1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     emitPreInitStmt(CGF, S);
61     if (AsInlined) {
62       if (S.hasAssociatedStmt()) {
63         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
64         for (auto &C : CS->captures()) {
65           if (C.capturesVariable() || C.capturesVariableByCopy()) {
66             auto *VD = C.getCapturedVar();
67             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
68                             isCapturedVar(CGF, VD) ||
69                                 (CGF.CapturedStmtInfo &&
70                                  InlinedShareds.isGlobalVarCaptured(VD)),
71                             VD->getType().getNonReferenceType(), VK_LValue,
72                             SourceLocation());
73             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
74               return CGF.EmitLValue(&DRE).getAddress();
75             });
76           }
77         }
78         (void)InlinedShareds.Privatize();
79       }
80     }
81   }
82 };
83 
84 /// Private scope for OpenMP loop-based directives, that supports capturing
85 /// of used expression from loop statement.
86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
87   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
88     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
89       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
90         for (const auto *I : PreInits->decls())
91           CGF.EmitVarDecl(cast<VarDecl>(*I));
92       }
93     }
94   }
95 
96 public:
97   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
98       : CodeGenFunction::RunCleanupsScope(CGF) {
99     emitPreInitStmt(CGF, S);
100   }
101 };
102 
103 } // namespace
104 
105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
106   auto &C = getContext();
107   llvm::Value *Size = nullptr;
108   auto SizeInChars = C.getTypeSizeInChars(Ty);
109   if (SizeInChars.isZero()) {
110     // getTypeSizeInChars() returns 0 for a VLA.
111     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
112       llvm::Value *ArraySize;
113       std::tie(ArraySize, Ty) = getVLASize(VAT);
114       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
115     }
116     SizeInChars = C.getTypeSizeInChars(Ty);
117     if (SizeInChars.isZero())
118       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
119     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
120   } else
121     Size = CGM.getSize(SizeInChars);
122   return Size;
123 }
124 
125 void CodeGenFunction::GenerateOpenMPCapturedVars(
126     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
127   const RecordDecl *RD = S.getCapturedRecordDecl();
128   auto CurField = RD->field_begin();
129   auto CurCap = S.captures().begin();
130   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
131                                                  E = S.capture_init_end();
132        I != E; ++I, ++CurField, ++CurCap) {
133     if (CurField->hasCapturedVLAType()) {
134       auto VAT = CurField->getCapturedVLAType();
135       auto *Val = VLASizeMap[VAT->getSizeExpr()];
136       CapturedVars.push_back(Val);
137     } else if (CurCap->capturesThis())
138       CapturedVars.push_back(CXXThisValue);
139     else if (CurCap->capturesVariableByCopy()) {
140       llvm::Value *CV =
141           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
142 
143       // If the field is not a pointer, we need to save the actual value
144       // and load it as a void pointer.
145       if (!CurField->getType()->isAnyPointerType()) {
146         auto &Ctx = getContext();
147         auto DstAddr = CreateMemTemp(
148             Ctx.getUIntPtrType(),
149             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
150         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
151 
152         auto *SrcAddrVal = EmitScalarConversion(
153             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
154             Ctx.getPointerType(CurField->getType()), SourceLocation());
155         LValue SrcLV =
156             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
157 
158         // Store the value using the source type pointer.
159         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
160 
161         // Load the value using the destination type pointer.
162         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
163       }
164       CapturedVars.push_back(CV);
165     } else {
166       assert(CurCap->capturesVariable() && "Expected capture by reference.");
167       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
168     }
169   }
170 }
171 
172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
173                                     StringRef Name, LValue AddrLV,
174                                     bool isReferenceType = false) {
175   ASTContext &Ctx = CGF.getContext();
176 
177   auto *CastedPtr = CGF.EmitScalarConversion(
178       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
179       Ctx.getPointerType(DstType), SourceLocation());
180   auto TmpAddr =
181       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
182           .getAddress();
183 
184   // If we are dealing with references we need to return the address of the
185   // reference instead of the reference of the value.
186   if (isReferenceType) {
187     QualType RefType = Ctx.getLValueReferenceType(DstType);
188     auto *RefVal = TmpAddr.getPointer();
189     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
190     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
191     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true);
192   }
193 
194   return TmpAddr;
195 }
196 
197 llvm::Function *
198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
199   assert(
200       CapturedStmtInfo &&
201       "CapturedStmtInfo should be set when generating the captured function");
202   const CapturedDecl *CD = S.getCapturedDecl();
203   const RecordDecl *RD = S.getCapturedRecordDecl();
204   assert(CD->hasBody() && "missing CapturedDecl body");
205 
206   // Build the argument list.
207   ASTContext &Ctx = CGM.getContext();
208   FunctionArgList Args;
209   Args.append(CD->param_begin(),
210               std::next(CD->param_begin(), CD->getContextParamPosition()));
211   auto I = S.captures().begin();
212   for (auto *FD : RD->fields()) {
213     QualType ArgType = FD->getType();
214     IdentifierInfo *II = nullptr;
215     VarDecl *CapVar = nullptr;
216 
217     // If this is a capture by copy and the type is not a pointer, the outlined
218     // function argument type should be uintptr and the value properly casted to
219     // uintptr. This is necessary given that the runtime library is only able to
220     // deal with pointers. We can pass in the same way the VLA type sizes to the
221     // outlined function.
222     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
223         I->capturesVariableArrayType())
224       ArgType = Ctx.getUIntPtrType();
225 
226     if (I->capturesVariable() || I->capturesVariableByCopy()) {
227       CapVar = I->getCapturedVar();
228       II = CapVar->getIdentifier();
229     } else if (I->capturesThis())
230       II = &getContext().Idents.get("this");
231     else {
232       assert(I->capturesVariableArrayType());
233       II = &getContext().Idents.get("vla");
234     }
235     if (ArgType->isVariablyModifiedType()) {
236       bool IsReference = ArgType->isLValueReferenceType();
237       ArgType =
238           getContext().getCanonicalParamType(ArgType.getNonReferenceType());
239       if (IsReference && !ArgType->isPointerType()) {
240         ArgType = getContext().getLValueReferenceType(
241             ArgType, /*SpelledAsLValue=*/false);
242       }
243     }
244     Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
245                                              FD->getLocation(), II, ArgType));
246     ++I;
247   }
248   Args.append(
249       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
250       CD->param_end());
251 
252   // Create the function declaration.
253   FunctionType::ExtInfo ExtInfo;
254   const CGFunctionInfo &FuncInfo =
255       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
256   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
257 
258   llvm::Function *F = llvm::Function::Create(
259       FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
260       CapturedStmtInfo->getHelperName(), &CGM.getModule());
261   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
262   if (CD->isNothrow())
263     F->addFnAttr(llvm::Attribute::NoUnwind);
264 
265   // Generate the function.
266   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
267                 CD->getBody()->getLocStart());
268   unsigned Cnt = CD->getContextParamPosition();
269   I = S.captures().begin();
270   for (auto *FD : RD->fields()) {
271     // If we are capturing a pointer by copy we don't need to do anything, just
272     // use the value that we get from the arguments.
273     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
274       const VarDecl *CurVD = I->getCapturedVar();
275       Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]);
276       // If the variable is a reference we need to materialize it here.
277       if (CurVD->getType()->isReferenceType()) {
278         Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(),
279                                         ".materialized_ref");
280         EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false,
281                           CurVD->getType());
282         LocalAddr = RefAddr;
283       }
284       setAddrOfLocalVar(CurVD, LocalAddr);
285       ++Cnt;
286       ++I;
287       continue;
288     }
289 
290     LValue ArgLVal =
291         MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
292                        AlignmentSource::Decl);
293     if (FD->hasCapturedVLAType()) {
294       LValue CastedArgLVal =
295           MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
296                                               Args[Cnt]->getName(), ArgLVal),
297                          FD->getType(), AlignmentSource::Decl);
298       auto *ExprArg =
299           EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
300       auto VAT = FD->getCapturedVLAType();
301       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
302     } else if (I->capturesVariable()) {
303       auto *Var = I->getCapturedVar();
304       QualType VarTy = Var->getType();
305       Address ArgAddr = ArgLVal.getAddress();
306       if (!VarTy->isReferenceType()) {
307         if (ArgLVal.getType()->isLValueReferenceType()) {
308           ArgAddr = EmitLoadOfReference(
309               ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
310         } else {
311           assert(ArgLVal.getType()->isPointerType());
312           ArgAddr = EmitLoadOfPointer(
313               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
314         }
315       }
316       setAddrOfLocalVar(
317           Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
318     } else if (I->capturesVariableByCopy()) {
319       assert(!FD->getType()->isAnyPointerType() &&
320              "Not expecting a captured pointer.");
321       auto *Var = I->getCapturedVar();
322       QualType VarTy = Var->getType();
323       setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(),
324                                                   Args[Cnt]->getName(), ArgLVal,
325                                                   VarTy->isReferenceType()));
326     } else {
327       // If 'this' is captured, load it into CXXThisValue.
328       assert(I->capturesThis());
329       CXXThisValue =
330           EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
331     }
332     ++Cnt;
333     ++I;
334   }
335 
336   PGO.assignRegionCounters(GlobalDecl(CD), F);
337   CapturedStmtInfo->EmitBody(*this, CD->getBody());
338   FinishFunction(CD->getBodyRBrace());
339 
340   return F;
341 }
342 
343 //===----------------------------------------------------------------------===//
344 //                              OpenMP Directive Emission
345 //===----------------------------------------------------------------------===//
346 void CodeGenFunction::EmitOMPAggregateAssign(
347     Address DestAddr, Address SrcAddr, QualType OriginalType,
348     const llvm::function_ref<void(Address, Address)> &CopyGen) {
349   // Perform element-by-element initialization.
350   QualType ElementTy;
351 
352   // Drill down to the base element type on both arrays.
353   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
354   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
355   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
356 
357   auto SrcBegin = SrcAddr.getPointer();
358   auto DestBegin = DestAddr.getPointer();
359   // Cast from pointer to array type to pointer to single element.
360   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
361   // The basic structure here is a while-do loop.
362   auto BodyBB = createBasicBlock("omp.arraycpy.body");
363   auto DoneBB = createBasicBlock("omp.arraycpy.done");
364   auto IsEmpty =
365       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
366   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
367 
368   // Enter the loop body, making that address the current address.
369   auto EntryBB = Builder.GetInsertBlock();
370   EmitBlock(BodyBB);
371 
372   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
373 
374   llvm::PHINode *SrcElementPHI =
375     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
376   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
377   Address SrcElementCurrent =
378       Address(SrcElementPHI,
379               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
380 
381   llvm::PHINode *DestElementPHI =
382     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
383   DestElementPHI->addIncoming(DestBegin, EntryBB);
384   Address DestElementCurrent =
385     Address(DestElementPHI,
386             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
387 
388   // Emit copy.
389   CopyGen(DestElementCurrent, SrcElementCurrent);
390 
391   // Shift the address forward by one element.
392   auto DestElementNext = Builder.CreateConstGEP1_32(
393       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
394   auto SrcElementNext = Builder.CreateConstGEP1_32(
395       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
396   // Check whether we've reached the end.
397   auto Done =
398       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
399   Builder.CreateCondBr(Done, DoneBB, BodyBB);
400   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
401   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
402 
403   // Done.
404   EmitBlock(DoneBB, /*IsFinished=*/true);
405 }
406 
407 /// Check if the combiner is a call to UDR combiner and if it is so return the
408 /// UDR decl used for reduction.
409 static const OMPDeclareReductionDecl *
410 getReductionInit(const Expr *ReductionOp) {
411   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
412     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
413       if (auto *DRE =
414               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
415         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
416           return DRD;
417   return nullptr;
418 }
419 
420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
421                                              const OMPDeclareReductionDecl *DRD,
422                                              const Expr *InitOp,
423                                              Address Private, Address Original,
424                                              QualType Ty) {
425   if (DRD->getInitializer()) {
426     std::pair<llvm::Function *, llvm::Function *> Reduction =
427         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
428     auto *CE = cast<CallExpr>(InitOp);
429     auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
430     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
431     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
432     auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
433     auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
434     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
435     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
436                             [=]() -> Address { return Private; });
437     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
438                             [=]() -> Address { return Original; });
439     (void)PrivateScope.Privatize();
440     RValue Func = RValue::get(Reduction.second);
441     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
442     CGF.EmitIgnoredExpr(InitOp);
443   } else {
444     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
445     auto *GV = new llvm::GlobalVariable(
446         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
447         llvm::GlobalValue::PrivateLinkage, Init, ".init");
448     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
449     RValue InitRVal;
450     switch (CGF.getEvaluationKind(Ty)) {
451     case TEK_Scalar:
452       InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation());
453       break;
454     case TEK_Complex:
455       InitRVal =
456           RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation()));
457       break;
458     case TEK_Aggregate:
459       InitRVal = RValue::getAggregate(LV.getAddress());
460       break;
461     }
462     OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue);
463     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
464     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
465                          /*IsInitializer=*/false);
466   }
467 }
468 
469 /// \brief Emit initialization of arrays of complex types.
470 /// \param DestAddr Address of the array.
471 /// \param Type Type of array.
472 /// \param Init Initial expression of array.
473 /// \param SrcAddr Address of the original array.
474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
475                                  QualType Type, const Expr *Init,
476                                  Address SrcAddr = Address::invalid()) {
477   auto *DRD = getReductionInit(Init);
478   // Perform element-by-element initialization.
479   QualType ElementTy;
480 
481   // Drill down to the base element type on both arrays.
482   auto ArrayTy = Type->getAsArrayTypeUnsafe();
483   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
484   DestAddr =
485       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
486   if (DRD)
487     SrcAddr =
488         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
489 
490   llvm::Value *SrcBegin = nullptr;
491   if (DRD)
492     SrcBegin = SrcAddr.getPointer();
493   auto DestBegin = DestAddr.getPointer();
494   // Cast from pointer to array type to pointer to single element.
495   auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
496   // The basic structure here is a while-do loop.
497   auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
498   auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
499   auto IsEmpty =
500       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
501   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
502 
503   // Enter the loop body, making that address the current address.
504   auto EntryBB = CGF.Builder.GetInsertBlock();
505   CGF.EmitBlock(BodyBB);
506 
507   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
508 
509   llvm::PHINode *SrcElementPHI = nullptr;
510   Address SrcElementCurrent = Address::invalid();
511   if (DRD) {
512     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
513                                           "omp.arraycpy.srcElementPast");
514     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
515     SrcElementCurrent =
516         Address(SrcElementPHI,
517                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
518   }
519   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
520       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
521   DestElementPHI->addIncoming(DestBegin, EntryBB);
522   Address DestElementCurrent =
523       Address(DestElementPHI,
524               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
525 
526   // Emit copy.
