1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false, bool EmitPreInitStmt = true) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 if (EmitPreInitStmt) 61 emitPreInitStmt(CGF, S); 62 if (AsInlined) { 63 if (S.hasAssociatedStmt()) { 64 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 65 for (auto &C : CS->captures()) { 66 if (C.capturesVariable() || C.capturesVariableByCopy()) { 67 auto *VD = C.getCapturedVar(); 68 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 69 isCapturedVar(CGF, VD) || 70 (CGF.CapturedStmtInfo && 71 InlinedShareds.isGlobalVarCaptured(VD)), 72 VD->getType().getNonReferenceType(), VK_LValue, 73 SourceLocation()); 74 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 75 return CGF.EmitLValue(&DRE).getAddress(); 76 }); 77 } 78 } 79 (void)InlinedShareds.Privatize(); 80 } 81 } 82 } 83 }; 84 85 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 86 /// for captured expressions. 87 class OMPParallelScope final : public OMPLexicalScope { 88 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 89 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 90 return !isOpenMPTargetExecutionDirective(Kind) && 91 isOpenMPParallelDirective(Kind); 92 } 93 94 public: 95 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 96 : OMPLexicalScope(CGF, S, 97 /*AsInlined=*/false, 98 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 99 }; 100 101 /// Lexical scope for OpenMP teams construct, that handles correct codegen 102 /// for captured expressions. 103 class OMPTeamsScope final : public OMPLexicalScope { 104 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 105 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 106 return !isOpenMPTargetExecutionDirective(Kind) && 107 isOpenMPTeamsDirective(Kind); 108 } 109 110 public: 111 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 112 : OMPLexicalScope(CGF, S, 113 /*AsInlined=*/false, 114 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 115 }; 116 117 /// Private scope for OpenMP loop-based directives, that supports capturing 118 /// of used expression from loop statement. 119 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 120 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 121 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 122 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 123 for (const auto *I : PreInits->decls()) 124 CGF.EmitVarDecl(cast<VarDecl>(*I)); 125 } 126 } 127 } 128 129 public: 130 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 131 : CodeGenFunction::RunCleanupsScope(CGF) { 132 emitPreInitStmt(CGF, S); 133 } 134 }; 135 136 } // namespace 137 138 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 139 auto &C = getContext(); 140 llvm::Value *Size = nullptr; 141 auto SizeInChars = C.getTypeSizeInChars(Ty); 142 if (SizeInChars.isZero()) { 143 // getTypeSizeInChars() returns 0 for a VLA. 144 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 145 llvm::Value *ArraySize; 146 std::tie(ArraySize, Ty) = getVLASize(VAT); 147 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 148 } 149 SizeInChars = C.getTypeSizeInChars(Ty); 150 if (SizeInChars.isZero()) 151 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 152 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 153 } else 154 Size = CGM.getSize(SizeInChars); 155 return Size; 156 } 157 158 void CodeGenFunction::GenerateOpenMPCapturedVars( 159 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 160 const RecordDecl *RD = S.getCapturedRecordDecl(); 161 auto CurField = RD->field_begin(); 162 auto CurCap = S.captures().begin(); 163 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 164 E = S.capture_init_end(); 165 I != E; ++I, ++CurField, ++CurCap) { 166 if (CurField->hasCapturedVLAType()) { 167 auto VAT = CurField->getCapturedVLAType(); 168 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 169 CapturedVars.push_back(Val); 170 } else if (CurCap->capturesThis()) 171 CapturedVars.push_back(CXXThisValue); 172 else if (CurCap->capturesVariableByCopy()) { 173 llvm::Value *CV = 174 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 175 176 // If the field is not a pointer, we need to save the actual value 177 // and load it as a void pointer. 178 if (!CurField->getType()->isAnyPointerType()) { 179 auto &Ctx = getContext(); 180 auto DstAddr = CreateMemTemp( 181 Ctx.getUIntPtrType(), 182 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 183 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 184 185 auto *SrcAddrVal = EmitScalarConversion( 186 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 187 Ctx.getPointerType(CurField->getType()), SourceLocation()); 188 LValue SrcLV = 189 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 190 191 // Store the value using the source type pointer. 192 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 193 194 // Load the value using the destination type pointer. 195 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 196 } 197 CapturedVars.push_back(CV); 198 } else { 199 assert(CurCap->capturesVariable() && "Expected capture by reference."); 200 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 201 } 202 } 203 } 204 205 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 206 StringRef Name, LValue AddrLV, 207 bool isReferenceType = false) { 208 ASTContext &Ctx = CGF.getContext(); 209 210 auto *CastedPtr = CGF.EmitScalarConversion( 211 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 212 Ctx.getPointerType(DstType), SourceLocation()); 213 auto TmpAddr = 214 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 215 .getAddress(); 216 217 // If we are dealing with references we need to return the address of the 218 // reference instead of the reference of the value. 219 if (isReferenceType) { 220 QualType RefType = Ctx.getLValueReferenceType(DstType); 221 auto *RefVal = TmpAddr.getPointer(); 222 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 223 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 224 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 225 } 226 227 return TmpAddr; 228 } 229 230 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 231 if (T->isLValueReferenceType()) { 232 return C.getLValueReferenceType( 233 getCanonicalParamType(C, T.getNonReferenceType()), 234 /*SpelledAsLValue=*/false); 235 } 236 if (T->isPointerType()) 237 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 238 return C.getCanonicalParamType(T); 239 } 240 241 llvm::Function * 242 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 243 assert( 244 CapturedStmtInfo && 245 "CapturedStmtInfo should be set when generating the captured function"); 246 const CapturedDecl *CD = S.getCapturedDecl(); 247 const RecordDecl *RD = S.getCapturedRecordDecl(); 248 assert(CD->hasBody() && "missing CapturedDecl body"); 249 250 // Build the argument list. 251 ASTContext &Ctx = CGM.getContext(); 252 FunctionArgList Args; 253 Args.append(CD->param_begin(), 254 std::next(CD->param_begin(), CD->getContextParamPosition())); 255 auto I = S.captures().begin(); 256 for (auto *FD : RD->fields()) { 257 QualType ArgType = FD->getType(); 258 IdentifierInfo *II = nullptr; 259 VarDecl *CapVar = nullptr; 260 261 // If this is a capture by copy and the type is not a pointer, the outlined 262 // function argument type should be uintptr and the value properly casted to 263 // uintptr. This is necessary given that the runtime library is only able to 264 // deal with pointers. We can pass in the same way the VLA type sizes to the 265 // outlined function. 266 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 267 I->capturesVariableArrayType()) 268 ArgType = Ctx.getUIntPtrType(); 269 270 if (I->capturesVariable() || I->capturesVariableByCopy()) { 271 CapVar = I->getCapturedVar(); 272 II = CapVar->getIdentifier(); 273 } else if (I->capturesThis()) 274 II = &getContext().Idents.get("this"); 275 else { 276 assert(I->capturesVariableArrayType()); 277 II = &getContext().Idents.get("vla"); 278 } 279 if (ArgType->isVariablyModifiedType()) { 280 ArgType = 281 getCanonicalParamType(getContext(), ArgType.getNonReferenceType()); 282 } 283 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 284 FD->getLocation(), II, ArgType)); 285 ++I; 286 } 287 Args.append( 288 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 289 CD->param_end()); 290 291 // Create the function declaration. 292 FunctionType::ExtInfo ExtInfo; 293 const CGFunctionInfo &FuncInfo = 294 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 295 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 296 297 llvm::Function *F = llvm::Function::Create( 298 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 299 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 300 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 301 if (CD->isNothrow()) 302 F->addFnAttr(llvm::Attribute::NoUnwind); 303 304 // Generate the function. 305 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 306 CD->getBody()->getLocStart()); 307 unsigned Cnt = CD->getContextParamPosition(); 308 I = S.captures().begin(); 309 for (auto *FD : RD->fields()) { 310 // If we are capturing a pointer by copy we don't need to do anything, just 311 // use the value that we get from the arguments. 312 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 313 const VarDecl *CurVD = I->getCapturedVar(); 314 Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]); 315 // If the variable is a reference we need to materialize it here. 316 if (CurVD->getType()->isReferenceType()) { 317 Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(), 318 ".materialized_ref"); 319 EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false, 320 CurVD->getType()); 321 LocalAddr = RefAddr; 322 } 323 setAddrOfLocalVar(CurVD, LocalAddr); 324 ++Cnt; 325 ++I; 326 continue; 327 } 328 329 LValue ArgLVal = 330 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 331 AlignmentSource::Decl); 332 if (FD->hasCapturedVLAType()) { 333 LValue CastedArgLVal = 334 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 335 Args[Cnt]->getName(), ArgLVal), 336 FD->getType(), AlignmentSource::Decl); 337 auto *ExprArg = 338 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 339 auto VAT = FD->getCapturedVLAType(); 340 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 341 } else if (I->capturesVariable()) { 342 auto *Var = I->getCapturedVar(); 343 QualType VarTy = Var->getType(); 344 Address ArgAddr = ArgLVal.getAddress(); 345 if (!VarTy->isReferenceType()) { 346 if (ArgLVal.getType()->isLValueReferenceType()) { 347 ArgAddr = EmitLoadOfReference( 348 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 349 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 350 assert(ArgLVal.getType()->isPointerType()); 351 ArgAddr = EmitLoadOfPointer( 352 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 353 } 354 } 355 setAddrOfLocalVar( 356 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 357 } else if (I->capturesVariableByCopy()) { 358 assert(!FD->getType()->isAnyPointerType() && 359 "Not expecting a captured pointer."); 360 auto *Var = I->getCapturedVar(); 361 QualType VarTy = Var->getType(); 362 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 363 Args[Cnt]->getName(), ArgLVal, 364 VarTy->isReferenceType())); 365 } else { 366 // If 'this' is captured, load it into CXXThisValue. 367 assert(I->capturesThis()); 368 CXXThisValue = 369 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 370 } 371 ++Cnt; 372 ++I; 373 } 374 375 PGO.assignRegionCounters(GlobalDecl(CD), F); 376 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 377 FinishFunction(CD->getBodyRBrace()); 378 379 return F; 380 } 381 382 //===----------------------------------------------------------------------===// 383 // OpenMP Directive Emission 384 //===----------------------------------------------------------------------===// 385 void CodeGenFunction::EmitOMPAggregateAssign( 386 Address DestAddr, Address SrcAddr, QualType OriginalType, 387 const llvm::function_ref<void(Address, Address)> &CopyGen) { 388 // Perform element-by-element initialization. 389 QualType ElementTy; 390 391 // Drill down to the base element type on both arrays. 392 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 393 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 394 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 395 396 auto SrcBegin = SrcAddr.getPointer(); 397 auto DestBegin = DestAddr.getPointer(); 398 // Cast from pointer to array type to pointer to single element. 399 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 400 // The basic structure here is a while-do loop. 401 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 402 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 403 auto IsEmpty = 404 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 405 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 406 407 // Enter the loop body, making that address the current address. 408 auto EntryBB = Builder.GetInsertBlock(); 409 EmitBlock(BodyBB); 410 411 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 412 413 llvm::PHINode *SrcElementPHI = 414 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 415 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 416 Address SrcElementCurrent = 417 Address(SrcElementPHI, 418 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 419 420 llvm::PHINode *DestElementPHI = 421 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 422 DestElementPHI->addIncoming(DestBegin, EntryBB); 423 Address DestElementCurrent = 424 Address(DestElementPHI, 425 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 426 427 // Emit copy. 428 CopyGen(DestElementCurrent, SrcElementCurrent); 429 430 // Shift the address forward by one element. 431 auto DestElementNext = Builder.CreateConstGEP1_32( 432 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 433 auto SrcElementNext = Builder.CreateConstGEP1_32( 434 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 435 // Check whether we've reached the end. 436 auto Done = 437 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 438 Builder.CreateCondBr(Done, DoneBB, BodyBB); 439 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 440 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 441 442 // Done. 443 EmitBlock(DoneBB, /*IsFinished=*/true); 444 } 445 446 /// Check if the combiner is a call to UDR combiner and if it is so return the 447 /// UDR decl used for reduction. 448 static const OMPDeclareReductionDecl * 449 getReductionInit(const Expr *ReductionOp) { 450 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 451 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 452 if (auto *DRE = 453 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 454 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 455 return DRD; 456 return nullptr; 457 } 458 459 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 460 const OMPDeclareReductionDecl *DRD, 461 const Expr *InitOp, 462 Address Private, Address Original, 463 QualType Ty) { 464 if (DRD->getInitializer()) { 465 std::pair<llvm::Function *, llvm::Function *> Reduction = 466 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 467 auto *CE = cast<CallExpr>(InitOp); 468 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 469 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 470 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 471 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 472 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 473 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 474 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 475 [=]() -> Address { return Private; }); 476 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 477 [=]() -> Address { return Original; }); 478 (void)PrivateScope.Privatize(); 479 RValue Func = RValue::get(Reduction.second); 480 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 481 CGF.EmitIgnoredExpr(InitOp); 482 } else { 483 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 484 auto *GV = new llvm::GlobalVariable( 485 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 486 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 487 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 488 RValue InitRVal; 489 switch (CGF.getEvaluationKind(Ty)) { 490 case TEK_Scalar: 491 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 492 break; 493 case TEK_Complex: 494 InitRVal = 495 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 496 break; 497 case TEK_Aggregate: 498 InitRVal = RValue::getAggregate(LV.getAddress()); 499 break; 500 } 501 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 502 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 503 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 504 /*IsInitializer=*/false); 505 } 506 } 507 508 /// \brief Emit initialization of arrays of complex types. 509 /// \param DestAddr Address of the array. 510 /// \param Type Type of array. 511 /// \param Init Initial expression of array. 512 /// \param SrcAddr Address of the original array. 513 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 514 QualType Type, const Expr *Init, 515 Address SrcAddr = Address::invalid()) { 516 auto *DRD = getReductionInit(Init); 517 // Perform element-by-element initialization. 518 QualType ElementTy; 519 520 // Drill down to the base element type on both arrays. 521 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 522 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 523 DestAddr = 524 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 525 if (DRD) 526 SrcAddr = 527 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 528 529 llvm::Value *SrcBegin = nullptr; 530 if (DRD) 531 SrcBegin = SrcAddr.getPointer(); 532 auto DestBegin = DestAddr.getPointer(); 533 // Cast from pointer to array type to pointer to single element. 534 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 535 // The basic structure here is a while-do loop. 536 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 537 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 538 auto IsEmpty = 539 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 540 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 541 542 // Enter the loop body, making that address the current address. 543 auto EntryBB = CGF.Builder.GetInsertBlock(); 544 CGF.EmitBlock(BodyBB); 545 546 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 547 548 llvm::PHINode *SrcElementPHI = nullptr; 549 Address SrcElementCurrent = Address::invalid(); 550 if (DRD) { 551 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 552 "omp.arraycpy.srcElementPast"); 553 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 554 SrcElementCurrent = 555 Address(SrcElementPHI, 556 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 557 } 558 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 559 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 560 DestElementPHI->addIncoming(DestBegin, EntryBB); 561 Address DestElementCurrent = 562 Address(DestElementPHI, 563 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 564 565 // Emit copy. 566 { 567 CodeGenFunction::RunCleanupsScope InitScope(CGF); 568 if (DRD && (DRD->getInitializer() || !Init)) { 569 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 570 SrcElementCurrent, ElementTy); 571 } else 572 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 573 /*IsInitializer=*/false); 574 } 575 576 if (DRD) { 577 // Shift the address forward by one element. 