1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (const auto *PreInit =
34                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
35           for (const auto *I : PreInit->decls()) {
36             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
37               CGF.EmitVarDecl(cast<VarDecl>(*I));
38             } else {
39               CodeGenFunction::AutoVarEmission Emission =
40                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
41               CGF.EmitAutoVarCleanups(Emission);
42             }
43           }
44         }
45       }
46     }
47   }
48   CodeGenFunction::OMPPrivateScope InlinedShareds;
49 
50   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
51     return CGF.LambdaCaptureFields.lookup(VD) ||
52            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
53            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
54   }
55 
56 public:
57   OMPLexicalScope(
58       CodeGenFunction &CGF, const OMPExecutableDirective &S,
59       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
60       const bool EmitPreInitStmt = true)
61       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
62         InlinedShareds(CGF) {
63     if (EmitPreInitStmt)
64       emitPreInitStmt(CGF, S);
65     if (!CapturedRegion.hasValue())
66       return;
67     assert(S.hasAssociatedStmt() &&
68            "Expected associated statement for inlined directive.");
69     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
70     for (const auto &C : CS->captures()) {
71       if (C.capturesVariable() || C.capturesVariableByCopy()) {
72         auto *VD = C.getCapturedVar();
73         assert(VD == VD->getCanonicalDecl() &&
74                "Canonical decl must be captured.");
75         DeclRefExpr DRE(
76             const_cast<VarDecl *>(VD),
77             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
78                                        InlinedShareds.isGlobalVarCaptured(VD)),
79             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
80         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
81           return CGF.EmitLValue(&DRE).getAddress();
82         });
83       }
84     }
85     (void)InlinedShareds.Privatize();
86   }
87 };
88 
89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
90 /// for captured expressions.
91 class OMPParallelScope final : public OMPLexicalScope {
92   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
93     OpenMPDirectiveKind Kind = S.getDirectiveKind();
94     return !(isOpenMPTargetExecutionDirective(Kind) ||
95              isOpenMPLoopBoundSharingDirective(Kind)) &&
96            isOpenMPParallelDirective(Kind);
97   }
98 
99 public:
100   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
101       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
102                         EmitPreInitStmt(S)) {}
103 };
104 
105 /// Lexical scope for OpenMP teams construct, that handles correct codegen
106 /// for captured expressions.
107 class OMPTeamsScope final : public OMPLexicalScope {
108   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
109     OpenMPDirectiveKind Kind = S.getDirectiveKind();
110     return !isOpenMPTargetExecutionDirective(Kind) &&
111            isOpenMPTeamsDirective(Kind);
112   }
113 
114 public:
115   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
116       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
117                         EmitPreInitStmt(S)) {}
118 };
119 
120 /// Private scope for OpenMP loop-based directives, that supports capturing
121 /// of used expression from loop statement.
122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
123   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
124     CodeGenFunction::OMPMapVars PreCondVars;
125     for (const auto *E : S.counters()) {
126       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
127       (void)PreCondVars.setVarAddr(
128           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
129     }
130     (void)PreCondVars.apply(CGF);
131     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
132       for (const auto *I : PreInits->decls())
133         CGF.EmitVarDecl(cast<VarDecl>(*I));
134     }
135     PreCondVars.restore(CGF);
136   }
137 
138 public:
139   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
140       : CodeGenFunction::RunCleanupsScope(CGF) {
141     emitPreInitStmt(CGF, S);
142   }
143 };
144 
145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
146   CodeGenFunction::OMPPrivateScope InlinedShareds;
147 
148   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
149     return CGF.LambdaCaptureFields.lookup(VD) ||
150            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
151            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
152             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
153   }
154 
155 public:
156   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
157       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
158         InlinedShareds(CGF) {
159     for (const auto *C : S.clauses()) {
160       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
161         if (const auto *PreInit =
162                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
163           for (const auto *I : PreInit->decls()) {
164             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
165               CGF.EmitVarDecl(cast<VarDecl>(*I));
166             } else {
167               CodeGenFunction::AutoVarEmission Emission =
168                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
169               CGF.EmitAutoVarCleanups(Emission);
170             }
171           }
172         }
173       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
174         for (const Expr *E : UDP->varlists()) {
175           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
176           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
177             CGF.EmitVarDecl(*OED);
178         }
179       }
180     }
181     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
182       CGF.EmitOMPPrivateClause(S, InlinedShareds);
183     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
184       if (const Expr *E = TG->getReductionRef())
185         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
186     }
187     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
188     while (CS) {
189       for (auto &C : CS->captures()) {
190         if (C.capturesVariable() || C.capturesVariableByCopy()) {
191           auto *VD = C.getCapturedVar();
192           assert(VD == VD->getCanonicalDecl() &&
193                  "Canonical decl must be captured.");
194           DeclRefExpr DRE(const_cast<VarDecl *>(VD),
195                           isCapturedVar(CGF, VD) ||
196                               (CGF.CapturedStmtInfo &&
197                                InlinedShareds.isGlobalVarCaptured(VD)),
198                           VD->getType().getNonReferenceType(), VK_LValue,
199                           C.getLocation());
200           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
201             return CGF.EmitLValue(&DRE).getAddress();
202           });
203         }
204       }
205       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
206     }
207     (void)InlinedShareds.Privatize();
208   }
209 };
210 
211 } // namespace
212 
213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
214                                          const OMPExecutableDirective &S,
215                                          const RegionCodeGenTy &CodeGen);
216 
217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
218   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
219     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
220       OrigVD = OrigVD->getCanonicalDecl();
221       bool IsCaptured =
222           LambdaCaptureFields.lookup(OrigVD) ||
223           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
224           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
225       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured,
226                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
227       return EmitLValue(&DRE);
228     }
229   }
230   return EmitLValue(E);
231 }
232 
233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
234   ASTContext &C = getContext();
235   llvm::Value *Size = nullptr;
236   auto SizeInChars = C.getTypeSizeInChars(Ty);
237   if (SizeInChars.isZero()) {
238     // getTypeSizeInChars() returns 0 for a VLA.
239     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
240       VlaSizePair VlaSize = getVLASize(VAT);
241       Ty = VlaSize.Type;
242       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
243                   : VlaSize.NumElts;
244     }
245     SizeInChars = C.getTypeSizeInChars(Ty);
246     if (SizeInChars.isZero())
247       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
248     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
249   }
250   return CGM.getSize(SizeInChars);
251 }
252 
253 void CodeGenFunction::GenerateOpenMPCapturedVars(
254     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
255   const RecordDecl *RD = S.getCapturedRecordDecl();
256   auto CurField = RD->field_begin();
257   auto CurCap = S.captures().begin();
258   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
259                                                  E = S.capture_init_end();
260        I != E; ++I, ++CurField, ++CurCap) {
261     if (CurField->hasCapturedVLAType()) {
262       const VariableArrayType *VAT = CurField->getCapturedVLAType();
263       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
264       CapturedVars.push_back(Val);
265     } else if (CurCap->capturesThis()) {
266       CapturedVars.push_back(CXXThisValue);
267     } else if (CurCap->capturesVariableByCopy()) {
268       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
269 
270       // If the field is not a pointer, we need to save the actual value
271       // and load it as a void pointer.
272       if (!CurField->getType()->isAnyPointerType()) {
273         ASTContext &Ctx = getContext();
274         Address DstAddr = CreateMemTemp(
275             Ctx.getUIntPtrType(),
276             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
277         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
278 
279         llvm::Value *SrcAddrVal = EmitScalarConversion(
280             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
281             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
282         LValue SrcLV =
283             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
284 
285         // Store the value using the source type pointer.
286         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
287 
288         // Load the value using the destination type pointer.
289         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
290       }
291       CapturedVars.push_back(CV);
292     } else {
293       assert(CurCap->capturesVariable() && "Expected capture by reference.");
294       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
295     }
296   }
297 }
298 
299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
300                                     QualType DstType, StringRef Name,
301                                     LValue AddrLV,
302                                     bool isReferenceType = false) {
303   ASTContext &Ctx = CGF.getContext();
304 
305   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
306       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
307       Ctx.getPointerType(DstType), Loc);
308   Address TmpAddr =
309       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
310           .getAddress();
311 
312   // If we are dealing with references we need to return the address of the
313   // reference instead of the reference of the value.
314   if (isReferenceType) {
315     QualType RefType = Ctx.getLValueReferenceType(DstType);
316     llvm::Value *RefVal = TmpAddr.getPointer();
317     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref"));
318     LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
319     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true);
320   }
321 
322   return TmpAddr;
323 }
324 
325 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
326   if (T->isLValueReferenceType())
327     return C.getLValueReferenceType(
328         getCanonicalParamType(C, T.getNonReferenceType()),
329         /*SpelledAsLValue=*/false);
330   if (T->isPointerType())
331     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
332   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
333     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
334       return getCanonicalParamType(C, VLA->getElementType());
335     if (!A->isVariablyModifiedType())
336       return C.getCanonicalType(T);
337   }
338   return C.getCanonicalParamType(T);
339 }
340 
341 namespace {
342   /// Contains required data for proper outlined function codegen.
343   struct FunctionOptions {
344     /// Captured statement for which the function is generated.
345     const CapturedStmt *S = nullptr;
346     /// true if cast to/from  UIntPtr is required for variables captured by
347     /// value.
348     const bool UIntPtrCastRequired = true;
349     /// true if only casted arguments must be registered as local args or VLA
350     /// sizes.
351     const bool RegisterCastedArgsOnly = false;
352     /// Name of the generated function.
353     const StringRef FunctionName;
354     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
355                              bool RegisterCastedArgsOnly,
356                              StringRef FunctionName)
357         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
358           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
359           FunctionName(FunctionName) {}
360   };
361 }
362 
363 static llvm::Function *emitOutlinedFunctionPrologue(
364     CodeGenFunction &CGF, FunctionArgList &Args,
365     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
366         &LocalAddrs,
367     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
368         &VLASizes,
369     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
370   const CapturedDecl *CD = FO.S->getCapturedDecl();
371   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
372   assert(CD->hasBody() && "missing CapturedDecl body");
373 
374   CXXThisValue = nullptr;
375   // Build the argument list.
376   CodeGenModule &CGM = CGF.CGM;
377   ASTContext &Ctx = CGM.getContext();
378   FunctionArgList TargetArgs;
379   Args.append(CD->param_begin(),
380               std::next(CD->param_begin(), CD->getContextParamPosition()));
381   TargetArgs.append(
382       CD->param_begin(),
383       std::next(CD->param_begin(), CD->getContextParamPosition()));
384   auto I = FO.S->captures().begin();
385   FunctionDecl *DebugFunctionDecl = nullptr;
386   if (!FO.UIntPtrCastRequired) {
387     FunctionProtoType::ExtProtoInfo EPI;
388     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
389     DebugFunctionDecl = FunctionDecl::Create(
390         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
391         SourceLocation(), DeclarationName(), FunctionTy,
392         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
393         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
394   }
395   for (const FieldDecl *FD : RD->fields()) {
396     QualType ArgType = FD->getType();
397     IdentifierInfo *II = nullptr;
398     VarDecl *CapVar = nullptr;
399 
400     // If this is a capture by copy and the type is not a pointer, the outlined
401     // function argument type should be uintptr and the value properly casted to
402     // uintptr. This is necessary given that the runtime library is only able to
403     // deal with pointers. We can pass in the same way the VLA type sizes to the
404     // outlined function.
405     if (FO.UIntPtrCastRequired &&
406         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
407          I->capturesVariableArrayType()))
408       ArgType = Ctx.getUIntPtrType();
409 
410     if (I->capturesVariable() || I->capturesVariableByCopy()) {
411       CapVar = I->getCapturedVar();
412       II = CapVar->getIdentifier();
413     } else if (I->capturesThis()) {
414       II = &Ctx.Idents.get("this");
415     } else {
416       assert(I->capturesVariableArrayType());
417       II = &Ctx.Idents.get("vla");
418     }
419     if (ArgType->isVariablyModifiedType())
420       ArgType = getCanonicalParamType(Ctx, ArgType);
421     VarDecl *Arg;
422     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
423       Arg = ParmVarDecl::Create(
424           Ctx, DebugFunctionDecl,
425           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
426           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
427           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
428     } else {
429       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
430                                       II, ArgType, ImplicitParamDecl::Other);
431     }
432     Args.emplace_back(Arg);
433     // Do not cast arguments if we emit function with non-original types.
434     TargetArgs.emplace_back(
435         FO.UIntPtrCastRequired
436             ? Arg
437             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
438     ++I;
439   }
440   Args.append(
441       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
442       CD->param_end());
443   TargetArgs.append(
444       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
445       CD->param_end());
446 
447   // Create the function declaration.
448   const CGFunctionInfo &FuncInfo =
449       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
450   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
451 
452   auto *F =
453       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
454                              FO.FunctionName, &CGM.getModule());
455   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
456   if (CD->isNothrow())
457     F->setDoesNotThrow();
458   F->setDoesNotRecurse();
459 
460   // Generate the function.
461   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
462                     FO.S->getBeginLoc(), CD->getBody()->getBeginLoc());
463   unsigned Cnt = CD->getContextParamPosition();
464   I = FO.S->captures().begin();
465   for (const FieldDecl *FD : RD->fields()) {
466     // Do not map arguments if we emit function with non-original types.
467     Address LocalAddr(Address::invalid());
468     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
469       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
470                                                              TargetArgs[Cnt]);
471     } else {
472       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
473     }
474     // If we are capturing a pointer by copy we don't need to do anything, just
475     // use the value that we get from the arguments.
476     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
477       const VarDecl *CurVD = I->getCapturedVar();
478       // If the variable is a reference we need to materialize it here.
479       if (CurVD->getType()->isReferenceType()) {
480         Address RefAddr = CGF.CreateMemTemp(
481             CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref");
482         CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr,
483                               /*Volatile=*/false, CurVD->getType());
484         LocalAddr = RefAddr;
485       }
486       if (!FO.RegisterCastedArgsOnly)
487         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
488       ++Cnt;
489       ++I;
490       continue;
491     }
492 
493     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
494                                         AlignmentSource::Decl);
495     if (FD->hasCapturedVLAType()) {
496       if (FO.UIntPtrCastRequired) {
497         ArgLVal = CGF.MakeAddrLValue(
498             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
499                                  Args[Cnt]->getName(), ArgLVal),
500             FD->getType(), AlignmentSource::Decl);
501       }
502       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
503       const VariableArrayType *VAT = FD->getCapturedVLAType();
504       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
505     } else if (I->capturesVariable()) {
506       const VarDecl *Var = I->getCapturedVar();
507       QualType VarTy = Var->getType();
508       Address ArgAddr = ArgLVal.getAddress();
509       if (!VarTy->isReferenceType()) {
510         if (ArgLVal.getType()->isLValueReferenceType()) {
511           ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
512         } else if (!VarTy->isVariablyModifiedType() ||
513                    !VarTy->isPointerType()) {
514           assert(ArgLVal.getType()->isPointerType());
515           ArgAddr = CGF.EmitLoadOfPointer(
516               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
517         }
518       }
519       if (!FO.RegisterCastedArgsOnly) {
520         LocalAddrs.insert(
521             {Args[Cnt],
522              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
523       }
524     } else if (I->capturesVariableByCopy()) {
525       assert(!FD->getType()->isAnyPointerType() &&
526              "Not expecting a captured pointer.");
527       const VarDecl *Var = I->getCapturedVar();
528       QualType VarTy = Var->getType();
529       LocalAddrs.insert(
530           {Args[Cnt],
531            {Var, FO.UIntPtrCastRequired
532                      ? castValueFromUintptr(CGF, I->getLocation(),
533                                             FD->getType(), Args[Cnt]->getName(),
534                                             ArgLVal, VarTy->isReferenceType())
535                      : ArgLVal.getAddress()}});
536     } else {
537       // If 'this' is captured, load it into CXXThisValue.
538       assert(I->capturesThis());
539       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
540       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
541     }
542     ++Cnt;
543     ++I;
544   }
545 
546   return F;
547 }
548 
549 llvm::Function *
550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
551   assert(
552       CapturedStmtInfo &&
553       "CapturedStmtInfo should be set when generating the captured function");
554   const CapturedDecl *CD = S.getCapturedDecl();
555   // Build the argument list.
556   bool NeedWrapperFunction =
557       getDebugInfo() &&
558       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
559   FunctionArgList Args;
560   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
561   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
562   SmallString<256> Buffer;
563   llvm::raw_svector_ostream Out(Buffer);
564   Out << CapturedStmtInfo->getHelperName();
565   if (NeedWrapperFunction)
566     Out << "_debug__";
567   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
568                      Out.str());
569   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
570                                                    VLASizes, CXXThisValue, FO);
571   for (const auto &LocalAddrPair : LocalAddrs) {
572     if (LocalAddrPair.second.first) {
573       setAddrOfLocalVar(LocalAddrPair.second.first,
574                         LocalAddrPair.second.second);
575     }
576   }
577   for (const auto &VLASizePair : VLASizes)
578     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
579   PGO.assignRegionCounters(GlobalDecl(CD), F);
580   CapturedStmtInfo->EmitBody(*this, CD->getBody());
581   FinishFunction(CD->getBodyRBrace());
582   if (!NeedWrapperFunction)
583     return F;
584 
585   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
586                             /*RegisterCastedArgsOnly=*/true,
587                             CapturedStmtInfo->getHelperName());
588   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
589   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
590   Args.clear();
591   LocalAddrs.clear();
592   VLASizes.clear();
593   llvm::Function *WrapperF =
594       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
595                                    WrapperCGF.CXXThisValue, WrapperFO);
596   llvm::SmallVector<llvm::Value *, 4> CallArgs;
597   for (const auto *Arg : Args) {
598     llvm::Value *CallArg;
599     auto I = LocalAddrs.find(Arg);
600     if (I != LocalAddrs.end()) {
601       LValue LV = WrapperCGF.MakeAddrLValue(
602           I->second.second,
603           I->second.first ? I->second.first->getType() : Arg->getType(),
604           AlignmentSource::Decl);
605       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
606     } else {
607       auto EI = VLASizes.find(Arg);
608       if (EI != VLASizes.end()) {
609         CallArg = EI->second.second;
610       } else {
611         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
612                                               Arg->getType(),
613                                               AlignmentSource::Decl);
614         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
615       }
616     }
617     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
618   }
619   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(),
620                                                   F, CallArgs);
621   WrapperCGF.FinishFunction();
622   return WrapperF;
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                              OpenMP Directive Emission
627 //===----------------------------------------------------------------------===//
628 void CodeGenFunction::EmitOMPAggregateAssign(
629     Address DestAddr, Address SrcAddr, QualType OriginalType,
630     const llvm::function_ref<void(Address, Address)> CopyGen) {
631   // Perform element-by-element initialization.
632   QualType ElementTy;
633 
634   // Drill down to the base element type on both arrays.
635   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
636   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
637   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
638 
639   llvm::Value *SrcBegin = SrcAddr.getPointer();
640   llvm::Value *DestBegin = DestAddr.getPointer();
641   // Cast from pointer to array type to pointer to single element.
642   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
643   // The basic structure here is a while-do loop.
644   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
645   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
646   llvm::Value *IsEmpty =
647       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
648   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
649 
650   // Enter the loop body, making that address the current address.
651   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
652   EmitBlock(BodyBB);
653 
654   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
655 
656   llvm::PHINode *SrcElementPHI =
657     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
658   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
659   Address SrcElementCurrent =
660       Address(SrcElementPHI,
661               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
662 
663   llvm::PHINode *DestElementPHI =
664     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
665   DestElementPHI->addIncoming(DestBegin, EntryBB);
666   Address DestElementCurrent =
667     Address(DestElementPHI,
668             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
669 
670   // Emit copy.