527   {
528     CodeGenFunction::RunCleanupsScope InitScope(CGF);
529     if (DRD && (DRD->getInitializer() || !Init)) {
530       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
531                                        SrcElementCurrent, ElementTy);
532     } else
533       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
534                            /*IsInitializer=*/false);
535   }
536 
537   if (DRD) {
538     // Shift the address forward by one element.
539     auto SrcElementNext = CGF.Builder.CreateConstGEP1_32(
540         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
541     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
542   }
543 
544   // Shift the address forward by one element.
545   auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
546       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
547   // Check whether we've reached the end.
548   auto Done =
549       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
550   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
551   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
552 
553   // Done.
554   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
555 }
556 
557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
558                                   Address SrcAddr, const VarDecl *DestVD,
559                                   const VarDecl *SrcVD, const Expr *Copy) {
560   if (OriginalType->isArrayType()) {
561     auto *BO = dyn_cast<BinaryOperator>(Copy);
562     if (BO && BO->getOpcode() == BO_Assign) {
563       // Perform simple memcpy for simple copying.
564       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
565     } else {
566       // For arrays with complex element types perform element by element
567       // copying.
568       EmitOMPAggregateAssign(
569           DestAddr, SrcAddr, OriginalType,
570           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
571             // Working with the single array element, so have to remap
572             // destination and source variables to corresponding array
573             // elements.
574             CodeGenFunction::OMPPrivateScope Remap(*this);
575             Remap.addPrivate(DestVD, [DestElement]() -> Address {
576               return DestElement;
577             });
578             Remap.addPrivate(
579                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
580             (void)Remap.Privatize();
581             EmitIgnoredExpr(Copy);
582           });
583     }
584   } else {
585     // Remap pseudo source variable to private copy.
586     CodeGenFunction::OMPPrivateScope Remap(*this);
587     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
588     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
589     (void)Remap.Privatize();
590     // Emit copying of the whole variable.
591     EmitIgnoredExpr(Copy);
592   }
593 }
594 
595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
596                                                 OMPPrivateScope &PrivateScope) {
597   if (!HaveInsertPoint())
598     return false;
599   bool FirstprivateIsLastprivate = false;
600   llvm::DenseSet<const VarDecl *> Lastprivates;
601   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
602     for (const auto *D : C->varlists())
603       Lastprivates.insert(
604           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
605   }
606   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
607   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
608   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
609     auto IRef = C->varlist_begin();
610     auto InitsRef = C->inits().begin();
611     for (auto IInit : C->private_copies()) {
612       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
613       bool ThisFirstprivateIsLastprivate =
614           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
615       auto *CapFD = CapturesInfo.lookup(OrigVD);
616       auto *FD = CapturedStmtInfo->lookup(OrigVD);
617       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
618           !FD->getType()->isReferenceType()) {
619         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
620         ++IRef;
621         ++InitsRef;
622         continue;
623       }
624       FirstprivateIsLastprivate =
625           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
626       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
627         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
628         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
629         bool IsRegistered;
630         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
631                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
632                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
633         Address OriginalAddr = EmitLValue(&DRE).getAddress();
634         QualType Type = VD->getType();
635         if (Type->isArrayType()) {
636           // Emit VarDecl with copy init for arrays.
637           // Get the address of the original variable captured in current
638           // captured region.
639           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
640             auto Emission = EmitAutoVarAlloca(*VD);
641             auto *Init = VD->getInit();
642             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
643               // Perform simple memcpy.
644               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
645                                   Type);
646             } else {
647               EmitOMPAggregateAssign(
648                   Emission.getAllocatedAddress(), OriginalAddr, Type,
649                   [this, VDInit, Init](Address DestElement,
650                                        Address SrcElement) {
651                     // Clean up any temporaries needed by the initialization.
652                     RunCleanupsScope InitScope(*this);
653                     // Emit initialization for single element.
654                     setAddrOfLocalVar(VDInit, SrcElement);
655                     EmitAnyExprToMem(Init, DestElement,
656                                      Init->getType().getQualifiers(),
657                                      /*IsInitializer*/ false);
658                     LocalDeclMap.erase(VDInit);
659                   });
660             }
661             EmitAutoVarCleanups(Emission);
662             return Emission.getAllocatedAddress();
663           });
664         } else {
665           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
666             // Emit private VarDecl with copy init.
667             // Remap temp VDInit variable to the address of the original
668             // variable
669             // (for proper handling of captured global variables).
670             setAddrOfLocalVar(VDInit, OriginalAddr);
671             EmitDecl(*VD);
672             LocalDeclMap.erase(VDInit);
673             return GetAddrOfLocalVar(VD);
674           });
675         }
676         assert(IsRegistered &&
677                "firstprivate var already registered as private");
678         // Silence the warning about unused variable.
679         (void)IsRegistered;
680       }
681       ++IRef;
682       ++InitsRef;
683     }
684   }
685   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
686 }
687 
688 void CodeGenFunction::EmitOMPPrivateClause(
689     const OMPExecutableDirective &D,
690     CodeGenFunction::OMPPrivateScope &PrivateScope) {
691   if (!HaveInsertPoint())
692     return;
693   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
694   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
695     auto IRef = C->varlist_begin();
696     for (auto IInit : C->private_copies()) {
697       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
698       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
699         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
700         bool IsRegistered =
701             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
702               // Emit private VarDecl with copy init.
703               EmitDecl(*VD);
704               return GetAddrOfLocalVar(VD);
705             });
706         assert(IsRegistered && "private var already registered as private");
707         // Silence the warning about unused variable.
708         (void)IsRegistered;
709       }
710       ++IRef;
711     }
712   }
713 }
714 
715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
716   if (!HaveInsertPoint())
717     return false;
718   // threadprivate_var1 = master_threadprivate_var1;
719   // operator=(threadprivate_var2, master_threadprivate_var2);
720   // ...
721   // __kmpc_barrier(&loc, global_tid);
722   llvm::DenseSet<const VarDecl *> CopiedVars;
723   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
724   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
725     auto IRef = C->varlist_begin();
726     auto ISrcRef = C->source_exprs().begin();
727     auto IDestRef = C->destination_exprs().begin();
728     for (auto *AssignOp : C->assignment_ops()) {
729       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
730       QualType Type = VD->getType();
731       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
732         // Get the address of the master variable. If we are emitting code with
733         // TLS support, the address is passed from the master as field in the
734         // captured declaration.
735         Address MasterAddr = Address::invalid();
736         if (getLangOpts().OpenMPUseTLS &&
737             getContext().getTargetInfo().isTLSSupported()) {
738           assert(CapturedStmtInfo->lookup(VD) &&
739                  "Copyin threadprivates should have been captured!");
740           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
741                           VK_LValue, (*IRef)->getExprLoc());
742           MasterAddr = EmitLValue(&DRE).getAddress();
743           LocalDeclMap.erase(VD);
744         } else {
745           MasterAddr =
746             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
747                                         : CGM.GetAddrOfGlobal(VD),
748                     getContext().getDeclAlign(VD));
749         }
750         // Get the address of the threadprivate variable.
751         Address PrivateAddr = EmitLValue(*IRef).getAddress();
752         if (CopiedVars.size() == 1) {
753           // At first check if current thread is a master thread. If it is, no
754           // need to copy data.
755           CopyBegin = createBasicBlock("copyin.not.master");
756           CopyEnd = createBasicBlock("copyin.not.master.end");
757           Builder.CreateCondBr(
758               Builder.CreateICmpNE(
759                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
760                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
761               CopyBegin, CopyEnd);
762           EmitBlock(CopyBegin);
763         }
764         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
765         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
766         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
767       }
768       ++IRef;
769       ++ISrcRef;
770       ++IDestRef;
771     }
772   }
773   if (CopyEnd) {
774     // Exit out of copying procedure for non-master thread.
775     EmitBlock(CopyEnd, /*IsFinished=*/true);
776     return true;
777   }
778   return false;
779 }
780 
781 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
782     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
783   if (!HaveInsertPoint())
784     return false;
785   bool HasAtLeastOneLastprivate = false;
786   llvm::DenseSet<const VarDecl *> SIMDLCVs;
787   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
788     auto *LoopDirective = cast<OMPLoopDirective>(&D);
789     for (auto *C : LoopDirective->counters()) {
790       SIMDLCVs.insert(
791           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
792     }
793   }
794   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
795   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
796     HasAtLeastOneLastprivate = true;
797     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
798       break;
799     auto IRef = C->varlist_begin();
800     auto IDestRef = C->destination_exprs().begin();
801     for (auto *IInit : C->private_copies()) {
802       // Keep the address of the original variable for future update at the end
803       // of the loop.
804       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
805       // Taskloops do not require additional initialization, it is done in
806       // runtime support library.
807       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
808         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
809         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
810           DeclRefExpr DRE(
811               const_cast<VarDecl *>(OrigVD),
812               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
813                   OrigVD) != nullptr,
814               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
815           return EmitLValue(&DRE).getAddress();
816         });
817         // Check if the variable is also a firstprivate: in this case IInit is
818         // not generated. Initialization of this variable will happen in codegen
819         // for 'firstprivate' clause.
820         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
821           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
822           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
823             // Emit private VarDecl with copy init.
824             EmitDecl(*VD);
825             return GetAddrOfLocalVar(VD);
826           });
827           assert(IsRegistered &&
828                  "lastprivate var already registered as private");
829           (void)IsRegistered;
830         }
831       }
832       ++IRef;
833       ++IDestRef;
834     }
835   }
836   return HasAtLeastOneLastprivate;
837 }
838 
839 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
840     const OMPExecutableDirective &D, bool NoFinals,
841     llvm::Value *IsLastIterCond) {
842   if (!HaveInsertPoint())
843     return;
844   // Emit following code:
845   // if (<IsLastIterCond>) {
846   //   orig_var1 = private_orig_var1;
847   //   ...
848   //   orig_varn = private_orig_varn;
849   // }
850   llvm::BasicBlock *ThenBB = nullptr;
851   llvm::BasicBlock *DoneBB = nullptr;
852   if (IsLastIterCond) {
853     ThenBB = createBasicBlock(".omp.lastprivate.then");
854     DoneBB = createBasicBlock(".omp.lastprivate.done");
855     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
856     EmitBlock(ThenBB);
857   }
858   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
859   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
860   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
861     auto IC = LoopDirective->counters().begin();
862     for (auto F : LoopDirective->finals()) {
863       auto *D =
864           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
865       if (NoFinals)
866         AlreadyEmittedVars.insert(D);
867       else
868         LoopCountersAndUpdates[D] = F;
869       ++IC;
870     }
871   }
872   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
873     auto IRef = C->varlist_begin();
874     auto ISrcRef = C->source_exprs().begin();
875     auto IDestRef = C->destination_exprs().begin();
876     for (auto *AssignOp : C->assignment_ops()) {
877       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
878       QualType Type = PrivateVD->getType();
879       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
880       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
881         // If lastprivate variable is a loop control variable for loop-based
882         // directive, update its value before copyin back to original
883         // variable.
884         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
885           EmitIgnoredExpr(FinalExpr);
886         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
887         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
888         // Get the address of the original variable.
889         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
890         // Get the address of the private variable.
891         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
892         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
893           PrivateAddr =
894               Address(Builder.CreateLoad(PrivateAddr),
895                       getNaturalTypeAlignment(RefTy->getPointeeType()));
896         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
897       }
898       ++IRef;
899       ++ISrcRef;
900       ++IDestRef;
901     }
902     if (auto *PostUpdate = C->getPostUpdateExpr())
903       EmitIgnoredExpr(PostUpdate);
904   }
905   if (IsLastIterCond)
906     EmitBlock(DoneBB, /*IsFinished=*/true);
907 }
908 
909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
910                           LValue BaseLV, llvm::Value *Addr) {
911   Address Tmp = Address::invalid();
912   Address TopTmp = Address::invalid();
913   Address MostTopTmp = Address::invalid();
914   BaseTy = BaseTy.getNonReferenceType();
915   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
916          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
917     Tmp = CGF.CreateMemTemp(BaseTy);
918     if (TopTmp.isValid())
919       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
920     else
921       MostTopTmp = Tmp;
922     TopTmp = Tmp;
923     BaseTy = BaseTy->getPointeeType();
924   }
925   llvm::Type *Ty = BaseLV.getPointer()->getType();
926   if (Tmp.isValid())
927     Ty = Tmp.getElementType();
928   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
929   if (Tmp.isValid()) {
930     CGF.Builder.CreateStore(Addr, Tmp);
931     return MostTopTmp;
932   }
933   return Address(Addr, BaseLV.getAlignment());
934 }
935 
936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
937                           LValue BaseLV) {
938   BaseTy = BaseTy.getNonReferenceType();
939   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
940          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
941     if (auto *PtrTy = BaseTy->getAs<PointerType>())
942       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
943     else {
944       BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
945                                              BaseTy->castAs<ReferenceType>());
946     }
947     BaseTy = BaseTy->getPointeeType();
948   }
949   return CGF.MakeAddrLValue(
950       Address(
951           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
952               BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
953           BaseLV.getAlignment()),
954       BaseLV.getType(), BaseLV.getAlignmentSource());
955 }
956 
957 void CodeGenFunction::EmitOMPReductionClauseInit(
958     const OMPExecutableDirective &D,
959     CodeGenFunction::OMPPrivateScope &PrivateScope) {
960   if (!HaveInsertPoint())
961     return;
962   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
963     auto ILHS = C->lhs_exprs().begin();
964     auto IRHS = C->rhs_exprs().begin();
965     auto IPriv = C->privates().begin();
966     auto IRed = C->reduction_ops().begin();
967     for (auto IRef : C->varlists()) {
968       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
969       auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
970       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
971       auto *DRD = getReductionInit(*IRed);
972       if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
973         auto *Base = OASE->getBase()->IgnoreParenImpCasts();
974         while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
975           Base = TempOASE->getBase()->IgnoreParenImpCasts();
976         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
977           Base = TempASE->getBase()->IgnoreParenImpCasts();
978         auto *DE = cast<DeclRefExpr>(Base);
979         auto *OrigVD = cast<VarDecl>(DE->getDecl());
980         auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
981         auto OASELValueUB =
982             EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
983         auto OriginalBaseLValue = EmitLValue(DE);
984         LValue BaseLValue =
985             loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
986                         OriginalBaseLValue);
987         // Store the address of the original variable associated with the LHS
988         // implicit variable.
989         PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
990           return OASELValueLB.getAddress();
991         });
992         // Emit reduction copy.
993         bool IsRegistered = PrivateScope.addPrivate(
994             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
995                      OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address {
996               // Emit VarDecl with copy init for arrays.
997               // Get the address of the original variable captured in current
998               // captured region.
