1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 32 /// for captured expressions. 33 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 34 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 35 for (const auto *C : S.clauses()) { 36 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 37 if (const auto *PreInit = 38 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 39 for (const auto *I : PreInit->decls()) { 40 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 41 CGF.EmitVarDecl(cast<VarDecl>(*I)); 42 } else { 43 CodeGenFunction::AutoVarEmission Emission = 44 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 45 CGF.EmitAutoVarCleanups(Emission); 46 } 47 } 48 } 49 } 50 } 51 } 52 CodeGenFunction::OMPPrivateScope InlinedShareds; 53 54 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 55 return CGF.LambdaCaptureFields.lookup(VD) || 56 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 57 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 58 } 59 60 public: 61 OMPLexicalScope( 62 CodeGenFunction &CGF, const OMPExecutableDirective &S, 63 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 64 const bool EmitPreInitStmt = true) 65 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 66 InlinedShareds(CGF) { 67 if (EmitPreInitStmt) 68 emitPreInitStmt(CGF, S); 69 if (!CapturedRegion.hasValue()) 70 return; 71 assert(S.hasAssociatedStmt() && 72 "Expected associated statement for inlined directive."); 73 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 74 for (const auto &C : CS->captures()) { 75 if (C.capturesVariable() || C.capturesVariableByCopy()) { 76 auto *VD = C.getCapturedVar(); 77 assert(VD == VD->getCanonicalDecl() && 78 "Canonical decl must be captured."); 79 DeclRefExpr DRE( 80 CGF.getContext(), const_cast<VarDecl *>(VD), 81 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 82 InlinedShareds.isGlobalVarCaptured(VD)), 83 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 84 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 85 return CGF.EmitLValue(&DRE).getAddress(CGF); 86 }); 87 } 88 } 89 (void)InlinedShareds.Privatize(); 90 } 91 }; 92 93 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 94 /// for captured expressions. 95 class OMPParallelScope final : public OMPLexicalScope { 96 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 97 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 98 return !(isOpenMPTargetExecutionDirective(Kind) || 99 isOpenMPLoopBoundSharingDirective(Kind)) && 100 isOpenMPParallelDirective(Kind); 101 } 102 103 public: 104 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 105 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 106 EmitPreInitStmt(S)) {} 107 }; 108 109 /// Lexical scope for OpenMP teams construct, that handles correct codegen 110 /// for captured expressions. 111 class OMPTeamsScope final : public OMPLexicalScope { 112 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 113 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 114 return !isOpenMPTargetExecutionDirective(Kind) && 115 isOpenMPTeamsDirective(Kind); 116 } 117 118 public: 119 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 120 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 121 EmitPreInitStmt(S)) {} 122 }; 123 124 /// Private scope for OpenMP loop-based directives, that supports capturing 125 /// of used expression from loop statement. 126 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 127 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 128 CodeGenFunction::OMPMapVars PreCondVars; 129 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 130 for (const auto *E : S.counters()) { 131 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 132 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 133 (void)PreCondVars.setVarAddr( 134 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 135 } 136 // Mark private vars as undefs. 137 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 138 for (const Expr *IRef : C->varlists()) { 139 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 140 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 141 (void)PreCondVars.setVarAddr( 142 CGF, OrigVD, 143 Address(llvm::UndefValue::get( 144 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 145 OrigVD->getType().getNonReferenceType()))), 146 CGF.getContext().getDeclAlign(OrigVD))); 147 } 148 } 149 } 150 (void)PreCondVars.apply(CGF); 151 // Emit init, __range and __end variables for C++ range loops. 152 const Stmt *Body = 153 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 154 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 155 Body = OMPLoopDirective::tryToFindNextInnerLoop( 156 Body, /*TryImperfectlyNestedLoops=*/true); 157 if (auto *For = dyn_cast<ForStmt>(Body)) { 158 Body = For->getBody(); 159 } else { 160 assert(isa<CXXForRangeStmt>(Body) && 161 "Expected canonical for loop or range-based for loop."); 162 auto *CXXFor = cast<CXXForRangeStmt>(Body); 163 if (const Stmt *Init = CXXFor->getInit()) 164 CGF.EmitStmt(Init); 165 CGF.EmitStmt(CXXFor->getRangeStmt()); 166 CGF.EmitStmt(CXXFor->getEndStmt()); 167 Body = CXXFor->getBody(); 168 } 169 } 170 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 171 for (const auto *I : PreInits->decls()) 172 CGF.EmitVarDecl(cast<VarDecl>(*I)); 173 } 174 PreCondVars.restore(CGF); 175 } 176 177 public: 178 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 179 : CodeGenFunction::RunCleanupsScope(CGF) { 180 emitPreInitStmt(CGF, S); 181 } 182 }; 183 184 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 185 CodeGenFunction::OMPPrivateScope InlinedShareds; 186 187 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 188 return CGF.LambdaCaptureFields.lookup(VD) || 189 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 190 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 191 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 192 } 193 194 public: 195 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 196 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 197 InlinedShareds(CGF) { 198 for (const auto *C : S.clauses()) { 199 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 200 if (const auto *PreInit = 201 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 202 for (const auto *I : PreInit->decls()) { 203 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 204 CGF.EmitVarDecl(cast<VarDecl>(*I)); 205 } else { 206 CodeGenFunction::AutoVarEmission Emission = 207 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 208 CGF.EmitAutoVarCleanups(Emission); 209 } 210 } 211 } 212 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 213 for (const Expr *E : UDP->varlists()) { 214 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 215 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 216 CGF.EmitVarDecl(*OED); 217 } 218 } 219 } 220 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 221 CGF.EmitOMPPrivateClause(S, InlinedShareds); 222 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 223 if (const Expr *E = TG->getReductionRef()) 224 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 225 } 226 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 227 while (CS) { 228 for (auto &C : CS->captures()) { 229 if (C.capturesVariable() || C.capturesVariableByCopy()) { 230 auto *VD = C.getCapturedVar(); 231 assert(VD == VD->getCanonicalDecl() && 232 "Canonical decl must be captured."); 233 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 234 isCapturedVar(CGF, VD) || 235 (CGF.CapturedStmtInfo && 236 InlinedShareds.isGlobalVarCaptured(VD)), 237 VD->getType().getNonReferenceType(), VK_LValue, 238 C.getLocation()); 239 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 240 return CGF.EmitLValue(&DRE).getAddress(CGF); 241 }); 242 } 243 } 244 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 245 } 246 (void)InlinedShareds.Privatize(); 247 } 248 }; 249 250 } // namespace 251 252 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 253 const OMPExecutableDirective &S, 254 const RegionCodeGenTy &CodeGen); 255 256 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 257 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 258 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 259 OrigVD = OrigVD->getCanonicalDecl(); 260 bool IsCaptured = 261 LambdaCaptureFields.lookup(OrigVD) || 262 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 263 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 264 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 265 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 266 return EmitLValue(&DRE); 267 } 268 } 269 return EmitLValue(E); 270 } 271 272 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 273 ASTContext &C = getContext(); 274 llvm::Value *Size = nullptr; 275 auto SizeInChars = C.getTypeSizeInChars(Ty); 276 if (SizeInChars.isZero()) { 277 // getTypeSizeInChars() returns 0 for a VLA. 278 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 279 VlaSizePair VlaSize = getVLASize(VAT); 280 Ty = VlaSize.Type; 281 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 282 : VlaSize.NumElts; 283 } 284 SizeInChars = C.getTypeSizeInChars(Ty); 285 if (SizeInChars.isZero()) 286 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 287 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 288 } 289 return CGM.getSize(SizeInChars); 290 } 291 292 void CodeGenFunction::GenerateOpenMPCapturedVars( 293 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 294 const RecordDecl *RD = S.getCapturedRecordDecl(); 295 auto CurField = RD->field_begin(); 296 auto CurCap = S.captures().begin(); 297 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 298 E = S.capture_init_end(); 299 I != E; ++I, ++CurField, ++CurCap) { 300 if (CurField->hasCapturedVLAType()) { 301 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 302 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 303 CapturedVars.push_back(Val); 304 } else if (CurCap->capturesThis()) { 305 CapturedVars.push_back(CXXThisValue); 306 } else if (CurCap->capturesVariableByCopy()) { 307 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 308 309 // If the field is not a pointer, we need to save the actual value 310 // and load it as a void pointer. 311 if (!CurField->getType()->isAnyPointerType()) { 312 ASTContext &Ctx = getContext(); 313 Address DstAddr = CreateMemTemp( 314 Ctx.getUIntPtrType(), 315 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 316 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 317 318 llvm::Value *SrcAddrVal = EmitScalarConversion( 319 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 320 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 321 LValue SrcLV = 322 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 323 324 // Store the value using the source type pointer. 325 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 326 327 // Load the value using the destination type pointer. 328 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 329 } 330 CapturedVars.push_back(CV); 331 } else { 332 assert(CurCap->capturesVariable() && "Expected capture by reference."); 333 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 334 } 335 } 336 } 337 338 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 339 QualType DstType, StringRef Name, 340 LValue AddrLV) { 341 ASTContext &Ctx = CGF.getContext(); 342 343 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 344 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 345 Ctx.getPointerType(DstType), Loc); 346 Address TmpAddr = 347 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 348 .getAddress(CGF); 349 return TmpAddr; 350 } 351 352 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 353 if (T->isLValueReferenceType()) 354 return C.getLValueReferenceType( 355 getCanonicalParamType(C, T.getNonReferenceType()), 356 /*SpelledAsLValue=*/false); 357 if (T->isPointerType()) 358 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 359 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 360 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 361 return getCanonicalParamType(C, VLA->getElementType()); 362 if (!A->isVariablyModifiedType()) 363 return C.getCanonicalType(T); 364 } 365 return C.getCanonicalParamType(T); 366 } 367 368 namespace { 369 /// Contains required data for proper outlined function codegen. 370 struct FunctionOptions { 371 /// Captured statement for which the function is generated. 372 const CapturedStmt *S = nullptr; 373 /// true if cast to/from UIntPtr is required for variables captured by 374 /// value. 375 const bool UIntPtrCastRequired = true; 376 /// true if only casted arguments must be registered as local args or VLA 377 /// sizes. 378 const bool RegisterCastedArgsOnly = false; 379 /// Name of the generated function. 380 const StringRef FunctionName; 381 /// Location of the non-debug version of the outlined function. 382 SourceLocation Loc; 383 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 384 bool RegisterCastedArgsOnly, StringRef FunctionName, 385 SourceLocation Loc) 386 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 387 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 388 FunctionName(FunctionName), Loc(Loc) {} 389 }; 390 } // namespace 391 392 static llvm::Function *emitOutlinedFunctionPrologue( 393 CodeGenFunction &CGF, FunctionArgList &Args, 394 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 395 &LocalAddrs, 396 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 397 &VLASizes, 398 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 399 const CapturedDecl *CD = FO.S->getCapturedDecl(); 400 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 401 assert(CD->hasBody() && "missing CapturedDecl body"); 402 403 CXXThisValue = nullptr; 404 // Build the argument list. 405 CodeGenModule &CGM = CGF.CGM; 406 ASTContext &Ctx = CGM.getContext(); 407 FunctionArgList TargetArgs; 408 Args.append(CD->param_begin(), 409 std::next(CD->param_begin(), CD->getContextParamPosition())); 410 TargetArgs.append( 411 CD->param_begin(), 412 std::next(CD->param_begin(), CD->getContextParamPosition())); 413 auto I = FO.S->captures().begin(); 414 FunctionDecl *DebugFunctionDecl = nullptr; 415 if (!FO.UIntPtrCastRequired) { 416 FunctionProtoType::ExtProtoInfo EPI; 417 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 418 DebugFunctionDecl = FunctionDecl::Create( 419 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 420 SourceLocation(), DeclarationName(), FunctionTy, 421 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 422 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 423 } 424 for (const FieldDecl *FD : RD->fields()) { 425 QualType ArgType = FD->getType(); 426 IdentifierInfo *II = nullptr; 427 VarDecl *CapVar = nullptr; 428 429 // If this is a capture by copy and the type is not a pointer, the outlined 430 // function argument type should be uintptr and the value properly casted to 431 // uintptr. This is necessary given that the runtime library is only able to 432 // deal with pointers. We can pass in the same way the VLA type sizes to the 433 // outlined function. 434 if (FO.UIntPtrCastRequired && 435 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 436 I->capturesVariableArrayType())) 437 ArgType = Ctx.getUIntPtrType(); 438 439 if (I->capturesVariable() || I->capturesVariableByCopy()) { 440 CapVar = I->getCapturedVar(); 441 II = CapVar->getIdentifier(); 442 } else if (I->capturesThis()) { 443 II = &Ctx.Idents.get("this"); 444 } else { 445 assert(I->capturesVariableArrayType()); 446 II = &Ctx.Idents.get("vla"); 447 } 448 if (ArgType->isVariablyModifiedType()) 449 ArgType = getCanonicalParamType(Ctx, ArgType); 450 VarDecl *Arg; 451 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 452 Arg = ParmVarDecl::Create( 453 Ctx, DebugFunctionDecl, 454 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 455 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 456 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 457 } else { 458 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 459 II, ArgType, ImplicitParamDecl::Other); 460 } 461 Args.emplace_back(Arg); 462 // Do not cast arguments if we emit function with non-original types. 463 TargetArgs.emplace_back( 464 FO.UIntPtrCastRequired 465 ? Arg 466 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 467 ++I; 468 } 469 Args.append( 470 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 471 CD->param_end()); 472 TargetArgs.append( 473 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 474 CD->param_end()); 475 476 // Create the function declaration. 477 const CGFunctionInfo &FuncInfo = 478 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 479 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 480 481 auto *F = 482 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 483 FO.FunctionName, &CGM.getModule()); 484 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 485 if (CD->isNothrow()) 486 F->setDoesNotThrow(); 487 F->setDoesNotRecurse(); 488 489 // Generate the function. 490 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 491 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 492 FO.UIntPtrCastRequired ? FO.Loc 493 : CD->getBody()->getBeginLoc()); 494 unsigned Cnt = CD->getContextParamPosition(); 495 I = FO.S->captures().begin(); 496 for (const FieldDecl *FD : RD->fields()) { 497 // Do not map arguments if we emit function with non-original types. 498 Address LocalAddr(Address::invalid()); 499 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 500 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 501 TargetArgs[Cnt]); 502 } else { 503 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 504 } 505 // If we are capturing a pointer by copy we don't need to do anything, just 506 // use the value that we get from the arguments. 507 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 508 const VarDecl *CurVD = I->getCapturedVar(); 509 if (!FO.RegisterCastedArgsOnly) 510 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 511 ++Cnt; 512 ++I; 513 continue; 514 } 515 516 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 517 AlignmentSource::Decl); 518 if (FD->hasCapturedVLAType()) { 519 if (FO.UIntPtrCastRequired) { 520 ArgLVal = CGF.MakeAddrLValue( 521 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 522 Args[Cnt]->getName(), ArgLVal), 523 FD->getType(), AlignmentSource::Decl); 524 } 525 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 526 const VariableArrayType *VAT = FD->getCapturedVLAType(); 527 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 528 } else if (I->capturesVariable()) { 529 const VarDecl *Var = I->getCapturedVar(); 530 QualType VarTy = Var->getType(); 531 Address ArgAddr = ArgLVal.getAddress(CGF); 532 if (ArgLVal.getType()->isLValueReferenceType()) { 533 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 534 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 535 assert(ArgLVal.getType()->isPointerType()); 536 ArgAddr = CGF.EmitLoadOfPointer( 537 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 538 } 539 if (!FO.RegisterCastedArgsOnly) { 540 LocalAddrs.insert( 541 {Args[Cnt], 542 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 543 } 544 } else if (I->capturesVariableByCopy()) { 545 assert(!FD->getType()->isAnyPointerType() && 546 "Not expecting a captured pointer."); 547 const VarDecl *Var = I->getCapturedVar(); 548 LocalAddrs.insert({Args[Cnt], 549 {Var, FO.UIntPtrCastRequired 550 ? castValueFromUintptr( 551 CGF, I->getLocation(), FD->getType(), 552 Args[Cnt]->getName(), ArgLVal) 553 : ArgLVal.getAddress(CGF)}}); 554 } else { 555 // If 'this' is captured, load it into CXXThisValue. 556 assert(I->capturesThis()); 557 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 558 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 559 } 560 ++Cnt; 561 ++I; 562 } 563 564 return F; 565 } 566 567 llvm::Function * 568 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 569 SourceLocation Loc) { 570 assert( 571 CapturedStmtInfo && 572 "CapturedStmtInfo should be set when generating the captured function"); 573 const CapturedDecl *CD = S.getCapturedDecl(); 574 // Build the argument list. 575 bool NeedWrapperFunction = 576 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 577 FunctionArgList Args; 578 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 579 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 580 SmallString<256> Buffer; 581 llvm::raw_svector_ostream Out(Buffer); 582 Out << CapturedStmtInfo->getHelperName(); 583 if (NeedWrapperFunction) 584 Out << "_debug__"; 585 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 586 Out.str(), Loc); 587 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 588 VLASizes, CXXThisValue, FO); 589 CodeGenFunction::OMPPrivateScope LocalScope(*this); 590 for (const auto &LocalAddrPair : LocalAddrs) { 591 if (LocalAddrPair.second.first) { 592 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 593 return LocalAddrPair.second.second; 594 }); 595 } 596 } 597 (void)LocalScope.Privatize(); 598 for (const auto &VLASizePair : VLASizes) 599 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 600 PGO.assignRegionCounters(GlobalDecl(CD), F); 601 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 602 (void)LocalScope.ForceCleanup(); 603 FinishFunction(CD->getBodyRBrace()); 604 if (!NeedWrapperFunction) 605 return F; 606 607 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 608 /*RegisterCastedArgsOnly=*/true, 609 CapturedStmtInfo->getHelperName(), Loc); 610 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 611 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 612 Args.clear(); 613 LocalAddrs.clear(); 614 VLASizes.clear(); 615 llvm::Function *WrapperF = 616 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 617 WrapperCGF.CXXThisValue, WrapperFO); 618 llvm::SmallVector<llvm::Value *, 4> CallArgs; 619 for (const auto *Arg : Args) { 620 llvm::Value *CallArg; 621 auto I = LocalAddrs.find(Arg); 622 if (I != LocalAddrs.end()) { 623 LValue LV = WrapperCGF.MakeAddrLValue( 624 I->second.second, 625 I->second.first ? I->second.first->getType() : Arg->getType(), 626 AlignmentSource::Decl); 627 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 628 } else { 629 auto EI = VLASizes.find(Arg); 630 if (EI != VLASizes.end()) { 631 CallArg = EI->second.second; 632 } else { 633 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 634 Arg->getType(), 635 AlignmentSource::Decl); 636 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 637 } 638 } 639 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 640 } 641 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 642 WrapperCGF.FinishFunction(); 643 return WrapperF; 644 } 645 646 //===----------------------------------------------------------------------===// 647 // OpenMP Directive Emission 648 //===----------------------------------------------------------------------===// 649 void CodeGenFunction::EmitOMPAggregateAssign( 650 Address DestAddr, Address SrcAddr, QualType OriginalType, 651 const llvm::function_ref<void(Address, Address)> CopyGen) { 652 // Perform element-by-element initialization. 653 QualType ElementTy; 654 655 // Drill down to the base element type on both arrays. 656 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 657 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 658 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 659 660 llvm::Value *SrcBegin = SrcAddr.getPointer(); 661 llvm::Value *DestBegin = DestAddr.getPointer(); 662 // Cast from pointer to array type to pointer to single element. 663 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 664 // The basic structure here is a while-do loop. 665 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 666 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 667 llvm::Value *IsEmpty = 668 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 669 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 670 671 // Enter the loop body, making that address the current address. 672 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 673 EmitBlock(BodyBB); 674 675 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 676 677 llvm::PHINode *SrcElementPHI = 678 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 679 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 680 Address SrcElementCurrent = 681 Address(SrcElementPHI, 682 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 683 684 llvm::PHINode *DestElementPHI = 685 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 686 DestElementPHI->addIncoming(DestBegin, EntryBB); 687 Address DestElementCurrent = 688 Address(DestElementPHI, 689 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 690 691 // Emit copy. 692 CopyGen(DestElementCurrent, SrcElementCurrent); 693 694 // Shift the address forward by one element. 695 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 696 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 697 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 698 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 699 // Check whether we've reached the end. 700 llvm::Value *Done = 701 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 702 Builder.CreateCondBr(Done, DoneBB, BodyBB); 703 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 704 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 705 706 // Done. 707 EmitBlock(DoneBB, /*IsFinished=*/true); 708 } 709 710 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 711 Address SrcAddr, const VarDecl *DestVD, 712 const VarDecl *SrcVD, const Expr *Copy) { 713 if (OriginalType->isArrayType()) { 714 const auto *BO = dyn_cast<BinaryOperator>(Copy); 715 if (BO && BO->getOpcode() == BO_Assign) { 716 // Perform simple memcpy for simple copying. 717 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 718 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 719 EmitAggregateAssign(Dest, Src, OriginalType); 720 } else { 721 // For arrays with complex element types perform element by element 722 // copying. 723 EmitOMPAggregateAssign( 724 DestAddr, SrcAddr, OriginalType, 725 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 726 // Working with the single array element, so have to remap 727 // destination and source variables to corresponding array 728 // elements. 729 CodeGenFunction::OMPPrivateScope Remap(*this); 730 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 731 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 732 (void)Remap.Privatize(); 733 EmitIgnoredExpr(Copy); 734 }); 735 } 736 } else { 737 // Remap pseudo source variable to private copy. 738 CodeGenFunction::OMPPrivateScope Remap(*this); 739 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 740 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 741 (void)Remap.Privatize(); 742 // Emit copying of the whole variable. 