1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 emitPreInitStmt(CGF, S); 61 if (AsInlined) { 62 if (S.hasAssociatedStmt()) { 63 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 64 for (auto &C : CS->captures()) { 65 if (C.capturesVariable() || C.capturesVariableByCopy()) { 66 auto *VD = C.getCapturedVar(); 67 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 68 isCapturedVar(CGF, VD) || 69 (CGF.CapturedStmtInfo && 70 InlinedShareds.isGlobalVarCaptured(VD)), 71 VD->getType().getNonReferenceType(), VK_LValue, 72 SourceLocation()); 73 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 74 return CGF.EmitLValue(&DRE).getAddress(); 75 }); 76 } 77 } 78 (void)InlinedShareds.Privatize(); 79 } 80 } 81 } 82 }; 83 84 /// Private scope for OpenMP loop-based directives, that supports capturing 85 /// of used expression from loop statement. 86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 87 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 88 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 89 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 90 for (const auto *I : PreInits->decls()) 91 CGF.EmitVarDecl(cast<VarDecl>(*I)); 92 } 93 } 94 } 95 96 public: 97 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 98 : CodeGenFunction::RunCleanupsScope(CGF) { 99 emitPreInitStmt(CGF, S); 100 } 101 }; 102 103 } // namespace 104 105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 106 auto &C = getContext(); 107 llvm::Value *Size = nullptr; 108 auto SizeInChars = C.getTypeSizeInChars(Ty); 109 if (SizeInChars.isZero()) { 110 // getTypeSizeInChars() returns 0 for a VLA. 111 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 112 llvm::Value *ArraySize; 113 std::tie(ArraySize, Ty) = getVLASize(VAT); 114 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 115 } 116 SizeInChars = C.getTypeSizeInChars(Ty); 117 if (SizeInChars.isZero()) 118 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 119 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 120 } else 121 Size = CGM.getSize(SizeInChars); 122 return Size; 123 } 124 125 void CodeGenFunction::GenerateOpenMPCapturedVars( 126 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 127 const RecordDecl *RD = S.getCapturedRecordDecl(); 128 auto CurField = RD->field_begin(); 129 auto CurCap = S.captures().begin(); 130 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 131 E = S.capture_init_end(); 132 I != E; ++I, ++CurField, ++CurCap) { 133 if (CurField->hasCapturedVLAType()) { 134 auto VAT = CurField->getCapturedVLAType(); 135 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 136 CapturedVars.push_back(Val); 137 } else if (CurCap->capturesThis()) 138 CapturedVars.push_back(CXXThisValue); 139 else if (CurCap->capturesVariableByCopy()) { 140 llvm::Value *CV = 141 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 142 143 // If the field is not a pointer, we need to save the actual value 144 // and load it as a void pointer. 145 if (!CurField->getType()->isAnyPointerType()) { 146 auto &Ctx = getContext(); 147 auto DstAddr = CreateMemTemp( 148 Ctx.getUIntPtrType(), 149 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 150 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 151 152 auto *SrcAddrVal = EmitScalarConversion( 153 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 154 Ctx.getPointerType(CurField->getType()), SourceLocation()); 155 LValue SrcLV = 156 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 157 158 // Store the value using the source type pointer. 159 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 160 161 // Load the value using the destination type pointer. 162 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 163 } 164 CapturedVars.push_back(CV); 165 } else { 166 assert(CurCap->capturesVariable() && "Expected capture by reference."); 167 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 168 } 169 } 170 } 171 172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 173 StringRef Name, LValue AddrLV, 174 bool isReferenceType = false) { 175 ASTContext &Ctx = CGF.getContext(); 176 177 auto *CastedPtr = CGF.EmitScalarConversion( 178 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 179 Ctx.getPointerType(DstType), SourceLocation()); 180 auto TmpAddr = 181 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 182 .getAddress(); 183 184 // If we are dealing with references we need to return the address of the 185 // reference instead of the reference of the value. 186 if (isReferenceType) { 187 QualType RefType = Ctx.getLValueReferenceType(DstType); 188 auto *RefVal = TmpAddr.getPointer(); 189 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 190 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 191 CGF.EmitScalarInit(RefVal, TmpLVal); 192 } 193 194 return TmpAddr; 195 } 196 197 llvm::Function * 198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 199 assert( 200 CapturedStmtInfo && 201 "CapturedStmtInfo should be set when generating the captured function"); 202 const CapturedDecl *CD = S.getCapturedDecl(); 203 const RecordDecl *RD = S.getCapturedRecordDecl(); 204 assert(CD->hasBody() && "missing CapturedDecl body"); 205 206 // Build the argument list. 207 ASTContext &Ctx = CGM.getContext(); 208 FunctionArgList Args; 209 Args.append(CD->param_begin(), 210 std::next(CD->param_begin(), CD->getContextParamPosition())); 211 auto I = S.captures().begin(); 212 for (auto *FD : RD->fields()) { 213 QualType ArgType = FD->getType(); 214 IdentifierInfo *II = nullptr; 215 VarDecl *CapVar = nullptr; 216 217 // If this is a capture by copy and the type is not a pointer, the outlined 218 // function argument type should be uintptr and the value properly casted to 219 // uintptr. This is necessary given that the runtime library is only able to 220 // deal with pointers. We can pass in the same way the VLA type sizes to the 221 // outlined function. 222 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 223 I->capturesVariableArrayType()) 224 ArgType = Ctx.getUIntPtrType(); 225 226 if (I->capturesVariable() || I->capturesVariableByCopy()) { 227 CapVar = I->getCapturedVar(); 228 II = CapVar->getIdentifier(); 229 } else if (I->capturesThis()) 230 II = &getContext().Idents.get("this"); 231 else { 232 assert(I->capturesVariableArrayType()); 233 II = &getContext().Idents.get("vla"); 234 } 235 if (ArgType->isVariablyModifiedType()) 236 ArgType = getContext().getVariableArrayDecayedType(ArgType); 237 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 238 FD->getLocation(), II, ArgType)); 239 ++I; 240 } 241 Args.append( 242 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 243 CD->param_end()); 244 245 // Create the function declaration. 246 FunctionType::ExtInfo ExtInfo; 247 const CGFunctionInfo &FuncInfo = 248 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 249 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 250 251 llvm::Function *F = llvm::Function::Create( 252 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 253 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 254 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 255 if (CD->isNothrow()) 256 F->addFnAttr(llvm::Attribute::NoUnwind); 257 258 // Generate the function. 259 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 260 CD->getBody()->getLocStart()); 261 unsigned Cnt = CD->getContextParamPosition(); 262 I = S.captures().begin(); 263 for (auto *FD : RD->fields()) { 264 // If we are capturing a pointer by copy we don't need to do anything, just 265 // use the value that we get from the arguments. 266 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 267 setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt])); 268 ++Cnt; 269 ++I; 270 continue; 271 } 272 273 LValue ArgLVal = 274 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 275 AlignmentSource::Decl); 276 if (FD->hasCapturedVLAType()) { 277 LValue CastedArgLVal = 278 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 279 Args[Cnt]->getName(), ArgLVal), 280 FD->getType(), AlignmentSource::Decl); 281 auto *ExprArg = 282 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 283 auto VAT = FD->getCapturedVLAType(); 284 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 285 } else if (I->capturesVariable()) { 286 auto *Var = I->getCapturedVar(); 287 QualType VarTy = Var->getType(); 288 Address ArgAddr = ArgLVal.getAddress(); 289 if (!VarTy->isReferenceType()) { 290 ArgAddr = EmitLoadOfReference( 291 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 292 } 293 setAddrOfLocalVar( 294 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 295 } else if (I->capturesVariableByCopy()) { 296 assert(!FD->getType()->isAnyPointerType() && 297 "Not expecting a captured pointer."); 298 auto *Var = I->getCapturedVar(); 299 QualType VarTy = Var->getType(); 300 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 301 Args[Cnt]->getName(), ArgLVal, 302 VarTy->isReferenceType())); 303 } else { 304 // If 'this' is captured, load it into CXXThisValue. 305 assert(I->capturesThis()); 306 CXXThisValue = 307 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 308 } 309 ++Cnt; 310 ++I; 311 } 312 313 PGO.assignRegionCounters(GlobalDecl(CD), F); 314 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 315 FinishFunction(CD->getBodyRBrace()); 316 317 return F; 318 } 319 320 //===----------------------------------------------------------------------===// 321 // OpenMP Directive Emission 322 //===----------------------------------------------------------------------===// 323 void CodeGenFunction::EmitOMPAggregateAssign( 324 Address DestAddr, Address SrcAddr, QualType OriginalType, 325 const llvm::function_ref<void(Address, Address)> &CopyGen) { 326 // Perform element-by-element initialization. 327 QualType ElementTy; 328 329 // Drill down to the base element type on both arrays. 330 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 331 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 332 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 333 334 auto SrcBegin = SrcAddr.getPointer(); 335 auto DestBegin = DestAddr.getPointer(); 336 // Cast from pointer to array type to pointer to single element. 337 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 338 // The basic structure here is a while-do loop. 339 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 340 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 341 auto IsEmpty = 342 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 343 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 344 345 // Enter the loop body, making that address the current address. 346 auto EntryBB = Builder.GetInsertBlock(); 347 EmitBlock(BodyBB); 348 349 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 350 351 llvm::PHINode *SrcElementPHI = 352 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 353 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 354 Address SrcElementCurrent = 355 Address(SrcElementPHI, 356 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 357 358 llvm::PHINode *DestElementPHI = 359 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 360 DestElementPHI->addIncoming(DestBegin, EntryBB); 361 Address DestElementCurrent = 362 Address(DestElementPHI, 363 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 364 365 // Emit copy. 366 CopyGen(DestElementCurrent, SrcElementCurrent); 367 368 // Shift the address forward by one element. 369 auto DestElementNext = Builder.CreateConstGEP1_32( 370 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 371 auto SrcElementNext = Builder.CreateConstGEP1_32( 372 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 373 // Check whether we've reached the end. 374 auto Done = 375 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 376 Builder.CreateCondBr(Done, DoneBB, BodyBB); 377 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 378 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 379 380 // Done. 381 EmitBlock(DoneBB, /*IsFinished=*/true); 382 } 383 384 /// Check if the combiner is a call to UDR combiner and if it is so return the 385 /// UDR decl used for reduction. 386 static const OMPDeclareReductionDecl * 387 getReductionInit(const Expr *ReductionOp) { 388 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 389 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 390 if (auto *DRE = 391 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 392 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 393 return DRD; 394 return nullptr; 395 } 396 397 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 398 const OMPDeclareReductionDecl *DRD, 399 const Expr *InitOp, 400 Address Private, Address Original, 401 QualType Ty) { 402 if (DRD->getInitializer()) { 403 std::pair<llvm::Function *, llvm::Function *> Reduction = 404 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 405 auto *CE = cast<CallExpr>(InitOp); 406 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 407 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 408 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 409 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 410 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 411 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 412 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 413 [=]() -> Address { return Private; }); 414 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 415 [=]() -> Address { return Original; }); 416 (void)PrivateScope.Privatize(); 417 RValue Func = RValue::get(Reduction.second); 418 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 419 CGF.EmitIgnoredExpr(InitOp); 420 } else { 421 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 422 auto *GV = new llvm::GlobalVariable( 423 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 424 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 425 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 426 RValue InitRVal; 427 switch (CGF.getEvaluationKind(Ty)) { 428 case TEK_Scalar: 429 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 430 break; 431 case TEK_Complex: 432 InitRVal = 433 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 434 break; 435 case TEK_Aggregate: 436 InitRVal = RValue::getAggregate(LV.getAddress()); 437 break; 438 } 439 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 440 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 441 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 442 /*IsInitializer=*/false); 443 } 444 } 445 446 /// \brief Emit initialization of arrays of complex types. 447 /// \param DestAddr Address of the array. 448 /// \param Type Type of array. 449 /// \param Init Initial expression of array. 450 /// \param SrcAddr Address of the original array. 451 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 452 QualType Type, const Expr *Init, 453 Address SrcAddr = Address::invalid()) { 454 auto *DRD = getReductionInit(Init); 455 // Perform element-by-element initialization. 456 QualType ElementTy; 457 458 // Drill down to the base element type on both arrays. 459 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 460 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 461 DestAddr = 462 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 463 if (DRD) 464 SrcAddr = 465 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 466 467 llvm::Value *SrcBegin = nullptr; 468 if (DRD) 469 SrcBegin = SrcAddr.getPointer(); 470 auto DestBegin = DestAddr.getPointer(); 471 // Cast from pointer to array type to pointer to single element. 472 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 473 // The basic structure here is a while-do loop. 474 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 475 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 476 auto IsEmpty = 477 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 478 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 479 480 // Enter the loop body, making that address the current address. 481 auto EntryBB = CGF.Builder.GetInsertBlock(); 482 CGF.EmitBlock(BodyBB); 483 484 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 485 486 llvm::PHINode *SrcElementPHI = nullptr; 487 Address SrcElementCurrent = Address::invalid(); 488 if (DRD) { 489 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 490 "omp.arraycpy.srcElementPast"); 491 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 492 SrcElementCurrent = 493 Address(SrcElementPHI, 494 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 495 } 496 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 497 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 498 DestElementPHI->addIncoming(DestBegin, EntryBB); 499 Address DestElementCurrent = 500 Address(DestElementPHI, 501 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 502 503 // Emit copy. 504 { 505 CodeGenFunction::RunCleanupsScope InitScope(CGF); 506 if (DRD && (DRD->getInitializer() || !Init)) { 507 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 508 SrcElementCurrent, ElementTy); 509 } else 510 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 511 /*IsInitializer=*/false); 512 } 513 514 if (DRD) { 515 // Shift the address forward by one element. 