.getCombinedInit() 2714 : S.getInit(); 2715 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2716 ? S.getCombinedCond() 2717 : S.getCond(); 2718 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2719 ? S.getCombinedNextLowerBound() 2720 : S.getNextLowerBound(); 2721 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2722 ? S.getCombinedNextUpperBound() 2723 : S.getNextUpperBound(); 2724 2725 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2726 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2727 emitEmptyOrdered); 2728 } 2729 2730 static std::pair<LValue, LValue> 2731 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2732 const OMPExecutableDirective &S) { 2733 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2734 LValue LB = 2735 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2736 LValue UB = 2737 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2738 2739 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2740 // parallel for') we need to use the 'distribute' 2741 // chunk lower and upper bounds rather than the whole loop iteration 2742 // space. These are parameters to the outlined function for 'parallel' 2743 // and we copy the bounds of the previous schedule into the 2744 // the current ones. 2745 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2746 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2747 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2748 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2749 PrevLBVal = CGF.EmitScalarConversion( 2750 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2751 LS.getIterationVariable()->getType(), 2752 LS.getPrevLowerBoundVariable()->getExprLoc()); 2753 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2754 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2755 PrevUBVal = CGF.EmitScalarConversion( 2756 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2757 LS.getIterationVariable()->getType(), 2758 LS.getPrevUpperBoundVariable()->getExprLoc()); 2759 2760 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2761 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2762 2763 return {LB, UB}; 2764 } 2765 2766 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2767 /// we need to use the LB and UB expressions generated by the worksharing 2768 /// code generation support, whereas in non combined situations we would 2769 /// just emit 0 and the LastIteration expression 2770 /// This function is necessary due to the difference of the LB and UB 2771 /// types for the RT emission routines for 'for_static_init' and 2772 /// 'for_dispatch_init' 2773 static std::pair<llvm::Value *, llvm::Value *> 2774 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2775 const OMPExecutableDirective &S, 2776 Address LB, Address UB) { 2777 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2778 const Expr *IVExpr = LS.getIterationVariable(); 2779 // when implementing a dynamic schedule for a 'for' combined with a 2780 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2781 // is not normalized as each team only executes its own assigned 2782 // distribute chunk 2783 QualType IteratorTy = IVExpr->getType(); 2784 llvm::Value *LBVal = 2785 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2786 llvm::Value *UBVal = 2787 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2788 return {LBVal, UBVal}; 2789 } 2790 2791 static void emitDistributeParallelForDistributeInnerBoundParams( 2792 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2793 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2794 const auto &Dir = cast<OMPLoopDirective>(S); 2795 LValue LB = 2796 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2797 llvm::Value *LBCast = 2798 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2799 CGF.SizeTy, /*isSigned=*/false); 2800 CapturedVars.push_back(LBCast); 2801 LValue UB = 2802 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2803 2804 llvm::Value *UBCast = 2805 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2806 CGF.SizeTy, /*isSigned=*/false); 2807 CapturedVars.push_back(UBCast); 2808 } 2809 2810 static void 2811 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2812 const OMPLoopDirective &S, 2813 CodeGenFunction::JumpDest LoopExit) { 2814 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2815 PrePostActionTy &Action) { 2816 Action.Enter(CGF); 2817 bool HasCancel = false; 2818 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2819 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2820 HasCancel = D->hasCancel(); 2821 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2822 HasCancel = D->hasCancel(); 2823 else if (const auto *D = 2824 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2825 HasCancel = D->hasCancel(); 2826 } 2827 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2828 HasCancel); 2829 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2830 emitDistributeParallelForInnerBounds, 2831 emitDistributeParallelForDispatchBounds); 2832 }; 2833 2834 emitCommonOMPParallelDirective( 2835 CGF, S, 2836 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2837 CGInlinedWorksharingLoop, 2838 emitDistributeParallelForDistributeInnerBoundParams); 2839 } 2840 2841 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2842 const OMPDistributeParallelForDirective &S) { 2843 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2844 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2845 S.getDistInc()); 2846 }; 2847 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2848 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2849 } 2850 2851 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2852 const OMPDistributeParallelForSimdDirective &S) { 2853 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2854 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2855 S.getDistInc()); 2856 }; 2857 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2858 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2859 } 2860 2861 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2862 const OMPDistributeSimdDirective &S) { 2863 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2864 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2865 }; 2866 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2867 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2868 } 2869 2870 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2871 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2872 // Emit SPMD target parallel for region as a standalone region. 2873 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2874 emitOMPSimdRegion(CGF, S, Action); 2875 }; 2876 llvm::Function *Fn; 2877 llvm::Constant *Addr; 2878 // Emit target region as a standalone region. 2879 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2880 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2881 assert(Fn && Addr && "Target device function emission failed."); 2882 } 2883 2884 void CodeGenFunction::EmitOMPTargetSimdDirective( 2885 const OMPTargetSimdDirective &S) { 2886 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2887 emitOMPSimdRegion(CGF, S, Action); 2888 }; 2889 emitCommonOMPTargetDirective(*this, S, CodeGen); 2890 } 2891 2892 namespace { 2893 struct ScheduleKindModifiersTy { 2894 OpenMPScheduleClauseKind Kind; 2895 OpenMPScheduleClauseModifier M1; 2896 OpenMPScheduleClauseModifier M2; 2897 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2898 OpenMPScheduleClauseModifier M1, 2899 OpenMPScheduleClauseModifier M2) 2900 : Kind(Kind), M1(M1), M2(M2) {} 2901 }; 2902 } // namespace 2903 2904 bool CodeGenFunction::EmitOMPWorksharingLoop( 2905 const OMPLoopDirective &S, Expr *EUB, 2906 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2907 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2908 // Emit the loop iteration variable. 2909 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2910 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2911 EmitVarDecl(*IVDecl); 2912 2913 // Emit the iterations count variable. 2914 // If it is not a variable, Sema decided to calculate iterations count on each 2915 // iteration (e.g., it is foldable into a constant). 2916 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2917 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2918 // Emit calculation of the iterations count. 2919 EmitIgnoredExpr(S.getCalcLastIteration()); 2920 } 2921 2922 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2923 2924 bool HasLastprivateClause; 2925 // Check pre-condition. 2926 { 2927 OMPLoopScope PreInitScope(*this, S); 2928 // Skip the entire loop if we don't meet the precondition. 2929 // If the condition constant folds and can be elided, avoid emitting the 2930 // whole loop. 2931 bool CondConstant; 2932 llvm::BasicBlock *ContBlock = nullptr; 2933 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2934 if (!CondConstant) 2935 return false; 2936 } else { 2937 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2938 ContBlock = createBasicBlock("omp.precond.end"); 2939 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2940 getProfileCount(&S)); 2941 EmitBlock(ThenBlock); 2942 incrementProfileCounter(&S); 2943 } 2944 2945 RunCleanupsScope DoacrossCleanupScope(*this); 2946 bool Ordered = false; 2947 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2948 if (OrderedClause->getNumForLoops()) 2949 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2950 else 2951 Ordered = true; 2952 } 2953 2954 llvm::DenseSet<const Expr *> EmittedFinals; 2955 emitAlignedClause(*this, S); 2956 bool HasLinears = EmitOMPLinearClauseInit(S); 2957 // Emit helper vars inits. 2958 2959 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2960 LValue LB = Bounds.first; 2961 LValue UB = Bounds.second; 2962 LValue ST = 2963 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2964 LValue IL = 2965 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2966 2967 // Emit 'then' code. 2968 { 2969 OMPPrivateScope LoopScope(*this); 2970 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2971 // Emit implicit barrier to synchronize threads and avoid data races on 2972 // initialization of firstprivate variables and post-update of 2973 // lastprivate variables. 2974 CGM.getOpenMPRuntime().emitBarrierCall( 2975 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2976 /*ForceSimpleCall=*/true); 2977 } 2978 EmitOMPPrivateClause(S, LoopScope); 2979 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2980 *this, S, EmitLValue(S.getIterationVariable())); 2981 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2982 EmitOMPReductionClauseInit(S, LoopScope); 2983 EmitOMPPrivateLoopCounters(S, LoopScope); 2984 EmitOMPLinearClause(S, LoopScope); 2985 (void)LoopScope.Privatize(); 2986 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2987 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2988 2989 // Detect the loop schedule kind and chunk. 2990 const Expr *ChunkExpr = nullptr; 2991 OpenMPScheduleTy ScheduleKind; 2992 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2993 ScheduleKind.Schedule = C->getScheduleKind(); 2994 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2995 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2996 ChunkExpr = C->getChunkSize(); 2997 } else { 2998 // Default behaviour for schedule clause. 2999 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3000 *this, S, ScheduleKind.Schedule, ChunkExpr); 3001 } 3002 bool HasChunkSizeOne = false; 3003 llvm::Value *Chunk = nullptr; 3004 if (ChunkExpr) { 3005 Chunk = EmitScalarExpr(ChunkExpr); 3006 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3007 S.getIterationVariable()->getType(), 3008 S.getBeginLoc()); 3009 Expr::EvalResult Result; 3010 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3011 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3012 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3013 } 3014 } 3015 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3016 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3017 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3018 // If the static schedule kind is specified or if the ordered clause is 3019 // specified, and if no monotonic modifier is specified, the effect will 3020 // be as if the monotonic modifier was specified. 3021 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 3022 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 3023 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3024 bool IsMonotonic = 3025 Ordered || 3026 ((ScheduleKind.Schedule == OMPC_SCHEDULE_static || 3027 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) && 3028 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3029 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3030 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3031 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3032 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3033 /* Chunked */ Chunk != nullptr) || 3034 StaticChunkedOne) && 3035 !Ordered) { 3036 JumpDest LoopExit = 3037 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3038 emitCommonSimdLoop( 3039 *this, S, 3040 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 3041 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3042 CGF.EmitOMPSimdInit(S, IsMonotonic); 3043 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3044 if (C->getKind() == OMPC_ORDER_concurrent) 3045 CGF.LoopStack.setParallel(/*Enable=*/true); 3046 } 3047 }, 3048 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3049 &S, ScheduleKind, LoopExit, 3050 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3051 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3052 // When no chunk_size is specified, the iteration space is divided 3053 // into chunks that are approximately equal in size, and at most 3054 // one chunk is distributed to each thread. Note that the size of 3055 // the chunks is unspecified in this case. 3056 CGOpenMPRuntime::StaticRTInput StaticInit( 3057 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3058 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3059 StaticChunkedOne ? Chunk : nullptr); 3060 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3061 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3062 StaticInit); 3063 // UB = min(UB, GlobalUB); 3064 if (!StaticChunkedOne) 3065 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3066 // IV = LB; 3067 CGF.EmitIgnoredExpr(S.getInit()); 3068 // For unchunked static schedule generate: 3069 // 3070 // while (idx <= UB) { 3071 // BODY; 3072 // ++idx; 3073 // } 3074 // 3075 // For static schedule with chunk one: 3076 // 3077 // while (IV <= PrevUB) { 3078 // BODY; 3079 // IV += ST; 3080 // } 3081 CGF.EmitOMPInnerLoop( 3082 S, LoopScope.requiresCleanups(), 3083 StaticChunkedOne ? S.getCombinedParForInDistCond() 3084 : S.getCond(), 3085 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3086 [&S, LoopExit](CodeGenFunction &CGF) { 3087 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3088 }, 3089 [](CodeGenFunction &) {}); 3090 }); 3091 EmitBlock(LoopExit.getBlock()); 3092 // Tell the runtime we are done. 3093 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3094 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3095 S.getDirectiveKind()); 3096 }; 3097 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3098 } else { 3099 // Emit the outer loop, which requests its work chunk [LB..UB] from 3100 // runtime and runs the inner loop to process it. 3101 const OMPLoopArguments LoopArguments( 3102 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3103 IL.getAddress(*this), Chunk, EUB); 3104 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3105 LoopArguments, CGDispatchBounds); 3106 } 3107 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3108 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3109 return CGF.Builder.CreateIsNotNull( 3110 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3111 }); 3112 } 3113 EmitOMPReductionClauseFinal( 3114 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3115 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3116 : /*Parallel only*/ OMPD_parallel); 3117 // Emit post-update of the reduction variables if IsLastIter != 0. 3118 emitPostUpdateForReductionClause( 3119 *this, S, [IL, &S](CodeGenFunction &CGF) { 3120 return CGF.Builder.CreateIsNotNull( 3121 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3122 }); 3123 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3124 if (HasLastprivateClause) 3125 EmitOMPLastprivateClauseFinal( 3126 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3127 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3128 } 3129 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3130 return CGF.Builder.CreateIsNotNull( 3131 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3132 }); 3133 DoacrossCleanupScope.ForceCleanup(); 3134 // We're now done with the loop, so jump to the continuation block. 3135 if (ContBlock) { 3136 EmitBranch(ContBlock); 3137 EmitBlock(ContBlock, /*IsFinished=*/true); 3138 } 3139 } 3140 return HasLastprivateClause; 3141 } 3142 3143 /// The following two functions generate expressions for the loop lower 3144 /// and upper bounds in case of static and dynamic (dispatch) schedule 3145 /// of the associated 'for' or 'distribute' loop. 3146 static std::pair<LValue, LValue> 3147 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3148 const auto &LS = cast<OMPLoopDirective>(S); 3149 LValue LB = 3150 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3151 LValue UB = 3152 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3153 return {LB, UB}; 3154 } 3155 3156 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3157 /// consider the lower and upper bound expressions generated by the 3158 /// worksharing loop support, but we use 0 and the iteration space size as 3159 /// constants 3160 static std::pair<llvm::Value *, llvm::Value *> 3161 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3162 Address LB, Address UB) { 3163 const auto &LS = cast<OMPLoopDirective>(S); 3164 const Expr *IVExpr = LS.getIterationVariable(); 3165 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3166 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3167 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3168 return {LBVal, UBVal}; 3169 } 3170 3171 /// Emits the code for the directive with inscan reductions. 3172 /// The code is the following: 3173 /// \code 3174 /// size num_iters = <num_iters>; 3175 /// <type> buffer[num_iters]; 3176 /// #pragma omp ... 3177 /// for (i: 0..<num_iters>) { 3178 /// <input phase>; 3179 /// buffer[i] = red; 3180 /// } 3181 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3182 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3183 /// buffer[i] op= buffer[i-pow(2,k)]; 3184 /// #pragma omp ... 3185 /// for (0..<num_iters>) { 3186 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3187 /// <scan phase>; 3188 /// } 3189 /// \endcode 3190 static void emitScanBasedDirective( 3191 CodeGenFunction &CGF, const OMPLoopDirective &S, 3192 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3193 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3194 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3195 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3196 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3197 SmallVector<const Expr *, 4> Shareds; 3198 SmallVector<const Expr *, 4> Privates; 3199 SmallVector<const Expr *, 4> ReductionOps; 3200 SmallVector<const Expr *, 4> LHSs; 3201 SmallVector<const Expr *, 4> RHSs; 3202 SmallVector<const Expr *, 4> CopyOps; 3203 SmallVector<const Expr *, 4> CopyArrayTemps; 3204 SmallVector<const Expr *, 4> CopyArrayElems; 3205 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3206 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3207 "Only inscan reductions are expected."); 3208 Shareds.append(C->varlist_begin(), C->varlist_end()); 3209 Privates.append(C->privates().begin(), C->privates().end()); 3210 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3211 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3212 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3213 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3214 CopyArrayTemps.append(C->copy_array_temps().begin(), 3215 C->copy_array_temps().end()); 3216 CopyArrayElems.append(C->copy_array_elems().begin(), 3217 C->copy_array_elems().end()); 3218 } 3219 { 3220 // Emit buffers for each reduction variables. 