671   CopyGen(DestElementCurrent, SrcElementCurrent);
672 
673   // Shift the address forward by one element.
674   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
675       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
676   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
677       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
678   // Check whether we've reached the end.
679   llvm::Value *Done =
680       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
681   Builder.CreateCondBr(Done, DoneBB, BodyBB);
682   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
683   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
684 
685   // Done.
686   EmitBlock(DoneBB, /*IsFinished=*/true);
687 }
688 
689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
690                                   Address SrcAddr, const VarDecl *DestVD,
691                                   const VarDecl *SrcVD, const Expr *Copy) {
692   if (OriginalType->isArrayType()) {
693     const auto *BO = dyn_cast<BinaryOperator>(Copy);
694     if (BO && BO->getOpcode() == BO_Assign) {
695       // Perform simple memcpy for simple copying.
696       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
697       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
698       EmitAggregateAssign(Dest, Src, OriginalType);
699     } else {
700       // For arrays with complex element types perform element by element
701       // copying.
702       EmitOMPAggregateAssign(
703           DestAddr, SrcAddr, OriginalType,
704           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
705             // Working with the single array element, so have to remap
706             // destination and source variables to corresponding array
707             // elements.
708             CodeGenFunction::OMPPrivateScope Remap(*this);
709             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
710             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
711             (void)Remap.Privatize();
712             EmitIgnoredExpr(Copy);
713           });
714     }
715   } else {
716     // Remap pseudo source variable to private copy.
717     CodeGenFunction::OMPPrivateScope Remap(*this);
718     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
719     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
720     (void)Remap.Privatize();
721     // Emit copying of the whole variable.
722     EmitIgnoredExpr(Copy);
723   }
724 }
725 
726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
727                                                 OMPPrivateScope &PrivateScope) {
728   if (!HaveInsertPoint())
729     return false;
730   bool FirstprivateIsLastprivate = false;
731   llvm::DenseSet<const VarDecl *> Lastprivates;
732   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
733     for (const auto *D : C->varlists())
734       Lastprivates.insert(
735           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
736   }
737   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
738   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
739   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
740   // Force emission of the firstprivate copy if the directive does not emit
741   // outlined function, like omp for, omp simd, omp distribute etc.
742   bool MustEmitFirstprivateCopy =
743       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
744   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
745     auto IRef = C->varlist_begin();
746     auto InitsRef = C->inits().begin();
747     for (const Expr *IInit : C->private_copies()) {
748       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
749       bool ThisFirstprivateIsLastprivate =
750           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
751       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
752       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
753           !FD->getType()->isReferenceType()) {
754         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
755         ++IRef;
756         ++InitsRef;
757         continue;
758       }
759       FirstprivateIsLastprivate =
760           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
761       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
762         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
763         const auto *VDInit =
764             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
765         bool IsRegistered;
766         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
767                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
768                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
769         LValue OriginalLVal = EmitLValue(&DRE);
770         QualType Type = VD->getType();
771         if (Type->isArrayType()) {
772           // Emit VarDecl with copy init for arrays.
773           // Get the address of the original variable captured in current
774           // captured region.
775           IsRegistered = PrivateScope.addPrivate(
776               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
777                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
778                 const Expr *Init = VD->getInit();
779                 if (!isa<CXXConstructExpr>(Init) ||
780                     isTrivialInitializer(Init)) {
781                   // Perform simple memcpy.
782                   LValue Dest =
783                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
784                   EmitAggregateAssign(Dest, OriginalLVal, Type);
785                 } else {
786                   EmitOMPAggregateAssign(
787                       Emission.getAllocatedAddress(), OriginalLVal.getAddress(),
788                       Type,
789                       [this, VDInit, Init](Address DestElement,
790                                            Address SrcElement) {
791                         // Clean up any temporaries needed by the
792                         // initialization.
793                         RunCleanupsScope InitScope(*this);
794                         // Emit initialization for single element.
795                         setAddrOfLocalVar(VDInit, SrcElement);
796                         EmitAnyExprToMem(Init, DestElement,
797                                          Init->getType().getQualifiers(),
798                                          /*IsInitializer*/ false);
799                         LocalDeclMap.erase(VDInit);
800                       });
801                 }
802                 EmitAutoVarCleanups(Emission);
803                 return Emission.getAllocatedAddress();
804               });
805         } else {
806           Address OriginalAddr = OriginalLVal.getAddress();
807           IsRegistered = PrivateScope.addPrivate(
808               OrigVD, [this, VDInit, OriginalAddr, VD]() {
809                 // Emit private VarDecl with copy init.
810                 // Remap temp VDInit variable to the address of the original
811                 // variable (for proper handling of captured global variables).
812                 setAddrOfLocalVar(VDInit, OriginalAddr);
813                 EmitDecl(*VD);
814                 LocalDeclMap.erase(VDInit);
815                 return GetAddrOfLocalVar(VD);
816               });
817         }
818         assert(IsRegistered &&
819                "firstprivate var already registered as private");
820         // Silence the warning about unused variable.
821         (void)IsRegistered;
822       }
823       ++IRef;
824       ++InitsRef;
825     }
826   }
827   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
828 }
829 
830 void CodeGenFunction::EmitOMPPrivateClause(
831     const OMPExecutableDirective &D,
832     CodeGenFunction::OMPPrivateScope &PrivateScope) {
833   if (!HaveInsertPoint())
834     return;
835   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
836   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
837     auto IRef = C->varlist_begin();
838     for (const Expr *IInit : C->private_copies()) {
839       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
840       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
841         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
842         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
843           // Emit private VarDecl with copy init.
844           EmitDecl(*VD);
845           return GetAddrOfLocalVar(VD);
846         });
847         assert(IsRegistered && "private var already registered as private");
848         // Silence the warning about unused variable.
849         (void)IsRegistered;
850       }
851       ++IRef;
852     }
853   }
854 }
855 
856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
857   if (!HaveInsertPoint())
858     return false;
859   // threadprivate_var1 = master_threadprivate_var1;
860   // operator=(threadprivate_var2, master_threadprivate_var2);
861   // ...
862   // __kmpc_barrier(&loc, global_tid);
863   llvm::DenseSet<const VarDecl *> CopiedVars;
864   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
865   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
866     auto IRef = C->varlist_begin();
867     auto ISrcRef = C->source_exprs().begin();
868     auto IDestRef = C->destination_exprs().begin();
869     for (const Expr *AssignOp : C->assignment_ops()) {
870       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
871       QualType Type = VD->getType();
872       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
873         // Get the address of the master variable. If we are emitting code with
874         // TLS support, the address is passed from the master as field in the
875         // captured declaration.
876         Address MasterAddr = Address::invalid();
877         if (getLangOpts().OpenMPUseTLS &&
878             getContext().getTargetInfo().isTLSSupported()) {
879           assert(CapturedStmtInfo->lookup(VD) &&
880                  "Copyin threadprivates should have been captured!");
881           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
882                           VK_LValue, (*IRef)->getExprLoc());
883           MasterAddr = EmitLValue(&DRE).getAddress();
884           LocalDeclMap.erase(VD);
885         } else {
886           MasterAddr =
887             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
888                                         : CGM.GetAddrOfGlobal(VD),
889                     getContext().getDeclAlign(VD));
890         }
891         // Get the address of the threadprivate variable.
892         Address PrivateAddr = EmitLValue(*IRef).getAddress();
893         if (CopiedVars.size() == 1) {
894           // At first check if current thread is a master thread. If it is, no
895           // need to copy data.
896           CopyBegin = createBasicBlock("copyin.not.master");
897           CopyEnd = createBasicBlock("copyin.not.master.end");
898           Builder.CreateCondBr(
899               Builder.CreateICmpNE(
900                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
901                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
902                                          CGM.IntPtrTy)),
903               CopyBegin, CopyEnd);
904           EmitBlock(CopyBegin);
905         }
906         const auto *SrcVD =
907             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
908         const auto *DestVD =
909             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
910         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
911       }
912       ++IRef;
913       ++ISrcRef;
914       ++IDestRef;
915     }
916   }
917   if (CopyEnd) {
918     // Exit out of copying procedure for non-master thread.
919     EmitBlock(CopyEnd, /*IsFinished=*/true);
920     return true;
921   }
922   return false;
923 }
924 
925 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
926     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
927   if (!HaveInsertPoint())
928     return false;
929   bool HasAtLeastOneLastprivate = false;
930   llvm::DenseSet<const VarDecl *> SIMDLCVs;
931   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
932     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
933     for (const Expr *C : LoopDirective->counters()) {
934       SIMDLCVs.insert(
935           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
936     }
937   }
938   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
939   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
940     HasAtLeastOneLastprivate = true;
941     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
942         !getLangOpts().OpenMPSimd)
943       break;
944     auto IRef = C->varlist_begin();
945     auto IDestRef = C->destination_exprs().begin();
946     for (const Expr *IInit : C->private_copies()) {
947       // Keep the address of the original variable for future update at the end
948       // of the loop.
949       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
950       // Taskloops do not require additional initialization, it is done in
951       // runtime support library.
952       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
953         const auto *DestVD =
954             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
955         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
956           DeclRefExpr DRE(
957               const_cast<VarDecl *>(OrigVD),
958               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
959                   OrigVD) != nullptr,
960               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
961           return EmitLValue(&DRE).getAddress();
962         });
963         // Check if the variable is also a firstprivate: in this case IInit is
964         // not generated. Initialization of this variable will happen in codegen
965         // for 'firstprivate' clause.
966         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
967           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
968           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
969             // Emit private VarDecl with copy init.
970             EmitDecl(*VD);
971             return GetAddrOfLocalVar(VD);
972           });
973           assert(IsRegistered &&
974                  "lastprivate var already registered as private");
975           (void)IsRegistered;
976         }
977       }
978       ++IRef;
979       ++IDestRef;
980     }
981   }
982   return HasAtLeastOneLastprivate;
983 }
984 
985 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
986     const OMPExecutableDirective &D, bool NoFinals,
987     llvm::Value *IsLastIterCond) {
988   if (!HaveInsertPoint())
989     return;
990   // Emit following code:
991   // if (<IsLastIterCond>) {
992   //   orig_var1 = private_orig_var1;
993   //   ...
994   //   orig_varn = private_orig_varn;
995   // }
996   llvm::BasicBlock *ThenBB = nullptr;
997   llvm::BasicBlock *DoneBB = nullptr;
998   if (IsLastIterCond) {
999     ThenBB = createBasicBlock(".omp.lastprivate.then");
1000     DoneBB = createBasicBlock(".omp.lastprivate.done");
1001     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1002     EmitBlock(ThenBB);
1003   }
1004   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1005   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1006   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1007     auto IC = LoopDirective->counters().begin();
1008     for (const Expr *F : LoopDirective->finals()) {
1009       const auto *D =
1010           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1011       if (NoFinals)
1012         AlreadyEmittedVars.insert(D);
1013       else
1014         LoopCountersAndUpdates[D] = F;
1015       ++IC;
1016     }
1017   }
1018   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1019     auto IRef = C->varlist_begin();
1020     auto ISrcRef = C->source_exprs().begin();
1021     auto IDestRef = C->destination_exprs().begin();
1022     for (const Expr *AssignOp : C->assignment_ops()) {
1023       const auto *PrivateVD =
1024           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1025       QualType Type = PrivateVD->getType();
1026       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1027       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1028         // If lastprivate variable is a loop control variable for loop-based
1029         // directive, update its value before copyin back to original
1030         // variable.
1031         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1032           EmitIgnoredExpr(FinalExpr);
1033         const auto *SrcVD =
1034             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1035         const auto *DestVD =
1036             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1037         // Get the address of the original variable.
1038         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1039         // Get the address of the private variable.
1040         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1041         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1042           PrivateAddr =
1043               Address(Builder.CreateLoad(PrivateAddr),
1044                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1045         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1046       }
1047       ++IRef;
1048       ++ISrcRef;
1049       ++IDestRef;
1050     }
1051     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1052       EmitIgnoredExpr(PostUpdate);
1053   }
1054   if (IsLastIterCond)
1055     EmitBlock(DoneBB, /*IsFinished=*/true);
1056 }
1057 
1058 void CodeGenFunction::EmitOMPReductionClauseInit(
1059     const OMPExecutableDirective &D,
1060     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1061   if (!HaveInsertPoint())
1062     return;
1063   SmallVector<const Expr *, 4> Shareds;
1064   SmallVector<const Expr *, 4> Privates;
1065   SmallVector<const Expr *, 4> ReductionOps;
1066   SmallVector<const Expr *, 4> LHSs;
1067   SmallVector<const Expr *, 4> RHSs;
1068   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1069     auto IPriv = C->privates().begin();
1070     auto IRed = C->reduction_ops().begin();
1071     auto ILHS = C->lhs_exprs().begin();
1072     auto IRHS = C->rhs_exprs().begin();
1073     for (const Expr *Ref : C->varlists()) {
1074       Shareds.emplace_back(Ref);
1075       Privates.emplace_back(*IPriv);
1076       ReductionOps.emplace_back(*IRed);
1077       LHSs.emplace_back(*ILHS);
1078       RHSs.emplace_back(*IRHS);
1079       std::advance(IPriv, 1);
1080       std::advance(IRed, 1);
1081       std::advance(ILHS, 1);
1082       std::advance(IRHS, 1);
1083     }
1084   }
1085   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1086   unsigned Count = 0;
1087   auto ILHS = LHSs.begin();
1088   auto IRHS = RHSs.begin();
1089   auto IPriv = Privates.begin();
1090   for (const Expr *IRef : Shareds) {
1091     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1092     // Emit private VarDecl with reduction init.
1093     RedCG.emitSharedLValue(*this, Count);
1094     RedCG.emitAggregateType(*this, Count);
1095     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1096     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1097                              RedCG.getSharedLValue(Count),
1098                              [&Emission](CodeGenFunction &CGF) {
1099                                CGF.EmitAutoVarInit(Emission);
1100                                return true;
1101                              });
1102     EmitAutoVarCleanups(Emission);
1103     Address BaseAddr = RedCG.adjustPrivateAddress(
1104         *this, Count, Emission.getAllocatedAddress());
1105     bool IsRegistered = PrivateScope.addPrivate(
1106         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1107     assert(IsRegistered && "private var already registered as private");
1108     // Silence the warning about unused variable.
1109     (void)IsRegistered;
1110 
1111     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1112     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1113     QualType Type = PrivateVD->getType();
1114     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1115     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1116       // Store the address of the original variable associated with the LHS
1117       // implicit variable.
1118       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1119         return RedCG.getSharedLValue(Count).getAddress();
1120       });
1121       PrivateScope.addPrivate(
1122           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1123     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1124                isa<ArraySubscriptExpr>(IRef)) {
1125       // Store the address of the original variable associated with the LHS
1126       // implicit variable.
1127       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1128         return RedCG.getSharedLValue(Count).getAddress();
1129       });
1130       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1131         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1132                                             ConvertTypeForMem(RHSVD->getType()),
1133                                             "rhs.begin");
1134       });
1135     } else {
1136       QualType Type = PrivateVD->getType();
1137       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1138       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1139       // Store the address of the original variable associated with the LHS
1140       // implicit variable.
1141       if (IsArray) {
1142         OriginalAddr = Builder.CreateElementBitCast(
1143             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1144       }
1145       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1146       PrivateScope.addPrivate(
1147           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1148             return IsArray
1149                        ? Builder.CreateElementBitCast(
1150                              GetAddrOfLocalVar(PrivateVD),
1151                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1152                        : GetAddrOfLocalVar(PrivateVD);
1153           });
1154     }
1155     ++ILHS;
1156     ++IRHS;
1157     ++IPriv;
1158     ++Count;
1159   }
1160 }
1161 
1162 void CodeGenFunction::EmitOMPReductionClauseFinal(
1163     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1164   if (!HaveInsertPoint())
1165     return;
1166   llvm::SmallVector<const Expr *, 8> Privates;
1167   llvm::SmallVector<const Expr *, 8> LHSExprs;
1168   llvm::SmallVector<const Expr *, 8> RHSExprs;
1169   llvm::SmallVector<const Expr *, 8> ReductionOps;
1170   bool HasAtLeastOneReduction = false;
1171   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1172     HasAtLeastOneReduction = true;
1173     Privates.append(C->privates().begin(), C->privates().end());
1174     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1175     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1176     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1177   }
1178   if (HasAtLeastOneReduction) {
1179     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1180                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1181                       ReductionKind == OMPD_simd;
1182     bool SimpleReduction = ReductionKind == OMPD_simd;
1183     // Emit nowait reduction if nowait clause is present or directive is a
1184     // parallel directive (it always has implicit barrier).
1185     CGM.getOpenMPRuntime().emitReduction(
1186         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1187         {WithNowait, SimpleReduction, ReductionKind});
1188   }
1189 }
1190 
1191 static void emitPostUpdateForReductionClause(
1192     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1193     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1194   if (!CGF.HaveInsertPoint())
1195     return;
1196   llvm::BasicBlock *DoneBB = nullptr;
1197   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1198     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1199       if (!DoneBB) {
1200         if (llvm::Value *Cond = CondGen(CGF)) {
1201           // If the first post-update expression is found, emit conditional
1202           // block if it was requested.
1203           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1204           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1205           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1206           CGF.EmitBlock(ThenBB);
1207         }
1208       }
1209       CGF.EmitIgnoredExpr(PostUpdate);
1210     }
1211   }
1212   if (DoneBB)
1213     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1214 }
1215 
1216 namespace {
1217 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1218 /// parallel function. This is necessary for combined constructs such as
1219 /// 'distribute parallel for'
1220 typedef llvm::function_ref<void(CodeGenFunction &,
1221                                 const OMPExecutableDirective &,
1222                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1223     CodeGenBoundParametersTy;
1224 } // anonymous namespace
1225 
1226 static void emitCommonOMPParallelDirective(
1227     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1228     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1229     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1230   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1231   llvm::Value *OutlinedFn =
1232       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1233           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1234   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1235     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1236     llvm::Value *NumThreads =
1237         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1238                            /*IgnoreResultAssign=*/true);
1239     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1240         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1241   }
1242   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1243     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1244     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1245         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1246   }
1247   const Expr *IfCond = nullptr;
1248   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1249     if (C->getNameModifier() == OMPD_unknown ||
1250         C->getNameModifier() == OMPD_parallel) {
1251       IfCond = C->getCondition();
1252       break;
1253     }
1254   }
1255 
1256   OMPParallelScope Scope(CGF, S);
1257   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1258   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1259   // lower and upper bounds with the pragma 'for' chunking mechanism.
1260   // The following lambda takes care of appending the lower and upper bound
1261   // parameters when necessary
1262   CodeGenBoundParameters(CGF, S, CapturedVars);
1263   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1264   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1265                                               CapturedVars, IfCond);
1266 }
1267 
1268 static void emitEmptyBoundParameters(CodeGenFunction &,
1269                                      const OMPExecutableDirective &,
1270                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1271 
1272 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1273   // Emit parallel region as a standalone region.
1274   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1275     Action.Enter(CGF);
1276     OMPPrivateScope PrivateScope(CGF);
1277     bool Copyins = CGF.EmitOMPCopyinClause(S);
1278     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1279     if (Copyins) {
1280       // Emit implicit barrier to synchronize threads and avoid data races on
1281       // propagation master's thread values of threadprivate variables to local
1282       // instances of that variables of all other implicit threads.