516 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 517 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 518 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 519 } 520 521 // Shift the address forward by one element. 522 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 523 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 524 // Check whether we've reached the end. 525 auto Done = 526 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 527 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 528 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 529 530 // Done. 531 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 532 } 533 534 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 535 Address SrcAddr, const VarDecl *DestVD, 536 const VarDecl *SrcVD, const Expr *Copy) { 537 if (OriginalType->isArrayType()) { 538 auto *BO = dyn_cast<BinaryOperator>(Copy); 539 if (BO && BO->getOpcode() == BO_Assign) { 540 // Perform simple memcpy for simple copying. 541 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 542 } else { 543 // For arrays with complex element types perform element by element 544 // copying. 545 EmitOMPAggregateAssign( 546 DestAddr, SrcAddr, OriginalType, 547 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 548 // Working with the single array element, so have to remap 549 // destination and source variables to corresponding array 550 // elements. 551 CodeGenFunction::OMPPrivateScope Remap(*this); 552 Remap.addPrivate(DestVD, [DestElement]() -> Address { 553 return DestElement; 554 }); 555 Remap.addPrivate( 556 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 557 (void)Remap.Privatize(); 558 EmitIgnoredExpr(Copy); 559 }); 560 } 561 } else { 562 // Remap pseudo source variable to private copy. 563 CodeGenFunction::OMPPrivateScope Remap(*this); 564 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 565 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 566 (void)Remap.Privatize(); 567 // Emit copying of the whole variable. 568 EmitIgnoredExpr(Copy); 569 } 570 } 571 572 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 573 OMPPrivateScope &PrivateScope) { 574 if (!HaveInsertPoint()) 575 return false; 576 bool FirstprivateIsLastprivate = false; 577 llvm::DenseSet<const VarDecl *> Lastprivates; 578 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 579 for (const auto *D : C->varlists()) 580 Lastprivates.insert( 581 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 582 } 583 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 584 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 585 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 586 auto IRef = C->varlist_begin(); 587 auto InitsRef = C->inits().begin(); 588 for (auto IInit : C->private_copies()) { 589 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 590 bool ThisFirstprivateIsLastprivate = 591 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 592 auto *CapFD = CapturesInfo.lookup(OrigVD); 593 auto *FD = CapturedStmtInfo->lookup(OrigVD); 594 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 595 !FD->getType()->isReferenceType()) { 596 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 597 ++IRef; 598 ++InitsRef; 599 continue; 600 } 601 FirstprivateIsLastprivate = 602 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 603 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 604 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 605 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 606 bool IsRegistered; 607 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 608 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 609 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 610 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 611 QualType Type = VD->getType(); 612 if (Type->isArrayType()) { 613 // Emit VarDecl with copy init for arrays. 614 // Get the address of the original variable captured in current 615 // captured region. 616 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 617 auto Emission = EmitAutoVarAlloca(*VD); 618 auto *Init = VD->getInit(); 619 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 620 // Perform simple memcpy. 621 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 622 Type); 623 } else { 624 EmitOMPAggregateAssign( 625 Emission.getAllocatedAddress(), OriginalAddr, Type, 626 [this, VDInit, Init](Address DestElement, 627 Address SrcElement) { 628 // Clean up any temporaries needed by the initialization. 629 RunCleanupsScope InitScope(*this); 630 // Emit initialization for single element. 631 setAddrOfLocalVar(VDInit, SrcElement); 632 EmitAnyExprToMem(Init, DestElement, 633 Init->getType().getQualifiers(), 634 /*IsInitializer*/ false); 635 LocalDeclMap.erase(VDInit); 636 }); 637 } 638 EmitAutoVarCleanups(Emission); 639 return Emission.getAllocatedAddress(); 640 }); 641 } else { 642 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 643 // Emit private VarDecl with copy init. 644 // Remap temp VDInit variable to the address of the original 645 // variable 646 // (for proper handling of captured global variables). 647 setAddrOfLocalVar(VDInit, OriginalAddr); 648 EmitDecl(*VD); 649 LocalDeclMap.erase(VDInit); 650 return GetAddrOfLocalVar(VD); 651 }); 652 } 653 assert(IsRegistered && 654 "firstprivate var already registered as private"); 655 // Silence the warning about unused variable. 656 (void)IsRegistered; 657 } 658 ++IRef; 659 ++InitsRef; 660 } 661 } 662 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 663 } 664 665 void CodeGenFunction::EmitOMPPrivateClause( 666 const OMPExecutableDirective &D, 667 CodeGenFunction::OMPPrivateScope &PrivateScope) { 668 if (!HaveInsertPoint()) 669 return; 670 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 671 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 672 auto IRef = C->varlist_begin(); 673 for (auto IInit : C->private_copies()) { 674 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 675 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 676 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 677 bool IsRegistered = 678 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 679 // Emit private VarDecl with copy init. 680 EmitDecl(*VD); 681 return GetAddrOfLocalVar(VD); 682 }); 683 assert(IsRegistered && "private var already registered as private"); 684 // Silence the warning about unused variable. 685 (void)IsRegistered; 686 } 687 ++IRef; 688 } 689 } 690 } 691 692 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 693 if (!HaveInsertPoint()) 694 return false; 695 // threadprivate_var1 = master_threadprivate_var1; 696 // operator=(threadprivate_var2, master_threadprivate_var2); 697 // ... 698 // __kmpc_barrier(&loc, global_tid); 699 llvm::DenseSet<const VarDecl *> CopiedVars; 700 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 701 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 702 auto IRef = C->varlist_begin(); 703 auto ISrcRef = C->source_exprs().begin(); 704 auto IDestRef = C->destination_exprs().begin(); 705 for (auto *AssignOp : C->assignment_ops()) { 706 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 707 QualType Type = VD->getType(); 708 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 709 // Get the address of the master variable. If we are emitting code with 710 // TLS support, the address is passed from the master as field in the 711 // captured declaration. 712 Address MasterAddr = Address::invalid(); 713 if (getLangOpts().OpenMPUseTLS && 714 getContext().getTargetInfo().isTLSSupported()) { 715 assert(CapturedStmtInfo->lookup(VD) && 716 "Copyin threadprivates should have been captured!"); 717 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 718 VK_LValue, (*IRef)->getExprLoc()); 719 MasterAddr = EmitLValue(&DRE).getAddress(); 720 LocalDeclMap.erase(VD); 721 } else { 722 MasterAddr = 723 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 724 : CGM.GetAddrOfGlobal(VD), 725 getContext().getDeclAlign(VD)); 726 } 727 // Get the address of the threadprivate variable. 728 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 729 if (CopiedVars.size() == 1) { 730 // At first check if current thread is a master thread. If it is, no 731 // need to copy data. 732 CopyBegin = createBasicBlock("copyin.not.master"); 733 CopyEnd = createBasicBlock("copyin.not.master.end"); 734 Builder.CreateCondBr( 735 Builder.CreateICmpNE( 736 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 737 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 738 CopyBegin, CopyEnd); 739 EmitBlock(CopyBegin); 740 } 741 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 742 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 743 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 744 } 745 ++IRef; 746 ++ISrcRef; 747 ++IDestRef; 748 } 749 } 750 if (CopyEnd) { 751 // Exit out of copying procedure for non-master thread. 752 EmitBlock(CopyEnd, /*IsFinished=*/true); 753 return true; 754 } 755 return false; 756 } 757 758 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 759 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 760 if (!HaveInsertPoint()) 761 return false; 762 bool HasAtLeastOneLastprivate = false; 763 llvm::DenseSet<const VarDecl *> SIMDLCVs; 764 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 765 auto *LoopDirective = cast<OMPLoopDirective>(&D); 766 for (auto *C : LoopDirective->counters()) { 767 SIMDLCVs.insert( 768 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 769 } 770 } 771 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 772 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 773 HasAtLeastOneLastprivate = true; 774 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 775 break; 776 auto IRef = C->varlist_begin(); 777 auto IDestRef = C->destination_exprs().begin(); 778 for (auto *IInit : C->private_copies()) { 779 // Keep the address of the original variable for future update at the end 780 // of the loop. 781 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 782 // Taskloops do not require additional initialization, it is done in 783 // runtime support library. 784 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 785 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 786 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 787 DeclRefExpr DRE( 788 const_cast<VarDecl *>(OrigVD), 789 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 790 OrigVD) != nullptr, 791 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 792 return EmitLValue(&DRE).getAddress(); 793 }); 794 // Check if the variable is also a firstprivate: in this case IInit is 795 // not generated. Initialization of this variable will happen in codegen 796 // for 'firstprivate' clause. 797 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 798 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 799 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 800 // Emit private VarDecl with copy init. 801 EmitDecl(*VD); 802 return GetAddrOfLocalVar(VD); 803 }); 804 assert(IsRegistered && 805 "lastprivate var already registered as private"); 806 (void)IsRegistered; 807 } 808 } 809 ++IRef; 810 ++IDestRef; 811 } 812 } 813 return HasAtLeastOneLastprivate; 814 } 815 816 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 817 const OMPExecutableDirective &D, bool NoFinals, 818 llvm::Value *IsLastIterCond) { 819 if (!HaveInsertPoint()) 820 return; 821 // Emit following code: 822 // if (<IsLastIterCond>) { 823 // orig_var1 = private_orig_var1; 824 // ... 825 // orig_varn = private_orig_varn; 826 // } 827 llvm::BasicBlock *ThenBB = nullptr; 828 llvm::BasicBlock *DoneBB = nullptr; 829 if (IsLastIterCond) { 830 ThenBB = createBasicBlock(".omp.lastprivate.then"); 831 DoneBB = createBasicBlock(".omp.lastprivate.done"); 832 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 833 EmitBlock(ThenBB); 834 } 835 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 836 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 837 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 838 auto IC = LoopDirective->counters().begin(); 839 for (auto F : LoopDirective->finals()) { 840 auto *D = 841 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 842 if (NoFinals) 843 AlreadyEmittedVars.insert(D); 844 else 845 LoopCountersAndUpdates[D] = F; 846 ++IC; 847 } 848 } 849 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 850 auto IRef = C->varlist_begin(); 851 auto ISrcRef = C->source_exprs().begin(); 852 auto IDestRef = C->destination_exprs().begin(); 853 for (auto *AssignOp : C->assignment_ops()) { 854 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 855 QualType Type = PrivateVD->getType(); 856 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 857 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 858 // If lastprivate variable is a loop control variable for loop-based 859 // directive, update its value before copyin back to original 860 // variable. 861 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 862 EmitIgnoredExpr(FinalExpr); 863 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 864 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 865 // Get the address of the original variable. 866 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 867 // Get the address of the private variable. 868 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 869 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 870 PrivateAddr = 871 Address(Builder.CreateLoad(PrivateAddr), 872 getNaturalTypeAlignment(RefTy->getPointeeType())); 873 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 874 } 875 ++IRef; 876 ++ISrcRef; 877 ++IDestRef; 878 } 879 if (auto *PostUpdate = C->getPostUpdateExpr()) 880 EmitIgnoredExpr(PostUpdate); 881 } 882 if (IsLastIterCond) 883 EmitBlock(DoneBB, /*IsFinished=*/true); 884 } 885 886 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 887 LValue BaseLV, llvm::Value *Addr) { 888 Address Tmp = Address::invalid(); 889 Address TopTmp = Address::invalid(); 890 Address MostTopTmp = Address::invalid(); 891 BaseTy = BaseTy.getNonReferenceType(); 892 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 893 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 894 Tmp = CGF.CreateMemTemp(BaseTy); 895 if (TopTmp.isValid()) 896 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 897 else 898 MostTopTmp = Tmp; 899 TopTmp = Tmp; 900 BaseTy = BaseTy->getPointeeType(); 901 } 902 llvm::Type *Ty = BaseLV.getPointer()->getType(); 903 if (Tmp.isValid()) 904 Ty = Tmp.getElementType(); 905 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 906 if (Tmp.isValid()) { 907 CGF.Builder.CreateStore(Addr, Tmp); 908 return MostTopTmp; 909 } 910 return Address(Addr, BaseLV.getAlignment()); 911 } 912 913 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 914 LValue BaseLV) { 915 BaseTy = BaseTy.getNonReferenceType(); 916 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 917 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 918 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 919 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 920 else { 921 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 922 BaseTy->castAs<ReferenceType>()); 923 } 924 BaseTy = BaseTy->getPointeeType(); 925 } 926 return CGF.MakeAddrLValue( 927 Address( 928 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 929 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 930 BaseLV.getAlignment()), 931 BaseLV.getType(), BaseLV.getAlignmentSource()); 932 } 933 934 void CodeGenFunction::EmitOMPReductionClauseInit( 935 const OMPExecutableDirective &D, 936 CodeGenFunction::OMPPrivateScope &PrivateScope) { 937 if (!HaveInsertPoint()) 938 return; 939 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 940 auto ILHS = C->lhs_exprs().begin(); 941 auto IRHS = C->rhs_exprs().begin(); 942 auto IPriv = C->privates().begin(); 943 auto IRed = C->reduction_ops().begin(); 944 for (auto IRef : C->varlists()) { 945 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 946 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 947 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 948 auto *DRD = getReductionInit(*IRed); 949 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 950 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 951 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 952 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 953 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 954 Base = TempASE->getBase()->IgnoreParenImpCasts(); 955 auto *DE = cast<DeclRefExpr>(Base); 956 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 957 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 958 auto OASELValueUB = 959 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 960 auto OriginalBaseLValue = EmitLValue(DE); 961 LValue BaseLValue = 962 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 963 OriginalBaseLValue); 964 // Store the address of the original variable associated with the LHS 965 // implicit variable. 