578 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 579 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 580 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 581 } 582 583 // Shift the address forward by one element. 584 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 585 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 586 // Check whether we've reached the end. 587 auto Done = 588 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 589 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 590 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 591 592 // Done. 593 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 594 } 595 596 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 597 Address SrcAddr, const VarDecl *DestVD, 598 const VarDecl *SrcVD, const Expr *Copy) { 599 if (OriginalType->isArrayType()) { 600 auto *BO = dyn_cast<BinaryOperator>(Copy); 601 if (BO && BO->getOpcode() == BO_Assign) { 602 // Perform simple memcpy for simple copying. 603 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 604 } else { 605 // For arrays with complex element types perform element by element 606 // copying. 607 EmitOMPAggregateAssign( 608 DestAddr, SrcAddr, OriginalType, 609 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 610 // Working with the single array element, so have to remap 611 // destination and source variables to corresponding array 612 // elements. 613 CodeGenFunction::OMPPrivateScope Remap(*this); 614 Remap.addPrivate(DestVD, [DestElement]() -> Address { 615 return DestElement; 616 }); 617 Remap.addPrivate( 618 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 619 (void)Remap.Privatize(); 620 EmitIgnoredExpr(Copy); 621 }); 622 } 623 } else { 624 // Remap pseudo source variable to private copy. 625 CodeGenFunction::OMPPrivateScope Remap(*this); 626 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 627 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 628 (void)Remap.Privatize(); 629 // Emit copying of the whole variable. 630 EmitIgnoredExpr(Copy); 631 } 632 } 633 634 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 635 OMPPrivateScope &PrivateScope) { 636 if (!HaveInsertPoint()) 637 return false; 638 bool FirstprivateIsLastprivate = false; 639 llvm::DenseSet<const VarDecl *> Lastprivates; 640 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 641 for (const auto *D : C->varlists()) 642 Lastprivates.insert( 643 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 644 } 645 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 646 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 647 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 648 auto IRef = C->varlist_begin(); 649 auto InitsRef = C->inits().begin(); 650 for (auto IInit : C->private_copies()) { 651 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 652 bool ThisFirstprivateIsLastprivate = 653 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 654 auto *CapFD = CapturesInfo.lookup(OrigVD); 655 auto *FD = CapturedStmtInfo->lookup(OrigVD); 656 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 657 !FD->getType()->isReferenceType()) { 658 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 659 ++IRef; 660 ++InitsRef; 661 continue; 662 } 663 FirstprivateIsLastprivate = 664 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 665 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 666 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 667 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 668 bool IsRegistered; 669 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 670 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 671 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 672 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 673 QualType Type = VD->getType(); 674 if (Type->isArrayType()) { 675 // Emit VarDecl with copy init for arrays. 676 // Get the address of the original variable captured in current 677 // captured region. 678 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 679 auto Emission = EmitAutoVarAlloca(*VD); 680 auto *Init = VD->getInit(); 681 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 682 // Perform simple memcpy. 683 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 684 Type); 685 } else { 686 EmitOMPAggregateAssign( 687 Emission.getAllocatedAddress(), OriginalAddr, Type, 688 [this, VDInit, Init](Address DestElement, 689 Address SrcElement) { 690 // Clean up any temporaries needed by the initialization. 691 RunCleanupsScope InitScope(*this); 692 // Emit initialization for single element. 693 setAddrOfLocalVar(VDInit, SrcElement); 694 EmitAnyExprToMem(Init, DestElement, 695 Init->getType().getQualifiers(), 696 /*IsInitializer*/ false); 697 LocalDeclMap.erase(VDInit); 698 }); 699 } 700 EmitAutoVarCleanups(Emission); 701 return Emission.getAllocatedAddress(); 702 }); 703 } else { 704 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 705 // Emit private VarDecl with copy init. 706 // Remap temp VDInit variable to the address of the original 707 // variable 708 // (for proper handling of captured global variables). 709 setAddrOfLocalVar(VDInit, OriginalAddr); 710 EmitDecl(*VD); 711 LocalDeclMap.erase(VDInit); 712 return GetAddrOfLocalVar(VD); 713 }); 714 } 715 assert(IsRegistered && 716 "firstprivate var already registered as private"); 717 // Silence the warning about unused variable. 718 (void)IsRegistered; 719 } 720 ++IRef; 721 ++InitsRef; 722 } 723 } 724 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 725 } 726 727 void CodeGenFunction::EmitOMPPrivateClause( 728 const OMPExecutableDirective &D, 729 CodeGenFunction::OMPPrivateScope &PrivateScope) { 730 if (!HaveInsertPoint()) 731 return; 732 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 733 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 734 auto IRef = C->varlist_begin(); 735 for (auto IInit : C->private_copies()) { 736 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 737 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 738 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 739 bool IsRegistered = 740 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 741 // Emit private VarDecl with copy init. 742 EmitDecl(*VD); 743 return GetAddrOfLocalVar(VD); 744 }); 745 assert(IsRegistered && "private var already registered as private"); 746 // Silence the warning about unused variable. 747 (void)IsRegistered; 748 } 749 ++IRef; 750 } 751 } 752 } 753 754 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 755 if (!HaveInsertPoint()) 756 return false; 757 // threadprivate_var1 = master_threadprivate_var1; 758 // operator=(threadprivate_var2, master_threadprivate_var2); 759 // ... 760 // __kmpc_barrier(&loc, global_tid); 761 llvm::DenseSet<const VarDecl *> CopiedVars; 762 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 763 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 764 auto IRef = C->varlist_begin(); 765 auto ISrcRef = C->source_exprs().begin(); 766 auto IDestRef = C->destination_exprs().begin(); 767 for (auto *AssignOp : C->assignment_ops()) { 768 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 769 QualType Type = VD->getType(); 770 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 771 // Get the address of the master variable. If we are emitting code with 772 // TLS support, the address is passed from the master as field in the 773 // captured declaration. 774 Address MasterAddr = Address::invalid(); 775 if (getLangOpts().OpenMPUseTLS && 776 getContext().getTargetInfo().isTLSSupported()) { 777 assert(CapturedStmtInfo->lookup(VD) && 778 "Copyin threadprivates should have been captured!"); 779 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 780 VK_LValue, (*IRef)->getExprLoc()); 781 MasterAddr = EmitLValue(&DRE).getAddress(); 782 LocalDeclMap.erase(VD); 783 } else { 784 MasterAddr = 785 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 786 : CGM.GetAddrOfGlobal(VD), 787 getContext().getDeclAlign(VD)); 788 } 789 // Get the address of the threadprivate variable. 790 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 791 if (CopiedVars.size() == 1) { 792 // At first check if current thread is a master thread. If it is, no 793 // need to copy data. 794 CopyBegin = createBasicBlock("copyin.not.master"); 795 CopyEnd = createBasicBlock("copyin.not.master.end"); 796 Builder.CreateCondBr( 797 Builder.CreateICmpNE( 798 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 799 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 800 CopyBegin, CopyEnd); 801 EmitBlock(CopyBegin); 802 } 803 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 804 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 805 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 806 } 807 ++IRef; 808 ++ISrcRef; 809 ++IDestRef; 810 } 811 } 812 if (CopyEnd) { 813 // Exit out of copying procedure for non-master thread. 814 EmitBlock(CopyEnd, /*IsFinished=*/true); 815 return true; 816 } 817 return false; 818 } 819 820 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 821 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 822 if (!HaveInsertPoint()) 823 return false; 824 bool HasAtLeastOneLastprivate = false; 825 llvm::DenseSet<const VarDecl *> SIMDLCVs; 826 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 827 auto *LoopDirective = cast<OMPLoopDirective>(&D); 828 for (auto *C : LoopDirective->counters()) { 829 SIMDLCVs.insert( 830 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 831 } 832 } 833 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 834 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 835 HasAtLeastOneLastprivate = true; 836 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 837 break; 838 auto IRef = C->varlist_begin(); 839 auto IDestRef = C->destination_exprs().begin(); 840 for (auto *IInit : C->private_copies()) { 841 // Keep the address of the original variable for future update at the end 842 // of the loop. 843 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 844 // Taskloops do not require additional initialization, it is done in 845 // runtime support library. 846 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 847 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 848 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 849 DeclRefExpr DRE( 850 const_cast<VarDecl *>(OrigVD), 851 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 852 OrigVD) != nullptr, 853 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 854 return EmitLValue(&DRE).getAddress(); 855 }); 856 // Check if the variable is also a firstprivate: in this case IInit is 857 // not generated. Initialization of this variable will happen in codegen 858 // for 'firstprivate' clause. 859 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 860 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 861 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 862 // Emit private VarDecl with copy init. 863 EmitDecl(*VD); 864 return GetAddrOfLocalVar(VD); 865 }); 866 assert(IsRegistered && 867 "lastprivate var already registered as private"); 868 (void)IsRegistered; 869 } 870 } 871 ++IRef; 872 ++IDestRef; 873 } 874 } 875 return HasAtLeastOneLastprivate; 876 } 877 878 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 879 const OMPExecutableDirective &D, bool NoFinals, 880 llvm::Value *IsLastIterCond) { 881 if (!HaveInsertPoint()) 882 return; 883 // Emit following code: 884 // if (<IsLastIterCond>) { 885 // orig_var1 = private_orig_var1; 886 // ... 887 // orig_varn = private_orig_varn; 888 // } 889 llvm::BasicBlock *ThenBB = nullptr; 890 llvm::BasicBlock *DoneBB = nullptr; 891 if (IsLastIterCond) { 892 ThenBB = createBasicBlock(".omp.lastprivate.then"); 893 DoneBB = createBasicBlock(".omp.lastprivate.done"); 894 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 895 EmitBlock(ThenBB); 896 } 897 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 898 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 899 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 900 auto IC = LoopDirective->counters().begin(); 901 for (auto F : LoopDirective->finals()) { 902 auto *D = 903 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 904 if (NoFinals) 905 AlreadyEmittedVars.insert(D); 906 else 907 LoopCountersAndUpdates[D] = F; 908 ++IC; 909 } 910 } 911 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 912 auto IRef = C->varlist_begin(); 913 auto ISrcRef = C->source_exprs().begin(); 914 auto IDestRef = C->destination_exprs().begin(); 915 for (auto *AssignOp : C->assignment_ops()) { 916 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 917 QualType Type = PrivateVD->getType(); 918 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 919 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 920 // If lastprivate variable is a loop control variable for loop-based 921 // directive, update its value before copyin back to original 922 // variable. 923 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 924 EmitIgnoredExpr(FinalExpr); 925 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 926 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 927 // Get the address of the original variable. 928 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 929 // Get the address of the private variable. 930 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 931 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 932 PrivateAddr = 933 Address(Builder.CreateLoad(PrivateAddr), 934 getNaturalTypeAlignment(RefTy->getPointeeType())); 935 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 936 } 937 ++IRef; 938 ++ISrcRef; 939 ++IDestRef; 940 } 941 if (auto *PostUpdate = C->getPostUpdateExpr()) 942 EmitIgnoredExpr(PostUpdate); 943 } 944 if (IsLastIterCond) 945 EmitBlock(DoneBB, /*IsFinished=*/true); 946 } 947 948 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 949 LValue BaseLV, llvm::Value *Addr) { 950 Address Tmp = Address::invalid(); 951 Address TopTmp = Address::invalid(); 952 Address MostTopTmp = Address::invalid(); 953 BaseTy = BaseTy.getNonReferenceType(); 954 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 955 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 956 Tmp = CGF.CreateMemTemp(BaseTy); 957 if (TopTmp.isValid()) 958 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 959 else 960 MostTopTmp = Tmp; 961 TopTmp = Tmp; 962 BaseTy = BaseTy->getPointeeType(); 963 } 964 llvm::Type *Ty = BaseLV.getPointer()->getType(); 965 if (Tmp.isValid()) 966 Ty = Tmp.getElementType(); 967 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 968 if (Tmp.isValid()) { 969 CGF.Builder.CreateStore(Addr, Tmp); 970 return MostTopTmp; 971 } 972 return Address(Addr, BaseLV.getAlignment()); 973 } 974 975 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 976 LValue BaseLV) { 977 BaseTy = BaseTy.getNonReferenceType(); 978 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 979 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 980 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 981 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 982 else { 983 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 984 BaseTy->castAs<ReferenceType>()); 985 } 986 BaseTy = BaseTy->getPointeeType(); 987 } 988 return CGF.MakeAddrLValue( 989 Address( 990 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 991 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 992 BaseLV.getAlignment()), 993 BaseLV.getType(), BaseLV.getAlignmentSource()); 994 } 995 996 void CodeGenFunction::EmitOMPReductionClauseInit( 997 const OMPExecutableDirective &D, 998 CodeGenFunction::OMPPrivateScope &PrivateScope) { 999 if (!HaveInsertPoint()) 1000 return; 1001 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1002 auto ILHS = C->lhs_exprs().begin(); 1003 auto IRHS = C->rhs_exprs().begin(); 1004 auto IPriv = C->privates().begin(); 1005 auto IRed = C->reduction_ops().begin(); 1006 for (auto IRef : C->varlists()) { 1007 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1008 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1009 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1010 auto *DRD = getReductionInit(*IRed); 1011 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 1012 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 1013 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 1014 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 1015 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1016 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1017 auto *DE = cast<DeclRefExpr>(Base); 1018 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1019 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 1020 auto OASELValueUB = 1021 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 1022 auto OriginalBaseLValue = EmitLValue(DE); 1023 LValue BaseLValue = 1024 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 1025 OriginalBaseLValue); 1026 // Store the address of the original variable associated with the LHS 1027 // implicit variable. 1028 PrivateScope.addPrivate(LHSVD, [OASELValueLB]() -> Address { 1029 return OASELValueLB.getAddress(); 1030 }); 1031 // Emit reduction copy. 1032 bool IsRegistered = PrivateScope.addPrivate( 1033 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 1034 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 1035 // Emit VarDecl with copy init for arrays. 1036 // Get the address of the original variable captured in current 1037 // captured region. 1038 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 1039 OASELValueLB.getPointer()); 1040 Size = Builder.CreateNUWAdd( 1041 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 1042 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1043 *this, cast<OpaqueValueExpr>( 1044 getContext() 1045 .getAsVariableArrayType(PrivateVD->getType()) 1046 ->getSizeExpr()), 1047 RValue::get(Size)); 1048 EmitVariablyModifiedType(PrivateVD->getType()); 1049 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1050 auto Addr = Emission.getAllocatedAddress(); 1051 auto *Init = PrivateVD->getInit(); 1052 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1053 DRD ? *IRed : Init, 1054 OASELValueLB.getAddress()); 1055 EmitAutoVarCleanups(Emission); 1056 // Emit private VarDecl with reduction init. 1057 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1058 OASELValueLB.getPointer()); 1059 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1060 return castToBase(*this, OrigVD->getType(), 1061 OASELValueLB.getType(), OriginalBaseLValue, 1062 Ptr); 1063 }); 1064 assert(IsRegistered && "private var already registered as private"); 1065 // Silence the warning about unused variable. 