1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope( 57 CodeGenFunction &CGF, const OMPExecutableDirective &S, 58 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 59 const bool EmitPreInitStmt = true) 60 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 61 InlinedShareds(CGF) { 62 if (EmitPreInitStmt) 63 emitPreInitStmt(CGF, S); 64 if (!CapturedRegion.hasValue()) 65 return; 66 assert(S.hasAssociatedStmt() && 67 "Expected associated statement for inlined directive."); 68 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 69 for (auto &C : CS->captures()) { 70 if (C.capturesVariable() || C.capturesVariableByCopy()) { 71 auto *VD = C.getCapturedVar(); 72 assert(VD == VD->getCanonicalDecl() && 73 "Canonical decl must be captured."); 74 DeclRefExpr DRE( 75 const_cast<VarDecl *>(VD), 76 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 77 InlinedShareds.isGlobalVarCaptured(VD)), 78 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 79 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 80 return CGF.EmitLValue(&DRE).getAddress(); 81 }); 82 } 83 } 84 (void)InlinedShareds.Privatize(); 85 } 86 }; 87 88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 89 /// for captured expressions. 90 class OMPParallelScope final : public OMPLexicalScope { 91 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 92 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 93 return !(isOpenMPTargetExecutionDirective(Kind) || 94 isOpenMPLoopBoundSharingDirective(Kind)) && 95 isOpenMPParallelDirective(Kind); 96 } 97 98 public: 99 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 100 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 101 EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 116 EmitPreInitStmt(S)) {} 117 }; 118 119 /// Private scope for OpenMP loop-based directives, that supports capturing 120 /// of used expression from loop statement. 121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 122 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 123 CodeGenFunction::OMPMapVars PreCondVars; 124 for (auto *E : S.counters()) { 125 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 126 (void)PreCondVars.setVarAddr( 127 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 128 } 129 (void)PreCondVars.apply(CGF); 130 if (auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 131 for (const auto *I : PreInits->decls()) 132 CGF.EmitVarDecl(cast<VarDecl>(*I)); 133 } 134 PreCondVars.restore(CGF); 135 } 136 137 public: 138 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 139 : CodeGenFunction::RunCleanupsScope(CGF) { 140 emitPreInitStmt(CGF, S); 141 } 142 }; 143 144 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 145 CodeGenFunction::OMPPrivateScope InlinedShareds; 146 147 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 148 return CGF.LambdaCaptureFields.lookup(VD) || 149 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 150 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 151 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 152 } 153 154 public: 155 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 156 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 157 InlinedShareds(CGF) { 158 for (const auto *C : S.clauses()) { 159 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 160 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 auto &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 238 auto VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } else 248 Size = CGM.getSize(SizeInChars); 249 return Size; 250 } 251 252 void CodeGenFunction::GenerateOpenMPCapturedVars( 253 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 254 const RecordDecl *RD = S.getCapturedRecordDecl(); 255 auto CurField = RD->field_begin(); 256 auto CurCap = S.captures().begin(); 257 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 258 E = S.capture_init_end(); 259 I != E; ++I, ++CurField, ++CurCap) { 260 if (CurField->hasCapturedVLAType()) { 261 auto VAT = CurField->getCapturedVLAType(); 262 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 263 CapturedVars.push_back(Val); 264 } else if (CurCap->capturesThis()) 265 CapturedVars.push_back(CXXThisValue); 266 else if (CurCap->capturesVariableByCopy()) { 267 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 268 269 // If the field is not a pointer, we need to save the actual value 270 // and load it as a void pointer. 271 if (!CurField->getType()->isAnyPointerType()) { 272 auto &Ctx = getContext(); 273 auto DstAddr = CreateMemTemp( 274 Ctx.getUIntPtrType(), 275 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 276 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 277 278 auto *SrcAddrVal = EmitScalarConversion( 279 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 280 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 281 LValue SrcLV = 282 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 283 284 // Store the value using the source type pointer. 285 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 286 287 // Load the value using the destination type pointer. 288 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 289 } 290 CapturedVars.push_back(CV); 291 } else { 292 assert(CurCap->capturesVariable() && "Expected capture by reference."); 293 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 294 } 295 } 296 } 297 298 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 299 QualType DstType, StringRef Name, 300 LValue AddrLV, 301 bool isReferenceType = false) { 302 ASTContext &Ctx = CGF.getContext(); 303 304 auto *CastedPtr = CGF.EmitScalarConversion(AddrLV.getAddress().getPointer(), 305 Ctx.getUIntPtrType(), 306 Ctx.getPointerType(DstType), Loc); 307 auto TmpAddr = 308 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 309 .getAddress(); 310 311 // If we are dealing with references we need to return the address of the 312 // reference instead of the reference of the value. 313 if (isReferenceType) { 314 QualType RefType = Ctx.getLValueReferenceType(DstType); 315 auto *RefVal = TmpAddr.getPointer(); 316 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 317 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 318 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 319 } 320 321 return TmpAddr; 322 } 323 324 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 325 if (T->isLValueReferenceType()) { 326 return C.getLValueReferenceType( 327 getCanonicalParamType(C, T.getNonReferenceType()), 328 /*SpelledAsLValue=*/false); 329 } 330 if (T->isPointerType()) 331 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 332 if (auto *A = T->getAsArrayTypeUnsafe()) { 333 if (auto *VLA = dyn_cast<VariableArrayType>(A)) 334 return getCanonicalParamType(C, VLA->getElementType()); 335 else if (!A->isVariablyModifiedType()) 336 return C.getCanonicalType(T); 337 } 338 return C.getCanonicalParamType(T); 339 } 340 341 namespace { 342 /// Contains required data for proper outlined function codegen. 343 struct FunctionOptions { 344 /// Captured statement for which the function is generated. 345 const CapturedStmt *S = nullptr; 346 /// true if cast to/from UIntPtr is required for variables captured by 347 /// value. 348 const bool UIntPtrCastRequired = true; 349 /// true if only casted arguments must be registered as local args or VLA 350 /// sizes. 351 const bool RegisterCastedArgsOnly = false; 352 /// Name of the generated function. 353 const StringRef FunctionName; 354 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 355 bool RegisterCastedArgsOnly, 356 StringRef FunctionName) 357 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 358 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 359 FunctionName(FunctionName) {} 360 }; 361 } 362 363 static llvm::Function *emitOutlinedFunctionPrologue( 364 CodeGenFunction &CGF, FunctionArgList &Args, 365 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 366 &LocalAddrs, 367 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 368 &VLASizes, 369 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 370 const CapturedDecl *CD = FO.S->getCapturedDecl(); 371 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 372 assert(CD->hasBody() && "missing CapturedDecl body"); 373 374 CXXThisValue = nullptr; 375 // Build the argument list. 376 CodeGenModule &CGM = CGF.CGM; 377 ASTContext &Ctx = CGM.getContext(); 378 FunctionArgList TargetArgs; 379 Args.append(CD->param_begin(), 380 std::next(CD->param_begin(), CD->getContextParamPosition())); 381 TargetArgs.append( 382 CD->param_begin(), 383 std::next(CD->param_begin(), CD->getContextParamPosition())); 384 auto I = FO.S->captures().begin(); 385 FunctionDecl *DebugFunctionDecl = nullptr; 386 if (!FO.UIntPtrCastRequired) { 387 FunctionProtoType::ExtProtoInfo EPI; 388 DebugFunctionDecl = FunctionDecl::Create( 389 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(), 390 SourceLocation(), DeclarationName(), Ctx.VoidTy, 391 Ctx.getTrivialTypeSourceInfo( 392 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 393 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 394 } 395 for (auto *FD : RD->fields()) { 396 QualType ArgType = FD->getType(); 397 IdentifierInfo *II = nullptr; 398 VarDecl *CapVar = nullptr; 399 400 // If this is a capture by copy and the type is not a pointer, the outlined 401 // function argument type should be uintptr and the value properly casted to 402 // uintptr. This is necessary given that the runtime library is only able to 403 // deal with pointers. We can pass in the same way the VLA type sizes to the 404 // outlined function. 405 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 406 I->capturesVariableArrayType()) { 407 if (FO.UIntPtrCastRequired) 408 ArgType = Ctx.getUIntPtrType(); 409 } 410 411 if (I->capturesVariable() || I->capturesVariableByCopy()) { 412 CapVar = I->getCapturedVar(); 413 II = CapVar->getIdentifier(); 414 } else if (I->capturesThis()) 415 II = &Ctx.Idents.get("this"); 416 else { 417 assert(I->capturesVariableArrayType()); 418 II = &Ctx.Idents.get("vla"); 419 } 420 if (ArgType->isVariablyModifiedType()) 421 ArgType = getCanonicalParamType(Ctx, ArgType); 422 VarDecl *Arg; 423 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 424 Arg = ParmVarDecl::Create( 425 Ctx, DebugFunctionDecl, 426 CapVar ? CapVar->getLocStart() : FD->getLocStart(), 427 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 428 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 429 } else { 430 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 431 II, ArgType, ImplicitParamDecl::Other); 432 } 433 Args.emplace_back(Arg); 434 // Do not cast arguments if we emit function with non-original types. 435 TargetArgs.emplace_back( 436 FO.UIntPtrCastRequired 437 ? Arg 438 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 439 ++I; 440 } 441 Args.append( 442 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 443 CD->param_end()); 444 TargetArgs.append( 445 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 446 CD->param_end()); 447 448 // Create the function declaration. 449 const CGFunctionInfo &FuncInfo = 450 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 451 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 452 453 llvm::Function *F = 454 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 455 FO.FunctionName, &CGM.getModule()); 456 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 457 if (CD->isNothrow()) 458 F->setDoesNotThrow(); 459 460 // Generate the function. 461 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 462 FO.S->getLocStart(), CD->getBody()->getLocStart()); 463 unsigned Cnt = CD->getContextParamPosition(); 464 I = FO.S->captures().begin(); 465 for (auto *FD : RD->fields()) { 466 // Do not map arguments if we emit function with non-original types. 467 Address LocalAddr(Address::invalid()); 468 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 469 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 470 TargetArgs[Cnt]); 471 } else { 472 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 473 } 474 // If we are capturing a pointer by copy we don't need to do anything, just 475 // use the value that we get from the arguments. 476 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 477 const VarDecl *CurVD = I->getCapturedVar(); 478 // If the variable is a reference we need to materialize it here. 479 if (CurVD->getType()->isReferenceType()) { 480 Address RefAddr = CGF.CreateMemTemp( 481 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 482 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 483 /*Volatile=*/false, CurVD->getType()); 484 LocalAddr = RefAddr; 485 } 486 if (!FO.RegisterCastedArgsOnly) 487 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 488 ++Cnt; 489 ++I; 490 continue; 491 } 492 493 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 494 AlignmentSource::Decl); 495 if (FD->hasCapturedVLAType()) { 496 if (FO.UIntPtrCastRequired) { 497 ArgLVal = CGF.MakeAddrLValue( 498 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 499 Args[Cnt]->getName(), ArgLVal), 500 FD->getType(), AlignmentSource::Decl); 501 } 502 auto *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 503 auto VAT = FD->getCapturedVLAType(); 504 VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}}); 505 } else if (I->capturesVariable()) { 506 auto *Var = I->getCapturedVar(); 507 QualType VarTy = Var->getType(); 508 Address ArgAddr = ArgLVal.getAddress(); 509 if (!VarTy->isReferenceType()) { 510 if (ArgLVal.getType()->isLValueReferenceType()) { 511 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 512 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 513 assert(ArgLVal.getType()->isPointerType()); 514 ArgAddr = CGF.EmitLoadOfPointer( 515 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 516 } 517 } 518 if (!FO.RegisterCastedArgsOnly) { 519 LocalAddrs.insert( 520 {Args[Cnt], 521 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 522 } 523 } else if (I->capturesVariableByCopy()) { 524 assert(!FD->getType()->isAnyPointerType() && 525 "Not expecting a captured pointer."); 526 auto *Var = I->getCapturedVar(); 527 QualType VarTy = Var->getType(); 528 LocalAddrs.insert( 529 {Args[Cnt], 530 {Var, FO.UIntPtrCastRequired 531 ? castValueFromUintptr(CGF, I->getLocation(), 532 FD->getType(), Args[Cnt]->getName(), 533 ArgLVal, VarTy->isReferenceType()) 534 : ArgLVal.getAddress()}}); 535 } else { 536 // If 'this' is captured, load it into CXXThisValue. 