966 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 967 return OASELValueLB.getAddress(); 968 }); 969 // Emit reduction copy. 970 bool IsRegistered = PrivateScope.addPrivate( 971 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 972 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 973 // Emit VarDecl with copy init for arrays. 974 // Get the address of the original variable captured in current 975 // captured region. 976 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 977 OASELValueLB.getPointer()); 978 Size = Builder.CreateNUWAdd( 979 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 980 CodeGenFunction::OpaqueValueMapping OpaqueMap( 981 *this, cast<OpaqueValueExpr>( 982 getContext() 983 .getAsVariableArrayType(PrivateVD->getType()) 984 ->getSizeExpr()), 985 RValue::get(Size)); 986 EmitVariablyModifiedType(PrivateVD->getType()); 987 auto Emission = EmitAutoVarAlloca(*PrivateVD); 988 auto Addr = Emission.getAllocatedAddress(); 989 auto *Init = PrivateVD->getInit(); 990 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 991 DRD ? *IRed : Init, 992 OASELValueLB.getAddress()); 993 EmitAutoVarCleanups(Emission); 994 // Emit private VarDecl with reduction init. 995 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 996 OASELValueLB.getPointer()); 997 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 998 return castToBase(*this, OrigVD->getType(), 999 OASELValueLB.getType(), OriginalBaseLValue, 1000 Ptr); 1001 }); 1002 assert(IsRegistered && "private var already registered as private"); 1003 // Silence the warning about unused variable. 1004 (void)IsRegistered; 1005 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1006 return GetAddrOfLocalVar(PrivateVD); 1007 }); 1008 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1009 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1010 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1011 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1012 auto *DE = cast<DeclRefExpr>(Base); 1013 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1014 auto ASELValue = EmitLValue(ASE); 1015 auto OriginalBaseLValue = EmitLValue(DE); 1016 LValue BaseLValue = loadToBegin( 1017 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1018 // Store the address of the original variable associated with the LHS 1019 // implicit variable. 1020 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 1021 return ASELValue.getAddress(); 1022 }); 1023 // Emit reduction copy. 1024 bool IsRegistered = PrivateScope.addPrivate( 1025 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1026 OriginalBaseLValue, DRD, IRed]() -> Address { 1027 // Emit private VarDecl with reduction init. 1028 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1029 auto Addr = Emission.getAllocatedAddress(); 1030 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1031 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1032 ASELValue.getAddress(), 1033 ASELValue.getType()); 1034 } else 1035 EmitAutoVarInit(Emission); 1036 EmitAutoVarCleanups(Emission); 1037 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1038 ASELValue.getPointer()); 1039 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1040 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1041 OriginalBaseLValue, Ptr); 1042 }); 1043 assert(IsRegistered && "private var already registered as private"); 1044 // Silence the warning about unused variable. 1045 (void)IsRegistered; 1046 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1047 return Builder.CreateElementBitCast( 1048 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1049 "rhs.begin"); 1050 }); 1051 } else { 1052 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1053 QualType Type = PrivateVD->getType(); 1054 if (getContext().getAsArrayType(Type)) { 1055 // Store the address of the original variable associated with the LHS 1056 // implicit variable. 1057 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1058 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1059 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1060 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1061 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1062 LHSVD]() -> Address { 1063 OriginalAddr = Builder.CreateElementBitCast( 1064 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1065 return OriginalAddr; 1066 }); 1067 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1068 if (Type->isVariablyModifiedType()) { 1069 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1070 *this, cast<OpaqueValueExpr>( 1071 getContext() 1072 .getAsVariableArrayType(PrivateVD->getType()) 1073 ->getSizeExpr()), 1074 RValue::get( 1075 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1076 EmitVariablyModifiedType(Type); 1077 } 1078 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1079 auto Addr = Emission.getAllocatedAddress(); 1080 auto *Init = PrivateVD->getInit(); 1081 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1082 DRD ? *IRed : Init, OriginalAddr); 1083 EmitAutoVarCleanups(Emission); 1084 return Emission.getAllocatedAddress(); 1085 }); 1086 assert(IsRegistered && "private var already registered as private"); 1087 // Silence the warning about unused variable. 1088 (void)IsRegistered; 1089 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1090 return Builder.CreateElementBitCast( 1091 GetAddrOfLocalVar(PrivateVD), 1092 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1093 }); 1094 } else { 1095 // Store the address of the original variable associated with the LHS 1096 // implicit variable. 1097 Address OriginalAddr = Address::invalid(); 1098 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1099 &OriginalAddr]() -> Address { 1100 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1101 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1102 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1103 OriginalAddr = EmitLValue(&DRE).getAddress(); 1104 return OriginalAddr; 1105 }); 1106 // Emit reduction copy. 1107 bool IsRegistered = PrivateScope.addPrivate( 1108 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1109 // Emit private VarDecl with reduction init. 1110 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1111 auto Addr = Emission.getAllocatedAddress(); 1112 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1113 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1114 OriginalAddr, 1115 PrivateVD->getType()); 1116 } else 1117 EmitAutoVarInit(Emission); 1118 EmitAutoVarCleanups(Emission); 1119 return Addr; 1120 }); 1121 assert(IsRegistered && "private var already registered as private"); 1122 // Silence the warning about unused variable. 1123 (void)IsRegistered; 1124 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1125 return GetAddrOfLocalVar(PrivateVD); 1126 }); 1127 } 1128 } 1129 ++ILHS; 1130 ++IRHS; 1131 ++IPriv; 1132 ++IRed; 1133 } 1134 } 1135 } 1136 1137 void CodeGenFunction::EmitOMPReductionClauseFinal( 1138 const OMPExecutableDirective &D) { 1139 if (!HaveInsertPoint()) 1140 return; 1141 llvm::SmallVector<const Expr *, 8> Privates; 1142 llvm::SmallVector<const Expr *, 8> LHSExprs; 1143 llvm::SmallVector<const Expr *, 8> RHSExprs; 1144 llvm::SmallVector<const Expr *, 8> ReductionOps; 1145 bool HasAtLeastOneReduction = false; 1146 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1147 HasAtLeastOneReduction = true; 1148 Privates.append(C->privates().begin(), C->privates().end()); 1149 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1150 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1151 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1152 } 1153 if (HasAtLeastOneReduction) { 1154 // Emit nowait reduction if nowait clause is present or directive is a 1155 // parallel directive (it always has implicit barrier). 1156 CGM.getOpenMPRuntime().emitReduction( 1157 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1158 D.getSingleClause<OMPNowaitClause>() || 1159 isOpenMPParallelDirective(D.getDirectiveKind()) || 1160 D.getDirectiveKind() == OMPD_simd, 1161 D.getDirectiveKind() == OMPD_simd); 1162 } 1163 } 1164 1165 static void emitPostUpdateForReductionClause( 1166 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1167 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1168 if (!CGF.HaveInsertPoint()) 1169 return; 1170 llvm::BasicBlock *DoneBB = nullptr; 1171 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1172 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1173 if (!DoneBB) { 1174 if (auto *Cond = CondGen(CGF)) { 1175 // If the first post-update expression is found, emit conditional 1176 // block if it was requested. 1177 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1178 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1179 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1180 CGF.EmitBlock(ThenBB); 1181 } 1182 } 1183 CGF.EmitIgnoredExpr(PostUpdate); 1184 } 1185 } 1186 if (DoneBB) 1187 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1188 } 1189 1190 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1191 const OMPExecutableDirective &S, 1192 OpenMPDirectiveKind InnermostKind, 1193 const RegionCodeGenTy &CodeGen) { 1194 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1195 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 1196 emitParallelOrTeamsOutlinedFunction(S, 1197 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1198 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1199 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1200 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1201 /*IgnoreResultAssign*/ true); 1202 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1203 CGF, NumThreads, NumThreadsClause->getLocStart()); 1204 } 1205 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1206 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1207 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1208 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1209 } 1210 const Expr *IfCond = nullptr; 1211 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1212 if (C->getNameModifier() == OMPD_unknown || 1213 C->getNameModifier() == OMPD_parallel) { 1214 IfCond = C->getCondition(); 1215 break; 1216 } 1217 } 1218 1219 OMPLexicalScope Scope(CGF, S); 1220 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1221 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1222 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1223 CapturedVars, IfCond); 1224 } 1225 1226 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1227 // Emit parallel region as a standalone region. 1228 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1229 OMPPrivateScope PrivateScope(CGF); 1230 bool Copyins = CGF.EmitOMPCopyinClause(S); 1231 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1232 if (Copyins) { 1233 // Emit implicit barrier to synchronize threads and avoid data races on 1234 // propagation master's thread values of threadprivate variables to local 1235 // instances of that variables of all other implicit threads. 1236 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1237 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1238 /*ForceSimpleCall=*/true); 1239 } 1240 CGF.EmitOMPPrivateClause(S, PrivateScope); 1241 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1242 (void)PrivateScope.Privatize(); 1243 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1244 CGF.EmitOMPReductionClauseFinal(S); 1245 }; 1246 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1247 emitPostUpdateForReductionClause( 1248 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1249 } 1250 1251 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1252 JumpDest LoopExit) { 1253 RunCleanupsScope BodyScope(*this); 1254 // Update counters values on current iteration. 1255 for (auto I : D.updates()) { 1256 EmitIgnoredExpr(I); 1257 } 1258 // Update the linear variables. 1259 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1260 for (auto *U : C->updates()) 1261 EmitIgnoredExpr(U); 1262 } 1263 1264 // On a continue in the body, jump to the end. 1265 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1266 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1267 // Emit loop body. 1268 EmitStmt(D.getBody()); 1269 // The end (updates/cleanups). 1270 EmitBlock(Continue.getBlock()); 1271 BreakContinueStack.pop_back(); 1272 } 1273 1274 void CodeGenFunction::EmitOMPInnerLoop( 1275 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1276 const Expr *IncExpr, 1277 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1278 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1279 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1280 1281 // Start the loop with a block that tests the condition. 1282 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1283 EmitBlock(CondBlock); 1284 LoopStack.push(CondBlock, Builder.getCurrentDebugLocation()); 1285 1286 // If there are any cleanups between here and the loop-exit scope, 1287 // create a block to stage a loop exit along. 1288 auto ExitBlock = LoopExit.getBlock(); 1289 if (RequiresCleanup) 1290 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1291 1292 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1293 1294 // Emit condition. 1295 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1296 if (ExitBlock != LoopExit.getBlock()) { 1297 EmitBlock(ExitBlock); 1298 EmitBranchThroughCleanup(LoopExit); 1299 } 1300 1301 EmitBlock(LoopBody); 1302 incrementProfileCounter(&S); 1303 1304 // Create a block for the increment. 1305 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1306 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1307 1308 BodyGen(*this); 1309 1310 // Emit "IV = IV + 1" and a back-edge to the condition block. 1311 EmitBlock(Continue.getBlock()); 1312 EmitIgnoredExpr(IncExpr); 1313 PostIncGen(*this); 1314 BreakContinueStack.pop_back(); 1315 EmitBranch(CondBlock); 1316 LoopStack.pop(); 1317 // Emit the fall-through block. 1318 EmitBlock(LoopExit.getBlock()); 1319 } 1320 1321 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1322 if (!HaveInsertPoint()) 1323 return; 1324 // Emit inits for the linear variables. 1325 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1326 for (auto *Init : C->inits()) { 1327 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1328 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1329 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1330 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1331 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1332 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1333 VD->getInit()->getType(), VK_LValue, 1334 VD->getInit()->getExprLoc()); 1335 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1336 VD->getType()), 1337 /*capturedByInit=*/false); 1338 EmitAutoVarCleanups(Emission); 1339 } else 1340 EmitVarDecl(*VD); 1341 } 1342 // Emit the linear steps for the linear clauses. 1343 // If a step is not constant, it is pre-calculated before the loop. 1344 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1345 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1346 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1347 // Emit calculation of the linear step. 1348 EmitIgnoredExpr(CS); 1349 } 1350 } 1351 } 1352 1353 void CodeGenFunction::EmitOMPLinearClauseFinal( 1354 const OMPLoopDirective &D, 1355 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1356 if (!HaveInsertPoint()) 1357 return; 1358 llvm::BasicBlock *DoneBB = nullptr; 1359 // Emit the final values of the linear variables. 1360 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1361 auto IC = C->varlist_begin(); 1362 for (auto *F : C->finals()) { 1363 if (!DoneBB) { 1364 if (auto *Cond = CondGen(*this)) { 1365 // If the first post-update expression is found, emit conditional 1366 // block if it was requested. 1367 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1368 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1369 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1370 EmitBlock(ThenBB); 1371 } 1372 } 1373 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1374 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1375 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1376 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1377 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1378 CodeGenFunction::OMPPrivateScope VarScope(*this); 1379 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1380 (void)VarScope.Privatize(); 1381 EmitIgnoredExpr(F); 1382 ++IC; 1383 } 1384 if (auto *PostUpdate = C->getPostUpdateExpr()) 1385 EmitIgnoredExpr(PostUpdate); 1386 } 1387 if (DoneBB) 1388 EmitBlock(DoneBB, /*IsFinished=*/true); 1389 } 1390 1391 static void emitAlignedClause(CodeGenFunction &CGF, 1392 const OMPExecutableDirective &D) { 1393 if (!CGF.HaveInsertPoint()) 1394 return; 1395 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1396 unsigned ClauseAlignment = 0; 1397 if (auto AlignmentExpr = Clause->getAlignment()) { 1398 auto AlignmentCI = 1399 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1400 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1401 } 1402 for (auto E : Clause->varlists()) { 1403 unsigned Alignment = ClauseAlignment; 1404 if (Alignment == 0) { 1405 // OpenMP [2.8.1, Description] 1406 // If no optional parameter is specified, implementation-defined default 1407 // alignments for SIMD instructions on the target platforms are assumed. 