1283       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1284           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1285           /*ForceSimpleCall=*/true);
1286     }
1287     CGF.EmitOMPPrivateClause(S, PrivateScope);
1288     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1289     (void)PrivateScope.Privatize();
1290     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1291     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1292   };
1293   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1294                                  emitEmptyBoundParameters);
1295   emitPostUpdateForReductionClause(*this, S,
1296                                    [](CodeGenFunction &) { return nullptr; });
1297 }
1298 
1299 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1300                                       JumpDest LoopExit) {
1301   RunCleanupsScope BodyScope(*this);
1302   // Update counters values on current iteration.
1303   for (const Expr *UE : D.updates())
1304     EmitIgnoredExpr(UE);
1305   // Update the linear variables.
1306   // In distribute directives only loop counters may be marked as linear, no
1307   // need to generate the code for them.
1308   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1309     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1310       for (const Expr *UE : C->updates())
1311         EmitIgnoredExpr(UE);
1312     }
1313   }
1314 
1315   // On a continue in the body, jump to the end.
1316   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1317   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1318   // Emit loop body.
1319   EmitStmt(D.getBody());
1320   // The end (updates/cleanups).
1321   EmitBlock(Continue.getBlock());
1322   BreakContinueStack.pop_back();
1323 }
1324 
1325 void CodeGenFunction::EmitOMPInnerLoop(
1326     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1327     const Expr *IncExpr,
1328     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1329     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1330   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1331 
1332   // Start the loop with a block that tests the condition.
1333   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1334   EmitBlock(CondBlock);
1335   const SourceRange R = S.getSourceRange();
1336   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1337                  SourceLocToDebugLoc(R.getEnd()));
1338 
1339   // If there are any cleanups between here and the loop-exit scope,
1340   // create a block to stage a loop exit along.
1341   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1342   if (RequiresCleanup)
1343     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1344 
1345   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1346 
1347   // Emit condition.
1348   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1349   if (ExitBlock != LoopExit.getBlock()) {
1350     EmitBlock(ExitBlock);
1351     EmitBranchThroughCleanup(LoopExit);
1352   }
1353 
1354   EmitBlock(LoopBody);
1355   incrementProfileCounter(&S);
1356 
1357   // Create a block for the increment.
1358   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1359   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1360 
1361   BodyGen(*this);
1362 
1363   // Emit "IV = IV + 1" and a back-edge to the condition block.
1364   EmitBlock(Continue.getBlock());
1365   EmitIgnoredExpr(IncExpr);
1366   PostIncGen(*this);
1367   BreakContinueStack.pop_back();
1368   EmitBranch(CondBlock);
1369   LoopStack.pop();
1370   // Emit the fall-through block.
1371   EmitBlock(LoopExit.getBlock());
1372 }
1373 
1374 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1375   if (!HaveInsertPoint())
1376     return false;
1377   // Emit inits for the linear variables.
1378   bool HasLinears = false;
1379   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1380     for (const Expr *Init : C->inits()) {
1381       HasLinears = true;
1382       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1383       if (const auto *Ref =
1384               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1385         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1386         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1387         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1388                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1389                         VD->getInit()->getType(), VK_LValue,
1390                         VD->getInit()->getExprLoc());
1391         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1392                                                 VD->getType()),
1393                        /*capturedByInit=*/false);
1394         EmitAutoVarCleanups(Emission);
1395       } else {
1396         EmitVarDecl(*VD);
1397       }
1398     }
1399     // Emit the linear steps for the linear clauses.
1400     // If a step is not constant, it is pre-calculated before the loop.
1401     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1402       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1403         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1404         // Emit calculation of the linear step.
1405         EmitIgnoredExpr(CS);
1406       }
1407   }
1408   return HasLinears;
1409 }
1410 
1411 void CodeGenFunction::EmitOMPLinearClauseFinal(
1412     const OMPLoopDirective &D,
1413     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1414   if (!HaveInsertPoint())
1415     return;
1416   llvm::BasicBlock *DoneBB = nullptr;
1417   // Emit the final values of the linear variables.
1418   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1419     auto IC = C->varlist_begin();
1420     for (const Expr *F : C->finals()) {
1421       if (!DoneBB) {
1422         if (llvm::Value *Cond = CondGen(*this)) {
1423           // If the first post-update expression is found, emit conditional
1424           // block if it was requested.
1425           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1426           DoneBB = createBasicBlock(".omp.linear.pu.done");
1427           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1428           EmitBlock(ThenBB);
1429         }
1430       }
1431       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1432       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1433                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1434                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1435       Address OrigAddr = EmitLValue(&DRE).getAddress();
1436       CodeGenFunction::OMPPrivateScope VarScope(*this);
1437       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1438       (void)VarScope.Privatize();
1439       EmitIgnoredExpr(F);
1440       ++IC;
1441     }
1442     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1443       EmitIgnoredExpr(PostUpdate);
1444   }
1445   if (DoneBB)
1446     EmitBlock(DoneBB, /*IsFinished=*/true);
1447 }
1448 
1449 static void emitAlignedClause(CodeGenFunction &CGF,
1450                               const OMPExecutableDirective &D) {
1451   if (!CGF.HaveInsertPoint())
1452     return;
1453   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1454     unsigned ClauseAlignment = 0;
1455     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1456       auto *AlignmentCI =
1457           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1458       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1459     }
1460     for (const Expr *E : Clause->varlists()) {
1461       unsigned Alignment = ClauseAlignment;
1462       if (Alignment == 0) {
1463         // OpenMP [2.8.1, Description]
1464         // If no optional parameter is specified, implementation-defined default
1465         // alignments for SIMD instructions on the target platforms are assumed.
1466         Alignment =
1467             CGF.getContext()
1468                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1469                     E->getType()->getPointeeType()))
1470                 .getQuantity();
1471       }
1472       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1473              "alignment is not power of 2");
1474       if (Alignment != 0) {
1475         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1476         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1477       }
1478     }
1479   }
1480 }
1481 
1482 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1483     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1484   if (!HaveInsertPoint())
1485     return;
1486   auto I = S.private_counters().begin();
1487   for (const Expr *E : S.counters()) {
1488     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1489     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1490     // Emit var without initialization.
1491     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1492     EmitAutoVarCleanups(VarEmission);
1493     LocalDeclMap.erase(PrivateVD);
1494     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1495       return VarEmission.getAllocatedAddress();
1496     });
1497     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1498         VD->hasGlobalStorage()) {
1499       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1500         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1501                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1502                         E->getType(), VK_LValue, E->getExprLoc());
1503         return EmitLValue(&DRE).getAddress();
1504       });
1505     } else {
1506       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1507         return VarEmission.getAllocatedAddress();
1508       });
1509     }
1510     ++I;
1511   }
1512   // Privatize extra loop counters used in loops for ordered(n) clauses.
1513   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
1514     if (!C->getNumForLoops())
1515       continue;
1516     for (unsigned I = S.getCollapsedNumber(),
1517                   E = C->getLoopNumIterations().size();
1518          I < E; ++I) {
1519       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
1520       const auto *VD = cast<VarDecl>(DRE->getDecl());
1521       // Override only those variables that are really emitted already.
1522       if (LocalDeclMap.count(VD)) {
1523         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
1524           return CreateMemTemp(DRE->getType(), VD->getName());
1525         });
1526       }
1527     }
1528   }
1529 }
1530 
1531 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1532                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1533                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1534   if (!CGF.HaveInsertPoint())
1535     return;
1536   {
1537     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1538     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1539     (void)PreCondScope.Privatize();
1540     // Get initial values of real counters.
1541     for (const Expr *I : S.inits()) {
1542       CGF.EmitIgnoredExpr(I);
1543     }
1544   }
1545   // Check that loop is executed at least one time.
1546   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1547 }
1548 
1549 void CodeGenFunction::EmitOMPLinearClause(
1550     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1551   if (!HaveInsertPoint())
1552     return;
1553   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1554   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1555     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1556     for (const Expr *C : LoopDirective->counters()) {
1557       SIMDLCVs.insert(
1558           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1559     }
1560   }
1561   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1562     auto CurPrivate = C->privates().begin();
1563     for (const Expr *E : C->varlists()) {
1564       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1565       const auto *PrivateVD =
1566           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1567       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1568         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1569           // Emit private VarDecl with copy init.
1570           EmitVarDecl(*PrivateVD);
1571           return GetAddrOfLocalVar(PrivateVD);
1572         });
1573         assert(IsRegistered && "linear var already registered as private");
1574         // Silence the warning about unused variable.
1575         (void)IsRegistered;
1576       } else {
1577         EmitVarDecl(*PrivateVD);
1578       }
1579       ++CurPrivate;
1580     }
1581   }
1582 }
1583 
1584 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1585                                      const OMPExecutableDirective &D,
1586                                      bool IsMonotonic) {
1587   if (!CGF.HaveInsertPoint())
1588     return;
1589   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1590     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1591                                  /*ignoreResult=*/true);
1592     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1593     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1594     // In presence of finite 'safelen', it may be unsafe to mark all
1595     // the memory instructions parallel, because loop-carried
1596     // dependences of 'safelen' iterations are possible.
1597     if (!IsMonotonic)
1598       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1599   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1600     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1601                                  /*ignoreResult=*/true);
1602     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1603     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1604     // In presence of finite 'safelen', it may be unsafe to mark all
1605     // the memory instructions parallel, because loop-carried
1606     // dependences of 'safelen' iterations are possible.
1607     CGF.LoopStack.setParallel(/*Enable=*/false);
1608   }
1609 }
1610 
1611 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1612                                       bool IsMonotonic) {
1613   // Walk clauses and process safelen/lastprivate.
1614   LoopStack.setParallel(!IsMonotonic);
1615   LoopStack.setVectorizeEnable();
1616   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1617 }
1618 
1619 void CodeGenFunction::EmitOMPSimdFinal(
1620     const OMPLoopDirective &D,
1621     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1622   if (!HaveInsertPoint())
1623     return;
1624   llvm::BasicBlock *DoneBB = nullptr;
1625   auto IC = D.counters().begin();
1626   auto IPC = D.private_counters().begin();
1627   for (const Expr *F : D.finals()) {
1628     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1629     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1630     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1631     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1632         OrigVD->hasGlobalStorage() || CED) {
1633       if (!DoneBB) {
1634         if (llvm::Value *Cond = CondGen(*this)) {
1635           // If the first post-update expression is found, emit conditional
1636           // block if it was requested.
1637           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1638           DoneBB = createBasicBlock(".omp.final.done");
1639           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1640           EmitBlock(ThenBB);
1641         }
1642       }
1643       Address OrigAddr = Address::invalid();
1644       if (CED) {
1645         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1646       } else {
1647         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1648                         /*RefersToEnclosingVariableOrCapture=*/false,
1649                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1650         OrigAddr = EmitLValue(&DRE).getAddress();
1651       }
1652       OMPPrivateScope VarScope(*this);
1653       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1654       (void)VarScope.Privatize();
1655       EmitIgnoredExpr(F);
1656     }
1657     ++IC;
1658     ++IPC;
1659   }
1660   if (DoneBB)
1661     EmitBlock(DoneBB, /*IsFinished=*/true);
1662 }
1663 
1664 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1665                                          const OMPLoopDirective &S,
1666                                          CodeGenFunction::JumpDest LoopExit) {
1667   CGF.EmitOMPLoopBody(S, LoopExit);
1668   CGF.EmitStopPoint(&S);
1669 }
1670 
1671 /// Emit a helper variable and return corresponding lvalue.
1672 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1673                                const DeclRefExpr *Helper) {
1674   auto VDecl = cast<VarDecl>(Helper->getDecl());
1675   CGF.EmitVarDecl(*VDecl);
1676   return CGF.EmitLValue(Helper);
1677 }
1678 
1679 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
1680                               PrePostActionTy &Action) {
1681   Action.Enter(CGF);
1682   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
1683          "Expected simd directive");
1684   OMPLoopScope PreInitScope(CGF, S);
1685   // if (PreCond) {
1686   //   for (IV in 0..LastIteration) BODY;
1687   //   <Final counter/linear vars updates>;
1688   // }
1689   //
1690   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
1691       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
1692       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
1693     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1694     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1695   }
1696 
1697   // Emit: if (PreCond) - begin.
1698   // If the condition constant folds and can be elided, avoid emitting the
1699   // whole loop.
1700   bool CondConstant;
1701   llvm::BasicBlock *ContBlock = nullptr;
1702   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1703     if (!CondConstant)
1704       return;
1705   } else {
1706     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
1707     ContBlock = CGF.createBasicBlock("simd.if.end");
1708     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1709                 CGF.getProfileCount(&S));
1710     CGF.EmitBlock(ThenBlock);
1711     CGF.incrementProfileCounter(&S);
1712   }
1713 
1714   // Emit the loop iteration variable.
1715   const Expr *IVExpr = S.getIterationVariable();
1716   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1717   CGF.EmitVarDecl(*IVDecl);
1718   CGF.EmitIgnoredExpr(S.getInit());
1719 
1720   // Emit the iterations count variable.
1721   // If it is not a variable, Sema decided to calculate iterations count on
1722   // each iteration (e.g., it is foldable into a constant).
1723   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1724     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1725     // Emit calculation of the iterations count.
1726     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1727   }
1728 
1729   CGF.EmitOMPSimdInit(S);
1730 
1731   emitAlignedClause(CGF, S);
1732   (void)CGF.EmitOMPLinearClauseInit(S);
1733   {
1734     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1735     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1736     CGF.EmitOMPLinearClause(S, LoopScope);
1737     CGF.EmitOMPPrivateClause(S, LoopScope);
1738     CGF.EmitOMPReductionClauseInit(S, LoopScope);
1739     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1740     (void)LoopScope.Privatize();
1741     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
1742       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
1743     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1744                          S.getInc(),
1745                          [&S](CodeGenFunction &CGF) {
1746                            CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
1747                            CGF.EmitStopPoint(&S);
1748                          },
1749                          [](CodeGenFunction &) {});
1750     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
1751     // Emit final copy of the lastprivate variables at the end of loops.
1752     if (HasLastprivateClause)
1753       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1754     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1755     emitPostUpdateForReductionClause(CGF, S,
1756                                      [](CodeGenFunction &) { return nullptr; });
1757   }
1758   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
1759   // Emit: if (PreCond) - end.
1760   if (ContBlock) {
1761     CGF.EmitBranch(ContBlock);
1762     CGF.EmitBlock(ContBlock, true);
1763   }
1764 }
1765 
1766 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1767   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1768     emitOMPSimdRegion(CGF, S, Action);
1769   };
1770   OMPLexicalScope Scope(*this, S, OMPD_unknown);
1771   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1772 }
1773 
1774 void CodeGenFunction::EmitOMPOuterLoop(
1775     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1776     CodeGenFunction::OMPPrivateScope &LoopScope,
1777     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1778     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1779     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1780   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1781 
1782   const Expr *IVExpr = S.getIterationVariable();
1783   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1784   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1785 
1786   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1787 
1788   // Start the loop with a block that tests the condition.
1789   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
1790   EmitBlock(CondBlock);
1791   const SourceRange R = S.getSourceRange();
1792   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1793                  SourceLocToDebugLoc(R.getEnd()));
1794 
1795   llvm::Value *BoolCondVal = nullptr;
1796   if (!DynamicOrOrdered) {
1797     // UB = min(UB, GlobalUB) or
1798     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1799     // 'distribute parallel for')
1800     EmitIgnoredExpr(LoopArgs.EUB);
1801     // IV = LB
1802     EmitIgnoredExpr(LoopArgs.Init);
1803     // IV < UB
1804     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1805   } else {
1806     BoolCondVal =
1807         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
1808                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1809   }
1810 
1811   // If there are any cleanups between here and the loop-exit scope,
1812   // create a block to stage a loop exit along.
1813   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1814   if (LoopScope.requiresCleanups())
1815     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1816 
1817   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
1818   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1819   if (ExitBlock != LoopExit.getBlock()) {
1820     EmitBlock(ExitBlock);
1821     EmitBranchThroughCleanup(LoopExit);
1822   }
1823   EmitBlock(LoopBody);
1824 
1825   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1826   // LB for loop condition and emitted it above).
1827   if (DynamicOrOrdered)
1828     EmitIgnoredExpr(LoopArgs.Init);
1829 
1830   // Create a block for the increment.
1831   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1832   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1833 
1834   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1835   // with dynamic/guided scheduling and without ordered clause.
1836   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1837     LoopStack.setParallel(!IsMonotonic);
1838   else
1839     EmitOMPSimdInit(S, IsMonotonic);
1840 
1841   SourceLocation Loc = S.getBeginLoc();
1842 
1843   // when 'distribute' is not combined with a 'for':
1844   // while (idx <= UB) { BODY; ++idx; }
1845   // when 'distribute' is combined with a 'for'
1846   // (e.g. 'distribute parallel for')
1847   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1848   EmitOMPInnerLoop(
1849       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1850       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1851         CodeGenLoop(CGF, S, LoopExit);
1852       },
1853       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1854         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1855       });
1856 
1857   EmitBlock(Continue.getBlock());
1858   BreakContinueStack.pop_back();
1859   if (!DynamicOrOrdered) {
1860     // Emit "LB = LB + Stride", "UB = UB + Stride".
1861     EmitIgnoredExpr(LoopArgs.NextLB);
1862     EmitIgnoredExpr(LoopArgs.NextUB);
1863   }
1864 
1865   EmitBranch(CondBlock);
1866   LoopStack.pop();
1867   // Emit the fall-through block.
1868   EmitBlock(LoopExit.getBlock());
1869 
1870   // Tell the runtime we are done.
1871   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1872     if (!DynamicOrOrdered)
1873       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
1874                                                      S.getDirectiveKind());
1875   };
1876   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1877 }
1878 
1879 void CodeGenFunction::EmitOMPForOuterLoop(
1880     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1881     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1882     const OMPLoopArguments &LoopArgs,
1883     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1884   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1885 
1886   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1887   const bool DynamicOrOrdered =
1888       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1889 
1890   assert((Ordered ||
1891           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1892                                  LoopArgs.Chunk != nullptr)) &&
1893          "static non-chunked schedule does not need outer loop");
1894 
1895   // Emit outer loop.
1896   //
1897   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1898   // When schedule(dynamic,chunk_size) is specified, the iterations are
1899   // distributed to threads in the team in chunks as the threads request them.
1900   // Each thread executes a chunk of iterations, then requests another chunk,
1901   // until no chunks remain to be distributed. Each chunk contains chunk_size
1902   // iterations, except for the last chunk to be distributed, which may have
1903   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1904   //
1905   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1906   // to threads in the team in chunks as the executing threads request them.
1907   // Each thread executes a chunk of iterations, then requests another chunk,
1908   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1909   // each chunk is proportional to the number of unassigned iterations divided
1910   // by the number of threads in the team, decreasing to 1. For a chunk_size
1911   // with value k (greater than 1), the size of each chunk is determined in the
1912   // same way, with the restriction that the chunks do not contain fewer than k
1913   // iterations (except for the last chunk to be assigned, which may have fewer
1914   // than k iterations).
1915   //
1916   // When schedule(auto) is specified, the decision regarding scheduling is
1917   // delegated to the compiler and/or runtime system. The programmer gives the
1918   // implementation the freedom to choose any possible mapping of iterations to
1919   // threads in the team.
1920   //
1921   // When schedule(runtime) is specified, the decision regarding scheduling is
1922   // deferred until run time, and the schedule and chunk size are taken from the
1923   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1924   // implementation defined
1925   //
1926   // while(__kmpc_dispatch_next(&LB, &UB)) {
1927   //   idx = LB;
1928   //   while (idx <= UB) { BODY; ++idx;
1929   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1930   //   } // inner loop
1931   // }
1932   //
1933   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1934   // When schedule(static, chunk_size) is specified, iterations are divided into
1935   // chunks of size chunk_size, and the chunks are assigned to the threads in
1936   // the team in a round-robin fashion in the order of the thread number.