3221 // ReductionCodeGen is required to emit correctly the code for array 3222 // reductions. 3223 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3224 unsigned Count = 0; 3225 auto *ITA = CopyArrayTemps.begin(); 3226 for (const Expr *IRef : Privates) { 3227 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3228 // Emit variably modified arrays, used for arrays/array sections 3229 // reductions. 3230 if (PrivateVD->getType()->isVariablyModifiedType()) { 3231 RedCG.emitSharedOrigLValue(CGF, Count); 3232 RedCG.emitAggregateType(CGF, Count); 3233 } 3234 CodeGenFunction::OpaqueValueMapping DimMapping( 3235 CGF, 3236 cast<OpaqueValueExpr>( 3237 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3238 ->getSizeExpr()), 3239 RValue::get(OMPScanNumIterations)); 3240 // Emit temp buffer. 3241 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3242 ++ITA; 3243 ++Count; 3244 } 3245 } 3246 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3247 { 3248 // Emit loop with input phase: 3249 // #pragma omp ... 3250 // for (i: 0..<num_iters>) { 3251 // <input phase>; 3252 // buffer[i] = red; 3253 // } 3254 CGF.OMPFirstScanLoop = true; 3255 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3256 FirstGen(CGF); 3257 } 3258 // Emit prefix reduction: 3259 // for (int k = 0; k <= ceil(log2(n)); ++k) 3260 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3261 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3262 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3263 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3264 llvm::Value *Arg = 3265 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3266 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3267 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3268 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3269 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3270 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3271 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3272 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3273 CGF.EmitBlock(LoopBB); 3274 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3275 // size pow2k = 1; 3276 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3277 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3278 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3279 // for (size i = n - 1; i >= 2 ^ k; --i) 3280 // tmp[i] op= tmp[i-pow2k]; 3281 llvm::BasicBlock *InnerLoopBB = 3282 CGF.createBasicBlock("omp.inner.log.scan.body"); 3283 llvm::BasicBlock *InnerExitBB = 3284 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3285 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3286 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3287 CGF.EmitBlock(InnerLoopBB); 3288 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3289 IVal->addIncoming(NMin1, LoopBB); 3290 { 3291 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3292 auto *ILHS = LHSs.begin(); 3293 auto *IRHS = RHSs.begin(); 3294 for (const Expr *CopyArrayElem : CopyArrayElems) { 3295 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3296 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3297 Address LHSAddr = Address::invalid(); 3298 { 3299 CodeGenFunction::OpaqueValueMapping IdxMapping( 3300 CGF, 3301 cast<OpaqueValueExpr>( 3302 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3303 RValue::get(IVal)); 3304 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3305 } 3306 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3307 Address RHSAddr = Address::invalid(); 3308 { 3309 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3310 CodeGenFunction::OpaqueValueMapping IdxMapping( 3311 CGF, 3312 cast<OpaqueValueExpr>( 3313 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3314 RValue::get(OffsetIVal)); 3315 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3316 } 3317 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3318 ++ILHS; 3319 ++IRHS; 3320 } 3321 PrivScope.Privatize(); 3322 CGF.CGM.getOpenMPRuntime().emitReduction( 3323 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3324 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3325 } 3326 llvm::Value *NextIVal = 3327 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3328 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3329 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3330 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3331 CGF.EmitBlock(InnerExitBB); 3332 llvm::Value *Next = 3333 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3334 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3335 // pow2k <<= 1; 3336 llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3337 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3338 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3339 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3340 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3341 CGF.EmitBlock(ExitBB); 3342 3343 CGF.OMPFirstScanLoop = false; 3344 SecondGen(CGF); 3345 } 3346 3347 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3348 const OMPLoopDirective &S, 3349 bool HasCancel) { 3350 bool HasLastprivates; 3351 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3352 [](const OMPReductionClause *C) { 3353 return C->getModifier() == OMPC_REDUCTION_inscan; 3354 })) { 3355 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3356 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3357 OMPLoopScope LoopScope(CGF, S); 3358 return CGF.EmitScalarExpr(S.getNumIterations()); 3359 }; 3360 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3361 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3362 CGF, S.getDirectiveKind(), HasCancel); 3363 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3364 emitForLoopBounds, 3365 emitDispatchForLoopBounds); 3366 // Emit an implicit barrier at the end. 3367 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3368 OMPD_for); 3369 }; 3370 const auto &&SecondGen = [&S, HasCancel, 3371 &HasLastprivates](CodeGenFunction &CGF) { 3372 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3373 CGF, S.getDirectiveKind(), HasCancel); 3374 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3375 emitForLoopBounds, 3376 emitDispatchForLoopBounds); 3377 }; 3378 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3379 } else { 3380 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3381 HasCancel); 3382 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3383 emitForLoopBounds, 3384 emitDispatchForLoopBounds); 3385 } 3386 return HasLastprivates; 3387 } 3388 3389 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3390 bool HasLastprivates = false; 3391 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3392 PrePostActionTy &) { 3393 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3394 }; 3395 { 3396 auto LPCRegion = 3397 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3398 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3399 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3400 S.hasCancel()); 3401 } 3402 3403 // Emit an implicit barrier at the end. 3404 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3405 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3406 // Check for outer lastprivate conditional update. 3407 checkForLastprivateConditionalUpdate(*this, S); 3408 } 3409 3410 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3411 bool HasLastprivates = false; 3412 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3413 PrePostActionTy &) { 3414 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3415 }; 3416 { 3417 auto LPCRegion = 3418 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3419 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3420 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3421 } 3422 3423 // Emit an implicit barrier at the end. 3424 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3425 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3426 // Check for outer lastprivate conditional update. 3427 checkForLastprivateConditionalUpdate(*this, S); 3428 } 3429 3430 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3431 const Twine &Name, 3432 llvm::Value *Init = nullptr) { 3433 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3434 if (Init) 3435 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3436 return LVal; 3437 } 3438 3439 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3440 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3441 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3442 bool HasLastprivates = false; 3443 auto &&CodeGen = [&S, CapturedStmt, CS, 3444 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3445 const ASTContext &C = CGF.getContext(); 3446 QualType KmpInt32Ty = 3447 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3448 // Emit helper vars inits. 3449 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3450 CGF.Builder.getInt32(0)); 3451 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3452 ? CGF.Builder.getInt32(CS->size() - 1) 3453 : CGF.Builder.getInt32(0); 3454 LValue UB = 3455 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3456 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3457 CGF.Builder.getInt32(1)); 3458 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3459 CGF.Builder.getInt32(0)); 3460 // Loop counter. 3461 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3462 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3463 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3464 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3465 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3466 // Generate condition for loop. 3467 BinaryOperator *Cond = BinaryOperator::Create( 3468 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary, 3469 S.getBeginLoc(), FPOptionsOverride()); 3470 // Increment for loop counter. 3471 UnaryOperator *Inc = UnaryOperator::Create( 3472 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 3473 S.getBeginLoc(), true, FPOptionsOverride()); 3474 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3475 // Iterate through all sections and emit a switch construct: 3476 // switch (IV) { 3477 // case 0: 3478 // <SectionStmt[0]>; 3479 // break; 3480 // ... 3481 // case <NumSection> - 1: 3482 // <SectionStmt[<NumSection> - 1]>; 3483 // break; 3484 // } 3485 // .omp.sections.exit: 3486 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3487 llvm::SwitchInst *SwitchStmt = 3488 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3489 ExitBB, CS == nullptr ? 1 : CS->size()); 3490 if (CS) { 3491 unsigned CaseNumber = 0; 3492 for (const Stmt *SubStmt : CS->children()) { 3493 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3494 CGF.EmitBlock(CaseBB); 3495 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3496 CGF.EmitStmt(SubStmt); 3497 CGF.EmitBranch(ExitBB); 3498 ++CaseNumber; 3499 } 3500 } else { 3501 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3502 CGF.EmitBlock(CaseBB); 3503 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3504 CGF.EmitStmt(CapturedStmt); 3505 CGF.EmitBranch(ExitBB); 3506 } 3507 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3508 }; 3509 3510 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3511 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3512 // Emit implicit barrier to synchronize threads and avoid data races on 3513 // initialization of firstprivate variables and post-update of lastprivate 3514 // variables. 3515 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3516 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3517 /*ForceSimpleCall=*/true); 3518 } 3519 CGF.EmitOMPPrivateClause(S, LoopScope); 3520 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3521 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3522 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3523 (void)LoopScope.Privatize(); 3524 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3525 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3526 3527 // Emit static non-chunked loop. 3528 OpenMPScheduleTy ScheduleKind; 3529 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3530 CGOpenMPRuntime::StaticRTInput StaticInit( 3531 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3532 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3533 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3534 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3535 // UB = min(UB, GlobalUB); 3536 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3537 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3538 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3539 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3540 // IV = LB; 3541 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3542 // while (idx <= UB) { BODY; ++idx; } 3543 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3544 [](CodeGenFunction &) {}); 3545 // Tell the runtime we are done. 3546 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3547 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3548 S.getDirectiveKind()); 3549 }; 3550 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3551 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3552 // Emit post-update of the reduction variables if IsLastIter != 0. 3553 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3554 return CGF.Builder.CreateIsNotNull( 3555 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3556 }); 3557 3558 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3559 if (HasLastprivates) 3560 CGF.EmitOMPLastprivateClauseFinal( 3561 S, /*NoFinals=*/false, 3562 CGF.Builder.CreateIsNotNull( 3563 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3564 }; 3565 3566 bool HasCancel = false; 3567 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3568 HasCancel = OSD->hasCancel(); 3569 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3570 HasCancel = OPSD->hasCancel(); 3571 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3572 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3573 HasCancel); 3574 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3575 // clause. Otherwise the barrier will be generated by the codegen for the 3576 // directive. 3577 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3578 // Emit implicit barrier to synchronize threads and avoid data races on 3579 // initialization of firstprivate variables. 3580 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3581 OMPD_unknown); 3582 } 3583 } 3584 3585 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3586 { 3587 auto LPCRegion = 3588 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3589 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3590 EmitSections(S); 3591 } 3592 // Emit an implicit barrier at the end. 3593 if (!S.getSingleClause<OMPNowaitClause>()) { 3594 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3595 OMPD_sections); 3596 } 3597 // Check for outer lastprivate conditional update. 3598 checkForLastprivateConditionalUpdate(*this, S); 3599 } 3600 3601 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3602 LexicalScope Scope(*this, S.getSourceRange()); 3603 EmitStopPoint(&S); 3604 EmitStmt(S.getAssociatedStmt()); 3605 } 3606 3607 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3608 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3609 llvm::SmallVector<const Expr *, 8> DestExprs; 3610 llvm::SmallVector<const Expr *, 8> SrcExprs; 3611 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3612 // Check if there are any 'copyprivate' clauses associated with this 3613 // 'single' construct. 3614 // Build a list of copyprivate variables along with helper expressions 3615 // (<source>, <destination>, <destination>=<source> expressions) 3616 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3617 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3618 DestExprs.append(C->destination_exprs().begin(), 3619 C->destination_exprs().end()); 3620 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3621 AssignmentOps.append(C->assignment_ops().begin(), 3622 C->assignment_ops().end()); 3623 } 3624 // Emit code for 'single' region along with 'copyprivate' clauses 3625 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3626 Action.Enter(CGF); 3627 OMPPrivateScope SingleScope(CGF); 3628 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3629 CGF.EmitOMPPrivateClause(S, SingleScope); 3630 (void)SingleScope.Privatize(); 3631 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3632 }; 3633 { 3634 auto LPCRegion = 3635 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3636 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3637 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3638 CopyprivateVars, DestExprs, 3639 SrcExprs, AssignmentOps); 3640 } 3641 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3642 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3643 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3644 CGM.getOpenMPRuntime().emitBarrierCall( 3645 *this, S.getBeginLoc(), 3646 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3647 } 3648 // Check for outer lastprivate conditional update. 3649 checkForLastprivateConditionalUpdate(*this, S); 3650 } 3651 3652 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3653 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3654 Action.Enter(CGF); 3655 CGF.EmitStmt(S.getRawStmt()); 3656 }; 3657 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3658 } 3659 3660 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3661 if (CGM.getLangOpts().OpenMPIRBuilder) { 3662 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3663 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3664 3665 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 3666 3667 auto FiniCB = [this](InsertPointTy IP) { 3668 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3669 }; 3670 3671 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3672 InsertPointTy CodeGenIP, 3673 llvm::BasicBlock &FiniBB) { 3674 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3675 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3676 CodeGenIP, FiniBB); 3677 }; 3678 3679 LexicalScope Scope(*this, S.getSourceRange()); 3680 EmitStopPoint(&S); 3681 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 3682 3683 return; 3684 } 3685 LexicalScope Scope(*this, S.getSourceRange()); 3686 EmitStopPoint(&S); 3687 emitMaster(*this, S); 3688 } 3689 3690 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3691 if (CGM.getLangOpts().OpenMPIRBuilder) { 3692 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3693 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3694 3695 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 3696 const Expr *Hint = nullptr; 3697 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3698 Hint = HintClause->getHint(); 3699 3700 // TODO: This is slightly different from what's currently being done in 3701 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 3702 // about typing is final. 