1408 Alignment = 1409 CGF.getContext() 1410 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1411 E->getType()->getPointeeType())) 1412 .getQuantity(); 1413 } 1414 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1415 "alignment is not power of 2"); 1416 if (Alignment != 0) { 1417 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1418 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1419 } 1420 } 1421 } 1422 } 1423 1424 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1425 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1426 if (!HaveInsertPoint()) 1427 return; 1428 auto I = S.private_counters().begin(); 1429 for (auto *E : S.counters()) { 1430 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1431 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1432 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1433 // Emit var without initialization. 1434 if (!LocalDeclMap.count(PrivateVD)) { 1435 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1436 EmitAutoVarCleanups(VarEmission); 1437 } 1438 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1439 /*RefersToEnclosingVariableOrCapture=*/false, 1440 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1441 return EmitLValue(&DRE).getAddress(); 1442 }); 1443 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1444 VD->hasGlobalStorage()) { 1445 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1446 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1447 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1448 E->getType(), VK_LValue, E->getExprLoc()); 1449 return EmitLValue(&DRE).getAddress(); 1450 }); 1451 } 1452 ++I; 1453 } 1454 } 1455 1456 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1457 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1458 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1459 if (!CGF.HaveInsertPoint()) 1460 return; 1461 { 1462 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1463 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1464 (void)PreCondScope.Privatize(); 1465 // Get initial values of real counters. 1466 for (auto I : S.inits()) { 1467 CGF.EmitIgnoredExpr(I); 1468 } 1469 } 1470 // Check that loop is executed at least one time. 1471 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1472 } 1473 1474 void CodeGenFunction::EmitOMPLinearClause( 1475 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1476 if (!HaveInsertPoint()) 1477 return; 1478 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1479 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1480 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1481 for (auto *C : LoopDirective->counters()) { 1482 SIMDLCVs.insert( 1483 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1484 } 1485 } 1486 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1487 auto CurPrivate = C->privates().begin(); 1488 for (auto *E : C->varlists()) { 1489 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1490 auto *PrivateVD = 1491 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1492 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1493 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1494 // Emit private VarDecl with copy init. 1495 EmitVarDecl(*PrivateVD); 1496 return GetAddrOfLocalVar(PrivateVD); 1497 }); 1498 assert(IsRegistered && "linear var already registered as private"); 1499 // Silence the warning about unused variable. 1500 (void)IsRegistered; 1501 } else 1502 EmitVarDecl(*PrivateVD); 1503 ++CurPrivate; 1504 } 1505 } 1506 } 1507 1508 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1509 const OMPExecutableDirective &D, 1510 bool IsMonotonic) { 1511 if (!CGF.HaveInsertPoint()) 1512 return; 1513 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1514 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1515 /*ignoreResult=*/true); 1516 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1517 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1518 // In presence of finite 'safelen', it may be unsafe to mark all 1519 // the memory instructions parallel, because loop-carried 1520 // dependences of 'safelen' iterations are possible. 1521 if (!IsMonotonic) 1522 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1523 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1524 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1525 /*ignoreResult=*/true); 1526 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1527 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1528 // In presence of finite 'safelen', it may be unsafe to mark all 1529 // the memory instructions parallel, because loop-carried 1530 // dependences of 'safelen' iterations are possible. 1531 CGF.LoopStack.setParallel(false); 1532 } 1533 } 1534 1535 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1536 bool IsMonotonic) { 1537 // Walk clauses and process safelen/lastprivate. 1538 LoopStack.setParallel(!IsMonotonic); 1539 LoopStack.setVectorizeEnable(true); 1540 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1541 } 1542 1543 void CodeGenFunction::EmitOMPSimdFinal( 1544 const OMPLoopDirective &D, 1545 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1546 if (!HaveInsertPoint()) 1547 return; 1548 llvm::BasicBlock *DoneBB = nullptr; 1549 auto IC = D.counters().begin(); 1550 auto IPC = D.private_counters().begin(); 1551 for (auto F : D.finals()) { 1552 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1553 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1554 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1555 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1556 OrigVD->hasGlobalStorage() || CED) { 1557 if (!DoneBB) { 1558 if (auto *Cond = CondGen(*this)) { 1559 // If the first post-update expression is found, emit conditional 1560 // block if it was requested. 1561 auto *ThenBB = createBasicBlock(".omp.final.then"); 1562 DoneBB = createBasicBlock(".omp.final.done"); 1563 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1564 EmitBlock(ThenBB); 1565 } 1566 } 1567 Address OrigAddr = Address::invalid(); 1568 if (CED) 1569 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1570 else { 1571 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1572 /*RefersToEnclosingVariableOrCapture=*/false, 1573 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1574 OrigAddr = EmitLValue(&DRE).getAddress(); 1575 } 1576 OMPPrivateScope VarScope(*this); 1577 VarScope.addPrivate(OrigVD, 1578 [OrigAddr]() -> Address { return OrigAddr; }); 1579 (void)VarScope.Privatize(); 1580 EmitIgnoredExpr(F); 1581 } 1582 ++IC; 1583 ++IPC; 1584 } 1585 if (DoneBB) 1586 EmitBlock(DoneBB, /*IsFinished=*/true); 1587 } 1588 1589 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1590 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1591 OMPLoopScope PreInitScope(CGF, S); 1592 // if (PreCond) { 1593 // for (IV in 0..LastIteration) BODY; 1594 // <Final counter/linear vars updates>; 1595 // } 1596 // 1597 1598 // Emit: if (PreCond) - begin. 1599 // If the condition constant folds and can be elided, avoid emitting the 1600 // whole loop. 1601 bool CondConstant; 1602 llvm::BasicBlock *ContBlock = nullptr; 1603 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1604 if (!CondConstant) 1605 return; 1606 } else { 1607 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1608 ContBlock = CGF.createBasicBlock("simd.if.end"); 1609 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1610 CGF.getProfileCount(&S)); 1611 CGF.EmitBlock(ThenBlock); 1612 CGF.incrementProfileCounter(&S); 1613 } 1614 1615 // Emit the loop iteration variable. 1616 const Expr *IVExpr = S.getIterationVariable(); 1617 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1618 CGF.EmitVarDecl(*IVDecl); 1619 CGF.EmitIgnoredExpr(S.getInit()); 1620 1621 // Emit the iterations count variable. 1622 // If it is not a variable, Sema decided to calculate iterations count on 1623 // each iteration (e.g., it is foldable into a constant). 1624 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1625 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1626 // Emit calculation of the iterations count. 1627 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1628 } 1629 1630 CGF.EmitOMPSimdInit(S); 1631 1632 emitAlignedClause(CGF, S); 1633 CGF.EmitOMPLinearClauseInit(S); 1634 { 1635 OMPPrivateScope LoopScope(CGF); 1636 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1637 CGF.EmitOMPLinearClause(S, LoopScope); 1638 CGF.EmitOMPPrivateClause(S, LoopScope); 1639 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1640 bool HasLastprivateClause = 1641 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1642 (void)LoopScope.Privatize(); 1643 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1644 S.getInc(), 1645 [&S](CodeGenFunction &CGF) { 1646 CGF.EmitOMPLoopBody(S, JumpDest()); 1647 CGF.EmitStopPoint(&S); 1648 }, 1649 [](CodeGenFunction &) {}); 1650 CGF.EmitOMPSimdFinal( 1651 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1652 // Emit final copy of the lastprivate variables at the end of loops. 1653 if (HasLastprivateClause) 1654 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1655 CGF.EmitOMPReductionClauseFinal(S); 1656 emitPostUpdateForReductionClause( 1657 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1658 } 1659 CGF.EmitOMPLinearClauseFinal( 1660 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1661 // Emit: if (PreCond) - end. 1662 if (ContBlock) { 1663 CGF.EmitBranch(ContBlock); 1664 CGF.EmitBlock(ContBlock, true); 1665 } 1666 }; 1667 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1668 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1669 } 1670 1671 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1672 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1673 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1674 auto &RT = CGM.getOpenMPRuntime(); 1675 1676 const Expr *IVExpr = S.getIterationVariable(); 1677 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1678 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1679 1680 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1681 1682 // Start the loop with a block that tests the condition. 1683 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1684 EmitBlock(CondBlock); 1685 LoopStack.push(CondBlock, Builder.getCurrentDebugLocation()); 1686 1687 llvm::Value *BoolCondVal = nullptr; 1688 if (!DynamicOrOrdered) { 1689 // UB = min(UB, GlobalUB) 1690 EmitIgnoredExpr(S.getEnsureUpperBound()); 1691 // IV = LB 1692 EmitIgnoredExpr(S.getInit()); 1693 // IV < UB 1694 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1695 } else { 1696 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1697 LB, UB, ST); 1698 } 1699 1700 // If there are any cleanups between here and the loop-exit scope, 1701 // create a block to stage a loop exit along. 1702 auto ExitBlock = LoopExit.getBlock(); 1703 if (LoopScope.requiresCleanups()) 1704 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1705 1706 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1707 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1708 if (ExitBlock != LoopExit.getBlock()) { 1709 EmitBlock(ExitBlock); 1710 EmitBranchThroughCleanup(LoopExit); 1711 } 1712 EmitBlock(LoopBody); 1713 1714 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1715 // LB for loop condition and emitted it above). 1716 if (DynamicOrOrdered) 1717 EmitIgnoredExpr(S.getInit()); 1718 1719 // Create a block for the increment. 1720 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1721 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1722 1723 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1724 // with dynamic/guided scheduling and without ordered clause. 1725 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1726 LoopStack.setParallel(!IsMonotonic); 1727 else 1728 EmitOMPSimdInit(S, IsMonotonic); 1729 1730 SourceLocation Loc = S.getLocStart(); 1731 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1732 [&S, LoopExit](CodeGenFunction &CGF) { 1733 CGF.EmitOMPLoopBody(S, LoopExit); 1734 CGF.EmitStopPoint(&S); 1735 }, 1736 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1737 if (Ordered) { 1738 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1739 CGF, Loc, IVSize, IVSigned); 1740 } 1741 }); 1742 1743 EmitBlock(Continue.getBlock()); 1744 BreakContinueStack.pop_back(); 1745 if (!DynamicOrOrdered) { 1746 // Emit "LB = LB + Stride", "UB = UB + Stride". 1747 EmitIgnoredExpr(S.getNextLowerBound()); 1748 EmitIgnoredExpr(S.getNextUpperBound()); 1749 } 1750 1751 EmitBranch(CondBlock); 1752 LoopStack.pop(); 1753 // Emit the fall-through block. 1754 EmitBlock(LoopExit.getBlock()); 1755 1756 // Tell the runtime we are done. 1757 if (!DynamicOrOrdered) 1758 RT.emitForStaticFinish(*this, S.getLocEnd()); 1759 1760 } 1761 1762 void CodeGenFunction::EmitOMPForOuterLoop( 1763 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1764 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1765 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1766 auto &RT = CGM.getOpenMPRuntime(); 1767 1768 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1769 const bool DynamicOrOrdered = 1770 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1771 1772 assert((Ordered || 1773 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1774 /*Chunked=*/Chunk != nullptr)) && 1775 "static non-chunked schedule does not need outer loop"); 1776 1777 // Emit outer loop. 1778 // 1779 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1780 // When schedule(dynamic,chunk_size) is specified, the iterations are 1781 // distributed to threads in the team in chunks as the threads request them. 1782 // Each thread executes a chunk of iterations, then requests another chunk, 1783 // until no chunks remain to be distributed. Each chunk contains chunk_size 1784 // iterations, except for the last chunk to be distributed, which may have 1785 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1786 // 1787 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1788 // to threads in the team in chunks as the executing threads request them. 1789 // Each thread executes a chunk of iterations, then requests another chunk, 1790 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1791 // each chunk is proportional to the number of unassigned iterations divided 1792 // by the number of threads in the team, decreasing to 1. For a chunk_size 1793 // with value k (greater than 1), the size of each chunk is determined in the 1794 // same way, with the restriction that the chunks do not contain fewer than k 1795 // iterations (except for the last chunk to be assigned, which may have fewer 1796 // than k iterations). 1797 // 1798 // When schedule(auto) is specified, the decision regarding scheduling is 1799 // delegated to the compiler and/or runtime system. The programmer gives the 1800 // implementation the freedom to choose any possible mapping of iterations to 1801 // threads in the team. 1802 // 1803 // When schedule(runtime) is specified, the decision regarding scheduling is 1804 // deferred until run time, and the schedule and chunk size are taken from the 1805 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1806 // implementation defined 1807 // 1808 // while(__kmpc_dispatch_next(&LB, &UB)) { 1809 // idx = LB; 1810 // while (idx <= UB) { BODY; ++idx; 1811 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1812 // } // inner loop 1813 // } 1814 // 1815 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1816 // When schedule(static, chunk_size) is specified, iterations are divided into 1817 // chunks of size chunk_size, and the chunks are assigned to the threads in 1818 // the team in a round-robin fashion in the order of the thread number. 