1937   //
1938   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1939   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1940   //   LB = LB + ST;
1941   //   UB = UB + ST;
1942   // }
1943   //
1944 
1945   const Expr *IVExpr = S.getIterationVariable();
1946   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1947   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1948 
1949   if (DynamicOrOrdered) {
1950     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
1951         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
1952     llvm::Value *LBVal = DispatchBounds.first;
1953     llvm::Value *UBVal = DispatchBounds.second;
1954     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
1955                                                              LoopArgs.Chunk};
1956     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
1957                            IVSigned, Ordered, DipatchRTInputValues);
1958   } else {
1959     CGOpenMPRuntime::StaticRTInput StaticInit(
1960         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
1961         LoopArgs.ST, LoopArgs.Chunk);
1962     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
1963                          ScheduleKind, StaticInit);
1964   }
1965 
1966   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
1967                                     const unsigned IVSize,
1968                                     const bool IVSigned) {
1969     if (Ordered) {
1970       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
1971                                                             IVSigned);
1972     }
1973   };
1974 
1975   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
1976                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
1977   OuterLoopArgs.IncExpr = S.getInc();
1978   OuterLoopArgs.Init = S.getInit();
1979   OuterLoopArgs.Cond = S.getCond();
1980   OuterLoopArgs.NextLB = S.getNextLowerBound();
1981   OuterLoopArgs.NextUB = S.getNextUpperBound();
1982   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
1983                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
1984 }
1985 
1986 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
1987                              const unsigned IVSize, const bool IVSigned) {}
1988 
1989 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1990     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
1991     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
1992     const CodeGenLoopTy &CodeGenLoopContent) {
1993 
1994   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1995 
1996   // Emit outer loop.
1997   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1998   // dynamic
1999   //
2000 
2001   const Expr *IVExpr = S.getIterationVariable();
2002   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2003   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2004 
2005   CGOpenMPRuntime::StaticRTInput StaticInit(
2006       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2007       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2008   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2009 
2010   // for combined 'distribute' and 'for' the increment expression of distribute
2011   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2012   Expr *IncExpr;
2013   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2014     IncExpr = S.getDistInc();
2015   else
2016     IncExpr = S.getInc();
2017 
2018   // this routine is shared by 'omp distribute parallel for' and
2019   // 'omp distribute': select the right EUB expression depending on the
2020   // directive
2021   OMPLoopArguments OuterLoopArgs;
2022   OuterLoopArgs.LB = LoopArgs.LB;
2023   OuterLoopArgs.UB = LoopArgs.UB;
2024   OuterLoopArgs.ST = LoopArgs.ST;
2025   OuterLoopArgs.IL = LoopArgs.IL;
2026   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2027   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2028                           ? S.getCombinedEnsureUpperBound()
2029                           : S.getEnsureUpperBound();
2030   OuterLoopArgs.IncExpr = IncExpr;
2031   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2032                            ? S.getCombinedInit()
2033                            : S.getInit();
2034   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2035                            ? S.getCombinedCond()
2036                            : S.getCond();
2037   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2038                              ? S.getCombinedNextLowerBound()
2039                              : S.getNextLowerBound();
2040   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2041                              ? S.getCombinedNextUpperBound()
2042                              : S.getNextUpperBound();
2043 
2044   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2045                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2046                    emitEmptyOrdered);
2047 }
2048 
2049 static std::pair<LValue, LValue>
2050 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2051                                      const OMPExecutableDirective &S) {
2052   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2053   LValue LB =
2054       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2055   LValue UB =
2056       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2057 
2058   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2059   // parallel for') we need to use the 'distribute'
2060   // chunk lower and upper bounds rather than the whole loop iteration
2061   // space. These are parameters to the outlined function for 'parallel'
2062   // and we copy the bounds of the previous schedule into the
2063   // the current ones.
2064   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2065   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2066   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2067       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2068   PrevLBVal = CGF.EmitScalarConversion(
2069       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2070       LS.getIterationVariable()->getType(),
2071       LS.getPrevLowerBoundVariable()->getExprLoc());
2072   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2073       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2074   PrevUBVal = CGF.EmitScalarConversion(
2075       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2076       LS.getIterationVariable()->getType(),
2077       LS.getPrevUpperBoundVariable()->getExprLoc());
2078 
2079   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2080   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2081 
2082   return {LB, UB};
2083 }
2084 
2085 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2086 /// we need to use the LB and UB expressions generated by the worksharing
2087 /// code generation support, whereas in non combined situations we would
2088 /// just emit 0 and the LastIteration expression
2089 /// This function is necessary due to the difference of the LB and UB
2090 /// types for the RT emission routines for 'for_static_init' and
2091 /// 'for_dispatch_init'
2092 static std::pair<llvm::Value *, llvm::Value *>
2093 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2094                                         const OMPExecutableDirective &S,
2095                                         Address LB, Address UB) {
2096   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2097   const Expr *IVExpr = LS.getIterationVariable();
2098   // when implementing a dynamic schedule for a 'for' combined with a
2099   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2100   // is not normalized as each team only executes its own assigned
2101   // distribute chunk
2102   QualType IteratorTy = IVExpr->getType();
2103   llvm::Value *LBVal =
2104       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2105   llvm::Value *UBVal =
2106       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2107   return {LBVal, UBVal};
2108 }
2109 
2110 static void emitDistributeParallelForDistributeInnerBoundParams(
2111     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2112     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2113   const auto &Dir = cast<OMPLoopDirective>(S);
2114   LValue LB =
2115       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2116   llvm::Value *LBCast = CGF.Builder.CreateIntCast(
2117       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2118   CapturedVars.push_back(LBCast);
2119   LValue UB =
2120       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2121 
2122   llvm::Value *UBCast = CGF.Builder.CreateIntCast(
2123       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2124   CapturedVars.push_back(UBCast);
2125 }
2126 
2127 static void
2128 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2129                                  const OMPLoopDirective &S,
2130                                  CodeGenFunction::JumpDest LoopExit) {
2131   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2132                                          PrePostActionTy &Action) {
2133     Action.Enter(CGF);
2134     bool HasCancel = false;
2135     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2136       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2137         HasCancel = D->hasCancel();
2138       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2139         HasCancel = D->hasCancel();
2140       else if (const auto *D =
2141                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2142         HasCancel = D->hasCancel();
2143     }
2144     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2145                                                      HasCancel);
2146     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2147                                emitDistributeParallelForInnerBounds,
2148                                emitDistributeParallelForDispatchBounds);
2149   };
2150 
2151   emitCommonOMPParallelDirective(
2152       CGF, S,
2153       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2154       CGInlinedWorksharingLoop,
2155       emitDistributeParallelForDistributeInnerBoundParams);
2156 }
2157 
2158 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2159     const OMPDistributeParallelForDirective &S) {
2160   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2161     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2162                               S.getDistInc());
2163   };
2164   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2165   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2166 }
2167 
2168 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2169     const OMPDistributeParallelForSimdDirective &S) {
2170   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2171     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2172                               S.getDistInc());
2173   };
2174   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2175   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2176 }
2177 
2178 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2179     const OMPDistributeSimdDirective &S) {
2180   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2181     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2182   };
2183   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2184   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2185 }
2186 
2187 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2188     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2189   // Emit SPMD target parallel for region as a standalone region.
2190   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2191     emitOMPSimdRegion(CGF, S, Action);
2192   };
2193   llvm::Function *Fn;
2194   llvm::Constant *Addr;
2195   // Emit target region as a standalone region.
2196   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2197       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2198   assert(Fn && Addr && "Target device function emission failed.");
2199 }
2200 
2201 void CodeGenFunction::EmitOMPTargetSimdDirective(
2202     const OMPTargetSimdDirective &S) {
2203   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2204     emitOMPSimdRegion(CGF, S, Action);
2205   };
2206   emitCommonOMPTargetDirective(*this, S, CodeGen);
2207 }
2208 
2209 namespace {
2210   struct ScheduleKindModifiersTy {
2211     OpenMPScheduleClauseKind Kind;
2212     OpenMPScheduleClauseModifier M1;
2213     OpenMPScheduleClauseModifier M2;
2214     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2215                             OpenMPScheduleClauseModifier M1,
2216                             OpenMPScheduleClauseModifier M2)
2217         : Kind(Kind), M1(M1), M2(M2) {}
2218   };
2219 } // namespace
2220 
2221 bool CodeGenFunction::EmitOMPWorksharingLoop(
2222     const OMPLoopDirective &S, Expr *EUB,
2223     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2224     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2225   // Emit the loop iteration variable.
2226   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2227   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2228   EmitVarDecl(*IVDecl);
2229 
2230   // Emit the iterations count variable.
2231   // If it is not a variable, Sema decided to calculate iterations count on each
2232   // iteration (e.g., it is foldable into a constant).
2233   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2234     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2235     // Emit calculation of the iterations count.
2236     EmitIgnoredExpr(S.getCalcLastIteration());
2237   }
2238 
2239   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2240 
2241   bool HasLastprivateClause;
2242   // Check pre-condition.
2243   {
2244     OMPLoopScope PreInitScope(*this, S);
2245     // Skip the entire loop if we don't meet the precondition.
2246     // If the condition constant folds and can be elided, avoid emitting the
2247     // whole loop.
2248     bool CondConstant;
2249     llvm::BasicBlock *ContBlock = nullptr;
2250     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2251       if (!CondConstant)
2252         return false;
2253     } else {
2254       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2255       ContBlock = createBasicBlock("omp.precond.end");
2256       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2257                   getProfileCount(&S));
2258       EmitBlock(ThenBlock);
2259       incrementProfileCounter(&S);
2260     }
2261 
2262     RunCleanupsScope DoacrossCleanupScope(*this);
2263     bool Ordered = false;
2264     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2265       if (OrderedClause->getNumForLoops())
2266         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
2267       else
2268         Ordered = true;
2269     }
2270 
2271     llvm::DenseSet<const Expr *> EmittedFinals;
2272     emitAlignedClause(*this, S);
2273     bool HasLinears = EmitOMPLinearClauseInit(S);
2274     // Emit helper vars inits.
2275 
2276     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2277     LValue LB = Bounds.first;
2278     LValue UB = Bounds.second;
2279     LValue ST =
2280         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2281     LValue IL =
2282         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2283 
2284     // Emit 'then' code.
2285     {
2286       OMPPrivateScope LoopScope(*this);
2287       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2288         // Emit implicit barrier to synchronize threads and avoid data races on
2289         // initialization of firstprivate variables and post-update of
2290         // lastprivate variables.
2291         CGM.getOpenMPRuntime().emitBarrierCall(
2292             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2293             /*ForceSimpleCall=*/true);
2294       }
2295       EmitOMPPrivateClause(S, LoopScope);
2296       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2297       EmitOMPReductionClauseInit(S, LoopScope);
2298       EmitOMPPrivateLoopCounters(S, LoopScope);
2299       EmitOMPLinearClause(S, LoopScope);
2300       (void)LoopScope.Privatize();
2301       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2302         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
2303 
2304       // Detect the loop schedule kind and chunk.
2305       const Expr *ChunkExpr = nullptr;
2306       OpenMPScheduleTy ScheduleKind;
2307       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2308         ScheduleKind.Schedule = C->getScheduleKind();
2309         ScheduleKind.M1 = C->getFirstScheduleModifier();
2310         ScheduleKind.M2 = C->getSecondScheduleModifier();
2311         ChunkExpr = C->getChunkSize();
2312       } else {
2313         // Default behaviour for schedule clause.
2314         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
2315             *this, S, ScheduleKind.Schedule, ChunkExpr);
2316       }
2317       bool HasChunkSizeOne = false;
2318       llvm::Value *Chunk = nullptr;
2319       if (ChunkExpr) {
2320         Chunk = EmitScalarExpr(ChunkExpr);
2321         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
2322                                      S.getIterationVariable()->getType(),
2323                                      S.getBeginLoc());
2324         llvm::APSInt EvaluatedChunk;
2325         if (ChunkExpr->EvaluateAsInt(EvaluatedChunk, getContext()))
2326           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
2327       }
2328       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2329       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2330       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2331       // If the static schedule kind is specified or if the ordered clause is
2332       // specified, and if no monotonic modifier is specified, the effect will
2333       // be as if the monotonic modifier was specified.
2334       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
2335           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
2336           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
2337       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
2338                                  /* Chunked */ Chunk != nullptr) ||
2339            StaticChunkedOne) &&
2340           !Ordered) {
2341         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2342           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2343         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2344         // When no chunk_size is specified, the iteration space is divided into
2345         // chunks that are approximately equal in size, and at most one chunk is
2346         // distributed to each thread. Note that the size of the chunks is
2347         // unspecified in this case.
2348         CGOpenMPRuntime::StaticRTInput StaticInit(
2349             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2350             UB.getAddress(), ST.getAddress(),
2351             StaticChunkedOne ? Chunk : nullptr);
2352         RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2353                              ScheduleKind, StaticInit);
2354         JumpDest LoopExit =
2355             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2356         // UB = min(UB, GlobalUB);
2357         if (!StaticChunkedOne)
2358           EmitIgnoredExpr(S.getEnsureUpperBound());
2359         // IV = LB;
2360         EmitIgnoredExpr(S.getInit());
2361         // For unchunked static schedule generate:
2362         //
2363         // while (idx <= UB) {
2364         //   BODY;
2365         //   ++idx;
2366         // }
2367         //
2368         // For static schedule with chunk one:
2369         //
2370         // while (IV <= PrevUB) {
2371         //   BODY;
2372         //   IV += ST;
2373         // }
2374         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
2375             StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(),
2376             StaticChunkedOne ? S.getDistInc() : S.getInc(),
2377             [&S, LoopExit](CodeGenFunction &CGF) {
2378              CGF.EmitOMPLoopBody(S, LoopExit);
2379              CGF.EmitStopPoint(&S);
2380             },
2381             [](CodeGenFunction &) {});
2382         EmitBlock(LoopExit.getBlock());
2383         // Tell the runtime we are done.
2384         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2385           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2386                                                          S.getDirectiveKind());
2387         };
2388         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2389       } else {
2390         const bool IsMonotonic =
2391             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2392             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2393             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2394             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2395         // Emit the outer loop, which requests its work chunk [LB..UB] from
2396         // runtime and runs the inner loop to process it.
2397         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2398                                              ST.getAddress(), IL.getAddress(),
2399                                              Chunk, EUB);
2400         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2401                             LoopArguments, CGDispatchBounds);
2402       }
2403       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2404         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
2405           return CGF.Builder.CreateIsNotNull(
2406               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2407         });
2408       }
2409       EmitOMPReductionClauseFinal(
2410           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2411                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2412                  : /*Parallel only*/ OMPD_parallel);
2413       // Emit post-update of the reduction variables if IsLastIter != 0.
2414       emitPostUpdateForReductionClause(
2415           *this, S, [IL, &S](CodeGenFunction &CGF) {
2416             return CGF.Builder.CreateIsNotNull(
2417                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2418           });
2419       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2420       if (HasLastprivateClause)
2421         EmitOMPLastprivateClauseFinal(
2422             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2423             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
2424     }
2425     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2426       return CGF.Builder.CreateIsNotNull(
2427           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2428     });
2429     DoacrossCleanupScope.ForceCleanup();
2430     // We're now done with the loop, so jump to the continuation block.
2431     if (ContBlock) {
2432       EmitBranch(ContBlock);
2433       EmitBlock(ContBlock, /*IsFinished=*/true);
2434     }
2435   }
2436   return HasLastprivateClause;
2437 }
2438 
2439 /// The following two functions generate expressions for the loop lower
2440 /// and upper bounds in case of static and dynamic (dispatch) schedule
2441 /// of the associated 'for' or 'distribute' loop.
2442 static std::pair<LValue, LValue>
2443 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2444   const auto &LS = cast<OMPLoopDirective>(S);
2445   LValue LB =
2446       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2447   LValue UB =
2448       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2449   return {LB, UB};
2450 }
2451 
2452 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2453 /// consider the lower and upper bound expressions generated by the
2454 /// worksharing loop support, but we use 0 and the iteration space size as
2455 /// constants
2456 static std::pair<llvm::Value *, llvm::Value *>
2457 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2458                           Address LB, Address UB) {
2459   const auto &LS = cast<OMPLoopDirective>(S);
2460   const Expr *IVExpr = LS.getIterationVariable();
2461   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2462   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2463   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2464   return {LBVal, UBVal};
2465 }
2466 
2467 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2468   bool HasLastprivates = false;
2469   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2470                                           PrePostActionTy &) {
2471     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2472     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2473                                                  emitForLoopBounds,
2474                                                  emitDispatchForLoopBounds);
2475   };
2476   {
2477     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2478     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2479                                                 S.hasCancel());
2480   }
2481 
2482   // Emit an implicit barrier at the end.
2483   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2484     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2485 }
2486 
2487 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2488   bool HasLastprivates = false;
2489   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2490                                           PrePostActionTy &) {
2491     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2492                                                  emitForLoopBounds,
2493                                                  emitDispatchForLoopBounds);
2494   };
2495   {
2496     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2497     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2498   }
2499 
2500   // Emit an implicit barrier at the end.
2501   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2502     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2503 }
2504 
2505 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2506                                 const Twine &Name,
2507                                 llvm::Value *Init = nullptr) {
2508   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2509   if (Init)
2510     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2511   return LVal;
2512 }
2513 
2514 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2515   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2516   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2517   bool HasLastprivates = false;
2518   auto &&CodeGen = [&S, CapturedStmt, CS,
2519                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2520     ASTContext &C = CGF.getContext();
2521     QualType KmpInt32Ty =
2522         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2523     // Emit helper vars inits.
2524     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2525                                   CGF.Builder.getInt32(0));
2526     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2527                                          ? CGF.Builder.getInt32(CS->size() - 1)
2528                                          : CGF.Builder.getInt32(0);
2529     LValue UB =
2530         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2531     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2532                                   CGF.Builder.getInt32(1));
2533     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2534                                   CGF.Builder.getInt32(0));
2535     // Loop counter.
2536     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2537     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2538     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2539     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2540     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2541     // Generate condition for loop.
2542     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2543                         OK_Ordinary, S.getBeginLoc(), FPOptions());
2544     // Increment for loop counter.
2545     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2546                       S.getBeginLoc(), true);
2547     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2548       // Iterate through all sections and emit a switch construct:
2549       // switch (IV) {
2550       //   case 0:
2551       //     <SectionStmt[0]>;
2552       //     break;
2553       // ...
2554       //   case <NumSection> - 1:
2555       //     <SectionStmt[<NumSection> - 1]>;
2556       //     break;
2557       // }
2558       // .omp.sections.exit:
2559       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2560       llvm::SwitchInst *SwitchStmt =
2561           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
2562                                    ExitBB, CS == nullptr ? 1 : CS->size());
2563       if (CS) {
2564         unsigned CaseNumber = 0;
2565         for (const Stmt *SubStmt : CS->children()) {
2566           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2567           CGF.EmitBlock(CaseBB);
2568           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2569           CGF.EmitStmt(SubStmt);
2570           CGF.EmitBranch(ExitBB);
2571           ++CaseNumber;
2572         }
2573       } else {
2574         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2575         CGF.EmitBlock(CaseBB);
2576         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2577         CGF.EmitStmt(CapturedStmt);
2578         CGF.EmitBranch(ExitBB);
2579       }
2580       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2581     };
2582 
2583     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2584     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2585       // Emit implicit barrier to synchronize threads and avoid data races on
2586       // initialization of firstprivate variables and post-update of lastprivate
2587       // variables.