537 assert(I->capturesThis()); 538 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 539 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 540 } 541 ++Cnt; 542 ++I; 543 } 544 545 return F; 546 } 547 548 llvm::Function * 549 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 550 assert( 551 CapturedStmtInfo && 552 "CapturedStmtInfo should be set when generating the captured function"); 553 const CapturedDecl *CD = S.getCapturedDecl(); 554 // Build the argument list. 555 bool NeedWrapperFunction = 556 getDebugInfo() && 557 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 558 FunctionArgList Args; 559 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 560 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 561 SmallString<256> Buffer; 562 llvm::raw_svector_ostream Out(Buffer); 563 Out << CapturedStmtInfo->getHelperName(); 564 if (NeedWrapperFunction) 565 Out << "_debug__"; 566 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 567 Out.str()); 568 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 569 VLASizes, CXXThisValue, FO); 570 for (const auto &LocalAddrPair : LocalAddrs) { 571 if (LocalAddrPair.second.first) { 572 setAddrOfLocalVar(LocalAddrPair.second.first, 573 LocalAddrPair.second.second); 574 } 575 } 576 for (const auto &VLASizePair : VLASizes) 577 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 578 PGO.assignRegionCounters(GlobalDecl(CD), F); 579 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 580 FinishFunction(CD->getBodyRBrace()); 581 if (!NeedWrapperFunction) 582 return F; 583 584 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 585 /*RegisterCastedArgsOnly=*/true, 586 CapturedStmtInfo->getHelperName()); 587 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 588 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 589 Args.clear(); 590 LocalAddrs.clear(); 591 VLASizes.clear(); 592 llvm::Function *WrapperF = 593 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 594 WrapperCGF.CXXThisValue, WrapperFO); 595 llvm::SmallVector<llvm::Value *, 4> CallArgs; 596 for (const auto *Arg : Args) { 597 llvm::Value *CallArg; 598 auto I = LocalAddrs.find(Arg); 599 if (I != LocalAddrs.end()) { 600 LValue LV = WrapperCGF.MakeAddrLValue( 601 I->second.second, 602 I->second.first ? I->second.first->getType() : Arg->getType(), 603 AlignmentSource::Decl); 604 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart()); 605 } else { 606 auto EI = VLASizes.find(Arg); 607 if (EI != VLASizes.end()) 608 CallArg = EI->second.second; 609 else { 610 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 611 Arg->getType(), 612 AlignmentSource::Decl); 613 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart()); 614 } 615 } 616 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 617 } 618 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(), 619 F, CallArgs); 620 WrapperCGF.FinishFunction(); 621 return WrapperF; 622 } 623 624 //===----------------------------------------------------------------------===// 625 // OpenMP Directive Emission 626 //===----------------------------------------------------------------------===// 627 void CodeGenFunction::EmitOMPAggregateAssign( 628 Address DestAddr, Address SrcAddr, QualType OriginalType, 629 const llvm::function_ref<void(Address, Address)> &CopyGen) { 630 // Perform element-by-element initialization. 631 QualType ElementTy; 632 633 // Drill down to the base element type on both arrays. 634 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 635 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 636 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 637 638 auto SrcBegin = SrcAddr.getPointer(); 639 auto DestBegin = DestAddr.getPointer(); 640 // Cast from pointer to array type to pointer to single element. 641 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 642 // The basic structure here is a while-do loop. 643 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 644 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 645 auto IsEmpty = 646 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 647 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 648 649 // Enter the loop body, making that address the current address. 650 auto EntryBB = Builder.GetInsertBlock(); 651 EmitBlock(BodyBB); 652 653 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 654 655 llvm::PHINode *SrcElementPHI = 656 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 657 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 658 Address SrcElementCurrent = 659 Address(SrcElementPHI, 660 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 661 662 llvm::PHINode *DestElementPHI = 663 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 664 DestElementPHI->addIncoming(DestBegin, EntryBB); 665 Address DestElementCurrent = 666 Address(DestElementPHI, 667 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 668 669 // Emit copy. 670 CopyGen(DestElementCurrent, SrcElementCurrent); 671 672 // Shift the address forward by one element. 673 auto DestElementNext = Builder.CreateConstGEP1_32( 674 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 675 auto SrcElementNext = Builder.CreateConstGEP1_32( 676 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 677 // Check whether we've reached the end. 678 auto Done = 679 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 680 Builder.CreateCondBr(Done, DoneBB, BodyBB); 681 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 682 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 683 684 // Done. 685 EmitBlock(DoneBB, /*IsFinished=*/true); 686 } 687 688 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 689 Address SrcAddr, const VarDecl *DestVD, 690 const VarDecl *SrcVD, const Expr *Copy) { 691 if (OriginalType->isArrayType()) { 692 auto *BO = dyn_cast<BinaryOperator>(Copy); 693 if (BO && BO->getOpcode() == BO_Assign) { 694 // Perform simple memcpy for simple copying. 695 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 696 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 697 EmitAggregateAssign(Dest, Src, OriginalType); 698 } else { 699 // For arrays with complex element types perform element by element 700 // copying. 701 EmitOMPAggregateAssign( 702 DestAddr, SrcAddr, OriginalType, 703 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 704 // Working with the single array element, so have to remap 705 // destination and source variables to corresponding array 706 // elements. 707 CodeGenFunction::OMPPrivateScope Remap(*this); 708 Remap.addPrivate(DestVD, [DestElement]() -> Address { 709 return DestElement; 710 }); 711 Remap.addPrivate( 712 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 713 (void)Remap.Privatize(); 714 EmitIgnoredExpr(Copy); 715 }); 716 } 717 } else { 718 // Remap pseudo source variable to private copy. 719 CodeGenFunction::OMPPrivateScope Remap(*this); 720 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 721 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 722 (void)Remap.Privatize(); 723 // Emit copying of the whole variable. 724 EmitIgnoredExpr(Copy); 725 } 726 } 727 728 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 729 OMPPrivateScope &PrivateScope) { 730 if (!HaveInsertPoint()) 731 return false; 732 bool FirstprivateIsLastprivate = false; 733 llvm::DenseSet<const VarDecl *> Lastprivates; 734 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 735 for (const auto *D : C->varlists()) 736 Lastprivates.insert( 737 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 738 } 739 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 740 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 741 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 742 // Force emission of the firstprivate copy if the directive does not emit 743 // outlined function, like omp for, omp simd, omp distribute etc. 744 bool MustEmitFirstprivateCopy = 745 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 746 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 747 auto IRef = C->varlist_begin(); 748 auto InitsRef = C->inits().begin(); 749 for (auto IInit : C->private_copies()) { 750 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 751 bool ThisFirstprivateIsLastprivate = 752 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 753 auto *FD = CapturedStmtInfo->lookup(OrigVD); 754 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 755 !FD->getType()->isReferenceType()) { 756 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 757 ++IRef; 758 ++InitsRef; 759 continue; 760 } 761 FirstprivateIsLastprivate = 762 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 763 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 764 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 765 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 766 bool IsRegistered; 767 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 768 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 769 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 770 LValue OriginalLVal = EmitLValue(&DRE); 771 Address OriginalAddr = OriginalLVal.getAddress(); 772 QualType Type = VD->getType(); 773 if (Type->isArrayType()) { 774 // Emit VarDecl with copy init for arrays. 775 // Get the address of the original variable captured in current 776 // captured region. 777 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 778 auto Emission = EmitAutoVarAlloca(*VD); 779 auto *Init = VD->getInit(); 780 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 781 // Perform simple memcpy. 782 LValue Dest = MakeAddrLValue(Emission.getAllocatedAddress(), 783 Type); 784 EmitAggregateAssign(Dest, OriginalLVal, Type); 785 } else { 786 EmitOMPAggregateAssign( 787 Emission.getAllocatedAddress(), OriginalAddr, Type, 788 [this, VDInit, Init](Address DestElement, 789 Address SrcElement) { 790 // Clean up any temporaries needed by the initialization. 791 RunCleanupsScope InitScope(*this); 792 // Emit initialization for single element. 793 setAddrOfLocalVar(VDInit, SrcElement); 794 EmitAnyExprToMem(Init, DestElement, 795 Init->getType().getQualifiers(), 796 /*IsInitializer*/ false); 797 LocalDeclMap.erase(VDInit); 798 }); 799 } 800 EmitAutoVarCleanups(Emission); 801 return Emission.getAllocatedAddress(); 802 }); 803 } else { 804 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 805 // Emit private VarDecl with copy init. 806 // Remap temp VDInit variable to the address of the original 807 // variable 808 // (for proper handling of captured global variables). 809 setAddrOfLocalVar(VDInit, OriginalAddr); 810 EmitDecl(*VD); 811 LocalDeclMap.erase(VDInit); 812 return GetAddrOfLocalVar(VD); 813 }); 814 } 815 assert(IsRegistered && 816 "firstprivate var already registered as private"); 817 // Silence the warning about unused variable. 818 (void)IsRegistered; 819 } 820 ++IRef; 821 ++InitsRef; 822 } 823 } 824 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 825 } 826 827 void CodeGenFunction::EmitOMPPrivateClause( 828 const OMPExecutableDirective &D, 829 CodeGenFunction::OMPPrivateScope &PrivateScope) { 830 if (!HaveInsertPoint()) 831 return; 832 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 833 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 834 auto IRef = C->varlist_begin(); 835 for (auto IInit : C->private_copies()) { 836 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 837 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 838 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 839 bool IsRegistered = 840 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 841 // Emit private VarDecl with copy init. 842 EmitDecl(*VD); 843 return GetAddrOfLocalVar(VD); 844 }); 845 assert(IsRegistered && "private var already registered as private"); 846 // Silence the warning about unused variable. 847 (void)IsRegistered; 848 } 849 ++IRef; 850 } 851 } 852 } 853 854 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 855 if (!HaveInsertPoint()) 856 return false; 857 // threadprivate_var1 = master_threadprivate_var1; 858 // operator=(threadprivate_var2, master_threadprivate_var2); 859 // ... 860 // __kmpc_barrier(&loc, global_tid); 861 llvm::DenseSet<const VarDecl *> CopiedVars; 862 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 863 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 864 auto IRef = C->varlist_begin(); 865 auto ISrcRef = C->source_exprs().begin(); 866 auto IDestRef = C->destination_exprs().begin(); 867 for (auto *AssignOp : C->assignment_ops()) { 868 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 869 QualType Type = VD->getType(); 870 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 871 // Get the address of the master variable. If we are emitting code with 872 // TLS support, the address is passed from the master as field in the 873 // captured declaration. 874 Address MasterAddr = Address::invalid(); 875 if (getLangOpts().OpenMPUseTLS && 876 getContext().getTargetInfo().isTLSSupported()) { 877 assert(CapturedStmtInfo->lookup(VD) && 878 "Copyin threadprivates should have been captured!"); 879 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 880 VK_LValue, (*IRef)->getExprLoc()); 881 MasterAddr = EmitLValue(&DRE).getAddress(); 882 LocalDeclMap.erase(VD); 883 } else { 884 MasterAddr = 885 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 886 : CGM.GetAddrOfGlobal(VD), 887 getContext().getDeclAlign(VD)); 888 } 889 // Get the address of the threadprivate variable. 890 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 891 if (CopiedVars.size() == 1) { 892 // At first check if current thread is a master thread. If it is, no 893 // need to copy data. 894 CopyBegin = createBasicBlock("copyin.not.master"); 895 CopyEnd = createBasicBlock("copyin.not.master.end"); 896 Builder.CreateCondBr( 897 Builder.CreateICmpNE( 898 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 899 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 900 CopyBegin, CopyEnd); 901 EmitBlock(CopyBegin); 902 } 903 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 904 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 905 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 906 } 907 ++IRef; 908 ++ISrcRef; 909 ++IDestRef; 910 } 911 } 912 if (CopyEnd) { 913 // Exit out of copying procedure for non-master thread. 