999               auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
1000                                                  OASELValueLB.getPointer());
1001               Size = Builder.CreateNUWAdd(
1002                   Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1003               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1004                   *this, cast<OpaqueValueExpr>(
1005                              getContext()
1006                                  .getAsVariableArrayType(PrivateVD->getType())
1007                                  ->getSizeExpr()),
1008                   RValue::get(Size));
1009               EmitVariablyModifiedType(PrivateVD->getType());
1010               auto Emission = EmitAutoVarAlloca(*PrivateVD);
1011               auto Addr = Emission.getAllocatedAddress();
1012               auto *Init = PrivateVD->getInit();
1013               EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1014                                    DRD ? *IRed : Init,
1015                                    OASELValueLB.getAddress());
1016               EmitAutoVarCleanups(Emission);
1017               // Emit private VarDecl with reduction init.
1018               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1019                                                    OASELValueLB.getPointer());
1020               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1021               return castToBase(*this, OrigVD->getType(),
1022                                 OASELValueLB.getType(), OriginalBaseLValue,
1023                                 Ptr);
1024             });
1025         assert(IsRegistered && "private var already registered as private");
1026         // Silence the warning about unused variable.
1027         (void)IsRegistered;
1028         PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1029           return GetAddrOfLocalVar(PrivateVD);
1030         });
1031       } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
1032         auto *Base = ASE->getBase()->IgnoreParenImpCasts();
1033         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1034           Base = TempASE->getBase()->IgnoreParenImpCasts();
1035         auto *DE = cast<DeclRefExpr>(Base);
1036         auto *OrigVD = cast<VarDecl>(DE->getDecl());
1037         auto ASELValue = EmitLValue(ASE);
1038         auto OriginalBaseLValue = EmitLValue(DE);
1039         LValue BaseLValue = loadToBegin(
1040             *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
1041         // Store the address of the original variable associated with the LHS
1042         // implicit variable.
1043         PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
1044           return ASELValue.getAddress();
1045         });
1046         // Emit reduction copy.
1047         bool IsRegistered = PrivateScope.addPrivate(
1048             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
1049                      OriginalBaseLValue, DRD, IRed]() -> Address {
1050               // Emit private VarDecl with reduction init.
1051               AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1052               auto Addr = Emission.getAllocatedAddress();
1053               if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1054                 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1055                                                  ASELValue.getAddress(),
1056                                                  ASELValue.getType());
1057               } else
1058                 EmitAutoVarInit(Emission);
1059               EmitAutoVarCleanups(Emission);
1060               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1061                                                    ASELValue.getPointer());
1062               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1063               return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
1064                                 OriginalBaseLValue, Ptr);
1065             });
1066         assert(IsRegistered && "private var already registered as private");
1067         // Silence the warning about unused variable.
1068         (void)IsRegistered;
1069         PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1070           return Builder.CreateElementBitCast(
1071               GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
1072               "rhs.begin");
1073         });
1074       } else {
1075         auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
1076         QualType Type = PrivateVD->getType();
1077         if (getContext().getAsArrayType(Type)) {
1078           // Store the address of the original variable associated with the LHS
1079           // implicit variable.
1080           DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1081                           CapturedStmtInfo->lookup(OrigVD) != nullptr,
1082                           IRef->getType(), VK_LValue, IRef->getExprLoc());
1083           Address OriginalAddr = EmitLValue(&DRE).getAddress();
1084           PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr,
1085                                           LHSVD]() -> Address {
1086             OriginalAddr = Builder.CreateElementBitCast(
1087                 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1088             return OriginalAddr;
1089           });
1090           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
1091             if (Type->isVariablyModifiedType()) {
1092               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1093                   *this, cast<OpaqueValueExpr>(
1094                              getContext()
1095                                  .getAsVariableArrayType(PrivateVD->getType())
1096                                  ->getSizeExpr()),
1097                   RValue::get(
1098                       getTypeSize(OrigVD->getType().getNonReferenceType())));
1099               EmitVariablyModifiedType(Type);
1100             }
1101             auto Emission = EmitAutoVarAlloca(*PrivateVD);
1102             auto Addr = Emission.getAllocatedAddress();
1103             auto *Init = PrivateVD->getInit();
1104             EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1105                                  DRD ? *IRed : Init, OriginalAddr);
1106             EmitAutoVarCleanups(Emission);
1107             return Emission.getAllocatedAddress();
1108           });
1109           assert(IsRegistered && "private var already registered as private");
1110           // Silence the warning about unused variable.
1111           (void)IsRegistered;
1112           PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1113             return Builder.CreateElementBitCast(
1114                 GetAddrOfLocalVar(PrivateVD),
1115                 ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
1116           });
1117         } else {
1118           // Store the address of the original variable associated with the LHS
1119           // implicit variable.
1120           Address OriginalAddr = Address::invalid();
1121           PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef,
1122                                           &OriginalAddr]() -> Address {
1123             DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1124                             CapturedStmtInfo->lookup(OrigVD) != nullptr,
1125                             IRef->getType(), VK_LValue, IRef->getExprLoc());
1126             OriginalAddr = EmitLValue(&DRE).getAddress();
1127             return OriginalAddr;
1128           });
1129           // Emit reduction copy.
1130           bool IsRegistered = PrivateScope.addPrivate(
1131               OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address {
1132                 // Emit private VarDecl with reduction init.
1133                 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1134                 auto Addr = Emission.getAllocatedAddress();
1135                 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1136                   emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1137                                                    OriginalAddr,
1138                                                    PrivateVD->getType());
1139                 } else
1140                   EmitAutoVarInit(Emission);
1141                 EmitAutoVarCleanups(Emission);
1142                 return Addr;
1143               });
1144           assert(IsRegistered && "private var already registered as private");
1145           // Silence the warning about unused variable.
1146           (void)IsRegistered;
1147           PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1148             return GetAddrOfLocalVar(PrivateVD);
1149           });
1150         }
1151       }
1152       ++ILHS;
1153       ++IRHS;
1154       ++IPriv;
1155       ++IRed;
1156     }
1157   }
1158 }
1159 
1160 void CodeGenFunction::EmitOMPReductionClauseFinal(
1161     const OMPExecutableDirective &D) {
1162   if (!HaveInsertPoint())
1163     return;
1164   llvm::SmallVector<const Expr *, 8> Privates;
1165   llvm::SmallVector<const Expr *, 8> LHSExprs;
1166   llvm::SmallVector<const Expr *, 8> RHSExprs;
1167   llvm::SmallVector<const Expr *, 8> ReductionOps;
1168   bool HasAtLeastOneReduction = false;
1169   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1170     HasAtLeastOneReduction = true;
1171     Privates.append(C->privates().begin(), C->privates().end());
1172     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1173     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1174     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1175   }
1176   if (HasAtLeastOneReduction) {
1177     // Emit nowait reduction if nowait clause is present or directive is a
1178     // parallel directive (it always has implicit barrier).
1179     CGM.getOpenMPRuntime().emitReduction(
1180         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1181         D.getSingleClause<OMPNowaitClause>() ||
1182             isOpenMPParallelDirective(D.getDirectiveKind()) ||
1183             D.getDirectiveKind() == OMPD_simd,
1184         D.getDirectiveKind() == OMPD_simd);
1185   }
1186 }
1187 
1188 static void emitPostUpdateForReductionClause(
1189     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1190     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1191   if (!CGF.HaveInsertPoint())
1192     return;
1193   llvm::BasicBlock *DoneBB = nullptr;
1194   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1195     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1196       if (!DoneBB) {
1197         if (auto *Cond = CondGen(CGF)) {
1198           // If the first post-update expression is found, emit conditional
1199           // block if it was requested.
1200           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1201           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1202           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1203           CGF.EmitBlock(ThenBB);
1204         }
1205       }
1206       CGF.EmitIgnoredExpr(PostUpdate);
1207     }
1208   }
1209   if (DoneBB)
1210     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1211 }
1212 
1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
1214                                            const OMPExecutableDirective &S,
1215                                            OpenMPDirectiveKind InnermostKind,
1216                                            const RegionCodeGenTy &CodeGen) {
1217   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1218   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
1219       emitParallelOrTeamsOutlinedFunction(S,
1220           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1221   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1222     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1223     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1224                                          /*IgnoreResultAssign*/ true);
1225     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1226         CGF, NumThreads, NumThreadsClause->getLocStart());
1227   }
1228   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1229     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1230     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1231         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1232   }
1233   const Expr *IfCond = nullptr;
1234   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1235     if (C->getNameModifier() == OMPD_unknown ||
1236         C->getNameModifier() == OMPD_parallel) {
1237       IfCond = C->getCondition();
1238       break;
1239     }
1240   }
1241 
1242   OMPLexicalScope Scope(CGF, S);
1243   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1244   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1245   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1246                                               CapturedVars, IfCond);
1247 }
1248 
1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1250   // Emit parallel region as a standalone region.
1251   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1252     OMPPrivateScope PrivateScope(CGF);
1253     bool Copyins = CGF.EmitOMPCopyinClause(S);
1254     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1255     if (Copyins) {
1256       // Emit implicit barrier to synchronize threads and avoid data races on
1257       // propagation master's thread values of threadprivate variables to local
1258       // instances of that variables of all other implicit threads.
1259       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1260           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1261           /*ForceSimpleCall=*/true);
1262     }
1263     CGF.EmitOMPPrivateClause(S, PrivateScope);
1264     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1265     (void)PrivateScope.Privatize();
1266     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1267     CGF.EmitOMPReductionClauseFinal(S);
1268   };
1269   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
1270   emitPostUpdateForReductionClause(
1271       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1272 }
1273 
1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1275                                       JumpDest LoopExit) {
1276   RunCleanupsScope BodyScope(*this);
1277   // Update counters values on current iteration.
1278   for (auto I : D.updates()) {
1279     EmitIgnoredExpr(I);
1280   }
1281   // Update the linear variables.
1282   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1283     for (auto *U : C->updates())
1284       EmitIgnoredExpr(U);
1285   }
1286 
1287   // On a continue in the body, jump to the end.
1288   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1289   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1290   // Emit loop body.
1291   EmitStmt(D.getBody());
1292   // The end (updates/cleanups).
1293   EmitBlock(Continue.getBlock());
1294   BreakContinueStack.pop_back();
1295 }
1296 
1297 void CodeGenFunction::EmitOMPInnerLoop(
1298     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1299     const Expr *IncExpr,
1300     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1301     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1302   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1303 
1304   // Start the loop with a block that tests the condition.
1305   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1306   EmitBlock(CondBlock);
1307   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1308 
1309   // If there are any cleanups between here and the loop-exit scope,
1310   // create a block to stage a loop exit along.
1311   auto ExitBlock = LoopExit.getBlock();
1312   if (RequiresCleanup)
1313     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1314 
1315   auto LoopBody = createBasicBlock("omp.inner.for.body");
1316 
1317   // Emit condition.
1318   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1319   if (ExitBlock != LoopExit.getBlock()) {
1320     EmitBlock(ExitBlock);
1321     EmitBranchThroughCleanup(LoopExit);
1322   }
1323 
1324   EmitBlock(LoopBody);
1325   incrementProfileCounter(&S);
1326 
1327   // Create a block for the increment.
1328   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1329   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1330 
1331   BodyGen(*this);
1332 
1333   // Emit "IV = IV + 1" and a back-edge to the condition block.
1334   EmitBlock(Continue.getBlock());
1335   EmitIgnoredExpr(IncExpr);
1336   PostIncGen(*this);
1337   BreakContinueStack.pop_back();
1338   EmitBranch(CondBlock);
1339   LoopStack.pop();
1340   // Emit the fall-through block.
1341   EmitBlock(LoopExit.getBlock());
1342 }
1343 
1344 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1345   if (!HaveInsertPoint())
1346     return;
1347   // Emit inits for the linear variables.
1348   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1349     for (auto *Init : C->inits()) {
1350       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1351       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1352         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1353         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1354         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1355                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1356                         VD->getInit()->getType(), VK_LValue,
1357                         VD->getInit()->getExprLoc());
1358         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1359                                                 VD->getType()),
1360                        /*capturedByInit=*/false);
1361         EmitAutoVarCleanups(Emission);
1362       } else
1363         EmitVarDecl(*VD);
1364     }
1365     // Emit the linear steps for the linear clauses.
1366     // If a step is not constant, it is pre-calculated before the loop.
1367     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1368       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1369         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1370         // Emit calculation of the linear step.
1371         EmitIgnoredExpr(CS);
1372       }
1373   }
1374 }
1375 
1376 void CodeGenFunction::EmitOMPLinearClauseFinal(
1377     const OMPLoopDirective &D,
1378     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1379   if (!HaveInsertPoint())
1380     return;
1381   llvm::BasicBlock *DoneBB = nullptr;
1382   // Emit the final values of the linear variables.
1383   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1384     auto IC = C->varlist_begin();
1385     for (auto *F : C->finals()) {
1386       if (!DoneBB) {
1387         if (auto *Cond = CondGen(*this)) {
1388           // If the first post-update expression is found, emit conditional
1389           // block if it was requested.
1390           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1391           DoneBB = createBasicBlock(".omp.linear.pu.done");
1392           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1393           EmitBlock(ThenBB);
1394         }
1395       }
1396       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1397       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1398                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1399                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1400       Address OrigAddr = EmitLValue(&DRE).getAddress();
1401       CodeGenFunction::OMPPrivateScope VarScope(*this);
1402       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1403       (void)VarScope.Privatize();
1404       EmitIgnoredExpr(F);
1405       ++IC;
1406     }
1407     if (auto *PostUpdate = C->getPostUpdateExpr())
1408       EmitIgnoredExpr(PostUpdate);
1409   }
1410   if (DoneBB)
1411     EmitBlock(DoneBB, /*IsFinished=*/true);
1412 }
1413 
1414 static void emitAlignedClause(CodeGenFunction &CGF,
1415                               const OMPExecutableDirective &D) {
1416   if (!CGF.HaveInsertPoint())
1417     return;
1418   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1419     unsigned ClauseAlignment = 0;
1420     if (auto AlignmentExpr = Clause->getAlignment()) {
1421       auto AlignmentCI =
1422           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1423       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1424     }
1425     for (auto E : Clause->varlists()) {
1426       unsigned Alignment = ClauseAlignment;
1427       if (Alignment == 0) {
1428         // OpenMP [2.8.1, Description]
1429         // If no optional parameter is specified, implementation-defined default
1430         // alignments for SIMD instructions on the target platforms are assumed.
1431         Alignment =
1432             CGF.getContext()
1433                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1434                     E->getType()->getPointeeType()))
1435                 .getQuantity();
1436       }
1437       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1438              "alignment is not power of 2");
1439       if (Alignment != 0) {
1440         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1441         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1442       }
1443     }
1444   }
1445 }
1446 
1447 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1448     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1449   if (!HaveInsertPoint())
1450     return;
1451   auto I = S.private_counters().begin();
1452   for (auto *E : S.counters()) {
1453     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1454     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1455     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1456       // Emit var without initialization.