743 EmitIgnoredExpr(Copy); 744 } 745 } 746 747 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 748 OMPPrivateScope &PrivateScope) { 749 if (!HaveInsertPoint()) 750 return false; 751 bool DeviceConstTarget = 752 getLangOpts().OpenMPIsDevice && 753 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 754 bool FirstprivateIsLastprivate = false; 755 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 756 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 757 for (const auto *D : C->varlists()) 758 Lastprivates.try_emplace( 759 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 760 C->getKind()); 761 } 762 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 763 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 764 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 765 // Force emission of the firstprivate copy if the directive does not emit 766 // outlined function, like omp for, omp simd, omp distribute etc. 767 bool MustEmitFirstprivateCopy = 768 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 769 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 770 const auto *IRef = C->varlist_begin(); 771 const auto *InitsRef = C->inits().begin(); 772 for (const Expr *IInit : C->private_copies()) { 773 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 774 bool ThisFirstprivateIsLastprivate = 775 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 776 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 777 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 778 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 779 !FD->getType()->isReferenceType() && 780 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 781 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 782 ++IRef; 783 ++InitsRef; 784 continue; 785 } 786 // Do not emit copy for firstprivate constant variables in target regions, 787 // captured by reference. 788 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 789 FD && FD->getType()->isReferenceType() && 790 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 791 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 792 OrigVD); 793 ++IRef; 794 ++InitsRef; 795 continue; 796 } 797 FirstprivateIsLastprivate = 798 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 799 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 800 const auto *VDInit = 801 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 802 bool IsRegistered; 803 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 804 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 805 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 806 LValue OriginalLVal; 807 if (!FD) { 808 // Check if the firstprivate variable is just a constant value. 809 ConstantEmission CE = tryEmitAsConstant(&DRE); 810 if (CE && !CE.isReference()) { 811 // Constant value, no need to create a copy. 812 ++IRef; 813 ++InitsRef; 814 continue; 815 } 816 if (CE && CE.isReference()) { 817 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 818 } else { 819 assert(!CE && "Expected non-constant firstprivate."); 820 OriginalLVal = EmitLValue(&DRE); 821 } 822 } else { 823 OriginalLVal = EmitLValue(&DRE); 824 } 825 QualType Type = VD->getType(); 826 if (Type->isArrayType()) { 827 // Emit VarDecl with copy init for arrays. 828 // Get the address of the original variable captured in current 829 // captured region. 830 IsRegistered = PrivateScope.addPrivate( 831 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 832 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 833 const Expr *Init = VD->getInit(); 834 if (!isa<CXXConstructExpr>(Init) || 835 isTrivialInitializer(Init)) { 836 // Perform simple memcpy. 837 LValue Dest = 838 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 839 EmitAggregateAssign(Dest, OriginalLVal, Type); 840 } else { 841 EmitOMPAggregateAssign( 842 Emission.getAllocatedAddress(), 843 OriginalLVal.getAddress(*this), Type, 844 [this, VDInit, Init](Address DestElement, 845 Address SrcElement) { 846 // Clean up any temporaries needed by the 847 // initialization. 848 RunCleanupsScope InitScope(*this); 849 // Emit initialization for single element. 850 setAddrOfLocalVar(VDInit, SrcElement); 851 EmitAnyExprToMem(Init, DestElement, 852 Init->getType().getQualifiers(), 853 /*IsInitializer*/ false); 854 LocalDeclMap.erase(VDInit); 855 }); 856 } 857 EmitAutoVarCleanups(Emission); 858 return Emission.getAllocatedAddress(); 859 }); 860 } else { 861 Address OriginalAddr = OriginalLVal.getAddress(*this); 862 IsRegistered = 863 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 864 ThisFirstprivateIsLastprivate, 865 OrigVD, &Lastprivates, IRef]() { 866 // Emit private VarDecl with copy init. 867 // Remap temp VDInit variable to the address of the original 868 // variable (for proper handling of captured global variables). 869 setAddrOfLocalVar(VDInit, OriginalAddr); 870 EmitDecl(*VD); 871 LocalDeclMap.erase(VDInit); 872 if (ThisFirstprivateIsLastprivate && 873 Lastprivates[OrigVD->getCanonicalDecl()] == 874 OMPC_LASTPRIVATE_conditional) { 875 // Create/init special variable for lastprivate conditionals. 876 Address VDAddr = 877 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 878 *this, OrigVD); 879 llvm::Value *V = EmitLoadOfScalar( 880 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 881 AlignmentSource::Decl), 882 (*IRef)->getExprLoc()); 883 EmitStoreOfScalar(V, 884 MakeAddrLValue(VDAddr, (*IRef)->getType(), 885 AlignmentSource::Decl)); 886 LocalDeclMap.erase(VD); 887 setAddrOfLocalVar(VD, VDAddr); 888 return VDAddr; 889 } 890 return GetAddrOfLocalVar(VD); 891 }); 892 } 893 assert(IsRegistered && 894 "firstprivate var already registered as private"); 895 // Silence the warning about unused variable. 896 (void)IsRegistered; 897 } 898 ++IRef; 899 ++InitsRef; 900 } 901 } 902 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 903 } 904 905 void CodeGenFunction::EmitOMPPrivateClause( 906 const OMPExecutableDirective &D, 907 CodeGenFunction::OMPPrivateScope &PrivateScope) { 908 if (!HaveInsertPoint()) 909 return; 910 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 911 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 912 auto IRef = C->varlist_begin(); 913 for (const Expr *IInit : C->private_copies()) { 914 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 915 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 916 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 917 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 918 // Emit private VarDecl with copy init. 919 EmitDecl(*VD); 920 return GetAddrOfLocalVar(VD); 921 }); 922 assert(IsRegistered && "private var already registered as private"); 923 // Silence the warning about unused variable. 924 (void)IsRegistered; 925 } 926 ++IRef; 927 } 928 } 929 } 930 931 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 932 if (!HaveInsertPoint()) 933 return false; 934 // threadprivate_var1 = master_threadprivate_var1; 935 // operator=(threadprivate_var2, master_threadprivate_var2); 936 // ... 937 // __kmpc_barrier(&loc, global_tid); 938 llvm::DenseSet<const VarDecl *> CopiedVars; 939 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 940 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 941 auto IRef = C->varlist_begin(); 942 auto ISrcRef = C->source_exprs().begin(); 943 auto IDestRef = C->destination_exprs().begin(); 944 for (const Expr *AssignOp : C->assignment_ops()) { 945 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 946 QualType Type = VD->getType(); 947 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 948 // Get the address of the master variable. If we are emitting code with 949 // TLS support, the address is passed from the master as field in the 950 // captured declaration. 951 Address MasterAddr = Address::invalid(); 952 if (getLangOpts().OpenMPUseTLS && 953 getContext().getTargetInfo().isTLSSupported()) { 954 assert(CapturedStmtInfo->lookup(VD) && 955 "Copyin threadprivates should have been captured!"); 956 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 957 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 958 MasterAddr = EmitLValue(&DRE).getAddress(*this); 959 LocalDeclMap.erase(VD); 960 } else { 961 MasterAddr = 962 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 963 : CGM.GetAddrOfGlobal(VD), 964 getContext().getDeclAlign(VD)); 965 } 966 // Get the address of the threadprivate variable. 967 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 968 if (CopiedVars.size() == 1) { 969 // At first check if current thread is a master thread. If it is, no 970 // need to copy data. 971 CopyBegin = createBasicBlock("copyin.not.master"); 972 CopyEnd = createBasicBlock("copyin.not.master.end"); 973 Builder.CreateCondBr( 974 Builder.CreateICmpNE( 975 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 976 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 977 CGM.IntPtrTy)), 978 CopyBegin, CopyEnd); 979 EmitBlock(CopyBegin); 980 } 981 const auto *SrcVD = 982 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 983 const auto *DestVD = 984 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 985 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 986 } 987 ++IRef; 988 ++ISrcRef; 989 ++IDestRef; 990 } 991 } 992 if (CopyEnd) { 993 // Exit out of copying procedure for non-master thread. 994 EmitBlock(CopyEnd, /*IsFinished=*/true); 995 return true; 996 } 997 return false; 998 } 999 1000 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1001 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1002 if (!HaveInsertPoint()) 1003 return false; 1004 bool HasAtLeastOneLastprivate = false; 1005 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1006 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1007 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1008 for (const Expr *C : LoopDirective->counters()) { 1009 SIMDLCVs.insert( 1010 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1011 } 1012 } 1013 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1014 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1015 HasAtLeastOneLastprivate = true; 1016 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1017 !getLangOpts().OpenMPSimd) 1018 break; 1019 const auto *IRef = C->varlist_begin(); 1020 const auto *IDestRef = C->destination_exprs().begin(); 1021 for (const Expr *IInit : C->private_copies()) { 1022 // Keep the address of the original variable for future update at the end 1023 // of the loop. 1024 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1025 // Taskloops do not require additional initialization, it is done in 1026 // runtime support library. 1027 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1028 const auto *DestVD = 1029 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1030 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1031 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1032 /*RefersToEnclosingVariableOrCapture=*/ 1033 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1034 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1035 return EmitLValue(&DRE).getAddress(*this); 1036 }); 1037 // Check if the variable is also a firstprivate: in this case IInit is 1038 // not generated. Initialization of this variable will happen in codegen 1039 // for 'firstprivate' clause. 1040 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1041 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1042 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1043 OrigVD]() { 1044 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1045 Address VDAddr = 1046 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1047 OrigVD); 1048 setAddrOfLocalVar(VD, VDAddr); 1049 return VDAddr; 1050 } 1051 // Emit private VarDecl with copy init. 1052 EmitDecl(*VD); 1053 return GetAddrOfLocalVar(VD); 1054 }); 1055 assert(IsRegistered && 1056 "lastprivate var already registered as private"); 1057 (void)IsRegistered; 1058 } 1059 } 1060 ++IRef; 1061 ++IDestRef; 1062 } 1063 } 1064 return HasAtLeastOneLastprivate; 1065 } 1066 1067 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1068 const OMPExecutableDirective &D, bool NoFinals, 1069 llvm::Value *IsLastIterCond) { 1070 if (!HaveInsertPoint()) 1071 return; 1072 // Emit following code: 1073 // if (<IsLastIterCond>) { 1074 // orig_var1 = private_orig_var1; 1075 // ... 1076 // orig_varn = private_orig_varn; 1077 // } 1078 llvm::BasicBlock *ThenBB = nullptr; 1079 llvm::BasicBlock *DoneBB = nullptr; 1080 if (IsLastIterCond) { 1081 // Emit implicit barrier if at least one lastprivate conditional is found 1082 // and this is not a simd mode. 1083 if (!getLangOpts().OpenMPSimd && 1084 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1085 [](const OMPLastprivateClause *C) { 1086 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1087 })) { 1088 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1089 OMPD_unknown, 1090 /*EmitChecks=*/false, 1091 /*ForceSimpleCall=*/true); 1092 } 1093 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1094 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1095 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1096 EmitBlock(ThenBB); 1097 } 1098 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1099 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1100 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1101 auto IC = LoopDirective->counters().begin(); 1102 for (const Expr *F : LoopDirective->finals()) { 1103 const auto *D = 1104 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1105 if (NoFinals) 1106 AlreadyEmittedVars.insert(D); 1107 else 1108 LoopCountersAndUpdates[D] = F; 1109 ++IC; 1110 } 1111 } 1112 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1113 auto IRef = C->varlist_begin(); 1114 auto ISrcRef = C->source_exprs().begin(); 1115 auto IDestRef = C->destination_exprs().begin(); 1116 for (const Expr *AssignOp : C->assignment_ops()) { 1117 const auto *PrivateVD = 1118 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1119 QualType Type = PrivateVD->getType(); 1120 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1121 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1122 // If lastprivate variable is a loop control variable for loop-based 1123 // directive, update its value before copyin back to original 1124 // variable. 1125 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1126 EmitIgnoredExpr(FinalExpr); 1127 const auto *SrcVD = 1128 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1129 const auto *DestVD = 1130 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1131 // Get the address of the private variable. 1132 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1133 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1134 PrivateAddr = 1135 Address(Builder.CreateLoad(PrivateAddr), 1136 getNaturalTypeAlignment(RefTy->getPointeeType())); 1137 // Store the last value to the private copy in the last iteration. 1138 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1139 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1140 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1141 (*IRef)->getExprLoc()); 1142 // Get the address of the original variable. 1143 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1144 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1145 } 1146 ++IRef; 1147 ++ISrcRef; 1148 ++IDestRef; 1149 } 1150 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1151 EmitIgnoredExpr(PostUpdate); 1152 } 1153 if (IsLastIterCond) 1154 EmitBlock(DoneBB, /*IsFinished=*/true); 1155 } 1156 1157 void CodeGenFunction::EmitOMPReductionClauseInit( 1158 const OMPExecutableDirective &D, 1159 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1160 if (!HaveInsertPoint()) 1161 return; 1162 SmallVector<const Expr *, 4> Shareds; 1163 SmallVector<const Expr *, 4> Privates; 1164 SmallVector<const Expr *, 4> ReductionOps; 1165 SmallVector<const Expr *, 4> LHSs; 1166 SmallVector<const Expr *, 4> RHSs; 1167 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1168 auto IPriv = C->privates().begin(); 1169 auto IRed = C->reduction_ops().begin(); 1170 auto ILHS = C->lhs_exprs().begin(); 1171 auto IRHS = C->rhs_exprs().begin(); 1172 for (const Expr *Ref : C->varlists()) { 1173 Shareds.emplace_back(Ref); 1174 Privates.emplace_back(*IPriv); 1175 ReductionOps.emplace_back(*IRed); 1176 LHSs.emplace_back(*ILHS); 1177 RHSs.emplace_back(*IRHS); 1178 std::advance(IPriv, 1); 1179 std::advance(IRed, 1); 1180 std::advance(ILHS, 1); 1181 std::advance(IRHS, 1); 1182 } 1183 } 1184 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1185 unsigned Count = 0; 1186 auto ILHS = LHSs.begin(); 1187 auto IRHS = RHSs.begin(); 1188 auto IPriv = Privates.begin(); 1189 for (const Expr *IRef : Shareds) { 1190 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1191 // Emit private VarDecl with reduction init. 1192 RedCG.emitSharedLValue(*this, Count); 1193 RedCG.emitAggregateType(*this, Count); 1194 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1195 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1196 RedCG.getSharedLValue(Count), 1197 [&Emission](CodeGenFunction &CGF) { 1198 CGF.EmitAutoVarInit(Emission); 1199 return true; 1200 }); 1201 EmitAutoVarCleanups(Emission); 1202 Address BaseAddr = RedCG.adjustPrivateAddress( 1203 *this, Count, Emission.getAllocatedAddress()); 1204 bool IsRegistered = PrivateScope.addPrivate( 1205 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1206 assert(IsRegistered && "private var already registered as private"); 1207 // Silence the warning about unused variable. 1208 (void)IsRegistered; 1209 1210 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1211 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1212 QualType Type = PrivateVD->getType(); 1213 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1214 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1215 // Store the address of the original variable associated with the LHS 1216 // implicit variable. 1217 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1218 return RedCG.getSharedLValue(Count).getAddress(*this); 1219 }); 1220 PrivateScope.addPrivate( 1221 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1222 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1223 isa<ArraySubscriptExpr>(IRef)) { 1224 // Store the address of the original variable associated with the LHS 1225 // implicit variable. 1226 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1227 return RedCG.getSharedLValue(Count).getAddress(*this); 1228 }); 1229 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1230 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1231 ConvertTypeForMem(RHSVD->getType()), 1232 "rhs.begin"); 1233 }); 1234 } else { 1235 QualType Type = PrivateVD->getType(); 1236 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1237 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1238 // Store the address of the original variable associated with the LHS 1239 // implicit variable. 1240 if (IsArray) { 1241 OriginalAddr = Builder.CreateElementBitCast( 1242 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1243 } 1244 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1245 PrivateScope.addPrivate( 1246 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1247 return IsArray 1248 ? Builder.CreateElementBitCast( 1249 GetAddrOfLocalVar(PrivateVD), 1250 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1251 : GetAddrOfLocalVar(PrivateVD); 1252 }); 1253 } 1254 ++ILHS; 1255 ++IRHS; 1256 ++IPriv; 1257 ++Count; 1258 } 1259 } 1260 1261 void CodeGenFunction::EmitOMPReductionClauseFinal( 1262 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1263 if (!HaveInsertPoint()) 1264 return; 1265 llvm::SmallVector<const Expr *, 8> Privates; 1266 llvm::SmallVector<const Expr *, 8> LHSExprs; 1267 llvm::SmallVector<const Expr *, 8> RHSExprs; 1268 llvm::SmallVector<const Expr *, 8> ReductionOps; 1269 bool HasAtLeastOneReduction = false; 1270 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1271 HasAtLeastOneReduction = true; 1272 Privates.append(C->privates().begin(), C->privates().end()); 1273 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1274 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1275 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1276 } 1277 if (HasAtLeastOneReduction) { 1278 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1279 isOpenMPParallelDirective(D.getDirectiveKind()) || 1280 ReductionKind == OMPD_simd; 1281 bool SimpleReduction = ReductionKind == OMPD_simd; 1282 // Emit nowait reduction if nowait clause is present or directive is a 1283 // parallel directive (it always has implicit barrier). 1284 CGM.getOpenMPRuntime().emitReduction( 1285 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1286 {WithNowait, SimpleReduction, ReductionKind}); 1287 } 1288 } 1289 1290 static void emitPostUpdateForReductionClause( 1291 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1292 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1293 if (!CGF.HaveInsertPoint()) 1294 return; 1295 llvm::BasicBlock *DoneBB = nullptr; 1296 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1297 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1298 if (!DoneBB) { 1299 if (llvm::Value *Cond = CondGen(CGF)) { 1300 // If the first post-update expression is found, emit conditional 1301 // block if it was requested. 1302 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1303 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1304 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1305 CGF.EmitBlock(ThenBB); 1306 } 1307 } 1308 CGF.EmitIgnoredExpr(PostUpdate); 1309 } 1310 } 1311 if (DoneBB) 1312 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1313 } 1314 1315 namespace { 1316 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1317 /// parallel function. This is necessary for combined constructs such as 1318 /// 'distribute parallel for' 1319 typedef llvm::function_ref<void(CodeGenFunction &, 1320 const OMPExecutableDirective &, 1321 llvm::SmallVectorImpl<llvm::Value *> &)> 1322 CodeGenBoundParametersTy; 1323 } // anonymous namespace 1324 1325 static void 1326 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1327 const OMPExecutableDirective &S) { 1328 if (CGF.getLangOpts().OpenMP < 50) 1329 return; 1330 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1331 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1332 for (const Expr *Ref : C->varlists()) { 1333 if (!Ref->getType()->isScalarType()) 1334 continue; 1335 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1336 if (!DRE) 1337 continue; 1338 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1339 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1340 } 1341 } 1342 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1343 for (const Expr *Ref : C->varlists()) { 1344 if (!Ref->getType()->isScalarType()) 1345 continue; 1346 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1347 if (!DRE) 1348 continue; 1349 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1350 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1351 } 1352 } 1353 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1354 for (const Expr *Ref : C->varlists()) { 1355 if (!Ref->getType()->isScalarType()) 1356 continue; 1357 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1358 if (!DRE) 1359 continue; 1360 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1361 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1362 } 1363 } 1364 // Privates should ne analyzed since they are not captured at all. 1365 // Task reductions may be skipped - tasks are ignored. 1366 // Firstprivates do not return value but may be passed by reference - no need 1367 // to check for updated lastprivate conditional. 1368 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1369 for (const Expr *Ref : C->varlists()) { 1370 if (!Ref->getType()->isScalarType()) 1371 continue; 1372 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1373 if (!DRE) 1374 continue; 1375 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1376 } 1377 } 1378 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1379 CGF, S, PrivateDecls); 1380 } 1381 1382 static void emitCommonOMPParallelDirective( 1383 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1384 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1385 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1386 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1387 llvm::Function *OutlinedFn = 1388 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1389 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1390 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1391 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1392 llvm::Value *NumThreads = 1393 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1394 /*IgnoreResultAssign=*/true); 1395 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1396 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1397 } 1398 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1399 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1400 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1401 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1402 } 1403 const Expr *IfCond = nullptr; 1404 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1405 if (C->getNameModifier() == OMPD_unknown || 1406 C->getNameModifier() == OMPD_parallel) { 1407 IfCond = C->getCondition(); 1408 break; 1409 } 1410 } 1411 1412 OMPParallelScope Scope(CGF, S); 1413 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1414 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1415 // lower and upper bounds with the pragma 'for' chunking mechanism. 1416 // The following lambda takes care of appending the lower and upper bound 1417 // parameters when necessary 1418 CodeGenBoundParameters(CGF, S, CapturedVars); 1419 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1420 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1421 CapturedVars, IfCond); 1422 } 1423 1424 static void emitEmptyBoundParameters(CodeGenFunction &, 1425 const OMPExecutableDirective &, 1426 llvm::SmallVectorImpl<llvm::Value *> &) {} 1427 1428 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1429 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1430 // Check if we have any if clause associated with the directive. 1431 llvm::Value *IfCond = nullptr; 1432 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1433 IfCond = EmitScalarExpr(C->getCondition(), 1434 /*IgnoreResultAssign=*/true); 1435 1436 llvm::Value *NumThreads = nullptr; 1437 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1438 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1439 /*IgnoreResultAssign=*/true); 1440 1441 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1442 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1443 ProcBind = ProcBindClause->getProcBindKind(); 1444 1445 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1446 1447 // The cleanup callback that finalizes all variabels at the given location, 1448 // thus calls destructors etc. 1449 auto FiniCB = [this](InsertPointTy IP) { 1450 CGBuilderTy::InsertPointGuard IPG(Builder); 1451 assert(IP.getBlock()->end() != IP.getPoint() && 1452 "OpenMP IR Builder should cause terminated block!"); 1453 llvm::BasicBlock *IPBB = IP.getBlock(); 1454 llvm::BasicBlock *DestBB = IPBB->splitBasicBlock(IP.getPoint()); 1455 IPBB->getTerminator()->eraseFromParent(); 1456 Builder.SetInsertPoint(IPBB); 1457 CodeGenFunction::JumpDest Dest = getJumpDestInCurrentScope(DestBB); 1458 EmitBranchThroughCleanup(Dest); 1459 }; 1460 1461 // Privatization callback that performs appropriate action for 1462 // shared/private/firstprivate/lastprivate/copyin/... variables. 