3703 llvm::Value *HintInst = nullptr; 3704 if (Hint) 3705 HintInst = 3706 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 3707 3708 auto FiniCB = [this](InsertPointTy IP) { 3709 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3710 }; 3711 3712 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 3713 InsertPointTy CodeGenIP, 3714 llvm::BasicBlock &FiniBB) { 3715 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3716 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 3717 CodeGenIP, FiniBB); 3718 }; 3719 3720 LexicalScope Scope(*this, S.getSourceRange()); 3721 EmitStopPoint(&S); 3722 Builder.restoreIP(OMPBuilder.createCritical( 3723 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 3724 HintInst)); 3725 3726 return; 3727 } 3728 3729 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3730 Action.Enter(CGF); 3731 CGF.EmitStmt(S.getAssociatedStmt()); 3732 }; 3733 const Expr *Hint = nullptr; 3734 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3735 Hint = HintClause->getHint(); 3736 LexicalScope Scope(*this, S.getSourceRange()); 3737 EmitStopPoint(&S); 3738 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3739 S.getDirectiveName().getAsString(), 3740 CodeGen, S.getBeginLoc(), Hint); 3741 } 3742 3743 void CodeGenFunction::EmitOMPParallelForDirective( 3744 const OMPParallelForDirective &S) { 3745 // Emit directive as a combined directive that consists of two implicit 3746 // directives: 'parallel' with 'for' directive. 3747 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3748 Action.Enter(CGF); 3749 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 3750 }; 3751 { 3752 auto LPCRegion = 3753 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3754 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3755 emitEmptyBoundParameters); 3756 } 3757 // Check for outer lastprivate conditional update. 3758 checkForLastprivateConditionalUpdate(*this, S); 3759 } 3760 3761 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3762 const OMPParallelForSimdDirective &S) { 3763 // Emit directive as a combined directive that consists of two implicit 3764 // directives: 'parallel' with 'for' directive. 3765 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3766 Action.Enter(CGF); 3767 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3768 }; 3769 { 3770 auto LPCRegion = 3771 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3772 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 3773 emitEmptyBoundParameters); 3774 } 3775 // Check for outer lastprivate conditional update. 3776 checkForLastprivateConditionalUpdate(*this, S); 3777 } 3778 3779 void CodeGenFunction::EmitOMPParallelMasterDirective( 3780 const OMPParallelMasterDirective &S) { 3781 // Emit directive as a combined directive that consists of two implicit 3782 // directives: 'parallel' with 'master' directive. 3783 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3784 Action.Enter(CGF); 3785 OMPPrivateScope PrivateScope(CGF); 3786 bool Copyins = CGF.EmitOMPCopyinClause(S); 3787 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3788 if (Copyins) { 3789 // Emit implicit barrier to synchronize threads and avoid data races on 3790 // propagation master's thread values of threadprivate variables to local 3791 // instances of that variables of all other implicit threads. 3792 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3793 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3794 /*ForceSimpleCall=*/true); 3795 } 3796 CGF.EmitOMPPrivateClause(S, PrivateScope); 3797 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3798 (void)PrivateScope.Privatize(); 3799 emitMaster(CGF, S); 3800 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3801 }; 3802 { 3803 auto LPCRegion = 3804 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3805 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3806 emitEmptyBoundParameters); 3807 emitPostUpdateForReductionClause(*this, S, 3808 [](CodeGenFunction &) { return nullptr; }); 3809 } 3810 // Check for outer lastprivate conditional update. 3811 checkForLastprivateConditionalUpdate(*this, S); 3812 } 3813 3814 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3815 const OMPParallelSectionsDirective &S) { 3816 // Emit directive as a combined directive that consists of two implicit 3817 // directives: 'parallel' with 'sections' directive. 3818 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3819 Action.Enter(CGF); 3820 CGF.EmitSections(S); 3821 }; 3822 { 3823 auto LPCRegion = 3824 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3825 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3826 emitEmptyBoundParameters); 3827 } 3828 // Check for outer lastprivate conditional update. 3829 checkForLastprivateConditionalUpdate(*this, S); 3830 } 3831 3832 namespace { 3833 /// Get the list of variables declared in the context of the untied tasks. 3834 class CheckVarsEscapingUntiedTaskDeclContext final 3835 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 3836 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 3837 3838 public: 3839 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 3840 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 3841 void VisitDeclStmt(const DeclStmt *S) { 3842 if (!S) 3843 return; 3844 // Need to privatize only local vars, static locals can be processed as is. 3845 for (const Decl *D : S->decls()) { 3846 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 3847 if (VD->hasLocalStorage()) 3848 PrivateDecls.push_back(VD); 3849 } 3850 } 3851 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 3852 void VisitCapturedStmt(const CapturedStmt *) { return; } 3853 void VisitLambdaExpr(const LambdaExpr *) { return; } 3854 void VisitBlockExpr(const BlockExpr *) { return; } 3855 void VisitStmt(const Stmt *S) { 3856 if (!S) 3857 return; 3858 for (const Stmt *Child : S->children()) 3859 if (Child) 3860 Visit(Child); 3861 } 3862 3863 /// Swaps list of vars with the provided one. 3864 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 3865 }; 3866 } // anonymous namespace 3867 3868 void CodeGenFunction::EmitOMPTaskBasedDirective( 3869 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3870 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3871 OMPTaskDataTy &Data) { 3872 // Emit outlined function for task construct. 3873 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3874 auto I = CS->getCapturedDecl()->param_begin(); 3875 auto PartId = std::next(I); 3876 auto TaskT = std::next(I, 4); 3877 // Check if the task is final 3878 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3879 // If the condition constant folds and can be elided, try to avoid emitting 3880 // the condition and the dead arm of the if/else. 3881 const Expr *Cond = Clause->getCondition(); 3882 bool CondConstant; 3883 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3884 Data.Final.setInt(CondConstant); 3885 else 3886 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3887 } else { 3888 // By default the task is not final. 3889 Data.Final.setInt(/*IntVal=*/false); 3890 } 3891 // Check if the task has 'priority' clause. 3892 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3893 const Expr *Prio = Clause->getPriority(); 3894 Data.Priority.setInt(/*IntVal=*/true); 3895 Data.Priority.setPointer(EmitScalarConversion( 3896 EmitScalarExpr(Prio), Prio->getType(), 3897 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3898 Prio->getExprLoc())); 3899 } 3900 // The first function argument for tasks is a thread id, the second one is a 3901 // part id (0 for tied tasks, >=0 for untied task). 3902 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3903 // Get list of private variables. 3904 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3905 auto IRef = C->varlist_begin(); 3906 for (const Expr *IInit : C->private_copies()) { 3907 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3908 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3909 Data.PrivateVars.push_back(*IRef); 3910 Data.PrivateCopies.push_back(IInit); 3911 } 3912 ++IRef; 3913 } 3914 } 3915 EmittedAsPrivate.clear(); 3916 // Get list of firstprivate variables. 3917 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3918 auto IRef = C->varlist_begin(); 3919 auto IElemInitRef = C->inits().begin(); 3920 for (const Expr *IInit : C->private_copies()) { 3921 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3922 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3923 Data.FirstprivateVars.push_back(*IRef); 3924 Data.FirstprivateCopies.push_back(IInit); 3925 Data.FirstprivateInits.push_back(*IElemInitRef); 3926 } 3927 ++IRef; 3928 ++IElemInitRef; 3929 } 3930 } 3931 // Get list of lastprivate variables (for taskloops). 3932 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3933 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3934 auto IRef = C->varlist_begin(); 3935 auto ID = C->destination_exprs().begin(); 3936 for (const Expr *IInit : C->private_copies()) { 3937 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3938 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3939 Data.LastprivateVars.push_back(*IRef); 3940 Data.LastprivateCopies.push_back(IInit); 3941 } 3942 LastprivateDstsOrigs.insert( 3943 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3944 cast<DeclRefExpr>(*IRef)}); 3945 ++IRef; 3946 ++ID; 3947 } 3948 } 3949 SmallVector<const Expr *, 4> LHSs; 3950 SmallVector<const Expr *, 4> RHSs; 3951 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3952 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3953 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3954 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3955 Data.ReductionOps.append(C->reduction_ops().begin(), 3956 C->reduction_ops().end()); 3957 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3958 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3959 } 3960 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3961 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3962 // Build list of dependences. 3963 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3964 OMPTaskDataTy::DependData &DD = 3965 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3966 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3967 } 3968 // Get list of local vars for untied tasks. 3969 if (!Data.Tied) { 3970 CheckVarsEscapingUntiedTaskDeclContext Checker; 3971 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 3972 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 3973 Checker.getPrivateDecls().end()); 3974 } 3975 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3976 CapturedRegion](CodeGenFunction &CGF, 3977 PrePostActionTy &Action) { 3978 llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, std::pair<Address, Address>> 3979 UntiedLocalVars; 3980 // Set proper addresses for generated private copies. 3981 OMPPrivateScope Scope(CGF); 3982 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 3983 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3984 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 3985 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3986 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3987 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3988 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3989 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3990 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3991 CS->getCapturedDecl()->getParam(PrivatesParam))); 3992 // Map privates. 3993 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3994 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3995 CallArgs.push_back(PrivatesPtr); 3996 for (const Expr *E : Data.PrivateVars) { 3997 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3998 Address PrivatePtr = CGF.CreateMemTemp( 3999 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4000 PrivatePtrs.emplace_back(VD, PrivatePtr); 4001 CallArgs.push_back(PrivatePtr.getPointer()); 4002 } 4003 for (const Expr *E : Data.FirstprivateVars) { 4004 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4005 Address PrivatePtr = 4006 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4007 ".firstpriv.ptr.addr"); 4008 PrivatePtrs.emplace_back(VD, PrivatePtr); 4009 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4010 CallArgs.push_back(PrivatePtr.getPointer()); 4011 } 4012 for (const Expr *E : Data.LastprivateVars) { 4013 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4014 Address PrivatePtr = 4015 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4016 ".lastpriv.ptr.addr"); 4017 PrivatePtrs.emplace_back(VD, PrivatePtr); 4018 CallArgs.push_back(PrivatePtr.getPointer()); 4019 } 4020 for (const VarDecl *VD : Data.PrivateLocals) { 4021 QualType Ty = VD->getType().getNonReferenceType(); 4022 if (VD->getType()->isLValueReferenceType()) 4023 Ty = CGF.getContext().getPointerType(Ty); 4024 if (isAllocatableDecl(VD)) 4025 Ty = CGF.getContext().getPointerType(Ty); 4026 Address PrivatePtr = CGF.CreateMemTemp( 4027 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4028 UntiedLocalVars.try_emplace(VD, PrivatePtr, Address::invalid()); 4029 CallArgs.push_back(PrivatePtr.getPointer()); 4030 } 4031 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4032 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4033 for (const auto &Pair : LastprivateDstsOrigs) { 4034 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4035 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4036 /*RefersToEnclosingVariableOrCapture=*/ 4037 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4038 Pair.second->getType(), VK_LValue, 4039 Pair.second->getExprLoc()); 4040 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4041 return CGF.EmitLValue(&DRE).getAddress(CGF); 4042 }); 4043 } 4044 for (const auto &Pair : PrivatePtrs) { 4045 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4046 CGF.getContext().getDeclAlign(Pair.first)); 4047 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4048 } 4049 // Adjust mapping for internal locals by mapping actual memory instead of 4050 // a pointer to this memory. 4051 for (auto &Pair : UntiedLocalVars) { 4052 if (isAllocatableDecl(Pair.first)) { 4053 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4054 Address Replacement(Ptr, CGF.getPointerAlign()); 4055 Pair.getSecond().first = Replacement; 4056 Ptr = CGF.Builder.CreateLoad(Replacement); 4057 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4058 Pair.getSecond().second = Replacement; 4059 } else { 4060 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4061 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4062 Pair.getSecond().first = Replacement; 4063 } 4064 } 4065 } 4066 if (Data.Reductions) { 4067 OMPPrivateScope FirstprivateScope(CGF); 4068 for (const auto &Pair : FirstprivatePtrs) { 4069 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4070 CGF.getContext().getDeclAlign(Pair.first)); 4071 FirstprivateScope.addPrivate(Pair.first, 4072 [Replacement]() { return Replacement; }); 4073 } 4074 (void)FirstprivateScope.Privatize(); 4075 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4076 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4077 Data.ReductionCopies, Data.ReductionOps); 4078 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4079 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4080 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4081 RedCG.emitSharedOrigLValue(CGF, Cnt); 4082 RedCG.emitAggregateType(CGF, Cnt); 4083 // FIXME: This must removed once the runtime library is fixed. 4084 // Emit required threadprivate variables for 4085 // initializer/combiner/finalizer. 4086 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4087 RedCG, Cnt); 4088 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4089 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4090 Replacement = 4091 Address(CGF.EmitScalarConversion( 4092 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4093 CGF.getContext().getPointerType( 4094 Data.ReductionCopies[Cnt]->getType()), 4095 Data.ReductionCopies[Cnt]->getExprLoc()), 4096 Replacement.getAlignment()); 4097 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4098 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4099 [Replacement]() { return Replacement; }); 4100 } 4101 } 4102 // Privatize all private variables except for in_reduction items. 4103 (void)Scope.Privatize(); 4104 SmallVector<const Expr *, 4> InRedVars; 4105 SmallVector<const Expr *, 4> InRedPrivs; 4106 SmallVector<const Expr *, 4> InRedOps; 4107 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4108 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4109 auto IPriv = C->privates().begin(); 4110 auto IRed = C->reduction_ops().begin(); 4111 auto ITD = C->taskgroup_descriptors().begin(); 4112 for (const Expr *Ref : C->varlists()) { 4113 InRedVars.emplace_back(Ref); 4114 InRedPrivs.emplace_back(*IPriv); 4115 InRedOps.emplace_back(*IRed); 4116 TaskgroupDescriptors.emplace_back(*ITD); 4117 std::advance(IPriv, 1); 4118 std::advance(IRed, 1); 4119 std::advance(ITD, 1); 4120 } 4121 } 4122 // Privatize in_reduction items here, because taskgroup descriptors must be 4123 // privatized earlier. 4124 OMPPrivateScope InRedScope(CGF); 4125 if (!InRedVars.empty()) { 4126 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4127 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4128 RedCG.emitSharedOrigLValue(CGF, Cnt); 4129 RedCG.emitAggregateType(CGF, Cnt); 4130 // The taskgroup descriptor variable is always implicit firstprivate and 4131 // privatized already during processing of the firstprivates. 4132 // FIXME: This must removed once the runtime library is fixed. 4133 // Emit required threadprivate variables for 4134 // initializer/combiner/finalizer. 4135 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4136 RedCG, Cnt); 4137 llvm::Value *ReductionsPtr; 4138 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4139 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4140 TRExpr->getExprLoc()); 4141 } else { 4142 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4143 } 4144 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4145 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4146 Replacement = Address( 4147 CGF.EmitScalarConversion( 4148 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4149 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4150 InRedPrivs[Cnt]->getExprLoc()), 4151 Replacement.getAlignment()); 4152 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4153 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4154 [Replacement]() { return Replacement; }); 4155 } 4156 } 4157 (void)InRedScope.Privatize(); 4158 4159 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4160 UntiedLocalVars); 4161 Action.Enter(CGF); 4162 BodyGen(CGF); 4163 }; 4164 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4165 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4166 Data.NumberOfParts); 4167 OMPLexicalScope Scope(*this, S, llvm::None, 4168 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4169 !isOpenMPSimdDirective(S.getDirectiveKind())); 4170 TaskGen(*this, OutlinedFn, Data); 4171 } 4172 4173 static ImplicitParamDecl * 4174 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4175 QualType Ty, CapturedDecl *CD, 4176 SourceLocation Loc) { 4177 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4178 ImplicitParamDecl::Other); 4179 auto *OrigRef = DeclRefExpr::Create( 4180 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4181 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4182 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4183 ImplicitParamDecl::Other); 4184 auto *PrivateRef = DeclRefExpr::Create( 4185 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4186 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4187 QualType ElemType = C.getBaseElementType(Ty); 4188 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4189 ImplicitParamDecl::Other); 4190 auto *InitRef = DeclRefExpr::Create( 4191 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4192 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4193 PrivateVD->setInitStyle(VarDecl::CInit); 4194 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4195 InitRef, /*BasePath=*/nullptr, 4196 VK_RValue, FPOptionsOverride())); 4197 Data.FirstprivateVars.emplace_back(OrigRef); 4198 Data.FirstprivateCopies.emplace_back(PrivateRef); 4199 Data.FirstprivateInits.emplace_back(InitRef); 4200 return OrigVD; 4201 } 4202 4203 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4204 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4205 OMPTargetDataInfo &InputInfo) { 4206 // Emit outlined function for task construct. 