914 EmitBlock(CopyEnd, /*IsFinished=*/true); 915 return true; 916 } 917 return false; 918 } 919 920 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 921 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 922 if (!HaveInsertPoint()) 923 return false; 924 bool HasAtLeastOneLastprivate = false; 925 llvm::DenseSet<const VarDecl *> SIMDLCVs; 926 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 927 auto *LoopDirective = cast<OMPLoopDirective>(&D); 928 for (auto *C : LoopDirective->counters()) { 929 SIMDLCVs.insert( 930 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 931 } 932 } 933 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 934 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 935 HasAtLeastOneLastprivate = true; 936 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 937 !getLangOpts().OpenMPSimd) 938 break; 939 auto IRef = C->varlist_begin(); 940 auto IDestRef = C->destination_exprs().begin(); 941 for (auto *IInit : C->private_copies()) { 942 // Keep the address of the original variable for future update at the end 943 // of the loop. 944 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 945 // Taskloops do not require additional initialization, it is done in 946 // runtime support library. 947 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 948 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 949 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 950 DeclRefExpr DRE( 951 const_cast<VarDecl *>(OrigVD), 952 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 953 OrigVD) != nullptr, 954 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 955 return EmitLValue(&DRE).getAddress(); 956 }); 957 // Check if the variable is also a firstprivate: in this case IInit is 958 // not generated. Initialization of this variable will happen in codegen 959 // for 'firstprivate' clause. 960 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 961 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 962 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 963 // Emit private VarDecl with copy init. 964 EmitDecl(*VD); 965 return GetAddrOfLocalVar(VD); 966 }); 967 assert(IsRegistered && 968 "lastprivate var already registered as private"); 969 (void)IsRegistered; 970 } 971 } 972 ++IRef; 973 ++IDestRef; 974 } 975 } 976 return HasAtLeastOneLastprivate; 977 } 978 979 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 980 const OMPExecutableDirective &D, bool NoFinals, 981 llvm::Value *IsLastIterCond) { 982 if (!HaveInsertPoint()) 983 return; 984 // Emit following code: 985 // if (<IsLastIterCond>) { 986 // orig_var1 = private_orig_var1; 987 // ... 988 // orig_varn = private_orig_varn; 989 // } 990 llvm::BasicBlock *ThenBB = nullptr; 991 llvm::BasicBlock *DoneBB = nullptr; 992 if (IsLastIterCond) { 993 ThenBB = createBasicBlock(".omp.lastprivate.then"); 994 DoneBB = createBasicBlock(".omp.lastprivate.done"); 995 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 996 EmitBlock(ThenBB); 997 } 998 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 999 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1000 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1001 auto IC = LoopDirective->counters().begin(); 1002 for (auto F : LoopDirective->finals()) { 1003 auto *D = 1004 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1005 if (NoFinals) 1006 AlreadyEmittedVars.insert(D); 1007 else 1008 LoopCountersAndUpdates[D] = F; 1009 ++IC; 1010 } 1011 } 1012 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1013 auto IRef = C->varlist_begin(); 1014 auto ISrcRef = C->source_exprs().begin(); 1015 auto IDestRef = C->destination_exprs().begin(); 1016 for (auto *AssignOp : C->assignment_ops()) { 1017 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1018 QualType Type = PrivateVD->getType(); 1019 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1020 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1021 // If lastprivate variable is a loop control variable for loop-based 1022 // directive, update its value before copyin back to original 1023 // variable. 1024 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1025 EmitIgnoredExpr(FinalExpr); 1026 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1027 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1028 // Get the address of the original variable. 1029 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1030 // Get the address of the private variable. 1031 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1032 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1033 PrivateAddr = 1034 Address(Builder.CreateLoad(PrivateAddr), 1035 getNaturalTypeAlignment(RefTy->getPointeeType())); 1036 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1037 } 1038 ++IRef; 1039 ++ISrcRef; 1040 ++IDestRef; 1041 } 1042 if (auto *PostUpdate = C->getPostUpdateExpr()) 1043 EmitIgnoredExpr(PostUpdate); 1044 } 1045 if (IsLastIterCond) 1046 EmitBlock(DoneBB, /*IsFinished=*/true); 1047 } 1048 1049 void CodeGenFunction::EmitOMPReductionClauseInit( 1050 const OMPExecutableDirective &D, 1051 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1052 if (!HaveInsertPoint()) 1053 return; 1054 SmallVector<const Expr *, 4> Shareds; 1055 SmallVector<const Expr *, 4> Privates; 1056 SmallVector<const Expr *, 4> ReductionOps; 1057 SmallVector<const Expr *, 4> LHSs; 1058 SmallVector<const Expr *, 4> RHSs; 1059 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1060 auto IPriv = C->privates().begin(); 1061 auto IRed = C->reduction_ops().begin(); 1062 auto ILHS = C->lhs_exprs().begin(); 1063 auto IRHS = C->rhs_exprs().begin(); 1064 for (const auto *Ref : C->varlists()) { 1065 Shareds.emplace_back(Ref); 1066 Privates.emplace_back(*IPriv); 1067 ReductionOps.emplace_back(*IRed); 1068 LHSs.emplace_back(*ILHS); 1069 RHSs.emplace_back(*IRHS); 1070 std::advance(IPriv, 1); 1071 std::advance(IRed, 1); 1072 std::advance(ILHS, 1); 1073 std::advance(IRHS, 1); 1074 } 1075 } 1076 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1077 unsigned Count = 0; 1078 auto ILHS = LHSs.begin(); 1079 auto IRHS = RHSs.begin(); 1080 auto IPriv = Privates.begin(); 1081 for (const auto *IRef : Shareds) { 1082 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1083 // Emit private VarDecl with reduction init. 1084 RedCG.emitSharedLValue(*this, Count); 1085 RedCG.emitAggregateType(*this, Count); 1086 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1087 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1088 RedCG.getSharedLValue(Count), 1089 [&Emission](CodeGenFunction &CGF) { 1090 CGF.EmitAutoVarInit(Emission); 1091 return true; 1092 }); 1093 EmitAutoVarCleanups(Emission); 1094 Address BaseAddr = RedCG.adjustPrivateAddress( 1095 *this, Count, Emission.getAllocatedAddress()); 1096 bool IsRegistered = PrivateScope.addPrivate( 1097 RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; }); 1098 assert(IsRegistered && "private var already registered as private"); 1099 // Silence the warning about unused variable. 1100 (void)IsRegistered; 1101 1102 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1103 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1104 QualType Type = PrivateVD->getType(); 1105 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1106 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1107 // Store the address of the original variable associated with the LHS 1108 // implicit variable. 1109 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1110 return RedCG.getSharedLValue(Count).getAddress(); 1111 }); 1112 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1113 return GetAddrOfLocalVar(PrivateVD); 1114 }); 1115 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1116 isa<ArraySubscriptExpr>(IRef)) { 1117 // Store the address of the original variable associated with the LHS 1118 // implicit variable. 1119 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1120 return RedCG.getSharedLValue(Count).getAddress(); 1121 }); 1122 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1123 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1124 ConvertTypeForMem(RHSVD->getType()), 1125 "rhs.begin"); 1126 }); 1127 } else { 1128 QualType Type = PrivateVD->getType(); 1129 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1130 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1131 // Store the address of the original variable associated with the LHS 1132 // implicit variable. 1133 if (IsArray) { 1134 OriginalAddr = Builder.CreateElementBitCast( 1135 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1136 } 1137 PrivateScope.addPrivate( 1138 LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; }); 1139 PrivateScope.addPrivate( 1140 RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address { 1141 return IsArray 1142 ? Builder.CreateElementBitCast( 1143 GetAddrOfLocalVar(PrivateVD), 1144 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1145 : GetAddrOfLocalVar(PrivateVD); 1146 }); 1147 } 1148 ++ILHS; 1149 ++IRHS; 1150 ++IPriv; 1151 ++Count; 1152 } 1153 } 1154 1155 void CodeGenFunction::EmitOMPReductionClauseFinal( 1156 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1157 if (!HaveInsertPoint()) 1158 return; 1159 llvm::SmallVector<const Expr *, 8> Privates; 1160 llvm::SmallVector<const Expr *, 8> LHSExprs; 1161 llvm::SmallVector<const Expr *, 8> RHSExprs; 1162 llvm::SmallVector<const Expr *, 8> ReductionOps; 1163 bool HasAtLeastOneReduction = false; 1164 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1165 HasAtLeastOneReduction = true; 1166 Privates.append(C->privates().begin(), C->privates().end()); 1167 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1168 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1169 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1170 } 1171 if (HasAtLeastOneReduction) { 1172 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1173 isOpenMPParallelDirective(D.getDirectiveKind()) || 1174 ReductionKind == OMPD_simd; 1175 bool SimpleReduction = ReductionKind == OMPD_simd; 1176 // Emit nowait reduction if nowait clause is present or directive is a 1177 // parallel directive (it always has implicit barrier). 1178 CGM.getOpenMPRuntime().emitReduction( 1179 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1180 {WithNowait, SimpleReduction, ReductionKind}); 1181 } 1182 } 1183 1184 static void emitPostUpdateForReductionClause( 1185 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1186 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1187 if (!CGF.HaveInsertPoint()) 1188 return; 1189 llvm::BasicBlock *DoneBB = nullptr; 1190 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1191 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1192 if (!DoneBB) { 1193 if (auto *Cond = CondGen(CGF)) { 1194 // If the first post-update expression is found, emit conditional 1195 // block if it was requested. 1196 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1197 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1198 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1199 CGF.EmitBlock(ThenBB); 1200 } 1201 } 1202 CGF.EmitIgnoredExpr(PostUpdate); 1203 } 1204 } 1205 if (DoneBB) 1206 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1207 } 1208 1209 namespace { 1210 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1211 /// parallel function. This is necessary for combined constructs such as 1212 /// 'distribute parallel for' 1213 typedef llvm::function_ref<void(CodeGenFunction &, 1214 const OMPExecutableDirective &, 1215 llvm::SmallVectorImpl<llvm::Value *> &)> 1216 CodeGenBoundParametersTy; 1217 } // anonymous namespace 1218 1219 static void emitCommonOMPParallelDirective( 1220 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1221 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1222 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1223 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1224 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1225 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1226 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1227 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1228 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1229 /*IgnoreResultAssign*/ true); 1230 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1231 CGF, NumThreads, NumThreadsClause->getLocStart()); 1232 } 1233 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1234 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1235 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1236 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1237 } 1238 const Expr *IfCond = nullptr; 1239 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1240 if (C->getNameModifier() == OMPD_unknown || 1241 C->getNameModifier() == OMPD_parallel) { 1242 IfCond = C->getCondition(); 1243 break; 1244 } 1245 } 1246 1247 OMPParallelScope Scope(CGF, S); 1248 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1249 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1250 // lower and upper bounds with the pragma 'for' chunking mechanism. 1251 // The following lambda takes care of appending the lower and upper bound 1252 // parameters when necessary 1253 CodeGenBoundParameters(CGF, S, CapturedVars); 1254 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1255 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1256 CapturedVars, IfCond); 1257 } 1258 1259 static void emitEmptyBoundParameters(CodeGenFunction &, 1260 const OMPExecutableDirective &, 1261 llvm::SmallVectorImpl<llvm::Value *> &) {} 1262 1263 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1264 // Emit parallel region as a standalone region. 1265 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1266 OMPPrivateScope PrivateScope(CGF); 1267 bool Copyins = CGF.EmitOMPCopyinClause(S); 1268 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1269 if (Copyins) { 1270 // Emit implicit barrier to synchronize threads and avoid data races on 1271 // propagation master's thread values of threadprivate variables to local 1272 // instances of that variables of all other implicit threads. 