2588       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2589           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2590           /*ForceSimpleCall=*/true);
2591     }
2592     CGF.EmitOMPPrivateClause(S, LoopScope);
2593     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2594     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2595     (void)LoopScope.Privatize();
2596     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2597       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2598 
2599     // Emit static non-chunked loop.
2600     OpenMPScheduleTy ScheduleKind;
2601     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2602     CGOpenMPRuntime::StaticRTInput StaticInit(
2603         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2604         LB.getAddress(), UB.getAddress(), ST.getAddress());
2605     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2606         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2607     // UB = min(UB, GlobalUB);
2608     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
2609     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
2610         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2611     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2612     // IV = LB;
2613     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
2614     // while (idx <= UB) { BODY; ++idx; }
2615     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2616                          [](CodeGenFunction &) {});
2617     // Tell the runtime we are done.
2618     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2619       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2620                                                      S.getDirectiveKind());
2621     };
2622     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2623     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2624     // Emit post-update of the reduction variables if IsLastIter != 0.
2625     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
2626       return CGF.Builder.CreateIsNotNull(
2627           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2628     });
2629 
2630     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2631     if (HasLastprivates)
2632       CGF.EmitOMPLastprivateClauseFinal(
2633           S, /*NoFinals=*/false,
2634           CGF.Builder.CreateIsNotNull(
2635               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
2636   };
2637 
2638   bool HasCancel = false;
2639   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2640     HasCancel = OSD->hasCancel();
2641   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2642     HasCancel = OPSD->hasCancel();
2643   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2644   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2645                                               HasCancel);
2646   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2647   // clause. Otherwise the barrier will be generated by the codegen for the
2648   // directive.
2649   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2650     // Emit implicit barrier to synchronize threads and avoid data races on
2651     // initialization of firstprivate variables.
2652     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2653                                            OMPD_unknown);
2654   }
2655 }
2656 
2657 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2658   {
2659     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2660     EmitSections(S);
2661   }
2662   // Emit an implicit barrier at the end.
2663   if (!S.getSingleClause<OMPNowaitClause>()) {
2664     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2665                                            OMPD_sections);
2666   }
2667 }
2668 
2669 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2670   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2671     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2672   };
2673   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2674   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2675                                               S.hasCancel());
2676 }
2677 
2678 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2679   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2680   llvm::SmallVector<const Expr *, 8> DestExprs;
2681   llvm::SmallVector<const Expr *, 8> SrcExprs;
2682   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2683   // Check if there are any 'copyprivate' clauses associated with this
2684   // 'single' construct.
2685   // Build a list of copyprivate variables along with helper expressions
2686   // (<source>, <destination>, <destination>=<source> expressions)
2687   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2688     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2689     DestExprs.append(C->destination_exprs().begin(),
2690                      C->destination_exprs().end());
2691     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2692     AssignmentOps.append(C->assignment_ops().begin(),
2693                          C->assignment_ops().end());
2694   }
2695   // Emit code for 'single' region along with 'copyprivate' clauses
2696   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2697     Action.Enter(CGF);
2698     OMPPrivateScope SingleScope(CGF);
2699     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2700     CGF.EmitOMPPrivateClause(S, SingleScope);
2701     (void)SingleScope.Privatize();
2702     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2703   };
2704   {
2705     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2706     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
2707                                             CopyprivateVars, DestExprs,
2708                                             SrcExprs, AssignmentOps);
2709   }
2710   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2711   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2712   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2713     CGM.getOpenMPRuntime().emitBarrierCall(
2714         *this, S.getBeginLoc(),
2715         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2716   }
2717 }
2718 
2719 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2720   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2721     Action.Enter(CGF);
2722     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2723   };
2724   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2725   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
2726 }
2727 
2728 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2729   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2730     Action.Enter(CGF);
2731     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2732   };
2733   const Expr *Hint = nullptr;
2734   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
2735     Hint = HintClause->getHint();
2736   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2737   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2738                                             S.getDirectiveName().getAsString(),
2739                                             CodeGen, S.getBeginLoc(), Hint);
2740 }
2741 
2742 void CodeGenFunction::EmitOMPParallelForDirective(
2743     const OMPParallelForDirective &S) {
2744   // Emit directive as a combined directive that consists of two implicit
2745   // directives: 'parallel' with 'for' directive.
2746   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2747     Action.Enter(CGF);
2748     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2749     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2750                                emitDispatchForLoopBounds);
2751   };
2752   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2753                                  emitEmptyBoundParameters);
2754 }
2755 
2756 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2757     const OMPParallelForSimdDirective &S) {
2758   // Emit directive as a combined directive that consists of two implicit
2759   // directives: 'parallel' with 'for' directive.
2760   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2761     Action.Enter(CGF);
2762     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2763                                emitDispatchForLoopBounds);
2764   };
2765   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2766                                  emitEmptyBoundParameters);
2767 }
2768 
2769 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2770     const OMPParallelSectionsDirective &S) {
2771   // Emit directive as a combined directive that consists of two implicit
2772   // directives: 'parallel' with 'sections' directive.
2773   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2774     Action.Enter(CGF);
2775     CGF.EmitSections(S);
2776   };
2777   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2778                                  emitEmptyBoundParameters);
2779 }
2780 
2781 void CodeGenFunction::EmitOMPTaskBasedDirective(
2782     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
2783     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
2784     OMPTaskDataTy &Data) {
2785   // Emit outlined function for task construct.
2786   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
2787   auto I = CS->getCapturedDecl()->param_begin();
2788   auto PartId = std::next(I);
2789   auto TaskT = std::next(I, 4);
2790   // Check if the task is final
2791   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2792     // If the condition constant folds and can be elided, try to avoid emitting
2793     // the condition and the dead arm of the if/else.
2794     const Expr *Cond = Clause->getCondition();
2795     bool CondConstant;
2796     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2797       Data.Final.setInt(CondConstant);
2798     else
2799       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2800   } else {
2801     // By default the task is not final.
2802     Data.Final.setInt(/*IntVal=*/false);
2803   }
2804   // Check if the task has 'priority' clause.
2805   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2806     const Expr *Prio = Clause->getPriority();
2807     Data.Priority.setInt(/*IntVal=*/true);
2808     Data.Priority.setPointer(EmitScalarConversion(
2809         EmitScalarExpr(Prio), Prio->getType(),
2810         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2811         Prio->getExprLoc()));
2812   }
2813   // The first function argument for tasks is a thread id, the second one is a
2814   // part id (0 for tied tasks, >=0 for untied task).
2815   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2816   // Get list of private variables.
2817   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2818     auto IRef = C->varlist_begin();
2819     for (const Expr *IInit : C->private_copies()) {
2820       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2821       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2822         Data.PrivateVars.push_back(*IRef);
2823         Data.PrivateCopies.push_back(IInit);
2824       }
2825       ++IRef;
2826     }
2827   }
2828   EmittedAsPrivate.clear();
2829   // Get list of firstprivate variables.
2830   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2831     auto IRef = C->varlist_begin();
2832     auto IElemInitRef = C->inits().begin();
2833     for (const Expr *IInit : C->private_copies()) {
2834       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2835       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2836         Data.FirstprivateVars.push_back(*IRef);
2837         Data.FirstprivateCopies.push_back(IInit);
2838         Data.FirstprivateInits.push_back(*IElemInitRef);
2839       }
2840       ++IRef;
2841       ++IElemInitRef;
2842     }
2843   }
2844   // Get list of lastprivate variables (for taskloops).
2845   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2846   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2847     auto IRef = C->varlist_begin();
2848     auto ID = C->destination_exprs().begin();
2849     for (const Expr *IInit : C->private_copies()) {
2850       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2851       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2852         Data.LastprivateVars.push_back(*IRef);
2853         Data.LastprivateCopies.push_back(IInit);
2854       }
2855       LastprivateDstsOrigs.insert(
2856           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2857            cast<DeclRefExpr>(*IRef)});
2858       ++IRef;
2859       ++ID;
2860     }
2861   }
2862   SmallVector<const Expr *, 4> LHSs;
2863   SmallVector<const Expr *, 4> RHSs;
2864   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2865     auto IPriv = C->privates().begin();
2866     auto IRed = C->reduction_ops().begin();
2867     auto ILHS = C->lhs_exprs().begin();
2868     auto IRHS = C->rhs_exprs().begin();
2869     for (const Expr *Ref : C->varlists()) {
2870       Data.ReductionVars.emplace_back(Ref);
2871       Data.ReductionCopies.emplace_back(*IPriv);
2872       Data.ReductionOps.emplace_back(*IRed);
2873       LHSs.emplace_back(*ILHS);
2874       RHSs.emplace_back(*IRHS);
2875       std::advance(IPriv, 1);
2876       std::advance(IRed, 1);
2877       std::advance(ILHS, 1);
2878       std::advance(IRHS, 1);
2879     }
2880   }
2881   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2882       *this, S.getBeginLoc(), LHSs, RHSs, Data);
2883   // Build list of dependences.
2884   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2885     for (const Expr *IRef : C->varlists())
2886       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
2887   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
2888                     CapturedRegion](CodeGenFunction &CGF,
2889                                     PrePostActionTy &Action) {
2890     // Set proper addresses for generated private copies.
2891     OMPPrivateScope Scope(CGF);
2892     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2893         !Data.LastprivateVars.empty()) {
2894       enum { PrivatesParam = 2, CopyFnParam = 3 };
2895       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
2896           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
2897       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
2898           CS->getCapturedDecl()->getParam(PrivatesParam)));
2899       // Map privates.
2900       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2901       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2902       CallArgs.push_back(PrivatesPtr);
2903       for (const Expr *E : Data.PrivateVars) {
2904         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2905         Address PrivatePtr = CGF.CreateMemTemp(
2906             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2907         PrivatePtrs.emplace_back(VD, PrivatePtr);
2908         CallArgs.push_back(PrivatePtr.getPointer());
2909       }
2910       for (const Expr *E : Data.FirstprivateVars) {
2911         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2912         Address PrivatePtr =
2913             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2914                               ".firstpriv.ptr.addr");
2915         PrivatePtrs.emplace_back(VD, PrivatePtr);
2916         CallArgs.push_back(PrivatePtr.getPointer());
2917       }
2918       for (const Expr *E : Data.LastprivateVars) {
2919         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2920         Address PrivatePtr =
2921             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2922                               ".lastpriv.ptr.addr");
2923         PrivatePtrs.emplace_back(VD, PrivatePtr);
2924         CallArgs.push_back(PrivatePtr.getPointer());
2925       }
2926       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
2927                                                           CopyFn, CallArgs);
2928       for (const auto &Pair : LastprivateDstsOrigs) {
2929         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2930         DeclRefExpr DRE(
2931             const_cast<VarDecl *>(OrigVD),
2932             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2933                 OrigVD) != nullptr,
2934             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2935         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2936           return CGF.EmitLValue(&DRE).getAddress();
2937         });
2938       }
2939       for (const auto &Pair : PrivatePtrs) {
2940         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2941                             CGF.getContext().getDeclAlign(Pair.first));
2942         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2943       }
2944     }
2945     if (Data.Reductions) {
2946       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
2947       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
2948                              Data.ReductionOps);
2949       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
2950           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
2951       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
2952         RedCG.emitSharedLValue(CGF, Cnt);
2953         RedCG.emitAggregateType(CGF, Cnt);
2954         // FIXME: This must removed once the runtime library is fixed.
2955         // Emit required threadprivate variables for
2956         // initilizer/combiner/finalizer.
2957         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
2958                                                            RedCG, Cnt);
2959         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2960             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2961         Replacement =
2962             Address(CGF.EmitScalarConversion(
2963                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2964                         CGF.getContext().getPointerType(
2965                             Data.ReductionCopies[Cnt]->getType()),
2966                         Data.ReductionCopies[Cnt]->getExprLoc()),
2967                     Replacement.getAlignment());
2968         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2969         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
2970                          [Replacement]() { return Replacement; });
2971       }
2972     }
2973     // Privatize all private variables except for in_reduction items.
2974     (void)Scope.Privatize();
2975     SmallVector<const Expr *, 4> InRedVars;
2976     SmallVector<const Expr *, 4> InRedPrivs;
2977     SmallVector<const Expr *, 4> InRedOps;
2978     SmallVector<const Expr *, 4> TaskgroupDescriptors;
2979     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
2980       auto IPriv = C->privates().begin();
2981       auto IRed = C->reduction_ops().begin();
2982       auto ITD = C->taskgroup_descriptors().begin();
2983       for (const Expr *Ref : C->varlists()) {
2984         InRedVars.emplace_back(Ref);
2985         InRedPrivs.emplace_back(*IPriv);
2986         InRedOps.emplace_back(*IRed);
2987         TaskgroupDescriptors.emplace_back(*ITD);
2988         std::advance(IPriv, 1);
2989         std::advance(IRed, 1);
2990         std::advance(ITD, 1);
2991       }
2992     }
2993     // Privatize in_reduction items here, because taskgroup descriptors must be
2994     // privatized earlier.
2995     OMPPrivateScope InRedScope(CGF);
2996     if (!InRedVars.empty()) {
2997       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
2998       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
2999         RedCG.emitSharedLValue(CGF, Cnt);
3000         RedCG.emitAggregateType(CGF, Cnt);
3001         // The taskgroup descriptor variable is always implicit firstprivate and
3002         // privatized already during procoessing of the firstprivates.
3003         // FIXME: This must removed once the runtime library is fixed.
3004         // Emit required threadprivate variables for
3005         // initilizer/combiner/finalizer.
3006         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3007                                                            RedCG, Cnt);
3008         llvm::Value *ReductionsPtr =
3009             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
3010                                  TaskgroupDescriptors[Cnt]->getExprLoc());
3011         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3012             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3013         Replacement = Address(
3014             CGF.EmitScalarConversion(
3015                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3016                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
3017                 InRedPrivs[Cnt]->getExprLoc()),
3018             Replacement.getAlignment());
3019         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3020         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
3021                               [Replacement]() { return Replacement; });
3022       }
3023     }
3024     (void)InRedScope.Privatize();
3025 
3026     Action.Enter(CGF);
3027     BodyGen(CGF);
3028   };
3029   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3030       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
3031       Data.NumberOfParts);
3032   OMPLexicalScope Scope(*this, S);
3033   TaskGen(*this, OutlinedFn, Data);
3034 }
3035 
3036 static ImplicitParamDecl *
3037 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
3038                                   QualType Ty, CapturedDecl *CD,
3039                                   SourceLocation Loc) {
3040   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3041                                            ImplicitParamDecl::Other);
3042   auto *OrigRef = DeclRefExpr::Create(
3043       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
3044       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3045   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3046                                               ImplicitParamDecl::Other);
3047   auto *PrivateRef = DeclRefExpr::Create(
3048       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
3049       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3050   QualType ElemType = C.getBaseElementType(Ty);
3051   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3052                                            ImplicitParamDecl::Other);
3053   auto *InitRef = DeclRefExpr::Create(
3054       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3055       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3056   PrivateVD->setInitStyle(VarDecl::CInit);
3057   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3058                                               InitRef, /*BasePath=*/nullptr,
3059                                               VK_RValue));
3060   Data.FirstprivateVars.emplace_back(OrigRef);
3061   Data.FirstprivateCopies.emplace_back(PrivateRef);
3062   Data.FirstprivateInits.emplace_back(InitRef);
3063   return OrigVD;
3064 }
3065 
3066 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3067     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3068     OMPTargetDataInfo &InputInfo) {
3069   // Emit outlined function for task construct.
3070   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3071   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3072   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3073   auto I = CS->getCapturedDecl()->param_begin();
3074   auto PartId = std::next(I);
3075   auto TaskT = std::next(I, 4);
3076   OMPTaskDataTy Data;
3077   // The task is not final.
3078   Data.Final.setInt(/*IntVal=*/false);
3079   // Get list of firstprivate variables.
3080   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3081     auto IRef = C->varlist_begin();
3082     auto IElemInitRef = C->inits().begin();
3083     for (auto *IInit : C->private_copies()) {
3084       Data.FirstprivateVars.push_back(*IRef);
3085       Data.FirstprivateCopies.push_back(IInit);
3086       Data.FirstprivateInits.push_back(*IElemInitRef);
3087       ++IRef;
3088       ++IElemInitRef;
3089     }
3090   }
3091   OMPPrivateScope TargetScope(*this);
3092   VarDecl *BPVD = nullptr;
3093   VarDecl *PVD = nullptr;
3094   VarDecl *SVD = nullptr;
3095   if (InputInfo.NumberOfTargetItems > 0) {
3096     auto *CD = CapturedDecl::Create(
3097         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3098     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3099     QualType BaseAndPointersType = getContext().getConstantArrayType(
3100         getContext().VoidPtrTy, ArrSize, ArrayType::Normal,
3101         /*IndexTypeQuals=*/0);
3102     BPVD = createImplicitFirstprivateForType(
3103         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3104     PVD = createImplicitFirstprivateForType(
3105         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3106     QualType SizesType = getContext().getConstantArrayType(
3107         getContext().getSizeType(), ArrSize, ArrayType::Normal,
3108         /*IndexTypeQuals=*/0);
3109     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3110                                             S.getBeginLoc());
3111     TargetScope.addPrivate(
3112         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3113     TargetScope.addPrivate(PVD,
3114                            [&InputInfo]() { return InputInfo.PointersArray; });
3115     TargetScope.addPrivate(SVD,
3116                            [&InputInfo]() { return InputInfo.SizesArray; });
3117   }
3118   (void)TargetScope.Privatize();
3119   // Build list of dependences.
3120   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3121     for (const Expr *IRef : C->varlists())
3122       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3123   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3124                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3125     // Set proper addresses for generated private copies.
3126     OMPPrivateScope Scope(CGF);
3127     if (!Data.FirstprivateVars.empty()) {
3128       enum { PrivatesParam = 2, CopyFnParam = 3 };
3129       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3130           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3131       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3132           CS->getCapturedDecl()->getParam(PrivatesParam)));
3133       // Map privates.
3134       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3135       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3136       CallArgs.push_back(PrivatesPtr);
3137       for (const Expr *E : Data.FirstprivateVars) {
3138         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3139         Address PrivatePtr =
3140             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3141                               ".firstpriv.ptr.addr");
3142         PrivatePtrs.emplace_back(VD, PrivatePtr);
3143         CallArgs.push_back(PrivatePtr.getPointer());
3144       }
3145       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3146                                                           CopyFn, CallArgs);
3147       for (const auto &Pair : PrivatePtrs) {
3148         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3149                             CGF.getContext().getDeclAlign(Pair.first));
3150         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3151       }
3152     }
3153     // Privatize all private variables except for in_reduction items.
3154     (void)Scope.Privatize();
3155     if (InputInfo.NumberOfTargetItems > 0) {
3156       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3157           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize());
3158       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3159           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize());
3160       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3161           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize());
3162     }
3163 
3164     Action.Enter(CGF);
3165     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3166     BodyGen(CGF);
3167   };
3168   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3169       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3170       Data.NumberOfParts);
3171   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3172   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3173                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3174                         SourceLocation());
3175 
3176   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
3177                                       SharedsTy, CapturedStruct, &IfCond, Data);
3178 }
3179 
3180 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3181   // Emit outlined function for task construct.
3182   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3183   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3184   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3185   const Expr *IfCond = nullptr;
3186   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3187     if (C->getNameModifier() == OMPD_unknown ||
3188         C->getNameModifier() == OMPD_task) {
3189       IfCond = C->getCondition();
3190       break;
3191     }
3192   }
3193 
3194   OMPTaskDataTy Data;
3195   // Check if we should emit tied or untied task.