1066 (void)IsRegistered; 1067 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1068 return GetAddrOfLocalVar(PrivateVD); 1069 }); 1070 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1071 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1072 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1073 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1074 auto *DE = cast<DeclRefExpr>(Base); 1075 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1076 auto ASELValue = EmitLValue(ASE); 1077 auto OriginalBaseLValue = EmitLValue(DE); 1078 LValue BaseLValue = loadToBegin( 1079 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1080 // Store the address of the original variable associated with the LHS 1081 // implicit variable. 1082 PrivateScope.addPrivate( 1083 LHSVD, [ASELValue]() -> Address { return ASELValue.getAddress(); }); 1084 // Emit reduction copy. 1085 bool IsRegistered = PrivateScope.addPrivate( 1086 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1087 OriginalBaseLValue, DRD, IRed]() -> Address { 1088 // Emit private VarDecl with reduction init. 1089 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1090 auto Addr = Emission.getAllocatedAddress(); 1091 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1092 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1093 ASELValue.getAddress(), 1094 ASELValue.getType()); 1095 } else 1096 EmitAutoVarInit(Emission); 1097 EmitAutoVarCleanups(Emission); 1098 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1099 ASELValue.getPointer()); 1100 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1101 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1102 OriginalBaseLValue, Ptr); 1103 }); 1104 assert(IsRegistered && "private var already registered as private"); 1105 // Silence the warning about unused variable. 1106 (void)IsRegistered; 1107 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1108 return Builder.CreateElementBitCast( 1109 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1110 "rhs.begin"); 1111 }); 1112 } else { 1113 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1114 QualType Type = PrivateVD->getType(); 1115 if (getContext().getAsArrayType(Type)) { 1116 // Store the address of the original variable associated with the LHS 1117 // implicit variable. 1118 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1119 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1120 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1121 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1122 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1123 LHSVD]() -> Address { 1124 OriginalAddr = Builder.CreateElementBitCast( 1125 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1126 return OriginalAddr; 1127 }); 1128 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1129 if (Type->isVariablyModifiedType()) { 1130 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1131 *this, cast<OpaqueValueExpr>( 1132 getContext() 1133 .getAsVariableArrayType(PrivateVD->getType()) 1134 ->getSizeExpr()), 1135 RValue::get( 1136 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1137 EmitVariablyModifiedType(Type); 1138 } 1139 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1140 auto Addr = Emission.getAllocatedAddress(); 1141 auto *Init = PrivateVD->getInit(); 1142 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1143 DRD ? *IRed : Init, OriginalAddr); 1144 EmitAutoVarCleanups(Emission); 1145 return Emission.getAllocatedAddress(); 1146 }); 1147 assert(IsRegistered && "private var already registered as private"); 1148 // Silence the warning about unused variable. 1149 (void)IsRegistered; 1150 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1151 return Builder.CreateElementBitCast( 1152 GetAddrOfLocalVar(PrivateVD), 1153 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1154 }); 1155 } else { 1156 // Store the address of the original variable associated with the LHS 1157 // implicit variable. 1158 Address OriginalAddr = Address::invalid(); 1159 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1160 &OriginalAddr]() -> Address { 1161 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1162 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1163 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1164 OriginalAddr = EmitLValue(&DRE).getAddress(); 1165 return OriginalAddr; 1166 }); 1167 // Emit reduction copy. 1168 bool IsRegistered = PrivateScope.addPrivate( 1169 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1170 // Emit private VarDecl with reduction init. 1171 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1172 auto Addr = Emission.getAllocatedAddress(); 1173 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1174 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1175 OriginalAddr, 1176 PrivateVD->getType()); 1177 } else 1178 EmitAutoVarInit(Emission); 1179 EmitAutoVarCleanups(Emission); 1180 return Addr; 1181 }); 1182 assert(IsRegistered && "private var already registered as private"); 1183 // Silence the warning about unused variable. 1184 (void)IsRegistered; 1185 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1186 return GetAddrOfLocalVar(PrivateVD); 1187 }); 1188 } 1189 } 1190 ++ILHS; 1191 ++IRHS; 1192 ++IPriv; 1193 ++IRed; 1194 } 1195 } 1196 } 1197 1198 void CodeGenFunction::EmitOMPReductionClauseFinal( 1199 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1200 if (!HaveInsertPoint()) 1201 return; 1202 llvm::SmallVector<const Expr *, 8> Privates; 1203 llvm::SmallVector<const Expr *, 8> LHSExprs; 1204 llvm::SmallVector<const Expr *, 8> RHSExprs; 1205 llvm::SmallVector<const Expr *, 8> ReductionOps; 1206 bool HasAtLeastOneReduction = false; 1207 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1208 HasAtLeastOneReduction = true; 1209 Privates.append(C->privates().begin(), C->privates().end()); 1210 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1211 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1212 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1213 } 1214 if (HasAtLeastOneReduction) { 1215 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1216 isOpenMPParallelDirective(D.getDirectiveKind()) || 1217 D.getDirectiveKind() == OMPD_simd; 1218 bool SimpleReduction = D.getDirectiveKind() == OMPD_simd; 1219 // Emit nowait reduction if nowait clause is present or directive is a 1220 // parallel directive (it always has implicit barrier). 1221 CGM.getOpenMPRuntime().emitReduction( 1222 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1223 {WithNowait, SimpleReduction, ReductionKind}); 1224 } 1225 } 1226 1227 static void emitPostUpdateForReductionClause( 1228 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1229 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1230 if (!CGF.HaveInsertPoint()) 1231 return; 1232 llvm::BasicBlock *DoneBB = nullptr; 1233 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1234 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1235 if (!DoneBB) { 1236 if (auto *Cond = CondGen(CGF)) { 1237 // If the first post-update expression is found, emit conditional 1238 // block if it was requested. 1239 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1240 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1241 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1242 CGF.EmitBlock(ThenBB); 1243 } 1244 } 1245 CGF.EmitIgnoredExpr(PostUpdate); 1246 } 1247 } 1248 if (DoneBB) 1249 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1250 } 1251 1252 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1253 const OMPExecutableDirective &S, 1254 OpenMPDirectiveKind InnermostKind, 1255 const RegionCodeGenTy &CodeGen) { 1256 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1257 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1258 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1259 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1260 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1261 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1262 /*IgnoreResultAssign*/ true); 1263 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1264 CGF, NumThreads, NumThreadsClause->getLocStart()); 1265 } 1266 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1267 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1268 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1269 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1270 } 1271 const Expr *IfCond = nullptr; 1272 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1273 if (C->getNameModifier() == OMPD_unknown || 1274 C->getNameModifier() == OMPD_parallel) { 1275 IfCond = C->getCondition(); 1276 break; 1277 } 1278 } 1279 1280 OMPParallelScope Scope(CGF, S); 1281 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1282 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1283 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1284 CapturedVars, IfCond); 1285 } 1286 1287 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1288 // Emit parallel region as a standalone region. 1289 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1290 OMPPrivateScope PrivateScope(CGF); 1291 bool Copyins = CGF.EmitOMPCopyinClause(S); 1292 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1293 if (Copyins) { 1294 // Emit implicit barrier to synchronize threads and avoid data races on 1295 // propagation master's thread values of threadprivate variables to local 1296 // instances of that variables of all other implicit threads. 1297 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1298 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1299 /*ForceSimpleCall=*/true); 1300 } 1301 CGF.EmitOMPPrivateClause(S, PrivateScope); 1302 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1303 (void)PrivateScope.Privatize(); 1304 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1305 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1306 }; 1307 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1308 emitPostUpdateForReductionClause( 1309 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1310 } 1311 1312 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1313 JumpDest LoopExit) { 1314 RunCleanupsScope BodyScope(*this); 1315 // Update counters values on current iteration. 1316 for (auto I : D.updates()) { 1317 EmitIgnoredExpr(I); 1318 } 1319 // Update the linear variables. 1320 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1321 for (auto *U : C->updates()) 1322 EmitIgnoredExpr(U); 1323 } 1324 1325 // On a continue in the body, jump to the end. 1326 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1327 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1328 // Emit loop body. 1329 EmitStmt(D.getBody()); 1330 // The end (updates/cleanups). 1331 EmitBlock(Continue.getBlock()); 1332 BreakContinueStack.pop_back(); 1333 } 1334 1335 void CodeGenFunction::EmitOMPInnerLoop( 1336 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1337 const Expr *IncExpr, 1338 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1339 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1340 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1341 1342 // Start the loop with a block that tests the condition. 1343 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1344 EmitBlock(CondBlock); 1345 const SourceRange &R = S.getSourceRange(); 1346 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1347 SourceLocToDebugLoc(R.getEnd())); 1348 1349 // If there are any cleanups between here and the loop-exit scope, 1350 // create a block to stage a loop exit along. 1351 auto ExitBlock = LoopExit.getBlock(); 1352 if (RequiresCleanup) 1353 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1354 1355 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1356 1357 // Emit condition. 1358 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1359 if (ExitBlock != LoopExit.getBlock()) { 1360 EmitBlock(ExitBlock); 1361 EmitBranchThroughCleanup(LoopExit); 1362 } 1363 1364 EmitBlock(LoopBody); 1365 incrementProfileCounter(&S); 1366 1367 // Create a block for the increment. 1368 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1369 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1370 1371 BodyGen(*this); 1372 1373 // Emit "IV = IV + 1" and a back-edge to the condition block. 1374 EmitBlock(Continue.getBlock()); 1375 EmitIgnoredExpr(IncExpr); 1376 PostIncGen(*this); 1377 BreakContinueStack.pop_back(); 1378 EmitBranch(CondBlock); 1379 LoopStack.pop(); 1380 // Emit the fall-through block. 1381 EmitBlock(LoopExit.getBlock()); 1382 } 1383 1384 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1385 if (!HaveInsertPoint()) 1386 return; 1387 // Emit inits for the linear variables. 1388 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1389 for (auto *Init : C->inits()) { 1390 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1391 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1392 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1393 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1394 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1395 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1396 VD->getInit()->getType(), VK_LValue, 1397 VD->getInit()->getExprLoc()); 1398 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1399 VD->getType()), 1400 /*capturedByInit=*/false); 1401 EmitAutoVarCleanups(Emission); 1402 } else 1403 EmitVarDecl(*VD); 1404 } 1405 // Emit the linear steps for the linear clauses. 1406 // If a step is not constant, it is pre-calculated before the loop. 1407 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1408 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1409 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1410 // Emit calculation of the linear step. 1411 EmitIgnoredExpr(CS); 1412 } 1413 } 1414 } 1415 1416 void CodeGenFunction::EmitOMPLinearClauseFinal( 1417 const OMPLoopDirective &D, 1418 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1419 if (!HaveInsertPoint()) 1420 return; 1421 llvm::BasicBlock *DoneBB = nullptr; 1422 // Emit the final values of the linear variables. 1423 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1424 auto IC = C->varlist_begin(); 1425 for (auto *F : C->finals()) { 1426 if (!DoneBB) { 1427 if (auto *Cond = CondGen(*this)) { 1428 // If the first post-update expression is found, emit conditional 1429 // block if it was requested. 1430 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1431 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1432 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1433 EmitBlock(ThenBB); 1434 } 1435 } 1436 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1437 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1438 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1439 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1440 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1441 CodeGenFunction::OMPPrivateScope VarScope(*this); 1442 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1443 (void)VarScope.Privatize(); 1444 EmitIgnoredExpr(F); 1445 ++IC; 1446 } 1447 if (auto *PostUpdate = C->getPostUpdateExpr()) 1448 EmitIgnoredExpr(PostUpdate); 1449 } 1450 if (DoneBB) 1451 EmitBlock(DoneBB, /*IsFinished=*/true); 1452 } 1453 1454 static void emitAlignedClause(CodeGenFunction &CGF, 1455 const OMPExecutableDirective &D) { 1456 if (!CGF.HaveInsertPoint()) 1457 return; 1458 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1459 unsigned ClauseAlignment = 0; 1460 if (auto AlignmentExpr = Clause->getAlignment()) { 1461 auto AlignmentCI = 1462 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1463 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1464 } 1465 for (auto E : Clause->varlists()) { 1466 unsigned Alignment = ClauseAlignment; 1467 if (Alignment == 0) { 1468 // OpenMP [2.8.1, Description] 1469 // If no optional parameter is specified, implementation-defined default 1470 // alignments for SIMD instructions on the target platforms are assumed. 1471 Alignment = 1472 CGF.getContext() 1473 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1474 E->getType()->getPointeeType())) 1475 .getQuantity(); 1476 } 1477 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1478 "alignment is not power of 2"); 1479 if (Alignment != 0) { 1480 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1481 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1482 } 1483 } 1484 } 1485 } 1486 1487 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1488 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1489 if (!HaveInsertPoint()) 1490 return; 1491 auto I = S.private_counters().begin(); 1492 for (auto *E : S.counters()) { 1493 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1494 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1495 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1496 // Emit var without initialization. 1497 if (!LocalDeclMap.count(PrivateVD)) { 1498 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1499 EmitAutoVarCleanups(VarEmission); 1500 } 1501 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1502 /*RefersToEnclosingVariableOrCapture=*/false, 1503 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1504 return EmitLValue(&DRE).getAddress(); 1505 }); 1506 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1507 VD->hasGlobalStorage()) { 1508 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1509 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1510 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1511 E->getType(), VK_LValue, E->getExprLoc()); 1512 return EmitLValue(&DRE).getAddress(); 1513 }); 1514 } 1515 ++I; 1516 } 1517 } 1518 1519 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1520 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1521 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1522 if (!CGF.HaveInsertPoint()) 1523 return; 1524 { 1525 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1526 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1527 (void)PreCondScope.Privatize(); 1528 // Get initial values of real counters. 1529 for (auto I : S.inits()) { 1530 CGF.EmitIgnoredExpr(I); 1531 } 1532 } 1533 // Check that loop is executed at least one time. 1534 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1535 } 1536 1537 void CodeGenFunction::EmitOMPLinearClause( 1538 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1539 if (!HaveInsertPoint()) 1540 return; 1541 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1542 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1543 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1544 for (auto *C : LoopDirective->counters()) { 1545 SIMDLCVs.insert( 1546 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1547 } 1548 } 1549 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1550 auto CurPrivate = C->privates().begin(); 1551 for (auto *E : C->varlists()) { 1552 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1553 auto *PrivateVD = 1554 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1555 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1556 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1557 // Emit private VarDecl with copy init. 1558 EmitVarDecl(*PrivateVD); 1559 return GetAddrOfLocalVar(PrivateVD); 1560 }); 1561 assert(IsRegistered && "linear var already registered as private"); 1562 // Silence the warning about unused variable. 