1273 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1274 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1275 /*ForceSimpleCall=*/true); 1276 } 1277 CGF.EmitOMPPrivateClause(S, PrivateScope); 1278 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1279 (void)PrivateScope.Privatize(); 1280 Action.Enter(CGF); 1281 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1282 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1283 }; 1284 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1285 emitEmptyBoundParameters); 1286 emitPostUpdateForReductionClause( 1287 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1288 } 1289 1290 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1291 JumpDest LoopExit) { 1292 RunCleanupsScope BodyScope(*this); 1293 // Update counters values on current iteration. 1294 for (auto I : D.updates()) { 1295 EmitIgnoredExpr(I); 1296 } 1297 // Update the linear variables. 1298 // In distribute directives only loop counters may be marked as linear, no 1299 // need to generate the code for them. 1300 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1301 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1302 for (auto *U : C->updates()) 1303 EmitIgnoredExpr(U); 1304 } 1305 } 1306 1307 // On a continue in the body, jump to the end. 1308 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1309 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1310 // Emit loop body. 1311 EmitStmt(D.getBody()); 1312 // The end (updates/cleanups). 1313 EmitBlock(Continue.getBlock()); 1314 BreakContinueStack.pop_back(); 1315 } 1316 1317 void CodeGenFunction::EmitOMPInnerLoop( 1318 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1319 const Expr *IncExpr, 1320 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1321 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1322 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1323 1324 // Start the loop with a block that tests the condition. 1325 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1326 EmitBlock(CondBlock); 1327 const SourceRange &R = S.getSourceRange(); 1328 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1329 SourceLocToDebugLoc(R.getEnd())); 1330 1331 // If there are any cleanups between here and the loop-exit scope, 1332 // create a block to stage a loop exit along. 1333 auto ExitBlock = LoopExit.getBlock(); 1334 if (RequiresCleanup) 1335 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1336 1337 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1338 1339 // Emit condition. 1340 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1341 if (ExitBlock != LoopExit.getBlock()) { 1342 EmitBlock(ExitBlock); 1343 EmitBranchThroughCleanup(LoopExit); 1344 } 1345 1346 EmitBlock(LoopBody); 1347 incrementProfileCounter(&S); 1348 1349 // Create a block for the increment. 1350 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1351 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1352 1353 BodyGen(*this); 1354 1355 // Emit "IV = IV + 1" and a back-edge to the condition block. 1356 EmitBlock(Continue.getBlock()); 1357 EmitIgnoredExpr(IncExpr); 1358 PostIncGen(*this); 1359 BreakContinueStack.pop_back(); 1360 EmitBranch(CondBlock); 1361 LoopStack.pop(); 1362 // Emit the fall-through block. 1363 EmitBlock(LoopExit.getBlock()); 1364 } 1365 1366 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1367 if (!HaveInsertPoint()) 1368 return false; 1369 // Emit inits for the linear variables. 1370 bool HasLinears = false; 1371 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1372 for (auto *Init : C->inits()) { 1373 HasLinears = true; 1374 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1375 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1376 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1377 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1378 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1379 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1380 VD->getInit()->getType(), VK_LValue, 1381 VD->getInit()->getExprLoc()); 1382 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1383 VD->getType()), 1384 /*capturedByInit=*/false); 1385 EmitAutoVarCleanups(Emission); 1386 } else 1387 EmitVarDecl(*VD); 1388 } 1389 // Emit the linear steps for the linear clauses. 1390 // If a step is not constant, it is pre-calculated before the loop. 1391 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1392 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1393 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1394 // Emit calculation of the linear step. 1395 EmitIgnoredExpr(CS); 1396 } 1397 } 1398 return HasLinears; 1399 } 1400 1401 void CodeGenFunction::EmitOMPLinearClauseFinal( 1402 const OMPLoopDirective &D, 1403 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1404 if (!HaveInsertPoint()) 1405 return; 1406 llvm::BasicBlock *DoneBB = nullptr; 1407 // Emit the final values of the linear variables. 1408 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1409 auto IC = C->varlist_begin(); 1410 for (auto *F : C->finals()) { 1411 if (!DoneBB) { 1412 if (auto *Cond = CondGen(*this)) { 1413 // If the first post-update expression is found, emit conditional 1414 // block if it was requested. 1415 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1416 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1417 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1418 EmitBlock(ThenBB); 1419 } 1420 } 1421 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1422 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1423 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1424 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1425 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1426 CodeGenFunction::OMPPrivateScope VarScope(*this); 1427 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1428 (void)VarScope.Privatize(); 1429 EmitIgnoredExpr(F); 1430 ++IC; 1431 } 1432 if (auto *PostUpdate = C->getPostUpdateExpr()) 1433 EmitIgnoredExpr(PostUpdate); 1434 } 1435 if (DoneBB) 1436 EmitBlock(DoneBB, /*IsFinished=*/true); 1437 } 1438 1439 static void emitAlignedClause(CodeGenFunction &CGF, 1440 const OMPExecutableDirective &D) { 1441 if (!CGF.HaveInsertPoint()) 1442 return; 1443 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1444 unsigned ClauseAlignment = 0; 1445 if (auto AlignmentExpr = Clause->getAlignment()) { 1446 auto AlignmentCI = 1447 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1448 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1449 } 1450 for (auto E : Clause->varlists()) { 1451 unsigned Alignment = ClauseAlignment; 1452 if (Alignment == 0) { 1453 // OpenMP [2.8.1, Description] 1454 // If no optional parameter is specified, implementation-defined default 1455 // alignments for SIMD instructions on the target platforms are assumed. 1456 Alignment = 1457 CGF.getContext() 1458 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1459 E->getType()->getPointeeType())) 1460 .getQuantity(); 1461 } 1462 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1463 "alignment is not power of 2"); 1464 if (Alignment != 0) { 1465 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1466 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1467 } 1468 } 1469 } 1470 } 1471 1472 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1473 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1474 if (!HaveInsertPoint()) 1475 return; 1476 auto I = S.private_counters().begin(); 1477 for (auto *E : S.counters()) { 1478 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1479 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1480 // Emit var without initialization. 1481 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1482 EmitAutoVarCleanups(VarEmission); 1483 LocalDeclMap.erase(PrivateVD); 1484 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1485 return VarEmission.getAllocatedAddress(); 1486 }); 1487 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1488 VD->hasGlobalStorage()) { 1489 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1490 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1491 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1492 E->getType(), VK_LValue, E->getExprLoc()); 1493 return EmitLValue(&DRE).getAddress(); 1494 }); 1495 } else { 1496 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1497 return VarEmission.getAllocatedAddress(); 1498 }); 1499 } 1500 ++I; 1501 } 1502 } 1503 1504 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1505 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1506 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1507 if (!CGF.HaveInsertPoint()) 1508 return; 1509 { 1510 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1511 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1512 (void)PreCondScope.Privatize(); 1513 // Get initial values of real counters. 1514 for (auto I : S.inits()) { 1515 CGF.EmitIgnoredExpr(I); 1516 } 1517 } 1518 // Check that loop is executed at least one time. 1519 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1520 } 1521 1522 void CodeGenFunction::EmitOMPLinearClause( 1523 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1524 if (!HaveInsertPoint()) 1525 return; 1526 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1527 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1528 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1529 for (auto *C : LoopDirective->counters()) { 1530 SIMDLCVs.insert( 1531 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1532 } 1533 } 1534 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1535 auto CurPrivate = C->privates().begin(); 1536 for (auto *E : C->varlists()) { 1537 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1538 auto *PrivateVD = 1539 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1540 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1541 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1542 // Emit private VarDecl with copy init. 1543 EmitVarDecl(*PrivateVD); 1544 return GetAddrOfLocalVar(PrivateVD); 1545 }); 1546 assert(IsRegistered && "linear var already registered as private"); 1547 // Silence the warning about unused variable. 1548 (void)IsRegistered; 1549 } else 1550 EmitVarDecl(*PrivateVD); 1551 ++CurPrivate; 1552 } 1553 } 1554 } 1555 1556 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1557 const OMPExecutableDirective &D, 1558 bool IsMonotonic) { 1559 if (!CGF.HaveInsertPoint()) 1560 return; 1561 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1562 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1563 /*ignoreResult=*/true); 1564 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1565 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1566 // In presence of finite 'safelen', it may be unsafe to mark all 1567 // the memory instructions parallel, because loop-carried 1568 // dependences of 'safelen' iterations are possible. 1569 if (!IsMonotonic) 1570 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1571 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1572 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1573 /*ignoreResult=*/true); 1574 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1575 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1576 // In presence of finite 'safelen', it may be unsafe to mark all 1577 // the memory instructions parallel, because loop-carried 1578 // dependences of 'safelen' iterations are possible. 1579 CGF.LoopStack.setParallel(false); 1580 } 1581 } 1582 1583 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1584 bool IsMonotonic) { 1585 // Walk clauses and process safelen/lastprivate. 1586 LoopStack.setParallel(!IsMonotonic); 1587 LoopStack.setVectorizeEnable(true); 1588 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1589 } 1590 1591 void CodeGenFunction::EmitOMPSimdFinal( 1592 const OMPLoopDirective &D, 1593 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1594 if (!HaveInsertPoint()) 1595 return; 1596 llvm::BasicBlock *DoneBB = nullptr; 1597 auto IC = D.counters().begin(); 1598 auto IPC = D.private_counters().begin(); 1599 for (auto F : D.finals()) { 1600 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1601 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1602 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1603 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1604 OrigVD->hasGlobalStorage() || CED) { 1605 if (!DoneBB) { 1606 if (auto *Cond = CondGen(*this)) { 1607 // If the first post-update expression is found, emit conditional 1608 // block if it was requested. 1609 auto *ThenBB = createBasicBlock(".omp.final.then"); 1610 DoneBB = createBasicBlock(".omp.final.done"); 1611 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1612 EmitBlock(ThenBB); 1613 } 1614 } 1615 Address OrigAddr = Address::invalid(); 1616 if (CED) { 1617 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1618 } else { 1619 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1620 /*RefersToEnclosingVariableOrCapture=*/false, 1621 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1622 OrigAddr = EmitLValue(&DRE).getAddress(); 1623 } 1624 OMPPrivateScope VarScope(*this); 1625 VarScope.addPrivate(OrigVD, 1626 [OrigAddr]() -> Address { return OrigAddr; }); 1627 (void)VarScope.Privatize(); 1628 EmitIgnoredExpr(F); 1629 } 1630 ++IC; 1631 ++IPC; 1632 } 1633 if (DoneBB) 1634 EmitBlock(DoneBB, /*IsFinished=*/true); 1635 } 1636 1637 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1638 const OMPLoopDirective &S, 1639 CodeGenFunction::JumpDest LoopExit) { 1640 CGF.EmitOMPLoopBody(S, LoopExit); 1641 CGF.EmitStopPoint(&S); 1642 } 1643 1644 /// Emit a helper variable and return corresponding lvalue. 1645 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1646 const DeclRefExpr *Helper) { 1647 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1648 CGF.EmitVarDecl(*VDecl); 1649 return CGF.EmitLValue(Helper); 1650 } 1651 1652 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1653 PrePostActionTy &Action) { 1654 Action.Enter(CGF); 1655 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1656 "Expected simd directive"); 1657 OMPLoopScope PreInitScope(CGF, S); 1658 // if (PreCond) { 1659 // for (IV in 0..LastIteration) BODY; 1660 // <Final counter/linear vars updates>; 1661 // } 1662 // 1663 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1664 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1665 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1666 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1667 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1668 } 1669 1670 // Emit: if (PreCond) - begin. 