1457       if (!LocalDeclMap.count(PrivateVD)) {
1458         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1459         EmitAutoVarCleanups(VarEmission);
1460       }
1461       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1462                       /*RefersToEnclosingVariableOrCapture=*/false,
1463                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1464       return EmitLValue(&DRE).getAddress();
1465     });
1466     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1467         VD->hasGlobalStorage()) {
1468       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1469         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1470                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1471                         E->getType(), VK_LValue, E->getExprLoc());
1472         return EmitLValue(&DRE).getAddress();
1473       });
1474     }
1475     ++I;
1476   }
1477 }
1478 
1479 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1480                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1481                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1482   if (!CGF.HaveInsertPoint())
1483     return;
1484   {
1485     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1486     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1487     (void)PreCondScope.Privatize();
1488     // Get initial values of real counters.
1489     for (auto I : S.inits()) {
1490       CGF.EmitIgnoredExpr(I);
1491     }
1492   }
1493   // Check that loop is executed at least one time.
1494   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1495 }
1496 
1497 void CodeGenFunction::EmitOMPLinearClause(
1498     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1499   if (!HaveInsertPoint())
1500     return;
1501   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1502   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1503     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1504     for (auto *C : LoopDirective->counters()) {
1505       SIMDLCVs.insert(
1506           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1507     }
1508   }
1509   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1510     auto CurPrivate = C->privates().begin();
1511     for (auto *E : C->varlists()) {
1512       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1513       auto *PrivateVD =
1514           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1515       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1516         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1517           // Emit private VarDecl with copy init.
1518           EmitVarDecl(*PrivateVD);
1519           return GetAddrOfLocalVar(PrivateVD);
1520         });
1521         assert(IsRegistered && "linear var already registered as private");
1522         // Silence the warning about unused variable.
1523         (void)IsRegistered;
1524       } else
1525         EmitVarDecl(*PrivateVD);
1526       ++CurPrivate;
1527     }
1528   }
1529 }
1530 
1531 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1532                                      const OMPExecutableDirective &D,
1533                                      bool IsMonotonic) {
1534   if (!CGF.HaveInsertPoint())
1535     return;
1536   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1537     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1538                                  /*ignoreResult=*/true);
1539     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1540     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1541     // In presence of finite 'safelen', it may be unsafe to mark all
1542     // the memory instructions parallel, because loop-carried
1543     // dependences of 'safelen' iterations are possible.
1544     if (!IsMonotonic)
1545       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1546   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1547     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1548                                  /*ignoreResult=*/true);
1549     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1550     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1551     // In presence of finite 'safelen', it may be unsafe to mark all
1552     // the memory instructions parallel, because loop-carried
1553     // dependences of 'safelen' iterations are possible.
1554     CGF.LoopStack.setParallel(false);
1555   }
1556 }
1557 
1558 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1559                                       bool IsMonotonic) {
1560   // Walk clauses and process safelen/lastprivate.
1561   LoopStack.setParallel(!IsMonotonic);
1562   LoopStack.setVectorizeEnable(true);
1563   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1564 }
1565 
1566 void CodeGenFunction::EmitOMPSimdFinal(
1567     const OMPLoopDirective &D,
1568     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1569   if (!HaveInsertPoint())
1570     return;
1571   llvm::BasicBlock *DoneBB = nullptr;
1572   auto IC = D.counters().begin();
1573   auto IPC = D.private_counters().begin();
1574   for (auto F : D.finals()) {
1575     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1576     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1577     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1578     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1579         OrigVD->hasGlobalStorage() || CED) {
1580       if (!DoneBB) {
1581         if (auto *Cond = CondGen(*this)) {
1582           // If the first post-update expression is found, emit conditional
1583           // block if it was requested.
1584           auto *ThenBB = createBasicBlock(".omp.final.then");
1585           DoneBB = createBasicBlock(".omp.final.done");
1586           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1587           EmitBlock(ThenBB);
1588         }
1589       }
1590       Address OrigAddr = Address::invalid();
1591       if (CED)
1592         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1593       else {
1594         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1595                         /*RefersToEnclosingVariableOrCapture=*/false,
1596                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1597         OrigAddr = EmitLValue(&DRE).getAddress();
1598       }
1599       OMPPrivateScope VarScope(*this);
1600       VarScope.addPrivate(OrigVD,
1601                           [OrigAddr]() -> Address { return OrigAddr; });
1602       (void)VarScope.Privatize();
1603       EmitIgnoredExpr(F);
1604     }
1605     ++IC;
1606     ++IPC;
1607   }
1608   if (DoneBB)
1609     EmitBlock(DoneBB, /*IsFinished=*/true);
1610 }
1611 
1612 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1613   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1614     OMPLoopScope PreInitScope(CGF, S);
1615     // if (PreCond) {
1616     //   for (IV in 0..LastIteration) BODY;
1617     //   <Final counter/linear vars updates>;
1618     // }
1619     //
1620 
1621     // Emit: if (PreCond) - begin.
1622     // If the condition constant folds and can be elided, avoid emitting the
1623     // whole loop.
1624     bool CondConstant;
1625     llvm::BasicBlock *ContBlock = nullptr;
1626     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1627       if (!CondConstant)
1628         return;
1629     } else {
1630       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1631       ContBlock = CGF.createBasicBlock("simd.if.end");
1632       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1633                   CGF.getProfileCount(&S));
1634       CGF.EmitBlock(ThenBlock);
1635       CGF.incrementProfileCounter(&S);
1636     }
1637 
1638     // Emit the loop iteration variable.
1639     const Expr *IVExpr = S.getIterationVariable();
1640     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1641     CGF.EmitVarDecl(*IVDecl);
1642     CGF.EmitIgnoredExpr(S.getInit());
1643 
1644     // Emit the iterations count variable.
1645     // If it is not a variable, Sema decided to calculate iterations count on
1646     // each iteration (e.g., it is foldable into a constant).
1647     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1648       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1649       // Emit calculation of the iterations count.
1650       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1651     }
1652 
1653     CGF.EmitOMPSimdInit(S);
1654 
1655     emitAlignedClause(CGF, S);
1656     CGF.EmitOMPLinearClauseInit(S);
1657     {
1658       OMPPrivateScope LoopScope(CGF);
1659       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1660       CGF.EmitOMPLinearClause(S, LoopScope);
1661       CGF.EmitOMPPrivateClause(S, LoopScope);
1662       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1663       bool HasLastprivateClause =
1664           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1665       (void)LoopScope.Privatize();
1666       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1667                            S.getInc(),
1668                            [&S](CodeGenFunction &CGF) {
1669                              CGF.EmitOMPLoopBody(S, JumpDest());
1670                              CGF.EmitStopPoint(&S);
1671                            },
1672                            [](CodeGenFunction &) {});
1673       CGF.EmitOMPSimdFinal(
1674           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1675       // Emit final copy of the lastprivate variables at the end of loops.
1676       if (HasLastprivateClause)
1677         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1678       CGF.EmitOMPReductionClauseFinal(S);
1679       emitPostUpdateForReductionClause(
1680           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1681     }
1682     CGF.EmitOMPLinearClauseFinal(
1683         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1684     // Emit: if (PreCond) - end.
1685     if (ContBlock) {
1686       CGF.EmitBranch(ContBlock);
1687       CGF.EmitBlock(ContBlock, true);
1688     }
1689   };
1690   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1691   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1692 }
1693 
1694 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
1695     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1696     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1697   auto &RT = CGM.getOpenMPRuntime();
1698 
1699   const Expr *IVExpr = S.getIterationVariable();
1700   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1701   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1702 
1703   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1704 
1705   // Start the loop with a block that tests the condition.
1706   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1707   EmitBlock(CondBlock);
1708   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1709 
1710   llvm::Value *BoolCondVal = nullptr;
1711   if (!DynamicOrOrdered) {
1712     // UB = min(UB, GlobalUB)
1713     EmitIgnoredExpr(S.getEnsureUpperBound());
1714     // IV = LB
1715     EmitIgnoredExpr(S.getInit());
1716     // IV < UB
1717     BoolCondVal = EvaluateExprAsBool(S.getCond());
1718   } else {
1719     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL,
1720                                  LB, UB, ST);
1721   }
1722 
1723   // If there are any cleanups between here and the loop-exit scope,
1724   // create a block to stage a loop exit along.
1725   auto ExitBlock = LoopExit.getBlock();
1726   if (LoopScope.requiresCleanups())
1727     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1728 
1729   auto LoopBody = createBasicBlock("omp.dispatch.body");
1730   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1731   if (ExitBlock != LoopExit.getBlock()) {
1732     EmitBlock(ExitBlock);
1733     EmitBranchThroughCleanup(LoopExit);
1734   }
1735   EmitBlock(LoopBody);
1736 
1737   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1738   // LB for loop condition and emitted it above).
1739   if (DynamicOrOrdered)
1740     EmitIgnoredExpr(S.getInit());
1741 
1742   // Create a block for the increment.
1743   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1744   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1745 
1746   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1747   // with dynamic/guided scheduling and without ordered clause.
1748   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1749     LoopStack.setParallel(!IsMonotonic);
1750   else
1751     EmitOMPSimdInit(S, IsMonotonic);
1752 
1753   SourceLocation Loc = S.getLocStart();
1754   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1755                    [&S, LoopExit](CodeGenFunction &CGF) {
1756                      CGF.EmitOMPLoopBody(S, LoopExit);
1757                      CGF.EmitStopPoint(&S);
1758                    },
1759                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1760                      if (Ordered) {
1761                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1762                            CGF, Loc, IVSize, IVSigned);
1763                      }
1764                    });
1765 
1766   EmitBlock(Continue.getBlock());
1767   BreakContinueStack.pop_back();
1768   if (!DynamicOrOrdered) {
1769     // Emit "LB = LB + Stride", "UB = UB + Stride".
1770     EmitIgnoredExpr(S.getNextLowerBound());
1771     EmitIgnoredExpr(S.getNextUpperBound());
1772   }
1773 
1774   EmitBranch(CondBlock);
1775   LoopStack.pop();
1776   // Emit the fall-through block.
1777   EmitBlock(LoopExit.getBlock());
1778 
1779   // Tell the runtime we are done.
1780   if (!DynamicOrOrdered)
1781     RT.emitForStaticFinish(*this, S.getLocEnd());
1782 
1783 }
1784 
1785 void CodeGenFunction::EmitOMPForOuterLoop(
1786     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1787     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1788     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1789   auto &RT = CGM.getOpenMPRuntime();
1790 
1791   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1792   const bool DynamicOrOrdered =
1793       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1794 
1795   assert((Ordered ||
1796           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1797                                  /*Chunked=*/Chunk != nullptr)) &&
1798          "static non-chunked schedule does not need outer loop");
1799 
1800   // Emit outer loop.
1801   //
1802   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1803   // When schedule(dynamic,chunk_size) is specified, the iterations are
1804   // distributed to threads in the team in chunks as the threads request them.
1805   // Each thread executes a chunk of iterations, then requests another chunk,
1806   // until no chunks remain to be distributed. Each chunk contains chunk_size
1807   // iterations, except for the last chunk to be distributed, which may have
1808   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1809   //
1810   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1811   // to threads in the team in chunks as the executing threads request them.
1812   // Each thread executes a chunk of iterations, then requests another chunk,
1813   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1814   // each chunk is proportional to the number of unassigned iterations divided
1815   // by the number of threads in the team, decreasing to 1. For a chunk_size
1816   // with value k (greater than 1), the size of each chunk is determined in the
1817   // same way, with the restriction that the chunks do not contain fewer than k
1818   // iterations (except for the last chunk to be assigned, which may have fewer
1819   // than k iterations).
1820   //
1821   // When schedule(auto) is specified, the decision regarding scheduling is
1822   // delegated to the compiler and/or runtime system. The programmer gives the
1823   // implementation the freedom to choose any possible mapping of iterations to
1824   // threads in the team.
1825   //
1826   // When schedule(runtime) is specified, the decision regarding scheduling is
1827   // deferred until run time, and the schedule and chunk size are taken from the
1828   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1829   // implementation defined
1830   //
1831   // while(__kmpc_dispatch_next(&LB, &UB)) {
1832   //   idx = LB;
1833   //   while (idx <= UB) { BODY; ++idx;
1834   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1835   //   } // inner loop
1836   // }
1837   //
1838   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1839   // When schedule(static, chunk_size) is specified, iterations are divided into
1840   // chunks of size chunk_size, and the chunks are assigned to the threads in
1841   // the team in a round-robin fashion in the order of the thread number.
1842   //
1843   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1844   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1845   //   LB = LB + ST;
1846   //   UB = UB + ST;
1847   // }
1848   //
1849 
1850   const Expr *IVExpr = S.getIterationVariable();
1851   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1852   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1853 
1854   if (DynamicOrOrdered) {
1855     llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
1856     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1857                            IVSigned, Ordered, UBVal, Chunk);
1858   } else {
1859     RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1860                          Ordered, IL, LB, UB, ST, Chunk);
1861   }
1862 
1863   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB,
1864                    ST, IL, Chunk);
1865 }
1866 
1867 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1868     OpenMPDistScheduleClauseKind ScheduleKind,
1869     const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
1870     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1871 
1872   auto &RT = CGM.getOpenMPRuntime();
1873 
1874   // Emit outer loop.