1563 (void)IsRegistered; 1564 } else 1565 EmitVarDecl(*PrivateVD); 1566 ++CurPrivate; 1567 } 1568 } 1569 } 1570 1571 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1572 const OMPExecutableDirective &D, 1573 bool IsMonotonic) { 1574 if (!CGF.HaveInsertPoint()) 1575 return; 1576 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1577 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1578 /*ignoreResult=*/true); 1579 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1580 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1581 // In presence of finite 'safelen', it may be unsafe to mark all 1582 // the memory instructions parallel, because loop-carried 1583 // dependences of 'safelen' iterations are possible. 1584 if (!IsMonotonic) 1585 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1586 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1587 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1588 /*ignoreResult=*/true); 1589 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1590 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1591 // In presence of finite 'safelen', it may be unsafe to mark all 1592 // the memory instructions parallel, because loop-carried 1593 // dependences of 'safelen' iterations are possible. 1594 CGF.LoopStack.setParallel(false); 1595 } 1596 } 1597 1598 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1599 bool IsMonotonic) { 1600 // Walk clauses and process safelen/lastprivate. 1601 LoopStack.setParallel(!IsMonotonic); 1602 LoopStack.setVectorizeEnable(true); 1603 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1604 } 1605 1606 void CodeGenFunction::EmitOMPSimdFinal( 1607 const OMPLoopDirective &D, 1608 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1609 if (!HaveInsertPoint()) 1610 return; 1611 llvm::BasicBlock *DoneBB = nullptr; 1612 auto IC = D.counters().begin(); 1613 auto IPC = D.private_counters().begin(); 1614 for (auto F : D.finals()) { 1615 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1616 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1617 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1618 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1619 OrigVD->hasGlobalStorage() || CED) { 1620 if (!DoneBB) { 1621 if (auto *Cond = CondGen(*this)) { 1622 // If the first post-update expression is found, emit conditional 1623 // block if it was requested. 1624 auto *ThenBB = createBasicBlock(".omp.final.then"); 1625 DoneBB = createBasicBlock(".omp.final.done"); 1626 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1627 EmitBlock(ThenBB); 1628 } 1629 } 1630 Address OrigAddr = Address::invalid(); 1631 if (CED) 1632 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1633 else { 1634 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1635 /*RefersToEnclosingVariableOrCapture=*/false, 1636 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1637 OrigAddr = EmitLValue(&DRE).getAddress(); 1638 } 1639 OMPPrivateScope VarScope(*this); 1640 VarScope.addPrivate(OrigVD, 1641 [OrigAddr]() -> Address { return OrigAddr; }); 1642 (void)VarScope.Privatize(); 1643 EmitIgnoredExpr(F); 1644 } 1645 ++IC; 1646 ++IPC; 1647 } 1648 if (DoneBB) 1649 EmitBlock(DoneBB, /*IsFinished=*/true); 1650 } 1651 1652 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1653 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1654 OMPLoopScope PreInitScope(CGF, S); 1655 // if (PreCond) { 1656 // for (IV in 0..LastIteration) BODY; 1657 // <Final counter/linear vars updates>; 1658 // } 1659 // 1660 1661 // Emit: if (PreCond) - begin. 1662 // If the condition constant folds and can be elided, avoid emitting the 1663 // whole loop. 1664 bool CondConstant; 1665 llvm::BasicBlock *ContBlock = nullptr; 1666 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1667 if (!CondConstant) 1668 return; 1669 } else { 1670 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1671 ContBlock = CGF.createBasicBlock("simd.if.end"); 1672 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1673 CGF.getProfileCount(&S)); 1674 CGF.EmitBlock(ThenBlock); 1675 CGF.incrementProfileCounter(&S); 1676 } 1677 1678 // Emit the loop iteration variable. 1679 const Expr *IVExpr = S.getIterationVariable(); 1680 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1681 CGF.EmitVarDecl(*IVDecl); 1682 CGF.EmitIgnoredExpr(S.getInit()); 1683 1684 // Emit the iterations count variable. 1685 // If it is not a variable, Sema decided to calculate iterations count on 1686 // each iteration (e.g., it is foldable into a constant). 1687 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1688 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1689 // Emit calculation of the iterations count. 1690 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1691 } 1692 1693 CGF.EmitOMPSimdInit(S); 1694 1695 emitAlignedClause(CGF, S); 1696 CGF.EmitOMPLinearClauseInit(S); 1697 { 1698 OMPPrivateScope LoopScope(CGF); 1699 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1700 CGF.EmitOMPLinearClause(S, LoopScope); 1701 CGF.EmitOMPPrivateClause(S, LoopScope); 1702 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1703 bool HasLastprivateClause = 1704 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1705 (void)LoopScope.Privatize(); 1706 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1707 S.getInc(), 1708 [&S](CodeGenFunction &CGF) { 1709 CGF.EmitOMPLoopBody(S, JumpDest()); 1710 CGF.EmitStopPoint(&S); 1711 }, 1712 [](CodeGenFunction &) {}); 1713 CGF.EmitOMPSimdFinal( 1714 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1715 // Emit final copy of the lastprivate variables at the end of loops. 1716 if (HasLastprivateClause) 1717 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1718 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1719 emitPostUpdateForReductionClause( 1720 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1721 } 1722 CGF.EmitOMPLinearClauseFinal( 1723 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1724 // Emit: if (PreCond) - end. 1725 if (ContBlock) { 1726 CGF.EmitBranch(ContBlock); 1727 CGF.EmitBlock(ContBlock, true); 1728 } 1729 }; 1730 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1731 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1732 } 1733 1734 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1735 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1736 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1737 auto &RT = CGM.getOpenMPRuntime(); 1738 1739 const Expr *IVExpr = S.getIterationVariable(); 1740 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1741 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1742 1743 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1744 1745 // Start the loop with a block that tests the condition. 1746 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1747 EmitBlock(CondBlock); 1748 const SourceRange &R = S.getSourceRange(); 1749 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1750 SourceLocToDebugLoc(R.getEnd())); 1751 1752 llvm::Value *BoolCondVal = nullptr; 1753 if (!DynamicOrOrdered) { 1754 // UB = min(UB, GlobalUB) 1755 EmitIgnoredExpr(S.getEnsureUpperBound()); 1756 // IV = LB 1757 EmitIgnoredExpr(S.getInit()); 1758 // IV < UB 1759 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1760 } else { 1761 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1762 LB, UB, ST); 1763 } 1764 1765 // If there are any cleanups between here and the loop-exit scope, 1766 // create a block to stage a loop exit along. 1767 auto ExitBlock = LoopExit.getBlock(); 1768 if (LoopScope.requiresCleanups()) 1769 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1770 1771 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1772 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1773 if (ExitBlock != LoopExit.getBlock()) { 1774 EmitBlock(ExitBlock); 1775 EmitBranchThroughCleanup(LoopExit); 1776 } 1777 EmitBlock(LoopBody); 1778 1779 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1780 // LB for loop condition and emitted it above). 1781 if (DynamicOrOrdered) 1782 EmitIgnoredExpr(S.getInit()); 1783 1784 // Create a block for the increment. 1785 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1786 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1787 1788 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1789 // with dynamic/guided scheduling and without ordered clause. 1790 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1791 LoopStack.setParallel(!IsMonotonic); 1792 else 1793 EmitOMPSimdInit(S, IsMonotonic); 1794 1795 SourceLocation Loc = S.getLocStart(); 1796 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1797 [&S, LoopExit](CodeGenFunction &CGF) { 1798 CGF.EmitOMPLoopBody(S, LoopExit); 1799 CGF.EmitStopPoint(&S); 1800 }, 1801 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1802 if (Ordered) { 1803 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1804 CGF, Loc, IVSize, IVSigned); 1805 } 1806 }); 1807 1808 EmitBlock(Continue.getBlock()); 1809 BreakContinueStack.pop_back(); 1810 if (!DynamicOrOrdered) { 1811 // Emit "LB = LB + Stride", "UB = UB + Stride". 1812 EmitIgnoredExpr(S.getNextLowerBound()); 1813 EmitIgnoredExpr(S.getNextUpperBound()); 1814 } 1815 1816 EmitBranch(CondBlock); 1817 LoopStack.pop(); 1818 // Emit the fall-through block. 1819 EmitBlock(LoopExit.getBlock()); 1820 1821 // Tell the runtime we are done. 1822 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1823 if (!DynamicOrOrdered) 1824 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 1825 }; 1826 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1827 } 1828 1829 void CodeGenFunction::EmitOMPForOuterLoop( 1830 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1831 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1832 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1833 auto &RT = CGM.getOpenMPRuntime(); 1834 1835 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1836 const bool DynamicOrOrdered = 1837 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1838 1839 assert((Ordered || 1840 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1841 /*Chunked=*/Chunk != nullptr)) && 1842 "static non-chunked schedule does not need outer loop"); 1843 1844 // Emit outer loop. 1845 // 1846 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1847 // When schedule(dynamic,chunk_size) is specified, the iterations are 1848 // distributed to threads in the team in chunks as the threads request them. 1849 // Each thread executes a chunk of iterations, then requests another chunk, 1850 // until no chunks remain to be distributed. Each chunk contains chunk_size 1851 // iterations, except for the last chunk to be distributed, which may have 1852 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1853 // 1854 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1855 // to threads in the team in chunks as the executing threads request them. 1856 // Each thread executes a chunk of iterations, then requests another chunk, 1857 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1858 // each chunk is proportional to the number of unassigned iterations divided 1859 // by the number of threads in the team, decreasing to 1. For a chunk_size 1860 // with value k (greater than 1), the size of each chunk is determined in the 1861 // same way, with the restriction that the chunks do not contain fewer than k 1862 // iterations (except for the last chunk to be assigned, which may have fewer 1863 // than k iterations). 1864 // 1865 // When schedule(auto) is specified, the decision regarding scheduling is 1866 // delegated to the compiler and/or runtime system. The programmer gives the 1867 // implementation the freedom to choose any possible mapping of iterations to 1868 // threads in the team. 1869 // 1870 // When schedule(runtime) is specified, the decision regarding scheduling is 1871 // deferred until run time, and the schedule and chunk size are taken from the 1872 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1873 // implementation defined 1874 // 1875 // while(__kmpc_dispatch_next(&LB, &UB)) { 1876 // idx = LB; 1877 // while (idx <= UB) { BODY; ++idx; 1878 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1879 // } // inner loop 1880 // } 1881 // 1882 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1883 // When schedule(static, chunk_size) is specified, iterations are divided into 1884 // chunks of size chunk_size, and the chunks are assigned to the threads in 1885 // the team in a round-robin fashion in the order of the thread number. 1886 // 1887 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1888 // while (idx <= UB) { BODY; ++idx; } // inner loop 1889 // LB = LB + ST; 1890 // UB = UB + ST; 1891 // } 1892 // 1893 1894 const Expr *IVExpr = S.getIterationVariable(); 1895 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1896 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1897 1898 if (DynamicOrOrdered) { 1899 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1900 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1901 IVSigned, Ordered, UBVal, Chunk); 1902 } else { 1903 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1904 Ordered, IL, LB, UB, ST, Chunk); 1905 } 1906 1907 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1908 ST, IL, Chunk); 1909 } 1910 1911 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1912 OpenMPDistScheduleClauseKind ScheduleKind, 1913 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1914 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1915 1916 auto &RT = CGM.getOpenMPRuntime(); 1917 1918 // Emit outer loop. 1919 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1920 // dynamic 1921 // 1922 1923 const Expr *IVExpr = S.getIterationVariable(); 1924 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1925 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1926 1927 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1928 IVSize, IVSigned, /* Ordered = */ false, 1929 IL, LB, UB, ST, Chunk); 1930 1931 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1932 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1933 } 1934 1935 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 1936 const OMPDistributeParallelForDirective &S) { 1937 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1938 CGM.getOpenMPRuntime().emitInlinedDirective( 1939 *this, OMPD_distribute_parallel_for, 1940 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1941 OMPLoopScope PreInitScope(CGF, S); 1942 OMPCancelStackRAII CancelRegion(CGF, OMPD_distribute_parallel_for, 1943 /*HasCancel=*/false); 1944 CGF.EmitStmt( 1945 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1946 }); 1947 } 1948 1949 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 1950 const OMPDistributeParallelForSimdDirective &S) { 1951 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1952 CGM.getOpenMPRuntime().emitInlinedDirective( 1953 *this, OMPD_distribute_parallel_for_simd, 1954 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1955 OMPLoopScope PreInitScope(CGF, S); 1956 CGF.EmitStmt( 1957 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1958 }); 1959 } 1960 1961 void CodeGenFunction::EmitOMPDistributeSimdDirective( 1962 const OMPDistributeSimdDirective &S) { 1963 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1964 CGM.getOpenMPRuntime().emitInlinedDirective( 1965 *this, OMPD_distribute_simd, 1966 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1967 OMPLoopScope PreInitScope(CGF, S); 1968 CGF.EmitStmt( 1969 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1970 }); 1971 } 1972 1973 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 1974 const OMPTargetParallelForSimdDirective &S) { 1975 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1976 CGM.getOpenMPRuntime().emitInlinedDirective( 1977 *this, OMPD_target_parallel_for_simd, 1978 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1979 OMPLoopScope PreInitScope(CGF, S); 1980 CGF.EmitStmt( 1981 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1982 }); 1983 } 1984 1985 void CodeGenFunction::EmitOMPTargetSimdDirective( 1986 const OMPTargetSimdDirective &S) { 1987 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1988 CGM.getOpenMPRuntime().emitInlinedDirective( 1989 *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1990 OMPLoopScope PreInitScope(CGF, S); 1991 CGF.EmitStmt( 1992 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1993 }); 1994 } 1995 1996 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 1997 const OMPTeamsDistributeDirective &S) { 1998 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1999 CGM.getOpenMPRuntime().emitInlinedDirective( 2000 *this, OMPD_teams_distribute, 2001 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2002 OMPLoopScope PreInitScope(CGF, S); 2003 CGF.EmitStmt( 2004 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2005 }); 2006 } 2007 2008 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 2009 const OMPTeamsDistributeSimdDirective &S) { 2010 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2011 CGM.getOpenMPRuntime().emitInlinedDirective( 2012 *this, OMPD_teams_distribute_simd, 2013 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2014 OMPLoopScope PreInitScope(CGF, S); 2015 CGF.EmitStmt( 2016 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2017 }); 2018 } 2019 2020 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 2021 const OMPTeamsDistributeParallelForSimdDirective &S) { 2022 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2023 CGM.getOpenMPRuntime().emitInlinedDirective( 2024 *this, OMPD_teams_distribute_parallel_for_simd, 2025 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2026 OMPLoopScope PreInitScope(CGF, S); 2027 CGF.EmitStmt( 2028 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2029 }); 2030 } 2031 2032 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 2033 const OMPTeamsDistributeParallelForDirective &S) { 2034 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2035 CGM.getOpenMPRuntime().emitInlinedDirective( 2036 *this, OMPD_teams_distribute_parallel_for, 2037 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2038 OMPLoopScope PreInitScope(CGF, S); 2039 CGF.EmitStmt( 2040 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2041 }); 2042 } 2043 2044 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 2045 const OMPTargetTeamsDistributeDirective &S) { 2046 CGM.getOpenMPRuntime().emitInlinedDirective( 2047 *this, OMPD_target_teams_distribute, 2048 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2049 CGF.EmitStmt( 2050 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2051 }); 2052 } 2053 2054 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 2055 const OMPTargetTeamsDistributeParallelForDirective &S) { 2056 CGM.getOpenMPRuntime().emitInlinedDirective( 2057 *this, OMPD_target_teams_distribute_parallel_for, 2058 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2059 CGF.EmitStmt( 2060 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2061 }); 2062 } 2063 2064 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2065 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 2066 CGM.getOpenMPRuntime().emitInlinedDirective( 2067 *this, OMPD_target_teams_distribute_parallel_for_simd, 2068 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2069 CGF.EmitStmt( 2070 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2071 }); 2072 } 2073 2074 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 2075 const OMPTargetTeamsDistributeSimdDirective &S) { 2076 CGM.getOpenMPRuntime().emitInlinedDirective( 2077 *this, OMPD_target_teams_distribute_simd, 2078 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2079 CGF.EmitStmt( 2080 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2081 }); 2082 } 2083 2084 /// \brief Emit a helper variable and return corresponding lvalue. 