1671 // If the condition constant folds and can be elided, avoid emitting the 1672 // whole loop. 1673 bool CondConstant; 1674 llvm::BasicBlock *ContBlock = nullptr; 1675 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1676 if (!CondConstant) 1677 return; 1678 } else { 1679 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1680 ContBlock = CGF.createBasicBlock("simd.if.end"); 1681 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1682 CGF.getProfileCount(&S)); 1683 CGF.EmitBlock(ThenBlock); 1684 CGF.incrementProfileCounter(&S); 1685 } 1686 1687 // Emit the loop iteration variable. 1688 const Expr *IVExpr = S.getIterationVariable(); 1689 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1690 CGF.EmitVarDecl(*IVDecl); 1691 CGF.EmitIgnoredExpr(S.getInit()); 1692 1693 // Emit the iterations count variable. 1694 // If it is not a variable, Sema decided to calculate iterations count on 1695 // each iteration (e.g., it is foldable into a constant). 1696 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1697 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1698 // Emit calculation of the iterations count. 1699 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1700 } 1701 1702 CGF.EmitOMPSimdInit(S); 1703 1704 emitAlignedClause(CGF, S); 1705 (void)CGF.EmitOMPLinearClauseInit(S); 1706 { 1707 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1708 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1709 CGF.EmitOMPLinearClause(S, LoopScope); 1710 CGF.EmitOMPPrivateClause(S, LoopScope); 1711 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1712 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1713 (void)LoopScope.Privatize(); 1714 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1715 S.getInc(), 1716 [&S](CodeGenFunction &CGF) { 1717 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1718 CGF.EmitStopPoint(&S); 1719 }, 1720 [](CodeGenFunction &) {}); 1721 CGF.EmitOMPSimdFinal( 1722 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1723 // Emit final copy of the lastprivate variables at the end of loops. 1724 if (HasLastprivateClause) 1725 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1726 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1727 emitPostUpdateForReductionClause( 1728 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1729 } 1730 CGF.EmitOMPLinearClauseFinal( 1731 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1732 // Emit: if (PreCond) - end. 1733 if (ContBlock) { 1734 CGF.EmitBranch(ContBlock); 1735 CGF.EmitBlock(ContBlock, true); 1736 } 1737 } 1738 1739 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1740 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1741 emitOMPSimdRegion(CGF, S, Action); 1742 }; 1743 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1744 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1745 } 1746 1747 void CodeGenFunction::EmitOMPOuterLoop( 1748 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1749 CodeGenFunction::OMPPrivateScope &LoopScope, 1750 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1751 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1752 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1753 auto &RT = CGM.getOpenMPRuntime(); 1754 1755 const Expr *IVExpr = S.getIterationVariable(); 1756 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1757 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1758 1759 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1760 1761 // Start the loop with a block that tests the condition. 1762 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1763 EmitBlock(CondBlock); 1764 const SourceRange &R = S.getSourceRange(); 1765 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1766 SourceLocToDebugLoc(R.getEnd())); 1767 1768 llvm::Value *BoolCondVal = nullptr; 1769 if (!DynamicOrOrdered) { 1770 // UB = min(UB, GlobalUB) or 1771 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1772 // 'distribute parallel for') 1773 EmitIgnoredExpr(LoopArgs.EUB); 1774 // IV = LB 1775 EmitIgnoredExpr(LoopArgs.Init); 1776 // IV < UB 1777 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1778 } else { 1779 BoolCondVal = 1780 RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL, 1781 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1782 } 1783 1784 // If there are any cleanups between here and the loop-exit scope, 1785 // create a block to stage a loop exit along. 1786 auto ExitBlock = LoopExit.getBlock(); 1787 if (LoopScope.requiresCleanups()) 1788 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1789 1790 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1791 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1792 if (ExitBlock != LoopExit.getBlock()) { 1793 EmitBlock(ExitBlock); 1794 EmitBranchThroughCleanup(LoopExit); 1795 } 1796 EmitBlock(LoopBody); 1797 1798 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1799 // LB for loop condition and emitted it above). 1800 if (DynamicOrOrdered) 1801 EmitIgnoredExpr(LoopArgs.Init); 1802 1803 // Create a block for the increment. 1804 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1805 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1806 1807 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1808 // with dynamic/guided scheduling and without ordered clause. 1809 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1810 LoopStack.setParallel(!IsMonotonic); 1811 else 1812 EmitOMPSimdInit(S, IsMonotonic); 1813 1814 SourceLocation Loc = S.getLocStart(); 1815 1816 // when 'distribute' is not combined with a 'for': 1817 // while (idx <= UB) { BODY; ++idx; } 1818 // when 'distribute' is combined with a 'for' 1819 // (e.g. 'distribute parallel for') 1820 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1821 EmitOMPInnerLoop( 1822 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1823 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1824 CodeGenLoop(CGF, S, LoopExit); 1825 }, 1826 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1827 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1828 }); 1829 1830 EmitBlock(Continue.getBlock()); 1831 BreakContinueStack.pop_back(); 1832 if (!DynamicOrOrdered) { 1833 // Emit "LB = LB + Stride", "UB = UB + Stride". 1834 EmitIgnoredExpr(LoopArgs.NextLB); 1835 EmitIgnoredExpr(LoopArgs.NextUB); 1836 } 1837 1838 EmitBranch(CondBlock); 1839 LoopStack.pop(); 1840 // Emit the fall-through block. 1841 EmitBlock(LoopExit.getBlock()); 1842 1843 // Tell the runtime we are done. 1844 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1845 if (!DynamicOrOrdered) 1846 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 1847 S.getDirectiveKind()); 1848 }; 1849 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1850 } 1851 1852 void CodeGenFunction::EmitOMPForOuterLoop( 1853 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1854 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1855 const OMPLoopArguments &LoopArgs, 1856 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1857 auto &RT = CGM.getOpenMPRuntime(); 1858 1859 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1860 const bool DynamicOrOrdered = 1861 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1862 1863 assert((Ordered || 1864 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1865 LoopArgs.Chunk != nullptr)) && 1866 "static non-chunked schedule does not need outer loop"); 1867 1868 // Emit outer loop. 1869 // 1870 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1871 // When schedule(dynamic,chunk_size) is specified, the iterations are 1872 // distributed to threads in the team in chunks as the threads request them. 1873 // Each thread executes a chunk of iterations, then requests another chunk, 1874 // until no chunks remain to be distributed. Each chunk contains chunk_size 1875 // iterations, except for the last chunk to be distributed, which may have 1876 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1877 // 1878 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1879 // to threads in the team in chunks as the executing threads request them. 1880 // Each thread executes a chunk of iterations, then requests another chunk, 1881 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1882 // each chunk is proportional to the number of unassigned iterations divided 1883 // by the number of threads in the team, decreasing to 1. For a chunk_size 1884 // with value k (greater than 1), the size of each chunk is determined in the 1885 // same way, with the restriction that the chunks do not contain fewer than k 1886 // iterations (except for the last chunk to be assigned, which may have fewer 1887 // than k iterations). 1888 // 1889 // When schedule(auto) is specified, the decision regarding scheduling is 1890 // delegated to the compiler and/or runtime system. The programmer gives the 1891 // implementation the freedom to choose any possible mapping of iterations to 1892 // threads in the team. 1893 // 1894 // When schedule(runtime) is specified, the decision regarding scheduling is 1895 // deferred until run time, and the schedule and chunk size are taken from the 1896 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1897 // implementation defined 1898 // 1899 // while(__kmpc_dispatch_next(&LB, &UB)) { 1900 // idx = LB; 1901 // while (idx <= UB) { BODY; ++idx; 1902 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1903 // } // inner loop 1904 // } 1905 // 1906 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1907 // When schedule(static, chunk_size) is specified, iterations are divided into 1908 // chunks of size chunk_size, and the chunks are assigned to the threads in 1909 // the team in a round-robin fashion in the order of the thread number. 1910 // 1911 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1912 // while (idx <= UB) { BODY; ++idx; } // inner loop 1913 // LB = LB + ST; 1914 // UB = UB + ST; 1915 // } 1916 // 1917 1918 const Expr *IVExpr = S.getIterationVariable(); 1919 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1920 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1921 1922 if (DynamicOrOrdered) { 1923 auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1924 llvm::Value *LBVal = DispatchBounds.first; 1925 llvm::Value *UBVal = DispatchBounds.second; 1926 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1927 LoopArgs.Chunk}; 1928 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1929 IVSigned, Ordered, DipatchRTInputValues); 1930 } else { 1931 CGOpenMPRuntime::StaticRTInput StaticInit( 1932 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1933 LoopArgs.ST, LoopArgs.Chunk); 1934 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 1935 ScheduleKind, StaticInit); 1936 } 1937 1938 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1939 const unsigned IVSize, 1940 const bool IVSigned) { 1941 if (Ordered) { 1942 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1943 IVSigned); 1944 } 1945 }; 1946 1947 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1948 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1949 OuterLoopArgs.IncExpr = S.getInc(); 1950 OuterLoopArgs.Init = S.getInit(); 1951 OuterLoopArgs.Cond = S.getCond(); 1952 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1953 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1954 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1955 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1956 } 1957 1958 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1959 const unsigned IVSize, const bool IVSigned) {} 1960 1961 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1962 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1963 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1964 const CodeGenLoopTy &CodeGenLoopContent) { 1965 1966 auto &RT = CGM.getOpenMPRuntime(); 1967 1968 // Emit outer loop. 1969 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1970 // dynamic 1971 // 1972 1973 const Expr *IVExpr = S.getIterationVariable(); 1974 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1975 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1976 1977 CGOpenMPRuntime::StaticRTInput StaticInit( 1978 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 1979 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 1980 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit); 1981 1982 // for combined 'distribute' and 'for' the increment expression of distribute 1983 // is store in DistInc. For 'distribute' alone, it is in Inc. 1984 Expr *IncExpr; 1985 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 1986 IncExpr = S.getDistInc(); 1987 else 1988 IncExpr = S.getInc(); 1989 1990 // this routine is shared by 'omp distribute parallel for' and 1991 // 'omp distribute': select the right EUB expression depending on the 1992 // directive 1993 OMPLoopArguments OuterLoopArgs; 1994 OuterLoopArgs.LB = LoopArgs.LB; 1995 OuterLoopArgs.UB = LoopArgs.UB; 1996 OuterLoopArgs.ST = LoopArgs.ST; 1997 OuterLoopArgs.IL = LoopArgs.IL; 1998 OuterLoopArgs.Chunk = LoopArgs.Chunk; 1999 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2000 ? S.getCombinedEnsureUpperBound() 2001 : S.getEnsureUpperBound(); 2002 OuterLoopArgs.IncExpr = IncExpr; 2003 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2004 ? S.getCombinedInit() 2005 : S.getInit(); 2006 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2007 ? S.getCombinedCond() 2008 : S.getCond(); 2009 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2010 ? S.getCombinedNextLowerBound() 2011 : S.getNextLowerBound(); 2012 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2013 ? S.getCombinedNextUpperBound() 2014 : S.getNextUpperBound(); 2015 2016 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2017 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2018 emitEmptyOrdered); 2019 } 2020 2021 static std::pair<LValue, LValue> 2022 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2023 const OMPExecutableDirective &S) { 2024 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2025 