1875   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1876   // dynamic
1877   //
1878 
1879   const Expr *IVExpr = S.getIterationVariable();
1880   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1881   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1882 
1883   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
1884                               IVSize, IVSigned, /* Ordered = */ false,
1885                               IL, LB, UB, ST, Chunk);
1886 
1887   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false,
1888                    S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk);
1889 }
1890 
1891 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1892     const OMPDistributeParallelForDirective &S) {
1893   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1894   CGM.getOpenMPRuntime().emitInlinedDirective(
1895       *this, OMPD_distribute_parallel_for,
1896       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1897         OMPLoopScope PreInitScope(CGF, S);
1898         CGF.EmitStmt(
1899             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1900       });
1901 }
1902 
1903 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1904     const OMPDistributeParallelForSimdDirective &S) {
1905   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1906   CGM.getOpenMPRuntime().emitInlinedDirective(
1907       *this, OMPD_distribute_parallel_for_simd,
1908       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1909         OMPLoopScope PreInitScope(CGF, S);
1910         CGF.EmitStmt(
1911             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1912       });
1913 }
1914 
1915 void CodeGenFunction::EmitOMPDistributeSimdDirective(
1916     const OMPDistributeSimdDirective &S) {
1917   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1918   CGM.getOpenMPRuntime().emitInlinedDirective(
1919       *this, OMPD_distribute_simd,
1920       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1921         OMPLoopScope PreInitScope(CGF, S);
1922         CGF.EmitStmt(
1923             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1924       });
1925 }
1926 
1927 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
1928     const OMPTargetParallelForSimdDirective &S) {
1929   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1930   CGM.getOpenMPRuntime().emitInlinedDirective(
1931       *this, OMPD_target_parallel_for_simd,
1932       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1933         OMPLoopScope PreInitScope(CGF, S);
1934         CGF.EmitStmt(
1935             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1936       });
1937 }
1938 
1939 void CodeGenFunction::EmitOMPTargetSimdDirective(
1940     const OMPTargetSimdDirective &S) {
1941   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1942   CGM.getOpenMPRuntime().emitInlinedDirective(
1943       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1944         OMPLoopScope PreInitScope(CGF, S);
1945         CGF.EmitStmt(
1946             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1947       });
1948 }
1949 
1950 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
1951     const OMPTeamsDistributeDirective &S) {
1952   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1953   CGM.getOpenMPRuntime().emitInlinedDirective(
1954       *this, OMPD_teams_distribute,
1955       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1956         OMPLoopScope PreInitScope(CGF, S);
1957         CGF.EmitStmt(
1958             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1959       });
1960 }
1961 
1962 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
1963     const OMPTeamsDistributeSimdDirective &S) {
1964   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1965   CGM.getOpenMPRuntime().emitInlinedDirective(
1966       *this, OMPD_teams_distribute_simd,
1967       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1968         OMPLoopScope PreInitScope(CGF, S);
1969         CGF.EmitStmt(
1970             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1971       });
1972 }
1973 
1974 
1975 /// \brief Emit a helper variable and return corresponding lvalue.
1976 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1977                                const DeclRefExpr *Helper) {
1978   auto VDecl = cast<VarDecl>(Helper->getDecl());
1979   CGF.EmitVarDecl(*VDecl);
1980   return CGF.EmitLValue(Helper);
1981 }
1982 
1983 namespace {
1984   struct ScheduleKindModifiersTy {
1985     OpenMPScheduleClauseKind Kind;
1986     OpenMPScheduleClauseModifier M1;
1987     OpenMPScheduleClauseModifier M2;
1988     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
1989                             OpenMPScheduleClauseModifier M1,
1990                             OpenMPScheduleClauseModifier M2)
1991         : Kind(Kind), M1(M1), M2(M2) {}
1992   };
1993 } // namespace
1994 
1995 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1996   // Emit the loop iteration variable.
1997   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1998   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1999   EmitVarDecl(*IVDecl);
2000 
2001   // Emit the iterations count variable.
2002   // If it is not a variable, Sema decided to calculate iterations count on each
2003   // iteration (e.g., it is foldable into a constant).
2004   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2005     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2006     // Emit calculation of the iterations count.
2007     EmitIgnoredExpr(S.getCalcLastIteration());
2008   }
2009 
2010   auto &RT = CGM.getOpenMPRuntime();
2011 
2012   bool HasLastprivateClause;
2013   // Check pre-condition.
2014   {
2015     OMPLoopScope PreInitScope(*this, S);
2016     // Skip the entire loop if we don't meet the precondition.
2017     // If the condition constant folds and can be elided, avoid emitting the
2018     // whole loop.
2019     bool CondConstant;
2020     llvm::BasicBlock *ContBlock = nullptr;
2021     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2022       if (!CondConstant)
2023         return false;
2024     } else {
2025       auto *ThenBlock = createBasicBlock("omp.precond.then");
2026       ContBlock = createBasicBlock("omp.precond.end");
2027       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2028                   getProfileCount(&S));
2029       EmitBlock(ThenBlock);
2030       incrementProfileCounter(&S);
2031     }
2032 
2033     bool Ordered = false;
2034     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2035       if (OrderedClause->getNumForLoops())
2036         RT.emitDoacrossInit(*this, S);
2037       else
2038         Ordered = true;
2039     }
2040 
2041     llvm::DenseSet<const Expr *> EmittedFinals;
2042     emitAlignedClause(*this, S);
2043     EmitOMPLinearClauseInit(S);
2044     // Emit helper vars inits.
2045     LValue LB =
2046         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2047     LValue UB =
2048         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2049     LValue ST =
2050         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2051     LValue IL =
2052         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2053 
2054     // Emit 'then' code.
2055     {
2056       OMPPrivateScope LoopScope(*this);
2057       if (EmitOMPFirstprivateClause(S, LoopScope)) {
2058         // Emit implicit barrier to synchronize threads and avoid data races on
2059         // initialization of firstprivate variables and post-update of
2060         // lastprivate variables.
2061         CGM.getOpenMPRuntime().emitBarrierCall(
2062             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2063             /*ForceSimpleCall=*/true);
2064       }
2065       EmitOMPPrivateClause(S, LoopScope);
2066       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2067       EmitOMPReductionClauseInit(S, LoopScope);
2068       EmitOMPPrivateLoopCounters(S, LoopScope);
2069       EmitOMPLinearClause(S, LoopScope);
2070       (void)LoopScope.Privatize();
2071 
2072       // Detect the loop schedule kind and chunk.
2073       llvm::Value *Chunk = nullptr;
2074       OpenMPScheduleTy ScheduleKind;
2075       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2076         ScheduleKind.Schedule = C->getScheduleKind();
2077         ScheduleKind.M1 = C->getFirstScheduleModifier();
2078         ScheduleKind.M2 = C->getSecondScheduleModifier();
2079         if (const auto *Ch = C->getChunkSize()) {
2080           Chunk = EmitScalarExpr(Ch);
2081           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2082                                        S.getIterationVariable()->getType(),
2083                                        S.getLocStart());
2084         }
2085       }
2086       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2087       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2088       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2089       // If the static schedule kind is specified or if the ordered clause is
2090       // specified, and if no monotonic modifier is specified, the effect will
2091       // be as if the monotonic modifier was specified.
2092       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2093                                 /* Chunked */ Chunk != nullptr) &&
2094           !Ordered) {
2095         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2096           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2097         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2098         // When no chunk_size is specified, the iteration space is divided into
2099         // chunks that are approximately equal in size, and at most one chunk is
2100         // distributed to each thread. Note that the size of the chunks is
2101         // unspecified in this case.
2102         RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
2103                              IVSize, IVSigned, Ordered,
2104                              IL.getAddress(), LB.getAddress(),
2105                              UB.getAddress(), ST.getAddress());
2106         auto LoopExit =
2107             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2108         // UB = min(UB, GlobalUB);
2109         EmitIgnoredExpr(S.getEnsureUpperBound());
2110         // IV = LB;
2111         EmitIgnoredExpr(S.getInit());
2112         // while (idx <= UB) { BODY; ++idx; }
2113         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2114                          S.getInc(),
2115                          [&S, LoopExit](CodeGenFunction &CGF) {
2116                            CGF.EmitOMPLoopBody(S, LoopExit);
2117                            CGF.EmitStopPoint(&S);
2118                          },
2119                          [](CodeGenFunction &) {});
2120         EmitBlock(LoopExit.getBlock());
2121         // Tell the runtime we are done.
2122         RT.emitForStaticFinish(*this, S.getLocStart());
2123       } else {
2124         const bool IsMonotonic =
2125             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2126             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2127             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2128             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2129         // Emit the outer loop, which requests its work chunk [LB..UB] from
2130         // runtime and runs the inner loop to process it.
2131         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2132                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2133                             IL.getAddress(), Chunk);
2134       }
2135       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2136         EmitOMPSimdFinal(S,
2137                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2138                            return CGF.Builder.CreateIsNotNull(
2139                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2140                          });
2141       }
2142       EmitOMPReductionClauseFinal(S);
2143       // Emit post-update of the reduction variables if IsLastIter != 0.
2144       emitPostUpdateForReductionClause(
2145           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2146             return CGF.Builder.CreateIsNotNull(
2147                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2148           });
2149       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2150       if (HasLastprivateClause)
2151         EmitOMPLastprivateClauseFinal(
2152             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2153             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2154     }
2155     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2156       return CGF.Builder.CreateIsNotNull(
2157           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2158     });
2159     // We're now done with the loop, so jump to the continuation block.
2160     if (ContBlock) {
2161       EmitBranch(ContBlock);
2162       EmitBlock(ContBlock, true);
2163     }
2164   }
2165   return HasLastprivateClause;
2166 }
2167 
2168 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2169   bool HasLastprivates = false;
2170   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2171                                           PrePostActionTy &) {
2172     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2173   };
2174   {
2175     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2176     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2177                                                 S.hasCancel());
2178   }
2179 
2180   // Emit an implicit barrier at the end.
2181   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2182     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2183   }
2184 }
2185 
2186 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2187   bool HasLastprivates = false;
2188   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2189                                           PrePostActionTy &) {
2190     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2191   };
2192   {
2193     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2194     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2195   }
2196 
2197   // Emit an implicit barrier at the end.
2198   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2199     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2200   }
2201 }
2202 
2203 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2204                                 const Twine &Name,
2205                                 llvm::Value *Init = nullptr) {
2206   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2207   if (Init)
2208     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2209   return LVal;
2210 }
2211 
2212 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2213   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2214   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2215   bool HasLastprivates = false;
2216   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2217                                                     PrePostActionTy &) {
2218     auto &C = CGF.CGM.getContext();
2219     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2220     // Emit helper vars inits.
2221     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2222                                   CGF.Builder.getInt32(0));
2223     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2224                                       : CGF.Builder.getInt32(0);
2225     LValue UB =
2226         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2227     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2228                                   CGF.Builder.getInt32(1));
2229     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2230                                   CGF.Builder.getInt32(0));
2231     // Loop counter.
2232     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2233     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2234     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2235     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2236     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2237     // Generate condition for loop.
2238     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2239                         OK_Ordinary, S.getLocStart(),
2240                         /*fpContractable=*/false);
2241     // Increment for loop counter.
2242     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2243                       S.getLocStart());
2244     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2245       // Iterate through all sections and emit a switch construct:
2246       // switch (IV) {
2247       //   case 0:
2248       //     <SectionStmt[0]>;
2249       //     break;
2250       // ...
2251       //   case <NumSection> - 1:
2252       //     <SectionStmt[<NumSection> - 1]>;
2253       //     break;
2254       // }
2255       // .omp.sections.exit:
2256       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2257       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2258           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2259           CS == nullptr ? 1 : CS->size());
2260       if (CS) {
2261         unsigned CaseNumber = 0;
2262         for (auto *SubStmt : CS->children()) {
2263           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2264           CGF.EmitBlock(CaseBB);
2265           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2266           CGF.EmitStmt(SubStmt);
2267           CGF.EmitBranch(ExitBB);
2268           ++CaseNumber;
2269         }
2270       } else {
2271         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2272         CGF.EmitBlock(CaseBB);
2273         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2274         CGF.EmitStmt(Stmt);
2275         CGF.EmitBranch(ExitBB);
2276       }
2277       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2278     };
2279 
2280     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2281     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2282       // Emit implicit barrier to synchronize threads and avoid data races on
2283       // initialization of firstprivate variables and post-update of lastprivate
2284       // variables.
2285       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2286           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2287           /*ForceSimpleCall=*/true);
2288     }
2289     CGF.EmitOMPPrivateClause(S, LoopScope);
2290     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2291     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2292     (void)LoopScope.Privatize();
2293 
2294     // Emit static non-chunked loop.
2295     OpenMPScheduleTy ScheduleKind;
2296     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2297     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2298         CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32,
2299         /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
2300         UB.getAddress(), ST.getAddress());
2301     // UB = min(UB, GlobalUB);
2302     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2303     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2304         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2305     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2306     // IV = LB;
2307     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2308     // while (idx <= UB) { BODY; ++idx; }
2309     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2310                          [](CodeGenFunction &) {});
2311     // Tell the runtime we are done.
2312     CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
2313     CGF.EmitOMPReductionClauseFinal(S);
2314     // Emit post-update of the reduction variables if IsLastIter != 0.
2315     emitPostUpdateForReductionClause(
2316         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2317           return CGF.Builder.CreateIsNotNull(
2318               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2319         });
2320 
2321     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2322     if (HasLastprivates)
2323       CGF.EmitOMPLastprivateClauseFinal(
2324           S, /*NoFinals=*/false,
2325           CGF.Builder.CreateIsNotNull(
2326               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2327   };
2328 
2329   bool HasCancel = false;
2330   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2331     HasCancel = OSD->hasCancel();
2332   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2333     HasCancel = OPSD->hasCancel();
2334   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2335                                               HasCancel);
2336   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2337   // clause. Otherwise the barrier will be generated by the codegen for the
2338   // directive.
2339   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2340     // Emit implicit barrier to synchronize threads and avoid data races on
2341     // initialization of firstprivate variables.
2342     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2343                                            OMPD_unknown);
2344   }
2345 }
2346 
2347 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2348   {
2349     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2350     EmitSections(S);
2351   }
2352   // Emit an implicit barrier at the end.
2353   if (!S.getSingleClause<OMPNowaitClause>()) {
2354     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2355                                            OMPD_sections);
2356   }
2357 }
2358 
2359 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2360   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2361     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2362   };
2363   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2364   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2365                                               S.hasCancel());
2366 }
2367 
2368 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2369   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2370   llvm::SmallVector<const Expr *, 8> DestExprs;
2371   llvm::SmallVector<const Expr *, 8> SrcExprs;
2372   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2373   // Check if there are any 'copyprivate' clauses associated with this
2374   // 'single' construct.
2375   // Build a list of copyprivate variables along with helper expressions
2376   // (<source>, <destination>, <destination>=<source> expressions)
2377   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2378     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2379     DestExprs.append(C->destination_exprs().begin(),
2380                      C->destination_exprs().end());
2381     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2382     AssignmentOps.append(C->assignment_ops().begin(),
2383                          C->assignment_ops().end());
2384   }
2385   // Emit code for 'single' region along with 'copyprivate' clauses
2386   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2387     Action.Enter(CGF);
2388     OMPPrivateScope SingleScope(CGF);
2389     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2390     CGF.EmitOMPPrivateClause(S, SingleScope);
2391     (void)SingleScope.Privatize();
2392     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2393   };
2394   {
2395     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2396     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2397                                             CopyprivateVars, DestExprs,
2398                                             SrcExprs, AssignmentOps);
2399   }
2400   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2401   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2402   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2403     CGM.getOpenMPRuntime().emitBarrierCall(
2404         *this, S.getLocStart(),
2405         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2406   }
2407 }
2408 
2409 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2410   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2411     Action.Enter(CGF);
2412     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2413   };
2414   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2415   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2416 }
2417 
2418 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2419   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2420     Action.Enter(CGF);
2421     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2422   };
2423   Expr *Hint = nullptr;
2424   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2425     Hint = HintClause->getHint();
2426   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2427   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2428                                             S.getDirectiveName().getAsString(),
2429                                             CodeGen, S.getLocStart(), Hint);
2430 }
2431 
2432 void CodeGenFunction::EmitOMPParallelForDirective(
2433     const OMPParallelForDirective &S) {
2434   // Emit directive as a combined directive that consists of two implicit
2435   // directives: 'parallel' with 'for' directive.