1463 // 1464 // TODO: This defaults to shared right now. 1465 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1466 llvm::Value &Val, llvm::Value *&ReplVal) { 1467 // The next line is appropriate only for variables (Val) with the 1468 // data-sharing attribute "shared". 1469 ReplVal = &Val; 1470 1471 return CodeGenIP; 1472 }; 1473 1474 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1475 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1476 1477 auto BodyGenCB = [ParallelRegionBodyStmt, 1478 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1479 llvm::BasicBlock &ContinuationBB) { 1480 auto OldAllocaIP = AllocaInsertPt; 1481 AllocaInsertPt = &*AllocaIP.getPoint(); 1482 1483 auto OldReturnBlock = ReturnBlock; 1484 ReturnBlock = getJumpDestInCurrentScope(&ContinuationBB); 1485 1486 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1487 CodeGenIPBB->splitBasicBlock(CodeGenIP.getPoint()); 1488 llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator(); 1489 CodeGenIPBBTI->removeFromParent(); 1490 1491 Builder.SetInsertPoint(CodeGenIPBB); 1492 1493 EmitStmt(ParallelRegionBodyStmt); 1494 1495 Builder.Insert(CodeGenIPBBTI); 1496 1497 AllocaInsertPt = OldAllocaIP; 1498 ReturnBlock = OldReturnBlock; 1499 }; 1500 1501 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1502 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1503 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1504 FiniCB, IfCond, NumThreads, 1505 ProcBind, S.hasCancel())); 1506 return; 1507 } 1508 1509 // Emit parallel region as a standalone region. 1510 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1511 Action.Enter(CGF); 1512 OMPPrivateScope PrivateScope(CGF); 1513 bool Copyins = CGF.EmitOMPCopyinClause(S); 1514 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1515 if (Copyins) { 1516 // Emit implicit barrier to synchronize threads and avoid data races on 1517 // propagation master's thread values of threadprivate variables to local 1518 // instances of that variables of all other implicit threads. 1519 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1520 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1521 /*ForceSimpleCall=*/true); 1522 } 1523 CGF.EmitOMPPrivateClause(S, PrivateScope); 1524 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1525 (void)PrivateScope.Privatize(); 1526 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1527 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1528 }; 1529 { 1530 auto LPCRegion = 1531 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1532 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1533 emitEmptyBoundParameters); 1534 emitPostUpdateForReductionClause(*this, S, 1535 [](CodeGenFunction &) { return nullptr; }); 1536 } 1537 // Check for outer lastprivate conditional update. 1538 checkForLastprivateConditionalUpdate(*this, S); 1539 } 1540 1541 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1542 int MaxLevel, int Level = 0) { 1543 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1544 const Stmt *SimplifiedS = S->IgnoreContainers(); 1545 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1546 PrettyStackTraceLoc CrashInfo( 1547 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1548 "LLVM IR generation of compound statement ('{}')"); 1549 1550 // Keep track of the current cleanup stack depth, including debug scopes. 1551 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1552 for (const Stmt *CurStmt : CS->body()) 1553 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1554 return; 1555 } 1556 if (SimplifiedS == NextLoop) { 1557 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1558 S = For->getBody(); 1559 } else { 1560 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1561 "Expected canonical for loop or range-based for loop."); 1562 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1563 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1564 S = CXXFor->getBody(); 1565 } 1566 if (Level + 1 < MaxLevel) { 1567 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1568 S, /*TryImperfectlyNestedLoops=*/true); 1569 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1570 return; 1571 } 1572 } 1573 CGF.EmitStmt(S); 1574 } 1575 1576 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1577 JumpDest LoopExit) { 1578 RunCleanupsScope BodyScope(*this); 1579 // Update counters values on current iteration. 1580 for (const Expr *UE : D.updates()) 1581 EmitIgnoredExpr(UE); 1582 // Update the linear variables. 1583 // In distribute directives only loop counters may be marked as linear, no 1584 // need to generate the code for them. 1585 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1586 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1587 for (const Expr *UE : C->updates()) 1588 EmitIgnoredExpr(UE); 1589 } 1590 } 1591 1592 // On a continue in the body, jump to the end. 1593 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1594 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1595 for (const Expr *E : D.finals_conditions()) { 1596 if (!E) 1597 continue; 1598 // Check that loop counter in non-rectangular nest fits into the iteration 1599 // space. 1600 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1601 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1602 getProfileCount(D.getBody())); 1603 EmitBlock(NextBB); 1604 } 1605 // Emit loop variables for C++ range loops. 1606 const Stmt *Body = 1607 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1608 // Emit loop body. 1609 emitBody(*this, Body, 1610 OMPLoopDirective::tryToFindNextInnerLoop( 1611 Body, /*TryImperfectlyNestedLoops=*/true), 1612 D.getCollapsedNumber()); 1613 1614 // The end (updates/cleanups). 1615 EmitBlock(Continue.getBlock()); 1616 BreakContinueStack.pop_back(); 1617 } 1618 1619 void CodeGenFunction::EmitOMPInnerLoop( 1620 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1621 const Expr *IncExpr, 1622 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1623 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1624 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1625 1626 // Start the loop with a block that tests the condition. 1627 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1628 EmitBlock(CondBlock); 1629 const SourceRange R = S.getSourceRange(); 1630 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1631 SourceLocToDebugLoc(R.getEnd())); 1632 1633 // If there are any cleanups between here and the loop-exit scope, 1634 // create a block to stage a loop exit along. 1635 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1636 if (RequiresCleanup) 1637 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1638 1639 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1640 1641 // Emit condition. 1642 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1643 if (ExitBlock != LoopExit.getBlock()) { 1644 EmitBlock(ExitBlock); 1645 EmitBranchThroughCleanup(LoopExit); 1646 } 1647 1648 EmitBlock(LoopBody); 1649 incrementProfileCounter(&S); 1650 1651 // Create a block for the increment. 1652 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1653 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1654 1655 BodyGen(*this); 1656 1657 // Emit "IV = IV + 1" and a back-edge to the condition block. 1658 EmitBlock(Continue.getBlock()); 1659 EmitIgnoredExpr(IncExpr); 1660 PostIncGen(*this); 1661 BreakContinueStack.pop_back(); 1662 EmitBranch(CondBlock); 1663 LoopStack.pop(); 1664 // Emit the fall-through block. 1665 EmitBlock(LoopExit.getBlock()); 1666 } 1667 1668 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1669 if (!HaveInsertPoint()) 1670 return false; 1671 // Emit inits for the linear variables. 1672 bool HasLinears = false; 1673 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1674 for (const Expr *Init : C->inits()) { 1675 HasLinears = true; 1676 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1677 if (const auto *Ref = 1678 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1679 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1680 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1681 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1682 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1683 VD->getInit()->getType(), VK_LValue, 1684 VD->getInit()->getExprLoc()); 1685 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1686 VD->getType()), 1687 /*capturedByInit=*/false); 1688 EmitAutoVarCleanups(Emission); 1689 } else { 1690 EmitVarDecl(*VD); 1691 } 1692 } 1693 // Emit the linear steps for the linear clauses. 1694 // If a step is not constant, it is pre-calculated before the loop. 1695 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1696 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1697 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1698 // Emit calculation of the linear step. 1699 EmitIgnoredExpr(CS); 1700 } 1701 } 1702 return HasLinears; 1703 } 1704 1705 void CodeGenFunction::EmitOMPLinearClauseFinal( 1706 const OMPLoopDirective &D, 1707 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1708 if (!HaveInsertPoint()) 1709 return; 1710 llvm::BasicBlock *DoneBB = nullptr; 1711 // Emit the final values of the linear variables. 1712 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1713 auto IC = C->varlist_begin(); 1714 for (const Expr *F : C->finals()) { 1715 if (!DoneBB) { 1716 if (llvm::Value *Cond = CondGen(*this)) { 1717 // If the first post-update expression is found, emit conditional 1718 // block if it was requested. 1719 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1720 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1721 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1722 EmitBlock(ThenBB); 1723 } 1724 } 1725 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1726 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1727 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1728 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1729 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1730 CodeGenFunction::OMPPrivateScope VarScope(*this); 1731 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1732 (void)VarScope.Privatize(); 1733 EmitIgnoredExpr(F); 1734 ++IC; 1735 } 1736 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1737 EmitIgnoredExpr(PostUpdate); 1738 } 1739 if (DoneBB) 1740 EmitBlock(DoneBB, /*IsFinished=*/true); 1741 } 1742 1743 static void emitAlignedClause(CodeGenFunction &CGF, 1744 const OMPExecutableDirective &D) { 1745 if (!CGF.HaveInsertPoint()) 1746 return; 1747 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1748 llvm::APInt ClauseAlignment(64, 0); 1749 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1750 auto *AlignmentCI = 1751 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1752 ClauseAlignment = AlignmentCI->getValue(); 1753 } 1754 for (const Expr *E : Clause->varlists()) { 1755 llvm::APInt Alignment(ClauseAlignment); 1756 if (Alignment == 0) { 1757 // OpenMP [2.8.1, Description] 1758 // If no optional parameter is specified, implementation-defined default 1759 // alignments for SIMD instructions on the target platforms are assumed. 1760 Alignment = 1761 CGF.getContext() 1762 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1763 E->getType()->getPointeeType())) 1764 .getQuantity(); 1765 } 1766 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1767 "alignment is not power of 2"); 1768 if (Alignment != 0) { 1769 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1770 CGF.EmitAlignmentAssumption( 1771 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1772 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1773 } 1774 } 1775 } 1776 } 1777 1778 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1779 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1780 if (!HaveInsertPoint()) 1781 return; 1782 auto I = S.private_counters().begin(); 1783 for (const Expr *E : S.counters()) { 1784 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1785 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1786 // Emit var without initialization. 1787 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1788 EmitAutoVarCleanups(VarEmission); 1789 LocalDeclMap.erase(PrivateVD); 1790 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1791 return VarEmission.getAllocatedAddress(); 1792 }); 1793 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1794 VD->hasGlobalStorage()) { 1795 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1796 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1797 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1798 E->getType(), VK_LValue, E->getExprLoc()); 1799 return EmitLValue(&DRE).getAddress(*this); 1800 }); 1801 } else { 1802 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1803 return VarEmission.getAllocatedAddress(); 1804 }); 1805 } 1806 ++I; 1807 } 1808 // Privatize extra loop counters used in loops for ordered(n) clauses. 1809 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1810 if (!C->getNumForLoops()) 1811 continue; 1812 for (unsigned I = S.getCollapsedNumber(), 1813 E = C->getLoopNumIterations().size(); 1814 I < E; ++I) { 1815 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1816 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1817 // Override only those variables that can be captured to avoid re-emission 1818 // of the variables declared within the loops. 1819 if (DRE->refersToEnclosingVariableOrCapture()) { 1820 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1821 return CreateMemTemp(DRE->getType(), VD->getName()); 1822 }); 1823 } 1824 } 1825 } 1826 } 1827 1828 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1829 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1830 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1831 if (!CGF.HaveInsertPoint()) 1832 return; 1833 { 1834 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1835 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1836 (void)PreCondScope.Privatize(); 1837 // Get initial values of real counters. 1838 for (const Expr *I : S.inits()) { 1839 CGF.EmitIgnoredExpr(I); 1840 } 1841 } 1842 // Create temp loop control variables with their init values to support 1843 // non-rectangular loops. 1844 CodeGenFunction::OMPMapVars PreCondVars; 1845 for (const Expr * E: S.dependent_counters()) { 1846 if (!E) 1847 continue; 1848 assert(!E->getType().getNonReferenceType()->isRecordType() && 1849 "dependent counter must not be an iterator."); 1850 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1851 Address CounterAddr = 1852 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1853 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1854 } 1855 (void)PreCondVars.apply(CGF); 1856 for (const Expr *E : S.dependent_inits()) { 1857 if (!E) 1858 continue; 1859 CGF.EmitIgnoredExpr(E); 1860 } 1861 // Check that loop is executed at least one time. 1862 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1863 PreCondVars.restore(CGF); 1864 } 1865 1866 void CodeGenFunction::EmitOMPLinearClause( 1867 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1868 if (!HaveInsertPoint()) 1869 return; 1870 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1871 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1872 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1873 for (const Expr *C : LoopDirective->counters()) { 1874 SIMDLCVs.insert( 1875 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1876 } 1877 } 1878 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1879 auto CurPrivate = C->privates().begin(); 1880 for (const Expr *E : C->varlists()) { 1881 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1882 const auto *PrivateVD = 1883 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1884 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1885 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1886 // Emit private VarDecl with copy init. 1887 EmitVarDecl(*PrivateVD); 1888 return GetAddrOfLocalVar(PrivateVD); 1889 }); 1890 assert(IsRegistered && "linear var already registered as private"); 1891 // Silence the warning about unused variable. 1892 (void)IsRegistered; 1893 } else { 1894 EmitVarDecl(*PrivateVD); 1895 } 1896 ++CurPrivate; 1897 } 1898 } 1899 } 1900 1901 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1902 const OMPExecutableDirective &D, 1903 bool IsMonotonic) { 1904 if (!CGF.HaveInsertPoint()) 1905 return; 1906 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1907 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1908 /*ignoreResult=*/true); 1909 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1910 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1911 // In presence of finite 'safelen', it may be unsafe to mark all 1912 // the memory instructions parallel, because loop-carried 1913 // dependences of 'safelen' iterations are possible. 1914 if (!IsMonotonic) 1915 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1916 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1917 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1918 /*ignoreResult=*/true); 1919 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1920 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1921 // In presence of finite 'safelen', it may be unsafe to mark all 1922 // the memory instructions parallel, because loop-carried 1923 // dependences of 'safelen' iterations are possible. 1924 CGF.LoopStack.setParallel(/*Enable=*/false); 1925 } 1926 } 1927 1928 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1929 bool IsMonotonic) { 1930 // Walk clauses and process safelen/lastprivate. 1931 LoopStack.setParallel(!IsMonotonic); 1932 LoopStack.setVectorizeEnable(); 1933 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1934 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 1935 if (C->getKind() == OMPC_ORDER_concurrent) 1936 LoopStack.setParallel(/*Enable=*/true); 1937 } 1938 1939 void CodeGenFunction::EmitOMPSimdFinal( 1940 const OMPLoopDirective &D, 1941 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1942 if (!HaveInsertPoint()) 1943 return; 1944 llvm::BasicBlock *DoneBB = nullptr; 1945 auto IC = D.counters().begin(); 1946 auto IPC = D.private_counters().begin(); 1947 for (const Expr *F : D.finals()) { 1948 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1949 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1950 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1951 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1952 OrigVD->hasGlobalStorage() || CED) { 1953 if (!DoneBB) { 1954 if (llvm::Value *Cond = CondGen(*this)) { 1955 // If the first post-update expression is found, emit conditional 1956 // block if it was requested. 1957 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1958 DoneBB = createBasicBlock(".omp.final.done"); 1959 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1960 EmitBlock(ThenBB); 1961 } 1962 } 1963 Address OrigAddr = Address::invalid(); 1964 if (CED) { 1965 OrigAddr = 1966 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 1967 } else { 1968 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1969 /*RefersToEnclosingVariableOrCapture=*/false, 1970 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1971 OrigAddr = EmitLValue(&DRE).getAddress(*this); 1972 } 1973 OMPPrivateScope VarScope(*this); 1974 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1975 (void)VarScope.Privatize(); 1976 EmitIgnoredExpr(F); 1977 } 1978 ++IC; 1979 ++IPC; 1980 } 1981 if (DoneBB) 1982 EmitBlock(DoneBB, /*IsFinished=*/true); 1983 } 1984 1985 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1986 const OMPLoopDirective &S, 1987 CodeGenFunction::JumpDest LoopExit) { 1988 CGF.EmitOMPLoopBody(S, LoopExit); 1989 CGF.EmitStopPoint(&S); 1990 } 1991 1992 /// Emit a helper variable and return corresponding lvalue. 1993 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1994 const DeclRefExpr *Helper) { 1995 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1996 CGF.EmitVarDecl(*VDecl); 1997 return CGF.EmitLValue(Helper); 1998 } 1999 2000 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2001 const RegionCodeGenTy &SimdInitGen, 2002 const RegionCodeGenTy &BodyCodeGen) { 2003 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2004 PrePostActionTy &) { 2005 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2006 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2007 SimdInitGen(CGF); 2008 2009 BodyCodeGen(CGF); 2010 }; 2011 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2012 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2013 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2014 2015 BodyCodeGen(CGF); 2016 }; 2017 const Expr *IfCond = nullptr; 2018 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2019 if (CGF.getLangOpts().OpenMP >= 50 && 2020 (C->getNameModifier() == OMPD_unknown || 2021 C->getNameModifier() == OMPD_simd)) { 2022 IfCond = C->getCondition(); 2023 break; 2024 } 2025 } 2026 if (IfCond) { 2027 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2028 } else { 2029 RegionCodeGenTy ThenRCG(ThenGen); 2030 ThenRCG(CGF); 2031 } 2032 } 2033 2034 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2035 PrePostActionTy &Action) { 2036 Action.Enter(CGF); 2037 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2038 "Expected simd directive"); 2039 OMPLoopScope PreInitScope(CGF, S); 2040 // if (PreCond) { 2041 // for (IV in 0..LastIteration) BODY; 2042 // <Final counter/linear vars updates>; 2043 // } 2044 // 2045 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2046 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2047 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2048 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2049 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2050 } 2051 2052 // Emit: if (PreCond) - begin. 2053 // If the condition constant folds and can be elided, avoid emitting the 2054 // whole loop. 2055 bool CondConstant; 2056 llvm::BasicBlock *ContBlock = nullptr; 2057 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2058 if (!CondConstant) 2059 return; 2060 } else { 2061 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2062 ContBlock = CGF.createBasicBlock("simd.if.end"); 2063 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2064 CGF.getProfileCount(&S)); 2065 CGF.EmitBlock(ThenBlock); 2066 CGF.incrementProfileCounter(&S); 2067 } 2068 2069 // Emit the loop iteration variable. 2070 const Expr *IVExpr = S.getIterationVariable(); 2071 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2072 CGF.EmitVarDecl(*IVDecl); 2073 CGF.EmitIgnoredExpr(S.getInit()); 2074 2075 // Emit the iterations count variable. 2076 // If it is not a variable, Sema decided to calculate iterations count on 2077 // each iteration (e.g., it is foldable into a constant). 2078 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2079 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2080 // Emit calculation of the iterations count. 2081 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2082 } 2083 2084 emitAlignedClause(CGF, S); 2085 (void)CGF.EmitOMPLinearClauseInit(S); 2086 { 2087 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2088 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2089 CGF.EmitOMPLinearClause(S, LoopScope); 2090 CGF.EmitOMPPrivateClause(S, LoopScope); 2091 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2092 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2093 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2094 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2095 (void)LoopScope.Privatize(); 2096 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2097 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2098 2099 emitCommonSimdLoop( 2100 CGF, S, 2101 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2102 CGF.EmitOMPSimdInit(S); 2103 }, 2104 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2105 CGF.EmitOMPInnerLoop( 2106 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2107 [&S](CodeGenFunction &CGF) { 2108 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 2109 CGF.EmitStopPoint(&S); 2110 }, 2111 [](CodeGenFunction &) {}); 2112 }); 2113 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2114 // Emit final copy of the lastprivate variables at the end of loops. 2115 if (HasLastprivateClause) 2116 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2117 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2118 emitPostUpdateForReductionClause(CGF, S, 2119 [](CodeGenFunction &) { return nullptr; }); 2120 } 2121 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2122 // Emit: if (PreCond) - end. 2123 if (ContBlock) { 2124 CGF.EmitBranch(ContBlock); 2125 CGF.EmitBlock(ContBlock, true); 2126 } 2127 } 2128 2129 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2130 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2131 emitOMPSimdRegion(CGF, S, Action); 2132 }; 2133 { 2134 auto LPCRegion = 2135 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2136 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2137 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2138 } 2139 // Check for outer lastprivate conditional update. 2140 checkForLastprivateConditionalUpdate(*this, S); 2141 } 2142 2143 void CodeGenFunction::EmitOMPOuterLoop( 2144 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2145 CodeGenFunction::OMPPrivateScope &LoopScope, 2146 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2147 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2148 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2149 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2150 2151 const Expr *IVExpr = S.getIterationVariable(); 2152 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2153 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2154 2155 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2156 2157 // Start the loop with a block that tests the condition. 2158 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2159 EmitBlock(CondBlock); 2160 const SourceRange R = S.getSourceRange(); 2161 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2162 SourceLocToDebugLoc(R.getEnd())); 2163 2164 llvm::Value *BoolCondVal = nullptr; 2165 if (!DynamicOrOrdered) { 2166 // UB = min(UB, GlobalUB) or 2167 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2168 // 'distribute parallel for') 2169 EmitIgnoredExpr(LoopArgs.EUB); 2170 // IV = LB 2171 EmitIgnoredExpr(LoopArgs.Init); 2172 // IV < UB 2173 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2174 } else { 2175 BoolCondVal = 2176 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2177 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2178 } 2179 2180 // If there are any cleanups between here and the loop-exit scope, 2181 // create a block to stage a loop exit along. 2182 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2183 if (LoopScope.requiresCleanups()) 2184 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2185 2186 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2187 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2188 if (ExitBlock != LoopExit.getBlock()) { 2189 EmitBlock(ExitBlock); 2190 EmitBranchThroughCleanup(LoopExit); 2191 } 2192 EmitBlock(LoopBody); 2193 2194 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2195 // LB for loop condition and emitted it above). 