LValue LB = 2026 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2027 LValue UB = 2028 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2029 2030 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2031 // parallel for') we need to use the 'distribute' 2032 // chunk lower and upper bounds rather than the whole loop iteration 2033 // space. These are parameters to the outlined function for 'parallel' 2034 // and we copy the bounds of the previous schedule into the 2035 // the current ones. 2036 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2037 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2038 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2039 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2040 PrevLBVal = CGF.EmitScalarConversion( 2041 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2042 LS.getIterationVariable()->getType(), 2043 LS.getPrevLowerBoundVariable()->getExprLoc()); 2044 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2045 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2046 PrevUBVal = CGF.EmitScalarConversion( 2047 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2048 LS.getIterationVariable()->getType(), 2049 LS.getPrevUpperBoundVariable()->getExprLoc()); 2050 2051 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2052 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2053 2054 return {LB, UB}; 2055 } 2056 2057 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2058 /// we need to use the LB and UB expressions generated by the worksharing 2059 /// code generation support, whereas in non combined situations we would 2060 /// just emit 0 and the LastIteration expression 2061 /// This function is necessary due to the difference of the LB and UB 2062 /// types for the RT emission routines for 'for_static_init' and 2063 /// 'for_dispatch_init' 2064 static std::pair<llvm::Value *, llvm::Value *> 2065 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2066 const OMPExecutableDirective &S, 2067 Address LB, Address UB) { 2068 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2069 const Expr *IVExpr = LS.getIterationVariable(); 2070 // when implementing a dynamic schedule for a 'for' combined with a 2071 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2072 // is not normalized as each team only executes its own assigned 2073 // distribute chunk 2074 QualType IteratorTy = IVExpr->getType(); 2075 llvm::Value *LBVal = 2076 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getLocStart()); 2077 llvm::Value *UBVal = 2078 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getLocStart()); 2079 return {LBVal, UBVal}; 2080 } 2081 2082 static void emitDistributeParallelForDistributeInnerBoundParams( 2083 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2084 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2085 const auto &Dir = cast<OMPLoopDirective>(S); 2086 LValue LB = 2087 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2088 auto LBCast = CGF.Builder.CreateIntCast( 2089 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2090 CapturedVars.push_back(LBCast); 2091 LValue UB = 2092 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2093 2094 auto UBCast = CGF.Builder.CreateIntCast( 2095 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2096 CapturedVars.push_back(UBCast); 2097 } 2098 2099 static void 2100 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2101 const OMPLoopDirective &S, 2102 CodeGenFunction::JumpDest LoopExit) { 2103 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2104 PrePostActionTy &Action) { 2105 Action.Enter(CGF); 2106 bool HasCancel = false; 2107 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2108 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2109 HasCancel = D->hasCancel(); 2110 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2111 HasCancel = D->hasCancel(); 2112 else if (const auto *D = 2113 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2114 HasCancel = D->hasCancel(); 2115 } 2116 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2117 HasCancel); 2118 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2119 emitDistributeParallelForInnerBounds, 2120 emitDistributeParallelForDispatchBounds); 2121 }; 2122 2123 emitCommonOMPParallelDirective( 2124 CGF, S, 2125 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2126 CGInlinedWorksharingLoop, 2127 emitDistributeParallelForDistributeInnerBoundParams); 2128 } 2129 2130 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2131 const OMPDistributeParallelForDirective &S) { 2132 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2133 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2134 S.getDistInc()); 2135 }; 2136 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2137 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2138 } 2139 2140 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2141 const OMPDistributeParallelForSimdDirective &S) { 2142 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2143 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2144 S.getDistInc()); 2145 }; 2146 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2147 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2148 } 2149 2150 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2151 const OMPDistributeSimdDirective &S) { 2152 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2153 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2154 }; 2155 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2156 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2157 } 2158 2159 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2160 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2161 // Emit SPMD target parallel for region as a standalone region. 2162 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2163 emitOMPSimdRegion(CGF, S, Action); 2164 }; 2165 llvm::Function *Fn; 2166 llvm::Constant *Addr; 2167 // Emit target region as a standalone region. 2168 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2169 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2170 assert(Fn && Addr && "Target device function emission failed."); 2171 } 2172 2173 void CodeGenFunction::EmitOMPTargetSimdDirective( 2174 const OMPTargetSimdDirective &S) { 2175 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2176 emitOMPSimdRegion(CGF, S, Action); 2177 }; 2178 emitCommonOMPTargetDirective(*this, S, CodeGen); 2179 } 2180 2181 namespace { 2182 struct ScheduleKindModifiersTy { 2183 OpenMPScheduleClauseKind Kind; 2184 OpenMPScheduleClauseModifier M1; 2185 OpenMPScheduleClauseModifier M2; 2186 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2187 OpenMPScheduleClauseModifier M1, 2188 OpenMPScheduleClauseModifier M2) 2189 : Kind(Kind), M1(M1), M2(M2) {} 2190 }; 2191 } // namespace 2192 2193 bool CodeGenFunction::EmitOMPWorksharingLoop( 2194 const OMPLoopDirective &S, Expr *EUB, 2195 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2196 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2197 // Emit the loop iteration variable. 2198 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2199 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2200 EmitVarDecl(*IVDecl); 2201 2202 // Emit the iterations count variable. 2203 // If it is not a variable, Sema decided to calculate iterations count on each 2204 // iteration (e.g., it is foldable into a constant). 2205 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2206 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2207 // Emit calculation of the iterations count. 2208 EmitIgnoredExpr(S.getCalcLastIteration()); 2209 } 2210 2211 auto &RT = CGM.getOpenMPRuntime(); 2212 2213 bool HasLastprivateClause; 2214 // Check pre-condition. 2215 { 2216 OMPLoopScope PreInitScope(*this, S); 2217 // Skip the entire loop if we don't meet the precondition. 2218 // If the condition constant folds and can be elided, avoid emitting the 2219 // whole loop. 2220 bool CondConstant; 2221 llvm::BasicBlock *ContBlock = nullptr; 2222 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2223 if (!CondConstant) 2224 return false; 2225 } else { 2226 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2227 ContBlock = createBasicBlock("omp.precond.end"); 2228 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2229 getProfileCount(&S)); 2230 EmitBlock(ThenBlock); 2231 incrementProfileCounter(&S); 2232 } 2233 2234 RunCleanupsScope DoacrossCleanupScope(*this); 2235 bool Ordered = false; 2236 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2237 if (OrderedClause->getNumForLoops()) 2238 RT.emitDoacrossInit(*this, S); 2239 else 2240 Ordered = true; 2241 } 2242 2243 llvm::DenseSet<const Expr *> EmittedFinals; 2244 emitAlignedClause(*this, S); 2245 bool HasLinears = EmitOMPLinearClauseInit(S); 2246 // Emit helper vars inits. 2247 2248 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2249 LValue LB = Bounds.first; 2250 LValue UB = Bounds.second; 2251 LValue ST = 2252 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2253 LValue IL = 2254 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2255 2256 // Emit 'then' code. 2257 { 2258 OMPPrivateScope LoopScope(*this); 2259 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2260 // Emit implicit barrier to synchronize threads and avoid data races on 2261 // initialization of firstprivate variables and post-update of 2262 // lastprivate variables. 2263 CGM.getOpenMPRuntime().emitBarrierCall( 2264 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2265 /*ForceSimpleCall=*/true); 2266 } 2267 EmitOMPPrivateClause(S, LoopScope); 2268 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2269 EmitOMPReductionClauseInit(S, LoopScope); 2270 EmitOMPPrivateLoopCounters(S, LoopScope); 2271 EmitOMPLinearClause(S, LoopScope); 2272 (void)LoopScope.Privatize(); 2273 2274 // Detect the loop schedule kind and chunk. 2275 llvm::Value *Chunk = nullptr; 2276 OpenMPScheduleTy ScheduleKind; 2277 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2278 ScheduleKind.Schedule = C->getScheduleKind(); 2279 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2280 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2281 if (const auto *Ch = C->getChunkSize()) { 2282 Chunk = EmitScalarExpr(Ch); 2283 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2284 S.getIterationVariable()->getType(), 2285 S.getLocStart()); 2286 } 2287 } 2288 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2289 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2290 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2291 // If the static schedule kind is specified or if the ordered clause is 2292 // specified, and if no monotonic modifier is specified, the effect will 2293 // be as if the monotonic modifier was specified. 2294 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2295 /* Chunked */ Chunk != nullptr) && 2296 !Ordered) { 2297 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2298 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2299 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2300 // When no chunk_size is specified, the iteration space is divided into 2301 // chunks that are approximately equal in size, and at most one chunk is 2302 // distributed to each thread. Note that the size of the chunks is 2303 // unspecified in this case. 2304 CGOpenMPRuntime::StaticRTInput StaticInit( 2305 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2306 UB.getAddress(), ST.getAddress()); 2307 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 2308 ScheduleKind, StaticInit); 2309 auto LoopExit = 2310 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2311 // UB = min(UB, GlobalUB); 2312 EmitIgnoredExpr(S.getEnsureUpperBound()); 2313 // IV = LB; 2314 EmitIgnoredExpr(S.getInit()); 2315 // while (idx <= UB) { BODY; ++idx; } 2316 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2317 S.getInc(), 2318 [&S, LoopExit](CodeGenFunction &CGF) { 2319 CGF.EmitOMPLoopBody(S, LoopExit); 2320 CGF.EmitStopPoint(&S); 2321 }, 2322 [](CodeGenFunction &) {}); 2323 EmitBlock(LoopExit.getBlock()); 2324 // Tell the runtime we are done. 2325 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2326 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2327 S.getDirectiveKind()); 2328 }; 2329 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2330 } else { 2331 const bool IsMonotonic = 2332 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2333 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2334 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2335 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2336 // Emit the outer loop, which requests its work chunk [LB..UB] from 2337 // runtime and runs the inner loop to process it. 2338 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2339 ST.getAddress(), IL.getAddress(), 2340 Chunk, EUB); 2341 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2342 LoopArguments, CGDispatchBounds); 2343 } 2344 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2345 EmitOMPSimdFinal(S, 2346 [&](CodeGenFunction &CGF) -> llvm::Value * { 2347 return CGF.Builder.CreateIsNotNull( 2348 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2349 }); 2350 } 2351 EmitOMPReductionClauseFinal( 2352 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2353 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2354 : /*Parallel only*/ OMPD_parallel); 2355 // Emit post-update of the reduction variables if IsLastIter != 0. 2356 emitPostUpdateForReductionClause( 2357 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2358 return CGF.Builder.CreateIsNotNull( 2359 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2360 }); 2361 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2362 if (HasLastprivateClause) 2363 EmitOMPLastprivateClauseFinal( 2364 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2365 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2366 } 2367 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2368 return CGF.Builder.CreateIsNotNull( 2369 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2370 }); 2371 DoacrossCleanupScope.ForceCleanup(); 2372 // We're now done with the loop, so jump to the continuation block. 