1819 // 1820 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1821 // while (idx <= UB) { BODY; ++idx; } // inner loop 1822 // LB = LB + ST; 1823 // UB = UB + ST; 1824 // } 1825 // 1826 1827 const Expr *IVExpr = S.getIterationVariable(); 1828 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1829 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1830 1831 if (DynamicOrOrdered) { 1832 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1833 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1834 IVSigned, Ordered, UBVal, Chunk); 1835 } else { 1836 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1837 Ordered, IL, LB, UB, ST, Chunk); 1838 } 1839 1840 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1841 ST, IL, Chunk); 1842 } 1843 1844 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1845 OpenMPDistScheduleClauseKind ScheduleKind, 1846 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1847 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1848 1849 auto &RT = CGM.getOpenMPRuntime(); 1850 1851 // Emit outer loop. 1852 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1853 // dynamic 1854 // 1855 1856 const Expr *IVExpr = S.getIterationVariable(); 1857 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1858 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1859 1860 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1861 IVSize, IVSigned, /* Ordered = */ false, 1862 IL, LB, UB, ST, Chunk); 1863 1864 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1865 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1866 } 1867 1868 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 1869 const OMPDistributeParallelForDirective &S) { 1870 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1871 CGM.getOpenMPRuntime().emitInlinedDirective( 1872 *this, OMPD_distribute_parallel_for, 1873 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1874 OMPLoopScope PreInitScope(CGF, S); 1875 CGF.EmitStmt( 1876 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1877 }); 1878 } 1879 1880 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 1881 const OMPDistributeParallelForSimdDirective &S) { 1882 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1883 CGM.getOpenMPRuntime().emitInlinedDirective( 1884 *this, OMPD_distribute_parallel_for_simd, 1885 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1886 OMPLoopScope PreInitScope(CGF, S); 1887 CGF.EmitStmt( 1888 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1889 }); 1890 } 1891 1892 void CodeGenFunction::EmitOMPDistributeSimdDirective( 1893 const OMPDistributeSimdDirective &S) { 1894 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1895 CGM.getOpenMPRuntime().emitInlinedDirective( 1896 *this, OMPD_distribute_simd, 1897 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1898 OMPLoopScope PreInitScope(CGF, S); 1899 CGF.EmitStmt( 1900 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1901 }); 1902 } 1903 1904 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 1905 const OMPTargetParallelForSimdDirective &S) { 1906 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1907 CGM.getOpenMPRuntime().emitInlinedDirective( 1908 *this, OMPD_target_parallel_for_simd, 1909 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1910 OMPLoopScope PreInitScope(CGF, S); 1911 CGF.EmitStmt( 1912 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1913 }); 1914 } 1915 1916 /// \brief Emit a helper variable and return corresponding lvalue. 1917 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1918 const DeclRefExpr *Helper) { 1919 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1920 CGF.EmitVarDecl(*VDecl); 1921 return CGF.EmitLValue(Helper); 1922 } 1923 1924 namespace { 1925 struct ScheduleKindModifiersTy { 1926 OpenMPScheduleClauseKind Kind; 1927 OpenMPScheduleClauseModifier M1; 1928 OpenMPScheduleClauseModifier M2; 1929 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 1930 OpenMPScheduleClauseModifier M1, 1931 OpenMPScheduleClauseModifier M2) 1932 : Kind(Kind), M1(M1), M2(M2) {} 1933 }; 1934 } // namespace 1935 1936 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1937 // Emit the loop iteration variable. 1938 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1939 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1940 EmitVarDecl(*IVDecl); 1941 1942 // Emit the iterations count variable. 1943 // If it is not a variable, Sema decided to calculate iterations count on each 1944 // iteration (e.g., it is foldable into a constant). 1945 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1946 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1947 // Emit calculation of the iterations count. 1948 EmitIgnoredExpr(S.getCalcLastIteration()); 1949 } 1950 1951 auto &RT = CGM.getOpenMPRuntime(); 1952 1953 bool HasLastprivateClause; 1954 // Check pre-condition. 1955 { 1956 OMPLoopScope PreInitScope(*this, S); 1957 // Skip the entire loop if we don't meet the precondition. 1958 // If the condition constant folds and can be elided, avoid emitting the 1959 // whole loop. 1960 bool CondConstant; 1961 llvm::BasicBlock *ContBlock = nullptr; 1962 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1963 if (!CondConstant) 1964 return false; 1965 } else { 1966 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1967 ContBlock = createBasicBlock("omp.precond.end"); 1968 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1969 getProfileCount(&S)); 1970 EmitBlock(ThenBlock); 1971 incrementProfileCounter(&S); 1972 } 1973 1974 bool Ordered = false; 1975 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 1976 if (OrderedClause->getNumForLoops()) 1977 RT.emitDoacrossInit(*this, S); 1978 else 1979 Ordered = true; 1980 } 1981 1982 llvm::DenseSet<const Expr *> EmittedFinals; 1983 emitAlignedClause(*this, S); 1984 EmitOMPLinearClauseInit(S); 1985 // Emit helper vars inits. 1986 LValue LB = 1987 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1988 LValue UB = 1989 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1990 LValue ST = 1991 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1992 LValue IL = 1993 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1994 1995 // Emit 'then' code. 1996 { 1997 OMPPrivateScope LoopScope(*this); 1998 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1999 // Emit implicit barrier to synchronize threads and avoid data races on 2000 // initialization of firstprivate variables and post-update of 2001 // lastprivate variables. 2002 CGM.getOpenMPRuntime().emitBarrierCall( 2003 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2004 /*ForceSimpleCall=*/true); 2005 } 2006 EmitOMPPrivateClause(S, LoopScope); 2007 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2008 EmitOMPReductionClauseInit(S, LoopScope); 2009 EmitOMPPrivateLoopCounters(S, LoopScope); 2010 EmitOMPLinearClause(S, LoopScope); 2011 (void)LoopScope.Privatize(); 2012 2013 // Detect the loop schedule kind and chunk. 2014 llvm::Value *Chunk = nullptr; 2015 OpenMPScheduleTy ScheduleKind; 2016 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2017 ScheduleKind.Schedule = C->getScheduleKind(); 2018 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2019 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2020 if (const auto *Ch = C->getChunkSize()) { 2021 Chunk = EmitScalarExpr(Ch); 2022 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2023 S.getIterationVariable()->getType(), 2024 S.getLocStart()); 2025 } 2026 } 2027 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2028 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2029 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2030 // If the static schedule kind is specified or if the ordered clause is 2031 // specified, and if no monotonic modifier is specified, the effect will 2032 // be as if the monotonic modifier was specified. 2033 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2034 /* Chunked */ Chunk != nullptr) && 2035 !Ordered) { 2036 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2037 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2038 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2039 // When no chunk_size is specified, the iteration space is divided into 2040 // chunks that are approximately equal in size, and at most one chunk is 2041 // distributed to each thread. Note that the size of the chunks is 2042 // unspecified in this case. 2043 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 2044 IVSize, IVSigned, Ordered, 2045 IL.getAddress(), LB.getAddress(), 2046 UB.getAddress(), ST.getAddress()); 2047 auto LoopExit = 2048 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2049 // UB = min(UB, GlobalUB); 2050 EmitIgnoredExpr(S.getEnsureUpperBound()); 2051 // IV = LB; 2052 EmitIgnoredExpr(S.getInit()); 2053 // while (idx <= UB) { BODY; ++idx; } 2054 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2055 S.getInc(), 2056 [&S, LoopExit](CodeGenFunction &CGF) { 2057 CGF.EmitOMPLoopBody(S, LoopExit); 2058 CGF.EmitStopPoint(&S); 2059 }, 2060 [](CodeGenFunction &) {}); 2061 EmitBlock(LoopExit.getBlock()); 2062 // Tell the runtime we are done. 2063 RT.emitForStaticFinish(*this, S.getLocStart()); 2064 } else { 2065 const bool IsMonotonic = 2066 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2067 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2068 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2069 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2070 // Emit the outer loop, which requests its work chunk [LB..UB] from 2071 // runtime and runs the inner loop to process it. 2072 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2073 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2074 IL.getAddress(), Chunk); 2075 } 2076 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2077 EmitOMPSimdFinal(S, 2078 [&](CodeGenFunction &CGF) -> llvm::Value * { 2079 return CGF.Builder.CreateIsNotNull( 2080 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2081 }); 2082 } 2083 EmitOMPReductionClauseFinal(S); 2084 // Emit post-update of the reduction variables if IsLastIter != 0. 2085 emitPostUpdateForReductionClause( 2086 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2087 return CGF.Builder.CreateIsNotNull( 2088 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2089 }); 2090 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2091 if (HasLastprivateClause) 2092 EmitOMPLastprivateClauseFinal( 2093 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2094 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2095 } 2096 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2097 return CGF.Builder.CreateIsNotNull( 2098 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2099 }); 2100 // We're now done with the loop, so jump to the continuation block. 2101 if (ContBlock) { 2102 EmitBranch(ContBlock); 2103 EmitBlock(ContBlock, true); 2104 } 2105 } 2106 return HasLastprivateClause; 2107 } 2108 2109 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2110 bool HasLastprivates = false; 2111 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2112 PrePostActionTy &) { 2113 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2114 }; 2115 { 2116 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2117 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2118 S.hasCancel()); 2119 } 2120 2121 // Emit an implicit barrier at the end. 2122 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2123 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2124 } 2125 } 2126 2127 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2128 bool HasLastprivates = false; 2129 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2130 PrePostActionTy &) { 2131 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2132 }; 2133 { 2134 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2135 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2136 } 2137 2138 // Emit an implicit barrier at the end. 2139 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2140 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2141 } 2142 } 2143 2144 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2145 const Twine &Name, 2146 llvm::Value *Init = nullptr) { 2147 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2148 if (Init) 2149 CGF.EmitScalarInit(Init, LVal); 2150 return LVal; 2151 } 2152 2153 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2154 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2155 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2156 bool HasLastprivates = false; 2157 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2158 PrePostActionTy &) { 2159 auto &C = CGF.CGM.getContext(); 2160 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2161 // Emit helper vars inits. 2162 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2163 CGF.Builder.getInt32(0)); 2164 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2165 : CGF.Builder.getInt32(0); 2166 LValue UB = 2167 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2168 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2169 CGF.Builder.getInt32(1)); 2170 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2171 CGF.Builder.getInt32(0)); 2172 // Loop counter. 2173 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2174 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2175 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2176 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2177 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2178 // Generate condition for loop. 2179 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2180 OK_Ordinary, S.getLocStart(), 2181 /*fpContractable=*/false); 2182 // Increment for loop counter. 2183 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2184 S.getLocStart()); 2185 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2186 // Iterate through all sections and emit a switch construct: 2187 // switch (IV) { 2188 // case 0: 2189 // <SectionStmt[0]>; 2190 // break; 2191 // ... 2192 // case <NumSection> - 1: 2193 // <SectionStmt[<NumSection> - 1]>; 2194 // break; 2195 // } 2196 // .omp.sections.exit: 2197 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2198 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2199 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2200 CS == nullptr ? 1 : CS->size()); 2201 if (CS) { 2202 unsigned CaseNumber = 0; 2203 for (auto *SubStmt : CS->children()) { 2204 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2205 CGF.EmitBlock(CaseBB); 2206 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2207 CGF.EmitStmt(SubStmt); 2208 CGF.EmitBranch(ExitBB); 2209 ++CaseNumber; 2210 } 2211 } else { 2212 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2213 CGF.EmitBlock(CaseBB); 2214 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2215 CGF.EmitStmt(Stmt); 2216 CGF.EmitBranch(ExitBB); 2217 } 2218 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2219 }; 2220 2221 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2222 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2223 // Emit implicit barrier to synchronize threads and avoid data races on 2224 // initialization of firstprivate variables and post-update of lastprivate 2225 // variables. 2226 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2227 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2228 /*ForceSimpleCall=*/true); 2229 } 2230 CGF.EmitOMPPrivateClause(S, LoopScope); 2231 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2232 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2233 (void)LoopScope.Privatize(); 2234 2235 // Emit static non-chunked loop. 2236 OpenMPScheduleTy ScheduleKind; 2237 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2238 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2239 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2240 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2241 UB.getAddress(), ST.getAddress()); 2242 // UB = min(UB, GlobalUB); 2243 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2244 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2245 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2246 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2247 // IV = LB; 2248 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2249 // while (idx <= UB) { BODY; ++idx; } 2250 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2251 [](CodeGenFunction &) {}); 2252 // Tell the runtime we are done. 2253 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 2254 CGF.EmitOMPReductionClauseFinal(S); 2255 // Emit post-update of the reduction variables if IsLastIter != 0. 2256 emitPostUpdateForReductionClause( 2257 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2258 return CGF.Builder.CreateIsNotNull( 2259 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2260 }); 2261 2262 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2263 if (HasLastprivates) 2264 CGF.EmitOMPLastprivateClauseFinal( 2265 S, /*NoFinals=*/false, 2266 CGF.Builder.CreateIsNotNull( 2267 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2268 }; 2269 2270 bool HasCancel = false; 2271 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2272 HasCancel = OSD->hasCancel(); 2273 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2274 HasCancel = OPSD->hasCancel(); 2275 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2276 HasCancel); 2277 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2278 // clause. Otherwise the barrier will be generated by the codegen for the 2279 // directive. 