3196   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3197   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3198     CGF.EmitStmt(CS->getCapturedStmt());
3199   };
3200   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3201                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3202                             const OMPTaskDataTy &Data) {
3203     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
3204                                             SharedsTy, CapturedStruct, IfCond,
3205                                             Data);
3206   };
3207   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3208 }
3209 
3210 void CodeGenFunction::EmitOMPTaskyieldDirective(
3211     const OMPTaskyieldDirective &S) {
3212   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
3213 }
3214 
3215 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3216   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
3217 }
3218 
3219 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3220   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
3221 }
3222 
3223 void CodeGenFunction::EmitOMPTaskgroupDirective(
3224     const OMPTaskgroupDirective &S) {
3225   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3226     Action.Enter(CGF);
3227     if (const Expr *E = S.getReductionRef()) {
3228       SmallVector<const Expr *, 4> LHSs;
3229       SmallVector<const Expr *, 4> RHSs;
3230       OMPTaskDataTy Data;
3231       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3232         auto IPriv = C->privates().begin();
3233         auto IRed = C->reduction_ops().begin();
3234         auto ILHS = C->lhs_exprs().begin();
3235         auto IRHS = C->rhs_exprs().begin();
3236         for (const Expr *Ref : C->varlists()) {
3237           Data.ReductionVars.emplace_back(Ref);
3238           Data.ReductionCopies.emplace_back(*IPriv);
3239           Data.ReductionOps.emplace_back(*IRed);
3240           LHSs.emplace_back(*ILHS);
3241           RHSs.emplace_back(*IRHS);
3242           std::advance(IPriv, 1);
3243           std::advance(IRed, 1);
3244           std::advance(ILHS, 1);
3245           std::advance(IRHS, 1);
3246         }
3247       }
3248       llvm::Value *ReductionDesc =
3249           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
3250                                                            LHSs, RHSs, Data);
3251       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3252       CGF.EmitVarDecl(*VD);
3253       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3254                             /*Volatile=*/false, E->getType());
3255     }
3256     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3257   };
3258   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3259   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
3260 }
3261 
3262 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3263   CGM.getOpenMPRuntime().emitFlush(
3264       *this,
3265       [&S]() -> ArrayRef<const Expr *> {
3266         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3267           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3268                                     FlushClause->varlist_end());
3269         return llvm::None;
3270       }(),
3271       S.getBeginLoc());
3272 }
3273 
3274 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3275                                             const CodeGenLoopTy &CodeGenLoop,
3276                                             Expr *IncExpr) {
3277   // Emit the loop iteration variable.
3278   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3279   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3280   EmitVarDecl(*IVDecl);
3281 
3282   // Emit the iterations count variable.
3283   // If it is not a variable, Sema decided to calculate iterations count on each
3284   // iteration (e.g., it is foldable into a constant).
3285   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3286     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3287     // Emit calculation of the iterations count.
3288     EmitIgnoredExpr(S.getCalcLastIteration());
3289   }
3290 
3291   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3292 
3293   bool HasLastprivateClause = false;
3294   // Check pre-condition.
3295   {
3296     OMPLoopScope PreInitScope(*this, S);
3297     // Skip the entire loop if we don't meet the precondition.
3298     // If the condition constant folds and can be elided, avoid emitting the
3299     // whole loop.
3300     bool CondConstant;
3301     llvm::BasicBlock *ContBlock = nullptr;
3302     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3303       if (!CondConstant)
3304         return;
3305     } else {
3306       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3307       ContBlock = createBasicBlock("omp.precond.end");
3308       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3309                   getProfileCount(&S));
3310       EmitBlock(ThenBlock);
3311       incrementProfileCounter(&S);
3312     }
3313 
3314     emitAlignedClause(*this, S);
3315     // Emit 'then' code.
3316     {
3317       // Emit helper vars inits.
3318 
3319       LValue LB = EmitOMPHelperVar(
3320           *this, cast<DeclRefExpr>(
3321                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3322                           ? S.getCombinedLowerBoundVariable()
3323                           : S.getLowerBoundVariable())));
3324       LValue UB = EmitOMPHelperVar(
3325           *this, cast<DeclRefExpr>(
3326                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3327                           ? S.getCombinedUpperBoundVariable()
3328                           : S.getUpperBoundVariable())));
3329       LValue ST =
3330           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3331       LValue IL =
3332           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3333 
3334       OMPPrivateScope LoopScope(*this);
3335       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3336         // Emit implicit barrier to synchronize threads and avoid data races
3337         // on initialization of firstprivate variables and post-update of
3338         // lastprivate variables.
3339         CGM.getOpenMPRuntime().emitBarrierCall(
3340             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3341             /*ForceSimpleCall=*/true);
3342       }
3343       EmitOMPPrivateClause(S, LoopScope);
3344       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3345           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3346           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3347         EmitOMPReductionClauseInit(S, LoopScope);
3348       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3349       EmitOMPPrivateLoopCounters(S, LoopScope);
3350       (void)LoopScope.Privatize();
3351       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3352         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3353 
3354       // Detect the distribute schedule kind and chunk.
3355       llvm::Value *Chunk = nullptr;
3356       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3357       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3358         ScheduleKind = C->getDistScheduleKind();
3359         if (const Expr *Ch = C->getChunkSize()) {
3360           Chunk = EmitScalarExpr(Ch);
3361           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3362                                        S.getIterationVariable()->getType(),
3363                                        S.getBeginLoc());
3364         }
3365       } else {
3366         // Default behaviour for dist_schedule clause.
3367         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
3368             *this, S, ScheduleKind, Chunk);
3369       }
3370       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3371       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3372 
3373       // OpenMP [2.10.8, distribute Construct, Description]
3374       // If dist_schedule is specified, kind must be static. If specified,
3375       // iterations are divided into chunks of size chunk_size, chunks are
3376       // assigned to the teams of the league in a round-robin fashion in the
3377       // order of the team number. When no chunk_size is specified, the
3378       // iteration space is divided into chunks that are approximately equal
3379       // in size, and at most one chunk is distributed to each team of the
3380       // league. The size of the chunks is unspecified in this case.
3381       bool StaticChunked = RT.isStaticChunked(
3382           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
3383           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3384       if (RT.isStaticNonchunked(ScheduleKind,
3385                                 /* Chunked */ Chunk != nullptr) ||
3386           StaticChunked) {
3387         if (isOpenMPSimdDirective(S.getDirectiveKind()))
3388           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3389         CGOpenMPRuntime::StaticRTInput StaticInit(
3390             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3391             LB.getAddress(), UB.getAddress(), ST.getAddress(),
3392             StaticChunked ? Chunk : nullptr);
3393         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
3394                                     StaticInit);
3395         JumpDest LoopExit =
3396             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3397         // UB = min(UB, GlobalUB);
3398         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3399                             ? S.getCombinedEnsureUpperBound()
3400                             : S.getEnsureUpperBound());
3401         // IV = LB;
3402         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3403                             ? S.getCombinedInit()
3404                             : S.getInit());
3405 
3406         const Expr *Cond =
3407             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3408                 ? S.getCombinedCond()
3409                 : S.getCond();
3410 
3411         if (StaticChunked)
3412           Cond = S.getCombinedDistCond();
3413 
3414         // For static unchunked schedules generate:
3415         //
3416         //  1. For distribute alone, codegen
3417         //    while (idx <= UB) {
3418         //      BODY;
3419         //      ++idx;
3420         //    }
3421         //
3422         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
3423         //    while (idx <= UB) {
3424         //      <CodeGen rest of pragma>(LB, UB);
3425         //      idx += ST;
3426         //    }
3427         //
3428         // For static chunk one schedule generate:
3429         //
3430         // while (IV <= GlobalUB) {
3431         //   <CodeGen rest of pragma>(LB, UB);
3432         //   LB += ST;
3433         //   UB += ST;
3434         //   UB = min(UB, GlobalUB);
3435         //   IV = LB;
3436         // }
3437         //
3438         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3439                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3440                            CodeGenLoop(CGF, S, LoopExit);
3441                          },
3442                          [&S, StaticChunked](CodeGenFunction &CGF) {
3443                            if (StaticChunked) {
3444                              CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
3445                              CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
3446                              CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
3447                              CGF.EmitIgnoredExpr(S.getCombinedInit());
3448                            }
3449                          });
3450         EmitBlock(LoopExit.getBlock());
3451         // Tell the runtime we are done.
3452         RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind());
3453       } else {
3454         // Emit the outer loop, which requests its work chunk [LB..UB] from
3455         // runtime and runs the inner loop to process it.
3456         const OMPLoopArguments LoopArguments = {
3457             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3458             Chunk};
3459         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3460                                    CodeGenLoop);
3461       }
3462       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3463         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3464           return CGF.Builder.CreateIsNotNull(
3465               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3466         });
3467       }
3468       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3469           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3470           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3471         EmitOMPReductionClauseFinal(S, OMPD_simd);
3472         // Emit post-update of the reduction variables if IsLastIter != 0.
3473         emitPostUpdateForReductionClause(
3474             *this, S, [IL, &S](CodeGenFunction &CGF) {
3475               return CGF.Builder.CreateIsNotNull(
3476                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3477             });
3478       }
3479       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3480       if (HasLastprivateClause) {
3481         EmitOMPLastprivateClauseFinal(
3482             S, /*NoFinals=*/false,
3483             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3484       }
3485     }
3486 
3487     // We're now done with the loop, so jump to the continuation block.
3488     if (ContBlock) {
3489       EmitBranch(ContBlock);
3490       EmitBlock(ContBlock, true);
3491     }
3492   }
3493 }
3494 
3495 void CodeGenFunction::EmitOMPDistributeDirective(
3496     const OMPDistributeDirective &S) {
3497   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3498     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3499   };
3500   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3501   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3502 }
3503 
3504 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3505                                                    const CapturedStmt *S) {
3506   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3507   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3508   CGF.CapturedStmtInfo = &CapStmtInfo;
3509   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3510   Fn->setDoesNotRecurse();
3511   return Fn;
3512 }
3513 
3514 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3515   if (S.hasClausesOfKind<OMPDependClause>()) {
3516     assert(!S.getAssociatedStmt() &&
3517            "No associated statement must be in ordered depend construct.");
3518     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3519       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3520     return;
3521   }
3522   const auto *C = S.getSingleClause<OMPSIMDClause>();
3523   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3524                                  PrePostActionTy &Action) {
3525     const CapturedStmt *CS = S.getInnermostCapturedStmt();
3526     if (C) {
3527       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3528       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3529       llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3530       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3531                                                       OutlinedFn, CapturedVars);
3532     } else {
3533       Action.Enter(CGF);
3534       CGF.EmitStmt(CS->getCapturedStmt());
3535     }
3536   };
3537   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3538   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
3539 }
3540 
3541 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3542                                          QualType SrcType, QualType DestType,
3543                                          SourceLocation Loc) {
3544   assert(CGF.hasScalarEvaluationKind(DestType) &&
3545          "DestType must have scalar evaluation kind.");
3546   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3547   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3548                                                    DestType, Loc)
3549                         : CGF.EmitComplexToScalarConversion(
3550                               Val.getComplexVal(), SrcType, DestType, Loc);
3551 }
3552 
3553 static CodeGenFunction::ComplexPairTy
3554 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3555                       QualType DestType, SourceLocation Loc) {
3556   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3557          "DestType must have complex evaluation kind.");
3558   CodeGenFunction::ComplexPairTy ComplexVal;
3559   if (Val.isScalar()) {
3560     // Convert the input element to the element type of the complex.
3561     QualType DestElementType =
3562         DestType->castAs<ComplexType>()->getElementType();
3563     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
3564         Val.getScalarVal(), SrcType, DestElementType, Loc);
3565     ComplexVal = CodeGenFunction::ComplexPairTy(
3566         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3567   } else {
3568     assert(Val.isComplex() && "Must be a scalar or complex.");
3569     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3570     QualType DestElementType =
3571         DestType->castAs<ComplexType>()->getElementType();
3572     ComplexVal.first = CGF.EmitScalarConversion(
3573         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3574     ComplexVal.second = CGF.EmitScalarConversion(
3575         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3576   }
3577   return ComplexVal;
3578 }
3579 
3580 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3581                                   LValue LVal, RValue RVal) {
3582   if (LVal.isGlobalReg()) {
3583     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3584   } else {
3585     CGF.EmitAtomicStore(RVal, LVal,
3586                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3587                                  : llvm::AtomicOrdering::Monotonic,
3588                         LVal.isVolatile(), /*IsInit=*/false);
3589   }
3590 }
3591 
3592 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3593                                          QualType RValTy, SourceLocation Loc) {
3594   switch (getEvaluationKind(LVal.getType())) {
3595   case TEK_Scalar:
3596     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3597                                *this, RVal, RValTy, LVal.getType(), Loc)),
3598                            LVal);
3599     break;
3600   case TEK_Complex:
3601     EmitStoreOfComplex(
3602         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3603         /*isInit=*/false);
3604     break;
3605   case TEK_Aggregate:
3606     llvm_unreachable("Must be a scalar or complex.");
3607   }
3608 }
3609 
3610 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3611                                   const Expr *X, const Expr *V,
3612                                   SourceLocation Loc) {
3613   // v = x;
3614   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3615   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3616   LValue XLValue = CGF.EmitLValue(X);
3617   LValue VLValue = CGF.EmitLValue(V);
3618   RValue Res = XLValue.isGlobalReg()
3619                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3620                    : CGF.EmitAtomicLoad(
3621                          XLValue, Loc,
3622                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3623                                   : llvm::AtomicOrdering::Monotonic,
3624                          XLValue.isVolatile());
3625   // OpenMP, 2.12.6, atomic Construct
3626   // Any atomic construct with a seq_cst clause forces the atomically
3627   // performed operation to include an implicit flush operation without a
3628   // list.
3629   if (IsSeqCst)
3630     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3631   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3632 }
3633 
3634 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3635                                    const Expr *X, const Expr *E,
3636                                    SourceLocation Loc) {
3637   // x = expr;
3638   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3639   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3640   // OpenMP, 2.12.6, atomic Construct
3641   // Any atomic construct with a seq_cst clause forces the atomically
3642   // performed operation to include an implicit flush operation without a
3643   // list.
3644   if (IsSeqCst)
3645     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3646 }
3647 
3648 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3649                                                 RValue Update,
3650                                                 BinaryOperatorKind BO,
3651                                                 llvm::AtomicOrdering AO,
3652                                                 bool IsXLHSInRHSPart) {
3653   ASTContext &Context = CGF.getContext();
3654   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3655   // expression is simple and atomic is allowed for the given type for the
3656   // target platform.
3657   if (BO == BO_Comma || !Update.isScalar() ||
3658       !Update.getScalarVal()->getType()->isIntegerTy() ||
3659       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3660                         (Update.getScalarVal()->getType() !=
3661                          X.getAddress().getElementType())) ||
3662       !X.getAddress().getElementType()->isIntegerTy() ||
3663       !Context.getTargetInfo().hasBuiltinAtomic(
3664           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3665     return std::make_pair(false, RValue::get(nullptr));
3666 
3667   llvm::AtomicRMWInst::BinOp RMWOp;
3668   switch (BO) {
3669   case BO_Add:
3670     RMWOp = llvm::AtomicRMWInst::Add;
3671     break;
3672   case BO_Sub:
3673     if (!IsXLHSInRHSPart)
3674       return std::make_pair(false, RValue::get(nullptr));
3675     RMWOp = llvm::AtomicRMWInst::Sub;
3676     break;
3677   case BO_And:
3678     RMWOp = llvm::AtomicRMWInst::And;
3679     break;
3680   case BO_Or:
3681     RMWOp = llvm::AtomicRMWInst::Or;
3682     break;
3683   case BO_Xor:
3684     RMWOp = llvm::AtomicRMWInst::Xor;
3685     break;
3686   case BO_LT:
3687     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3688                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3689                                    : llvm::AtomicRMWInst::Max)
3690                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3691                                    : llvm::AtomicRMWInst::UMax);
3692     break;
3693   case BO_GT:
3694     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3695                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3696                                    : llvm::AtomicRMWInst::Min)
3697                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3698                                    : llvm::AtomicRMWInst::UMin);
3699     break;
3700   case BO_Assign:
3701     RMWOp = llvm::AtomicRMWInst::Xchg;
3702     break;
3703   case BO_Mul:
3704   case BO_Div:
3705   case BO_Rem:
3706   case BO_Shl:
3707   case BO_Shr:
3708   case BO_LAnd:
3709   case BO_LOr:
3710     return std::make_pair(false, RValue::get(nullptr));
3711   case BO_PtrMemD:
3712   case BO_PtrMemI:
3713   case BO_LE:
3714   case BO_GE:
3715   case BO_EQ:
3716   case BO_NE:
3717   case BO_Cmp:
3718   case BO_AddAssign:
3719   case BO_SubAssign:
3720   case BO_AndAssign:
3721   case BO_OrAssign:
3722   case BO_XorAssign:
3723   case BO_MulAssign:
3724   case BO_DivAssign:
3725   case BO_RemAssign:
3726   case BO_ShlAssign:
3727   case BO_ShrAssign:
3728   case BO_Comma:
3729     llvm_unreachable("Unsupported atomic update operation");
3730   }
3731   llvm::Value *UpdateVal = Update.getScalarVal();
3732   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3733     UpdateVal = CGF.Builder.CreateIntCast(
3734         IC, X.getAddress().getElementType(),
3735         X.getType()->hasSignedIntegerRepresentation());
3736   }
3737   llvm::Value *Res =
3738       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3739   return std::make_pair(true, RValue::get(Res));
3740 }
3741 
3742 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3743     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3744     llvm::AtomicOrdering AO, SourceLocation Loc,
3745     const llvm::function_ref<RValue(RValue)> CommonGen) {
3746   // Update expressions are allowed to have the following forms:
3747   // x binop= expr; -> xrval + expr;
3748   // x++, ++x -> xrval + 1;
3749   // x--, --x -> xrval - 1;
3750   // x = x binop expr; -> xrval binop expr
3751   // x = expr Op x; - > expr binop xrval;
3752   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3753   if (!Res.first) {
3754     if (X.isGlobalReg()) {
3755       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3756       // 'xrval'.
3757       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3758     } else {
3759       // Perform compare-and-swap procedure.
3760       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3761     }
3762   }
3763   return Res;
3764 }
3765 
3766 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3767                                     const Expr *X, const Expr *E,
3768                                     const Expr *UE, bool IsXLHSInRHSPart,
3769                                     SourceLocation Loc) {
3770   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3771          "Update expr in 'atomic update' must be a binary operator.");
3772   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3773   // Update expressions are allowed to have the following forms:
3774   // x binop= expr; -> xrval + expr;
3775   // x++, ++x -> xrval + 1;
3776   // x--, --x -> xrval - 1;
3777   // x = x binop expr; -> xrval binop expr
3778   // x = expr Op x; - > expr binop xrval;
3779   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3780   LValue XLValue = CGF.EmitLValue(X);
3781   RValue ExprRValue = CGF.EmitAnyExpr(E);
3782   llvm::AtomicOrdering AO = IsSeqCst
3783                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3784                                 : llvm::AtomicOrdering::Monotonic;
3785   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3786   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3787   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3788   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3789   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
3790     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3791     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3792     return CGF.EmitAnyExpr(UE);
3793   };
3794   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3795       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3796   // OpenMP, 2.12.6, atomic Construct
3797   // Any atomic construct with a seq_cst clause forces the atomically
3798   // performed operation to include an implicit flush operation without a
3799   // list.