4207 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4208 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4209 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4210 auto I = CS->getCapturedDecl()->param_begin(); 4211 auto PartId = std::next(I); 4212 auto TaskT = std::next(I, 4); 4213 OMPTaskDataTy Data; 4214 // The task is not final. 4215 Data.Final.setInt(/*IntVal=*/false); 4216 // Get list of firstprivate variables. 4217 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4218 auto IRef = C->varlist_begin(); 4219 auto IElemInitRef = C->inits().begin(); 4220 for (auto *IInit : C->private_copies()) { 4221 Data.FirstprivateVars.push_back(*IRef); 4222 Data.FirstprivateCopies.push_back(IInit); 4223 Data.FirstprivateInits.push_back(*IElemInitRef); 4224 ++IRef; 4225 ++IElemInitRef; 4226 } 4227 } 4228 OMPPrivateScope TargetScope(*this); 4229 VarDecl *BPVD = nullptr; 4230 VarDecl *PVD = nullptr; 4231 VarDecl *SVD = nullptr; 4232 VarDecl *MVD = nullptr; 4233 if (InputInfo.NumberOfTargetItems > 0) { 4234 auto *CD = CapturedDecl::Create( 4235 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4236 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4237 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4238 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4239 /*IndexTypeQuals=*/0); 4240 BPVD = createImplicitFirstprivateForType( 4241 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4242 PVD = createImplicitFirstprivateForType( 4243 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4244 QualType SizesType = getContext().getConstantArrayType( 4245 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4246 ArrSize, nullptr, ArrayType::Normal, 4247 /*IndexTypeQuals=*/0); 4248 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4249 S.getBeginLoc()); 4250 TargetScope.addPrivate( 4251 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4252 TargetScope.addPrivate(PVD, 4253 [&InputInfo]() { return InputInfo.PointersArray; }); 4254 TargetScope.addPrivate(SVD, 4255 [&InputInfo]() { return InputInfo.SizesArray; }); 4256 // If there is no user-defined mapper, the mapper array will be nullptr. In 4257 // this case, we don't need to privatize it. 4258 if (!dyn_cast_or_null<llvm::ConstantPointerNull>( 4259 InputInfo.MappersArray.getPointer())) { 4260 MVD = createImplicitFirstprivateForType( 4261 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4262 TargetScope.addPrivate(MVD, 4263 [&InputInfo]() { return InputInfo.MappersArray; }); 4264 } 4265 } 4266 (void)TargetScope.Privatize(); 4267 // Build list of dependences. 4268 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4269 OMPTaskDataTy::DependData &DD = 4270 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4271 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4272 } 4273 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4274 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4275 // Set proper addresses for generated private copies. 4276 OMPPrivateScope Scope(CGF); 4277 if (!Data.FirstprivateVars.empty()) { 4278 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 4279 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 4280 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4281 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4282 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4283 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4284 CS->getCapturedDecl()->getParam(PrivatesParam))); 4285 // Map privates. 4286 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4287 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4288 CallArgs.push_back(PrivatesPtr); 4289 for (const Expr *E : Data.FirstprivateVars) { 4290 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4291 Address PrivatePtr = 4292 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4293 ".firstpriv.ptr.addr"); 4294 PrivatePtrs.emplace_back(VD, PrivatePtr); 4295 CallArgs.push_back(PrivatePtr.getPointer()); 4296 } 4297 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4298 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4299 for (const auto &Pair : PrivatePtrs) { 4300 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4301 CGF.getContext().getDeclAlign(Pair.first)); 4302 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4303 } 4304 } 4305 // Privatize all private variables except for in_reduction items. 4306 (void)Scope.Privatize(); 4307 if (InputInfo.NumberOfTargetItems > 0) { 4308 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4309 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4310 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4311 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4312 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4313 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4314 // If MVD is nullptr, the mapper array is not privatized 4315 if (MVD) 4316 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4317 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4318 } 4319 4320 Action.Enter(CGF); 4321 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4322 BodyGen(CGF); 4323 }; 4324 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4325 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4326 Data.NumberOfParts); 4327 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4328 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4329 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4330 SourceLocation()); 4331 4332 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4333 SharedsTy, CapturedStruct, &IfCond, Data); 4334 } 4335 4336 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4337 // Emit outlined function for task construct. 4338 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4339 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4340 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4341 const Expr *IfCond = nullptr; 4342 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4343 if (C->getNameModifier() == OMPD_unknown || 4344 C->getNameModifier() == OMPD_task) { 4345 IfCond = C->getCondition(); 4346 break; 4347 } 4348 } 4349 4350 OMPTaskDataTy Data; 4351 // Check if we should emit tied or untied task. 4352 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4353 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4354 CGF.EmitStmt(CS->getCapturedStmt()); 4355 }; 4356 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4357 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4358 const OMPTaskDataTy &Data) { 4359 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4360 SharedsTy, CapturedStruct, IfCond, 4361 Data); 4362 }; 4363 auto LPCRegion = 4364 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4365 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4366 } 4367 4368 void CodeGenFunction::EmitOMPTaskyieldDirective( 4369 const OMPTaskyieldDirective &S) { 4370 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4371 } 4372 4373 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4374 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4375 } 4376 4377 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4378 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4379 } 4380 4381 void CodeGenFunction::EmitOMPTaskgroupDirective( 4382 const OMPTaskgroupDirective &S) { 4383 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4384 Action.Enter(CGF); 4385 if (const Expr *E = S.getReductionRef()) { 4386 SmallVector<const Expr *, 4> LHSs; 4387 SmallVector<const Expr *, 4> RHSs; 4388 OMPTaskDataTy Data; 4389 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4390 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4391 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4392 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4393 Data.ReductionOps.append(C->reduction_ops().begin(), 4394 C->reduction_ops().end()); 4395 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4396 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4397 } 4398 llvm::Value *ReductionDesc = 4399 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4400 LHSs, RHSs, Data); 4401 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4402 CGF.EmitVarDecl(*VD); 4403 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4404 /*Volatile=*/false, E->getType()); 4405 } 4406 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4407 }; 4408 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4409 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4410 } 4411 4412 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4413 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4414 ? llvm::AtomicOrdering::NotAtomic 4415 : llvm::AtomicOrdering::AcquireRelease; 4416 CGM.getOpenMPRuntime().emitFlush( 4417 *this, 4418 [&S]() -> ArrayRef<const Expr *> { 4419 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4420 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4421 FlushClause->varlist_end()); 4422 return llvm::None; 4423 }(), 4424 S.getBeginLoc(), AO); 4425 } 4426 4427 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4428 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4429 LValue DOLVal = EmitLValue(DO->getDepobj()); 4430 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4431 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4432 DC->getModifier()); 4433 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4434 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4435 *this, Dependencies, DC->getBeginLoc()); 4436 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4437 return; 4438 } 4439 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4440 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4441 return; 4442 } 4443 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4444 CGM.getOpenMPRuntime().emitUpdateClause( 4445 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4446 return; 4447 } 4448 } 4449 4450 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4451 if (!OMPParentLoopDirectiveForScan) 4452 return; 4453 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4454 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4455 SmallVector<const Expr *, 4> Shareds; 4456 SmallVector<const Expr *, 4> Privates; 4457 SmallVector<const Expr *, 4> LHSs; 4458 SmallVector<const Expr *, 4> RHSs; 4459 SmallVector<const Expr *, 4> ReductionOps; 4460 SmallVector<const Expr *, 4> CopyOps; 4461 SmallVector<const Expr *, 4> CopyArrayTemps; 4462 SmallVector<const Expr *, 4> CopyArrayElems; 4463 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4464 if (C->getModifier() != OMPC_REDUCTION_inscan) 4465 continue; 4466 Shareds.append(C->varlist_begin(), C->varlist_end()); 4467 Privates.append(C->privates().begin(), C->privates().end()); 4468 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4469 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4470 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4471 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4472 CopyArrayTemps.append(C->copy_array_temps().begin(), 4473 C->copy_array_temps().end()); 4474 CopyArrayElems.append(C->copy_array_elems().begin(), 4475 C->copy_array_elems().end()); 4476 } 4477 if (ParentDir.getDirectiveKind() == OMPD_simd || 4478 (getLangOpts().OpenMPSimd && 4479 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4480 // For simd directive and simd-based directives in simd only mode, use the 4481 // following codegen: 4482 // int x = 0; 4483 // #pragma omp simd reduction(inscan, +: x) 4484 // for (..) { 4485 // <first part> 4486 // #pragma omp scan inclusive(x) 4487 // <second part> 4488 // } 4489 // is transformed to: 4490 // int x = 0; 4491 // for (..) { 4492 // int x_priv = 0; 4493 // <first part> 4494 // x = x_priv + x; 4495 // x_priv = x; 4496 // <second part> 4497 // } 4498 // and 4499 // int x = 0; 4500 // #pragma omp simd reduction(inscan, +: x) 4501 // for (..) { 4502 // <first part> 4503 // #pragma omp scan exclusive(x) 4504 // <second part> 4505 // } 4506 // to 4507 // int x = 0; 4508 // for (..) { 4509 // int x_priv = 0; 4510 // <second part> 4511 // int temp = x; 4512 // x = x_priv + x; 4513 // x_priv = temp; 4514 // <first part> 4515 // } 4516 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4517 EmitBranch(IsInclusive 4518 ? OMPScanReduce 4519 : BreakContinueStack.back().ContinueBlock.getBlock()); 4520 EmitBlock(OMPScanDispatch); 4521 { 4522 // New scope for correct construction/destruction of temp variables for 4523 // exclusive scan. 4524 LexicalScope Scope(*this, S.getSourceRange()); 4525 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4526 EmitBlock(OMPScanReduce); 4527 if (!IsInclusive) { 4528 // Create temp var and copy LHS value to this temp value. 4529 // TMP = LHS; 4530 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4531 const Expr *PrivateExpr = Privates[I]; 4532 const Expr *TempExpr = CopyArrayTemps[I]; 4533 EmitAutoVarDecl( 4534 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4535 LValue DestLVal = EmitLValue(TempExpr); 4536 LValue SrcLVal = EmitLValue(LHSs[I]); 4537 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4538 SrcLVal.getAddress(*this), 4539 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4540 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4541 CopyOps[I]); 4542 } 4543 } 4544 CGM.getOpenMPRuntime().emitReduction( 4545 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4546 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4547 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4548 const Expr *PrivateExpr = Privates[I]; 4549 LValue DestLVal; 4550 LValue SrcLVal; 4551 if (IsInclusive) { 4552 DestLVal = EmitLValue(RHSs[I]); 4553 SrcLVal = EmitLValue(LHSs[I]); 4554 } else { 4555 const Expr *TempExpr = CopyArrayTemps[I]; 4556 DestLVal = EmitLValue(RHSs[I]); 4557 SrcLVal = EmitLValue(TempExpr); 4558 } 4559 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4560 SrcLVal.getAddress(*this), 4561 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4562 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4563 CopyOps[I]); 4564 } 4565 } 4566 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4567 OMPScanExitBlock = IsInclusive 4568 ? BreakContinueStack.back().ContinueBlock.getBlock() 4569 : OMPScanReduce; 4570 EmitBlock(OMPAfterScanBlock); 4571 return; 4572 } 4573 if (!IsInclusive) { 4574 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4575 EmitBlock(OMPScanExitBlock); 4576 } 4577 if (OMPFirstScanLoop) { 4578 // Emit buffer[i] = red; at the end of the input phase. 4579 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4580 .getIterationVariable() 4581 ->IgnoreParenImpCasts(); 4582 LValue IdxLVal = EmitLValue(IVExpr); 4583 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4584 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4585 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4586 const Expr *PrivateExpr = Privates[I]; 4587 const Expr *OrigExpr = Shareds[I]; 4588 const Expr *CopyArrayElem = CopyArrayElems[I]; 4589 OpaqueValueMapping IdxMapping( 4590 *this, 4591 cast<OpaqueValueExpr>( 4592 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4593 RValue::get(IdxVal)); 4594 LValue DestLVal = EmitLValue(CopyArrayElem); 4595 LValue SrcLVal = EmitLValue(OrigExpr); 4596 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4597 SrcLVal.getAddress(*this), 4598 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4599 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4600 CopyOps[I]); 4601 } 4602 } 4603 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4604 if (IsInclusive) { 4605 EmitBlock(OMPScanExitBlock); 4606 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4607 } 4608 EmitBlock(OMPScanDispatch); 4609 if (!OMPFirstScanLoop) { 4610 // Emit red = buffer[i]; at the entrance to the scan phase. 4611 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4612 .getIterationVariable() 4613 ->IgnoreParenImpCasts(); 4614 LValue IdxLVal = EmitLValue(IVExpr); 4615 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4616 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4617 llvm::BasicBlock *ExclusiveExitBB = nullptr; 4618 if (!IsInclusive) { 4619 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 4620 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 4621 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 4622 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 4623 EmitBlock(ContBB); 4624 // Use idx - 1 iteration for exclusive scan. 4625 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 4626 } 4627 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4628 const Expr *PrivateExpr = Privates[I]; 4629 const Expr *OrigExpr = Shareds[I]; 4630 const Expr *CopyArrayElem = CopyArrayElems[I]; 4631 OpaqueValueMapping IdxMapping( 4632 *this, 4633 cast<OpaqueValueExpr>( 4634 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4635 RValue::get(IdxVal)); 4636 LValue SrcLVal = EmitLValue(CopyArrayElem); 4637 LValue DestLVal = EmitLValue(OrigExpr); 4638 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4639 SrcLVal.getAddress(*this), 4640 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4641 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4642 CopyOps[I]); 4643 } 4644 if (!IsInclusive) { 4645 EmitBlock(ExclusiveExitBB); 4646 } 4647 } 4648 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 4649 : OMPAfterScanBlock); 4650 EmitBlock(OMPAfterScanBlock); 4651 } 4652 4653 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 4654 const CodeGenLoopTy &CodeGenLoop, 4655 Expr *IncExpr) { 4656 // Emit the loop iteration variable. 4657 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 4658 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 4659 EmitVarDecl(*IVDecl); 4660 4661 // Emit the iterations count variable. 4662 // If it is not a variable, Sema decided to calculate iterations count on each 4663 // iteration (e.g., it is foldable into a constant). 4664 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4665 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4666 // Emit calculation of the iterations count. 4667 EmitIgnoredExpr(S.getCalcLastIteration()); 4668 } 4669 4670 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 4671 4672 bool HasLastprivateClause = false; 4673 // Check pre-condition. 4674 { 4675 OMPLoopScope PreInitScope(*this, S); 4676 // Skip the entire loop if we don't meet the precondition. 4677 // If the condition constant folds and can be elided, avoid emitting the 4678 // whole loop. 4679 bool CondConstant; 4680 llvm::BasicBlock *ContBlock = nullptr; 4681 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4682 if (!CondConstant) 4683 return; 4684 } else { 4685 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 4686 ContBlock = createBasicBlock("omp.precond.end"); 4687 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 4688 getProfileCount(&S)); 4689 EmitBlock(ThenBlock); 4690 incrementProfileCounter(&S); 4691 } 4692 4693 emitAlignedClause(*this, S); 4694 // Emit 'then' code. 4695 { 4696 // Emit helper vars inits. 