2436   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2437     CGF.EmitOMPWorksharingLoop(S);
2438   };
2439   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
2440 }
2441 
2442 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2443     const OMPParallelForSimdDirective &S) {
2444   // Emit directive as a combined directive that consists of two implicit
2445   // directives: 'parallel' with 'for' directive.
2446   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2447     CGF.EmitOMPWorksharingLoop(S);
2448   };
2449   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
2450 }
2451 
2452 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2453     const OMPParallelSectionsDirective &S) {
2454   // Emit directive as a combined directive that consists of two implicit
2455   // directives: 'parallel' with 'sections' directive.
2456   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2457     CGF.EmitSections(S);
2458   };
2459   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
2460 }
2461 
2462 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2463                                                 const RegionCodeGenTy &BodyGen,
2464                                                 const TaskGenTy &TaskGen,
2465                                                 OMPTaskDataTy &Data) {
2466   // Emit outlined function for task construct.
2467   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2468   auto *I = CS->getCapturedDecl()->param_begin();
2469   auto *PartId = std::next(I);
2470   auto *TaskT = std::next(I, 4);
2471   // Check if the task is final
2472   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2473     // If the condition constant folds and can be elided, try to avoid emitting
2474     // the condition and the dead arm of the if/else.
2475     auto *Cond = Clause->getCondition();
2476     bool CondConstant;
2477     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2478       Data.Final.setInt(CondConstant);
2479     else
2480       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2481   } else {
2482     // By default the task is not final.
2483     Data.Final.setInt(/*IntVal=*/false);
2484   }
2485   // Check if the task has 'priority' clause.
2486   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2487     auto *Prio = Clause->getPriority();
2488     Data.Priority.setInt(/*IntVal=*/true);
2489     Data.Priority.setPointer(EmitScalarConversion(
2490         EmitScalarExpr(Prio), Prio->getType(),
2491         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2492         Prio->getExprLoc()));
2493   }
2494   // The first function argument for tasks is a thread id, the second one is a
2495   // part id (0 for tied tasks, >=0 for untied task).
2496   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2497   // Get list of private variables.
2498   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2499     auto IRef = C->varlist_begin();
2500     for (auto *IInit : C->private_copies()) {
2501       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2502       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2503         Data.PrivateVars.push_back(*IRef);
2504         Data.PrivateCopies.push_back(IInit);
2505       }
2506       ++IRef;
2507     }
2508   }
2509   EmittedAsPrivate.clear();
2510   // Get list of firstprivate variables.
2511   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2512     auto IRef = C->varlist_begin();
2513     auto IElemInitRef = C->inits().begin();
2514     for (auto *IInit : C->private_copies()) {
2515       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2516       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2517         Data.FirstprivateVars.push_back(*IRef);
2518         Data.FirstprivateCopies.push_back(IInit);
2519         Data.FirstprivateInits.push_back(*IElemInitRef);
2520       }
2521       ++IRef;
2522       ++IElemInitRef;
2523     }
2524   }
2525   // Get list of lastprivate variables (for taskloops).
2526   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2527   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2528     auto IRef = C->varlist_begin();
2529     auto ID = C->destination_exprs().begin();
2530     for (auto *IInit : C->private_copies()) {
2531       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2532       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2533         Data.LastprivateVars.push_back(*IRef);
2534         Data.LastprivateCopies.push_back(IInit);
2535       }
2536       LastprivateDstsOrigs.insert(
2537           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2538            cast<DeclRefExpr>(*IRef)});
2539       ++IRef;
2540       ++ID;
2541     }
2542   }
2543   // Build list of dependences.
2544   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2545     for (auto *IRef : C->varlists())
2546       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2547   auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs](
2548       CodeGenFunction &CGF, PrePostActionTy &Action) {
2549     // Set proper addresses for generated private copies.
2550     OMPPrivateScope Scope(CGF);
2551     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2552         !Data.LastprivateVars.empty()) {
2553       auto *CopyFn = CGF.Builder.CreateLoad(
2554           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2555       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2556           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2557       // Map privates.
2558       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2559       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2560       CallArgs.push_back(PrivatesPtr);
2561       for (auto *E : Data.PrivateVars) {
2562         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2563         Address PrivatePtr = CGF.CreateMemTemp(
2564             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2565         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2566         CallArgs.push_back(PrivatePtr.getPointer());
2567       }
2568       for (auto *E : Data.FirstprivateVars) {
2569         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2570         Address PrivatePtr =
2571             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2572                               ".firstpriv.ptr.addr");
2573         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2574         CallArgs.push_back(PrivatePtr.getPointer());
2575       }
2576       for (auto *E : Data.LastprivateVars) {
2577         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2578         Address PrivatePtr =
2579             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2580                               ".lastpriv.ptr.addr");
2581         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2582         CallArgs.push_back(PrivatePtr.getPointer());
2583       }
2584       CGF.EmitRuntimeCall(CopyFn, CallArgs);
2585       for (auto &&Pair : LastprivateDstsOrigs) {
2586         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2587         DeclRefExpr DRE(
2588             const_cast<VarDecl *>(OrigVD),
2589             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2590                 OrigVD) != nullptr,
2591             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2592         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2593           return CGF.EmitLValue(&DRE).getAddress();
2594         });
2595       }
2596       for (auto &&Pair : PrivatePtrs) {
2597         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2598                             CGF.getContext().getDeclAlign(Pair.first));
2599         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2600       }
2601     }
2602     (void)Scope.Privatize();
2603 
2604     Action.Enter(CGF);
2605     BodyGen(CGF);
2606   };
2607   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2608       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2609       Data.NumberOfParts);
2610   OMPLexicalScope Scope(*this, S);
2611   TaskGen(*this, OutlinedFn, Data);
2612 }
2613 
2614 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2615   // Emit outlined function for task construct.
2616   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2617   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2618   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2619   const Expr *IfCond = nullptr;
2620   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2621     if (C->getNameModifier() == OMPD_unknown ||
2622         C->getNameModifier() == OMPD_task) {
2623       IfCond = C->getCondition();
2624       break;
2625     }
2626   }
2627 
2628   OMPTaskDataTy Data;
2629   // Check if we should emit tied or untied task.
2630   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2631   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2632     CGF.EmitStmt(CS->getCapturedStmt());
2633   };
2634   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2635                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2636                             const OMPTaskDataTy &Data) {
2637     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2638                                             SharedsTy, CapturedStruct, IfCond,
2639                                             Data);
2640   };
2641   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2642 }
2643 
2644 void CodeGenFunction::EmitOMPTaskyieldDirective(
2645     const OMPTaskyieldDirective &S) {
2646   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2647 }
2648 
2649 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2650   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2651 }
2652 
2653 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2654   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2655 }
2656 
2657 void CodeGenFunction::EmitOMPTaskgroupDirective(
2658     const OMPTaskgroupDirective &S) {
2659   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2660     Action.Enter(CGF);
2661     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2662   };
2663   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2664   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
2665 }
2666 
2667 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
2668   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
2669     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
2670       return llvm::makeArrayRef(FlushClause->varlist_begin(),
2671                                 FlushClause->varlist_end());
2672     }
2673     return llvm::None;
2674   }(), S.getLocStart());
2675 }
2676 
2677 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) {
2678   // Emit the loop iteration variable.
2679   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2680   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2681   EmitVarDecl(*IVDecl);
2682 
2683   // Emit the iterations count variable.
2684   // If it is not a variable, Sema decided to calculate iterations count on each
2685   // iteration (e.g., it is foldable into a constant).
2686   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2687     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2688     // Emit calculation of the iterations count.
2689     EmitIgnoredExpr(S.getCalcLastIteration());
2690   }
2691 
2692   auto &RT = CGM.getOpenMPRuntime();
2693 
2694   // Check pre-condition.
2695   {
2696     OMPLoopScope PreInitScope(*this, S);
2697     // Skip the entire loop if we don't meet the precondition.
2698     // If the condition constant folds and can be elided, avoid emitting the
2699     // whole loop.
2700     bool CondConstant;
2701     llvm::BasicBlock *ContBlock = nullptr;
2702     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2703       if (!CondConstant)
2704         return;
2705     } else {
2706       auto *ThenBlock = createBasicBlock("omp.precond.then");
2707       ContBlock = createBasicBlock("omp.precond.end");
2708       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2709                   getProfileCount(&S));
2710       EmitBlock(ThenBlock);
2711       incrementProfileCounter(&S);
2712     }
2713 
2714     // Emit 'then' code.
2715     {
2716       // Emit helper vars inits.
2717       LValue LB =
2718           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2719       LValue UB =
2720           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2721       LValue ST =
2722           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2723       LValue IL =
2724           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2725 
2726       OMPPrivateScope LoopScope(*this);
2727       EmitOMPPrivateLoopCounters(S, LoopScope);
2728       (void)LoopScope.Privatize();
2729 
2730       // Detect the distribute schedule kind and chunk.
2731       llvm::Value *Chunk = nullptr;
2732       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
2733       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
2734         ScheduleKind = C->getDistScheduleKind();
2735         if (const auto *Ch = C->getChunkSize()) {
2736           Chunk = EmitScalarExpr(Ch);
2737           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2738           S.getIterationVariable()->getType(),
2739           S.getLocStart());
2740         }
2741       }
2742       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2743       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2744 
2745       // OpenMP [2.10.8, distribute Construct, Description]
2746       // If dist_schedule is specified, kind must be static. If specified,
2747       // iterations are divided into chunks of size chunk_size, chunks are
2748       // assigned to the teams of the league in a round-robin fashion in the
2749       // order of the team number. When no chunk_size is specified, the
2750       // iteration space is divided into chunks that are approximately equal
2751       // in size, and at most one chunk is distributed to each team of the
2752       // league. The size of the chunks is unspecified in this case.
2753       if (RT.isStaticNonchunked(ScheduleKind,
2754                                 /* Chunked */ Chunk != nullptr)) {
2755         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
2756                              IVSize, IVSigned, /* Ordered = */ false,
2757                              IL.getAddress(), LB.getAddress(),
2758                              UB.getAddress(), ST.getAddress());
2759         auto LoopExit =
2760             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2761         // UB = min(UB, GlobalUB);
2762         EmitIgnoredExpr(S.getEnsureUpperBound());
2763         // IV = LB;
2764         EmitIgnoredExpr(S.getInit());
2765         // while (idx <= UB) { BODY; ++idx; }
2766         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2767                          S.getInc(),
2768                          [&S, LoopExit](CodeGenFunction &CGF) {
2769                            CGF.EmitOMPLoopBody(S, LoopExit);
2770                            CGF.EmitStopPoint(&S);
2771                          },
2772                          [](CodeGenFunction &) {});
2773         EmitBlock(LoopExit.getBlock());
2774         // Tell the runtime we are done.
2775         RT.emitForStaticFinish(*this, S.getLocStart());
2776       } else {
2777         // Emit the outer loop, which requests its work chunk [LB..UB] from
2778         // runtime and runs the inner loop to process it.
2779         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope,
2780                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2781                             IL.getAddress(), Chunk);
2782       }
2783     }
2784 
2785     // We're now done with the loop, so jump to the continuation block.
2786     if (ContBlock) {
2787       EmitBranch(ContBlock);
2788       EmitBlock(ContBlock, true);
2789     }
2790   }
2791 }
2792 
2793 void CodeGenFunction::EmitOMPDistributeDirective(
2794     const OMPDistributeDirective &S) {
2795   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2796     CGF.EmitOMPDistributeLoop(S);
2797   };
2798   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2799   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
2800                                               false);
2801 }
2802 
2803 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
2804                                                    const CapturedStmt *S) {
2805   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
2806   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
2807   CGF.CapturedStmtInfo = &CapStmtInfo;
2808   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
2809   Fn->addFnAttr(llvm::Attribute::NoInline);
2810   return Fn;
2811 }
2812 
2813 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
2814   if (!S.getAssociatedStmt()) {
2815     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
2816       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
2817     return;
2818   }
2819   auto *C = S.getSingleClause<OMPSIMDClause>();
2820   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
2821                                  PrePostActionTy &Action) {
2822     if (C) {
2823       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2824       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
2825       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
2826       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
2827       CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
2828     } else {
2829       Action.Enter(CGF);
2830       CGF.EmitStmt(
2831           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2832     }
2833   };
2834   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2835   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
2836 }
2837 
2838 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
2839                                          QualType SrcType, QualType DestType,
2840                                          SourceLocation Loc) {
2841   assert(CGF.hasScalarEvaluationKind(DestType) &&
2842          "DestType must have scalar evaluation kind.");
2843   assert(!Val.isAggregate() && "Must be a scalar or complex.");
2844   return Val.isScalar()
2845              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
2846                                         Loc)
2847              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
2848                                                  DestType, Loc);
2849 }
2850 
2851 static CodeGenFunction::ComplexPairTy
2852 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
2853                       QualType DestType, SourceLocation Loc) {
2854   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
2855          "DestType must have complex evaluation kind.");
2856   CodeGenFunction::ComplexPairTy ComplexVal;
2857   if (Val.isScalar()) {
2858     // Convert the input element to the element type of the complex.
2859     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2860     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
2861                                               DestElementType, Loc);
2862     ComplexVal = CodeGenFunction::ComplexPairTy(
2863         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
2864   } else {
2865     assert(Val.isComplex() && "Must be a scalar or complex.");
2866     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
2867     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2868     ComplexVal.first = CGF.EmitScalarConversion(
2869         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
2870     ComplexVal.second = CGF.EmitScalarConversion(
2871         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
2872   }
2873   return ComplexVal;
2874 }
2875 
2876 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
2877                                   LValue LVal, RValue RVal) {
2878   if (LVal.isGlobalReg()) {
2879     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
2880   } else {
2881     CGF.EmitAtomicStore(RVal, LVal,
2882                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2883                                  : llvm::AtomicOrdering::Monotonic,
2884                         LVal.isVolatile(), /*IsInit=*/false);
2885   }
2886 }
2887 
2888 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
2889                                          QualType RValTy, SourceLocation Loc) {
2890   switch (getEvaluationKind(LVal.getType())) {
2891   case TEK_Scalar:
2892     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
2893                                *this, RVal, RValTy, LVal.getType(), Loc)),
2894                            LVal);
2895     break;
2896   case TEK_Complex:
2897     EmitStoreOfComplex(
2898         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
2899         /*isInit=*/false);
2900     break;
2901   case TEK_Aggregate:
2902     llvm_unreachable("Must be a scalar or complex.");
2903   }
2904 }
2905 
2906 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
2907                                   const Expr *X, const Expr *V,
2908                                   SourceLocation Loc) {
2909   // v = x;
2910   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
2911   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
2912   LValue XLValue = CGF.EmitLValue(X);
2913   LValue VLValue = CGF.EmitLValue(V);
2914   RValue Res = XLValue.isGlobalReg()
2915                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
2916                    : CGF.EmitAtomicLoad(
2917                          XLValue, Loc,
2918                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2919                                   : llvm::AtomicOrdering::Monotonic,
2920                          XLValue.isVolatile());
2921   // OpenMP, 2.12.6, atomic Construct
2922   // Any atomic construct with a seq_cst clause forces the atomically
2923   // performed operation to include an implicit flush operation without a
2924   // list.