2196 if (DynamicOrOrdered) 2197 EmitIgnoredExpr(LoopArgs.Init); 2198 2199 // Create a block for the increment. 2200 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2201 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2202 2203 emitCommonSimdLoop( 2204 *this, S, 2205 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2206 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2207 // with dynamic/guided scheduling and without ordered clause. 2208 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2209 CGF.LoopStack.setParallel(!IsMonotonic); 2210 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2211 if (C->getKind() == OMPC_ORDER_concurrent) 2212 CGF.LoopStack.setParallel(/*Enable=*/true); 2213 } else { 2214 CGF.EmitOMPSimdInit(S, IsMonotonic); 2215 } 2216 }, 2217 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2218 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2219 SourceLocation Loc = S.getBeginLoc(); 2220 // when 'distribute' is not combined with a 'for': 2221 // while (idx <= UB) { BODY; ++idx; } 2222 // when 'distribute' is combined with a 'for' 2223 // (e.g. 'distribute parallel for') 2224 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2225 CGF.EmitOMPInnerLoop( 2226 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2227 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2228 CodeGenLoop(CGF, S, LoopExit); 2229 }, 2230 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2231 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2232 }); 2233 }); 2234 2235 EmitBlock(Continue.getBlock()); 2236 BreakContinueStack.pop_back(); 2237 if (!DynamicOrOrdered) { 2238 // Emit "LB = LB + Stride", "UB = UB + Stride". 2239 EmitIgnoredExpr(LoopArgs.NextLB); 2240 EmitIgnoredExpr(LoopArgs.NextUB); 2241 } 2242 2243 EmitBranch(CondBlock); 2244 LoopStack.pop(); 2245 // Emit the fall-through block. 2246 EmitBlock(LoopExit.getBlock()); 2247 2248 // Tell the runtime we are done. 2249 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2250 if (!DynamicOrOrdered) 2251 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2252 S.getDirectiveKind()); 2253 }; 2254 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2255 } 2256 2257 void CodeGenFunction::EmitOMPForOuterLoop( 2258 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2259 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2260 const OMPLoopArguments &LoopArgs, 2261 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2262 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2263 2264 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2265 const bool DynamicOrOrdered = 2266 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2267 2268 assert((Ordered || 2269 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2270 LoopArgs.Chunk != nullptr)) && 2271 "static non-chunked schedule does not need outer loop"); 2272 2273 // Emit outer loop. 2274 // 2275 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2276 // When schedule(dynamic,chunk_size) is specified, the iterations are 2277 // distributed to threads in the team in chunks as the threads request them. 2278 // Each thread executes a chunk of iterations, then requests another chunk, 2279 // until no chunks remain to be distributed. Each chunk contains chunk_size 2280 // iterations, except for the last chunk to be distributed, which may have 2281 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2282 // 2283 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2284 // to threads in the team in chunks as the executing threads request them. 2285 // Each thread executes a chunk of iterations, then requests another chunk, 2286 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2287 // each chunk is proportional to the number of unassigned iterations divided 2288 // by the number of threads in the team, decreasing to 1. For a chunk_size 2289 // with value k (greater than 1), the size of each chunk is determined in the 2290 // same way, with the restriction that the chunks do not contain fewer than k 2291 // iterations (except for the last chunk to be assigned, which may have fewer 2292 // than k iterations). 2293 // 2294 // When schedule(auto) is specified, the decision regarding scheduling is 2295 // delegated to the compiler and/or runtime system. The programmer gives the 2296 // implementation the freedom to choose any possible mapping of iterations to 2297 // threads in the team. 2298 // 2299 // When schedule(runtime) is specified, the decision regarding scheduling is 2300 // deferred until run time, and the schedule and chunk size are taken from the 2301 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2302 // implementation defined 2303 // 2304 // while(__kmpc_dispatch_next(&LB, &UB)) { 2305 // idx = LB; 2306 // while (idx <= UB) { BODY; ++idx; 2307 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2308 // } // inner loop 2309 // } 2310 // 2311 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2312 // When schedule(static, chunk_size) is specified, iterations are divided into 2313 // chunks of size chunk_size, and the chunks are assigned to the threads in 2314 // the team in a round-robin fashion in the order of the thread number. 2315 // 2316 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2317 // while (idx <= UB) { BODY; ++idx; } // inner loop 2318 // LB = LB + ST; 2319 // UB = UB + ST; 2320 // } 2321 // 2322 2323 const Expr *IVExpr = S.getIterationVariable(); 2324 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2325 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2326 2327 if (DynamicOrOrdered) { 2328 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2329 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2330 llvm::Value *LBVal = DispatchBounds.first; 2331 llvm::Value *UBVal = DispatchBounds.second; 2332 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2333 LoopArgs.Chunk}; 2334 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2335 IVSigned, Ordered, DipatchRTInputValues); 2336 } else { 2337 CGOpenMPRuntime::StaticRTInput StaticInit( 2338 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2339 LoopArgs.ST, LoopArgs.Chunk); 2340 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2341 ScheduleKind, StaticInit); 2342 } 2343 2344 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2345 const unsigned IVSize, 2346 const bool IVSigned) { 2347 if (Ordered) { 2348 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2349 IVSigned); 2350 } 2351 }; 2352 2353 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2354 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2355 OuterLoopArgs.IncExpr = S.getInc(); 2356 OuterLoopArgs.Init = S.getInit(); 2357 OuterLoopArgs.Cond = S.getCond(); 2358 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2359 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2360 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2361 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2362 } 2363 2364 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2365 const unsigned IVSize, const bool IVSigned) {} 2366 2367 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2368 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2369 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2370 const CodeGenLoopTy &CodeGenLoopContent) { 2371 2372 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2373 2374 // Emit outer loop. 2375 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2376 // dynamic 2377 // 2378 2379 const Expr *IVExpr = S.getIterationVariable(); 2380 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2381 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2382 2383 CGOpenMPRuntime::StaticRTInput StaticInit( 2384 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2385 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2386 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2387 2388 // for combined 'distribute' and 'for' the increment expression of distribute 2389 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2390 Expr *IncExpr; 2391 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2392 IncExpr = S.getDistInc(); 2393 else 2394 IncExpr = S.getInc(); 2395 2396 // this routine is shared by 'omp distribute parallel for' and 2397 // 'omp distribute': select the right EUB expression depending on the 2398 // directive 2399 OMPLoopArguments OuterLoopArgs; 2400 OuterLoopArgs.LB = LoopArgs.LB; 2401 OuterLoopArgs.UB = LoopArgs.UB; 2402 OuterLoopArgs.ST = LoopArgs.ST; 2403 OuterLoopArgs.IL = LoopArgs.IL; 2404 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2405 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2406 ? S.getCombinedEnsureUpperBound() 2407 : S.getEnsureUpperBound(); 2408 OuterLoopArgs.IncExpr = IncExpr; 2409 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2410 ? S.getCombinedInit() 2411 : S.getInit(); 2412 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2413 ? S.getCombinedCond() 2414 : S.getCond(); 2415 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2416 ? S.getCombinedNextLowerBound() 2417 : S.getNextLowerBound(); 2418 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2419 ? S.getCombinedNextUpperBound() 2420 : S.getNextUpperBound(); 2421 2422 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2423 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2424 emitEmptyOrdered); 2425 } 2426 2427 static std::pair<LValue, LValue> 2428 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2429 const OMPExecutableDirective &S) { 2430 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2431 LValue LB = 2432 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2433 LValue UB = 2434 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2435 2436 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2437 // parallel for') we need to use the 'distribute' 2438 // chunk lower and upper bounds rather than the whole loop iteration 2439 // space. These are parameters to the outlined function for 'parallel' 2440 // and we copy the bounds of the previous schedule into the 2441 // the current ones. 2442 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2443 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2444 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2445 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2446 PrevLBVal = CGF.EmitScalarConversion( 2447 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2448 LS.getIterationVariable()->getType(), 2449 LS.getPrevLowerBoundVariable()->getExprLoc()); 2450 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2451 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2452 PrevUBVal = CGF.EmitScalarConversion( 2453 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2454 LS.getIterationVariable()->getType(), 2455 LS.getPrevUpperBoundVariable()->getExprLoc()); 2456 2457 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2458 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2459 2460 return {LB, UB}; 2461 } 2462 2463 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2464 /// we need to use the LB and UB expressions generated by the worksharing 2465 /// code generation support, whereas in non combined situations we would 2466 /// just emit 0 and the LastIteration expression 2467 /// This function is necessary due to the difference of the LB and UB 2468 /// types for the RT emission routines for 'for_static_init' and 2469 /// 'for_dispatch_init' 2470 static std::pair<llvm::Value *, llvm::Value *> 2471 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2472 const OMPExecutableDirective &S, 2473 Address LB, Address UB) { 2474 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2475 const Expr *IVExpr = LS.getIterationVariable(); 2476 // when implementing a dynamic schedule for a 'for' combined with a 2477 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2478 // is not normalized as each team only executes its own assigned 2479 // distribute chunk 2480 QualType IteratorTy = IVExpr->getType(); 2481 llvm::Value *LBVal = 2482 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2483 llvm::Value *UBVal = 2484 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2485 return {LBVal, UBVal}; 2486 } 2487 2488 static void emitDistributeParallelForDistributeInnerBoundParams( 2489 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2490 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2491 const auto &Dir = cast<OMPLoopDirective>(S); 2492 LValue LB = 2493 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2494 llvm::Value *LBCast = 2495 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2496 CGF.SizeTy, /*isSigned=*/false); 2497 CapturedVars.push_back(LBCast); 2498 LValue UB = 2499 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2500 2501 llvm::Value *UBCast = 2502 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2503 CGF.SizeTy, /*isSigned=*/false); 2504 CapturedVars.push_back(UBCast); 2505 } 2506 2507 static void 2508 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2509 const OMPLoopDirective &S, 2510 CodeGenFunction::JumpDest LoopExit) { 2511 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2512 PrePostActionTy &Action) { 2513 Action.Enter(CGF); 2514 bool HasCancel = false; 2515 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2516 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2517 HasCancel = D->hasCancel(); 2518 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2519 HasCancel = D->hasCancel(); 2520 else if (const auto *D = 2521 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2522 HasCancel = D->hasCancel(); 2523 } 2524 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2525 HasCancel); 2526 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2527 emitDistributeParallelForInnerBounds, 2528 emitDistributeParallelForDispatchBounds); 2529 }; 2530 2531 emitCommonOMPParallelDirective( 2532 CGF, S, 2533 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2534 CGInlinedWorksharingLoop, 2535 emitDistributeParallelForDistributeInnerBoundParams); 2536 } 2537 2538 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2539 const OMPDistributeParallelForDirective &S) { 2540 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2541 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2542 S.getDistInc()); 2543 }; 2544 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2545 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2546 } 2547 2548 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2549 const OMPDistributeParallelForSimdDirective &S) { 2550 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2551 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2552 S.getDistInc()); 2553 }; 2554 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2555 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2556 } 2557 2558 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2559 const OMPDistributeSimdDirective &S) { 2560 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2561 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2562 }; 2563 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2564 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2565 } 2566 2567 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2568 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2569 // Emit SPMD target parallel for region as a standalone region. 2570 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2571 emitOMPSimdRegion(CGF, S, Action); 2572 }; 2573 llvm::Function *Fn; 2574 llvm::Constant *Addr; 2575 // Emit target region as a standalone region. 2576 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2577 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2578 assert(Fn && Addr && "Target device function emission failed."); 2579 } 2580 2581 void CodeGenFunction::EmitOMPTargetSimdDirective( 2582 const OMPTargetSimdDirective &S) { 2583 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2584 emitOMPSimdRegion(CGF, S, Action); 2585 }; 2586 emitCommonOMPTargetDirective(*this, S, CodeGen); 2587 } 2588 2589 namespace { 2590 struct ScheduleKindModifiersTy { 2591 OpenMPScheduleClauseKind Kind; 2592 OpenMPScheduleClauseModifier M1; 2593 OpenMPScheduleClauseModifier M2; 2594 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2595 OpenMPScheduleClauseModifier M1, 2596 OpenMPScheduleClauseModifier M2) 2597 : Kind(Kind), M1(M1), M2(M2) {} 2598 }; 2599 } // namespace 2600 2601 bool CodeGenFunction::EmitOMPWorksharingLoop( 2602 const OMPLoopDirective &S, Expr *EUB, 2603 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2604 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2605 // Emit the loop iteration variable. 2606 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2607 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2608 EmitVarDecl(*IVDecl); 2609 2610 // Emit the iterations count variable. 2611 // If it is not a variable, Sema decided to calculate iterations count on each 2612 // iteration (e.g., it is foldable into a constant). 2613 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2614 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2615 // Emit calculation of the iterations count. 2616 EmitIgnoredExpr(S.getCalcLastIteration()); 2617 } 2618 2619 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2620 2621 bool HasLastprivateClause; 2622 // Check pre-condition. 2623 { 2624 OMPLoopScope PreInitScope(*this, S); 2625 // Skip the entire loop if we don't meet the precondition. 2626 // If the condition constant folds and can be elided, avoid emitting the 2627 // whole loop. 2628 bool CondConstant; 2629 llvm::BasicBlock *ContBlock = nullptr; 2630 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2631 if (!CondConstant) 2632 return false; 2633 } else { 2634 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2635 ContBlock = createBasicBlock("omp.precond.end"); 2636 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2637 getProfileCount(&S)); 2638 EmitBlock(ThenBlock); 2639 incrementProfileCounter(&S); 2640 } 2641 2642 RunCleanupsScope DoacrossCleanupScope(*this); 2643 bool Ordered = false; 2644 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2645 if (OrderedClause->getNumForLoops()) 2646 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2647 else 2648 Ordered = true; 2649 } 2650 2651 llvm::DenseSet<const Expr *> EmittedFinals; 2652 emitAlignedClause(*this, S); 2653 bool HasLinears = EmitOMPLinearClauseInit(S); 2654 // Emit helper vars inits. 2655 2656 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2657 LValue LB = Bounds.first; 2658 LValue UB = Bounds.second; 2659 LValue ST = 2660 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2661 LValue IL = 2662 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2663 2664 // Emit 'then' code. 2665 { 2666 OMPPrivateScope LoopScope(*this); 2667 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2668 // Emit implicit barrier to synchronize threads and avoid data races on 2669 // initialization of firstprivate variables and post-update of 2670 // lastprivate variables. 2671 CGM.getOpenMPRuntime().emitBarrierCall( 2672 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2673 /*ForceSimpleCall=*/true); 2674 } 2675 EmitOMPPrivateClause(S, LoopScope); 2676 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2677 *this, S, EmitLValue(S.getIterationVariable())); 2678 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2679 EmitOMPReductionClauseInit(S, LoopScope); 2680 EmitOMPPrivateLoopCounters(S, LoopScope); 2681 EmitOMPLinearClause(S, LoopScope); 2682 (void)LoopScope.Privatize(); 2683 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2684 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2685 2686 // Detect the loop schedule kind and chunk. 2687 const Expr *ChunkExpr = nullptr; 2688 OpenMPScheduleTy ScheduleKind; 2689 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2690 ScheduleKind.Schedule = C->getScheduleKind(); 2691 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2692 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2693 ChunkExpr = C->getChunkSize(); 2694 } else { 2695 // Default behaviour for schedule clause. 2696 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2697 *this, S, ScheduleKind.Schedule, ChunkExpr); 2698 } 2699 bool HasChunkSizeOne = false; 2700 llvm::Value *Chunk = nullptr; 2701 if (ChunkExpr) { 2702 Chunk = EmitScalarExpr(ChunkExpr); 2703 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2704 S.getIterationVariable()->getType(), 2705 S.getBeginLoc()); 2706 Expr::EvalResult Result; 2707 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2708 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2709 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2710 } 2711 } 2712 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2713 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2714 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2715 // If the static schedule kind is specified or if the ordered clause is 2716 // specified, and if no monotonic modifier is specified, the effect will 2717 // be as if the monotonic modifier was specified. 2718 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2719 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2720 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2721 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2722 /* Chunked */ Chunk != nullptr) || 2723 StaticChunkedOne) && 2724 !Ordered) { 2725 JumpDest LoopExit = 2726 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2727 emitCommonSimdLoop( 2728 *this, S, 2729 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2730 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2731 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2732 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2733 if (C->getKind() == OMPC_ORDER_concurrent) 2734 CGF.LoopStack.setParallel(/*Enable=*/true); 2735 } 2736 }, 2737 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2738 &S, ScheduleKind, LoopExit, 2739 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2740 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2741 // When no chunk_size is specified, the iteration space is divided 2742 // into chunks that are approximately equal in size, and at most 2743 // one chunk is distributed to each thread. Note that the size of 2744 // the chunks is unspecified in this case. 2745 CGOpenMPRuntime::StaticRTInput StaticInit( 2746 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2747 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2748 StaticChunkedOne ? Chunk : nullptr); 2749 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2750 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2751 StaticInit); 2752 // UB = min(UB, GlobalUB); 2753 if (!StaticChunkedOne) 2754 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2755 // IV = LB; 2756 CGF.EmitIgnoredExpr(S.getInit()); 2757 // For unchunked static schedule generate: 2758 // 2759 // while (idx <= UB) { 2760 // BODY; 2761 // ++idx; 2762 // } 2763 // 2764 // For static schedule with chunk one: 2765 // 2766 // while (IV <= PrevUB) { 2767 // BODY; 2768 // IV += ST; 2769 // } 2770 CGF.EmitOMPInnerLoop( 2771 S, LoopScope.requiresCleanups(), 2772 StaticChunkedOne ? S.getCombinedParForInDistCond() 2773 : S.getCond(), 2774 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2775 [&S, LoopExit](CodeGenFunction &CGF) { 2776 CGF.EmitOMPLoopBody(S, LoopExit); 2777 CGF.EmitStopPoint(&S); 2778 }, 2779 [](CodeGenFunction &) {}); 2780 }); 2781 EmitBlock(LoopExit.getBlock()); 2782 // Tell the runtime we are done. 2783 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2784 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2785 S.getDirectiveKind()); 2786 }; 2787 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2788 } else { 2789 const bool IsMonotonic = 2790 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2791 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2792 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2793 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2794 // Emit the outer loop, which requests its work chunk [LB..UB] from 2795 // runtime and runs the inner loop to process it. 2796 const OMPLoopArguments LoopArguments( 2797 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2798 IL.getAddress(*this), Chunk, EUB); 2799 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2800 LoopArguments, CGDispatchBounds); 2801 } 2802 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2803 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2804 return CGF.Builder.CreateIsNotNull( 2805 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2806 }); 2807 } 2808 EmitOMPReductionClauseFinal( 2809 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2810 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2811 : /*Parallel only*/ OMPD_parallel); 2812 // Emit post-update of the reduction variables if IsLastIter != 0. 2813 emitPostUpdateForReductionClause( 2814 *this, S, [IL, &S](CodeGenFunction &CGF) { 2815 return CGF.Builder.CreateIsNotNull( 2816 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2817 }); 2818 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2819 if (HasLastprivateClause) 2820 EmitOMPLastprivateClauseFinal( 2821 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2822 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2823 } 2824 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2825 return CGF.Builder.CreateIsNotNull( 2826 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2827 }); 2828 DoacrossCleanupScope.ForceCleanup(); 2829 // We're now done with the loop, so jump to the continuation block. 2830 if (ContBlock) { 2831 EmitBranch(ContBlock); 2832 EmitBlock(ContBlock, /*IsFinished=*/true); 2833 } 2834 } 2835 return HasLastprivateClause; 2836 } 2837 2838 /// The following two functions generate expressions for the loop lower 2839 /// and upper bounds in case of static and dynamic (dispatch) schedule 2840 /// of the associated 'for' or 'distribute' loop. 2841 static std::pair<LValue, LValue> 2842 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2843 const auto &LS = cast<OMPLoopDirective>(S); 2844 LValue LB = 2845 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2846 LValue UB = 2847 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2848 return {LB, UB}; 2849 } 2850 2851 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2852 /// consider the lower and upper bound expressions generated by the 2853 /// worksharing loop support, but we use 0 and the iteration space size as 2854 /// constants 2855 static std::pair<llvm::Value *, llvm::Value *> 2856 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2857 Address LB, Address UB) { 2858 const auto &LS = cast<OMPLoopDirective>(S); 2859 const Expr *IVExpr = LS.getIterationVariable(); 2860 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2861 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2862 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2863 return {LBVal, UBVal}; 2864 } 2865 2866 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2867 bool HasLastprivates = false; 2868 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2869 PrePostActionTy &) { 2870 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2871 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2872 emitForLoopBounds, 2873 emitDispatchForLoopBounds); 2874 }; 2875 { 2876 auto LPCRegion = 2877 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2878 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2879 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2880 S.hasCancel()); 2881 } 2882 2883 // Emit an implicit barrier at the end. 2884 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2885 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2886 // Check for outer lastprivate conditional update. 