4697 4698 LValue LB = EmitOMPHelperVar( 4699 *this, cast<DeclRefExpr>( 4700 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4701 ? S.getCombinedLowerBoundVariable() 4702 : S.getLowerBoundVariable()))); 4703 LValue UB = EmitOMPHelperVar( 4704 *this, cast<DeclRefExpr>( 4705 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4706 ? S.getCombinedUpperBoundVariable() 4707 : S.getUpperBoundVariable()))); 4708 LValue ST = 4709 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 4710 LValue IL = 4711 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 4712 4713 OMPPrivateScope LoopScope(*this); 4714 if (EmitOMPFirstprivateClause(S, LoopScope)) { 4715 // Emit implicit barrier to synchronize threads and avoid data races 4716 // on initialization of firstprivate variables and post-update of 4717 // lastprivate variables. 4718 CGM.getOpenMPRuntime().emitBarrierCall( 4719 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4720 /*ForceSimpleCall=*/true); 4721 } 4722 EmitOMPPrivateClause(S, LoopScope); 4723 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4724 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4725 !isOpenMPTeamsDirective(S.getDirectiveKind())) 4726 EmitOMPReductionClauseInit(S, LoopScope); 4727 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 4728 EmitOMPPrivateLoopCounters(S, LoopScope); 4729 (void)LoopScope.Privatize(); 4730 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4731 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 4732 4733 // Detect the distribute schedule kind and chunk. 4734 llvm::Value *Chunk = nullptr; 4735 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 4736 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 4737 ScheduleKind = C->getDistScheduleKind(); 4738 if (const Expr *Ch = C->getChunkSize()) { 4739 Chunk = EmitScalarExpr(Ch); 4740 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 4741 S.getIterationVariable()->getType(), 4742 S.getBeginLoc()); 4743 } 4744 } else { 4745 // Default behaviour for dist_schedule clause. 4746 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 4747 *this, S, ScheduleKind, Chunk); 4748 } 4749 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 4750 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 4751 4752 // OpenMP [2.10.8, distribute Construct, Description] 4753 // If dist_schedule is specified, kind must be static. If specified, 4754 // iterations are divided into chunks of size chunk_size, chunks are 4755 // assigned to the teams of the league in a round-robin fashion in the 4756 // order of the team number. When no chunk_size is specified, the 4757 // iteration space is divided into chunks that are approximately equal 4758 // in size, and at most one chunk is distributed to each team of the 4759 // league. The size of the chunks is unspecified in this case. 4760 bool StaticChunked = RT.isStaticChunked( 4761 ScheduleKind, /* Chunked */ Chunk != nullptr) && 4762 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 4763 if (RT.isStaticNonchunked(ScheduleKind, 4764 /* Chunked */ Chunk != nullptr) || 4765 StaticChunked) { 4766 CGOpenMPRuntime::StaticRTInput StaticInit( 4767 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 4768 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4769 StaticChunked ? Chunk : nullptr); 4770 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 4771 StaticInit); 4772 JumpDest LoopExit = 4773 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 4774 // UB = min(UB, GlobalUB); 4775 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4776 ? S.getCombinedEnsureUpperBound() 4777 : S.getEnsureUpperBound()); 4778 // IV = LB; 4779 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4780 ? S.getCombinedInit() 4781 : S.getInit()); 4782 4783 const Expr *Cond = 4784 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4785 ? S.getCombinedCond() 4786 : S.getCond(); 4787 4788 if (StaticChunked) 4789 Cond = S.getCombinedDistCond(); 4790 4791 // For static unchunked schedules generate: 4792 // 4793 // 1. For distribute alone, codegen 4794 // while (idx <= UB) { 4795 // BODY; 4796 // ++idx; 4797 // } 4798 // 4799 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 4800 // while (idx <= UB) { 4801 // <CodeGen rest of pragma>(LB, UB); 4802 // idx += ST; 4803 // } 4804 // 4805 // For static chunk one schedule generate: 4806 // 4807 // while (IV <= GlobalUB) { 4808 // <CodeGen rest of pragma>(LB, UB); 4809 // LB += ST; 4810 // UB += ST; 4811 // UB = min(UB, GlobalUB); 4812 // IV = LB; 4813 // } 4814 // 4815 emitCommonSimdLoop( 4816 *this, S, 4817 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4818 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4819 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 4820 }, 4821 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 4822 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 4823 CGF.EmitOMPInnerLoop( 4824 S, LoopScope.requiresCleanups(), Cond, IncExpr, 4825 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 4826 CodeGenLoop(CGF, S, LoopExit); 4827 }, 4828 [&S, StaticChunked](CodeGenFunction &CGF) { 4829 if (StaticChunked) { 4830 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 4831 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 4832 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 4833 CGF.EmitIgnoredExpr(S.getCombinedInit()); 4834 } 4835 }); 4836 }); 4837 EmitBlock(LoopExit.getBlock()); 4838 // Tell the runtime we are done. 4839 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 4840 } else { 4841 // Emit the outer loop, which requests its work chunk [LB..UB] from 4842 // runtime and runs the inner loop to process it. 4843 const OMPLoopArguments LoopArguments = { 4844 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4845 IL.getAddress(*this), Chunk}; 4846 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 4847 CodeGenLoop); 4848 } 4849 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 4850 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 4851 return CGF.Builder.CreateIsNotNull( 4852 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4853 }); 4854 } 4855 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4856 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4857 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 4858 EmitOMPReductionClauseFinal(S, OMPD_simd); 4859 // Emit post-update of the reduction variables if IsLastIter != 0. 4860 emitPostUpdateForReductionClause( 4861 *this, S, [IL, &S](CodeGenFunction &CGF) { 4862 return CGF.Builder.CreateIsNotNull( 4863 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4864 }); 4865 } 4866 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4867 if (HasLastprivateClause) { 4868 EmitOMPLastprivateClauseFinal( 4869 S, /*NoFinals=*/false, 4870 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 4871 } 4872 } 4873 4874 // We're now done with the loop, so jump to the continuation block. 4875 if (ContBlock) { 4876 EmitBranch(ContBlock); 4877 EmitBlock(ContBlock, true); 4878 } 4879 } 4880 } 4881 4882 void CodeGenFunction::EmitOMPDistributeDirective( 4883 const OMPDistributeDirective &S) { 4884 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4885 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4886 }; 4887 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4888 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 4889 } 4890 4891 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4892 const CapturedStmt *S, 4893 SourceLocation Loc) { 4894 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4895 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4896 CGF.CapturedStmtInfo = &CapStmtInfo; 4897 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4898 Fn->setDoesNotRecurse(); 4899 return Fn; 4900 } 4901 4902 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4903 if (S.hasClausesOfKind<OMPDependClause>()) { 4904 assert(!S.hasAssociatedStmt() && 4905 "No associated statement must be in ordered depend construct."); 4906 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4907 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4908 return; 4909 } 4910 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4911 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4912 PrePostActionTy &Action) { 4913 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4914 if (C) { 4915 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4916 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4917 llvm::Function *OutlinedFn = 4918 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4919 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4920 OutlinedFn, CapturedVars); 4921 } else { 4922 Action.Enter(CGF); 4923 CGF.EmitStmt(CS->getCapturedStmt()); 4924 } 4925 }; 4926 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4927 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4928 } 4929 4930 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4931 QualType SrcType, QualType DestType, 4932 SourceLocation Loc) { 4933 assert(CGF.hasScalarEvaluationKind(DestType) && 4934 "DestType must have scalar evaluation kind."); 4935 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4936 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4937 DestType, Loc) 4938 : CGF.EmitComplexToScalarConversion( 4939 Val.getComplexVal(), SrcType, DestType, Loc); 4940 } 4941 4942 static CodeGenFunction::ComplexPairTy 4943 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4944 QualType DestType, SourceLocation Loc) { 4945 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4946 "DestType must have complex evaluation kind."); 4947 CodeGenFunction::ComplexPairTy ComplexVal; 4948 if (Val.isScalar()) { 4949 // Convert the input element to the element type of the complex. 4950 QualType DestElementType = 4951 DestType->castAs<ComplexType>()->getElementType(); 4952 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4953 Val.getScalarVal(), SrcType, DestElementType, Loc); 4954 ComplexVal = CodeGenFunction::ComplexPairTy( 4955 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4956 } else { 4957 assert(Val.isComplex() && "Must be a scalar or complex."); 4958 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4959 QualType DestElementType = 4960 DestType->castAs<ComplexType>()->getElementType(); 4961 ComplexVal.first = CGF.EmitScalarConversion( 4962 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4963 ComplexVal.second = CGF.EmitScalarConversion( 4964 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4965 } 4966 return ComplexVal; 4967 } 4968 4969 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4970 LValue LVal, RValue RVal) { 4971 if (LVal.isGlobalReg()) 4972 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4973 else 4974 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4975 } 4976 4977 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4978 llvm::AtomicOrdering AO, LValue LVal, 4979 SourceLocation Loc) { 4980 if (LVal.isGlobalReg()) 4981 return CGF.EmitLoadOfLValue(LVal, Loc); 4982 return CGF.EmitAtomicLoad( 4983 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4984 LVal.isVolatile()); 4985 } 4986 4987 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4988 QualType RValTy, SourceLocation Loc) { 4989 switch (getEvaluationKind(LVal.getType())) { 4990 case TEK_Scalar: 4991 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4992 *this, RVal, RValTy, LVal.getType(), Loc)), 4993 LVal); 4994 break; 4995 case TEK_Complex: 4996 EmitStoreOfComplex( 4997 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4998 /*isInit=*/false); 4999 break; 5000 case TEK_Aggregate: 5001 llvm_unreachable("Must be a scalar or complex."); 5002 } 5003 } 5004 5005 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5006 const Expr *X, const Expr *V, 5007 SourceLocation Loc) { 5008 // v = x; 5009 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5010 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5011 LValue XLValue = CGF.EmitLValue(X); 5012 LValue VLValue = CGF.EmitLValue(V); 5013 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5014 // OpenMP, 2.17.7, atomic Construct 5015 // If the read or capture clause is specified and the acquire, acq_rel, or 5016 // seq_cst clause is specified then the strong flush on exit from the atomic 5017 // operation is also an acquire flush. 5018 switch (AO) { 5019 case llvm::AtomicOrdering::Acquire: 5020 case llvm::AtomicOrdering::AcquireRelease: 5021 case llvm::AtomicOrdering::SequentiallyConsistent: 5022 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5023 llvm::AtomicOrdering::Acquire); 5024 break; 5025 case llvm::AtomicOrdering::Monotonic: 5026 case llvm::AtomicOrdering::Release: 5027 break; 5028 case llvm::AtomicOrdering::NotAtomic: 5029 case llvm::AtomicOrdering::Unordered: 5030 llvm_unreachable("Unexpected ordering."); 5031 } 5032 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5033 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5034 } 5035 5036 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5037 llvm::AtomicOrdering AO, const Expr *X, 5038 const Expr *E, SourceLocation Loc) { 5039 // x = expr; 5040 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5041 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5042 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5043 // OpenMP, 2.17.7, atomic Construct 5044 // If the write, update, or capture clause is specified and the release, 5045 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5046 // the atomic operation is also a release flush. 5047 switch (AO) { 5048 case llvm::AtomicOrdering::Release: 5049 case llvm::AtomicOrdering::AcquireRelease: 5050 case llvm::AtomicOrdering::SequentiallyConsistent: 5051 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5052 llvm::AtomicOrdering::Release); 5053 break; 5054 case llvm::AtomicOrdering::Acquire: 5055 case llvm::AtomicOrdering::Monotonic: 5056 break; 5057 case llvm::AtomicOrdering::NotAtomic: 5058 case llvm::AtomicOrdering::Unordered: 5059 llvm_unreachable("Unexpected ordering."); 5060 } 5061 } 5062 5063 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5064 RValue Update, 5065 BinaryOperatorKind BO, 5066 llvm::AtomicOrdering AO, 5067 bool IsXLHSInRHSPart) { 5068 ASTContext &Context = CGF.getContext(); 5069 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5070 // expression is simple and atomic is allowed for the given type for the 5071 // target platform. 5072 if (BO == BO_Comma || !Update.isScalar() || 5073 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5074 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5075 (Update.getScalarVal()->getType() != 5076 X.getAddress(CGF).getElementType())) || 5077 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5078 !Context.getTargetInfo().hasBuiltinAtomic( 5079 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5080 return std::make_pair(false, RValue::get(nullptr)); 5081 5082 llvm::AtomicRMWInst::BinOp RMWOp; 5083 switch (BO) { 5084 case BO_Add: 5085 RMWOp = llvm::AtomicRMWInst::Add; 5086 break; 5087 case BO_Sub: 5088 if (!IsXLHSInRHSPart) 5089 return std::make_pair(false, RValue::get(nullptr)); 5090 RMWOp = llvm::AtomicRMWInst::Sub; 5091 break; 5092 case BO_And: 5093 RMWOp = llvm::AtomicRMWInst::And; 5094 break; 5095 case BO_Or: 5096 RMWOp = llvm::AtomicRMWInst::Or; 5097 break; 5098 case BO_Xor: 5099 RMWOp = llvm::AtomicRMWInst::Xor; 5100 break; 5101 case BO_LT: 5102 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5103 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5104 : llvm::AtomicRMWInst::Max) 5105 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5106 : llvm::AtomicRMWInst::UMax); 5107 break; 5108 case BO_GT: 5109 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5110 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5111 : llvm::AtomicRMWInst::Min) 5112 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5113 : llvm::AtomicRMWInst::UMin); 5114 break; 5115 case BO_Assign: 5116 RMWOp = llvm::AtomicRMWInst::Xchg; 5117 break; 5118 case BO_Mul: 5119 case BO_Div: 5120 case BO_Rem: 5121 case BO_Shl: 5122 case BO_Shr: 5123 case BO_LAnd: 5124 case BO_LOr: 5125 return std::make_pair(false, RValue::get(nullptr)); 5126 case BO_PtrMemD: 5127 case BO_PtrMemI: 5128 case BO_LE: 5129 case BO_GE: 5130 case BO_EQ: 5131 case BO_NE: 5132 case BO_Cmp: 5133 case BO_AddAssign: 5134 case BO_SubAssign: 5135 case BO_AndAssign: 5136 case BO_OrAssign: 5137 case BO_XorAssign: 5138 case BO_MulAssign: 5139 case BO_DivAssign: 5140 case BO_RemAssign: 5141 case BO_ShlAssign: 5142 case BO_ShrAssign: 5143 case BO_Comma: 5144 llvm_unreachable("Unsupported atomic update operation"); 5145 } 5146 llvm::Value *UpdateVal = Update.getScalarVal(); 5147 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5148 UpdateVal = CGF.Builder.CreateIntCast( 5149 IC, X.getAddress(CGF).getElementType(), 5150 X.getType()->hasSignedIntegerRepresentation()); 5151 } 5152 llvm::Value *Res = 5153 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5154 return std::make_pair(true, RValue::get(Res)); 5155 } 5156 5157 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5158 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5159 llvm::AtomicOrdering AO, SourceLocation Loc, 5160 const llvm::function_ref<RValue(RValue)> CommonGen) { 5161 // Update expressions are allowed to have the following forms: 5162 // x binop= expr; -> xrval + expr; 5163 // x++, ++x -> xrval + 1; 5164 // x--, --x -> xrval - 1; 5165 // x = x binop expr; -> xrval binop expr 5166 // x = expr Op x; - > expr binop xrval; 5167 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5168 if (!Res.first) { 5169 if (X.isGlobalReg()) { 5170 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5171 // 'xrval'. 5172 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5173 } else { 5174 // Perform compare-and-swap procedure. 5175 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5176 } 5177 } 5178 return Res; 5179 } 5180 5181 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5182 llvm::AtomicOrdering AO, const Expr *X, 5183 const Expr *E, const Expr *UE, 5184 bool IsXLHSInRHSPart, SourceLocation Loc) { 5185 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5186 "Update expr in 'atomic update' must be a binary operator."); 5187 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5188 // Update expressions are allowed to have the following forms: 5189 // x binop= expr; -> xrval + expr; 5190 // x++, ++x -> xrval + 1; 5191 // x--, --x -> xrval - 1; 5192 // x = x binop expr; -> xrval binop expr 5193 // x = expr Op x; - > expr binop xrval; 5194 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5195 LValue XLValue = CGF.EmitLValue(X); 5196 RValue ExprRValue = CGF.EmitAnyExpr(E); 5197 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5198 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5199 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5200 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5201 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5202 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5203 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5204 return CGF.EmitAnyExpr(UE); 5205 }; 5206 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5207 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5208 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5209 // OpenMP, 2.17.7, atomic Construct 5210 // If the write, update, or capture clause is specified and the release, 5211 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5212 // the atomic operation is also a release flush. 