3800   if (IsSeqCst)
3801     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3802 }
3803 
3804 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3805                             QualType SourceType, QualType ResType,
3806                             SourceLocation Loc) {
3807   switch (CGF.getEvaluationKind(ResType)) {
3808   case TEK_Scalar:
3809     return RValue::get(
3810         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3811   case TEK_Complex: {
3812     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3813     return RValue::getComplex(Res.first, Res.second);
3814   }
3815   case TEK_Aggregate:
3816     break;
3817   }
3818   llvm_unreachable("Must be a scalar or complex.");
3819 }
3820 
3821 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3822                                      bool IsPostfixUpdate, const Expr *V,
3823                                      const Expr *X, const Expr *E,
3824                                      const Expr *UE, bool IsXLHSInRHSPart,
3825                                      SourceLocation Loc) {
3826   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3827   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3828   RValue NewVVal;
3829   LValue VLValue = CGF.EmitLValue(V);
3830   LValue XLValue = CGF.EmitLValue(X);
3831   RValue ExprRValue = CGF.EmitAnyExpr(E);
3832   llvm::AtomicOrdering AO = IsSeqCst
3833                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3834                                 : llvm::AtomicOrdering::Monotonic;
3835   QualType NewVValType;
3836   if (UE) {
3837     // 'x' is updated with some additional value.
3838     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3839            "Update expr in 'atomic capture' must be a binary operator.");
3840     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3841     // Update expressions are allowed to have the following forms:
3842     // x binop= expr; -> xrval + expr;
3843     // x++, ++x -> xrval + 1;
3844     // x--, --x -> xrval - 1;
3845     // x = x binop expr; -> xrval binop expr
3846     // x = expr Op x; - > expr binop xrval;
3847     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3848     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3849     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3850     NewVValType = XRValExpr->getType();
3851     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3852     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3853                   IsPostfixUpdate](RValue XRValue) {
3854       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3855       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3856       RValue Res = CGF.EmitAnyExpr(UE);
3857       NewVVal = IsPostfixUpdate ? XRValue : Res;
3858       return Res;
3859     };
3860     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3861         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3862     if (Res.first) {
3863       // 'atomicrmw' instruction was generated.
3864       if (IsPostfixUpdate) {
3865         // Use old value from 'atomicrmw'.
3866         NewVVal = Res.second;
3867       } else {
3868         // 'atomicrmw' does not provide new value, so evaluate it using old
3869         // value of 'x'.
3870         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3871         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3872         NewVVal = CGF.EmitAnyExpr(UE);
3873       }
3874     }
3875   } else {
3876     // 'x' is simply rewritten with some 'expr'.
3877     NewVValType = X->getType().getNonReferenceType();
3878     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3879                                X->getType().getNonReferenceType(), Loc);
3880     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
3881       NewVVal = XRValue;
3882       return ExprRValue;
3883     };
3884     // Try to perform atomicrmw xchg, otherwise simple exchange.
3885     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3886         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3887         Loc, Gen);
3888     if (Res.first) {
3889       // 'atomicrmw' instruction was generated.
3890       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3891     }
3892   }
3893   // Emit post-update store to 'v' of old/new 'x' value.
3894   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3895   // OpenMP, 2.12.6, atomic Construct
3896   // Any atomic construct with a seq_cst clause forces the atomically
3897   // performed operation to include an implicit flush operation without a
3898   // list.
3899   if (IsSeqCst)
3900     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3901 }
3902 
3903 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3904                               bool IsSeqCst, bool IsPostfixUpdate,
3905                               const Expr *X, const Expr *V, const Expr *E,
3906                               const Expr *UE, bool IsXLHSInRHSPart,
3907                               SourceLocation Loc) {
3908   switch (Kind) {
3909   case OMPC_read:
3910     emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3911     break;
3912   case OMPC_write:
3913     emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3914     break;
3915   case OMPC_unknown:
3916   case OMPC_update:
3917     emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3918     break;
3919   case OMPC_capture:
3920     emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3921                              IsXLHSInRHSPart, Loc);
3922     break;
3923   case OMPC_if:
3924   case OMPC_final:
3925   case OMPC_num_threads:
3926   case OMPC_private:
3927   case OMPC_firstprivate:
3928   case OMPC_lastprivate:
3929   case OMPC_reduction:
3930   case OMPC_task_reduction:
3931   case OMPC_in_reduction:
3932   case OMPC_safelen:
3933   case OMPC_simdlen:
3934   case OMPC_collapse:
3935   case OMPC_default:
3936   case OMPC_seq_cst:
3937   case OMPC_shared:
3938   case OMPC_linear:
3939   case OMPC_aligned:
3940   case OMPC_copyin:
3941   case OMPC_copyprivate:
3942   case OMPC_flush:
3943   case OMPC_proc_bind:
3944   case OMPC_schedule:
3945   case OMPC_ordered:
3946   case OMPC_nowait:
3947   case OMPC_untied:
3948   case OMPC_threadprivate:
3949   case OMPC_depend:
3950   case OMPC_mergeable:
3951   case OMPC_device:
3952   case OMPC_threads:
3953   case OMPC_simd:
3954   case OMPC_map:
3955   case OMPC_num_teams:
3956   case OMPC_thread_limit:
3957   case OMPC_priority:
3958   case OMPC_grainsize:
3959   case OMPC_nogroup:
3960   case OMPC_num_tasks:
3961   case OMPC_hint:
3962   case OMPC_dist_schedule:
3963   case OMPC_defaultmap:
3964   case OMPC_uniform:
3965   case OMPC_to:
3966   case OMPC_from:
3967   case OMPC_use_device_ptr:
3968   case OMPC_is_device_ptr:
3969   case OMPC_unified_address:
3970   case OMPC_unified_shared_memory:
3971   case OMPC_reverse_offload:
3972   case OMPC_dynamic_allocators:
3973   case OMPC_atomic_default_mem_order:
3974     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3975   }
3976 }
3977 
3978 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3979   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3980   OpenMPClauseKind Kind = OMPC_unknown;
3981   for (const OMPClause *C : S.clauses()) {
3982     // Find first clause (skip seq_cst clause, if it is first).
3983     if (C->getClauseKind() != OMPC_seq_cst) {
3984       Kind = C->getClauseKind();
3985       break;
3986     }
3987   }
3988 
3989   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
3990   if (const auto *FE = dyn_cast<FullExpr>(CS))
3991     enterFullExpression(FE);
3992   // Processing for statements under 'atomic capture'.
3993   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3994     for (const Stmt *C : Compound->body()) {
3995       if (const auto *FE = dyn_cast<FullExpr>(C))
3996         enterFullExpression(FE);
3997     }
3998   }
3999 
4000   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
4001                                             PrePostActionTy &) {
4002     CGF.EmitStopPoint(CS);
4003     emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
4004                       S.getV(), S.getExpr(), S.getUpdateExpr(),
4005                       S.isXLHSInRHSPart(), S.getBeginLoc());
4006   };
4007   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4008   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
4009 }
4010 
4011 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
4012                                          const OMPExecutableDirective &S,
4013                                          const RegionCodeGenTy &CodeGen) {
4014   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
4015   CodeGenModule &CGM = CGF.CGM;
4016 
4017   // On device emit this construct as inlined code.
4018   if (CGM.getLangOpts().OpenMPIsDevice) {
4019     OMPLexicalScope Scope(CGF, S, OMPD_target);
4020     CGM.getOpenMPRuntime().emitInlinedDirective(
4021         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4022           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4023         });
4024     return;
4025   }
4026 
4027   llvm::Function *Fn = nullptr;
4028   llvm::Constant *FnID = nullptr;
4029 
4030   const Expr *IfCond = nullptr;
4031   // Check for the at most one if clause associated with the target region.
4032   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4033     if (C->getNameModifier() == OMPD_unknown ||
4034         C->getNameModifier() == OMPD_target) {
4035       IfCond = C->getCondition();
4036       break;
4037     }
4038   }
4039 
4040   // Check if we have any device clause associated with the directive.
4041   const Expr *Device = nullptr;
4042   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4043     Device = C->getDevice();
4044 
4045   // Check if we have an if clause whose conditional always evaluates to false
4046   // or if we do not have any targets specified. If so the target region is not
4047   // an offload entry point.
4048   bool IsOffloadEntry = true;
4049   if (IfCond) {
4050     bool Val;
4051     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
4052       IsOffloadEntry = false;
4053   }
4054   if (CGM.getLangOpts().OMPTargetTriples.empty())
4055     IsOffloadEntry = false;
4056 
4057   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
4058   StringRef ParentName;
4059   // In case we have Ctors/Dtors we use the complete type variant to produce
4060   // the mangling of the device outlined kernel.
4061   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
4062     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
4063   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
4064     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
4065   else
4066     ParentName =
4067         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
4068 
4069   // Emit target region as a standalone region.
4070   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
4071                                                     IsOffloadEntry, CodeGen);
4072   OMPLexicalScope Scope(CGF, S, OMPD_task);
4073   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device);
4074 }
4075 
4076 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
4077                              PrePostActionTy &Action) {
4078   Action.Enter(CGF);
4079   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4080   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4081   CGF.EmitOMPPrivateClause(S, PrivateScope);
4082   (void)PrivateScope.Privatize();
4083   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4084     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4085 
4086   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4087 }
4088 
4089 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4090                                                   StringRef ParentName,
4091                                                   const OMPTargetDirective &S) {
4092   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4093     emitTargetRegion(CGF, S, Action);
4094   };
4095   llvm::Function *Fn;
4096   llvm::Constant *Addr;
4097   // Emit target region as a standalone region.
4098   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4099       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4100   assert(Fn && Addr && "Target device function emission failed.");
4101 }
4102 
4103 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4104   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4105     emitTargetRegion(CGF, S, Action);
4106   };
4107   emitCommonOMPTargetDirective(*this, S, CodeGen);
4108 }
4109 
4110 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4111                                         const OMPExecutableDirective &S,
4112                                         OpenMPDirectiveKind InnermostKind,
4113                                         const RegionCodeGenTy &CodeGen) {
4114   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4115   llvm::Value *OutlinedFn =
4116       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4117           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4118 
4119   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4120   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4121   if (NT || TL) {
4122     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4123     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4124 
4125     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4126                                                   S.getBeginLoc());
4127   }
4128 
4129   OMPTeamsScope Scope(CGF, S);
4130   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4131   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4132   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
4133                                            CapturedVars);
4134 }
4135 
4136 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4137   // Emit teams region as a standalone region.
4138   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4139     Action.Enter(CGF);
4140     OMPPrivateScope PrivateScope(CGF);
4141     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4142     CGF.EmitOMPPrivateClause(S, PrivateScope);
4143     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4144     (void)PrivateScope.Privatize();
4145     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4146     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4147   };
4148   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4149   emitPostUpdateForReductionClause(*this, S,
4150                                    [](CodeGenFunction &) { return nullptr; });
4151 }
4152 
4153 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4154                                   const OMPTargetTeamsDirective &S) {
4155   auto *CS = S.getCapturedStmt(OMPD_teams);
4156   Action.Enter(CGF);
4157   // Emit teams region as a standalone region.
4158   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4159     Action.Enter(CGF);
4160     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4161     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4162     CGF.EmitOMPPrivateClause(S, PrivateScope);
4163     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4164     (void)PrivateScope.Privatize();
4165     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4166       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4167     CGF.EmitStmt(CS->getCapturedStmt());
4168     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4169   };
4170   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4171   emitPostUpdateForReductionClause(CGF, S,
4172                                    [](CodeGenFunction &) { return nullptr; });
4173 }
4174 
4175 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4176     CodeGenModule &CGM, StringRef ParentName,
4177     const OMPTargetTeamsDirective &S) {
4178   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4179     emitTargetTeamsRegion(CGF, Action, S);
4180   };
4181   llvm::Function *Fn;
4182   llvm::Constant *Addr;
4183   // Emit target region as a standalone region.
4184   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4185       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4186   assert(Fn && Addr && "Target device function emission failed.");
4187 }
4188 
4189 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4190     const OMPTargetTeamsDirective &S) {
4191   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4192     emitTargetTeamsRegion(CGF, Action, S);
4193   };
4194   emitCommonOMPTargetDirective(*this, S, CodeGen);
4195 }
4196 
4197 static void
4198 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4199                                 const OMPTargetTeamsDistributeDirective &S) {
4200   Action.Enter(CGF);
4201   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4202     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4203   };
4204 
4205   // Emit teams region as a standalone region.
4206   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4207                                             PrePostActionTy &Action) {
4208     Action.Enter(CGF);
4209     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4210     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4211     (void)PrivateScope.Privatize();
4212     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4213                                                     CodeGenDistribute);
4214     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4215   };
4216   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4217   emitPostUpdateForReductionClause(CGF, S,
4218                                    [](CodeGenFunction &) { return nullptr; });
4219 }
4220 
4221 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4222     CodeGenModule &CGM, StringRef ParentName,
4223     const OMPTargetTeamsDistributeDirective &S) {
4224   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4225     emitTargetTeamsDistributeRegion(CGF, Action, S);
4226   };
4227   llvm::Function *Fn;
4228   llvm::Constant *Addr;
4229   // Emit target region as a standalone region.
4230   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4231       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4232   assert(Fn && Addr && "Target device function emission failed.");
4233 }
4234 
4235 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4236     const OMPTargetTeamsDistributeDirective &S) {
4237   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4238     emitTargetTeamsDistributeRegion(CGF, Action, S);
4239   };
4240   emitCommonOMPTargetDirective(*this, S, CodeGen);
4241 }
4242 
4243 static void emitTargetTeamsDistributeSimdRegion(
4244     CodeGenFunction &CGF, PrePostActionTy &Action,
4245     const OMPTargetTeamsDistributeSimdDirective &S) {
4246   Action.Enter(CGF);
4247   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4248     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4249   };
4250 
4251   // Emit teams region as a standalone region.
4252   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4253                                             PrePostActionTy &Action) {
4254     Action.Enter(CGF);
4255     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4256     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4257     (void)PrivateScope.Privatize();
4258     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4259                                                     CodeGenDistribute);
4260     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4261   };
4262   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4263   emitPostUpdateForReductionClause(CGF, S,
4264                                    [](CodeGenFunction &) { return nullptr; });
4265 }
4266 
4267 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4268     CodeGenModule &CGM, StringRef ParentName,
4269     const OMPTargetTeamsDistributeSimdDirective &S) {
4270   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4271     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4272   };
4273   llvm::Function *Fn;
4274   llvm::Constant *Addr;
4275   // Emit target region as a standalone region.
4276   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4277       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4278   assert(Fn && Addr && "Target device function emission failed.");
4279 }
4280 
4281 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4282     const OMPTargetTeamsDistributeSimdDirective &S) {
4283   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4284     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4285   };
4286   emitCommonOMPTargetDirective(*this, S, CodeGen);
4287 }
4288 
4289 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4290     const OMPTeamsDistributeDirective &S) {
4291 
4292   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4293     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4294   };
4295 
4296   // Emit teams region as a standalone region.
4297   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4298                                             PrePostActionTy &Action) {
4299     Action.Enter(CGF);
4300     OMPPrivateScope PrivateScope(CGF);
4301     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4302     (void)PrivateScope.Privatize();
4303     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4304                                                     CodeGenDistribute);
4305     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4306   };
4307   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4308   emitPostUpdateForReductionClause(*this, S,
4309                                    [](CodeGenFunction &) { return nullptr; });
4310 }
4311 
4312 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4313     const OMPTeamsDistributeSimdDirective &S) {
4314   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4315     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4316   };
4317 
4318   // Emit teams region as a standalone region.
4319   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4320                                             PrePostActionTy &Action) {
4321     Action.Enter(CGF);
4322     OMPPrivateScope PrivateScope(CGF);
4323     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4324     (void)PrivateScope.Privatize();
4325     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4326                                                     CodeGenDistribute);
4327     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4328   };
4329   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4330   emitPostUpdateForReductionClause(*this, S,
4331                                    [](CodeGenFunction &) { return nullptr; });
4332 }
4333 
4334 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4335     const OMPTeamsDistributeParallelForDirective &S) {
4336   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4337     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4338                               S.getDistInc());
4339   };
4340 
4341   // Emit teams region as a standalone region.
4342   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4343                                             PrePostActionTy &Action) {
4344     Action.Enter(CGF);
4345     OMPPrivateScope PrivateScope(CGF);
4346     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4347     (void)PrivateScope.Privatize();
4348     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4349                                                     CodeGenDistribute);
4350     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4351   };
4352   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4353   emitPostUpdateForReductionClause(*this, S,
4354                                    [](CodeGenFunction &) { return nullptr; });
4355 }
4356 
4357 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4358     const OMPTeamsDistributeParallelForSimdDirective &S) {
4359   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4360     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4361                               S.getDistInc());
4362   };
4363 
4364   // Emit teams region as a standalone region.
4365   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4366                                             PrePostActionTy &Action) {
4367     Action.Enter(CGF);
4368     OMPPrivateScope PrivateScope(CGF);
4369     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4370     (void)PrivateScope.Privatize();
4371     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4372         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4373     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4374   };
4375   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4376   emitPostUpdateForReductionClause(*this, S,
4377                                    [](CodeGenFunction &) { return nullptr; });
4378 }
4379 
4380 static void emitTargetTeamsDistributeParallelForRegion(
4381     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
4382     PrePostActionTy &Action) {
4383   Action.Enter(CGF);
4384   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4385     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4386                               S.getDistInc());
4387   };
4388 
4389   // Emit teams region as a standalone region.
4390   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4391                                                  PrePostActionTy &Action) {
4392     Action.Enter(CGF);
4393     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4394     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4395     (void)PrivateScope.Privatize();
4396     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4397         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4398     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4399   };
4400 
4401   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
4402                               CodeGenTeams);
4403   emitPostUpdateForReductionClause(CGF, S,
4404                                    [](CodeGenFunction &) { return nullptr; });
4405 }
4406 
4407 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
4408     CodeGenModule &CGM, StringRef ParentName,
4409     const OMPTargetTeamsDistributeParallelForDirective &S) {
4410   // Emit SPMD target teams distribute parallel for region as a standalone
4411   // region.
4412   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4413     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4414   };
4415   llvm::Function *Fn;
4416   llvm::Constant *Addr;
4417   // Emit target region as a standalone region.
4418   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4419       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4420   assert(Fn && Addr && "Target device function emission failed.");
4421 }
4422 
4423 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
4424     const OMPTargetTeamsDistributeParallelForDirective &S) {
4425   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4426     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4427   };
4428   emitCommonOMPTargetDirective(*this, S, CodeGen);
4429 }
4430 
4431 static void emitTargetTeamsDistributeParallelForSimdRegion(
4432     CodeGenFunction &CGF,
4433     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
4434     PrePostActionTy &Action) {
4435   Action.Enter(CGF);
4436   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4437     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4438                               S.getDistInc());
4439   };
4440 
4441   // Emit teams region as a standalone region.
4442   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4443                                                  PrePostActionTy &Action) {
4444     Action.Enter(CGF);
4445     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4446     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4447     (void)PrivateScope.Privatize();
4448     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4449         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4450     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4451   };
4452 
4453   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
4454                               CodeGenTeams);
4455   emitPostUpdateForReductionClause(CGF, S,
4456                                    [](CodeGenFunction &) { return nullptr; });
4457 }
4458 
4459 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
4460     CodeGenModule &CGM, StringRef ParentName,
4461     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4462   // Emit SPMD target teams distribute parallel for simd region as a standalone
4463   // region.
4464   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4465     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4466   };
4467   llvm::Function *Fn;
4468   llvm::Constant *Addr;
4469   // Emit target region as a standalone region.