2887 checkForLastprivateConditionalUpdate(*this, S); 2888 } 2889 2890 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2891 bool HasLastprivates = false; 2892 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2893 PrePostActionTy &) { 2894 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2895 emitForLoopBounds, 2896 emitDispatchForLoopBounds); 2897 }; 2898 { 2899 auto LPCRegion = 2900 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2901 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2902 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2903 } 2904 2905 // Emit an implicit barrier at the end. 2906 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2907 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2908 // Check for outer lastprivate conditional update. 2909 checkForLastprivateConditionalUpdate(*this, S); 2910 } 2911 2912 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2913 const Twine &Name, 2914 llvm::Value *Init = nullptr) { 2915 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2916 if (Init) 2917 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2918 return LVal; 2919 } 2920 2921 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2922 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2923 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2924 bool HasLastprivates = false; 2925 auto &&CodeGen = [&S, CapturedStmt, CS, 2926 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2927 ASTContext &C = CGF.getContext(); 2928 QualType KmpInt32Ty = 2929 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2930 // Emit helper vars inits. 2931 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2932 CGF.Builder.getInt32(0)); 2933 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2934 ? CGF.Builder.getInt32(CS->size() - 1) 2935 : CGF.Builder.getInt32(0); 2936 LValue UB = 2937 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2938 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2939 CGF.Builder.getInt32(1)); 2940 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2941 CGF.Builder.getInt32(0)); 2942 // Loop counter. 2943 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2944 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2945 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2946 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2947 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2948 // Generate condition for loop. 2949 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2950 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2951 // Increment for loop counter. 2952 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2953 S.getBeginLoc(), true); 2954 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2955 // Iterate through all sections and emit a switch construct: 2956 // switch (IV) { 2957 // case 0: 2958 // <SectionStmt[0]>; 2959 // break; 2960 // ... 2961 // case <NumSection> - 1: 2962 // <SectionStmt[<NumSection> - 1]>; 2963 // break; 2964 // } 2965 // .omp.sections.exit: 2966 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2967 llvm::SwitchInst *SwitchStmt = 2968 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2969 ExitBB, CS == nullptr ? 1 : CS->size()); 2970 if (CS) { 2971 unsigned CaseNumber = 0; 2972 for (const Stmt *SubStmt : CS->children()) { 2973 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2974 CGF.EmitBlock(CaseBB); 2975 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2976 CGF.EmitStmt(SubStmt); 2977 CGF.EmitBranch(ExitBB); 2978 ++CaseNumber; 2979 } 2980 } else { 2981 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2982 CGF.EmitBlock(CaseBB); 2983 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2984 CGF.EmitStmt(CapturedStmt); 2985 CGF.EmitBranch(ExitBB); 2986 } 2987 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2988 }; 2989 2990 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2991 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2992 // Emit implicit barrier to synchronize threads and avoid data races on 2993 // initialization of firstprivate variables and post-update of lastprivate 2994 // variables. 2995 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2996 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2997 /*ForceSimpleCall=*/true); 2998 } 2999 CGF.EmitOMPPrivateClause(S, LoopScope); 3000 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3001 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3002 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3003 (void)LoopScope.Privatize(); 3004 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3005 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3006 3007 // Emit static non-chunked loop. 3008 OpenMPScheduleTy ScheduleKind; 3009 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3010 CGOpenMPRuntime::StaticRTInput StaticInit( 3011 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3012 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3013 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3014 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3015 // UB = min(UB, GlobalUB); 3016 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3017 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3018 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3019 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3020 // IV = LB; 3021 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3022 // while (idx <= UB) { BODY; ++idx; } 3023 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 3024 [](CodeGenFunction &) {}); 3025 // Tell the runtime we are done. 3026 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3027 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3028 S.getDirectiveKind()); 3029 }; 3030 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3031 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3032 // Emit post-update of the reduction variables if IsLastIter != 0. 3033 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3034 return CGF.Builder.CreateIsNotNull( 3035 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3036 }); 3037 3038 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3039 if (HasLastprivates) 3040 CGF.EmitOMPLastprivateClauseFinal( 3041 S, /*NoFinals=*/false, 3042 CGF.Builder.CreateIsNotNull( 3043 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3044 }; 3045 3046 bool HasCancel = false; 3047 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3048 HasCancel = OSD->hasCancel(); 3049 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3050 HasCancel = OPSD->hasCancel(); 3051 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3052 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3053 HasCancel); 3054 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3055 // clause. Otherwise the barrier will be generated by the codegen for the 3056 // directive. 3057 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3058 // Emit implicit barrier to synchronize threads and avoid data races on 3059 // initialization of firstprivate variables. 3060 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3061 OMPD_unknown); 3062 } 3063 } 3064 3065 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3066 { 3067 auto LPCRegion = 3068 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3069 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3070 EmitSections(S); 3071 } 3072 // Emit an implicit barrier at the end. 3073 if (!S.getSingleClause<OMPNowaitClause>()) { 3074 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3075 OMPD_sections); 3076 } 3077 // Check for outer lastprivate conditional update. 3078 checkForLastprivateConditionalUpdate(*this, S); 3079 } 3080 3081 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3082 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3083 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3084 }; 3085 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3086 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 3087 S.hasCancel()); 3088 } 3089 3090 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3091 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3092 llvm::SmallVector<const Expr *, 8> DestExprs; 3093 llvm::SmallVector<const Expr *, 8> SrcExprs; 3094 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3095 // Check if there are any 'copyprivate' clauses associated with this 3096 // 'single' construct. 3097 // Build a list of copyprivate variables along with helper expressions 3098 // (<source>, <destination>, <destination>=<source> expressions) 3099 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3100 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3101 DestExprs.append(C->destination_exprs().begin(), 3102 C->destination_exprs().end()); 3103 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3104 AssignmentOps.append(C->assignment_ops().begin(), 3105 C->assignment_ops().end()); 3106 } 3107 // Emit code for 'single' region along with 'copyprivate' clauses 3108 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3109 Action.Enter(CGF); 3110 OMPPrivateScope SingleScope(CGF); 3111 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3112 CGF.EmitOMPPrivateClause(S, SingleScope); 3113 (void)SingleScope.Privatize(); 3114 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3115 }; 3116 { 3117 auto LPCRegion = 3118 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3119 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3120 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3121 CopyprivateVars, DestExprs, 3122 SrcExprs, AssignmentOps); 3123 } 3124 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3125 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3126 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3127 CGM.getOpenMPRuntime().emitBarrierCall( 3128 *this, S.getBeginLoc(), 3129 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3130 } 3131 // Check for outer lastprivate conditional update. 3132 checkForLastprivateConditionalUpdate(*this, S); 3133 } 3134 3135 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3136 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3137 Action.Enter(CGF); 3138 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3139 }; 3140 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3141 } 3142 3143 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3144 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3145 emitMaster(*this, S); 3146 } 3147 3148 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3149 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3150 Action.Enter(CGF); 3151 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3152 }; 3153 const Expr *Hint = nullptr; 3154 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3155 Hint = HintClause->getHint(); 3156 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3157 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3158 S.getDirectiveName().getAsString(), 3159 CodeGen, S.getBeginLoc(), Hint); 3160 } 3161 3162 void CodeGenFunction::EmitOMPParallelForDirective( 3163 const OMPParallelForDirective &S) { 3164 // Emit directive as a combined directive that consists of two implicit 3165 // directives: 'parallel' with 'for' directive. 3166 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3167 Action.Enter(CGF); 3168 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 3169 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3170 emitDispatchForLoopBounds); 3171 }; 3172 { 3173 auto LPCRegion = 3174 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3175 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3176 emitEmptyBoundParameters); 3177 } 3178 // Check for outer lastprivate conditional update. 3179 checkForLastprivateConditionalUpdate(*this, S); 3180 } 3181 3182 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3183 const OMPParallelForSimdDirective &S) { 3184 // Emit directive as a combined directive that consists of two implicit 3185 // directives: 'parallel' with 'for' directive. 3186 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3187 Action.Enter(CGF); 3188 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3189 emitDispatchForLoopBounds); 3190 }; 3191 { 3192 auto LPCRegion = 3193 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3194 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 3195 emitEmptyBoundParameters); 3196 } 3197 // Check for outer lastprivate conditional update. 3198 checkForLastprivateConditionalUpdate(*this, S); 3199 } 3200 3201 void CodeGenFunction::EmitOMPParallelMasterDirective( 3202 const OMPParallelMasterDirective &S) { 3203 // Emit directive as a combined directive that consists of two implicit 3204 // directives: 'parallel' with 'master' directive. 3205 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3206 Action.Enter(CGF); 3207 OMPPrivateScope PrivateScope(CGF); 3208 bool Copyins = CGF.EmitOMPCopyinClause(S); 3209 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3210 if (Copyins) { 3211 // Emit implicit barrier to synchronize threads and avoid data races on 3212 // propagation master's thread values of threadprivate variables to local 3213 // instances of that variables of all other implicit threads. 3214 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3215 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3216 /*ForceSimpleCall=*/true); 3217 } 3218 CGF.EmitOMPPrivateClause(S, PrivateScope); 3219 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3220 (void)PrivateScope.Privatize(); 3221 emitMaster(CGF, S); 3222 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3223 }; 3224 { 3225 auto LPCRegion = 3226 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3227 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3228 emitEmptyBoundParameters); 3229 emitPostUpdateForReductionClause(*this, S, 3230 [](CodeGenFunction &) { return nullptr; }); 3231 } 3232 // Check for outer lastprivate conditional update. 3233 checkForLastprivateConditionalUpdate(*this, S); 3234 } 3235 3236 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3237 const OMPParallelSectionsDirective &S) { 3238 // Emit directive as a combined directive that consists of two implicit 3239 // directives: 'parallel' with 'sections' directive. 3240 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3241 Action.Enter(CGF); 3242 CGF.EmitSections(S); 3243 }; 3244 { 3245 auto LPCRegion = 3246 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3247 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3248 emitEmptyBoundParameters); 3249 } 3250 // Check for outer lastprivate conditional update. 3251 checkForLastprivateConditionalUpdate(*this, S); 3252 } 3253 3254 void CodeGenFunction::EmitOMPTaskBasedDirective( 3255 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3256 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3257 OMPTaskDataTy &Data) { 3258 // Emit outlined function for task construct. 3259 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3260 auto I = CS->getCapturedDecl()->param_begin(); 3261 auto PartId = std::next(I); 3262 auto TaskT = std::next(I, 4); 3263 // Check if the task is final 3264 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3265 // If the condition constant folds and can be elided, try to avoid emitting 3266 // the condition and the dead arm of the if/else. 3267 const Expr *Cond = Clause->getCondition(); 3268 bool CondConstant; 3269 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3270 Data.Final.setInt(CondConstant); 3271 else 3272 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3273 } else { 3274 // By default the task is not final. 3275 Data.Final.setInt(/*IntVal=*/false); 3276 } 3277 // Check if the task has 'priority' clause. 3278 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3279 const Expr *Prio = Clause->getPriority(); 3280 Data.Priority.setInt(/*IntVal=*/true); 3281 Data.Priority.setPointer(EmitScalarConversion( 3282 EmitScalarExpr(Prio), Prio->getType(), 3283 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3284 Prio->getExprLoc())); 3285 } 3286 // The first function argument for tasks is a thread id, the second one is a 3287 // part id (0 for tied tasks, >=0 for untied task). 3288 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3289 // Get list of private variables. 3290 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3291 auto IRef = C->varlist_begin(); 3292 for (const Expr *IInit : C->private_copies()) { 3293 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3294 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3295 Data.PrivateVars.push_back(*IRef); 3296 Data.PrivateCopies.push_back(IInit); 3297 } 3298 ++IRef; 3299 } 3300 } 3301 EmittedAsPrivate.clear(); 3302 // Get list of firstprivate variables. 3303 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3304 auto IRef = C->varlist_begin(); 3305 auto IElemInitRef = C->inits().begin(); 3306 for (const Expr *IInit : C->private_copies()) { 3307 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3308 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3309 Data.FirstprivateVars.push_back(*IRef); 3310 Data.FirstprivateCopies.push_back(IInit); 3311 Data.FirstprivateInits.push_back(*IElemInitRef); 3312 } 3313 ++IRef; 3314 ++IElemInitRef; 3315 } 3316 } 3317 // Get list of lastprivate variables (for taskloops). 3318 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3319 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3320 auto IRef = C->varlist_begin(); 3321 auto ID = C->destination_exprs().begin(); 3322 for (const Expr *IInit : C->private_copies()) { 3323 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3324 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3325 Data.LastprivateVars.push_back(*IRef); 3326 Data.LastprivateCopies.push_back(IInit); 3327 } 3328 LastprivateDstsOrigs.insert( 3329 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3330 cast<DeclRefExpr>(*IRef)}); 3331 ++IRef; 3332 ++ID; 3333 } 3334 } 3335 SmallVector<const Expr *, 4> LHSs; 3336 SmallVector<const Expr *, 4> RHSs; 3337 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3338 auto IPriv = C->privates().begin(); 3339 auto IRed = C->reduction_ops().begin(); 3340 auto ILHS = C->lhs_exprs().begin(); 3341 auto IRHS = C->rhs_exprs().begin(); 3342 for (const Expr *Ref : C->varlists()) { 3343 Data.ReductionVars.emplace_back(Ref); 3344 Data.ReductionCopies.emplace_back(*IPriv); 3345 Data.ReductionOps.emplace_back(*IRed); 3346 LHSs.emplace_back(*ILHS); 3347 RHSs.emplace_back(*IRHS); 3348 std::advance(IPriv, 1); 3349 std::advance(IRed, 1); 3350 std::advance(ILHS, 1); 3351 std::advance(IRHS, 1); 3352 } 3353 } 3354 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3355 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3356 // Build list of dependences. 3357 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3358 for (const Expr *IRef : C->varlists()) 3359 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3360 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3361 CapturedRegion](CodeGenFunction &CGF, 3362 PrePostActionTy &Action) { 3363 // Set proper addresses for generated private copies. 3364 OMPPrivateScope Scope(CGF); 3365 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3366 !Data.LastprivateVars.empty()) { 3367 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3368 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3369 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3370 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3371 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3372 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3373 CS->getCapturedDecl()->getParam(PrivatesParam))); 3374 // Map privates. 3375 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3376 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3377 CallArgs.push_back(PrivatesPtr); 3378 for (const Expr *E : Data.PrivateVars) { 3379 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3380 Address PrivatePtr = CGF.CreateMemTemp( 3381 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3382 PrivatePtrs.emplace_back(VD, PrivatePtr); 3383 CallArgs.push_back(PrivatePtr.getPointer()); 3384 } 3385 for (const Expr *E : Data.FirstprivateVars) { 3386 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3387 Address PrivatePtr = 3388 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3389 ".firstpriv.ptr.addr"); 3390 PrivatePtrs.emplace_back(VD, PrivatePtr); 3391 CallArgs.push_back(PrivatePtr.getPointer()); 3392 } 3393 for (const Expr *E : Data.LastprivateVars) { 3394 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3395 Address PrivatePtr = 3396 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3397 ".lastpriv.ptr.addr"); 3398 PrivatePtrs.emplace_back(VD, PrivatePtr); 3399 CallArgs.push_back(PrivatePtr.getPointer()); 3400 } 3401 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3402 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3403 for (const auto &Pair : LastprivateDstsOrigs) { 3404 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3405 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3406 /*RefersToEnclosingVariableOrCapture=*/ 3407 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3408 Pair.second->getType(), VK_LValue, 3409 Pair.second->getExprLoc()); 3410 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3411 return CGF.EmitLValue(&DRE).getAddress(CGF); 3412 }); 3413 } 3414 for (const auto &Pair : PrivatePtrs) { 3415 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3416 CGF.getContext().getDeclAlign(Pair.first)); 3417 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3418 } 3419 } 3420 if (Data.Reductions) { 3421 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3422 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3423 Data.ReductionOps); 3424 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3425 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3426 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3427 RedCG.emitSharedLValue(CGF, Cnt); 3428 RedCG.emitAggregateType(CGF, Cnt); 3429 // FIXME: This must removed once the runtime library is fixed. 3430 // Emit required threadprivate variables for 3431 // initializer/combiner/finalizer. 3432 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3433 RedCG, Cnt); 3434 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3435 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3436 Replacement = 3437 Address(CGF.EmitScalarConversion( 3438 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3439 CGF.getContext().getPointerType( 3440 Data.ReductionCopies[Cnt]->getType()), 3441 Data.ReductionCopies[Cnt]->getExprLoc()), 3442 Replacement.getAlignment()); 3443 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3444 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3445 [Replacement]() { return Replacement; }); 3446 } 3447 } 3448 // Privatize all private variables except for in_reduction items. 3449 (void)Scope.Privatize(); 3450 SmallVector<const Expr *, 4> InRedVars; 3451 SmallVector<const Expr *, 4> InRedPrivs; 3452 SmallVector<const Expr *, 4> InRedOps; 3453 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3454 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3455 auto IPriv = C->privates().begin(); 3456 auto IRed = C->reduction_ops().begin(); 3457 auto ITD = C->taskgroup_descriptors().begin(); 3458 for (const Expr *Ref : C->varlists()) { 3459 InRedVars.emplace_back(Ref); 3460 InRedPrivs.emplace_back(*IPriv); 3461 InRedOps.emplace_back(*IRed); 3462 TaskgroupDescriptors.emplace_back(*ITD); 3463 std::advance(IPriv, 1); 3464 std::advance(IRed, 1); 3465 std::advance(ITD, 1); 3466 } 3467 } 3468 // Privatize in_reduction items here, because taskgroup descriptors must be 3469 // privatized earlier. 3470 OMPPrivateScope InRedScope(CGF); 3471 if (!InRedVars.empty()) { 3472 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3473 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3474 RedCG.emitSharedLValue(CGF, Cnt); 3475 RedCG.emitAggregateType(CGF, Cnt); 3476 // The taskgroup descriptor variable is always implicit firstprivate and 3477 // privatized already during processing of the firstprivates. 3478 // FIXME: This must removed once the runtime library is fixed. 3479 // Emit required threadprivate variables for 3480 // initializer/combiner/finalizer. 3481 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3482 RedCG, Cnt); 3483 llvm::Value *ReductionsPtr = 3484 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3485 TaskgroupDescriptors[Cnt]->getExprLoc()); 3486 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3487 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3488 Replacement = Address( 3489 CGF.EmitScalarConversion( 3490 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3491 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3492 InRedPrivs[Cnt]->getExprLoc()), 3493 Replacement.getAlignment()); 3494 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3495 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3496 [Replacement]() { return Replacement; }); 3497 } 3498 } 3499 (void)InRedScope.Privatize(); 3500 3501 Action.Enter(CGF); 3502 BodyGen(CGF); 3503 }; 3504 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3505 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3506 Data.NumberOfParts); 3507 OMPLexicalScope Scope(*this, S, llvm::None, 3508 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3509 !isOpenMPSimdDirective(S.getDirectiveKind())); 3510 TaskGen(*this, OutlinedFn, Data); 3511 } 3512 3513 static ImplicitParamDecl * 3514 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3515 QualType Ty, CapturedDecl *CD, 3516 SourceLocation Loc) { 3517 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3518 ImplicitParamDecl::Other); 3519 auto *OrigRef = DeclRefExpr::Create( 3520 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3521 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3522 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3523 ImplicitParamDecl::Other); 3524 auto *PrivateRef = DeclRefExpr::Create( 3525 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3526 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3527 QualType ElemType = C.getBaseElementType(Ty); 3528 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3529 ImplicitParamDecl::Other); 3530 auto *InitRef = DeclRefExpr::Create( 3531 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3532 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3533 PrivateVD->setInitStyle(VarDecl::CInit); 3534 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3535 InitRef, /*BasePath=*/nullptr, 3536 VK_RValue)); 3537 Data.FirstprivateVars.emplace_back(OrigRef); 3538 Data.FirstprivateCopies.emplace_back(PrivateRef); 3539 Data.FirstprivateInits.emplace_back(InitRef); 3540 return OrigVD; 3541 } 3542 3543 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3544 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3545 OMPTargetDataInfo &InputInfo) { 3546 // Emit outlined function for task construct. 