2925   if (IsSeqCst)
2926     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2927   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
2928 }
2929 
2930 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
2931                                    const Expr *X, const Expr *E,
2932                                    SourceLocation Loc) {
2933   // x = expr;
2934   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
2935   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
2936   // OpenMP, 2.12.6, atomic Construct
2937   // Any atomic construct with a seq_cst clause forces the atomically
2938   // performed operation to include an implicit flush operation without a
2939   // list.
2940   if (IsSeqCst)
2941     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2942 }
2943 
2944 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
2945                                                 RValue Update,
2946                                                 BinaryOperatorKind BO,
2947                                                 llvm::AtomicOrdering AO,
2948                                                 bool IsXLHSInRHSPart) {
2949   auto &Context = CGF.CGM.getContext();
2950   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
2951   // expression is simple and atomic is allowed for the given type for the
2952   // target platform.
2953   if (BO == BO_Comma || !Update.isScalar() ||
2954       !Update.getScalarVal()->getType()->isIntegerTy() ||
2955       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
2956                         (Update.getScalarVal()->getType() !=
2957                          X.getAddress().getElementType())) ||
2958       !X.getAddress().getElementType()->isIntegerTy() ||
2959       !Context.getTargetInfo().hasBuiltinAtomic(
2960           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
2961     return std::make_pair(false, RValue::get(nullptr));
2962 
2963   llvm::AtomicRMWInst::BinOp RMWOp;
2964   switch (BO) {
2965   case BO_Add:
2966     RMWOp = llvm::AtomicRMWInst::Add;
2967     break;
2968   case BO_Sub:
2969     if (!IsXLHSInRHSPart)
2970       return std::make_pair(false, RValue::get(nullptr));
2971     RMWOp = llvm::AtomicRMWInst::Sub;
2972     break;
2973   case BO_And:
2974     RMWOp = llvm::AtomicRMWInst::And;
2975     break;
2976   case BO_Or:
2977     RMWOp = llvm::AtomicRMWInst::Or;
2978     break;
2979   case BO_Xor:
2980     RMWOp = llvm::AtomicRMWInst::Xor;
2981     break;
2982   case BO_LT:
2983     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2984                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
2985                                    : llvm::AtomicRMWInst::Max)
2986                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
2987                                    : llvm::AtomicRMWInst::UMax);
2988     break;
2989   case BO_GT:
2990     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2991                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
2992                                    : llvm::AtomicRMWInst::Min)
2993                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
2994                                    : llvm::AtomicRMWInst::UMin);
2995     break;
2996   case BO_Assign:
2997     RMWOp = llvm::AtomicRMWInst::Xchg;
2998     break;
2999   case BO_Mul:
3000   case BO_Div:
3001   case BO_Rem:
3002   case BO_Shl:
3003   case BO_Shr:
3004   case BO_LAnd:
3005   case BO_LOr:
3006     return std::make_pair(false, RValue::get(nullptr));
3007   case BO_PtrMemD:
3008   case BO_PtrMemI:
3009   case BO_LE:
3010   case BO_GE:
3011   case BO_EQ:
3012   case BO_NE:
3013   case BO_AddAssign:
3014   case BO_SubAssign:
3015   case BO_AndAssign:
3016   case BO_OrAssign:
3017   case BO_XorAssign:
3018   case BO_MulAssign:
3019   case BO_DivAssign:
3020   case BO_RemAssign:
3021   case BO_ShlAssign:
3022   case BO_ShrAssign:
3023   case BO_Comma:
3024     llvm_unreachable("Unsupported atomic update operation");
3025   }
3026   auto *UpdateVal = Update.getScalarVal();
3027   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3028     UpdateVal = CGF.Builder.CreateIntCast(
3029         IC, X.getAddress().getElementType(),
3030         X.getType()->hasSignedIntegerRepresentation());
3031   }
3032   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3033   return std::make_pair(true, RValue::get(Res));
3034 }
3035 
3036 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3037     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3038     llvm::AtomicOrdering AO, SourceLocation Loc,
3039     const llvm::function_ref<RValue(RValue)> &CommonGen) {
3040   // Update expressions are allowed to have the following forms:
3041   // x binop= expr; -> xrval + expr;
3042   // x++, ++x -> xrval + 1;
3043   // x--, --x -> xrval - 1;
3044   // x = x binop expr; -> xrval binop expr
3045   // x = expr Op x; - > expr binop xrval;
3046   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3047   if (!Res.first) {
3048     if (X.isGlobalReg()) {
3049       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3050       // 'xrval'.
3051       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3052     } else {
3053       // Perform compare-and-swap procedure.
3054       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3055     }
3056   }
3057   return Res;
3058 }
3059 
3060 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3061                                     const Expr *X, const Expr *E,
3062                                     const Expr *UE, bool IsXLHSInRHSPart,
3063                                     SourceLocation Loc) {
3064   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3065          "Update expr in 'atomic update' must be a binary operator.");
3066   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3067   // Update expressions are allowed to have the following forms:
3068   // x binop= expr; -> xrval + expr;
3069   // x++, ++x -> xrval + 1;
3070   // x--, --x -> xrval - 1;
3071   // x = x binop expr; -> xrval binop expr
3072   // x = expr Op x; - > expr binop xrval;
3073   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3074   LValue XLValue = CGF.EmitLValue(X);
3075   RValue ExprRValue = CGF.EmitAnyExpr(E);
3076   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3077                      : llvm::AtomicOrdering::Monotonic;
3078   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3079   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3080   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3081   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3082   auto Gen =
3083       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3084         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3085         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3086         return CGF.EmitAnyExpr(UE);
3087       };
3088   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3089       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3090   // OpenMP, 2.12.6, atomic Construct
3091   // Any atomic construct with a seq_cst clause forces the atomically
3092   // performed operation to include an implicit flush operation without a
3093   // list.
3094   if (IsSeqCst)
3095     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3096 }
3097 
3098 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3099                             QualType SourceType, QualType ResType,
3100                             SourceLocation Loc) {
3101   switch (CGF.getEvaluationKind(ResType)) {
3102   case TEK_Scalar:
3103     return RValue::get(
3104         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3105   case TEK_Complex: {
3106     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3107     return RValue::getComplex(Res.first, Res.second);
3108   }
3109   case TEK_Aggregate:
3110     break;
3111   }
3112   llvm_unreachable("Must be a scalar or complex.");
3113 }
3114 
3115 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3116                                      bool IsPostfixUpdate, const Expr *V,
3117                                      const Expr *X, const Expr *E,
3118                                      const Expr *UE, bool IsXLHSInRHSPart,
3119                                      SourceLocation Loc) {
3120   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3121   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3122   RValue NewVVal;
3123   LValue VLValue = CGF.EmitLValue(V);
3124   LValue XLValue = CGF.EmitLValue(X);
3125   RValue ExprRValue = CGF.EmitAnyExpr(E);
3126   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3127                      : llvm::AtomicOrdering::Monotonic;
3128   QualType NewVValType;
3129   if (UE) {
3130     // 'x' is updated with some additional value.
3131     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3132            "Update expr in 'atomic capture' must be a binary operator.");
3133     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3134     // Update expressions are allowed to have the following forms:
3135     // x binop= expr; -> xrval + expr;
3136     // x++, ++x -> xrval + 1;
3137     // x--, --x -> xrval - 1;
3138     // x = x binop expr; -> xrval binop expr
3139     // x = expr Op x; - > expr binop xrval;
3140     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3141     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3142     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3143     NewVValType = XRValExpr->getType();
3144     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3145     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3146                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
3147       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3148       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3149       RValue Res = CGF.EmitAnyExpr(UE);
3150       NewVVal = IsPostfixUpdate ? XRValue : Res;
3151       return Res;
3152     };
3153     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3154         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3155     if (Res.first) {
3156       // 'atomicrmw' instruction was generated.
3157       if (IsPostfixUpdate) {
3158         // Use old value from 'atomicrmw'.
3159         NewVVal = Res.second;
3160       } else {
3161         // 'atomicrmw' does not provide new value, so evaluate it using old
3162         // value of 'x'.
3163         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3164         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3165         NewVVal = CGF.EmitAnyExpr(UE);
3166       }
3167     }
3168   } else {
3169     // 'x' is simply rewritten with some 'expr'.
3170     NewVValType = X->getType().getNonReferenceType();
3171     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3172                                X->getType().getNonReferenceType(), Loc);
3173     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
3174       NewVVal = XRValue;
3175       return ExprRValue;
3176     };
3177     // Try to perform atomicrmw xchg, otherwise simple exchange.
3178     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3179         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3180         Loc, Gen);
3181     if (Res.first) {
3182       // 'atomicrmw' instruction was generated.
3183       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3184     }
3185   }
3186   // Emit post-update store to 'v' of old/new 'x' value.
3187   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3188   // OpenMP, 2.12.6, atomic Construct
3189   // Any atomic construct with a seq_cst clause forces the atomically
3190   // performed operation to include an implicit flush operation without a
3191   // list.
3192   if (IsSeqCst)
3193     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3194 }
3195 
3196 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3197                               bool IsSeqCst, bool IsPostfixUpdate,
3198                               const Expr *X, const Expr *V, const Expr *E,
3199                               const Expr *UE, bool IsXLHSInRHSPart,
3200                               SourceLocation Loc) {
3201   switch (Kind) {
3202   case OMPC_read:
3203     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3204     break;
3205   case OMPC_write:
3206     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3207     break;
3208   case OMPC_unknown:
3209   case OMPC_update:
3210     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3211     break;
3212   case OMPC_capture:
3213     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3214                              IsXLHSInRHSPart, Loc);
3215     break;
3216   case OMPC_if:
3217   case OMPC_final:
3218   case OMPC_num_threads:
3219   case OMPC_private:
3220   case OMPC_firstprivate:
3221   case OMPC_lastprivate:
3222   case OMPC_reduction:
3223   case OMPC_safelen:
3224   case OMPC_simdlen:
3225   case OMPC_collapse:
3226   case OMPC_default:
3227   case OMPC_seq_cst:
3228   case OMPC_shared:
3229   case OMPC_linear:
3230   case OMPC_aligned:
3231   case OMPC_copyin:
3232   case OMPC_copyprivate:
3233   case OMPC_flush:
3234   case OMPC_proc_bind:
3235   case OMPC_schedule:
3236   case OMPC_ordered:
3237   case OMPC_nowait:
3238   case OMPC_untied:
3239   case OMPC_threadprivate:
3240   case OMPC_depend:
3241   case OMPC_mergeable:
3242   case OMPC_device:
3243   case OMPC_threads:
3244   case OMPC_simd:
3245   case OMPC_map:
3246   case OMPC_num_teams:
3247   case OMPC_thread_limit:
3248   case OMPC_priority:
3249   case OMPC_grainsize:
3250   case OMPC_nogroup:
3251   case OMPC_num_tasks:
3252   case OMPC_hint:
3253   case OMPC_dist_schedule:
3254   case OMPC_defaultmap:
3255   case OMPC_uniform:
3256   case OMPC_to:
3257   case OMPC_from:
3258   case OMPC_use_device_ptr:
3259   case OMPC_is_device_ptr:
3260     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3261   }
3262 }
3263 
3264 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3265   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3266   OpenMPClauseKind Kind = OMPC_unknown;
3267   for (auto *C : S.clauses()) {
3268     // Find first clause (skip seq_cst clause, if it is first).
3269     if (C->getClauseKind() != OMPC_seq_cst) {
3270       Kind = C->getClauseKind();
3271       break;
3272     }
3273   }
3274 
3275   const auto *CS =
3276       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3277   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3278     enterFullExpression(EWC);
3279   }
3280   // Processing for statements under 'atomic capture'.
3281   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3282     for (const auto *C : Compound->body()) {
3283       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3284         enterFullExpression(EWC);
3285       }
3286     }
3287   }
3288 
3289   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3290                                             PrePostActionTy &) {
3291     CGF.EmitStopPoint(CS);
3292     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3293                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3294                       S.isXLHSInRHSPart(), S.getLocStart());
3295   };
3296   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3297   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3298 }
3299 
3300 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/>
3301 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
3302     CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName,
3303     bool IsOffloadEntry) {
3304   llvm::Function *OutlinedFn = nullptr;
3305   llvm::Constant *OutlinedFnID = nullptr;
3306   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3307     OMPPrivateScope PrivateScope(CGF);
3308     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3309     CGF.EmitOMPPrivateClause(S, PrivateScope);
3310     (void)PrivateScope.Privatize();
3311 
3312     Action.Enter(CGF);
3313     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3314   };
3315   // Emit target region as a standalone region.
3316   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3317       S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen);
3318   return std::make_pair(OutlinedFn, OutlinedFnID);
3319 }
3320 
3321 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3322   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3323 
3324   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3325   GenerateOpenMPCapturedVars(CS, CapturedVars);
3326 
3327   llvm::Function *Fn = nullptr;
3328   llvm::Constant *FnID = nullptr;
3329 
3330   // Check if we have any if clause associated with the directive.
3331   const Expr *IfCond = nullptr;
3332 
3333   if (auto *C = S.getSingleClause<OMPIfClause>()) {
3334     IfCond = C->getCondition();
3335   }
3336 
3337   // Check if we have any device clause associated with the directive.
3338   const Expr *Device = nullptr;
3339   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3340     Device = C->getDevice();
3341   }
3342 
3343   // Check if we have an if clause whose conditional always evaluates to false
3344   // or if we do not have any targets specified. If so the target region is not
3345   // an offload entry point.
3346   bool IsOffloadEntry = true;
3347   if (IfCond) {
3348     bool Val;
3349     if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3350       IsOffloadEntry = false;
3351   }
3352   if (CGM.getLangOpts().OMPTargetTriples.empty())
3353     IsOffloadEntry = false;
3354 
3355   assert(CurFuncDecl && "No parent declaration for target region!");
3356   StringRef ParentName;
3357   // In case we have Ctors/Dtors we use the complete type variant to produce
3358   // the mangling of the device outlined kernel.