4470   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4471       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4472   assert(Fn && Addr && "Target device function emission failed.");
4473 }
4474 
4475 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
4476     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4477   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4478     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4479   };
4480   emitCommonOMPTargetDirective(*this, S, CodeGen);
4481 }
4482 
4483 void CodeGenFunction::EmitOMPCancellationPointDirective(
4484     const OMPCancellationPointDirective &S) {
4485   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
4486                                                    S.getCancelRegion());
4487 }
4488 
4489 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
4490   const Expr *IfCond = nullptr;
4491   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4492     if (C->getNameModifier() == OMPD_unknown ||
4493         C->getNameModifier() == OMPD_cancel) {
4494       IfCond = C->getCondition();
4495       break;
4496     }
4497   }
4498   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
4499                                         S.getCancelRegion());
4500 }
4501 
4502 CodeGenFunction::JumpDest
4503 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
4504   if (Kind == OMPD_parallel || Kind == OMPD_task ||
4505       Kind == OMPD_target_parallel)
4506     return ReturnBlock;
4507   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
4508          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
4509          Kind == OMPD_distribute_parallel_for ||
4510          Kind == OMPD_target_parallel_for ||
4511          Kind == OMPD_teams_distribute_parallel_for ||
4512          Kind == OMPD_target_teams_distribute_parallel_for);
4513   return OMPCancelStack.getExitBlock();
4514 }
4515 
4516 void CodeGenFunction::EmitOMPUseDevicePtrClause(
4517     const OMPClause &NC, OMPPrivateScope &PrivateScope,
4518     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
4519   const auto &C = cast<OMPUseDevicePtrClause>(NC);
4520   auto OrigVarIt = C.varlist_begin();
4521   auto InitIt = C.inits().begin();
4522   for (const Expr *PvtVarIt : C.private_copies()) {
4523     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
4524     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
4525     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
4526 
4527     // In order to identify the right initializer we need to match the
4528     // declaration used by the mapping logic. In some cases we may get
4529     // OMPCapturedExprDecl that refers to the original declaration.
4530     const ValueDecl *MatchingVD = OrigVD;
4531     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
4532       // OMPCapturedExprDecl are used to privative fields of the current
4533       // structure.
4534       const auto *ME = cast<MemberExpr>(OED->getInit());
4535       assert(isa<CXXThisExpr>(ME->getBase()) &&
4536              "Base should be the current struct!");
4537       MatchingVD = ME->getMemberDecl();
4538     }
4539 
4540     // If we don't have information about the current list item, move on to
4541     // the next one.
4542     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
4543     if (InitAddrIt == CaptureDeviceAddrMap.end())
4544       continue;
4545 
4546     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
4547                                                          InitAddrIt, InitVD,
4548                                                          PvtVD]() {
4549       // Initialize the temporary initialization variable with the address we
4550       // get from the runtime library. We have to cast the source address
4551       // because it is always a void *. References are materialized in the
4552       // privatization scope, so the initialization here disregards the fact
4553       // the original variable is a reference.
4554       QualType AddrQTy =
4555           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
4556       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
4557       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
4558       setAddrOfLocalVar(InitVD, InitAddr);
4559 
4560       // Emit private declaration, it will be initialized by the value we
4561       // declaration we just added to the local declarations map.
4562       EmitDecl(*PvtVD);
4563 
4564       // The initialization variables reached its purpose in the emission
4565       // of the previous declaration, so we don't need it anymore.
4566       LocalDeclMap.erase(InitVD);
4567 
4568       // Return the address of the private variable.
4569       return GetAddrOfLocalVar(PvtVD);
4570     });
4571     assert(IsRegistered && "firstprivate var already registered as private");
4572     // Silence the warning about unused variable.
4573     (void)IsRegistered;
4574 
4575     ++OrigVarIt;
4576     ++InitIt;
4577   }
4578 }
4579 
4580 // Generate the instructions for '#pragma omp target data' directive.
4581 void CodeGenFunction::EmitOMPTargetDataDirective(
4582     const OMPTargetDataDirective &S) {
4583   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
4584 
4585   // Create a pre/post action to signal the privatization of the device pointer.
4586   // This action can be replaced by the OpenMP runtime code generation to
4587   // deactivate privatization.
4588   bool PrivatizeDevicePointers = false;
4589   class DevicePointerPrivActionTy : public PrePostActionTy {
4590     bool &PrivatizeDevicePointers;
4591 
4592   public:
4593     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
4594         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
4595     void Enter(CodeGenFunction &CGF) override {
4596       PrivatizeDevicePointers = true;
4597     }
4598   };
4599   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
4600 
4601   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
4602                        CodeGenFunction &CGF, PrePostActionTy &Action) {
4603     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4604       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4605     };
4606 
4607     // Codegen that selects whether to generate the privatization code or not.
4608     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
4609                           &InnermostCodeGen](CodeGenFunction &CGF,
4610                                              PrePostActionTy &Action) {
4611       RegionCodeGenTy RCG(InnermostCodeGen);
4612       PrivatizeDevicePointers = false;
4613 
4614       // Call the pre-action to change the status of PrivatizeDevicePointers if
4615       // needed.
4616       Action.Enter(CGF);
4617 
4618       if (PrivatizeDevicePointers) {
4619         OMPPrivateScope PrivateScope(CGF);
4620         // Emit all instances of the use_device_ptr clause.
4621         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
4622           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
4623                                         Info.CaptureDeviceAddrMap);
4624         (void)PrivateScope.Privatize();
4625         RCG(CGF);
4626       } else {
4627         RCG(CGF);
4628       }
4629     };
4630 
4631     // Forward the provided action to the privatization codegen.
4632     RegionCodeGenTy PrivRCG(PrivCodeGen);
4633     PrivRCG.setAction(Action);
4634 
4635     // Notwithstanding the body of the region is emitted as inlined directive,
4636     // we don't use an inline scope as changes in the references inside the
4637     // region are expected to be visible outside, so we do not privative them.
4638     OMPLexicalScope Scope(CGF, S);
4639     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4640                                                     PrivRCG);
4641   };
4642 
4643   RegionCodeGenTy RCG(CodeGen);
4644 
4645   // If we don't have target devices, don't bother emitting the data mapping
4646   // code.
4647   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4648     RCG(*this);
4649     return;
4650   }
4651 
4652   // Check if we have any if clause associated with the directive.
4653   const Expr *IfCond = nullptr;
4654   if (const auto *C = S.getSingleClause<OMPIfClause>())
4655     IfCond = C->getCondition();
4656 
4657   // Check if we have any device clause associated with the directive.
4658   const Expr *Device = nullptr;
4659   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4660     Device = C->getDevice();
4661 
4662   // Set the action to signal privatization of device pointers.
4663   RCG.setAction(PrivAction);
4664 
4665   // Emit region code.
4666   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4667                                              Info);
4668 }
4669 
4670 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4671     const OMPTargetEnterDataDirective &S) {
4672   // If we don't have target devices, don't bother emitting the data mapping
4673   // code.
4674   if (CGM.getLangOpts().OMPTargetTriples.empty())
4675     return;
4676 
4677   // Check if we have any if clause associated with the directive.
4678   const Expr *IfCond = nullptr;
4679   if (const auto *C = S.getSingleClause<OMPIfClause>())
4680     IfCond = C->getCondition();
4681 
4682   // Check if we have any device clause associated with the directive.
4683   const Expr *Device = nullptr;
4684   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4685     Device = C->getDevice();
4686 
4687   OMPLexicalScope Scope(*this, S, OMPD_task);
4688   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4689 }
4690 
4691 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4692     const OMPTargetExitDataDirective &S) {
4693   // If we don't have target devices, don't bother emitting the data mapping
4694   // code.
4695   if (CGM.getLangOpts().OMPTargetTriples.empty())
4696     return;
4697 
4698   // Check if we have any if clause associated with the directive.
4699   const Expr *IfCond = nullptr;
4700   if (const auto *C = S.getSingleClause<OMPIfClause>())
4701     IfCond = C->getCondition();
4702 
4703   // Check if we have any device clause associated with the directive.
4704   const Expr *Device = nullptr;
4705   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4706     Device = C->getDevice();
4707 
4708   OMPLexicalScope Scope(*this, S, OMPD_task);
4709   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4710 }
4711 
4712 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4713                                      const OMPTargetParallelDirective &S,
4714                                      PrePostActionTy &Action) {
4715   // Get the captured statement associated with the 'parallel' region.
4716   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
4717   Action.Enter(CGF);
4718   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4719     Action.Enter(CGF);
4720     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4721     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4722     CGF.EmitOMPPrivateClause(S, PrivateScope);
4723     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4724     (void)PrivateScope.Privatize();
4725     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4726       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4727     // TODO: Add support for clauses.
4728     CGF.EmitStmt(CS->getCapturedStmt());
4729     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4730   };
4731   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4732                                  emitEmptyBoundParameters);
4733   emitPostUpdateForReductionClause(CGF, S,
4734                                    [](CodeGenFunction &) { return nullptr; });
4735 }
4736 
4737 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4738     CodeGenModule &CGM, StringRef ParentName,
4739     const OMPTargetParallelDirective &S) {
4740   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4741     emitTargetParallelRegion(CGF, S, Action);
4742   };
4743   llvm::Function *Fn;
4744   llvm::Constant *Addr;
4745   // Emit target region as a standalone region.
4746   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4747       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4748   assert(Fn && Addr && "Target device function emission failed.");
4749 }
4750 
4751 void CodeGenFunction::EmitOMPTargetParallelDirective(
4752     const OMPTargetParallelDirective &S) {
4753   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4754     emitTargetParallelRegion(CGF, S, Action);
4755   };
4756   emitCommonOMPTargetDirective(*this, S, CodeGen);
4757 }
4758 
4759 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
4760                                         const OMPTargetParallelForDirective &S,
4761                                         PrePostActionTy &Action) {
4762   Action.Enter(CGF);
4763   // Emit directive as a combined directive that consists of two implicit
4764   // directives: 'parallel' with 'for' directive.
4765   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4766     Action.Enter(CGF);
4767     CodeGenFunction::OMPCancelStackRAII CancelRegion(
4768         CGF, OMPD_target_parallel_for, S.hasCancel());
4769     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4770                                emitDispatchForLoopBounds);
4771   };
4772   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
4773                                  emitEmptyBoundParameters);
4774 }
4775 
4776 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
4777     CodeGenModule &CGM, StringRef ParentName,
4778     const OMPTargetParallelForDirective &S) {
4779   // Emit SPMD target parallel for region as a standalone region.
4780   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4781     emitTargetParallelForRegion(CGF, S, Action);
4782   };
4783   llvm::Function *Fn;
4784   llvm::Constant *Addr;
4785   // Emit target region as a standalone region.
4786   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4787       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4788   assert(Fn && Addr && "Target device function emission failed.");
4789 }
4790 
4791 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4792     const OMPTargetParallelForDirective &S) {
4793   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4794     emitTargetParallelForRegion(CGF, S, Action);
4795   };
4796   emitCommonOMPTargetDirective(*this, S, CodeGen);
4797 }
4798 
4799 static void
4800 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
4801                                 const OMPTargetParallelForSimdDirective &S,
4802                                 PrePostActionTy &Action) {
4803   Action.Enter(CGF);
4804   // Emit directive as a combined directive that consists of two implicit
4805   // directives: 'parallel' with 'for' directive.
4806   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4807     Action.Enter(CGF);
4808     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4809                                emitDispatchForLoopBounds);
4810   };
4811   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
4812                                  emitEmptyBoundParameters);
4813 }
4814 
4815 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
4816     CodeGenModule &CGM, StringRef ParentName,
4817     const OMPTargetParallelForSimdDirective &S) {
4818   // Emit SPMD target parallel for region as a standalone region.
4819   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4820     emitTargetParallelForSimdRegion(CGF, S, Action);
4821   };
4822   llvm::Function *Fn;
4823   llvm::Constant *Addr;
4824   // Emit target region as a standalone region.
4825   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4826       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4827   assert(Fn && Addr && "Target device function emission failed.");
4828 }
4829 
4830 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
4831     const OMPTargetParallelForSimdDirective &S) {
4832   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4833     emitTargetParallelForSimdRegion(CGF, S, Action);
4834   };
4835   emitCommonOMPTargetDirective(*this, S, CodeGen);
4836 }
4837 
4838 /// Emit a helper variable and return corresponding lvalue.
4839 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4840                      const ImplicitParamDecl *PVD,
4841                      CodeGenFunction::OMPPrivateScope &Privates) {
4842   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
4843   Privates.addPrivate(VDecl,
4844                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
4845 }
4846 
4847 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4848   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4849   // Emit outlined function for task construct.
4850   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
4851   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4852   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4853   const Expr *IfCond = nullptr;
4854   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4855     if (C->getNameModifier() == OMPD_unknown ||
4856         C->getNameModifier() == OMPD_taskloop) {
4857       IfCond = C->getCondition();
4858       break;
4859     }
4860   }
4861 
4862   OMPTaskDataTy Data;
4863   // Check if taskloop must be emitted without taskgroup.
4864   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4865   // TODO: Check if we should emit tied or untied task.
4866   Data.Tied = true;
4867   // Set scheduling for taskloop
4868   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4869     // grainsize clause
4870     Data.Schedule.setInt(/*IntVal=*/false);
4871     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4872   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4873     // num_tasks clause
4874     Data.Schedule.setInt(/*IntVal=*/true);
4875     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4876   }
4877 
4878   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4879     // if (PreCond) {
4880     //   for (IV in 0..LastIteration) BODY;
4881     //   <Final counter/linear vars updates>;
4882     // }
4883     //
4884 
4885     // Emit: if (PreCond) - begin.
4886     // If the condition constant folds and can be elided, avoid emitting the
4887     // whole loop.
4888     bool CondConstant;
4889     llvm::BasicBlock *ContBlock = nullptr;
4890     OMPLoopScope PreInitScope(CGF, S);
4891     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4892       if (!CondConstant)
4893         return;
4894     } else {
4895       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
4896       ContBlock = CGF.createBasicBlock("taskloop.if.end");
4897       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
4898                   CGF.getProfileCount(&S));
4899       CGF.EmitBlock(ThenBlock);
4900       CGF.incrementProfileCounter(&S);
4901     }
4902 
4903     if (isOpenMPSimdDirective(S.getDirectiveKind()))
4904       CGF.EmitOMPSimdInit(S);
4905 
4906     OMPPrivateScope LoopScope(CGF);
4907     // Emit helper vars inits.
4908     enum { LowerBound = 5, UpperBound, Stride, LastIter };
4909     auto *I = CS->getCapturedDecl()->param_begin();
4910     auto *LBP = std::next(I, LowerBound);
4911     auto *UBP = std::next(I, UpperBound);
4912     auto *STP = std::next(I, Stride);
4913     auto *LIP = std::next(I, LastIter);
4914     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
4915              LoopScope);
4916     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
4917              LoopScope);
4918     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
4919     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
4920              LoopScope);
4921     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
4922     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
4923     (void)LoopScope.Privatize();
4924     // Emit the loop iteration variable.
4925     const Expr *IVExpr = S.getIterationVariable();
4926     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
4927     CGF.EmitVarDecl(*IVDecl);
4928     CGF.EmitIgnoredExpr(S.getInit());
4929 
4930     // Emit the iterations count variable.
4931     // If it is not a variable, Sema decided to calculate iterations count on
4932     // each iteration (e.g., it is foldable into a constant).
4933     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4934       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4935       // Emit calculation of the iterations count.
4936       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
4937     }
4938 
4939     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
4940                          S.getInc(),
4941                          [&S](CodeGenFunction &CGF) {
4942                            CGF.EmitOMPLoopBody(S, JumpDest());
4943                            CGF.EmitStopPoint(&S);
4944                          },
4945                          [](CodeGenFunction &) {});
4946     // Emit: if (PreCond) - end.
4947     if (ContBlock) {
4948       CGF.EmitBranch(ContBlock);
4949       CGF.EmitBlock(ContBlock, true);
4950     }
4951     // Emit final copy of the lastprivate variables if IsLastIter != 0.
4952     if (HasLastprivateClause) {
4953       CGF.EmitOMPLastprivateClauseFinal(
4954           S, isOpenMPSimdDirective(S.getDirectiveKind()),
4955           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
4956               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
4957               (*LIP)->getType(), S.getBeginLoc())));
4958     }
4959   };
4960   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4961                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
4962                             const OMPTaskDataTy &Data) {
4963     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
4964                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
4965       OMPLoopScope PreInitScope(CGF, S);
4966       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
4967                                                   OutlinedFn, SharedsTy,
4968                                                   CapturedStruct, IfCond, Data);
4969     };
4970     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
4971                                                     CodeGen);
4972   };
4973   if (Data.Nogroup) {
4974     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
4975   } else {
4976     CGM.getOpenMPRuntime().emitTaskgroupRegion(
4977         *this,
4978         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
4979                                         PrePostActionTy &Action) {
4980           Action.Enter(CGF);
4981           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
4982                                         Data);
4983         },
4984         S.getBeginLoc());
4985   }
4986 }
4987 
4988 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
4989   EmitOMPTaskLoopBasedDirective(S);
4990 }
4991 
4992 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
4993     const OMPTaskLoopSimdDirective &S) {
4994   EmitOMPTaskLoopBasedDirective(S);
4995 }
4996 
4997 // Generate the instructions for '#pragma omp target update' directive.
4998 void CodeGenFunction::EmitOMPTargetUpdateDirective(
4999     const OMPTargetUpdateDirective &S) {
5000   // If we don't have target devices, don't bother emitting the data mapping
5001   // code.
5002   if (CGM.getLangOpts().OMPTargetTriples.empty())
5003     return;
5004 
5005   // Check if we have any if clause associated with the directive.
5006   const Expr *IfCond = nullptr;
5007   if (const auto *C = S.getSingleClause<OMPIfClause>())
5008     IfCond = C->getCondition();
5009 
5010   // Check if we have any device clause associated with the directive.
5011   const Expr *Device = nullptr;
5012   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5013     Device = C->getDevice();
5014 
5015   OMPLexicalScope Scope(*this, S, OMPD_task);
5016   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5017 }
5018 
5019 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
5020     const OMPExecutableDirective &D) {
5021   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
5022     return;
5023   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
5024     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
5025       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
5026     } else {
5027       OMPPrivateScope LoopGlobals(CGF);
5028       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
5029         for (const Expr *E : LD->counters()) {
5030           const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5031           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
5032             LValue GlobLVal = CGF.EmitLValue(E);
5033             LoopGlobals.addPrivate(
5034                 VD, [&GlobLVal]() { return GlobLVal.getAddress(); });
5035           }
5036           if (isa<OMPCapturedExprDecl>(VD)) {
5037             // Emit only those that were not explicitly referenced in clauses.
5038             if (!CGF.LocalDeclMap.count(VD))
5039               CGF.EmitVarDecl(*VD);
5040           }
5041         }
5042         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
5043           if (!C->getNumForLoops())
5044             continue;
5045           for (unsigned I = LD->getCollapsedNumber(),
5046                         E = C->getLoopNumIterations().size();
5047                I < E; ++I) {
5048             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
5049                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
5050               // Emit only those that were not explicitly referenced in clauses.
5051               if (!CGF.LocalDeclMap.count(VD))
5052                 CGF.EmitVarDecl(*VD);
5053             }
5054           }
5055         }
5056       }
5057       LoopGlobals.Privatize();
5058       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
5059     }
5060   };
5061   OMPSimdLexicalScope Scope(*this, D);
5062   CGM.getOpenMPRuntime().emitInlinedDirective(
5063       *this,
5064       isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
5065                                                   : D.getDirectiveKind(),
5066       CodeGen);
5067 }
5068 
5069