3547 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3548 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3549 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3550 auto I = CS->getCapturedDecl()->param_begin(); 3551 auto PartId = std::next(I); 3552 auto TaskT = std::next(I, 4); 3553 OMPTaskDataTy Data; 3554 // The task is not final. 3555 Data.Final.setInt(/*IntVal=*/false); 3556 // Get list of firstprivate variables. 3557 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3558 auto IRef = C->varlist_begin(); 3559 auto IElemInitRef = C->inits().begin(); 3560 for (auto *IInit : C->private_copies()) { 3561 Data.FirstprivateVars.push_back(*IRef); 3562 Data.FirstprivateCopies.push_back(IInit); 3563 Data.FirstprivateInits.push_back(*IElemInitRef); 3564 ++IRef; 3565 ++IElemInitRef; 3566 } 3567 } 3568 OMPPrivateScope TargetScope(*this); 3569 VarDecl *BPVD = nullptr; 3570 VarDecl *PVD = nullptr; 3571 VarDecl *SVD = nullptr; 3572 if (InputInfo.NumberOfTargetItems > 0) { 3573 auto *CD = CapturedDecl::Create( 3574 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3575 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3576 QualType BaseAndPointersType = getContext().getConstantArrayType( 3577 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3578 /*IndexTypeQuals=*/0); 3579 BPVD = createImplicitFirstprivateForType( 3580 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3581 PVD = createImplicitFirstprivateForType( 3582 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3583 QualType SizesType = getContext().getConstantArrayType( 3584 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3585 ArrSize, nullptr, ArrayType::Normal, 3586 /*IndexTypeQuals=*/0); 3587 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3588 S.getBeginLoc()); 3589 TargetScope.addPrivate( 3590 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3591 TargetScope.addPrivate(PVD, 3592 [&InputInfo]() { return InputInfo.PointersArray; }); 3593 TargetScope.addPrivate(SVD, 3594 [&InputInfo]() { return InputInfo.SizesArray; }); 3595 } 3596 (void)TargetScope.Privatize(); 3597 // Build list of dependences. 3598 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3599 for (const Expr *IRef : C->varlists()) 3600 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3601 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3602 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3603 // Set proper addresses for generated private copies. 3604 OMPPrivateScope Scope(CGF); 3605 if (!Data.FirstprivateVars.empty()) { 3606 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3607 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3608 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3609 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3610 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3611 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3612 CS->getCapturedDecl()->getParam(PrivatesParam))); 3613 // Map privates. 3614 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3615 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3616 CallArgs.push_back(PrivatesPtr); 3617 for (const Expr *E : Data.FirstprivateVars) { 3618 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3619 Address PrivatePtr = 3620 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3621 ".firstpriv.ptr.addr"); 3622 PrivatePtrs.emplace_back(VD, PrivatePtr); 3623 CallArgs.push_back(PrivatePtr.getPointer()); 3624 } 3625 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3626 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3627 for (const auto &Pair : PrivatePtrs) { 3628 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3629 CGF.getContext().getDeclAlign(Pair.first)); 3630 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3631 } 3632 } 3633 // Privatize all private variables except for in_reduction items. 3634 (void)Scope.Privatize(); 3635 if (InputInfo.NumberOfTargetItems > 0) { 3636 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3637 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3638 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3639 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3640 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3641 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3642 } 3643 3644 Action.Enter(CGF); 3645 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3646 BodyGen(CGF); 3647 }; 3648 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3649 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3650 Data.NumberOfParts); 3651 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3652 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3653 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3654 SourceLocation()); 3655 3656 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3657 SharedsTy, CapturedStruct, &IfCond, Data); 3658 } 3659 3660 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3661 // Emit outlined function for task construct. 3662 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3663 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3664 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3665 const Expr *IfCond = nullptr; 3666 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3667 if (C->getNameModifier() == OMPD_unknown || 3668 C->getNameModifier() == OMPD_task) { 3669 IfCond = C->getCondition(); 3670 break; 3671 } 3672 } 3673 3674 OMPTaskDataTy Data; 3675 // Check if we should emit tied or untied task. 3676 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3677 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3678 CGF.EmitStmt(CS->getCapturedStmt()); 3679 }; 3680 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3681 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3682 const OMPTaskDataTy &Data) { 3683 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3684 SharedsTy, CapturedStruct, IfCond, 3685 Data); 3686 }; 3687 auto LPCRegion = 3688 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3689 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3690 } 3691 3692 void CodeGenFunction::EmitOMPTaskyieldDirective( 3693 const OMPTaskyieldDirective &S) { 3694 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3695 } 3696 3697 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3698 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3699 } 3700 3701 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3702 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3703 } 3704 3705 void CodeGenFunction::EmitOMPTaskgroupDirective( 3706 const OMPTaskgroupDirective &S) { 3707 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3708 Action.Enter(CGF); 3709 if (const Expr *E = S.getReductionRef()) { 3710 SmallVector<const Expr *, 4> LHSs; 3711 SmallVector<const Expr *, 4> RHSs; 3712 OMPTaskDataTy Data; 3713 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3714 auto IPriv = C->privates().begin(); 3715 auto IRed = C->reduction_ops().begin(); 3716 auto ILHS = C->lhs_exprs().begin(); 3717 auto IRHS = C->rhs_exprs().begin(); 3718 for (const Expr *Ref : C->varlists()) { 3719 Data.ReductionVars.emplace_back(Ref); 3720 Data.ReductionCopies.emplace_back(*IPriv); 3721 Data.ReductionOps.emplace_back(*IRed); 3722 LHSs.emplace_back(*ILHS); 3723 RHSs.emplace_back(*IRHS); 3724 std::advance(IPriv, 1); 3725 std::advance(IRed, 1); 3726 std::advance(ILHS, 1); 3727 std::advance(IRHS, 1); 3728 } 3729 } 3730 llvm::Value *ReductionDesc = 3731 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3732 LHSs, RHSs, Data); 3733 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3734 CGF.EmitVarDecl(*VD); 3735 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3736 /*Volatile=*/false, E->getType()); 3737 } 3738 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3739 }; 3740 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3741 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3742 } 3743 3744 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3745 CGM.getOpenMPRuntime().emitFlush( 3746 *this, 3747 [&S]() -> ArrayRef<const Expr *> { 3748 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3749 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3750 FlushClause->varlist_end()); 3751 return llvm::None; 3752 }(), 3753 S.getBeginLoc()); 3754 } 3755 3756 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3757 const CodeGenLoopTy &CodeGenLoop, 3758 Expr *IncExpr) { 3759 // Emit the loop iteration variable. 3760 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3761 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3762 EmitVarDecl(*IVDecl); 3763 3764 // Emit the iterations count variable. 3765 // If it is not a variable, Sema decided to calculate iterations count on each 3766 // iteration (e.g., it is foldable into a constant). 3767 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3768 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3769 // Emit calculation of the iterations count. 3770 EmitIgnoredExpr(S.getCalcLastIteration()); 3771 } 3772 3773 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3774 3775 bool HasLastprivateClause = false; 3776 // Check pre-condition. 3777 { 3778 OMPLoopScope PreInitScope(*this, S); 3779 // Skip the entire loop if we don't meet the precondition. 3780 // If the condition constant folds and can be elided, avoid emitting the 3781 // whole loop. 3782 bool CondConstant; 3783 llvm::BasicBlock *ContBlock = nullptr; 3784 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3785 if (!CondConstant) 3786 return; 3787 } else { 3788 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3789 ContBlock = createBasicBlock("omp.precond.end"); 3790 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3791 getProfileCount(&S)); 3792 EmitBlock(ThenBlock); 3793 incrementProfileCounter(&S); 3794 } 3795 3796 emitAlignedClause(*this, S); 3797 // Emit 'then' code. 3798 { 3799 // Emit helper vars inits. 3800 3801 LValue LB = EmitOMPHelperVar( 3802 *this, cast<DeclRefExpr>( 3803 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3804 ? S.getCombinedLowerBoundVariable() 3805 : S.getLowerBoundVariable()))); 3806 LValue UB = EmitOMPHelperVar( 3807 *this, cast<DeclRefExpr>( 3808 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3809 ? S.getCombinedUpperBoundVariable() 3810 : S.getUpperBoundVariable()))); 3811 LValue ST = 3812 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3813 LValue IL = 3814 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3815 3816 OMPPrivateScope LoopScope(*this); 3817 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3818 // Emit implicit barrier to synchronize threads and avoid data races 3819 // on initialization of firstprivate variables and post-update of 3820 // lastprivate variables. 3821 CGM.getOpenMPRuntime().emitBarrierCall( 3822 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3823 /*ForceSimpleCall=*/true); 3824 } 3825 EmitOMPPrivateClause(S, LoopScope); 3826 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3827 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3828 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3829 EmitOMPReductionClauseInit(S, LoopScope); 3830 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3831 EmitOMPPrivateLoopCounters(S, LoopScope); 3832 (void)LoopScope.Privatize(); 3833 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3834 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3835 3836 // Detect the distribute schedule kind and chunk. 3837 llvm::Value *Chunk = nullptr; 3838 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3839 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3840 ScheduleKind = C->getDistScheduleKind(); 3841 if (const Expr *Ch = C->getChunkSize()) { 3842 Chunk = EmitScalarExpr(Ch); 3843 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3844 S.getIterationVariable()->getType(), 3845 S.getBeginLoc()); 3846 } 3847 } else { 3848 // Default behaviour for dist_schedule clause. 3849 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3850 *this, S, ScheduleKind, Chunk); 3851 } 3852 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3853 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3854 3855 // OpenMP [2.10.8, distribute Construct, Description] 3856 // If dist_schedule is specified, kind must be static. If specified, 3857 // iterations are divided into chunks of size chunk_size, chunks are 3858 // assigned to the teams of the league in a round-robin fashion in the 3859 // order of the team number. When no chunk_size is specified, the 3860 // iteration space is divided into chunks that are approximately equal 3861 // in size, and at most one chunk is distributed to each team of the 3862 // league. The size of the chunks is unspecified in this case. 3863 bool StaticChunked = RT.isStaticChunked( 3864 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3865 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3866 if (RT.isStaticNonchunked(ScheduleKind, 3867 /* Chunked */ Chunk != nullptr) || 3868 StaticChunked) { 3869 CGOpenMPRuntime::StaticRTInput StaticInit( 3870 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 3871 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3872 StaticChunked ? Chunk : nullptr); 3873 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3874 StaticInit); 3875 JumpDest LoopExit = 3876 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3877 // UB = min(UB, GlobalUB); 3878 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3879 ? S.getCombinedEnsureUpperBound() 3880 : S.getEnsureUpperBound()); 3881 // IV = LB; 3882 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3883 ? S.getCombinedInit() 3884 : S.getInit()); 3885 3886 const Expr *Cond = 3887 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3888 ? S.getCombinedCond() 3889 : S.getCond(); 3890 3891 if (StaticChunked) 3892 Cond = S.getCombinedDistCond(); 3893 3894 // For static unchunked schedules generate: 3895 // 3896 // 1. For distribute alone, codegen 3897 // while (idx <= UB) { 3898 // BODY; 3899 // ++idx; 3900 // } 3901 // 3902 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3903 // while (idx <= UB) { 3904 // <CodeGen rest of pragma>(LB, UB); 3905 // idx += ST; 3906 // } 3907 // 3908 // For static chunk one schedule generate: 3909 // 3910 // while (IV <= GlobalUB) { 3911 // <CodeGen rest of pragma>(LB, UB); 3912 // LB += ST; 3913 // UB += ST; 3914 // UB = min(UB, GlobalUB); 3915 // IV = LB; 3916 // } 3917 // 3918 emitCommonSimdLoop( 3919 *this, S, 3920 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3921 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3922 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3923 }, 3924 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 3925 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 3926 CGF.EmitOMPInnerLoop( 3927 S, LoopScope.requiresCleanups(), Cond, IncExpr, 3928 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3929 CodeGenLoop(CGF, S, LoopExit); 3930 }, 3931 [&S, StaticChunked](CodeGenFunction &CGF) { 3932 if (StaticChunked) { 3933 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3934 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3935 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3936 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3937 } 3938 }); 3939 }); 3940 EmitBlock(LoopExit.getBlock()); 3941 // Tell the runtime we are done. 3942 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 3943 } else { 3944 // Emit the outer loop, which requests its work chunk [LB..UB] from 3945 // runtime and runs the inner loop to process it. 3946 const OMPLoopArguments LoopArguments = { 3947 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3948 IL.getAddress(*this), Chunk}; 3949 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3950 CodeGenLoop); 3951 } 3952 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3953 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3954 return CGF.Builder.CreateIsNotNull( 3955 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3956 }); 3957 } 3958 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3959 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3960 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3961 EmitOMPReductionClauseFinal(S, OMPD_simd); 3962 // Emit post-update of the reduction variables if IsLastIter != 0. 3963 emitPostUpdateForReductionClause( 3964 *this, S, [IL, &S](CodeGenFunction &CGF) { 3965 return CGF.Builder.CreateIsNotNull( 3966 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3967 }); 3968 } 3969 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3970 if (HasLastprivateClause) { 3971 EmitOMPLastprivateClauseFinal( 3972 S, /*NoFinals=*/false, 3973 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3974 } 3975 } 3976 3977 // We're now done with the loop, so jump to the continuation block. 3978 if (ContBlock) { 3979 EmitBranch(ContBlock); 3980 EmitBlock(ContBlock, true); 3981 } 3982 } 3983 } 3984 3985 void CodeGenFunction::EmitOMPDistributeDirective( 3986 const OMPDistributeDirective &S) { 3987 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3988 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3989 }; 3990 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3991 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3992 } 3993 3994 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3995 const CapturedStmt *S, 3996 SourceLocation Loc) { 3997 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3998 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3999 CGF.CapturedStmtInfo = &CapStmtInfo; 4000 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4001 Fn->setDoesNotRecurse(); 4002 return Fn; 4003 } 4004 4005 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4006 if (S.hasClausesOfKind<OMPDependClause>()) { 4007 assert(!S.getAssociatedStmt() && 4008 "No associated statement must be in ordered depend construct."); 4009 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4010 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4011 return; 4012 } 4013 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4014 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4015 PrePostActionTy &Action) { 4016 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4017 if (C) { 4018 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4019 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4020 llvm::Function *OutlinedFn = 4021 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4022 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4023 OutlinedFn, CapturedVars); 4024 } else { 4025 Action.Enter(CGF); 4026 CGF.EmitStmt(CS->getCapturedStmt()); 4027 } 4028 }; 4029 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4030 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4031 } 4032 4033 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4034 QualType SrcType, QualType DestType, 4035 SourceLocation Loc) { 4036 assert(CGF.hasScalarEvaluationKind(DestType) && 4037 "DestType must have scalar evaluation kind."); 4038 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4039 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4040 DestType, Loc) 4041 : CGF.EmitComplexToScalarConversion( 4042 Val.getComplexVal(), SrcType, DestType, Loc); 4043 } 4044 4045 static CodeGenFunction::ComplexPairTy 4046 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4047 QualType DestType, SourceLocation Loc) { 4048 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4049 "DestType must have complex evaluation kind."); 4050 CodeGenFunction::ComplexPairTy ComplexVal; 4051 if (Val.isScalar()) { 4052 // Convert the input element to the element type of the complex. 4053 QualType DestElementType = 4054 DestType->castAs<ComplexType>()->getElementType(); 4055 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4056 Val.getScalarVal(), SrcType, DestElementType, Loc); 4057 ComplexVal = CodeGenFunction::ComplexPairTy( 4058 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4059 } else { 4060 assert(Val.isComplex() && "Must be a scalar or complex."); 4061 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4062 QualType DestElementType = 4063 DestType->castAs<ComplexType>()->getElementType(); 4064 ComplexVal.first = CGF.EmitScalarConversion( 4065 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4066 ComplexVal.second = CGF.EmitScalarConversion( 4067 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4068 } 4069 return ComplexVal; 4070 } 4071 4072 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 4073 LValue LVal, RValue RVal) { 4074 if (LVal.isGlobalReg()) { 4075 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4076 } else { 4077 CGF.EmitAtomicStore(RVal, LVal, 4078 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 4079 : llvm::AtomicOrdering::Monotonic, 4080 LVal.isVolatile(), /*isInit=*/false); 4081 } 4082 } 4083 4084 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4085 QualType RValTy, SourceLocation Loc) { 4086 switch (getEvaluationKind(LVal.getType())) { 4087 case TEK_Scalar: 4088 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4089 *this, RVal, RValTy, LVal.getType(), Loc)), 4090 LVal); 4091 break; 4092 case TEK_Complex: 4093 EmitStoreOfComplex( 4094 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4095 /*isInit=*/false); 4096 break; 4097 case TEK_Aggregate: 4098 llvm_unreachable("Must be a scalar or complex."); 4099 } 4100 } 4101 4102 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 4103 const Expr *X, const Expr *V, 4104 SourceLocation Loc) { 4105 // v = x; 4106 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4107 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4108 LValue XLValue = CGF.EmitLValue(X); 4109 LValue VLValue = CGF.EmitLValue(V); 4110 RValue Res = XLValue.isGlobalReg() 4111 ? CGF.EmitLoadOfLValue(XLValue, Loc) 4112 : CGF.EmitAtomicLoad( 4113 XLValue, Loc, 4114 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 4115 : llvm::AtomicOrdering::Monotonic, 4116 XLValue.isVolatile()); 4117 // OpenMP, 2.12.6, atomic Construct 4118 // Any atomic construct with a seq_cst clause forces the atomically 4119 // performed operation to include an implicit flush operation without a 4120 // list. 4121 if (IsSeqCst) 4122 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4123 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4124 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4125 } 4126 4127 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 4128 const Expr *X, const Expr *E, 4129 SourceLocation Loc) { 4130 // x = expr; 4131 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4132 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4133 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4134 // OpenMP, 2.12.6, atomic Construct 4135 // Any atomic construct with a seq_cst clause forces the atomically 4136 // performed operation to include an implicit flush operation without a 4137 // list. 4138 if (IsSeqCst) 4139 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4140 } 4141 4142 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 4143 RValue Update, 4144 BinaryOperatorKind BO, 4145 llvm::AtomicOrdering AO, 4146 bool IsXLHSInRHSPart) { 4147 ASTContext &Context = CGF.getContext(); 4148 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4149 // expression is simple and atomic is allowed for the given type for the 4150 // target platform. 4151 if (BO == BO_Comma || !Update.isScalar() || 4152 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4153 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4154 (Update.getScalarVal()->getType() != 4155 X.getAddress(CGF).getElementType())) || 4156 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4157 !Context.getTargetInfo().hasBuiltinAtomic( 4158 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4159 return std::make_pair(false, RValue::get(nullptr)); 4160 4161 llvm::AtomicRMWInst::BinOp RMWOp; 4162 switch (BO) { 4163 case BO_Add: 4164 RMWOp = llvm::AtomicRMWInst::Add; 4165 break; 4166 case BO_Sub: 4167 if (!IsXLHSInRHSPart) 4168 return std::make_pair(false, RValue::get(nullptr)); 4169 RMWOp = llvm::AtomicRMWInst::Sub; 4170 break; 4171 case BO_And: 4172 RMWOp = llvm::AtomicRMWInst::And; 4173 break; 4174 case BO_Or: 4175 RMWOp = llvm::AtomicRMWInst::Or; 4176 break; 4177 case BO_Xor: 4178 RMWOp = llvm::AtomicRMWInst::Xor; 4179 break; 4180 case BO_LT: 4181 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4182 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4183 : llvm::AtomicRMWInst::Max) 4184 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4185 : llvm::AtomicRMWInst::UMax); 4186 break; 4187 case BO_GT: 4188 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4189 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4190 : llvm::AtomicRMWInst::Min) 4191 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4192 : llvm::AtomicRMWInst::UMin); 4193 break; 4194 case BO_Assign: 4195 RMWOp = llvm::AtomicRMWInst::Xchg; 4196 break; 4197 case BO_Mul: 4198 case BO_Div: 4199 case BO_Rem: 4200 case BO_Shl: 4201 case BO_Shr: 4202 case BO_LAnd: 4203 case BO_LOr: 4204 return std::make_pair(false, RValue::get(nullptr)); 4205 case BO_PtrMemD: 4206 case BO_PtrMemI: 4207 case BO_LE: 4208 case BO_GE: 4209 case BO_EQ: 4210 case BO_NE: 4211 case BO_Cmp: 4212 case BO_AddAssign: 4213 case BO_SubAssign: 4214 case BO_AndAssign: 4215 case BO_OrAssign: 4216 case BO_XorAssign: 4217 case BO_MulAssign: 4218 case BO_DivAssign: 4219 case BO_RemAssign: 4220 case BO_ShlAssign: 4221 case BO_ShrAssign: 4222 case BO_Comma: 4223 llvm_unreachable("Unsupported atomic update operation"); 4224 } 4225 llvm::Value *UpdateVal = Update.getScalarVal(); 4226 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 4227 UpdateVal = CGF.Builder.CreateIntCast( 4228 IC, X.getAddress(CGF).getElementType(), 4229 X.getType()->hasSignedIntegerRepresentation()); 4230 } 4231 llvm::Value *Res = 4232 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 4233 return std::make_pair(true, RValue::get(Res)); 4234 } 4235 4236 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 4237 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 4238 llvm::AtomicOrdering AO, SourceLocation Loc, 4239 const llvm::function_ref<RValue(RValue)> CommonGen) { 4240 // Update expressions are allowed to have the following forms: 4241 // x binop= expr; -> xrval + expr; 4242 // x++, ++x -> xrval + 1; 4243 // x--, --x -> xrval - 1; 4244 // x = x binop expr; -> xrval binop expr 4245 // x = expr Op x; - > expr binop xrval; 4246 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 4247 if (!Res.first) { 4248 if (X.isGlobalReg()) { 4249 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 4250 // 'xrval'. 