2085 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2086 const DeclRefExpr *Helper) { 2087 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2088 CGF.EmitVarDecl(*VDecl); 2089 return CGF.EmitLValue(Helper); 2090 } 2091 2092 namespace { 2093 struct ScheduleKindModifiersTy { 2094 OpenMPScheduleClauseKind Kind; 2095 OpenMPScheduleClauseModifier M1; 2096 OpenMPScheduleClauseModifier M2; 2097 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2098 OpenMPScheduleClauseModifier M1, 2099 OpenMPScheduleClauseModifier M2) 2100 : Kind(Kind), M1(M1), M2(M2) {} 2101 }; 2102 } // namespace 2103 2104 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 2105 // Emit the loop iteration variable. 2106 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2107 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2108 EmitVarDecl(*IVDecl); 2109 2110 // Emit the iterations count variable. 2111 // If it is not a variable, Sema decided to calculate iterations count on each 2112 // iteration (e.g., it is foldable into a constant). 2113 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2114 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2115 // Emit calculation of the iterations count. 2116 EmitIgnoredExpr(S.getCalcLastIteration()); 2117 } 2118 2119 auto &RT = CGM.getOpenMPRuntime(); 2120 2121 bool HasLastprivateClause; 2122 // Check pre-condition. 2123 { 2124 OMPLoopScope PreInitScope(*this, S); 2125 // Skip the entire loop if we don't meet the precondition. 2126 // If the condition constant folds and can be elided, avoid emitting the 2127 // whole loop. 2128 bool CondConstant; 2129 llvm::BasicBlock *ContBlock = nullptr; 2130 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2131 if (!CondConstant) 2132 return false; 2133 } else { 2134 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2135 ContBlock = createBasicBlock("omp.precond.end"); 2136 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2137 getProfileCount(&S)); 2138 EmitBlock(ThenBlock); 2139 incrementProfileCounter(&S); 2140 } 2141 2142 bool Ordered = false; 2143 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2144 if (OrderedClause->getNumForLoops()) 2145 RT.emitDoacrossInit(*this, S); 2146 else 2147 Ordered = true; 2148 } 2149 2150 llvm::DenseSet<const Expr *> EmittedFinals; 2151 emitAlignedClause(*this, S); 2152 EmitOMPLinearClauseInit(S); 2153 // Emit helper vars inits. 2154 LValue LB = 2155 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2156 LValue UB = 2157 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2158 LValue ST = 2159 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2160 LValue IL = 2161 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2162 2163 // Emit 'then' code. 2164 { 2165 OMPPrivateScope LoopScope(*this); 2166 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2167 // Emit implicit barrier to synchronize threads and avoid data races on 2168 // initialization of firstprivate variables and post-update of 2169 // lastprivate variables. 2170 CGM.getOpenMPRuntime().emitBarrierCall( 2171 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2172 /*ForceSimpleCall=*/true); 2173 } 2174 EmitOMPPrivateClause(S, LoopScope); 2175 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2176 EmitOMPReductionClauseInit(S, LoopScope); 2177 EmitOMPPrivateLoopCounters(S, LoopScope); 2178 EmitOMPLinearClause(S, LoopScope); 2179 (void)LoopScope.Privatize(); 2180 2181 // Detect the loop schedule kind and chunk. 2182 llvm::Value *Chunk = nullptr; 2183 OpenMPScheduleTy ScheduleKind; 2184 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2185 ScheduleKind.Schedule = C->getScheduleKind(); 2186 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2187 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2188 if (const auto *Ch = C->getChunkSize()) { 2189 Chunk = EmitScalarExpr(Ch); 2190 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2191 S.getIterationVariable()->getType(), 2192 S.getLocStart()); 2193 } 2194 } 2195 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2196 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2197 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2198 // If the static schedule kind is specified or if the ordered clause is 2199 // specified, and if no monotonic modifier is specified, the effect will 2200 // be as if the monotonic modifier was specified. 2201 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2202 /* Chunked */ Chunk != nullptr) && 2203 !Ordered) { 2204 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2205 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2206 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2207 // When no chunk_size is specified, the iteration space is divided into 2208 // chunks that are approximately equal in size, and at most one chunk is 2209 // distributed to each thread. Note that the size of the chunks is 2210 // unspecified in this case. 2211 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 2212 IVSize, IVSigned, Ordered, 2213 IL.getAddress(), LB.getAddress(), 2214 UB.getAddress(), ST.getAddress()); 2215 auto LoopExit = 2216 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2217 // UB = min(UB, GlobalUB); 2218 EmitIgnoredExpr(S.getEnsureUpperBound()); 2219 // IV = LB; 2220 EmitIgnoredExpr(S.getInit()); 2221 // while (idx <= UB) { BODY; ++idx; } 2222 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2223 S.getInc(), 2224 [&S, LoopExit](CodeGenFunction &CGF) { 2225 CGF.EmitOMPLoopBody(S, LoopExit); 2226 CGF.EmitStopPoint(&S); 2227 }, 2228 [](CodeGenFunction &) {}); 2229 EmitBlock(LoopExit.getBlock()); 2230 // Tell the runtime we are done. 2231 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2232 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 2233 }; 2234 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2235 } else { 2236 const bool IsMonotonic = 2237 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2238 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2239 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2240 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2241 // Emit the outer loop, which requests its work chunk [LB..UB] from 2242 // runtime and runs the inner loop to process it. 2243 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2244 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2245 IL.getAddress(), Chunk); 2246 } 2247 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2248 EmitOMPSimdFinal(S, 2249 [&](CodeGenFunction &CGF) -> llvm::Value * { 2250 return CGF.Builder.CreateIsNotNull( 2251 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2252 }); 2253 } 2254 EmitOMPReductionClauseFinal( 2255 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2256 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2257 : /*Parallel only*/ OMPD_parallel); 2258 // Emit post-update of the reduction variables if IsLastIter != 0. 2259 emitPostUpdateForReductionClause( 2260 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2261 return CGF.Builder.CreateIsNotNull( 2262 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2263 }); 2264 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2265 if (HasLastprivateClause) 2266 EmitOMPLastprivateClauseFinal( 2267 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2268 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2269 } 2270 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2271 return CGF.Builder.CreateIsNotNull( 2272 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2273 }); 2274 // We're now done with the loop, so jump to the continuation block. 2275 if (ContBlock) { 2276 EmitBranch(ContBlock); 2277 EmitBlock(ContBlock, true); 2278 } 2279 } 2280 return HasLastprivateClause; 2281 } 2282 2283 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2284 bool HasLastprivates = false; 2285 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2286 PrePostActionTy &) { 2287 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2288 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2289 }; 2290 { 2291 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2292 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2293 S.hasCancel()); 2294 } 2295 2296 // Emit an implicit barrier at the end. 2297 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2298 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2299 } 2300 } 2301 2302 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2303 bool HasLastprivates = false; 2304 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2305 PrePostActionTy &) { 2306 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2307 }; 2308 { 2309 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2310 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2311 } 2312 2313 // Emit an implicit barrier at the end. 2314 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2315 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2316 } 2317 } 2318 2319 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2320 const Twine &Name, 2321 llvm::Value *Init = nullptr) { 2322 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2323 if (Init) 2324 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2325 return LVal; 2326 } 2327 2328 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2329 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2330 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2331 bool HasLastprivates = false; 2332 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2333 PrePostActionTy &) { 2334 auto &C = CGF.CGM.getContext(); 2335 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2336 // Emit helper vars inits. 2337 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2338 CGF.Builder.getInt32(0)); 2339 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2340 : CGF.Builder.getInt32(0); 2341 LValue UB = 2342 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2343 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2344 CGF.Builder.getInt32(1)); 2345 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2346 CGF.Builder.getInt32(0)); 2347 // Loop counter. 2348 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2349 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2350 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2351 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2352 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2353 // Generate condition for loop. 2354 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2355 OK_Ordinary, S.getLocStart(), FPOptions()); 2356 // Increment for loop counter. 2357 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2358 S.getLocStart()); 2359 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2360 // Iterate through all sections and emit a switch construct: 2361 // switch (IV) { 2362 // case 0: 2363 // <SectionStmt[0]>; 2364 // break; 2365 // ... 2366 // case <NumSection> - 1: 2367 // <SectionStmt[<NumSection> - 1]>; 2368 // break; 2369 // } 2370 // .omp.sections.exit: 2371 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2372 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2373 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2374 CS == nullptr ? 1 : CS->size()); 2375 if (CS) { 2376 unsigned CaseNumber = 0; 2377 for (auto *SubStmt : CS->children()) { 2378 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2379 CGF.EmitBlock(CaseBB); 2380 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2381 CGF.EmitStmt(SubStmt); 2382 CGF.EmitBranch(ExitBB); 2383 ++CaseNumber; 2384 } 2385 } else { 2386 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2387 CGF.EmitBlock(CaseBB); 2388 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2389 CGF.EmitStmt(Stmt); 2390 CGF.EmitBranch(ExitBB); 2391 } 2392 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2393 }; 2394 2395 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2396 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2397 // Emit implicit barrier to synchronize threads and avoid data races on 2398 // initialization of firstprivate variables and post-update of lastprivate 2399 // variables. 2400 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2401 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2402 /*ForceSimpleCall=*/true); 2403 } 2404 CGF.EmitOMPPrivateClause(S, LoopScope); 2405 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2406 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2407 (void)LoopScope.Privatize(); 2408 2409 // Emit static non-chunked loop. 2410 OpenMPScheduleTy ScheduleKind; 2411 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2412 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2413 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2414 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2415 UB.getAddress(), ST.getAddress()); 2416 // UB = min(UB, GlobalUB); 2417 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2418 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2419 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2420 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2421 // IV = LB; 2422 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2423 // while (idx <= UB) { BODY; ++idx; } 2424 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2425 [](CodeGenFunction &) {}); 2426 // Tell the runtime we are done. 2427 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2428 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 2429 }; 2430 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2431 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2432 // Emit post-update of the reduction variables if IsLastIter != 0. 2433 emitPostUpdateForReductionClause( 2434 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2435 return CGF.Builder.CreateIsNotNull( 2436 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2437 }); 2438 2439 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2440 if (HasLastprivates) 2441 CGF.EmitOMPLastprivateClauseFinal( 2442 S, /*NoFinals=*/false, 2443 CGF.Builder.CreateIsNotNull( 2444 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2445 }; 2446 2447 bool HasCancel = false; 2448 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2449 HasCancel = OSD->hasCancel(); 2450 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2451 HasCancel = OPSD->hasCancel(); 2452 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2453 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2454 HasCancel); 2455 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2456 // clause. Otherwise the barrier will be generated by the codegen for the 2457 // directive. 2458 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2459 // Emit implicit barrier to synchronize threads and avoid data races on 2460 // initialization of firstprivate variables. 2461 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2462 OMPD_unknown); 2463 } 2464 } 2465 2466 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2467 { 2468 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2469 EmitSections(S); 2470 } 2471 // Emit an implicit barrier at the end. 2472 if (!S.getSingleClause<OMPNowaitClause>()) { 2473 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2474 OMPD_sections); 2475 } 2476 } 2477 2478 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2479 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2480 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2481 }; 2482 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2483 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2484 S.hasCancel()); 2485 } 2486 2487 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2488 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2489 llvm::SmallVector<const Expr *, 8> DestExprs; 2490 llvm::SmallVector<const Expr *, 8> SrcExprs; 2491 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2492 // Check if there are any 'copyprivate' clauses associated with this 2493 // 'single' construct. 2494 // Build a list of copyprivate variables along with helper expressions 2495 // (<source>, <destination>, <destination>=<source> expressions) 2496 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2497 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2498 DestExprs.append(C->destination_exprs().begin(), 2499 C->destination_exprs().end()); 2500 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2501 AssignmentOps.append(C->assignment_ops().begin(), 2502 C->assignment_ops().end()); 2503 } 2504 // Emit code for 'single' region along with 'copyprivate' clauses 2505 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2506 Action.Enter(CGF); 2507 OMPPrivateScope SingleScope(CGF); 2508 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2509 CGF.EmitOMPPrivateClause(S, SingleScope); 2510 (void)SingleScope.Privatize(); 2511 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2512 }; 2513 { 2514 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2515 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2516 CopyprivateVars, DestExprs, 2517 SrcExprs, AssignmentOps); 2518 } 2519 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2520 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2521 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2522 CGM.getOpenMPRuntime().emitBarrierCall( 2523 *this, S.getLocStart(), 2524 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2525 } 2526 } 2527 2528 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2529 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2530 Action.Enter(CGF); 2531 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2532 }; 2533 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2534 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2535 } 2536 2537 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2538 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2539 Action.Enter(CGF); 2540 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2541 }; 2542 Expr *Hint = nullptr; 2543 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2544 Hint = HintClause->getHint(); 2545 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2546 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2547 S.getDirectiveName().getAsString(), 2548 CodeGen, S.getLocStart(), Hint); 2549 } 2550 2551 void CodeGenFunction::EmitOMPParallelForDirective( 2552 const OMPParallelForDirective &S) { 2553 // Emit directive as a combined directive that consists of two implicit 2554 // directives: 'parallel' with 'for' directive. 