3359   if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
3360     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3361   else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
3362     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3363   else
3364     ParentName =
3365         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
3366 
3367   std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction(
3368       CGM, S, ParentName, IsOffloadEntry);
3369   OMPLexicalScope Scope(*this, S);
3370   CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
3371                                         CapturedVars);
3372 }
3373 
3374 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3375                                         const OMPExecutableDirective &S,
3376                                         OpenMPDirectiveKind InnermostKind,
3377                                         const RegionCodeGenTy &CodeGen) {
3378   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3379   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
3380       emitParallelOrTeamsOutlinedFunction(S,
3381           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3382 
3383   const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S);
3384   const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>();
3385   const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>();
3386   if (NT || TL) {
3387     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3388     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3389 
3390     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3391                                                   S.getLocStart());
3392   }
3393 
3394   OMPLexicalScope Scope(CGF, S);
3395   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3396   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3397   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3398                                            CapturedVars);
3399 }
3400 
3401 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3402   // Emit parallel region as a standalone region.
3403   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3404     OMPPrivateScope PrivateScope(CGF);
3405     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3406     CGF.EmitOMPPrivateClause(S, PrivateScope);
3407     (void)PrivateScope.Privatize();
3408     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3409   };
3410   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3411 }
3412 
3413 void CodeGenFunction::EmitOMPCancellationPointDirective(
3414     const OMPCancellationPointDirective &S) {
3415   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3416                                                    S.getCancelRegion());
3417 }
3418 
3419 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3420   const Expr *IfCond = nullptr;
3421   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3422     if (C->getNameModifier() == OMPD_unknown ||
3423         C->getNameModifier() == OMPD_cancel) {
3424       IfCond = C->getCondition();
3425       break;
3426     }
3427   }
3428   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3429                                         S.getCancelRegion());
3430 }
3431 
3432 CodeGenFunction::JumpDest
3433 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3434   if (Kind == OMPD_parallel || Kind == OMPD_task)
3435     return ReturnBlock;
3436   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3437          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
3438   return BreakContinueStack.back().BreakBlock;
3439 }
3440 
3441 void CodeGenFunction::EmitOMPUseDevicePtrClause(
3442     const OMPClause &NC, OMPPrivateScope &PrivateScope,
3443     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
3444   const auto &C = cast<OMPUseDevicePtrClause>(NC);
3445   auto OrigVarIt = C.varlist_begin();
3446   auto InitIt = C.inits().begin();
3447   for (auto PvtVarIt : C.private_copies()) {
3448     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
3449     auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
3450     auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
3451 
3452     // In order to identify the right initializer we need to match the
3453     // declaration used by the mapping logic. In some cases we may get
3454     // OMPCapturedExprDecl that refers to the original declaration.
3455     const ValueDecl *MatchingVD = OrigVD;
3456     if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
3457       // OMPCapturedExprDecl are used to privative fields of the current
3458       // structure.
3459       auto *ME = cast<MemberExpr>(OED->getInit());
3460       assert(isa<CXXThisExpr>(ME->getBase()) &&
3461              "Base should be the current struct!");
3462       MatchingVD = ME->getMemberDecl();
3463     }
3464 
3465     // If we don't have information about the current list item, move on to
3466     // the next one.
3467     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
3468     if (InitAddrIt == CaptureDeviceAddrMap.end())
3469       continue;
3470 
3471     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
3472       // Initialize the temporary initialization variable with the address we
3473       // get from the runtime library. We have to cast the source address
3474       // because it is always a void *. References are materialized in the
3475       // privatization scope, so the initialization here disregards the fact
3476       // the original variable is a reference.
3477       QualType AddrQTy =
3478           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
3479       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
3480       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
3481       setAddrOfLocalVar(InitVD, InitAddr);
3482 
3483       // Emit private declaration, it will be initialized by the value we
3484       // declaration we just added to the local declarations map.
3485       EmitDecl(*PvtVD);
3486 
3487       // The initialization variables reached its purpose in the emission
3488       // ofthe previous declaration, so we don't need it anymore.
3489       LocalDeclMap.erase(InitVD);
3490 
3491       // Return the address of the private variable.
3492       return GetAddrOfLocalVar(PvtVD);
3493     });
3494     assert(IsRegistered && "firstprivate var already registered as private");
3495     // Silence the warning about unused variable.
3496     (void)IsRegistered;
3497 
3498     ++OrigVarIt;
3499     ++InitIt;
3500   }
3501 }
3502 
3503 // Generate the instructions for '#pragma omp target data' directive.
3504 void CodeGenFunction::EmitOMPTargetDataDirective(
3505     const OMPTargetDataDirective &S) {
3506   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
3507 
3508   // Create a pre/post action to signal the privatization of the device pointer.
3509   // This action can be replaced by the OpenMP runtime code generation to
3510   // deactivate privatization.
3511   bool PrivatizeDevicePointers = false;
3512   class DevicePointerPrivActionTy : public PrePostActionTy {
3513     bool &PrivatizeDevicePointers;
3514 
3515   public:
3516     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
3517         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
3518     void Enter(CodeGenFunction &CGF) override {
3519       PrivatizeDevicePointers = true;
3520     }
3521   };
3522   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
3523 
3524   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
3525       CodeGenFunction &CGF, PrePostActionTy &Action) {
3526     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3527       CGF.EmitStmt(
3528           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3529     };
3530 
3531     // Codegen that selects wheather to generate the privatization code or not.
3532     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
3533                           &InnermostCodeGen](CodeGenFunction &CGF,
3534                                              PrePostActionTy &Action) {
3535       RegionCodeGenTy RCG(InnermostCodeGen);
3536       PrivatizeDevicePointers = false;
3537 
3538       // Call the pre-action to change the status of PrivatizeDevicePointers if
3539       // needed.
3540       Action.Enter(CGF);
3541 
3542       if (PrivatizeDevicePointers) {
3543         OMPPrivateScope PrivateScope(CGF);
3544         // Emit all instances of the use_device_ptr clause.
3545         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
3546           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
3547                                         Info.CaptureDeviceAddrMap);
3548         (void)PrivateScope.Privatize();
3549         RCG(CGF);
3550       } else
3551         RCG(CGF);
3552     };
3553 
3554     // Forward the provided action to the privatization codegen.
3555     RegionCodeGenTy PrivRCG(PrivCodeGen);
3556     PrivRCG.setAction(Action);
3557 
3558     // Notwithstanding the body of the region is emitted as inlined directive,
3559     // we don't use an inline scope as changes in the references inside the
3560     // region are expected to be visible outside, so we do not privative them.
3561     OMPLexicalScope Scope(CGF, S);
3562     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
3563                                                     PrivRCG);
3564   };
3565 
3566   RegionCodeGenTy RCG(CodeGen);
3567 
3568   // If we don't have target devices, don't bother emitting the data mapping
3569   // code.
3570   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
3571     RCG(*this);
3572     return;
3573   }
3574 
3575   // Check if we have any if clause associated with the directive.
3576   const Expr *IfCond = nullptr;
3577   if (auto *C = S.getSingleClause<OMPIfClause>())
3578     IfCond = C->getCondition();
3579 
3580   // Check if we have any device clause associated with the directive.
3581   const Expr *Device = nullptr;
3582   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3583     Device = C->getDevice();
3584 
3585   // Set the action to signal privatization of device pointers.
3586   RCG.setAction(PrivAction);
3587 
3588   // Emit region code.
3589   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
3590                                              Info);
3591 }
3592 
3593 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
3594     const OMPTargetEnterDataDirective &S) {
3595   // If we don't have target devices, don't bother emitting the data mapping
3596   // code.
3597   if (CGM.getLangOpts().OMPTargetTriples.empty())
3598     return;
3599 
3600   // Check if we have any if clause associated with the directive.
3601   const Expr *IfCond = nullptr;
3602   if (auto *C = S.getSingleClause<OMPIfClause>())
3603     IfCond = C->getCondition();
3604 
3605   // Check if we have any device clause associated with the directive.
3606   const Expr *Device = nullptr;
3607   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3608     Device = C->getDevice();
3609 
3610   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3611 }
3612 
3613 void CodeGenFunction::EmitOMPTargetExitDataDirective(
3614     const OMPTargetExitDataDirective &S) {
3615   // If we don't have target devices, don't bother emitting the data mapping
3616   // code.
3617   if (CGM.getLangOpts().OMPTargetTriples.empty())
3618     return;
3619 
3620   // Check if we have any if clause associated with the directive.
3621   const Expr *IfCond = nullptr;
3622   if (auto *C = S.getSingleClause<OMPIfClause>())
3623     IfCond = C->getCondition();
3624 
3625   // Check if we have any device clause associated with the directive.
3626   const Expr *Device = nullptr;
3627   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3628     Device = C->getDevice();
3629 
3630   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3631 }
3632 
3633 void CodeGenFunction::EmitOMPTargetParallelDirective(
3634     const OMPTargetParallelDirective &S) {
3635   // TODO: codegen for target parallel.
3636 }
3637 
3638 void CodeGenFunction::EmitOMPTargetParallelForDirective(
3639     const OMPTargetParallelForDirective &S) {
3640   // TODO: codegen for target parallel for.
3641 }
3642 
3643 /// Emit a helper variable and return corresponding lvalue.
3644 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
3645                      const ImplicitParamDecl *PVD,
3646                      CodeGenFunction::OMPPrivateScope &Privates) {
3647   auto *VDecl = cast<VarDecl>(Helper->getDecl());
3648   Privates.addPrivate(
3649       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
3650 }
3651 
3652 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
3653   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
3654   // Emit outlined function for task construct.
3655   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3656   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
3657   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3658   const Expr *IfCond = nullptr;
3659   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3660     if (C->getNameModifier() == OMPD_unknown ||
3661         C->getNameModifier() == OMPD_taskloop) {
3662       IfCond = C->getCondition();
3663       break;
3664     }
3665   }
3666 
3667   OMPTaskDataTy Data;
3668   // Check if taskloop must be emitted without taskgroup.
3669   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
3670   // TODO: Check if we should emit tied or untied task.
3671   Data.Tied = true;
3672   // Set scheduling for taskloop
3673   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
3674     // grainsize clause
3675     Data.Schedule.setInt(/*IntVal=*/false);
3676     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
3677   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
3678     // num_tasks clause
3679     Data.Schedule.setInt(/*IntVal=*/true);
3680     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
3681   }
3682 
3683   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
3684     // if (PreCond) {
3685     //   for (IV in 0..LastIteration) BODY;
3686     //   <Final counter/linear vars updates>;
3687     // }
3688     //
3689 
3690     // Emit: if (PreCond) - begin.
3691     // If the condition constant folds and can be elided, avoid emitting the
3692     // whole loop.
3693     bool CondConstant;
3694     llvm::BasicBlock *ContBlock = nullptr;
3695     OMPLoopScope PreInitScope(CGF, S);
3696     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3697       if (!CondConstant)
3698         return;
3699     } else {
3700       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
3701       ContBlock = CGF.createBasicBlock("taskloop.if.end");
3702       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
3703                   CGF.getProfileCount(&S));
3704       CGF.EmitBlock(ThenBlock);
3705       CGF.incrementProfileCounter(&S);
3706     }
3707 
3708     if (isOpenMPSimdDirective(S.getDirectiveKind()))
3709       CGF.EmitOMPSimdInit(S);
3710 
3711     OMPPrivateScope LoopScope(CGF);
3712     // Emit helper vars inits.
3713     enum { LowerBound = 5, UpperBound, Stride, LastIter };
3714     auto *I = CS->getCapturedDecl()->param_begin();
3715     auto *LBP = std::next(I, LowerBound);
3716     auto *UBP = std::next(I, UpperBound);
3717     auto *STP = std::next(I, Stride);
3718     auto *LIP = std::next(I, LastIter);
3719     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
3720              LoopScope);
3721     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
3722              LoopScope);
3723     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
3724     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
3725              LoopScope);
3726     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
3727     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3728     (void)LoopScope.Privatize();
3729     // Emit the loop iteration variable.
3730     const Expr *IVExpr = S.getIterationVariable();
3731     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
3732     CGF.EmitVarDecl(*IVDecl);
3733     CGF.EmitIgnoredExpr(S.getInit());
3734 
3735     // Emit the iterations count variable.
3736     // If it is not a variable, Sema decided to calculate iterations count on
3737     // each iteration (e.g., it is foldable into a constant).
3738     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3739       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3740       // Emit calculation of the iterations count.
3741       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
3742     }
3743 
3744     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
3745                          S.getInc(),
3746                          [&S](CodeGenFunction &CGF) {
3747                            CGF.EmitOMPLoopBody(S, JumpDest());
3748                            CGF.EmitStopPoint(&S);
3749                          },
3750                          [](CodeGenFunction &) {});
3751     // Emit: if (PreCond) - end.
3752     if (ContBlock) {
3753       CGF.EmitBranch(ContBlock);
3754       CGF.EmitBlock(ContBlock, true);
3755     }
3756     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3757     if (HasLastprivateClause) {
3758       CGF.EmitOMPLastprivateClauseFinal(
3759           S, isOpenMPSimdDirective(S.getDirectiveKind()),
3760           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
3761               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
3762               (*LIP)->getType(), S.getLocStart())));
3763     }
3764   };
3765   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3766                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3767                             const OMPTaskDataTy &Data) {
3768     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
3769       OMPLoopScope PreInitScope(CGF, S);
3770       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
3771                                                   OutlinedFn, SharedsTy,
3772                                                   CapturedStruct, IfCond, Data);
3773     };
3774     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
3775                                                     CodeGen);
3776   };
3777   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
3778 }
3779 
3780 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
3781   EmitOMPTaskLoopBasedDirective(S);
3782 }
3783 
3784 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
3785     const OMPTaskLoopSimdDirective &S) {
3786   EmitOMPTaskLoopBasedDirective(S);
3787 }
3788 
3789 // Generate the instructions for '#pragma omp target update' directive.
3790 void CodeGenFunction::EmitOMPTargetUpdateDirective(
3791     const OMPTargetUpdateDirective &S) {
3792   // If we don't have target devices, don't bother emitting the data mapping
3793   // code.
3794   if (CGM.getLangOpts().OMPTargetTriples.empty())
3795     return;
3796 
3797   // Check if we have any if clause associated with the directive.
3798   const Expr *IfCond = nullptr;
3799   if (auto *C = S.getSingleClause<OMPIfClause>())
3800     IfCond = C->getCondition();
3801 
3802   // Check if we have any device clause associated with the directive.
3803   const Expr *Device = nullptr;
3804   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3805     Device = C->getDevice();
3806 
3807   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3808 }
3809