4251 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 4252 } else { 4253 // Perform compare-and-swap procedure. 4254 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 4255 } 4256 } 4257 return Res; 4258 } 4259 4260 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 4261 const Expr *X, const Expr *E, 4262 const Expr *UE, bool IsXLHSInRHSPart, 4263 SourceLocation Loc) { 4264 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4265 "Update expr in 'atomic update' must be a binary operator."); 4266 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4267 // Update expressions are allowed to have the following forms: 4268 // x binop= expr; -> xrval + expr; 4269 // x++, ++x -> xrval + 1; 4270 // x--, --x -> xrval - 1; 4271 // x = x binop expr; -> xrval binop expr 4272 // x = expr Op x; - > expr binop xrval; 4273 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4274 LValue XLValue = CGF.EmitLValue(X); 4275 RValue ExprRValue = CGF.EmitAnyExpr(E); 4276 llvm::AtomicOrdering AO = IsSeqCst 4277 ? llvm::AtomicOrdering::SequentiallyConsistent 4278 : llvm::AtomicOrdering::Monotonic; 4279 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4280 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4281 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4282 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4283 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4284 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4285 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4286 return CGF.EmitAnyExpr(UE); 4287 }; 4288 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4289 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4290 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4291 // OpenMP, 2.12.6, atomic Construct 4292 // Any atomic construct with a seq_cst clause forces the atomically 4293 // performed operation to include an implicit flush operation without a 4294 // list. 4295 if (IsSeqCst) 4296 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4297 } 4298 4299 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4300 QualType SourceType, QualType ResType, 4301 SourceLocation Loc) { 4302 switch (CGF.getEvaluationKind(ResType)) { 4303 case TEK_Scalar: 4304 return RValue::get( 4305 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4306 case TEK_Complex: { 4307 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4308 return RValue::getComplex(Res.first, Res.second); 4309 } 4310 case TEK_Aggregate: 4311 break; 4312 } 4313 llvm_unreachable("Must be a scalar or complex."); 4314 } 4315 4316 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 4317 bool IsPostfixUpdate, const Expr *V, 4318 const Expr *X, const Expr *E, 4319 const Expr *UE, bool IsXLHSInRHSPart, 4320 SourceLocation Loc) { 4321 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4322 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4323 RValue NewVVal; 4324 LValue VLValue = CGF.EmitLValue(V); 4325 LValue XLValue = CGF.EmitLValue(X); 4326 RValue ExprRValue = CGF.EmitAnyExpr(E); 4327 llvm::AtomicOrdering AO = IsSeqCst 4328 ? llvm::AtomicOrdering::SequentiallyConsistent 4329 : llvm::AtomicOrdering::Monotonic; 4330 QualType NewVValType; 4331 if (UE) { 4332 // 'x' is updated with some additional value. 4333 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4334 "Update expr in 'atomic capture' must be a binary operator."); 4335 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4336 // Update expressions are allowed to have the following forms: 4337 // x binop= expr; -> xrval + expr; 4338 // x++, ++x -> xrval + 1; 4339 // x--, --x -> xrval - 1; 4340 // x = x binop expr; -> xrval binop expr 4341 // x = expr Op x; - > expr binop xrval; 4342 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4343 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4344 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4345 NewVValType = XRValExpr->getType(); 4346 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4347 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4348 IsPostfixUpdate](RValue XRValue) { 4349 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4350 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4351 RValue Res = CGF.EmitAnyExpr(UE); 4352 NewVVal = IsPostfixUpdate ? XRValue : Res; 4353 return Res; 4354 }; 4355 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4356 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4357 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4358 if (Res.first) { 4359 // 'atomicrmw' instruction was generated. 4360 if (IsPostfixUpdate) { 4361 // Use old value from 'atomicrmw'. 4362 NewVVal = Res.second; 4363 } else { 4364 // 'atomicrmw' does not provide new value, so evaluate it using old 4365 // value of 'x'. 4366 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4367 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4368 NewVVal = CGF.EmitAnyExpr(UE); 4369 } 4370 } 4371 } else { 4372 // 'x' is simply rewritten with some 'expr'. 4373 NewVValType = X->getType().getNonReferenceType(); 4374 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4375 X->getType().getNonReferenceType(), Loc); 4376 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4377 NewVVal = XRValue; 4378 return ExprRValue; 4379 }; 4380 // Try to perform atomicrmw xchg, otherwise simple exchange. 4381 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4382 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4383 Loc, Gen); 4384 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4385 if (Res.first) { 4386 // 'atomicrmw' instruction was generated. 4387 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4388 } 4389 } 4390 // Emit post-update store to 'v' of old/new 'x' value. 4391 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4392 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4393 // OpenMP, 2.12.6, atomic Construct 4394 // Any atomic construct with a seq_cst clause forces the atomically 4395 // performed operation to include an implicit flush operation without a 4396 // list. 4397 if (IsSeqCst) 4398 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4399 } 4400 4401 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4402 bool IsSeqCst, bool IsPostfixUpdate, 4403 const Expr *X, const Expr *V, const Expr *E, 4404 const Expr *UE, bool IsXLHSInRHSPart, 4405 SourceLocation Loc) { 4406 switch (Kind) { 4407 case OMPC_read: 4408 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4409 break; 4410 case OMPC_write: 4411 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4412 break; 4413 case OMPC_unknown: 4414 case OMPC_update: 4415 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4416 break; 4417 case OMPC_capture: 4418 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4419 IsXLHSInRHSPart, Loc); 4420 break; 4421 case OMPC_if: 4422 case OMPC_final: 4423 case OMPC_num_threads: 4424 case OMPC_private: 4425 case OMPC_firstprivate: 4426 case OMPC_lastprivate: 4427 case OMPC_reduction: 4428 case OMPC_task_reduction: 4429 case OMPC_in_reduction: 4430 case OMPC_safelen: 4431 case OMPC_simdlen: 4432 case OMPC_allocator: 4433 case OMPC_allocate: 4434 case OMPC_collapse: 4435 case OMPC_default: 4436 case OMPC_seq_cst: 4437 case OMPC_shared: 4438 case OMPC_linear: 4439 case OMPC_aligned: 4440 case OMPC_copyin: 4441 case OMPC_copyprivate: 4442 case OMPC_flush: 4443 case OMPC_proc_bind: 4444 case OMPC_schedule: 4445 case OMPC_ordered: 4446 case OMPC_nowait: 4447 case OMPC_untied: 4448 case OMPC_threadprivate: 4449 case OMPC_depend: 4450 case OMPC_mergeable: 4451 case OMPC_device: 4452 case OMPC_threads: 4453 case OMPC_simd: 4454 case OMPC_map: 4455 case OMPC_num_teams: 4456 case OMPC_thread_limit: 4457 case OMPC_priority: 4458 case OMPC_grainsize: 4459 case OMPC_nogroup: 4460 case OMPC_num_tasks: 4461 case OMPC_hint: 4462 case OMPC_dist_schedule: 4463 case OMPC_defaultmap: 4464 case OMPC_uniform: 4465 case OMPC_to: 4466 case OMPC_from: 4467 case OMPC_use_device_ptr: 4468 case OMPC_is_device_ptr: 4469 case OMPC_unified_address: 4470 case OMPC_unified_shared_memory: 4471 case OMPC_reverse_offload: 4472 case OMPC_dynamic_allocators: 4473 case OMPC_atomic_default_mem_order: 4474 case OMPC_device_type: 4475 case OMPC_match: 4476 case OMPC_nontemporal: 4477 case OMPC_order: 4478 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4479 } 4480 } 4481 4482 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4483 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4484 OpenMPClauseKind Kind = OMPC_unknown; 4485 for (const OMPClause *C : S.clauses()) { 4486 // Find first clause (skip seq_cst clause, if it is first). 4487 if (C->getClauseKind() != OMPC_seq_cst) { 4488 Kind = C->getClauseKind(); 4489 break; 4490 } 4491 } 4492 4493 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4494 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4495 enterFullExpression(FE); 4496 // Processing for statements under 'atomic capture'. 4497 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4498 for (const Stmt *C : Compound->body()) { 4499 if (const auto *FE = dyn_cast<FullExpr>(C)) 4500 enterFullExpression(FE); 4501 } 4502 } 4503 4504 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4505 PrePostActionTy &) { 4506 CGF.EmitStopPoint(CS); 4507 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4508 S.getV(), S.getExpr(), S.getUpdateExpr(), 4509 S.isXLHSInRHSPart(), S.getBeginLoc()); 4510 }; 4511 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4512 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4513 } 4514 4515 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4516 const OMPExecutableDirective &S, 4517 const RegionCodeGenTy &CodeGen) { 4518 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4519 CodeGenModule &CGM = CGF.CGM; 4520 4521 // On device emit this construct as inlined code. 4522 if (CGM.getLangOpts().OpenMPIsDevice) { 4523 OMPLexicalScope Scope(CGF, S, OMPD_target); 4524 CGM.getOpenMPRuntime().emitInlinedDirective( 4525 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4526 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4527 }); 4528 return; 4529 } 4530 4531 auto LPCRegion = 4532 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 4533 llvm::Function *Fn = nullptr; 4534 llvm::Constant *FnID = nullptr; 4535 4536 const Expr *IfCond = nullptr; 4537 // Check for the at most one if clause associated with the target region. 4538 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4539 if (C->getNameModifier() == OMPD_unknown || 4540 C->getNameModifier() == OMPD_target) { 4541 IfCond = C->getCondition(); 4542 break; 4543 } 4544 } 4545 4546 // Check if we have any device clause associated with the directive. 4547 const Expr *Device = nullptr; 4548 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4549 Device = C->getDevice(); 4550 4551 // Check if we have an if clause whose conditional always evaluates to false 4552 // or if we do not have any targets specified. If so the target region is not 4553 // an offload entry point. 4554 bool IsOffloadEntry = true; 4555 if (IfCond) { 4556 bool Val; 4557 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4558 IsOffloadEntry = false; 4559 } 4560 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4561 IsOffloadEntry = false; 4562 4563 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4564 StringRef ParentName; 4565 // In case we have Ctors/Dtors we use the complete type variant to produce 4566 // the mangling of the device outlined kernel. 4567 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4568 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4569 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4570 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4571 else 4572 ParentName = 4573 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4574 4575 // Emit target region as a standalone region. 4576 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4577 IsOffloadEntry, CodeGen); 4578 OMPLexicalScope Scope(CGF, S, OMPD_task); 4579 auto &&SizeEmitter = 4580 [IsOffloadEntry](CodeGenFunction &CGF, 4581 const OMPLoopDirective &D) -> llvm::Value * { 4582 if (IsOffloadEntry) { 4583 OMPLoopScope(CGF, D); 4584 // Emit calculation of the iterations count. 4585 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4586 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4587 /*isSigned=*/false); 4588 return NumIterations; 4589 } 4590 return nullptr; 4591 }; 4592 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4593 SizeEmitter); 4594 } 4595 4596 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4597 PrePostActionTy &Action) { 4598 Action.Enter(CGF); 4599 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4600 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4601 CGF.EmitOMPPrivateClause(S, PrivateScope); 4602 (void)PrivateScope.Privatize(); 4603 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4604 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4605 4606 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4607 } 4608 4609 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4610 StringRef ParentName, 4611 const OMPTargetDirective &S) { 4612 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4613 emitTargetRegion(CGF, S, Action); 4614 }; 4615 llvm::Function *Fn; 4616 llvm::Constant *Addr; 4617 // Emit target region as a standalone region. 4618 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4619 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4620 assert(Fn && Addr && "Target device function emission failed."); 4621 } 4622 4623 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4624 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4625 emitTargetRegion(CGF, S, Action); 4626 }; 4627 emitCommonOMPTargetDirective(*this, S, CodeGen); 4628 } 4629 4630 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4631 const OMPExecutableDirective &S, 4632 OpenMPDirectiveKind InnermostKind, 4633 const RegionCodeGenTy &CodeGen) { 4634 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4635 llvm::Function *OutlinedFn = 4636 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4637 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4638 4639 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4640 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4641 if (NT || TL) { 4642 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4643 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4644 4645 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4646 S.getBeginLoc()); 4647 } 4648 4649 OMPTeamsScope Scope(CGF, S); 4650 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4651 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4652 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4653 CapturedVars); 4654 } 4655 4656 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4657 // Emit teams region as a standalone region. 4658 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4659 Action.Enter(CGF); 4660 OMPPrivateScope PrivateScope(CGF); 4661 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4662 CGF.EmitOMPPrivateClause(S, PrivateScope); 4663 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4664 (void)PrivateScope.Privatize(); 4665 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4666 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4667 }; 4668 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4669 emitPostUpdateForReductionClause(*this, S, 4670 [](CodeGenFunction &) { return nullptr; }); 4671 } 4672 4673 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4674 const OMPTargetTeamsDirective &S) { 4675 auto *CS = S.getCapturedStmt(OMPD_teams); 4676 Action.Enter(CGF); 4677 // Emit teams region as a standalone region. 4678 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4679 Action.Enter(CGF); 4680 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4681 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4682 CGF.EmitOMPPrivateClause(S, PrivateScope); 4683 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4684 (void)PrivateScope.Privatize(); 4685 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4686 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4687 CGF.EmitStmt(CS->getCapturedStmt()); 4688 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4689 }; 4690 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4691 emitPostUpdateForReductionClause(CGF, S, 4692 [](CodeGenFunction &) { return nullptr; }); 4693 } 4694 4695 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4696 CodeGenModule &CGM, StringRef ParentName, 4697 const OMPTargetTeamsDirective &S) { 4698 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4699 emitTargetTeamsRegion(CGF, Action, S); 4700 }; 4701 llvm::Function *Fn; 4702 llvm::Constant *Addr; 4703 // Emit target region as a standalone region. 4704 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4705 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4706 assert(Fn && Addr && "Target device function emission failed."); 4707 } 4708 4709 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4710 const OMPTargetTeamsDirective &S) { 4711 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4712 emitTargetTeamsRegion(CGF, Action, S); 4713 }; 4714 emitCommonOMPTargetDirective(*this, S, CodeGen); 4715 } 4716 4717 static void 4718 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4719 const OMPTargetTeamsDistributeDirective &S) { 4720 Action.Enter(CGF); 4721 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4722 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4723 }; 4724 4725 // Emit teams region as a standalone region. 4726 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4727 PrePostActionTy &Action) { 4728 Action.Enter(CGF); 4729 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4730 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4731 (void)PrivateScope.Privatize(); 4732 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4733 CodeGenDistribute); 4734 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4735 }; 4736 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4737 emitPostUpdateForReductionClause(CGF, S, 4738 [](CodeGenFunction &) { return nullptr; }); 4739 } 4740 4741 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4742 CodeGenModule &CGM, StringRef ParentName, 4743 const OMPTargetTeamsDistributeDirective &S) { 4744 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4745 emitTargetTeamsDistributeRegion(CGF, Action, S); 4746 }; 4747 llvm::Function *Fn; 4748 llvm::Constant *Addr; 4749 // Emit target region as a standalone region. 4750 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4751 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4752 assert(Fn && Addr && "Target device function emission failed."); 4753 } 4754 4755 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4756 const OMPTargetTeamsDistributeDirective &S) { 4757 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4758 emitTargetTeamsDistributeRegion(CGF, Action, S); 4759 }; 4760 emitCommonOMPTargetDirective(*this, S, CodeGen); 4761 } 4762 4763 static void emitTargetTeamsDistributeSimdRegion( 4764 CodeGenFunction &CGF, PrePostActionTy &Action, 4765 const OMPTargetTeamsDistributeSimdDirective &S) { 4766 Action.Enter(CGF); 4767 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4768 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4769 }; 4770 4771 // Emit teams region as a standalone region. 4772 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4773 PrePostActionTy &Action) { 4774 Action.Enter(CGF); 4775 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4776 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4777 (void)PrivateScope.Privatize(); 4778 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4779 CodeGenDistribute); 4780 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4781 }; 4782 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4783 emitPostUpdateForReductionClause(CGF, S, 4784 [](CodeGenFunction &) { return nullptr; }); 4785 } 4786 4787 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4788 CodeGenModule &CGM, StringRef ParentName, 4789 const OMPTargetTeamsDistributeSimdDirective &S) { 4790 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4791 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4792 }; 4793 llvm::Function *Fn; 4794 llvm::Constant *Addr; 4795 // Emit target region as a standalone region. 4796 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4797 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4798 assert(Fn && Addr && "Target device function emission failed."); 4799 } 4800 4801 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4802 const OMPTargetTeamsDistributeSimdDirective &S) { 4803 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4804 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4805 }; 4806 emitCommonOMPTargetDirective(*this, S, CodeGen); 4807 } 4808 4809 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4810 const OMPTeamsDistributeDirective &S) { 4811 4812 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4813 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4814 }; 4815 4816 // Emit teams region as a standalone region. 4817 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4818 PrePostActionTy &Action) { 4819 Action.Enter(CGF); 4820 OMPPrivateScope PrivateScope(CGF); 4821 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4822 (void)PrivateScope.Privatize(); 4823 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4824 CodeGenDistribute); 4825 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4826 }; 4827 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4828 emitPostUpdateForReductionClause(*this, S, 4829 [](CodeGenFunction &) { return nullptr; }); 4830 } 4831 4832 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4833 const OMPTeamsDistributeSimdDirective &S) { 4834 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4835 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4836 }; 4837 4838 // Emit teams region as a standalone region. 4839 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4840 PrePostActionTy &Action) { 4841 Action.Enter(CGF); 4842 OMPPrivateScope PrivateScope(CGF); 4843 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4844 (void)PrivateScope.Privatize(); 4845 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4846 CodeGenDistribute); 4847 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4848 }; 4849 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4850 emitPostUpdateForReductionClause(*this, S, 4851 [](CodeGenFunction &) { return nullptr; }); 4852 } 4853 4854 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4855 const OMPTeamsDistributeParallelForDirective &S) { 4856 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4857 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4858 S.getDistInc()); 4859 }; 4860 4861 // Emit teams region as a standalone region. 4862 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4863 PrePostActionTy &Action) { 4864 Action.Enter(CGF); 4865 OMPPrivateScope PrivateScope(CGF); 4866 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4867 (void)PrivateScope.Privatize(); 4868 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4869 CodeGenDistribute); 4870 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4871 }; 4872 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4873 emitPostUpdateForReductionClause(*this, S, 4874 [](CodeGenFunction &) { return nullptr; }); 4875 } 4876 4877 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4878 const OMPTeamsDistributeParallelForSimdDirective &S) { 4879 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4880 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4881 S.getDistInc()); 4882 }; 4883 4884 // Emit teams region as a standalone region. 4885 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4886 PrePostActionTy &Action) { 4887 Action.Enter(CGF); 4888 OMPPrivateScope PrivateScope(CGF); 4889 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4890 (void)PrivateScope.Privatize(); 4891 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4892 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4893 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4894 }; 4895 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 4896 CodeGen); 4897 emitPostUpdateForReductionClause(*this, S, 4898 [](CodeGenFunction &) { return nullptr; }); 4899 } 4900 4901 static void emitTargetTeamsDistributeParallelForRegion( 4902 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4903 PrePostActionTy &Action) { 4904 Action.Enter(CGF); 4905 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4906 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4907 S.getDistInc()); 4908 }; 4909 4910 // Emit teams region as a standalone region. 4911 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4912 PrePostActionTy &Action) { 4913 Action.Enter(CGF); 4914 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4915 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4916 (void)PrivateScope.Privatize(); 4917 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4918 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4919 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4920 }; 4921 4922 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4923 CodeGenTeams); 4924 emitPostUpdateForReductionClause(CGF, S, 4925 [](CodeGenFunction &) { return nullptr; }); 4926 } 4927 4928 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4929 CodeGenModule &CGM, StringRef ParentName, 4930 const OMPTargetTeamsDistributeParallelForDirective &S) { 4931 // Emit SPMD target teams distribute parallel for region as a standalone 4932 // region. 4933 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4934 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4935 }; 4936 llvm::Function *Fn; 4937 llvm::Constant *Addr; 4938 // Emit target region as a standalone region. 4939 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4940 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4941 assert(Fn && Addr && "Target device function emission failed."); 4942 } 4943 4944 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4945 const OMPTargetTeamsDistributeParallelForDirective &S) { 4946 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4947 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4948 }; 4949 emitCommonOMPTargetDirective(*this, S, CodeGen); 4950 } 4951 4952 static void emitTargetTeamsDistributeParallelForSimdRegion( 4953 CodeGenFunction &CGF, 4954 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4955 PrePostActionTy &Action) { 4956 Action.Enter(CGF); 4957 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4958 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4959 S.getDistInc()); 4960 }; 4961 4962 // Emit teams region as a standalone region. 