5213 switch (AO) { 5214 case llvm::AtomicOrdering::Release: 5215 case llvm::AtomicOrdering::AcquireRelease: 5216 case llvm::AtomicOrdering::SequentiallyConsistent: 5217 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5218 llvm::AtomicOrdering::Release); 5219 break; 5220 case llvm::AtomicOrdering::Acquire: 5221 case llvm::AtomicOrdering::Monotonic: 5222 break; 5223 case llvm::AtomicOrdering::NotAtomic: 5224 case llvm::AtomicOrdering::Unordered: 5225 llvm_unreachable("Unexpected ordering."); 5226 } 5227 } 5228 5229 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5230 QualType SourceType, QualType ResType, 5231 SourceLocation Loc) { 5232 switch (CGF.getEvaluationKind(ResType)) { 5233 case TEK_Scalar: 5234 return RValue::get( 5235 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5236 case TEK_Complex: { 5237 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5238 return RValue::getComplex(Res.first, Res.second); 5239 } 5240 case TEK_Aggregate: 5241 break; 5242 } 5243 llvm_unreachable("Must be a scalar or complex."); 5244 } 5245 5246 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5247 llvm::AtomicOrdering AO, 5248 bool IsPostfixUpdate, const Expr *V, 5249 const Expr *X, const Expr *E, 5250 const Expr *UE, bool IsXLHSInRHSPart, 5251 SourceLocation Loc) { 5252 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5253 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5254 RValue NewVVal; 5255 LValue VLValue = CGF.EmitLValue(V); 5256 LValue XLValue = CGF.EmitLValue(X); 5257 RValue ExprRValue = CGF.EmitAnyExpr(E); 5258 QualType NewVValType; 5259 if (UE) { 5260 // 'x' is updated with some additional value. 5261 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5262 "Update expr in 'atomic capture' must be a binary operator."); 5263 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5264 // Update expressions are allowed to have the following forms: 5265 // x binop= expr; -> xrval + expr; 5266 // x++, ++x -> xrval + 1; 5267 // x--, --x -> xrval - 1; 5268 // x = x binop expr; -> xrval binop expr 5269 // x = expr Op x; - > expr binop xrval; 5270 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5271 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5272 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5273 NewVValType = XRValExpr->getType(); 5274 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5275 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5276 IsPostfixUpdate](RValue XRValue) { 5277 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5278 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5279 RValue Res = CGF.EmitAnyExpr(UE); 5280 NewVVal = IsPostfixUpdate ? XRValue : Res; 5281 return Res; 5282 }; 5283 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5284 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5285 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5286 if (Res.first) { 5287 // 'atomicrmw' instruction was generated. 5288 if (IsPostfixUpdate) { 5289 // Use old value from 'atomicrmw'. 5290 NewVVal = Res.second; 5291 } else { 5292 // 'atomicrmw' does not provide new value, so evaluate it using old 5293 // value of 'x'. 5294 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5295 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5296 NewVVal = CGF.EmitAnyExpr(UE); 5297 } 5298 } 5299 } else { 5300 // 'x' is simply rewritten with some 'expr'. 5301 NewVValType = X->getType().getNonReferenceType(); 5302 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5303 X->getType().getNonReferenceType(), Loc); 5304 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5305 NewVVal = XRValue; 5306 return ExprRValue; 5307 }; 5308 // Try to perform atomicrmw xchg, otherwise simple exchange. 5309 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5310 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5311 Loc, Gen); 5312 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5313 if (Res.first) { 5314 // 'atomicrmw' instruction was generated. 5315 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5316 } 5317 } 5318 // Emit post-update store to 'v' of old/new 'x' value. 5319 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5320 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5321 // OpenMP, 2.17.7, atomic Construct 5322 // If the write, update, or capture clause is specified and the release, 5323 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5324 // the atomic operation is also a release flush. 5325 // If the read or capture clause is specified and the acquire, acq_rel, or 5326 // seq_cst clause is specified then the strong flush on exit from the atomic 5327 // operation is also an acquire flush. 5328 switch (AO) { 5329 case llvm::AtomicOrdering::Release: 5330 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5331 llvm::AtomicOrdering::Release); 5332 break; 5333 case llvm::AtomicOrdering::Acquire: 5334 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5335 llvm::AtomicOrdering::Acquire); 5336 break; 5337 case llvm::AtomicOrdering::AcquireRelease: 5338 case llvm::AtomicOrdering::SequentiallyConsistent: 5339 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5340 llvm::AtomicOrdering::AcquireRelease); 5341 break; 5342 case llvm::AtomicOrdering::Monotonic: 5343 break; 5344 case llvm::AtomicOrdering::NotAtomic: 5345 case llvm::AtomicOrdering::Unordered: 5346 llvm_unreachable("Unexpected ordering."); 5347 } 5348 } 5349 5350 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5351 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5352 const Expr *X, const Expr *V, const Expr *E, 5353 const Expr *UE, bool IsXLHSInRHSPart, 5354 SourceLocation Loc) { 5355 switch (Kind) { 5356 case OMPC_read: 5357 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5358 break; 5359 case OMPC_write: 5360 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5361 break; 5362 case OMPC_unknown: 5363 case OMPC_update: 5364 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5365 break; 5366 case OMPC_capture: 5367 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5368 IsXLHSInRHSPart, Loc); 5369 break; 5370 case OMPC_if: 5371 case OMPC_final: 5372 case OMPC_num_threads: 5373 case OMPC_private: 5374 case OMPC_firstprivate: 5375 case OMPC_lastprivate: 5376 case OMPC_reduction: 5377 case OMPC_task_reduction: 5378 case OMPC_in_reduction: 5379 case OMPC_safelen: 5380 case OMPC_simdlen: 5381 case OMPC_sizes: 5382 case OMPC_allocator: 5383 case OMPC_allocate: 5384 case OMPC_collapse: 5385 case OMPC_default: 5386 case OMPC_seq_cst: 5387 case OMPC_acq_rel: 5388 case OMPC_acquire: 5389 case OMPC_release: 5390 case OMPC_relaxed: 5391 case OMPC_shared: 5392 case OMPC_linear: 5393 case OMPC_aligned: 5394 case OMPC_copyin: 5395 case OMPC_copyprivate: 5396 case OMPC_flush: 5397 case OMPC_depobj: 5398 case OMPC_proc_bind: 5399 case OMPC_schedule: 5400 case OMPC_ordered: 5401 case OMPC_nowait: 5402 case OMPC_untied: 5403 case OMPC_threadprivate: 5404 case OMPC_depend: 5405 case OMPC_mergeable: 5406 case OMPC_device: 5407 case OMPC_threads: 5408 case OMPC_simd: 5409 case OMPC_map: 5410 case OMPC_num_teams: 5411 case OMPC_thread_limit: 5412 case OMPC_priority: 5413 case OMPC_grainsize: 5414 case OMPC_nogroup: 5415 case OMPC_num_tasks: 5416 case OMPC_hint: 5417 case OMPC_dist_schedule: 5418 case OMPC_defaultmap: 5419 case OMPC_uniform: 5420 case OMPC_to: 5421 case OMPC_from: 5422 case OMPC_use_device_ptr: 5423 case OMPC_use_device_addr: 5424 case OMPC_is_device_ptr: 5425 case OMPC_unified_address: 5426 case OMPC_unified_shared_memory: 5427 case OMPC_reverse_offload: 5428 case OMPC_dynamic_allocators: 5429 case OMPC_atomic_default_mem_order: 5430 case OMPC_device_type: 5431 case OMPC_match: 5432 case OMPC_nontemporal: 5433 case OMPC_order: 5434 case OMPC_destroy: 5435 case OMPC_detach: 5436 case OMPC_inclusive: 5437 case OMPC_exclusive: 5438 case OMPC_uses_allocators: 5439 case OMPC_affinity: 5440 default: 5441 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5442 } 5443 } 5444 5445 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5446 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5447 bool MemOrderingSpecified = false; 5448 if (S.getSingleClause<OMPSeqCstClause>()) { 5449 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5450 MemOrderingSpecified = true; 5451 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5452 AO = llvm::AtomicOrdering::AcquireRelease; 5453 MemOrderingSpecified = true; 5454 } else if (S.getSingleClause<OMPAcquireClause>()) { 5455 AO = llvm::AtomicOrdering::Acquire; 5456 MemOrderingSpecified = true; 5457 } else if (S.getSingleClause<OMPReleaseClause>()) { 5458 AO = llvm::AtomicOrdering::Release; 5459 MemOrderingSpecified = true; 5460 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5461 AO = llvm::AtomicOrdering::Monotonic; 5462 MemOrderingSpecified = true; 5463 } 5464 OpenMPClauseKind Kind = OMPC_unknown; 5465 for (const OMPClause *C : S.clauses()) { 5466 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5467 // if it is first). 5468 if (C->getClauseKind() != OMPC_seq_cst && 5469 C->getClauseKind() != OMPC_acq_rel && 5470 C->getClauseKind() != OMPC_acquire && 5471 C->getClauseKind() != OMPC_release && 5472 C->getClauseKind() != OMPC_relaxed) { 5473 Kind = C->getClauseKind(); 5474 break; 5475 } 5476 } 5477 if (!MemOrderingSpecified) { 5478 llvm::AtomicOrdering DefaultOrder = 5479 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5480 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5481 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5482 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5483 Kind == OMPC_capture)) { 5484 AO = DefaultOrder; 5485 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5486 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5487 AO = llvm::AtomicOrdering::Release; 5488 } else if (Kind == OMPC_read) { 5489 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5490 AO = llvm::AtomicOrdering::Acquire; 5491 } 5492 } 5493 } 5494 5495 LexicalScope Scope(*this, S.getSourceRange()); 5496 EmitStopPoint(S.getAssociatedStmt()); 5497 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5498 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5499 S.getBeginLoc()); 5500 } 5501 5502 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5503 const OMPExecutableDirective &S, 5504 const RegionCodeGenTy &CodeGen) { 5505 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5506 CodeGenModule &CGM = CGF.CGM; 5507 5508 // On device emit this construct as inlined code. 5509 if (CGM.getLangOpts().OpenMPIsDevice) { 5510 OMPLexicalScope Scope(CGF, S, OMPD_target); 5511 CGM.getOpenMPRuntime().emitInlinedDirective( 5512 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5513 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5514 }); 5515 return; 5516 } 5517 5518 auto LPCRegion = 5519 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5520 llvm::Function *Fn = nullptr; 5521 llvm::Constant *FnID = nullptr; 5522 5523 const Expr *IfCond = nullptr; 5524 // Check for the at most one if clause associated with the target region. 5525 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5526 if (C->getNameModifier() == OMPD_unknown || 5527 C->getNameModifier() == OMPD_target) { 5528 IfCond = C->getCondition(); 5529 break; 5530 } 5531 } 5532 5533 // Check if we have any device clause associated with the directive. 5534 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5535 nullptr, OMPC_DEVICE_unknown); 5536 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5537 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5538 5539 // Check if we have an if clause whose conditional always evaluates to false 5540 // or if we do not have any targets specified. If so the target region is not 5541 // an offload entry point. 5542 bool IsOffloadEntry = true; 5543 if (IfCond) { 5544 bool Val; 5545 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5546 IsOffloadEntry = false; 5547 } 5548 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5549 IsOffloadEntry = false; 5550 5551 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5552 StringRef ParentName; 5553 // In case we have Ctors/Dtors we use the complete type variant to produce 5554 // the mangling of the device outlined kernel. 5555 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5556 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5557 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5558 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5559 else 5560 ParentName = 5561 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5562 5563 // Emit target region as a standalone region. 5564 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5565 IsOffloadEntry, CodeGen); 5566 OMPLexicalScope Scope(CGF, S, OMPD_task); 5567 auto &&SizeEmitter = 5568 [IsOffloadEntry](CodeGenFunction &CGF, 5569 const OMPLoopDirective &D) -> llvm::Value * { 5570 if (IsOffloadEntry) { 5571 OMPLoopScope(CGF, D); 5572 // Emit calculation of the iterations count. 5573 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 5574 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 5575 /*isSigned=*/false); 5576 return NumIterations; 5577 } 5578 return nullptr; 5579 }; 5580 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 5581 SizeEmitter); 5582 } 5583 5584 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 5585 PrePostActionTy &Action) { 5586 Action.Enter(CGF); 5587 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5588 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5589 CGF.EmitOMPPrivateClause(S, PrivateScope); 5590 (void)PrivateScope.Privatize(); 5591 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5592 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5593 5594 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 5595 } 5596 5597 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 5598 StringRef ParentName, 5599 const OMPTargetDirective &S) { 5600 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5601 emitTargetRegion(CGF, S, Action); 5602 }; 5603 llvm::Function *Fn; 5604 llvm::Constant *Addr; 5605 // Emit target region as a standalone region. 5606 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5607 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5608 assert(Fn && Addr && "Target device function emission failed."); 5609 } 5610 5611 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 5612 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5613 emitTargetRegion(CGF, S, Action); 5614 }; 5615 emitCommonOMPTargetDirective(*this, S, CodeGen); 5616 } 5617 5618 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 5619 const OMPExecutableDirective &S, 5620 OpenMPDirectiveKind InnermostKind, 5621 const RegionCodeGenTy &CodeGen) { 5622 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 5623 llvm::Function *OutlinedFn = 5624 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 5625 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 5626 5627 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 5628 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 5629 if (NT || TL) { 5630 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 5631 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 5632 5633 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 5634 S.getBeginLoc()); 5635 } 5636 5637 OMPTeamsScope Scope(CGF, S); 5638 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5639 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5640 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 5641 CapturedVars); 5642 } 5643 5644 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 5645 // Emit teams region as a standalone region. 5646 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5647 Action.Enter(CGF); 5648 OMPPrivateScope PrivateScope(CGF); 5649 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5650 CGF.EmitOMPPrivateClause(S, PrivateScope); 5651 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5652 (void)PrivateScope.Privatize(); 5653 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 5654 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5655 }; 5656 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5657 emitPostUpdateForReductionClause(*this, S, 5658 [](CodeGenFunction &) { return nullptr; }); 5659 } 5660 5661 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5662 const OMPTargetTeamsDirective &S) { 5663 auto *CS = S.getCapturedStmt(OMPD_teams); 5664 Action.Enter(CGF); 5665 // Emit teams region as a standalone region. 5666 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5667 Action.Enter(CGF); 5668 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5669 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5670 CGF.EmitOMPPrivateClause(S, PrivateScope); 5671 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5672 (void)PrivateScope.Privatize(); 5673 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5674 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5675 CGF.EmitStmt(CS->getCapturedStmt()); 5676 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5677 }; 5678 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 5679 emitPostUpdateForReductionClause(CGF, S, 5680 [](CodeGenFunction &) { return nullptr; }); 5681 } 5682 5683 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 5684 CodeGenModule &CGM, StringRef ParentName, 5685 const OMPTargetTeamsDirective &S) { 5686 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5687 emitTargetTeamsRegion(CGF, Action, S); 5688 }; 5689 llvm::Function *Fn; 5690 llvm::Constant *Addr; 5691 // Emit target region as a standalone region. 5692 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5693 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5694 assert(Fn && Addr && "Target device function emission failed."); 5695 } 5696 5697 void CodeGenFunction::EmitOMPTargetTeamsDirective( 5698 const OMPTargetTeamsDirective &S) { 5699 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5700 emitTargetTeamsRegion(CGF, Action, S); 5701 }; 5702 emitCommonOMPTargetDirective(*this, S, CodeGen); 5703 } 5704 5705 static void 5706 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5707 const OMPTargetTeamsDistributeDirective &S) { 5708 Action.Enter(CGF); 5709 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5710 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5711 }; 5712 5713 // Emit teams region as a standalone region. 5714 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5715 PrePostActionTy &Action) { 5716 Action.Enter(CGF); 5717 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5718 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5719 (void)PrivateScope.Privatize(); 5720 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5721 CodeGenDistribute); 5722 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5723 }; 5724 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 5725 emitPostUpdateForReductionClause(CGF, S, 5726 [](CodeGenFunction &) { return nullptr; }); 5727 } 5728 5729 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 5730 CodeGenModule &CGM, StringRef ParentName, 5731 const OMPTargetTeamsDistributeDirective &S) { 5732 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5733 emitTargetTeamsDistributeRegion(CGF, Action, S); 5734 }; 5735 llvm::Function *Fn; 5736 llvm::Constant *Addr; 5737 // Emit target region as a standalone region. 