2555 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2556 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2557 CGF.EmitOMPWorksharingLoop(S); 2558 }; 2559 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2560 } 2561 2562 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2563 const OMPParallelForSimdDirective &S) { 2564 // Emit directive as a combined directive that consists of two implicit 2565 // directives: 'parallel' with 'for' directive. 2566 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2567 CGF.EmitOMPWorksharingLoop(S); 2568 }; 2569 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2570 } 2571 2572 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2573 const OMPParallelSectionsDirective &S) { 2574 // Emit directive as a combined directive that consists of two implicit 2575 // directives: 'parallel' with 'sections' directive. 2576 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2577 CGF.EmitSections(S); 2578 }; 2579 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2580 } 2581 2582 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2583 const RegionCodeGenTy &BodyGen, 2584 const TaskGenTy &TaskGen, 2585 OMPTaskDataTy &Data) { 2586 // Emit outlined function for task construct. 2587 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2588 auto *I = CS->getCapturedDecl()->param_begin(); 2589 auto *PartId = std::next(I); 2590 auto *TaskT = std::next(I, 4); 2591 // Check if the task is final 2592 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2593 // If the condition constant folds and can be elided, try to avoid emitting 2594 // the condition and the dead arm of the if/else. 2595 auto *Cond = Clause->getCondition(); 2596 bool CondConstant; 2597 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2598 Data.Final.setInt(CondConstant); 2599 else 2600 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2601 } else { 2602 // By default the task is not final. 2603 Data.Final.setInt(/*IntVal=*/false); 2604 } 2605 // Check if the task has 'priority' clause. 2606 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2607 auto *Prio = Clause->getPriority(); 2608 Data.Priority.setInt(/*IntVal=*/true); 2609 Data.Priority.setPointer(EmitScalarConversion( 2610 EmitScalarExpr(Prio), Prio->getType(), 2611 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2612 Prio->getExprLoc())); 2613 } 2614 // The first function argument for tasks is a thread id, the second one is a 2615 // part id (0 for tied tasks, >=0 for untied task). 2616 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2617 // Get list of private variables. 2618 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2619 auto IRef = C->varlist_begin(); 2620 for (auto *IInit : C->private_copies()) { 2621 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2622 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2623 Data.PrivateVars.push_back(*IRef); 2624 Data.PrivateCopies.push_back(IInit); 2625 } 2626 ++IRef; 2627 } 2628 } 2629 EmittedAsPrivate.clear(); 2630 // Get list of firstprivate variables. 2631 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2632 auto IRef = C->varlist_begin(); 2633 auto IElemInitRef = C->inits().begin(); 2634 for (auto *IInit : C->private_copies()) { 2635 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2636 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2637 Data.FirstprivateVars.push_back(*IRef); 2638 Data.FirstprivateCopies.push_back(IInit); 2639 Data.FirstprivateInits.push_back(*IElemInitRef); 2640 } 2641 ++IRef; 2642 ++IElemInitRef; 2643 } 2644 } 2645 // Get list of lastprivate variables (for taskloops). 2646 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2647 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2648 auto IRef = C->varlist_begin(); 2649 auto ID = C->destination_exprs().begin(); 2650 for (auto *IInit : C->private_copies()) { 2651 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2652 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2653 Data.LastprivateVars.push_back(*IRef); 2654 Data.LastprivateCopies.push_back(IInit); 2655 } 2656 LastprivateDstsOrigs.insert( 2657 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2658 cast<DeclRefExpr>(*IRef)}); 2659 ++IRef; 2660 ++ID; 2661 } 2662 } 2663 // Build list of dependences. 2664 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2665 for (auto *IRef : C->varlists()) 2666 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2667 auto &&CodeGen = [&Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2668 CodeGenFunction &CGF, PrePostActionTy &Action) { 2669 // Set proper addresses for generated private copies. 2670 OMPPrivateScope Scope(CGF); 2671 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2672 !Data.LastprivateVars.empty()) { 2673 auto *CopyFn = CGF.Builder.CreateLoad( 2674 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2675 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2676 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2677 // Map privates. 2678 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2679 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2680 CallArgs.push_back(PrivatesPtr); 2681 for (auto *E : Data.PrivateVars) { 2682 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2683 Address PrivatePtr = CGF.CreateMemTemp( 2684 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2685 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2686 CallArgs.push_back(PrivatePtr.getPointer()); 2687 } 2688 for (auto *E : Data.FirstprivateVars) { 2689 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2690 Address PrivatePtr = 2691 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2692 ".firstpriv.ptr.addr"); 2693 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2694 CallArgs.push_back(PrivatePtr.getPointer()); 2695 } 2696 for (auto *E : Data.LastprivateVars) { 2697 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2698 Address PrivatePtr = 2699 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2700 ".lastpriv.ptr.addr"); 2701 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2702 CallArgs.push_back(PrivatePtr.getPointer()); 2703 } 2704 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2705 for (auto &&Pair : LastprivateDstsOrigs) { 2706 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2707 DeclRefExpr DRE( 2708 const_cast<VarDecl *>(OrigVD), 2709 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2710 OrigVD) != nullptr, 2711 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2712 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2713 return CGF.EmitLValue(&DRE).getAddress(); 2714 }); 2715 } 2716 for (auto &&Pair : PrivatePtrs) { 2717 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2718 CGF.getContext().getDeclAlign(Pair.first)); 2719 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2720 } 2721 } 2722 (void)Scope.Privatize(); 2723 2724 Action.Enter(CGF); 2725 BodyGen(CGF); 2726 }; 2727 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2728 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2729 Data.NumberOfParts); 2730 OMPLexicalScope Scope(*this, S); 2731 TaskGen(*this, OutlinedFn, Data); 2732 } 2733 2734 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2735 // Emit outlined function for task construct. 2736 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2737 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2738 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2739 const Expr *IfCond = nullptr; 2740 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2741 if (C->getNameModifier() == OMPD_unknown || 2742 C->getNameModifier() == OMPD_task) { 2743 IfCond = C->getCondition(); 2744 break; 2745 } 2746 } 2747 2748 OMPTaskDataTy Data; 2749 // Check if we should emit tied or untied task. 2750 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2751 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2752 CGF.EmitStmt(CS->getCapturedStmt()); 2753 }; 2754 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2755 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2756 const OMPTaskDataTy &Data) { 2757 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2758 SharedsTy, CapturedStruct, IfCond, 2759 Data); 2760 }; 2761 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2762 } 2763 2764 void CodeGenFunction::EmitOMPTaskyieldDirective( 2765 const OMPTaskyieldDirective &S) { 2766 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2767 } 2768 2769 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2770 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2771 } 2772 2773 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2774 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2775 } 2776 2777 void CodeGenFunction::EmitOMPTaskgroupDirective( 2778 const OMPTaskgroupDirective &S) { 2779 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2780 Action.Enter(CGF); 2781 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2782 }; 2783 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2784 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2785 } 2786 2787 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2788 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2789 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2790 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2791 FlushClause->varlist_end()); 2792 } 2793 return llvm::None; 2794 }(), S.getLocStart()); 2795 } 2796 2797 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2798 // Emit the loop iteration variable. 2799 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2800 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2801 EmitVarDecl(*IVDecl); 2802 2803 // Emit the iterations count variable. 2804 // If it is not a variable, Sema decided to calculate iterations count on each 2805 // iteration (e.g., it is foldable into a constant). 2806 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2807 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2808 // Emit calculation of the iterations count. 2809 EmitIgnoredExpr(S.getCalcLastIteration()); 2810 } 2811 2812 auto &RT = CGM.getOpenMPRuntime(); 2813 2814 bool HasLastprivateClause = false; 2815 // Check pre-condition. 2816 { 2817 OMPLoopScope PreInitScope(*this, S); 2818 // Skip the entire loop if we don't meet the precondition. 2819 // If the condition constant folds and can be elided, avoid emitting the 2820 // whole loop. 2821 bool CondConstant; 2822 llvm::BasicBlock *ContBlock = nullptr; 2823 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2824 if (!CondConstant) 2825 return; 2826 } else { 2827 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2828 ContBlock = createBasicBlock("omp.precond.end"); 2829 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2830 getProfileCount(&S)); 2831 EmitBlock(ThenBlock); 2832 incrementProfileCounter(&S); 2833 } 2834 2835 // Emit 'then' code. 2836 { 2837 // Emit helper vars inits. 2838 LValue LB = 2839 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2840 LValue UB = 2841 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2842 LValue ST = 2843 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2844 LValue IL = 2845 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2846 2847 OMPPrivateScope LoopScope(*this); 2848 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2849 // Emit implicit barrier to synchronize threads and avoid data races on 2850 // initialization of firstprivate variables and post-update of 2851 // lastprivate variables. 2852 CGM.getOpenMPRuntime().emitBarrierCall( 2853 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2854 /*ForceSimpleCall=*/true); 2855 } 2856 EmitOMPPrivateClause(S, LoopScope); 2857 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2858 EmitOMPPrivateLoopCounters(S, LoopScope); 2859 (void)LoopScope.Privatize(); 2860 2861 // Detect the distribute schedule kind and chunk. 2862 llvm::Value *Chunk = nullptr; 2863 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2864 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2865 ScheduleKind = C->getDistScheduleKind(); 2866 if (const auto *Ch = C->getChunkSize()) { 2867 Chunk = EmitScalarExpr(Ch); 2868 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2869 S.getIterationVariable()->getType(), 2870 S.getLocStart()); 2871 } 2872 } 2873 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2874 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2875 2876 // OpenMP [2.10.8, distribute Construct, Description] 2877 // If dist_schedule is specified, kind must be static. If specified, 2878 // iterations are divided into chunks of size chunk_size, chunks are 2879 // assigned to the teams of the league in a round-robin fashion in the 2880 // order of the team number. When no chunk_size is specified, the 2881 // iteration space is divided into chunks that are approximately equal 2882 // in size, and at most one chunk is distributed to each team of the 2883 // league. The size of the chunks is unspecified in this case. 2884 if (RT.isStaticNonchunked(ScheduleKind, 2885 /* Chunked */ Chunk != nullptr)) { 2886 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2887 IVSize, IVSigned, /* Ordered = */ false, 2888 IL.getAddress(), LB.getAddress(), 2889 UB.getAddress(), ST.getAddress()); 2890 auto LoopExit = 2891 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2892 // UB = min(UB, GlobalUB); 2893 EmitIgnoredExpr(S.getEnsureUpperBound()); 2894 // IV = LB; 2895 EmitIgnoredExpr(S.getInit()); 2896 // while (idx <= UB) { BODY; ++idx; } 2897 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2898 S.getInc(), 2899 [&S, LoopExit](CodeGenFunction &CGF) { 2900 CGF.EmitOMPLoopBody(S, LoopExit); 2901 CGF.EmitStopPoint(&S); 2902 }, 2903 [](CodeGenFunction &) {}); 2904 EmitBlock(LoopExit.getBlock()); 2905 // Tell the runtime we are done. 2906 RT.emitForStaticFinish(*this, S.getLocStart()); 2907 } else { 2908 // Emit the outer loop, which requests its work chunk [LB..UB] from 2909 // runtime and runs the inner loop to process it. 2910 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2911 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2912 IL.getAddress(), Chunk); 2913 } 2914 2915 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2916 if (HasLastprivateClause) 2917 EmitOMPLastprivateClauseFinal( 2918 S, /*NoFinals=*/false, 2919 Builder.CreateIsNotNull( 2920 EmitLoadOfScalar(IL, S.getLocStart()))); 2921 } 2922 2923 // We're now done with the loop, so jump to the continuation block. 2924 if (ContBlock) { 2925 EmitBranch(ContBlock); 2926 EmitBlock(ContBlock, true); 2927 } 2928 } 2929 } 2930 2931 void CodeGenFunction::EmitOMPDistributeDirective( 2932 const OMPDistributeDirective &S) { 2933 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2934 CGF.EmitOMPDistributeLoop(S); 2935 }; 2936 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2937 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2938 false); 2939 } 2940 2941 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2942 const CapturedStmt *S) { 2943 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2944 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2945 CGF.CapturedStmtInfo = &CapStmtInfo; 2946 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2947 Fn->addFnAttr(llvm::Attribute::NoInline); 2948 return Fn; 2949 } 2950 2951 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2952 if (!S.getAssociatedStmt()) { 2953 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2954 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2955 return; 2956 } 2957 auto *C = S.getSingleClause<OMPSIMDClause>(); 2958 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2959 PrePostActionTy &Action) { 2960 if (C) { 2961 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2962 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2963 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2964 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2965 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2966 } else { 2967 Action.Enter(CGF); 2968 CGF.EmitStmt( 2969 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2970 } 2971 }; 2972 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2973 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2974 } 2975 2976 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2977 QualType SrcType, QualType DestType, 2978 SourceLocation Loc) { 2979 assert(CGF.hasScalarEvaluationKind(DestType) && 2980 "DestType must have scalar evaluation kind."); 2981 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2982 return Val.isScalar() 2983 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2984 Loc) 2985 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2986 DestType, Loc); 2987 } 2988 2989 static CodeGenFunction::ComplexPairTy 2990 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2991 QualType DestType, SourceLocation Loc) { 2992 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2993 "DestType must have complex evaluation kind."); 2994 CodeGenFunction::ComplexPairTy ComplexVal; 2995 if (Val.isScalar()) { 2996 // Convert the input element to the element type of the complex. 