4963 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4964 PrePostActionTy &Action) { 4965 Action.Enter(CGF); 4966 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4967 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4968 (void)PrivateScope.Privatize(); 4969 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4970 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4971 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4972 }; 4973 4974 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4975 CodeGenTeams); 4976 emitPostUpdateForReductionClause(CGF, S, 4977 [](CodeGenFunction &) { return nullptr; }); 4978 } 4979 4980 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4981 CodeGenModule &CGM, StringRef ParentName, 4982 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4983 // Emit SPMD target teams distribute parallel for simd region as a standalone 4984 // region. 4985 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4986 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4987 }; 4988 llvm::Function *Fn; 4989 llvm::Constant *Addr; 4990 // Emit target region as a standalone region. 4991 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4992 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4993 assert(Fn && Addr && "Target device function emission failed."); 4994 } 4995 4996 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4997 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4998 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4999 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5000 }; 5001 emitCommonOMPTargetDirective(*this, S, CodeGen); 5002 } 5003 5004 void CodeGenFunction::EmitOMPCancellationPointDirective( 5005 const OMPCancellationPointDirective &S) { 5006 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5007 S.getCancelRegion()); 5008 } 5009 5010 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5011 const Expr *IfCond = nullptr; 5012 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5013 if (C->getNameModifier() == OMPD_unknown || 5014 C->getNameModifier() == OMPD_cancel) { 5015 IfCond = C->getCondition(); 5016 break; 5017 } 5018 } 5019 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 5020 // TODO: This check is necessary as we only generate `omp parallel` through 5021 // the OpenMPIRBuilder for now. 5022 if (S.getCancelRegion() == OMPD_parallel) { 5023 llvm::Value *IfCondition = nullptr; 5024 if (IfCond) 5025 IfCondition = EmitScalarExpr(IfCond, 5026 /*IgnoreResultAssign=*/true); 5027 return Builder.restoreIP( 5028 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5029 } 5030 } 5031 5032 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5033 S.getCancelRegion()); 5034 } 5035 5036 CodeGenFunction::JumpDest 5037 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5038 if (Kind == OMPD_parallel || Kind == OMPD_task || 5039 Kind == OMPD_target_parallel) 5040 return ReturnBlock; 5041 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5042 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5043 Kind == OMPD_distribute_parallel_for || 5044 Kind == OMPD_target_parallel_for || 5045 Kind == OMPD_teams_distribute_parallel_for || 5046 Kind == OMPD_target_teams_distribute_parallel_for); 5047 return OMPCancelStack.getExitBlock(); 5048 } 5049 5050 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5051 const OMPClause &NC, OMPPrivateScope &PrivateScope, 5052 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5053 const auto &C = cast<OMPUseDevicePtrClause>(NC); 5054 auto OrigVarIt = C.varlist_begin(); 5055 auto InitIt = C.inits().begin(); 5056 for (const Expr *PvtVarIt : C.private_copies()) { 5057 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 5058 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 5059 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 5060 5061 // In order to identify the right initializer we need to match the 5062 // declaration used by the mapping logic. In some cases we may get 5063 // OMPCapturedExprDecl that refers to the original declaration. 5064 const ValueDecl *MatchingVD = OrigVD; 5065 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5066 // OMPCapturedExprDecl are used to privative fields of the current 5067 // structure. 5068 const auto *ME = cast<MemberExpr>(OED->getInit()); 5069 assert(isa<CXXThisExpr>(ME->getBase()) && 5070 "Base should be the current struct!"); 5071 MatchingVD = ME->getMemberDecl(); 5072 } 5073 5074 // If we don't have information about the current list item, move on to 5075 // the next one. 5076 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 5077 if (InitAddrIt == CaptureDeviceAddrMap.end()) 5078 continue; 5079 5080 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 5081 InitAddrIt, InitVD, 5082 PvtVD]() { 5083 // Initialize the temporary initialization variable with the address we 5084 // get from the runtime library. We have to cast the source address 5085 // because it is always a void *. References are materialized in the 5086 // privatization scope, so the initialization here disregards the fact 5087 // the original variable is a reference. 5088 QualType AddrQTy = 5089 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 5090 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 5091 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 5092 setAddrOfLocalVar(InitVD, InitAddr); 5093 5094 // Emit private declaration, it will be initialized by the value we 5095 // declaration we just added to the local declarations map. 5096 EmitDecl(*PvtVD); 5097 5098 // The initialization variables reached its purpose in the emission 5099 // of the previous declaration, so we don't need it anymore. 5100 LocalDeclMap.erase(InitVD); 5101 5102 // Return the address of the private variable. 5103 return GetAddrOfLocalVar(PvtVD); 5104 }); 5105 assert(IsRegistered && "firstprivate var already registered as private"); 5106 // Silence the warning about unused variable. 5107 (void)IsRegistered; 5108 5109 ++OrigVarIt; 5110 ++InitIt; 5111 } 5112 } 5113 5114 // Generate the instructions for '#pragma omp target data' directive. 5115 void CodeGenFunction::EmitOMPTargetDataDirective( 5116 const OMPTargetDataDirective &S) { 5117 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 5118 5119 // Create a pre/post action to signal the privatization of the device pointer. 5120 // This action can be replaced by the OpenMP runtime code generation to 5121 // deactivate privatization. 5122 bool PrivatizeDevicePointers = false; 5123 class DevicePointerPrivActionTy : public PrePostActionTy { 5124 bool &PrivatizeDevicePointers; 5125 5126 public: 5127 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 5128 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 5129 void Enter(CodeGenFunction &CGF) override { 5130 PrivatizeDevicePointers = true; 5131 } 5132 }; 5133 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 5134 5135 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 5136 CodeGenFunction &CGF, PrePostActionTy &Action) { 5137 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5138 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5139 }; 5140 5141 // Codegen that selects whether to generate the privatization code or not. 5142 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 5143 &InnermostCodeGen](CodeGenFunction &CGF, 5144 PrePostActionTy &Action) { 5145 RegionCodeGenTy RCG(InnermostCodeGen); 5146 PrivatizeDevicePointers = false; 5147 5148 // Call the pre-action to change the status of PrivatizeDevicePointers if 5149 // needed. 5150 Action.Enter(CGF); 5151 5152 if (PrivatizeDevicePointers) { 5153 OMPPrivateScope PrivateScope(CGF); 5154 // Emit all instances of the use_device_ptr clause. 5155 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 5156 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 5157 Info.CaptureDeviceAddrMap); 5158 (void)PrivateScope.Privatize(); 5159 RCG(CGF); 5160 } else { 5161 RCG(CGF); 5162 } 5163 }; 5164 5165 // Forward the provided action to the privatization codegen. 5166 RegionCodeGenTy PrivRCG(PrivCodeGen); 5167 PrivRCG.setAction(Action); 5168 5169 // Notwithstanding the body of the region is emitted as inlined directive, 5170 // we don't use an inline scope as changes in the references inside the 5171 // region are expected to be visible outside, so we do not privative them. 5172 OMPLexicalScope Scope(CGF, S); 5173 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 5174 PrivRCG); 5175 }; 5176 5177 RegionCodeGenTy RCG(CodeGen); 5178 5179 // If we don't have target devices, don't bother emitting the data mapping 5180 // code. 5181 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 5182 RCG(*this); 5183 return; 5184 } 5185 5186 // Check if we have any if clause associated with the directive. 5187 const Expr *IfCond = nullptr; 5188 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5189 IfCond = C->getCondition(); 5190 5191 // Check if we have any device clause associated with the directive. 5192 const Expr *Device = nullptr; 5193 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5194 Device = C->getDevice(); 5195 5196 // Set the action to signal privatization of device pointers. 5197 RCG.setAction(PrivAction); 5198 5199 // Emit region code. 5200 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 5201 Info); 5202 } 5203 5204 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 5205 const OMPTargetEnterDataDirective &S) { 5206 // If we don't have target devices, don't bother emitting the data mapping 5207 // code. 5208 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5209 return; 5210 5211 // Check if we have any if clause associated with the directive. 5212 const Expr *IfCond = nullptr; 5213 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5214 IfCond = C->getCondition(); 5215 5216 // Check if we have any device clause associated with the directive. 5217 const Expr *Device = nullptr; 5218 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5219 Device = C->getDevice(); 5220 5221 OMPLexicalScope Scope(*this, S, OMPD_task); 5222 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5223 } 5224 5225 void CodeGenFunction::EmitOMPTargetExitDataDirective( 5226 const OMPTargetExitDataDirective &S) { 5227 // If we don't have target devices, don't bother emitting the data mapping 5228 // code. 5229 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5230 return; 5231 5232 // Check if we have any if clause associated with the directive. 5233 const Expr *IfCond = nullptr; 5234 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5235 IfCond = C->getCondition(); 5236 5237 // Check if we have any device clause associated with the directive. 5238 const Expr *Device = nullptr; 5239 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5240 Device = C->getDevice(); 5241 5242 OMPLexicalScope Scope(*this, S, OMPD_task); 5243 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5244 } 5245 5246 static void emitTargetParallelRegion(CodeGenFunction &CGF, 5247 const OMPTargetParallelDirective &S, 5248 PrePostActionTy &Action) { 5249 // Get the captured statement associated with the 'parallel' region. 5250 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 5251 Action.Enter(CGF); 5252 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5253 Action.Enter(CGF); 5254 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5255 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5256 CGF.EmitOMPPrivateClause(S, PrivateScope); 5257 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5258 (void)PrivateScope.Privatize(); 5259 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5260 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5261 // TODO: Add support for clauses. 5262 CGF.EmitStmt(CS->getCapturedStmt()); 5263 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 5264 }; 5265 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 5266 emitEmptyBoundParameters); 5267 emitPostUpdateForReductionClause(CGF, S, 5268 [](CodeGenFunction &) { return nullptr; }); 5269 } 5270 5271 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 5272 CodeGenModule &CGM, StringRef ParentName, 5273 const OMPTargetParallelDirective &S) { 5274 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5275 emitTargetParallelRegion(CGF, S, Action); 5276 }; 5277 llvm::Function *Fn; 5278 llvm::Constant *Addr; 5279 // Emit target region as a standalone region. 5280 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5281 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5282 assert(Fn && Addr && "Target device function emission failed."); 5283 } 5284 5285 void CodeGenFunction::EmitOMPTargetParallelDirective( 5286 const OMPTargetParallelDirective &S) { 5287 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5288 emitTargetParallelRegion(CGF, S, Action); 5289 }; 5290 emitCommonOMPTargetDirective(*this, S, CodeGen); 5291 } 5292 5293 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5294 const OMPTargetParallelForDirective &S, 5295 PrePostActionTy &Action) { 5296 Action.Enter(CGF); 5297 // Emit directive as a combined directive that consists of two implicit 5298 // directives: 'parallel' with 'for' directive. 5299 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5300 Action.Enter(CGF); 5301 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5302 CGF, OMPD_target_parallel_for, S.hasCancel()); 5303 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5304 emitDispatchForLoopBounds); 5305 }; 5306 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5307 emitEmptyBoundParameters); 5308 } 5309 5310 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5311 CodeGenModule &CGM, StringRef ParentName, 5312 const OMPTargetParallelForDirective &S) { 5313 // Emit SPMD target parallel for region as a standalone region. 5314 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5315 emitTargetParallelForRegion(CGF, S, Action); 5316 }; 5317 llvm::Function *Fn; 5318 llvm::Constant *Addr; 5319 // Emit target region as a standalone region. 5320 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5321 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5322 assert(Fn && Addr && "Target device function emission failed."); 5323 } 5324 5325 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5326 const OMPTargetParallelForDirective &S) { 5327 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5328 emitTargetParallelForRegion(CGF, S, Action); 5329 }; 5330 emitCommonOMPTargetDirective(*this, S, CodeGen); 5331 } 5332 5333 static void 5334 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5335 const OMPTargetParallelForSimdDirective &S, 5336 PrePostActionTy &Action) { 5337 Action.Enter(CGF); 5338 // Emit directive as a combined directive that consists of two implicit 5339 // directives: 'parallel' with 'for' directive. 5340 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5341 Action.Enter(CGF); 5342 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5343 emitDispatchForLoopBounds); 5344 }; 5345 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5346 emitEmptyBoundParameters); 5347 } 5348 5349 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5350 CodeGenModule &CGM, StringRef ParentName, 5351 const OMPTargetParallelForSimdDirective &S) { 5352 // Emit SPMD target parallel for region as a standalone region. 5353 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5354 emitTargetParallelForSimdRegion(CGF, S, Action); 5355 }; 5356 llvm::Function *Fn; 5357 llvm::Constant *Addr; 5358 // Emit target region as a standalone region. 5359 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5360 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5361 assert(Fn && Addr && "Target device function emission failed."); 5362 } 5363 5364 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5365 const OMPTargetParallelForSimdDirective &S) { 5366 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5367 emitTargetParallelForSimdRegion(CGF, S, Action); 5368 }; 5369 emitCommonOMPTargetDirective(*this, S, CodeGen); 5370 } 5371 5372 /// Emit a helper variable and return corresponding lvalue. 5373 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5374 const ImplicitParamDecl *PVD, 5375 CodeGenFunction::OMPPrivateScope &Privates) { 5376 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5377 Privates.addPrivate(VDecl, 5378 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5379 } 5380 5381 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5382 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5383 // Emit outlined function for task construct. 5384 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5385 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5386 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5387 const Expr *IfCond = nullptr; 5388 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5389 if (C->getNameModifier() == OMPD_unknown || 5390 C->getNameModifier() == OMPD_taskloop) { 5391 IfCond = C->getCondition(); 5392 break; 5393 } 5394 } 5395 5396 OMPTaskDataTy Data; 5397 // Check if taskloop must be emitted without taskgroup. 5398 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5399 // TODO: Check if we should emit tied or untied task. 5400 Data.Tied = true; 5401 // Set scheduling for taskloop 5402 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5403 // grainsize clause 5404 Data.Schedule.setInt(/*IntVal=*/false); 5405 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5406 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5407 // num_tasks clause 5408 Data.Schedule.setInt(/*IntVal=*/true); 5409 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5410 } 5411 5412 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5413 // if (PreCond) { 5414 // for (IV in 0..LastIteration) BODY; 5415 // <Final counter/linear vars updates>; 5416 // } 5417 // 5418 5419 // Emit: if (PreCond) - begin. 5420 // If the condition constant folds and can be elided, avoid emitting the 5421 // whole loop. 5422 bool CondConstant; 5423 llvm::BasicBlock *ContBlock = nullptr; 5424 OMPLoopScope PreInitScope(CGF, S); 5425 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5426 if (!CondConstant) 5427 return; 5428 } else { 5429 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5430 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5431 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5432 CGF.getProfileCount(&S)); 5433 CGF.EmitBlock(ThenBlock); 5434 CGF.incrementProfileCounter(&S); 5435 } 5436 5437 (void)CGF.EmitOMPLinearClauseInit(S); 5438 5439 OMPPrivateScope LoopScope(CGF); 5440 // Emit helper vars inits. 5441 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5442 auto *I = CS->getCapturedDecl()->param_begin(); 5443 auto *LBP = std::next(I, LowerBound); 5444 auto *UBP = std::next(I, UpperBound); 5445 auto *STP = std::next(I, Stride); 5446 auto *LIP = std::next(I, LastIter); 5447 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5448 LoopScope); 5449 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5450 LoopScope); 5451 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5452 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5453 LoopScope); 5454 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5455 CGF.EmitOMPLinearClause(S, LoopScope); 5456 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5457 (void)LoopScope.Privatize(); 5458 // Emit the loop iteration variable. 5459 const Expr *IVExpr = S.getIterationVariable(); 5460 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5461 CGF.EmitVarDecl(*IVDecl); 5462 CGF.EmitIgnoredExpr(S.getInit()); 5463 5464 // Emit the iterations count variable. 5465 // If it is not a variable, Sema decided to calculate iterations count on 5466 // each iteration (e.g., it is foldable into a constant). 5467 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5468 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5469 // Emit calculation of the iterations count. 5470 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5471 } 5472 5473 { 5474 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5475 emitCommonSimdLoop( 5476 CGF, S, 5477 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5478 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5479 CGF.EmitOMPSimdInit(S); 5480 }, 5481 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5482 CGF.EmitOMPInnerLoop( 5483 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5484 [&S](CodeGenFunction &CGF) { 5485 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5486 CGF.EmitStopPoint(&S); 5487 }, 5488 [](CodeGenFunction &) {}); 5489 }); 5490 } 5491 // Emit: if (PreCond) - end. 5492 if (ContBlock) { 5493 CGF.EmitBranch(ContBlock); 5494 CGF.EmitBlock(ContBlock, true); 5495 } 5496 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5497 if (HasLastprivateClause) { 5498 CGF.EmitOMPLastprivateClauseFinal( 5499 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5500 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5501 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5502 (*LIP)->getType(), S.getBeginLoc()))); 5503 } 5504 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5505 return CGF.Builder.CreateIsNotNull( 5506 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5507 (*LIP)->getType(), S.getBeginLoc())); 5508 }); 5509 }; 5510 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5511 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5512 const OMPTaskDataTy &Data) { 5513 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5514 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5515 OMPLoopScope PreInitScope(CGF, S); 5516 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5517 OutlinedFn, SharedsTy, 5518 CapturedStruct, IfCond, Data); 5519 }; 5520 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5521 CodeGen); 5522 }; 5523 if (Data.Nogroup) { 5524 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5525 } else { 5526 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5527 *this, 5528 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5529 PrePostActionTy &Action) { 5530 Action.Enter(CGF); 5531 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5532 Data); 5533 }, 5534 S.getBeginLoc()); 5535 } 5536 } 5537 5538 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5539 auto LPCRegion = 5540 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5541 EmitOMPTaskLoopBasedDirective(S); 5542 } 5543 5544 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5545 const OMPTaskLoopSimdDirective &S) { 5546 auto LPCRegion = 5547 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5548 OMPLexicalScope Scope(*this, S); 5549 EmitOMPTaskLoopBasedDirective(S); 5550 } 5551 5552 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5553 const OMPMasterTaskLoopDirective &S) { 5554 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5555 Action.Enter(CGF); 5556 EmitOMPTaskLoopBasedDirective(S); 5557 }; 5558 auto LPCRegion = 5559 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5560 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5561 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5562 } 5563 5564 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5565 const OMPMasterTaskLoopSimdDirective &S) { 5566 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5567 Action.Enter(CGF); 5568 EmitOMPTaskLoopBasedDirective(S); 5569 }; 5570 auto LPCRegion = 5571 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5572 OMPLexicalScope Scope(*this, S); 5573 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5574 } 5575 5576 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5577 const OMPParallelMasterTaskLoopDirective &S) { 5578 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5579 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5580 PrePostActionTy &Action) { 5581 Action.Enter(CGF); 5582 CGF.EmitOMPTaskLoopBasedDirective(S); 5583 }; 5584 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5585 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5586 S.getBeginLoc()); 5587 }; 5588 auto LPCRegion = 5589 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5590 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5591 emitEmptyBoundParameters); 5592 } 5593 5594 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5595 const OMPParallelMasterTaskLoopSimdDirective &S) { 5596 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5597 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5598 PrePostActionTy &Action) { 5599 Action.Enter(CGF); 5600 CGF.EmitOMPTaskLoopBasedDirective(S); 5601 }; 5602 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5603 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5604 S.getBeginLoc()); 5605 }; 5606 auto LPCRegion = 5607 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5608 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5609 emitEmptyBoundParameters); 5610 } 5611 5612 // Generate the instructions for '#pragma omp target update' directive. 5613 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5614 const OMPTargetUpdateDirective &S) { 5615 // If we don't have target devices, don't bother emitting the data mapping 5616 // code. 5617 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5618 return; 5619 5620 // Check if we have any if clause associated with the directive. 5621 const Expr *IfCond = nullptr; 5622 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5623 IfCond = C->getCondition(); 5624 5625 // Check if we have any device clause associated with the directive. 5626 const Expr *Device = nullptr; 5627 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5628 Device = C->getDevice(); 5629 5630 OMPLexicalScope Scope(*this, S, OMPD_task); 5631 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5632 } 5633 5634 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5635 const OMPExecutableDirective &D) { 5636 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5637 return; 5638 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5639 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5640 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5641 } else { 5642 OMPPrivateScope LoopGlobals(CGF); 5643 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5644 for (const Expr *E : LD->counters()) { 5645 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5646 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5647 LValue GlobLVal = CGF.EmitLValue(E); 5648 LoopGlobals.addPrivate( 5649 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5650 } 5651 if (isa<OMPCapturedExprDecl>(VD)) { 5652 // Emit only those that were not explicitly referenced in clauses. 5653 if (!CGF.LocalDeclMap.count(VD)) 5654 CGF.EmitVarDecl(*VD); 5655 } 5656 } 5657 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5658 if (!C->getNumForLoops()) 5659 continue; 5660 for (unsigned I = LD->getCollapsedNumber(), 5661 E = C->getLoopNumIterations().size(); 5662 I < E; ++I) { 5663 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5664 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5665 // Emit only those that were not explicitly referenced in clauses. 5666 if (!CGF.LocalDeclMap.count(VD)) 5667 CGF.EmitVarDecl(*VD); 5668 } 5669 } 5670 } 5671 } 5672 LoopGlobals.Privatize(); 5673 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5674 } 5675 }; 5676 { 5677 auto LPCRegion = 5678 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 5679 OMPSimdLexicalScope Scope(*this, D); 5680 CGM.getOpenMPRuntime().emitInlinedDirective( 5681 *this, 5682 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5683 : D.getDirectiveKind(), 5684 CodeGen); 5685 } 5686 // Check for outer lastprivate conditional update. 5687 checkForLastprivateConditionalUpdate(*this, D); 5688 } 5689