2280 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2281 // Emit implicit barrier to synchronize threads and avoid data races on 2282 // initialization of firstprivate variables. 2283 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2284 OMPD_unknown); 2285 } 2286 } 2287 2288 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2289 { 2290 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2291 EmitSections(S); 2292 } 2293 // Emit an implicit barrier at the end. 2294 if (!S.getSingleClause<OMPNowaitClause>()) { 2295 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2296 OMPD_sections); 2297 } 2298 } 2299 2300 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2301 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2302 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2303 }; 2304 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2305 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2306 S.hasCancel()); 2307 } 2308 2309 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2310 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2311 llvm::SmallVector<const Expr *, 8> DestExprs; 2312 llvm::SmallVector<const Expr *, 8> SrcExprs; 2313 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2314 // Check if there are any 'copyprivate' clauses associated with this 2315 // 'single' construct. 2316 // Build a list of copyprivate variables along with helper expressions 2317 // (<source>, <destination>, <destination>=<source> expressions) 2318 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2319 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2320 DestExprs.append(C->destination_exprs().begin(), 2321 C->destination_exprs().end()); 2322 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2323 AssignmentOps.append(C->assignment_ops().begin(), 2324 C->assignment_ops().end()); 2325 } 2326 // Emit code for 'single' region along with 'copyprivate' clauses 2327 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2328 Action.Enter(CGF); 2329 OMPPrivateScope SingleScope(CGF); 2330 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2331 CGF.EmitOMPPrivateClause(S, SingleScope); 2332 (void)SingleScope.Privatize(); 2333 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2334 }; 2335 { 2336 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2337 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2338 CopyprivateVars, DestExprs, 2339 SrcExprs, AssignmentOps); 2340 } 2341 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2342 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2343 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2344 CGM.getOpenMPRuntime().emitBarrierCall( 2345 *this, S.getLocStart(), 2346 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2347 } 2348 } 2349 2350 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2351 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2352 Action.Enter(CGF); 2353 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2354 }; 2355 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2356 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2357 } 2358 2359 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2360 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2361 Action.Enter(CGF); 2362 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2363 }; 2364 Expr *Hint = nullptr; 2365 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2366 Hint = HintClause->getHint(); 2367 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2368 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2369 S.getDirectiveName().getAsString(), 2370 CodeGen, S.getLocStart(), Hint); 2371 } 2372 2373 void CodeGenFunction::EmitOMPParallelForDirective( 2374 const OMPParallelForDirective &S) { 2375 // Emit directive as a combined directive that consists of two implicit 2376 // directives: 'parallel' with 'for' directive. 2377 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2378 CGF.EmitOMPWorksharingLoop(S); 2379 }; 2380 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2381 } 2382 2383 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2384 const OMPParallelForSimdDirective &S) { 2385 // Emit directive as a combined directive that consists of two implicit 2386 // directives: 'parallel' with 'for' directive. 2387 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2388 CGF.EmitOMPWorksharingLoop(S); 2389 }; 2390 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2391 } 2392 2393 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2394 const OMPParallelSectionsDirective &S) { 2395 // Emit directive as a combined directive that consists of two implicit 2396 // directives: 'parallel' with 'sections' directive. 2397 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2398 CGF.EmitSections(S); 2399 }; 2400 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2401 } 2402 2403 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2404 const RegionCodeGenTy &BodyGen, 2405 const TaskGenTy &TaskGen, 2406 OMPTaskDataTy &Data) { 2407 // Emit outlined function for task construct. 2408 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2409 auto *I = CS->getCapturedDecl()->param_begin(); 2410 auto *PartId = std::next(I); 2411 auto *TaskT = std::next(I, 4); 2412 // Check if the task is final 2413 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2414 // If the condition constant folds and can be elided, try to avoid emitting 2415 // the condition and the dead arm of the if/else. 2416 auto *Cond = Clause->getCondition(); 2417 bool CondConstant; 2418 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2419 Data.Final.setInt(CondConstant); 2420 else 2421 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2422 } else { 2423 // By default the task is not final. 2424 Data.Final.setInt(/*IntVal=*/false); 2425 } 2426 // Check if the task has 'priority' clause. 2427 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2428 auto *Prio = Clause->getPriority(); 2429 Data.Priority.setInt(/*IntVal=*/true); 2430 Data.Priority.setPointer(EmitScalarConversion( 2431 EmitScalarExpr(Prio), Prio->getType(), 2432 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2433 Prio->getExprLoc())); 2434 } 2435 // The first function argument for tasks is a thread id, the second one is a 2436 // part id (0 for tied tasks, >=0 for untied task). 2437 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2438 // Get list of private variables. 2439 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2440 auto IRef = C->varlist_begin(); 2441 for (auto *IInit : C->private_copies()) { 2442 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2443 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2444 Data.PrivateVars.push_back(*IRef); 2445 Data.PrivateCopies.push_back(IInit); 2446 } 2447 ++IRef; 2448 } 2449 } 2450 EmittedAsPrivate.clear(); 2451 // Get list of firstprivate variables. 2452 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2453 auto IRef = C->varlist_begin(); 2454 auto IElemInitRef = C->inits().begin(); 2455 for (auto *IInit : C->private_copies()) { 2456 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2457 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2458 Data.FirstprivateVars.push_back(*IRef); 2459 Data.FirstprivateCopies.push_back(IInit); 2460 Data.FirstprivateInits.push_back(*IElemInitRef); 2461 } 2462 ++IRef; 2463 ++IElemInitRef; 2464 } 2465 } 2466 // Get list of lastprivate variables (for taskloops). 2467 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2468 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2469 auto IRef = C->varlist_begin(); 2470 auto ID = C->destination_exprs().begin(); 2471 for (auto *IInit : C->private_copies()) { 2472 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2473 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2474 Data.LastprivateVars.push_back(*IRef); 2475 Data.LastprivateCopies.push_back(IInit); 2476 } 2477 LastprivateDstsOrigs.insert( 2478 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2479 cast<DeclRefExpr>(*IRef)}); 2480 ++IRef; 2481 ++ID; 2482 } 2483 } 2484 // Build list of dependences. 2485 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2486 for (auto *IRef : C->varlists()) 2487 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2488 auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2489 CodeGenFunction &CGF, PrePostActionTy &Action) { 2490 // Set proper addresses for generated private copies. 2491 OMPPrivateScope Scope(CGF); 2492 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2493 !Data.LastprivateVars.empty()) { 2494 auto *CopyFn = CGF.Builder.CreateLoad( 2495 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2496 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2497 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2498 // Map privates. 2499 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2500 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2501 CallArgs.push_back(PrivatesPtr); 2502 for (auto *E : Data.PrivateVars) { 2503 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2504 Address PrivatePtr = CGF.CreateMemTemp( 2505 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2506 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2507 CallArgs.push_back(PrivatePtr.getPointer()); 2508 } 2509 for (auto *E : Data.FirstprivateVars) { 2510 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2511 Address PrivatePtr = 2512 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2513 ".firstpriv.ptr.addr"); 2514 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2515 CallArgs.push_back(PrivatePtr.getPointer()); 2516 } 2517 for (auto *E : Data.LastprivateVars) { 2518 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2519 Address PrivatePtr = 2520 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2521 ".lastpriv.ptr.addr"); 2522 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2523 CallArgs.push_back(PrivatePtr.getPointer()); 2524 } 2525 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2526 for (auto &&Pair : LastprivateDstsOrigs) { 2527 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2528 DeclRefExpr DRE( 2529 const_cast<VarDecl *>(OrigVD), 2530 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2531 OrigVD) != nullptr, 2532 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2533 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2534 return CGF.EmitLValue(&DRE).getAddress(); 2535 }); 2536 } 2537 for (auto &&Pair : PrivatePtrs) { 2538 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2539 CGF.getContext().getDeclAlign(Pair.first)); 2540 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2541 } 2542 } 2543 (void)Scope.Privatize(); 2544 2545 Action.Enter(CGF); 2546 BodyGen(CGF); 2547 }; 2548 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2549 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2550 Data.NumberOfParts); 2551 OMPLexicalScope Scope(*this, S); 2552 TaskGen(*this, OutlinedFn, Data); 2553 } 2554 2555 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2556 // Emit outlined function for task construct. 2557 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2558 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2559 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2560 const Expr *IfCond = nullptr; 2561 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2562 if (C->getNameModifier() == OMPD_unknown || 2563 C->getNameModifier() == OMPD_task) { 2564 IfCond = C->getCondition(); 2565 break; 2566 } 2567 } 2568 2569 OMPTaskDataTy Data; 2570 // Check if we should emit tied or untied task. 2571 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2572 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2573 CGF.EmitStmt(CS->getCapturedStmt()); 2574 }; 2575 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2576 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2577 const OMPTaskDataTy &Data) { 2578 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2579 SharedsTy, CapturedStruct, IfCond, 2580 Data); 2581 }; 2582 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2583 } 2584 2585 void CodeGenFunction::EmitOMPTaskyieldDirective( 2586 const OMPTaskyieldDirective &S) { 2587 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2588 } 2589 2590 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2591 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2592 } 2593 2594 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2595 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2596 } 2597 2598 void CodeGenFunction::EmitOMPTaskgroupDirective( 2599 const OMPTaskgroupDirective &S) { 2600 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2601 Action.Enter(CGF); 2602 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2603 }; 2604 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2605 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2606 } 2607 2608 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2609 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2610 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2611 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2612 FlushClause->varlist_end()); 2613 } 2614 return llvm::None; 2615 }(), S.getLocStart()); 2616 } 2617 2618 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2619 // Emit the loop iteration variable. 2620 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2621 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2622 EmitVarDecl(*IVDecl); 2623 2624 // Emit the iterations count variable. 2625 // If it is not a variable, Sema decided to calculate iterations count on each 2626 // iteration (e.g., it is foldable into a constant). 2627 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2628 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2629 // Emit calculation of the iterations count. 2630 EmitIgnoredExpr(S.getCalcLastIteration()); 2631 } 2632 2633 auto &RT = CGM.getOpenMPRuntime(); 2634 2635 // Check pre-condition. 2636 { 2637 OMPLoopScope PreInitScope(*this, S); 2638 // Skip the entire loop if we don't meet the precondition. 2639 // If the condition constant folds and can be elided, avoid emitting the 2640 // whole loop. 2641 bool CondConstant; 2642 llvm::BasicBlock *ContBlock = nullptr; 2643 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2644 if (!CondConstant) 2645 return; 2646 } else { 2647 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2648 ContBlock = createBasicBlock("omp.precond.end"); 2649 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2650 getProfileCount(&S)); 2651 EmitBlock(ThenBlock); 2652 incrementProfileCounter(&S); 2653 } 2654 2655 // Emit 'then' code. 2656 { 2657 // Emit helper vars inits. 2658 LValue LB = 2659 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2660 LValue UB = 2661 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2662 LValue ST = 2663 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2664 LValue IL = 2665 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2666 2667 OMPPrivateScope LoopScope(*this); 2668 EmitOMPPrivateLoopCounters(S, LoopScope); 2669 (void)LoopScope.Privatize(); 2670 2671 // Detect the distribute schedule kind and chunk. 2672 llvm::Value *Chunk = nullptr; 2673 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2674 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2675 ScheduleKind = C->getDistScheduleKind(); 2676 if (const auto *Ch = C->getChunkSize()) { 2677 Chunk = EmitScalarExpr(Ch); 2678 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2679 S.getIterationVariable()->getType(), 2680 S.getLocStart()); 2681 } 2682 } 2683 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2684 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2685 2686 // OpenMP [2.10.8, distribute Construct, Description] 2687 // If dist_schedule is specified, kind must be static. If specified, 2688 // iterations are divided into chunks of size chunk_size, chunks are 2689 // assigned to the teams of the league in a round-robin fashion in the 2690 // order of the team number. When no chunk_size is specified, the 2691 // iteration space is divided into chunks that are approximately equal 2692 // in size, and at most one chunk is distributed to each team of the 2693 // league. The size of the chunks is unspecified in this case. 2694 if (RT.isStaticNonchunked(ScheduleKind, 2695 /* Chunked */ Chunk != nullptr)) { 2696 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2697 IVSize, IVSigned, /* Ordered = */ false, 2698 IL.getAddress(), LB.getAddress(), 2699 UB.getAddress(), ST.getAddress()); 2700 auto LoopExit = 2701 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2702 // UB = min(UB, GlobalUB); 2703 EmitIgnoredExpr(S.getEnsureUpperBound()); 2704 // IV = LB; 2705 EmitIgnoredExpr(S.getInit()); 2706 // while (idx <= UB) { BODY; ++idx; } 2707 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2708 S.getInc(), 2709 [&S, LoopExit](CodeGenFunction &CGF) { 2710 CGF.EmitOMPLoopBody(S, LoopExit); 2711 CGF.EmitStopPoint(&S); 2712 }, 2713 [](CodeGenFunction &) {}); 2714 EmitBlock(LoopExit.getBlock()); 2715 // Tell the runtime we are done. 2716 RT.emitForStaticFinish(*this, S.getLocStart()); 2717 } else { 2718 // Emit the outer loop, which requests its work chunk [LB..UB] from 2719 // runtime and runs the inner loop to process it. 2720 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2721 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2722 IL.getAddress(), Chunk); 2723 } 2724 } 2725 2726 // We're now done with the loop, so jump to the continuation block. 