2997 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2998 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2999 DestElementType, Loc); 3000 ComplexVal = CodeGenFunction::ComplexPairTy( 3001 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3002 } else { 3003 assert(Val.isComplex() && "Must be a scalar or complex."); 3004 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3005 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3006 ComplexVal.first = CGF.EmitScalarConversion( 3007 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3008 ComplexVal.second = CGF.EmitScalarConversion( 3009 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3010 } 3011 return ComplexVal; 3012 } 3013 3014 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3015 LValue LVal, RValue RVal) { 3016 if (LVal.isGlobalReg()) { 3017 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3018 } else { 3019 CGF.EmitAtomicStore(RVal, LVal, 3020 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3021 : llvm::AtomicOrdering::Monotonic, 3022 LVal.isVolatile(), /*IsInit=*/false); 3023 } 3024 } 3025 3026 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3027 QualType RValTy, SourceLocation Loc) { 3028 switch (getEvaluationKind(LVal.getType())) { 3029 case TEK_Scalar: 3030 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3031 *this, RVal, RValTy, LVal.getType(), Loc)), 3032 LVal); 3033 break; 3034 case TEK_Complex: 3035 EmitStoreOfComplex( 3036 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3037 /*isInit=*/false); 3038 break; 3039 case TEK_Aggregate: 3040 llvm_unreachable("Must be a scalar or complex."); 3041 } 3042 } 3043 3044 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3045 const Expr *X, const Expr *V, 3046 SourceLocation Loc) { 3047 // v = x; 3048 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3049 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3050 LValue XLValue = CGF.EmitLValue(X); 3051 LValue VLValue = CGF.EmitLValue(V); 3052 RValue Res = XLValue.isGlobalReg() 3053 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3054 : CGF.EmitAtomicLoad( 3055 XLValue, Loc, 3056 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3057 : llvm::AtomicOrdering::Monotonic, 3058 XLValue.isVolatile()); 3059 // OpenMP, 2.12.6, atomic Construct 3060 // Any atomic construct with a seq_cst clause forces the atomically 3061 // performed operation to include an implicit flush operation without a 3062 // list. 3063 if (IsSeqCst) 3064 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3065 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3066 } 3067 3068 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3069 const Expr *X, const Expr *E, 3070 SourceLocation Loc) { 3071 // x = expr; 3072 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3073 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3074 // OpenMP, 2.12.6, atomic Construct 3075 // Any atomic construct with a seq_cst clause forces the atomically 3076 // performed operation to include an implicit flush operation without a 3077 // list. 3078 if (IsSeqCst) 3079 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3080 } 3081 3082 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3083 RValue Update, 3084 BinaryOperatorKind BO, 3085 llvm::AtomicOrdering AO, 3086 bool IsXLHSInRHSPart) { 3087 auto &Context = CGF.CGM.getContext(); 3088 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3089 // expression is simple and atomic is allowed for the given type for the 3090 // target platform. 3091 if (BO == BO_Comma || !Update.isScalar() || 3092 !Update.getScalarVal()->getType()->isIntegerTy() || 3093 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3094 (Update.getScalarVal()->getType() != 3095 X.getAddress().getElementType())) || 3096 !X.getAddress().getElementType()->isIntegerTy() || 3097 !Context.getTargetInfo().hasBuiltinAtomic( 3098 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3099 return std::make_pair(false, RValue::get(nullptr)); 3100 3101 llvm::AtomicRMWInst::BinOp RMWOp; 3102 switch (BO) { 3103 case BO_Add: 3104 RMWOp = llvm::AtomicRMWInst::Add; 3105 break; 3106 case BO_Sub: 3107 if (!IsXLHSInRHSPart) 3108 return std::make_pair(false, RValue::get(nullptr)); 3109 RMWOp = llvm::AtomicRMWInst::Sub; 3110 break; 3111 case BO_And: 3112 RMWOp = llvm::AtomicRMWInst::And; 3113 break; 3114 case BO_Or: 3115 RMWOp = llvm::AtomicRMWInst::Or; 3116 break; 3117 case BO_Xor: 3118 RMWOp = llvm::AtomicRMWInst::Xor; 3119 break; 3120 case BO_LT: 3121 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3122 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3123 : llvm::AtomicRMWInst::Max) 3124 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3125 : llvm::AtomicRMWInst::UMax); 3126 break; 3127 case BO_GT: 3128 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3129 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3130 : llvm::AtomicRMWInst::Min) 3131 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3132 : llvm::AtomicRMWInst::UMin); 3133 break; 3134 case BO_Assign: 3135 RMWOp = llvm::AtomicRMWInst::Xchg; 3136 break; 3137 case BO_Mul: 3138 case BO_Div: 3139 case BO_Rem: 3140 case BO_Shl: 3141 case BO_Shr: 3142 case BO_LAnd: 3143 case BO_LOr: 3144 return std::make_pair(false, RValue::get(nullptr)); 3145 case BO_PtrMemD: 3146 case BO_PtrMemI: 3147 case BO_LE: 3148 case BO_GE: 3149 case BO_EQ: 3150 case BO_NE: 3151 case BO_AddAssign: 3152 case BO_SubAssign: 3153 case BO_AndAssign: 3154 case BO_OrAssign: 3155 case BO_XorAssign: 3156 case BO_MulAssign: 3157 case BO_DivAssign: 3158 case BO_RemAssign: 3159 case BO_ShlAssign: 3160 case BO_ShrAssign: 3161 case BO_Comma: 3162 llvm_unreachable("Unsupported atomic update operation"); 3163 } 3164 auto *UpdateVal = Update.getScalarVal(); 3165 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3166 UpdateVal = CGF.Builder.CreateIntCast( 3167 IC, X.getAddress().getElementType(), 3168 X.getType()->hasSignedIntegerRepresentation()); 3169 } 3170 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3171 return std::make_pair(true, RValue::get(Res)); 3172 } 3173 3174 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3175 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3176 llvm::AtomicOrdering AO, SourceLocation Loc, 3177 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3178 // Update expressions are allowed to have the following forms: 3179 // x binop= expr; -> xrval + expr; 3180 // x++, ++x -> xrval + 1; 3181 // x--, --x -> xrval - 1; 3182 // x = x binop expr; -> xrval binop expr 3183 // x = expr Op x; - > expr binop xrval; 3184 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3185 if (!Res.first) { 3186 if (X.isGlobalReg()) { 3187 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3188 // 'xrval'. 3189 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3190 } else { 3191 // Perform compare-and-swap procedure. 3192 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3193 } 3194 } 3195 return Res; 3196 } 3197 3198 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3199 const Expr *X, const Expr *E, 3200 const Expr *UE, bool IsXLHSInRHSPart, 3201 SourceLocation Loc) { 3202 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3203 "Update expr in 'atomic update' must be a binary operator."); 3204 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3205 // Update expressions are allowed to have the following forms: 3206 // x binop= expr; -> xrval + expr; 3207 // x++, ++x -> xrval + 1; 3208 // x--, --x -> xrval - 1; 3209 // x = x binop expr; -> xrval binop expr 3210 // x = expr Op x; - > expr binop xrval; 3211 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3212 LValue XLValue = CGF.EmitLValue(X); 3213 RValue ExprRValue = CGF.EmitAnyExpr(E); 3214 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3215 : llvm::AtomicOrdering::Monotonic; 3216 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3217 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3218 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3219 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3220 auto Gen = 3221 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3222 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3223 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3224 return CGF.EmitAnyExpr(UE); 3225 }; 3226 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3227 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3228 // OpenMP, 2.12.6, atomic Construct 3229 // Any atomic construct with a seq_cst clause forces the atomically 3230 // performed operation to include an implicit flush operation without a 3231 // list. 3232 if (IsSeqCst) 3233 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3234 } 3235 3236 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3237 QualType SourceType, QualType ResType, 3238 SourceLocation Loc) { 3239 switch (CGF.getEvaluationKind(ResType)) { 3240 case TEK_Scalar: 3241 return RValue::get( 3242 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3243 case TEK_Complex: { 3244 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3245 return RValue::getComplex(Res.first, Res.second); 3246 } 3247 case TEK_Aggregate: 3248 break; 3249 } 3250 llvm_unreachable("Must be a scalar or complex."); 3251 } 3252 3253 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3254 bool IsPostfixUpdate, const Expr *V, 3255 const Expr *X, const Expr *E, 3256 const Expr *UE, bool IsXLHSInRHSPart, 3257 SourceLocation Loc) { 3258 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3259 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3260 RValue NewVVal; 3261 LValue VLValue = CGF.EmitLValue(V); 3262 LValue XLValue = CGF.EmitLValue(X); 3263 RValue ExprRValue = CGF.EmitAnyExpr(E); 3264 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3265 : llvm::AtomicOrdering::Monotonic; 3266 QualType NewVValType; 3267 if (UE) { 3268 // 'x' is updated with some additional value. 3269 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3270 "Update expr in 'atomic capture' must be a binary operator."); 3271 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3272 // Update expressions are allowed to have the following forms: 3273 // x binop= expr; -> xrval + expr; 3274 // x++, ++x -> xrval + 1; 3275 // x--, --x -> xrval - 1; 3276 // x = x binop expr; -> xrval binop expr 3277 // x = expr Op x; - > expr binop xrval; 3278 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3279 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3280 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3281 NewVValType = XRValExpr->getType(); 3282 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3283 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3284 IsPostfixUpdate](RValue XRValue) -> RValue { 3285 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3286 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3287 RValue Res = CGF.EmitAnyExpr(UE); 3288 NewVVal = IsPostfixUpdate ? XRValue : Res; 3289 return Res; 3290 }; 3291 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3292 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3293 if (Res.first) { 3294 // 'atomicrmw' instruction was generated. 3295 if (IsPostfixUpdate) { 3296 // Use old value from 'atomicrmw'. 3297 NewVVal = Res.second; 3298 } else { 3299 // 'atomicrmw' does not provide new value, so evaluate it using old 3300 // value of 'x'. 3301 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3302 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3303 NewVVal = CGF.EmitAnyExpr(UE); 3304 } 3305 } 3306 } else { 3307 // 'x' is simply rewritten with some 'expr'. 3308 NewVValType = X->getType().getNonReferenceType(); 3309 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3310 X->getType().getNonReferenceType(), Loc); 3311 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3312 NewVVal = XRValue; 3313 return ExprRValue; 3314 }; 3315 // Try to perform atomicrmw xchg, otherwise simple exchange. 3316 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3317 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3318 Loc, Gen); 3319 if (Res.first) { 3320 // 'atomicrmw' instruction was generated. 3321 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3322 } 3323 } 3324 // Emit post-update store to 'v' of old/new 'x' value. 3325 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3326 // OpenMP, 2.12.6, atomic Construct 3327 // Any atomic construct with a seq_cst clause forces the atomically 3328 // performed operation to include an implicit flush operation without a 3329 // list. 3330 if (IsSeqCst) 3331 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3332 } 3333 3334 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3335 bool IsSeqCst, bool IsPostfixUpdate, 3336 const Expr *X, const Expr *V, const Expr *E, 3337 const Expr *UE, bool IsXLHSInRHSPart, 3338 SourceLocation Loc) { 3339 switch (Kind) { 3340 case OMPC_read: 3341 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3342 break; 3343 case OMPC_write: 3344 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3345 break; 3346 case OMPC_unknown: 3347 case OMPC_update: 3348 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3349 break; 3350 case OMPC_capture: 3351 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3352 IsXLHSInRHSPart, Loc); 3353 break; 3354 case OMPC_if: 3355 case OMPC_final: 3356 case OMPC_num_threads: 3357 case OMPC_private: 3358 case OMPC_firstprivate: 3359 case OMPC_lastprivate: 3360 case OMPC_reduction: 3361 case OMPC_safelen: 3362 case OMPC_simdlen: 3363 case OMPC_collapse: 3364 case OMPC_default: 3365 case OMPC_seq_cst: 3366 case OMPC_shared: 3367 case OMPC_linear: 3368 case OMPC_aligned: 3369 case OMPC_copyin: 3370 case OMPC_copyprivate: 3371 case OMPC_flush: 3372 case OMPC_proc_bind: 3373 case OMPC_schedule: 3374 case OMPC_ordered: 3375 case OMPC_nowait: 3376 case OMPC_untied: 3377 case OMPC_threadprivate: 3378 case OMPC_depend: 3379 case OMPC_mergeable: 3380 case OMPC_device: 3381 case OMPC_threads: 3382 case OMPC_simd: 3383 case OMPC_map: 3384 case OMPC_num_teams: 3385 case OMPC_thread_limit: 3386 case OMPC_priority: 3387 case OMPC_grainsize: 3388 case OMPC_nogroup: 3389 case OMPC_num_tasks: 3390 case OMPC_hint: 3391 case OMPC_dist_schedule: 3392 case OMPC_defaultmap: 3393 case OMPC_uniform: 3394 case OMPC_to: 3395 case OMPC_from: 3396 case OMPC_use_device_ptr: 3397 case OMPC_is_device_ptr: 3398 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3399 } 3400 } 3401 3402 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3403 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3404 OpenMPClauseKind Kind = OMPC_unknown; 3405 for (auto *C : S.clauses()) { 3406 // Find first clause (skip seq_cst clause, if it is first). 3407 if (C->getClauseKind() != OMPC_seq_cst) { 3408 Kind = C->getClauseKind(); 3409 break; 3410 } 3411 } 3412 3413 const auto *CS = 3414 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3415 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3416 enterFullExpression(EWC); 3417 } 3418 // Processing for statements under 'atomic capture'. 3419 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3420 for (const auto *C : Compound->body()) { 3421 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3422 enterFullExpression(EWC); 3423 } 3424 } 3425 } 3426 3427 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3428 PrePostActionTy &) { 3429 CGF.EmitStopPoint(CS); 3430 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3431 S.getV(), S.getExpr(), S.getUpdateExpr(), 3432 S.isXLHSInRHSPart(), S.getLocStart()); 3433 }; 3434 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3435 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3436 } 3437 3438 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3439 const OMPExecutableDirective &S, 3440 const RegionCodeGenTy &CodeGen) { 3441 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3442 CodeGenModule &CGM = CGF.CGM; 3443 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3444 3445 llvm::Function *Fn = nullptr; 3446 llvm::Constant *FnID = nullptr; 3447 3448 const Expr *IfCond = nullptr; 3449 // Check for the at most one if clause associated with the target region. 3450 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3451 if (C->getNameModifier() == OMPD_unknown || 3452 C->getNameModifier() == OMPD_target) { 3453 IfCond = C->getCondition(); 3454 break; 3455 } 3456 } 3457 3458 // Check if we have any device clause associated with the directive. 3459 const Expr *Device = nullptr; 3460 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3461 Device = C->getDevice(); 3462 } 3463 3464 // Check if we have an if clause whose conditional always evaluates to false 3465 // or if we do not have any targets specified. If so the target region is not 3466 // an offload entry point. 3467 bool IsOffloadEntry = true; 3468 if (IfCond) { 3469 bool Val; 3470 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3471 IsOffloadEntry = false; 3472 } 3473 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3474 IsOffloadEntry = false; 3475 3476 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3477 StringRef ParentName; 3478 // In case we have Ctors/Dtors we use the complete type variant to produce 3479 // the mangling of the device outlined kernel. 3480 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3481 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3482 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3483 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3484 else 3485 ParentName = 3486 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3487 3488 // Emit target region as a standalone region. 3489 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3490 IsOffloadEntry, CodeGen); 3491 OMPLexicalScope Scope(CGF, S); 3492 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3493 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); 3494 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 3495 CapturedVars); 3496 } 3497 3498 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3499 PrePostActionTy &Action) { 3500 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3501 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3502 CGF.EmitOMPPrivateClause(S, PrivateScope); 3503 (void)PrivateScope.Privatize(); 3504 3505 Action.Enter(CGF); 3506 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3507 } 3508 3509 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3510 StringRef ParentName, 3511 const OMPTargetDirective &S) { 3512 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3513 emitTargetRegion(CGF, S, Action); 3514 }; 3515 llvm::Function *Fn; 3516 llvm::Constant *Addr; 3517 // Emit target region as a standalone region. 3518 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3519 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3520 assert(Fn && Addr && "Target device function emission failed."); 3521 } 3522 3523 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3524 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3525 emitTargetRegion(CGF, S, Action); 3526 }; 3527 emitCommonOMPTargetDirective(*this, S, CodeGen); 3528 } 3529 3530 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3531 const OMPExecutableDirective &S, 3532 OpenMPDirectiveKind InnermostKind, 3533 const RegionCodeGenTy &CodeGen) { 3534 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 3535 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 3536 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3537 3538 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 3539 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 3540 if (NT || TL) { 3541 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3542 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3543 3544 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3545 S.getLocStart()); 3546 } 3547 3548 OMPTeamsScope Scope(CGF, S); 3549 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3550 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3551 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3552 CapturedVars); 3553 } 3554 3555 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3556 // Emit teams region as a standalone region. 