2373 if (ContBlock) { 2374 EmitBranch(ContBlock); 2375 EmitBlock(ContBlock, true); 2376 } 2377 } 2378 return HasLastprivateClause; 2379 } 2380 2381 /// The following two functions generate expressions for the loop lower 2382 /// and upper bounds in case of static and dynamic (dispatch) schedule 2383 /// of the associated 'for' or 'distribute' loop. 2384 static std::pair<LValue, LValue> 2385 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2386 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2387 LValue LB = 2388 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2389 LValue UB = 2390 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2391 return {LB, UB}; 2392 } 2393 2394 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2395 /// consider the lower and upper bound expressions generated by the 2396 /// worksharing loop support, but we use 0 and the iteration space size as 2397 /// constants 2398 static std::pair<llvm::Value *, llvm::Value *> 2399 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2400 Address LB, Address UB) { 2401 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2402 const Expr *IVExpr = LS.getIterationVariable(); 2403 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2404 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2405 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2406 return {LBVal, UBVal}; 2407 } 2408 2409 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2410 bool HasLastprivates = false; 2411 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2412 PrePostActionTy &) { 2413 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2414 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2415 emitForLoopBounds, 2416 emitDispatchForLoopBounds); 2417 }; 2418 { 2419 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2420 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2421 S.hasCancel()); 2422 } 2423 2424 // Emit an implicit barrier at the end. 2425 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2426 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2427 } 2428 } 2429 2430 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2431 bool HasLastprivates = false; 2432 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2433 PrePostActionTy &) { 2434 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2435 emitForLoopBounds, 2436 emitDispatchForLoopBounds); 2437 }; 2438 { 2439 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2440 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2441 } 2442 2443 // Emit an implicit barrier at the end. 2444 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2445 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2446 } 2447 } 2448 2449 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2450 const Twine &Name, 2451 llvm::Value *Init = nullptr) { 2452 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2453 if (Init) 2454 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2455 return LVal; 2456 } 2457 2458 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2459 const Stmt *Stmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2460 const auto *CS = dyn_cast<CompoundStmt>(Stmt); 2461 bool HasLastprivates = false; 2462 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2463 PrePostActionTy &) { 2464 auto &C = CGF.CGM.getContext(); 2465 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2466 // Emit helper vars inits. 2467 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2468 CGF.Builder.getInt32(0)); 2469 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2470 : CGF.Builder.getInt32(0); 2471 LValue UB = 2472 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2473 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2474 CGF.Builder.getInt32(1)); 2475 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2476 CGF.Builder.getInt32(0)); 2477 // Loop counter. 2478 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2479 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2480 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2481 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2482 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2483 // Generate condition for loop. 2484 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2485 OK_Ordinary, S.getLocStart(), FPOptions()); 2486 // Increment for loop counter. 2487 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2488 S.getLocStart(), true); 2489 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2490 // Iterate through all sections and emit a switch construct: 2491 // switch (IV) { 2492 // case 0: 2493 // <SectionStmt[0]>; 2494 // break; 2495 // ... 2496 // case <NumSection> - 1: 2497 // <SectionStmt[<NumSection> - 1]>; 2498 // break; 2499 // } 2500 // .omp.sections.exit: 2501 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2502 auto *SwitchStmt = 2503 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getLocStart()), 2504 ExitBB, CS == nullptr ? 1 : CS->size()); 2505 if (CS) { 2506 unsigned CaseNumber = 0; 2507 for (auto *SubStmt : CS->children()) { 2508 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2509 CGF.EmitBlock(CaseBB); 2510 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2511 CGF.EmitStmt(SubStmt); 2512 CGF.EmitBranch(ExitBB); 2513 ++CaseNumber; 2514 } 2515 } else { 2516 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2517 CGF.EmitBlock(CaseBB); 2518 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2519 CGF.EmitStmt(Stmt); 2520 CGF.EmitBranch(ExitBB); 2521 } 2522 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2523 }; 2524 2525 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2526 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2527 // Emit implicit barrier to synchronize threads and avoid data races on 2528 // initialization of firstprivate variables and post-update of lastprivate 2529 // variables. 2530 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2531 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2532 /*ForceSimpleCall=*/true); 2533 } 2534 CGF.EmitOMPPrivateClause(S, LoopScope); 2535 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2536 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2537 (void)LoopScope.Privatize(); 2538 2539 // Emit static non-chunked loop. 2540 OpenMPScheduleTy ScheduleKind; 2541 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2542 CGOpenMPRuntime::StaticRTInput StaticInit( 2543 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2544 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2545 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2546 CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2547 // UB = min(UB, GlobalUB); 2548 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2549 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2550 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2551 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2552 // IV = LB; 2553 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2554 // while (idx <= UB) { BODY; ++idx; } 2555 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2556 [](CodeGenFunction &) {}); 2557 // Tell the runtime we are done. 2558 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2559 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2560 S.getDirectiveKind()); 2561 }; 2562 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2563 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2564 // Emit post-update of the reduction variables if IsLastIter != 0. 2565 emitPostUpdateForReductionClause( 2566 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2567 return CGF.Builder.CreateIsNotNull( 2568 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2569 }); 2570 2571 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2572 if (HasLastprivates) 2573 CGF.EmitOMPLastprivateClauseFinal( 2574 S, /*NoFinals=*/false, 2575 CGF.Builder.CreateIsNotNull( 2576 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2577 }; 2578 2579 bool HasCancel = false; 2580 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2581 HasCancel = OSD->hasCancel(); 2582 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2583 HasCancel = OPSD->hasCancel(); 2584 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2585 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2586 HasCancel); 2587 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2588 // clause. Otherwise the barrier will be generated by the codegen for the 2589 // directive. 2590 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2591 // Emit implicit barrier to synchronize threads and avoid data races on 2592 // initialization of firstprivate variables. 2593 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2594 OMPD_unknown); 2595 } 2596 } 2597 2598 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2599 { 2600 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2601 EmitSections(S); 2602 } 2603 // Emit an implicit barrier at the end. 2604 if (!S.getSingleClause<OMPNowaitClause>()) { 2605 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2606 OMPD_sections); 2607 } 2608 } 2609 2610 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2611 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2612 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2613 }; 2614 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2615 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2616 S.hasCancel()); 2617 } 2618 2619 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2620 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2621 llvm::SmallVector<const Expr *, 8> DestExprs; 2622 llvm::SmallVector<const Expr *, 8> SrcExprs; 2623 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2624 // Check if there are any 'copyprivate' clauses associated with this 2625 // 'single' construct. 2626 // Build a list of copyprivate variables along with helper expressions 2627 // (<source>, <destination>, <destination>=<source> expressions) 2628 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2629 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2630 DestExprs.append(C->destination_exprs().begin(), 2631 C->destination_exprs().end()); 2632 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2633 AssignmentOps.append(C->assignment_ops().begin(), 2634 C->assignment_ops().end()); 2635 } 2636 // Emit code for 'single' region along with 'copyprivate' clauses 2637 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2638 Action.Enter(CGF); 2639 OMPPrivateScope SingleScope(CGF); 2640 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2641 CGF.EmitOMPPrivateClause(S, SingleScope); 2642 (void)SingleScope.Privatize(); 2643 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2644 }; 2645 { 2646 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2647 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2648 CopyprivateVars, DestExprs, 2649 SrcExprs, AssignmentOps); 2650 } 2651 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2652 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2653 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2654 CGM.getOpenMPRuntime().emitBarrierCall( 2655 *this, S.getLocStart(), 2656 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2657 } 2658 } 2659 2660 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2661 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2662 Action.Enter(CGF); 2663 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2664 }; 2665 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2666 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2667 } 2668 2669 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2670 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2671 Action.Enter(CGF); 2672 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2673 }; 2674 Expr *Hint = nullptr; 2675 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2676 Hint = HintClause->getHint(); 2677 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2678 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2679 S.getDirectiveName().getAsString(), 2680 CodeGen, S.getLocStart(), Hint); 2681 } 2682 2683 void CodeGenFunction::EmitOMPParallelForDirective( 2684 const OMPParallelForDirective &S) { 2685 // Emit directive as a combined directive that consists of two implicit 2686 // directives: 'parallel' with 'for' directive. 2687 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2688 Action.Enter(CGF); 2689 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2690 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2691 emitDispatchForLoopBounds); 2692 }; 2693 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2694 emitEmptyBoundParameters); 2695 } 2696 2697 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2698 const OMPParallelForSimdDirective &S) { 2699 // Emit directive as a combined directive that consists of two implicit 2700 // directives: 'parallel' with 'for' directive. 2701 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2702 Action.Enter(CGF); 2703 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2704 emitDispatchForLoopBounds); 2705 }; 2706 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2707 emitEmptyBoundParameters); 2708 } 2709 2710 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2711 const OMPParallelSectionsDirective &S) { 2712 // Emit directive as a combined directive that consists of two implicit 2713 // directives: 'parallel' with 'sections' directive. 2714 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2715 Action.Enter(CGF); 2716 CGF.EmitSections(S); 2717 }; 2718 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2719 emitEmptyBoundParameters); 2720 } 2721 2722 void CodeGenFunction::EmitOMPTaskBasedDirective( 2723 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2724 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2725 OMPTaskDataTy &Data) { 2726 // Emit outlined function for task construct. 2727 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2728 auto *I = CS->getCapturedDecl()->param_begin(); 2729 auto *PartId = std::next(I); 2730 auto *TaskT = std::next(I, 4); 2731 // Check if the task is final 2732 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2733 // If the condition constant folds and can be elided, try to avoid emitting 2734 // the condition and the dead arm of the if/else. 2735 auto *Cond = Clause->getCondition(); 2736 bool CondConstant; 2737 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2738 Data.Final.setInt(CondConstant); 2739 else 2740 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2741 } else { 2742 // By default the task is not final. 