2727 if (ContBlock) { 2728 EmitBranch(ContBlock); 2729 EmitBlock(ContBlock, true); 2730 } 2731 } 2732 } 2733 2734 void CodeGenFunction::EmitOMPDistributeDirective( 2735 const OMPDistributeDirective &S) { 2736 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2737 CGF.EmitOMPDistributeLoop(S); 2738 }; 2739 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2740 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2741 false); 2742 } 2743 2744 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2745 const CapturedStmt *S) { 2746 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2747 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2748 CGF.CapturedStmtInfo = &CapStmtInfo; 2749 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2750 Fn->addFnAttr(llvm::Attribute::NoInline); 2751 return Fn; 2752 } 2753 2754 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2755 if (!S.getAssociatedStmt()) { 2756 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2757 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2758 return; 2759 } 2760 auto *C = S.getSingleClause<OMPSIMDClause>(); 2761 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2762 PrePostActionTy &Action) { 2763 if (C) { 2764 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2765 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2766 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2767 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2768 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2769 } else { 2770 Action.Enter(CGF); 2771 CGF.EmitStmt( 2772 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2773 } 2774 }; 2775 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2776 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2777 } 2778 2779 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2780 QualType SrcType, QualType DestType, 2781 SourceLocation Loc) { 2782 assert(CGF.hasScalarEvaluationKind(DestType) && 2783 "DestType must have scalar evaluation kind."); 2784 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2785 return Val.isScalar() 2786 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2787 Loc) 2788 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2789 DestType, Loc); 2790 } 2791 2792 static CodeGenFunction::ComplexPairTy 2793 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2794 QualType DestType, SourceLocation Loc) { 2795 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2796 "DestType must have complex evaluation kind."); 2797 CodeGenFunction::ComplexPairTy ComplexVal; 2798 if (Val.isScalar()) { 2799 // Convert the input element to the element type of the complex. 2800 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2801 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2802 DestElementType, Loc); 2803 ComplexVal = CodeGenFunction::ComplexPairTy( 2804 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2805 } else { 2806 assert(Val.isComplex() && "Must be a scalar or complex."); 2807 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2808 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2809 ComplexVal.first = CGF.EmitScalarConversion( 2810 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2811 ComplexVal.second = CGF.EmitScalarConversion( 2812 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2813 } 2814 return ComplexVal; 2815 } 2816 2817 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2818 LValue LVal, RValue RVal) { 2819 if (LVal.isGlobalReg()) { 2820 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2821 } else { 2822 CGF.EmitAtomicStore(RVal, LVal, 2823 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2824 : llvm::AtomicOrdering::Monotonic, 2825 LVal.isVolatile(), /*IsInit=*/false); 2826 } 2827 } 2828 2829 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2830 QualType RValTy, SourceLocation Loc) { 2831 switch (getEvaluationKind(LVal.getType())) { 2832 case TEK_Scalar: 2833 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2834 *this, RVal, RValTy, LVal.getType(), Loc)), 2835 LVal); 2836 break; 2837 case TEK_Complex: 2838 EmitStoreOfComplex( 2839 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 2840 /*isInit=*/false); 2841 break; 2842 case TEK_Aggregate: 2843 llvm_unreachable("Must be a scalar or complex."); 2844 } 2845 } 2846 2847 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2848 const Expr *X, const Expr *V, 2849 SourceLocation Loc) { 2850 // v = x; 2851 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2852 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2853 LValue XLValue = CGF.EmitLValue(X); 2854 LValue VLValue = CGF.EmitLValue(V); 2855 RValue Res = XLValue.isGlobalReg() 2856 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2857 : CGF.EmitAtomicLoad( 2858 XLValue, Loc, 2859 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2860 : llvm::AtomicOrdering::Monotonic, 2861 XLValue.isVolatile()); 2862 // OpenMP, 2.12.6, atomic Construct 2863 // Any atomic construct with a seq_cst clause forces the atomically 2864 // performed operation to include an implicit flush operation without a 2865 // list. 2866 if (IsSeqCst) 2867 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2868 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 2869 } 2870 2871 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2872 const Expr *X, const Expr *E, 2873 SourceLocation Loc) { 2874 // x = expr; 2875 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2876 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2877 // OpenMP, 2.12.6, atomic Construct 2878 // Any atomic construct with a seq_cst clause forces the atomically 2879 // performed operation to include an implicit flush operation without a 2880 // list. 2881 if (IsSeqCst) 2882 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2883 } 2884 2885 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2886 RValue Update, 2887 BinaryOperatorKind BO, 2888 llvm::AtomicOrdering AO, 2889 bool IsXLHSInRHSPart) { 2890 auto &Context = CGF.CGM.getContext(); 2891 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2892 // expression is simple and atomic is allowed for the given type for the 2893 // target platform. 2894 if (BO == BO_Comma || !Update.isScalar() || 2895 !Update.getScalarVal()->getType()->isIntegerTy() || 2896 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2897 (Update.getScalarVal()->getType() != 2898 X.getAddress().getElementType())) || 2899 !X.getAddress().getElementType()->isIntegerTy() || 2900 !Context.getTargetInfo().hasBuiltinAtomic( 2901 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 2902 return std::make_pair(false, RValue::get(nullptr)); 2903 2904 llvm::AtomicRMWInst::BinOp RMWOp; 2905 switch (BO) { 2906 case BO_Add: 2907 RMWOp = llvm::AtomicRMWInst::Add; 2908 break; 2909 case BO_Sub: 2910 if (!IsXLHSInRHSPart) 2911 return std::make_pair(false, RValue::get(nullptr)); 2912 RMWOp = llvm::AtomicRMWInst::Sub; 2913 break; 2914 case BO_And: 2915 RMWOp = llvm::AtomicRMWInst::And; 2916 break; 2917 case BO_Or: 2918 RMWOp = llvm::AtomicRMWInst::Or; 2919 break; 2920 case BO_Xor: 2921 RMWOp = llvm::AtomicRMWInst::Xor; 2922 break; 2923 case BO_LT: 2924 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2925 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 2926 : llvm::AtomicRMWInst::Max) 2927 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 2928 : llvm::AtomicRMWInst::UMax); 2929 break; 2930 case BO_GT: 2931 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2932 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 2933 : llvm::AtomicRMWInst::Min) 2934 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 2935 : llvm::AtomicRMWInst::UMin); 2936 break; 2937 case BO_Assign: 2938 RMWOp = llvm::AtomicRMWInst::Xchg; 2939 break; 2940 case BO_Mul: 2941 case BO_Div: 2942 case BO_Rem: 2943 case BO_Shl: 2944 case BO_Shr: 2945 case BO_LAnd: 2946 case BO_LOr: 2947 return std::make_pair(false, RValue::get(nullptr)); 2948 case BO_PtrMemD: 2949 case BO_PtrMemI: 2950 case BO_LE: 2951 case BO_GE: 2952 case BO_EQ: 2953 case BO_NE: 2954 case BO_AddAssign: 2955 case BO_SubAssign: 2956 case BO_AndAssign: 2957 case BO_OrAssign: 2958 case BO_XorAssign: 2959 case BO_MulAssign: 2960 case BO_DivAssign: 2961 case BO_RemAssign: 2962 case BO_ShlAssign: 2963 case BO_ShrAssign: 2964 case BO_Comma: 2965 llvm_unreachable("Unsupported atomic update operation"); 2966 } 2967 auto *UpdateVal = Update.getScalarVal(); 2968 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 2969 UpdateVal = CGF.Builder.CreateIntCast( 2970 IC, X.getAddress().getElementType(), 2971 X.getType()->hasSignedIntegerRepresentation()); 2972 } 2973 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 2974 return std::make_pair(true, RValue::get(Res)); 2975 } 2976 2977 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 2978 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2979 llvm::AtomicOrdering AO, SourceLocation Loc, 2980 const llvm::function_ref<RValue(RValue)> &CommonGen) { 2981 // Update expressions are allowed to have the following forms: 2982 // x binop= expr; -> xrval + expr; 2983 // x++, ++x -> xrval + 1; 2984 // x--, --x -> xrval - 1; 2985 // x = x binop expr; -> xrval binop expr 2986 // x = expr Op x; - > expr binop xrval; 2987 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 2988 if (!Res.first) { 2989 if (X.isGlobalReg()) { 2990 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 2991 // 'xrval'. 2992 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 2993 } else { 2994 // Perform compare-and-swap procedure. 2995 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 2996 } 2997 } 2998 return Res; 2999 } 3000 3001 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3002 const Expr *X, const Expr *E, 3003 const Expr *UE, bool IsXLHSInRHSPart, 3004 SourceLocation Loc) { 3005 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3006 "Update expr in 'atomic update' must be a binary operator."); 3007 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3008 // Update expressions are allowed to have the following forms: 3009 // x binop= expr; -> xrval + expr; 3010 // x++, ++x -> xrval + 1; 3011 // x--, --x -> xrval - 1; 3012 // x = x binop expr; -> xrval binop expr 3013 // x = expr Op x; - > expr binop xrval; 3014 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3015 LValue XLValue = CGF.EmitLValue(X); 3016 RValue ExprRValue = CGF.EmitAnyExpr(E); 3017 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3018 : llvm::AtomicOrdering::Monotonic; 3019 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3020 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3021 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3022 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3023 auto Gen = 3024 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3025 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3026 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3027 return CGF.EmitAnyExpr(UE); 3028 }; 3029 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3030 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3031 // OpenMP, 2.12.6, atomic Construct 3032 // Any atomic construct with a seq_cst clause forces the atomically 3033 // performed operation to include an implicit flush operation without a 3034 // list. 3035 if (IsSeqCst) 3036 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3037 } 3038 3039 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3040 QualType SourceType, QualType ResType, 3041 SourceLocation Loc) { 3042 switch (CGF.getEvaluationKind(ResType)) { 3043 case TEK_Scalar: 3044 return RValue::get( 3045 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3046 case TEK_Complex: { 3047 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3048 return RValue::getComplex(Res.first, Res.second); 3049 } 3050 case TEK_Aggregate: 3051 break; 3052 } 3053 llvm_unreachable("Must be a scalar or complex."); 3054 } 3055 3056 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3057 bool IsPostfixUpdate, const Expr *V, 3058 const Expr *X, const Expr *E, 3059 const Expr *UE, bool IsXLHSInRHSPart, 3060 SourceLocation Loc) { 3061 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3062 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3063 RValue NewVVal; 3064 LValue VLValue = CGF.EmitLValue(V); 3065 LValue XLValue = CGF.EmitLValue(X); 3066 RValue ExprRValue = CGF.EmitAnyExpr(E); 3067 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3068 : llvm::AtomicOrdering::Monotonic; 3069 QualType NewVValType; 3070 if (UE) { 3071 // 'x' is updated with some additional value. 3072 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3073 "Update expr in 'atomic capture' must be a binary operator."); 3074 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3075 // Update expressions are allowed to have the following forms: 3076 // x binop= expr; -> xrval + expr; 3077 // x++, ++x -> xrval + 1; 3078 // x--, --x -> xrval - 1; 3079 // x = x binop expr; -> xrval binop expr 3080 // x = expr Op x; - > expr binop xrval; 3081 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3082 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3083 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3084 NewVValType = XRValExpr->getType(); 3085 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3086 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3087 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 3088 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3089 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3090 RValue Res = CGF.EmitAnyExpr(UE); 3091 NewVVal = IsPostfixUpdate ? XRValue : Res; 3092 return Res; 3093 }; 3094 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3095 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3096 if (Res.first) { 3097 // 'atomicrmw' instruction was generated. 3098 if (IsPostfixUpdate) { 3099 // Use old value from 'atomicrmw'. 3100 NewVVal = Res.second; 3101 } else { 3102 // 'atomicrmw' does not provide new value, so evaluate it using old 3103 // value of 'x'. 3104 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3105 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3106 NewVVal = CGF.EmitAnyExpr(UE); 3107 } 3108 } 3109 } else { 3110 // 'x' is simply rewritten with some 'expr'. 3111 NewVValType = X->getType().getNonReferenceType(); 3112 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3113 X->getType().getNonReferenceType(), Loc); 3114 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 3115 NewVVal = XRValue; 3116 return ExprRValue; 3117 }; 3118 // Try to perform atomicrmw xchg, otherwise simple exchange. 3119 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3120 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3121 Loc, Gen); 3122 if (Res.first) { 3123 // 'atomicrmw' instruction was generated. 3124 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3125 } 3126 } 3127 // Emit post-update store to 'v' of old/new 'x' value. 