5738 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5739 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5740 assert(Fn && Addr && "Target device function emission failed."); 5741 } 5742 5743 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 5744 const OMPTargetTeamsDistributeDirective &S) { 5745 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5746 emitTargetTeamsDistributeRegion(CGF, Action, S); 5747 }; 5748 emitCommonOMPTargetDirective(*this, S, CodeGen); 5749 } 5750 5751 static void emitTargetTeamsDistributeSimdRegion( 5752 CodeGenFunction &CGF, PrePostActionTy &Action, 5753 const OMPTargetTeamsDistributeSimdDirective &S) { 5754 Action.Enter(CGF); 5755 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5756 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5757 }; 5758 5759 // Emit teams region as a standalone region. 5760 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5761 PrePostActionTy &Action) { 5762 Action.Enter(CGF); 5763 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5764 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5765 (void)PrivateScope.Privatize(); 5766 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5767 CodeGenDistribute); 5768 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5769 }; 5770 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 5771 emitPostUpdateForReductionClause(CGF, S, 5772 [](CodeGenFunction &) { return nullptr; }); 5773 } 5774 5775 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 5776 CodeGenModule &CGM, StringRef ParentName, 5777 const OMPTargetTeamsDistributeSimdDirective &S) { 5778 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5779 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5780 }; 5781 llvm::Function *Fn; 5782 llvm::Constant *Addr; 5783 // Emit target region as a standalone region. 5784 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5785 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5786 assert(Fn && Addr && "Target device function emission failed."); 5787 } 5788 5789 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 5790 const OMPTargetTeamsDistributeSimdDirective &S) { 5791 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5792 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5793 }; 5794 emitCommonOMPTargetDirective(*this, S, CodeGen); 5795 } 5796 5797 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 5798 const OMPTeamsDistributeDirective &S) { 5799 5800 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5801 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5802 }; 5803 5804 // Emit teams region as a standalone region. 5805 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5806 PrePostActionTy &Action) { 5807 Action.Enter(CGF); 5808 OMPPrivateScope PrivateScope(CGF); 5809 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5810 (void)PrivateScope.Privatize(); 5811 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5812 CodeGenDistribute); 5813 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5814 }; 5815 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5816 emitPostUpdateForReductionClause(*this, S, 5817 [](CodeGenFunction &) { return nullptr; }); 5818 } 5819 5820 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 5821 const OMPTeamsDistributeSimdDirective &S) { 5822 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5823 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5824 }; 5825 5826 // Emit teams region as a standalone region. 5827 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5828 PrePostActionTy &Action) { 5829 Action.Enter(CGF); 5830 OMPPrivateScope PrivateScope(CGF); 5831 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5832 (void)PrivateScope.Privatize(); 5833 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 5834 CodeGenDistribute); 5835 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5836 }; 5837 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 5838 emitPostUpdateForReductionClause(*this, S, 5839 [](CodeGenFunction &) { return nullptr; }); 5840 } 5841 5842 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 5843 const OMPTeamsDistributeParallelForDirective &S) { 5844 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5845 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5846 S.getDistInc()); 5847 }; 5848 5849 // Emit teams region as a standalone region. 5850 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5851 PrePostActionTy &Action) { 5852 Action.Enter(CGF); 5853 OMPPrivateScope PrivateScope(CGF); 5854 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5855 (void)PrivateScope.Privatize(); 5856 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5857 CodeGenDistribute); 5858 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5859 }; 5860 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 5861 emitPostUpdateForReductionClause(*this, S, 5862 [](CodeGenFunction &) { return nullptr; }); 5863 } 5864 5865 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 5866 const OMPTeamsDistributeParallelForSimdDirective &S) { 5867 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5868 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5869 S.getDistInc()); 5870 }; 5871 5872 // Emit teams region as a standalone region. 5873 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5874 PrePostActionTy &Action) { 5875 Action.Enter(CGF); 5876 OMPPrivateScope PrivateScope(CGF); 5877 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5878 (void)PrivateScope.Privatize(); 5879 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5880 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5881 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5882 }; 5883 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 5884 CodeGen); 5885 emitPostUpdateForReductionClause(*this, S, 5886 [](CodeGenFunction &) { return nullptr; }); 5887 } 5888 5889 static void emitTargetTeamsDistributeParallelForRegion( 5890 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 5891 PrePostActionTy &Action) { 5892 Action.Enter(CGF); 5893 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5894 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5895 S.getDistInc()); 5896 }; 5897 5898 // Emit teams region as a standalone region. 5899 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5900 PrePostActionTy &Action) { 5901 Action.Enter(CGF); 5902 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5903 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5904 (void)PrivateScope.Privatize(); 5905 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5906 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5907 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5908 }; 5909 5910 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 5911 CodeGenTeams); 5912 emitPostUpdateForReductionClause(CGF, S, 5913 [](CodeGenFunction &) { return nullptr; }); 5914 } 5915 5916 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5917 CodeGenModule &CGM, StringRef ParentName, 5918 const OMPTargetTeamsDistributeParallelForDirective &S) { 5919 // Emit SPMD target teams distribute parallel for region as a standalone 5920 // region. 5921 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5922 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5923 }; 5924 llvm::Function *Fn; 5925 llvm::Constant *Addr; 5926 // Emit target region as a standalone region. 5927 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5928 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5929 assert(Fn && Addr && "Target device function emission failed."); 5930 } 5931 5932 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5933 const OMPTargetTeamsDistributeParallelForDirective &S) { 5934 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5935 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5936 }; 5937 emitCommonOMPTargetDirective(*this, S, CodeGen); 5938 } 5939 5940 static void emitTargetTeamsDistributeParallelForSimdRegion( 5941 CodeGenFunction &CGF, 5942 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5943 PrePostActionTy &Action) { 5944 Action.Enter(CGF); 5945 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5946 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5947 S.getDistInc()); 5948 }; 5949 5950 // Emit teams region as a standalone region. 5951 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5952 PrePostActionTy &Action) { 5953 Action.Enter(CGF); 5954 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5955 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5956 (void)PrivateScope.Privatize(); 5957 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5958 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5959 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5960 }; 5961 5962 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5963 CodeGenTeams); 5964 emitPostUpdateForReductionClause(CGF, S, 5965 [](CodeGenFunction &) { return nullptr; }); 5966 } 5967 5968 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5969 CodeGenModule &CGM, StringRef ParentName, 5970 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5971 // Emit SPMD target teams distribute parallel for simd region as a standalone 5972 // region. 5973 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5974 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5975 }; 5976 llvm::Function *Fn; 5977 llvm::Constant *Addr; 5978 // Emit target region as a standalone region. 5979 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5980 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5981 assert(Fn && Addr && "Target device function emission failed."); 5982 } 5983 5984 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5985 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5986 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5987 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5988 }; 5989 emitCommonOMPTargetDirective(*this, S, CodeGen); 5990 } 5991 5992 void CodeGenFunction::EmitOMPCancellationPointDirective( 5993 const OMPCancellationPointDirective &S) { 5994 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5995 S.getCancelRegion()); 5996 } 5997 5998 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5999 const Expr *IfCond = nullptr; 6000 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6001 if (C->getNameModifier() == OMPD_unknown || 6002 C->getNameModifier() == OMPD_cancel) { 6003 IfCond = C->getCondition(); 6004 break; 6005 } 6006 } 6007 if (CGM.getLangOpts().OpenMPIRBuilder) { 6008 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6009 // TODO: This check is necessary as we only generate `omp parallel` through 6010 // the OpenMPIRBuilder for now. 6011 if (S.getCancelRegion() == OMPD_parallel) { 6012 llvm::Value *IfCondition = nullptr; 6013 if (IfCond) 6014 IfCondition = EmitScalarExpr(IfCond, 6015 /*IgnoreResultAssign=*/true); 6016 return Builder.restoreIP( 6017 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6018 } 6019 } 6020 6021 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6022 S.getCancelRegion()); 6023 } 6024 6025 CodeGenFunction::JumpDest 6026 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6027 if (Kind == OMPD_parallel || Kind == OMPD_task || 6028 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6029 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6030 return ReturnBlock; 6031 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6032 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6033 Kind == OMPD_distribute_parallel_for || 6034 Kind == OMPD_target_parallel_for || 6035 Kind == OMPD_teams_distribute_parallel_for || 6036 Kind == OMPD_target_teams_distribute_parallel_for); 6037 return OMPCancelStack.getExitBlock(); 6038 } 6039 6040 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6041 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6042 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6043 auto OrigVarIt = C.varlist_begin(); 6044 auto InitIt = C.inits().begin(); 6045 for (const Expr *PvtVarIt : C.private_copies()) { 6046 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6047 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6048 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6049 6050 // In order to identify the right initializer we need to match the 6051 // declaration used by the mapping logic. In some cases we may get 6052 // OMPCapturedExprDecl that refers to the original declaration. 6053 const ValueDecl *MatchingVD = OrigVD; 6054 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6055 // OMPCapturedExprDecl are used to privative fields of the current 6056 // structure. 6057 const auto *ME = cast<MemberExpr>(OED->getInit()); 6058 assert(isa<CXXThisExpr>(ME->getBase()) && 6059 "Base should be the current struct!"); 6060 MatchingVD = ME->getMemberDecl(); 6061 } 6062 6063 // If we don't have information about the current list item, move on to 6064 // the next one. 6065 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6066 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6067 continue; 6068 6069 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 6070 InitAddrIt, InitVD, 6071 PvtVD]() { 6072 // Initialize the temporary initialization variable with the address we 6073 // get from the runtime library. We have to cast the source address 6074 // because it is always a void *. References are materialized in the 6075 // privatization scope, so the initialization here disregards the fact 6076 // the original variable is a reference. 6077 QualType AddrQTy = 6078 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 6079 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6080 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6081 setAddrOfLocalVar(InitVD, InitAddr); 6082 6083 // Emit private declaration, it will be initialized by the value we 6084 // declaration we just added to the local declarations map. 6085 EmitDecl(*PvtVD); 6086 6087 // The initialization variables reached its purpose in the emission 6088 // of the previous declaration, so we don't need it anymore. 6089 LocalDeclMap.erase(InitVD); 6090 6091 // Return the address of the private variable. 6092 return GetAddrOfLocalVar(PvtVD); 6093 }); 6094 assert(IsRegistered && "firstprivate var already registered as private"); 6095 // Silence the warning about unused variable. 6096 (void)IsRegistered; 6097 6098 ++OrigVarIt; 6099 ++InitIt; 6100 } 6101 } 6102 6103 static const VarDecl *getBaseDecl(const Expr *Ref) { 6104 const Expr *Base = Ref->IgnoreParenImpCasts(); 6105 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6106 Base = OASE->getBase()->IgnoreParenImpCasts(); 6107 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6108 Base = ASE->getBase()->IgnoreParenImpCasts(); 6109 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6110 } 6111 6112 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6113 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6114 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6115 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6116 for (const Expr *Ref : C.varlists()) { 6117 const VarDecl *OrigVD = getBaseDecl(Ref); 6118 if (!Processed.insert(OrigVD).second) 6119 continue; 6120 // In order to identify the right initializer we need to match the 6121 // declaration used by the mapping logic. In some cases we may get 6122 // OMPCapturedExprDecl that refers to the original declaration. 6123 const ValueDecl *MatchingVD = OrigVD; 6124 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6125 // OMPCapturedExprDecl are used to privative fields of the current 6126 // structure. 6127 const auto *ME = cast<MemberExpr>(OED->getInit()); 6128 assert(isa<CXXThisExpr>(ME->getBase()) && 6129 "Base should be the current struct!"); 6130 MatchingVD = ME->getMemberDecl(); 6131 } 6132 6133 // If we don't have information about the current list item, move on to 6134 // the next one. 6135 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6136 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6137 continue; 6138 6139 Address PrivAddr = InitAddrIt->getSecond(); 6140 // For declrefs and variable length array need to load the pointer for 6141 // correct mapping, since the pointer to the data was passed to the runtime. 6142 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6143 MatchingVD->getType()->isArrayType()) 6144 PrivAddr = 6145 EmitLoadOfPointer(PrivAddr, getContext() 6146 .getPointerType(OrigVD->getType()) 6147 ->castAs<PointerType>()); 6148 llvm::Type *RealTy = 6149 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6150 ->getPointerTo(); 6151 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6152 6153 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6154 } 6155 } 6156 6157 // Generate the instructions for '#pragma omp target data' directive. 6158 void CodeGenFunction::EmitOMPTargetDataDirective( 6159 const OMPTargetDataDirective &S) { 6160 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6161 /*SeparateBeginEndCalls=*/true); 6162 6163 // Create a pre/post action to signal the privatization of the device pointer. 6164 // This action can be replaced by the OpenMP runtime code generation to 6165 // deactivate privatization. 6166 bool PrivatizeDevicePointers = false; 6167 class DevicePointerPrivActionTy : public PrePostActionTy { 6168 bool &PrivatizeDevicePointers; 6169 6170 public: 6171 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6172 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6173 void Enter(CodeGenFunction &CGF) override { 6174 PrivatizeDevicePointers = true; 6175 } 6176 }; 6177 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6178 6179 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6180 CodeGenFunction &CGF, PrePostActionTy &Action) { 6181 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6182 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6183 }; 6184 6185 // Codegen that selects whether to generate the privatization code or not. 6186 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6187 &InnermostCodeGen](CodeGenFunction &CGF, 6188 PrePostActionTy &Action) { 6189 RegionCodeGenTy RCG(InnermostCodeGen); 6190 PrivatizeDevicePointers = false; 6191 6192 // Call the pre-action to change the status of PrivatizeDevicePointers if 6193 // needed. 6194 Action.Enter(CGF); 6195 6196 if (PrivatizeDevicePointers) { 6197 OMPPrivateScope PrivateScope(CGF); 6198 // Emit all instances of the use_device_ptr clause. 6199 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6200 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6201 Info.CaptureDeviceAddrMap); 6202 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6203 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6204 Info.CaptureDeviceAddrMap); 6205 (void)PrivateScope.Privatize(); 6206 RCG(CGF); 6207 } else { 6208 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6209 RCG(CGF); 6210 } 6211 }; 6212 6213 // Forward the provided action to the privatization codegen. 6214 RegionCodeGenTy PrivRCG(PrivCodeGen); 6215 PrivRCG.setAction(Action); 6216 6217 // Notwithstanding the body of the region is emitted as inlined directive, 6218 // we don't use an inline scope as changes in the references inside the 6219 // region are expected to be visible outside, so we do not privative them. 6220 OMPLexicalScope Scope(CGF, S); 6221 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6222 PrivRCG); 6223 }; 6224 6225 RegionCodeGenTy RCG(CodeGen); 6226 6227 // If we don't have target devices, don't bother emitting the data mapping 6228 // code. 6229 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6230 RCG(*this); 6231 return; 6232 } 6233 6234 // Check if we have any if clause associated with the directive. 6235 const Expr *IfCond = nullptr; 6236 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6237 IfCond = C->getCondition(); 6238 6239 // Check if we have any device clause associated with the directive. 6240 const Expr *Device = nullptr; 6241 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6242 Device = C->getDevice(); 6243 6244 // Set the action to signal privatization of device pointers. 