3557 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3558 OMPPrivateScope PrivateScope(CGF); 3559 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3560 CGF.EmitOMPPrivateClause(S, PrivateScope); 3561 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3562 (void)PrivateScope.Privatize(); 3563 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3564 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3565 }; 3566 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3567 emitPostUpdateForReductionClause( 3568 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 3569 } 3570 3571 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 3572 const OMPTargetTeamsDirective &S) { 3573 auto *CS = S.getCapturedStmt(OMPD_teams); 3574 Action.Enter(CGF); 3575 auto &&CodeGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3576 // TODO: Add support for clauses. 3577 CGF.EmitStmt(CS->getCapturedStmt()); 3578 }; 3579 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 3580 } 3581 3582 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 3583 CodeGenModule &CGM, StringRef ParentName, 3584 const OMPTargetTeamsDirective &S) { 3585 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3586 emitTargetTeamsRegion(CGF, Action, S); 3587 }; 3588 llvm::Function *Fn; 3589 llvm::Constant *Addr; 3590 // Emit target region as a standalone region. 3591 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3592 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3593 assert(Fn && Addr && "Target device function emission failed."); 3594 } 3595 3596 void CodeGenFunction::EmitOMPTargetTeamsDirective( 3597 const OMPTargetTeamsDirective &S) { 3598 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3599 emitTargetTeamsRegion(CGF, Action, S); 3600 }; 3601 emitCommonOMPTargetDirective(*this, S, CodeGen); 3602 } 3603 3604 void CodeGenFunction::EmitOMPCancellationPointDirective( 3605 const OMPCancellationPointDirective &S) { 3606 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3607 S.getCancelRegion()); 3608 } 3609 3610 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3611 const Expr *IfCond = nullptr; 3612 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3613 if (C->getNameModifier() == OMPD_unknown || 3614 C->getNameModifier() == OMPD_cancel) { 3615 IfCond = C->getCondition(); 3616 break; 3617 } 3618 } 3619 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3620 S.getCancelRegion()); 3621 } 3622 3623 CodeGenFunction::JumpDest 3624 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3625 if (Kind == OMPD_parallel || Kind == OMPD_task || 3626 Kind == OMPD_target_parallel) 3627 return ReturnBlock; 3628 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3629 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 3630 Kind == OMPD_distribute_parallel_for || 3631 Kind == OMPD_target_parallel_for); 3632 return OMPCancelStack.getExitBlock(); 3633 } 3634 3635 void CodeGenFunction::EmitOMPUseDevicePtrClause( 3636 const OMPClause &NC, OMPPrivateScope &PrivateScope, 3637 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 3638 const auto &C = cast<OMPUseDevicePtrClause>(NC); 3639 auto OrigVarIt = C.varlist_begin(); 3640 auto InitIt = C.inits().begin(); 3641 for (auto PvtVarIt : C.private_copies()) { 3642 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 3643 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 3644 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 3645 3646 // In order to identify the right initializer we need to match the 3647 // declaration used by the mapping logic. In some cases we may get 3648 // OMPCapturedExprDecl that refers to the original declaration. 3649 const ValueDecl *MatchingVD = OrigVD; 3650 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 3651 // OMPCapturedExprDecl are used to privative fields of the current 3652 // structure. 3653 auto *ME = cast<MemberExpr>(OED->getInit()); 3654 assert(isa<CXXThisExpr>(ME->getBase()) && 3655 "Base should be the current struct!"); 3656 MatchingVD = ME->getMemberDecl(); 3657 } 3658 3659 // If we don't have information about the current list item, move on to 3660 // the next one. 3661 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 3662 if (InitAddrIt == CaptureDeviceAddrMap.end()) 3663 continue; 3664 3665 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 3666 // Initialize the temporary initialization variable with the address we 3667 // get from the runtime library. We have to cast the source address 3668 // because it is always a void *. References are materialized in the 3669 // privatization scope, so the initialization here disregards the fact 3670 // the original variable is a reference. 3671 QualType AddrQTy = 3672 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 3673 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 3674 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 3675 setAddrOfLocalVar(InitVD, InitAddr); 3676 3677 // Emit private declaration, it will be initialized by the value we 3678 // declaration we just added to the local declarations map. 3679 EmitDecl(*PvtVD); 3680 3681 // The initialization variables reached its purpose in the emission 3682 // ofthe previous declaration, so we don't need it anymore. 3683 LocalDeclMap.erase(InitVD); 3684 3685 // Return the address of the private variable. 3686 return GetAddrOfLocalVar(PvtVD); 3687 }); 3688 assert(IsRegistered && "firstprivate var already registered as private"); 3689 // Silence the warning about unused variable. 3690 (void)IsRegistered; 3691 3692 ++OrigVarIt; 3693 ++InitIt; 3694 } 3695 } 3696 3697 // Generate the instructions for '#pragma omp target data' directive. 3698 void CodeGenFunction::EmitOMPTargetDataDirective( 3699 const OMPTargetDataDirective &S) { 3700 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 3701 3702 // Create a pre/post action to signal the privatization of the device pointer. 3703 // This action can be replaced by the OpenMP runtime code generation to 3704 // deactivate privatization. 3705 bool PrivatizeDevicePointers = false; 3706 class DevicePointerPrivActionTy : public PrePostActionTy { 3707 bool &PrivatizeDevicePointers; 3708 3709 public: 3710 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 3711 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 3712 void Enter(CodeGenFunction &CGF) override { 3713 PrivatizeDevicePointers = true; 3714 } 3715 }; 3716 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 3717 3718 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 3719 CodeGenFunction &CGF, PrePostActionTy &Action) { 3720 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3721 CGF.EmitStmt( 3722 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3723 }; 3724 3725 // Codegen that selects wheather to generate the privatization code or not. 3726 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 3727 &InnermostCodeGen](CodeGenFunction &CGF, 3728 PrePostActionTy &Action) { 3729 RegionCodeGenTy RCG(InnermostCodeGen); 3730 PrivatizeDevicePointers = false; 3731 3732 // Call the pre-action to change the status of PrivatizeDevicePointers if 3733 // needed. 3734 Action.Enter(CGF); 3735 3736 if (PrivatizeDevicePointers) { 3737 OMPPrivateScope PrivateScope(CGF); 3738 // Emit all instances of the use_device_ptr clause. 3739 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 3740 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 3741 Info.CaptureDeviceAddrMap); 3742 (void)PrivateScope.Privatize(); 3743 RCG(CGF); 3744 } else 3745 RCG(CGF); 3746 }; 3747 3748 // Forward the provided action to the privatization codegen. 3749 RegionCodeGenTy PrivRCG(PrivCodeGen); 3750 PrivRCG.setAction(Action); 3751 3752 // Notwithstanding the body of the region is emitted as inlined directive, 3753 // we don't use an inline scope as changes in the references inside the 3754 // region are expected to be visible outside, so we do not privative them. 3755 OMPLexicalScope Scope(CGF, S); 3756 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 3757 PrivRCG); 3758 }; 3759 3760 RegionCodeGenTy RCG(CodeGen); 3761 3762 // If we don't have target devices, don't bother emitting the data mapping 3763 // code. 3764 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3765 RCG(*this); 3766 return; 3767 } 3768 3769 // Check if we have any if clause associated with the directive. 3770 const Expr *IfCond = nullptr; 3771 if (auto *C = S.getSingleClause<OMPIfClause>()) 3772 IfCond = C->getCondition(); 3773 3774 // Check if we have any device clause associated with the directive. 3775 const Expr *Device = nullptr; 3776 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3777 Device = C->getDevice(); 3778 3779 // Set the action to signal privatization of device pointers. 3780 RCG.setAction(PrivAction); 3781 3782 // Emit region code. 3783 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 3784 Info); 3785 } 3786 3787 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3788 const OMPTargetEnterDataDirective &S) { 3789 // If we don't have target devices, don't bother emitting the data mapping 3790 // code. 3791 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3792 return; 3793 3794 // Check if we have any if clause associated with the directive. 3795 const Expr *IfCond = nullptr; 3796 if (auto *C = S.getSingleClause<OMPIfClause>()) 3797 IfCond = C->getCondition(); 3798 3799 // Check if we have any device clause associated with the directive. 3800 const Expr *Device = nullptr; 3801 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3802 Device = C->getDevice(); 3803 3804 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3805 } 3806 3807 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3808 const OMPTargetExitDataDirective &S) { 3809 // If we don't have target devices, don't bother emitting the data mapping 3810 // code. 3811 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3812 return; 3813 3814 // Check if we have any if clause associated with the directive. 3815 const Expr *IfCond = nullptr; 3816 if (auto *C = S.getSingleClause<OMPIfClause>()) 3817 IfCond = C->getCondition(); 3818 3819 // Check if we have any device clause associated with the directive. 3820 const Expr *Device = nullptr; 3821 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3822 Device = C->getDevice(); 3823 3824 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3825 } 3826 3827 static void emitTargetParallelRegion(CodeGenFunction &CGF, 3828 const OMPTargetParallelDirective &S, 3829 PrePostActionTy &Action) { 3830 // Get the captured statement associated with the 'parallel' region. 3831 auto *CS = S.getCapturedStmt(OMPD_parallel); 3832 Action.Enter(CGF); 3833 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) { 3834 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3835 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3836 CGF.EmitOMPPrivateClause(S, PrivateScope); 3837 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3838 (void)PrivateScope.Privatize(); 3839 // TODO: Add support for clauses. 3840 CGF.EmitStmt(CS->getCapturedStmt()); 3841 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3842 }; 3843 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen); 3844 emitPostUpdateForReductionClause( 3845 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 3846 } 3847 3848 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 3849 CodeGenModule &CGM, StringRef ParentName, 3850 const OMPTargetParallelDirective &S) { 3851 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3852 emitTargetParallelRegion(CGF, S, Action); 3853 }; 3854 llvm::Function *Fn; 3855 llvm::Constant *Addr; 3856 // Emit target region as a standalone region. 3857 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3858 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3859 assert(Fn && Addr && "Target device function emission failed."); 3860 } 3861 3862 void CodeGenFunction::EmitOMPTargetParallelDirective( 3863 const OMPTargetParallelDirective &S) { 3864 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3865 emitTargetParallelRegion(CGF, S, Action); 3866 }; 3867 emitCommonOMPTargetDirective(*this, S, CodeGen); 3868 } 3869 3870 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3871 const OMPTargetParallelForDirective &S) { 3872 // TODO: codegen for target parallel for. 3873 } 3874 3875 /// Emit a helper variable and return corresponding lvalue. 3876 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3877 const ImplicitParamDecl *PVD, 3878 CodeGenFunction::OMPPrivateScope &Privates) { 3879 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3880 Privates.addPrivate( 3881 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3882 } 3883 3884 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3885 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3886 // Emit outlined function for task construct. 3887 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3888 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3889 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3890 const Expr *IfCond = nullptr; 3891 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3892 if (C->getNameModifier() == OMPD_unknown || 3893 C->getNameModifier() == OMPD_taskloop) { 3894 IfCond = C->getCondition(); 3895 break; 3896 } 3897 } 3898 3899 OMPTaskDataTy Data; 3900 // Check if taskloop must be emitted without taskgroup. 3901 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3902 // TODO: Check if we should emit tied or untied task. 3903 Data.Tied = true; 3904 // Set scheduling for taskloop 3905 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3906 // grainsize clause 3907 Data.Schedule.setInt(/*IntVal=*/false); 3908 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3909 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3910 // num_tasks clause 3911 Data.Schedule.setInt(/*IntVal=*/true); 3912 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3913 } 3914 3915 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3916 // if (PreCond) { 3917 // for (IV in 0..LastIteration) BODY; 3918 // <Final counter/linear vars updates>; 3919 // } 3920 // 3921 3922 // Emit: if (PreCond) - begin. 3923 // If the condition constant folds and can be elided, avoid emitting the 3924 // whole loop. 3925 bool CondConstant; 3926 llvm::BasicBlock *ContBlock = nullptr; 3927 OMPLoopScope PreInitScope(CGF, S); 3928 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3929 if (!CondConstant) 3930 return; 3931 } else { 3932 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3933 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3934 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3935 CGF.getProfileCount(&S)); 3936 CGF.EmitBlock(ThenBlock); 3937 CGF.incrementProfileCounter(&S); 3938 } 3939 3940 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3941 CGF.EmitOMPSimdInit(S); 3942 3943 OMPPrivateScope LoopScope(CGF); 3944 // Emit helper vars inits. 3945 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3946 auto *I = CS->getCapturedDecl()->param_begin(); 3947 auto *LBP = std::next(I, LowerBound); 3948 auto *UBP = std::next(I, UpperBound); 3949 auto *STP = std::next(I, Stride); 3950 auto *LIP = std::next(I, LastIter); 3951 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3952 LoopScope); 3953 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3954 LoopScope); 3955 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3956 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3957 LoopScope); 3958 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3959 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3960 (void)LoopScope.Privatize(); 3961 // Emit the loop iteration variable. 3962 const Expr *IVExpr = S.getIterationVariable(); 3963 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3964 CGF.EmitVarDecl(*IVDecl); 3965 CGF.EmitIgnoredExpr(S.getInit()); 3966 3967 // Emit the iterations count variable. 3968 // If it is not a variable, Sema decided to calculate iterations count on 3969 // each iteration (e.g., it is foldable into a constant). 3970 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3971 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3972 // Emit calculation of the iterations count. 3973 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3974 } 3975 3976 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3977 S.getInc(), 3978 [&S](CodeGenFunction &CGF) { 3979 CGF.EmitOMPLoopBody(S, JumpDest()); 3980 CGF.EmitStopPoint(&S); 3981 }, 3982 [](CodeGenFunction &) {}); 3983 // Emit: if (PreCond) - end. 3984 if (ContBlock) { 3985 CGF.EmitBranch(ContBlock); 3986 CGF.EmitBlock(ContBlock, true); 3987 } 3988 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3989 if (HasLastprivateClause) { 3990 CGF.EmitOMPLastprivateClauseFinal( 3991 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3992 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3993 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3994 (*LIP)->getType(), S.getLocStart()))); 3995 } 3996 }; 3997 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3998 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3999 const OMPTaskDataTy &Data) { 4000 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4001 OMPLoopScope PreInitScope(CGF, S); 4002 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4003 OutlinedFn, SharedsTy, 4004 CapturedStruct, IfCond, Data); 4005 }; 4006 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4007 CodeGen); 4008 }; 4009 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4010 } 4011 4012 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4013 EmitOMPTaskLoopBasedDirective(S); 4014 } 4015 4016 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4017 const OMPTaskLoopSimdDirective &S) { 4018 EmitOMPTaskLoopBasedDirective(S); 4019 } 4020 4021 // Generate the instructions for '#pragma omp target update' directive. 4022 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4023 const OMPTargetUpdateDirective &S) { 4024 // If we don't have target devices, don't bother emitting the data mapping 4025 // code. 4026 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4027 return; 4028 4029 // Check if we have any if clause associated with the directive. 4030 const Expr *IfCond = nullptr; 4031 if (auto *C = S.getSingleClause<OMPIfClause>()) 4032 IfCond = C->getCondition(); 4033 4034 // Check if we have any device clause associated with the directive. 4035 const Expr *Device = nullptr; 4036 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4037 Device = C->getDevice(); 4038 4039 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4040 } 4041