3128 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3129 // OpenMP, 2.12.6, atomic Construct 3130 // Any atomic construct with a seq_cst clause forces the atomically 3131 // performed operation to include an implicit flush operation without a 3132 // list. 3133 if (IsSeqCst) 3134 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3135 } 3136 3137 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3138 bool IsSeqCst, bool IsPostfixUpdate, 3139 const Expr *X, const Expr *V, const Expr *E, 3140 const Expr *UE, bool IsXLHSInRHSPart, 3141 SourceLocation Loc) { 3142 switch (Kind) { 3143 case OMPC_read: 3144 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3145 break; 3146 case OMPC_write: 3147 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3148 break; 3149 case OMPC_unknown: 3150 case OMPC_update: 3151 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3152 break; 3153 case OMPC_capture: 3154 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3155 IsXLHSInRHSPart, Loc); 3156 break; 3157 case OMPC_if: 3158 case OMPC_final: 3159 case OMPC_num_threads: 3160 case OMPC_private: 3161 case OMPC_firstprivate: 3162 case OMPC_lastprivate: 3163 case OMPC_reduction: 3164 case OMPC_safelen: 3165 case OMPC_simdlen: 3166 case OMPC_collapse: 3167 case OMPC_default: 3168 case OMPC_seq_cst: 3169 case OMPC_shared: 3170 case OMPC_linear: 3171 case OMPC_aligned: 3172 case OMPC_copyin: 3173 case OMPC_copyprivate: 3174 case OMPC_flush: 3175 case OMPC_proc_bind: 3176 case OMPC_schedule: 3177 case OMPC_ordered: 3178 case OMPC_nowait: 3179 case OMPC_untied: 3180 case OMPC_threadprivate: 3181 case OMPC_depend: 3182 case OMPC_mergeable: 3183 case OMPC_device: 3184 case OMPC_threads: 3185 case OMPC_simd: 3186 case OMPC_map: 3187 case OMPC_num_teams: 3188 case OMPC_thread_limit: 3189 case OMPC_priority: 3190 case OMPC_grainsize: 3191 case OMPC_nogroup: 3192 case OMPC_num_tasks: 3193 case OMPC_hint: 3194 case OMPC_dist_schedule: 3195 case OMPC_defaultmap: 3196 case OMPC_uniform: 3197 case OMPC_to: 3198 case OMPC_from: 3199 case OMPC_use_device_ptr: 3200 case OMPC_is_device_ptr: 3201 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3202 } 3203 } 3204 3205 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3206 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3207 OpenMPClauseKind Kind = OMPC_unknown; 3208 for (auto *C : S.clauses()) { 3209 // Find first clause (skip seq_cst clause, if it is first). 3210 if (C->getClauseKind() != OMPC_seq_cst) { 3211 Kind = C->getClauseKind(); 3212 break; 3213 } 3214 } 3215 3216 const auto *CS = 3217 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3218 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3219 enterFullExpression(EWC); 3220 } 3221 // Processing for statements under 'atomic capture'. 3222 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3223 for (const auto *C : Compound->body()) { 3224 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3225 enterFullExpression(EWC); 3226 } 3227 } 3228 } 3229 3230 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3231 PrePostActionTy &) { 3232 CGF.EmitStopPoint(CS); 3233 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3234 S.getV(), S.getExpr(), S.getUpdateExpr(), 3235 S.isXLHSInRHSPart(), S.getLocStart()); 3236 }; 3237 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3238 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3239 } 3240 3241 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/> 3242 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction( 3243 CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName, 3244 bool IsOffloadEntry) { 3245 llvm::Function *OutlinedFn = nullptr; 3246 llvm::Constant *OutlinedFnID = nullptr; 3247 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3248 OMPPrivateScope PrivateScope(CGF); 3249 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3250 CGF.EmitOMPPrivateClause(S, PrivateScope); 3251 (void)PrivateScope.Privatize(); 3252 3253 Action.Enter(CGF); 3254 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3255 }; 3256 // Emit target region as a standalone region. 3257 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3258 S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); 3259 return std::make_pair(OutlinedFn, OutlinedFnID); 3260 } 3261 3262 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3263 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3264 3265 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3266 GenerateOpenMPCapturedVars(CS, CapturedVars); 3267 3268 llvm::Function *Fn = nullptr; 3269 llvm::Constant *FnID = nullptr; 3270 3271 // Check if we have any if clause associated with the directive. 3272 const Expr *IfCond = nullptr; 3273 3274 if (auto *C = S.getSingleClause<OMPIfClause>()) { 3275 IfCond = C->getCondition(); 3276 } 3277 3278 // Check if we have any device clause associated with the directive. 3279 const Expr *Device = nullptr; 3280 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3281 Device = C->getDevice(); 3282 } 3283 3284 // Check if we have an if clause whose conditional always evaluates to false 3285 // or if we do not have any targets specified. If so the target region is not 3286 // an offload entry point. 3287 bool IsOffloadEntry = true; 3288 if (IfCond) { 3289 bool Val; 3290 if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3291 IsOffloadEntry = false; 3292 } 3293 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3294 IsOffloadEntry = false; 3295 3296 assert(CurFuncDecl && "No parent declaration for target region!"); 3297 StringRef ParentName; 3298 // In case we have Ctors/Dtors we use the complete type variant to produce 3299 // the mangling of the device outlined kernel. 3300 if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl)) 3301 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3302 else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl)) 3303 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3304 else 3305 ParentName = 3306 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl))); 3307 3308 std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction( 3309 CGM, S, ParentName, IsOffloadEntry); 3310 OMPLexicalScope Scope(*this, S); 3311 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device, 3312 CapturedVars); 3313 } 3314 3315 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3316 const OMPExecutableDirective &S, 3317 OpenMPDirectiveKind InnermostKind, 3318 const RegionCodeGenTy &CodeGen) { 3319 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3320 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 3321 emitParallelOrTeamsOutlinedFunction(S, 3322 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3323 3324 const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S); 3325 const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>(); 3326 const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>(); 3327 if (NT || TL) { 3328 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3329 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3330 3331 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3332 S.getLocStart()); 3333 } 3334 3335 OMPLexicalScope Scope(CGF, S); 3336 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3337 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3338 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3339 CapturedVars); 3340 } 3341 3342 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3343 // Emit parallel region as a standalone region. 3344 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3345 OMPPrivateScope PrivateScope(CGF); 3346 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3347 CGF.EmitOMPPrivateClause(S, PrivateScope); 3348 (void)PrivateScope.Privatize(); 3349 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3350 }; 3351 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3352 } 3353 3354 void CodeGenFunction::EmitOMPCancellationPointDirective( 3355 const OMPCancellationPointDirective &S) { 3356 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3357 S.getCancelRegion()); 3358 } 3359 3360 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3361 const Expr *IfCond = nullptr; 3362 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3363 if (C->getNameModifier() == OMPD_unknown || 3364 C->getNameModifier() == OMPD_cancel) { 3365 IfCond = C->getCondition(); 3366 break; 3367 } 3368 } 3369 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3370 S.getCancelRegion()); 3371 } 3372 3373 CodeGenFunction::JumpDest 3374 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3375 if (Kind == OMPD_parallel || Kind == OMPD_task) 3376 return ReturnBlock; 3377 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3378 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 3379 return BreakContinueStack.back().BreakBlock; 3380 } 3381 3382 // Generate the instructions for '#pragma omp target data' directive. 3383 void CodeGenFunction::EmitOMPTargetDataDirective( 3384 const OMPTargetDataDirective &S) { 3385 // The target data enclosed region is implemented just by emitting the 3386 // statement. 3387 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3388 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3389 }; 3390 3391 // If we don't have target devices, don't bother emitting the data mapping 3392 // code. 3393 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3394 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3395 3396 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_data, 3397 CodeGen); 3398 return; 3399 } 3400 3401 // Check if we have any if clause associated with the directive. 3402 const Expr *IfCond = nullptr; 3403 if (auto *C = S.getSingleClause<OMPIfClause>()) 3404 IfCond = C->getCondition(); 3405 3406 // Check if we have any device clause associated with the directive. 3407 const Expr *Device = nullptr; 3408 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3409 Device = C->getDevice(); 3410 3411 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, CodeGen); 3412 } 3413 3414 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3415 const OMPTargetEnterDataDirective &S) { 3416 // If we don't have target devices, don't bother emitting the data mapping 3417 // code. 3418 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3419 return; 3420 3421 // Check if we have any if clause associated with the directive. 3422 const Expr *IfCond = nullptr; 3423 if (auto *C = S.getSingleClause<OMPIfClause>()) 3424 IfCond = C->getCondition(); 3425 3426 // Check if we have any device clause associated with the directive. 3427 const Expr *Device = nullptr; 3428 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3429 Device = C->getDevice(); 3430 3431 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3432 } 3433 3434 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3435 const OMPTargetExitDataDirective &S) { 3436 // If we don't have target devices, don't bother emitting the data mapping 3437 // code. 3438 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3439 return; 3440 3441 // Check if we have any if clause associated with the directive. 3442 const Expr *IfCond = nullptr; 3443 if (auto *C = S.getSingleClause<OMPIfClause>()) 3444 IfCond = C->getCondition(); 3445 3446 // Check if we have any device clause associated with the directive. 3447 const Expr *Device = nullptr; 3448 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3449 Device = C->getDevice(); 3450 3451 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3452 } 3453 3454 void CodeGenFunction::EmitOMPTargetParallelDirective( 3455 const OMPTargetParallelDirective &S) { 3456 // TODO: codegen for target parallel. 3457 } 3458 3459 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3460 const OMPTargetParallelForDirective &S) { 3461 // TODO: codegen for target parallel for. 3462 } 3463 3464 /// Emit a helper variable and return corresponding lvalue. 3465 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3466 const ImplicitParamDecl *PVD, 3467 CodeGenFunction::OMPPrivateScope &Privates) { 3468 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3469 Privates.addPrivate( 3470 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3471 } 3472 3473 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3474 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3475 // Emit outlined function for task construct. 3476 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3477 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3478 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3479 const Expr *IfCond = nullptr; 3480 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3481 if (C->getNameModifier() == OMPD_unknown || 3482 C->getNameModifier() == OMPD_taskloop) { 3483 IfCond = C->getCondition(); 3484 break; 3485 } 3486 } 3487 3488 OMPTaskDataTy Data; 3489 // Check if taskloop must be emitted without taskgroup. 3490 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3491 // TODO: Check if we should emit tied or untied task. 3492 Data.Tied = true; 3493 // Set scheduling for taskloop 3494 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3495 // grainsize clause 3496 Data.Schedule.setInt(/*IntVal=*/false); 3497 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3498 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3499 // num_tasks clause 3500 Data.Schedule.setInt(/*IntVal=*/true); 3501 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3502 } 3503 3504 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3505 // if (PreCond) { 3506 // for (IV in 0..LastIteration) BODY; 3507 // <Final counter/linear vars updates>; 3508 // } 3509 // 3510 3511 // Emit: if (PreCond) - begin. 3512 // If the condition constant folds and can be elided, avoid emitting the 3513 // whole loop. 3514 bool CondConstant; 3515 llvm::BasicBlock *ContBlock = nullptr; 3516 OMPLoopScope PreInitScope(CGF, S); 3517 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3518 if (!CondConstant) 3519 return; 3520 } else { 3521 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3522 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3523 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3524 CGF.getProfileCount(&S)); 3525 CGF.EmitBlock(ThenBlock); 3526 CGF.incrementProfileCounter(&S); 3527 } 3528 3529 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3530 CGF.EmitOMPSimdInit(S); 3531 3532 OMPPrivateScope LoopScope(CGF); 3533 // Emit helper vars inits. 3534 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3535 auto *I = CS->getCapturedDecl()->param_begin(); 3536 auto *LBP = std::next(I, LowerBound); 3537 auto *UBP = std::next(I, UpperBound); 3538 auto *STP = std::next(I, Stride); 3539 auto *LIP = std::next(I, LastIter); 3540 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3541 LoopScope); 3542 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3543 LoopScope); 3544 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3545 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3546 LoopScope); 3547 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3548 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3549 (void)LoopScope.Privatize(); 3550 // Emit the loop iteration variable. 3551 const Expr *IVExpr = S.getIterationVariable(); 3552 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3553 CGF.EmitVarDecl(*IVDecl); 3554 CGF.EmitIgnoredExpr(S.getInit()); 3555 3556 // Emit the iterations count variable. 3557 // If it is not a variable, Sema decided to calculate iterations count on 3558 // each iteration (e.g., it is foldable into a constant). 3559 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3560 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3561 // Emit calculation of the iterations count. 3562 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3563 } 3564 3565 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3566 S.getInc(), 3567 [&S](CodeGenFunction &CGF) { 3568 CGF.EmitOMPLoopBody(S, JumpDest()); 3569 CGF.EmitStopPoint(&S); 3570 }, 3571 [](CodeGenFunction &) {}); 3572 // Emit: if (PreCond) - end. 3573 if (ContBlock) { 3574 CGF.EmitBranch(ContBlock); 3575 CGF.EmitBlock(ContBlock, true); 3576 } 3577 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3578 if (HasLastprivateClause) { 3579 CGF.EmitOMPLastprivateClauseFinal( 3580 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3581 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3582 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3583 (*LIP)->getType(), S.getLocStart()))); 3584 } 3585 }; 3586 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3587 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3588 const OMPTaskDataTy &Data) { 3589 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 3590 OMPLoopScope PreInitScope(CGF, S); 3591 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 3592 OutlinedFn, SharedsTy, 3593 CapturedStruct, IfCond, Data); 3594 }; 3595 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 3596 CodeGen); 3597 }; 3598 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3599 } 3600 3601 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 3602 EmitOMPTaskLoopBasedDirective(S); 3603 } 3604 3605 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 3606 const OMPTaskLoopSimdDirective &S) { 3607 EmitOMPTaskLoopBasedDirective(S); 3608 } 3609 3610 // Generate the instructions for '#pragma omp target update' directive. 3611 void CodeGenFunction::EmitOMPTargetUpdateDirective( 3612 const OMPTargetUpdateDirective &S) { 3613 // If we don't have target devices, don't bother emitting the data mapping 3614 // code. 3615 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3616 return; 3617 3618 // Check if we have any if clause associated with the directive. 3619 const Expr *IfCond = nullptr; 3620 if (auto *C = S.getSingleClause<OMPIfClause>()) 3621 IfCond = C->getCondition(); 3622 3623 // Check if we have any device clause associated with the directive. 3624 const Expr *Device = nullptr; 3625 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3626 Device = C->getDevice(); 3627 3628 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3629 } 3630