6245 RCG.setAction(PrivAction); 6246 6247 // Emit region code. 6248 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6249 Info); 6250 } 6251 6252 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6253 const OMPTargetEnterDataDirective &S) { 6254 // If we don't have target devices, don't bother emitting the data mapping 6255 // code. 6256 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6257 return; 6258 6259 // Check if we have any if clause associated with the directive. 6260 const Expr *IfCond = nullptr; 6261 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6262 IfCond = C->getCondition(); 6263 6264 // Check if we have any device clause associated with the directive. 6265 const Expr *Device = nullptr; 6266 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6267 Device = C->getDevice(); 6268 6269 OMPLexicalScope Scope(*this, S, OMPD_task); 6270 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6271 } 6272 6273 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6274 const OMPTargetExitDataDirective &S) { 6275 // If we don't have target devices, don't bother emitting the data mapping 6276 // code. 6277 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6278 return; 6279 6280 // Check if we have any if clause associated with the directive. 6281 const Expr *IfCond = nullptr; 6282 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6283 IfCond = C->getCondition(); 6284 6285 // Check if we have any device clause associated with the directive. 6286 const Expr *Device = nullptr; 6287 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6288 Device = C->getDevice(); 6289 6290 OMPLexicalScope Scope(*this, S, OMPD_task); 6291 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6292 } 6293 6294 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6295 const OMPTargetParallelDirective &S, 6296 PrePostActionTy &Action) { 6297 // Get the captured statement associated with the 'parallel' region. 6298 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6299 Action.Enter(CGF); 6300 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6301 Action.Enter(CGF); 6302 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6303 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6304 CGF.EmitOMPPrivateClause(S, PrivateScope); 6305 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6306 (void)PrivateScope.Privatize(); 6307 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6308 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6309 // TODO: Add support for clauses. 6310 CGF.EmitStmt(CS->getCapturedStmt()); 6311 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6312 }; 6313 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6314 emitEmptyBoundParameters); 6315 emitPostUpdateForReductionClause(CGF, S, 6316 [](CodeGenFunction &) { return nullptr; }); 6317 } 6318 6319 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6320 CodeGenModule &CGM, StringRef ParentName, 6321 const OMPTargetParallelDirective &S) { 6322 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6323 emitTargetParallelRegion(CGF, S, Action); 6324 }; 6325 llvm::Function *Fn; 6326 llvm::Constant *Addr; 6327 // Emit target region as a standalone region. 6328 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6329 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6330 assert(Fn && Addr && "Target device function emission failed."); 6331 } 6332 6333 void CodeGenFunction::EmitOMPTargetParallelDirective( 6334 const OMPTargetParallelDirective &S) { 6335 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6336 emitTargetParallelRegion(CGF, S, Action); 6337 }; 6338 emitCommonOMPTargetDirective(*this, S, CodeGen); 6339 } 6340 6341 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6342 const OMPTargetParallelForDirective &S, 6343 PrePostActionTy &Action) { 6344 Action.Enter(CGF); 6345 // Emit directive as a combined directive that consists of two implicit 6346 // directives: 'parallel' with 'for' directive. 6347 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6348 Action.Enter(CGF); 6349 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6350 CGF, OMPD_target_parallel_for, S.hasCancel()); 6351 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6352 emitDispatchForLoopBounds); 6353 }; 6354 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6355 emitEmptyBoundParameters); 6356 } 6357 6358 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6359 CodeGenModule &CGM, StringRef ParentName, 6360 const OMPTargetParallelForDirective &S) { 6361 // Emit SPMD target parallel for region as a standalone region. 6362 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6363 emitTargetParallelForRegion(CGF, S, Action); 6364 }; 6365 llvm::Function *Fn; 6366 llvm::Constant *Addr; 6367 // Emit target region as a standalone region. 6368 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6369 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6370 assert(Fn && Addr && "Target device function emission failed."); 6371 } 6372 6373 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6374 const OMPTargetParallelForDirective &S) { 6375 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6376 emitTargetParallelForRegion(CGF, S, Action); 6377 }; 6378 emitCommonOMPTargetDirective(*this, S, CodeGen); 6379 } 6380 6381 static void 6382 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6383 const OMPTargetParallelForSimdDirective &S, 6384 PrePostActionTy &Action) { 6385 Action.Enter(CGF); 6386 // Emit directive as a combined directive that consists of two implicit 6387 // directives: 'parallel' with 'for' directive. 6388 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6389 Action.Enter(CGF); 6390 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6391 emitDispatchForLoopBounds); 6392 }; 6393 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6394 emitEmptyBoundParameters); 6395 } 6396 6397 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6398 CodeGenModule &CGM, StringRef ParentName, 6399 const OMPTargetParallelForSimdDirective &S) { 6400 // Emit SPMD target parallel for region as a standalone region. 6401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6402 emitTargetParallelForSimdRegion(CGF, S, Action); 6403 }; 6404 llvm::Function *Fn; 6405 llvm::Constant *Addr; 6406 // Emit target region as a standalone region. 6407 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6408 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6409 assert(Fn && Addr && "Target device function emission failed."); 6410 } 6411 6412 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6413 const OMPTargetParallelForSimdDirective &S) { 6414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6415 emitTargetParallelForSimdRegion(CGF, S, Action); 6416 }; 6417 emitCommonOMPTargetDirective(*this, S, CodeGen); 6418 } 6419 6420 /// Emit a helper variable and return corresponding lvalue. 6421 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6422 const ImplicitParamDecl *PVD, 6423 CodeGenFunction::OMPPrivateScope &Privates) { 6424 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6425 Privates.addPrivate(VDecl, 6426 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6427 } 6428 6429 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6430 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6431 // Emit outlined function for task construct. 6432 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6433 Address CapturedStruct = Address::invalid(); 6434 { 6435 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6436 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6437 } 6438 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6439 const Expr *IfCond = nullptr; 6440 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6441 if (C->getNameModifier() == OMPD_unknown || 6442 C->getNameModifier() == OMPD_taskloop) { 6443 IfCond = C->getCondition(); 6444 break; 6445 } 6446 } 6447 6448 OMPTaskDataTy Data; 6449 // Check if taskloop must be emitted without taskgroup. 6450 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6451 // TODO: Check if we should emit tied or untied task. 6452 Data.Tied = true; 6453 // Set scheduling for taskloop 6454 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6455 // grainsize clause 6456 Data.Schedule.setInt(/*IntVal=*/false); 6457 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6458 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6459 // num_tasks clause 6460 Data.Schedule.setInt(/*IntVal=*/true); 6461 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6462 } 6463 6464 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6465 // if (PreCond) { 6466 // for (IV in 0..LastIteration) BODY; 6467 // <Final counter/linear vars updates>; 6468 // } 6469 // 6470 6471 // Emit: if (PreCond) - begin. 6472 // If the condition constant folds and can be elided, avoid emitting the 6473 // whole loop. 6474 bool CondConstant; 6475 llvm::BasicBlock *ContBlock = nullptr; 6476 OMPLoopScope PreInitScope(CGF, S); 6477 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6478 if (!CondConstant) 6479 return; 6480 } else { 6481 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6482 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6483 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6484 CGF.getProfileCount(&S)); 6485 CGF.EmitBlock(ThenBlock); 6486 CGF.incrementProfileCounter(&S); 6487 } 6488 6489 (void)CGF.EmitOMPLinearClauseInit(S); 6490 6491 OMPPrivateScope LoopScope(CGF); 6492 // Emit helper vars inits. 6493 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6494 auto *I = CS->getCapturedDecl()->param_begin(); 6495 auto *LBP = std::next(I, LowerBound); 6496 auto *UBP = std::next(I, UpperBound); 6497 auto *STP = std::next(I, Stride); 6498 auto *LIP = std::next(I, LastIter); 6499 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6500 LoopScope); 6501 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6502 LoopScope); 6503 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6504 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6505 LoopScope); 6506 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6507 CGF.EmitOMPLinearClause(S, LoopScope); 6508 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6509 (void)LoopScope.Privatize(); 6510 // Emit the loop iteration variable. 6511 const Expr *IVExpr = S.getIterationVariable(); 6512 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6513 CGF.EmitVarDecl(*IVDecl); 6514 CGF.EmitIgnoredExpr(S.getInit()); 6515 6516 // Emit the iterations count variable. 6517 // If it is not a variable, Sema decided to calculate iterations count on 6518 // each iteration (e.g., it is foldable into a constant). 6519 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6520 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6521 // Emit calculation of the iterations count. 6522 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6523 } 6524 6525 { 6526 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6527 emitCommonSimdLoop( 6528 CGF, S, 6529 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6530 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6531 CGF.EmitOMPSimdInit(S); 6532 }, 6533 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6534 CGF.EmitOMPInnerLoop( 6535 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6536 [&S](CodeGenFunction &CGF) { 6537 emitOMPLoopBodyWithStopPoint(CGF, S, 6538 CodeGenFunction::JumpDest()); 6539 }, 6540 [](CodeGenFunction &) {}); 6541 }); 6542 } 6543 // Emit: if (PreCond) - end. 6544 if (ContBlock) { 6545 CGF.EmitBranch(ContBlock); 6546 CGF.EmitBlock(ContBlock, true); 6547 } 6548 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6549 if (HasLastprivateClause) { 6550 CGF.EmitOMPLastprivateClauseFinal( 6551 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6552 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6553 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6554 (*LIP)->getType(), S.getBeginLoc()))); 6555 } 6556 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6557 return CGF.Builder.CreateIsNotNull( 6558 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6559 (*LIP)->getType(), S.getBeginLoc())); 6560 }); 6561 }; 6562 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6563 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6564 const OMPTaskDataTy &Data) { 6565 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6566 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6567 OMPLoopScope PreInitScope(CGF, S); 6568 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6569 OutlinedFn, SharedsTy, 6570 CapturedStruct, IfCond, Data); 6571 }; 6572 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 6573 CodeGen); 6574 }; 6575 if (Data.Nogroup) { 6576 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 6577 } else { 6578 CGM.getOpenMPRuntime().emitTaskgroupRegion( 6579 *this, 6580 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 6581 PrePostActionTy &Action) { 6582 Action.Enter(CGF); 6583 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 6584 Data); 6585 }, 6586 S.getBeginLoc()); 6587 } 6588 } 6589 6590 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 6591 auto LPCRegion = 6592 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6593 EmitOMPTaskLoopBasedDirective(S); 6594 } 6595 6596 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 6597 const OMPTaskLoopSimdDirective &S) { 6598 auto LPCRegion = 6599 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6600 OMPLexicalScope Scope(*this, S); 6601 EmitOMPTaskLoopBasedDirective(S); 6602 } 6603 6604 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 6605 const OMPMasterTaskLoopDirective &S) { 6606 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6607 Action.Enter(CGF); 6608 EmitOMPTaskLoopBasedDirective(S); 6609 }; 6610 auto LPCRegion = 6611 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6612 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 6613 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6614 } 6615 6616 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 6617 const OMPMasterTaskLoopSimdDirective &S) { 6618 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6619 Action.Enter(CGF); 6620 EmitOMPTaskLoopBasedDirective(S); 6621 }; 6622 auto LPCRegion = 6623 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6624 OMPLexicalScope Scope(*this, S); 6625 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6626 } 6627 6628 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 6629 const OMPParallelMasterTaskLoopDirective &S) { 6630 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6631 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6632 PrePostActionTy &Action) { 6633 Action.Enter(CGF); 6634 CGF.EmitOMPTaskLoopBasedDirective(S); 6635 }; 6636 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6637 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6638 S.getBeginLoc()); 6639 }; 6640 auto LPCRegion = 6641 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6642 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 6643 emitEmptyBoundParameters); 6644 } 6645 6646 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 6647 const OMPParallelMasterTaskLoopSimdDirective &S) { 6648 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6649 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6650 PrePostActionTy &Action) { 6651 Action.Enter(CGF); 6652 CGF.EmitOMPTaskLoopBasedDirective(S); 6653 }; 6654 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6655 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6656 S.getBeginLoc()); 6657 }; 6658 auto LPCRegion = 6659 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6660 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 6661 emitEmptyBoundParameters); 6662 } 6663 6664 // Generate the instructions for '#pragma omp target update' directive. 6665 void CodeGenFunction::EmitOMPTargetUpdateDirective( 6666 const OMPTargetUpdateDirective &S) { 6667 // If we don't have target devices, don't bother emitting the data mapping 6668 // code. 6669 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6670 return; 6671 6672 // Check if we have any if clause associated with the directive. 6673 const Expr *IfCond = nullptr; 6674 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6675 IfCond = C->getCondition(); 6676 6677 // Check if we have any device clause associated with the directive. 6678 const Expr *Device = nullptr; 6679 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6680 Device = C->getDevice(); 6681 6682 OMPLexicalScope Scope(*this, S, OMPD_task); 6683 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6684 } 6685 6686 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 6687 const OMPExecutableDirective &D) { 6688 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 6689 EmitOMPScanDirective(*SD); 6690 return; 6691 } 6692 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 6693 return; 6694 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 6695 OMPPrivateScope GlobalsScope(CGF); 6696 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 6697 // Capture global firstprivates to avoid crash. 6698 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 6699 for (const Expr *Ref : C->varlists()) { 6700 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 6701 if (!DRE) 6702 continue; 6703 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6704 if (!VD || VD->hasLocalStorage()) 6705 continue; 6706 if (!CGF.LocalDeclMap.count(VD)) { 6707 LValue GlobLVal = CGF.EmitLValue(Ref); 6708 GlobalsScope.addPrivate( 6709 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6710 } 6711 } 6712 } 6713 } 6714 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 6715 (void)GlobalsScope.Privatize(); 6716 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 6717 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 6718 } else { 6719 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 6720 for (const Expr *E : LD->counters()) { 6721 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 6722 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 6723 LValue GlobLVal = CGF.EmitLValue(E); 6724 GlobalsScope.addPrivate( 6725 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6726 } 6727 if (isa<OMPCapturedExprDecl>(VD)) { 6728 // Emit only those that were not explicitly referenced in clauses. 6729 if (!CGF.LocalDeclMap.count(VD)) 6730 CGF.EmitVarDecl(*VD); 6731 } 6732 } 6733 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 6734 if (!C->getNumForLoops()) 6735 continue; 6736 for (unsigned I = LD->getLoopsNumber(), 6737 E = C->getLoopNumIterations().size(); 6738 I < E; ++I) { 6739 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 6740 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 6741 // Emit only those that were not explicitly referenced in clauses. 6742 if (!CGF.LocalDeclMap.count(VD)) 6743 CGF.EmitVarDecl(*VD); 6744 } 6745 } 6746 } 6747 } 6748 (void)GlobalsScope.Privatize(); 6749 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 6750 } 6751 }; 6752 if (D.getDirectiveKind() == OMPD_atomic || 6753 D.getDirectiveKind() == OMPD_critical || 6754 D.getDirectiveKind() == OMPD_section || 6755 D.getDirectiveKind() == OMPD_master) { 6756 EmitStmt(D.getAssociatedStmt()); 6757 } else { 6758 auto LPCRegion = 6759 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 6760 OMPSimdLexicalScope Scope(*this, D); 6761 CGM.getOpenMPRuntime().emitInlinedDirective( 6762 *this, 6763 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 6764 : D.getDirectiveKind(), 6765 CodeGen); 6766 } 6767 // Check for outer lastprivate conditional update. 6768 checkForLastprivateConditionalUpdate(*this, D); 6769 } 6770