2743 Data.Final.setInt(/*IntVal=*/false); 2744 } 2745 // Check if the task has 'priority' clause. 2746 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2747 auto *Prio = Clause->getPriority(); 2748 Data.Priority.setInt(/*IntVal=*/true); 2749 Data.Priority.setPointer(EmitScalarConversion( 2750 EmitScalarExpr(Prio), Prio->getType(), 2751 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2752 Prio->getExprLoc())); 2753 } 2754 // The first function argument for tasks is a thread id, the second one is a 2755 // part id (0 for tied tasks, >=0 for untied task). 2756 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2757 // Get list of private variables. 2758 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2759 auto IRef = C->varlist_begin(); 2760 for (auto *IInit : C->private_copies()) { 2761 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2762 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2763 Data.PrivateVars.push_back(*IRef); 2764 Data.PrivateCopies.push_back(IInit); 2765 } 2766 ++IRef; 2767 } 2768 } 2769 EmittedAsPrivate.clear(); 2770 // Get list of firstprivate variables. 2771 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2772 auto IRef = C->varlist_begin(); 2773 auto IElemInitRef = C->inits().begin(); 2774 for (auto *IInit : C->private_copies()) { 2775 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2776 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2777 Data.FirstprivateVars.push_back(*IRef); 2778 Data.FirstprivateCopies.push_back(IInit); 2779 Data.FirstprivateInits.push_back(*IElemInitRef); 2780 } 2781 ++IRef; 2782 ++IElemInitRef; 2783 } 2784 } 2785 // Get list of lastprivate variables (for taskloops). 2786 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2787 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2788 auto IRef = C->varlist_begin(); 2789 auto ID = C->destination_exprs().begin(); 2790 for (auto *IInit : C->private_copies()) { 2791 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2792 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2793 Data.LastprivateVars.push_back(*IRef); 2794 Data.LastprivateCopies.push_back(IInit); 2795 } 2796 LastprivateDstsOrigs.insert( 2797 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2798 cast<DeclRefExpr>(*IRef)}); 2799 ++IRef; 2800 ++ID; 2801 } 2802 } 2803 SmallVector<const Expr *, 4> LHSs; 2804 SmallVector<const Expr *, 4> RHSs; 2805 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2806 auto IPriv = C->privates().begin(); 2807 auto IRed = C->reduction_ops().begin(); 2808 auto ILHS = C->lhs_exprs().begin(); 2809 auto IRHS = C->rhs_exprs().begin(); 2810 for (const auto *Ref : C->varlists()) { 2811 Data.ReductionVars.emplace_back(Ref); 2812 Data.ReductionCopies.emplace_back(*IPriv); 2813 Data.ReductionOps.emplace_back(*IRed); 2814 LHSs.emplace_back(*ILHS); 2815 RHSs.emplace_back(*IRHS); 2816 std::advance(IPriv, 1); 2817 std::advance(IRed, 1); 2818 std::advance(ILHS, 1); 2819 std::advance(IRHS, 1); 2820 } 2821 } 2822 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2823 *this, S.getLocStart(), LHSs, RHSs, Data); 2824 // Build list of dependences. 2825 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2826 for (auto *IRef : C->varlists()) 2827 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2828 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2829 CapturedRegion](CodeGenFunction &CGF, 2830 PrePostActionTy &Action) { 2831 // Set proper addresses for generated private copies. 2832 OMPPrivateScope Scope(CGF); 2833 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2834 !Data.LastprivateVars.empty()) { 2835 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2836 auto *CopyFn = CGF.Builder.CreateLoad( 2837 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2838 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2839 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2840 // Map privates. 2841 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2842 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2843 CallArgs.push_back(PrivatesPtr); 2844 for (auto *E : Data.PrivateVars) { 2845 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2846 Address PrivatePtr = CGF.CreateMemTemp( 2847 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2848 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2849 CallArgs.push_back(PrivatePtr.getPointer()); 2850 } 2851 for (auto *E : Data.FirstprivateVars) { 2852 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2853 Address PrivatePtr = 2854 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2855 ".firstpriv.ptr.addr"); 2856 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2857 CallArgs.push_back(PrivatePtr.getPointer()); 2858 } 2859 for (auto *E : Data.LastprivateVars) { 2860 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2861 Address PrivatePtr = 2862 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2863 ".lastpriv.ptr.addr"); 2864 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2865 CallArgs.push_back(PrivatePtr.getPointer()); 2866 } 2867 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 2868 CopyFn, CallArgs); 2869 for (auto &&Pair : LastprivateDstsOrigs) { 2870 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2871 DeclRefExpr DRE( 2872 const_cast<VarDecl *>(OrigVD), 2873 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2874 OrigVD) != nullptr, 2875 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2876 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2877 return CGF.EmitLValue(&DRE).getAddress(); 2878 }); 2879 } 2880 for (auto &&Pair : PrivatePtrs) { 2881 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2882 CGF.getContext().getDeclAlign(Pair.first)); 2883 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2884 } 2885 } 2886 if (Data.Reductions) { 2887 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2888 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2889 Data.ReductionOps); 2890 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2891 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2892 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2893 RedCG.emitSharedLValue(CGF, Cnt); 2894 RedCG.emitAggregateType(CGF, Cnt); 2895 // FIXME: This must removed once the runtime library is fixed. 2896 // Emit required threadprivate variables for 2897 // initilizer/combiner/finalizer. 2898 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2899 RedCG, Cnt); 2900 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2901 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2902 Replacement = 2903 Address(CGF.EmitScalarConversion( 2904 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2905 CGF.getContext().getPointerType( 2906 Data.ReductionCopies[Cnt]->getType()), 2907 Data.ReductionCopies[Cnt]->getExprLoc()), 2908 Replacement.getAlignment()); 2909 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2910 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2911 [Replacement]() { return Replacement; }); 2912 } 2913 } 2914 // Privatize all private variables except for in_reduction items. 2915 (void)Scope.Privatize(); 2916 SmallVector<const Expr *, 4> InRedVars; 2917 SmallVector<const Expr *, 4> InRedPrivs; 2918 SmallVector<const Expr *, 4> InRedOps; 2919 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2920 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2921 auto IPriv = C->privates().begin(); 2922 auto IRed = C->reduction_ops().begin(); 2923 auto ITD = C->taskgroup_descriptors().begin(); 2924 for (const auto *Ref : C->varlists()) { 2925 InRedVars.emplace_back(Ref); 2926 InRedPrivs.emplace_back(*IPriv); 2927 InRedOps.emplace_back(*IRed); 2928 TaskgroupDescriptors.emplace_back(*ITD); 2929 std::advance(IPriv, 1); 2930 std::advance(IRed, 1); 2931 std::advance(ITD, 1); 2932 } 2933 } 2934 // Privatize in_reduction items here, because taskgroup descriptors must be 2935 // privatized earlier. 2936 OMPPrivateScope InRedScope(CGF); 2937 if (!InRedVars.empty()) { 2938 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2939 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2940 RedCG.emitSharedLValue(CGF, Cnt); 2941 RedCG.emitAggregateType(CGF, Cnt); 2942 // The taskgroup descriptor variable is always implicit firstprivate and 2943 // privatized already during procoessing of the firstprivates. 2944 // FIXME: This must removed once the runtime library is fixed. 2945 // Emit required threadprivate variables for 2946 // initilizer/combiner/finalizer. 2947 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2948 RedCG, Cnt); 2949 llvm::Value *ReductionsPtr = 2950 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 2951 TaskgroupDescriptors[Cnt]->getExprLoc()); 2952 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2953 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2954 Replacement = Address( 2955 CGF.EmitScalarConversion( 2956 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2957 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2958 InRedPrivs[Cnt]->getExprLoc()), 2959 Replacement.getAlignment()); 2960 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2961 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2962 [Replacement]() { return Replacement; }); 2963 } 2964 } 2965 (void)InRedScope.Privatize(); 2966 2967 Action.Enter(CGF); 2968 BodyGen(CGF); 2969 }; 2970 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2971 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2972 Data.NumberOfParts); 2973 OMPLexicalScope Scope(*this, S); 2974 TaskGen(*this, OutlinedFn, Data); 2975 } 2976 2977 static ImplicitParamDecl * 2978 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 2979 QualType Ty, CapturedDecl *CD, 2980 SourceLocation Loc) { 2981 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 2982 ImplicitParamDecl::Other); 2983 auto *OrigRef = DeclRefExpr::Create( 2984 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 2985 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 2986 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 2987 ImplicitParamDecl::Other); 2988 auto *PrivateRef = DeclRefExpr::Create( 2989 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 2990 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 2991 QualType ElemType = C.getBaseElementType(Ty); 2992 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 2993 ImplicitParamDecl::Other); 2994 auto *InitRef = DeclRefExpr::Create( 2995 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 2996 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 2997 PrivateVD->setInitStyle(VarDecl::CInit); 2998 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 2999 InitRef, /*BasePath=*/nullptr, 3000 VK_RValue)); 3001 Data.FirstprivateVars.emplace_back(OrigRef); 3002 Data.FirstprivateCopies.emplace_back(PrivateRef); 3003 Data.FirstprivateInits.emplace_back(InitRef); 3004 return OrigVD; 3005 } 3006 3007 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3008 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3009 OMPTargetDataInfo &InputInfo) { 3010 // Emit outlined function for task construct. 3011 auto CS = S.getCapturedStmt(OMPD_task); 3012 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3013 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3014 auto *I = CS->getCapturedDecl()->param_begin(); 3015 auto *PartId = std::next(I); 3016 auto *TaskT = std::next(I, 4); 3017 OMPTaskDataTy Data; 3018 // The task is not final. 3019 Data.Final.setInt(/*IntVal=*/false); 3020 // Get list of firstprivate variables. 3021 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3022 auto IRef = C->varlist_begin(); 3023 auto IElemInitRef = C->inits().begin(); 3024 for (auto *IInit : C->private_copies()) { 3025 Data.FirstprivateVars.push_back(*IRef); 3026 Data.FirstprivateCopies.push_back(IInit); 3027 Data.FirstprivateInits.push_back(*IElemInitRef); 3028 ++IRef; 3029 ++IElemInitRef; 3030 } 3031 } 3032 OMPPrivateScope TargetScope(*this); 3033 VarDecl *BPVD = nullptr; 3034 VarDecl *PVD = nullptr; 3035 VarDecl *SVD = nullptr; 3036 if (InputInfo.NumberOfTargetItems > 0) { 3037 auto *CD = CapturedDecl::Create( 3038 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3039 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3040 QualType BaseAndPointersType = getContext().getConstantArrayType( 3041 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3042 /*IndexTypeQuals=*/0); 3043 BPVD = createImplicitFirstprivateForType( 3044 getContext(), Data, BaseAndPointersType, CD, S.getLocStart()); 3045 PVD = createImplicitFirstprivateForType( 3046 getContext(), Data, BaseAndPointersType, CD, S.getLocStart()); 3047 QualType SizesType = getContext().getConstantArrayType( 3048 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3049 /*IndexTypeQuals=*/0); 3050 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3051 S.getLocStart()); 3052 TargetScope.addPrivate( 3053 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3054 TargetScope.addPrivate(PVD, 3055 [&InputInfo]() { return InputInfo.PointersArray; }); 3056 TargetScope.addPrivate(SVD, 3057 [&InputInfo]() { return InputInfo.SizesArray; }); 3058 } 3059 (void)TargetScope.Privatize(); 3060 // Build list of dependences. 3061 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3062 for (auto *IRef : C->varlists()) 3063 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 3064 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3065 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3066 // Set proper addresses for generated private copies. 3067 OMPPrivateScope Scope(CGF); 3068 if (!Data.FirstprivateVars.empty()) { 3069 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3070 auto *CopyFn = CGF.Builder.CreateLoad( 3071 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 3072 auto *PrivatesPtr = CGF.Builder.CreateLoad( 3073 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 3074 // Map privates. 3075 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3076 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3077 CallArgs.push_back(PrivatesPtr); 3078 for (auto *E : Data.FirstprivateVars) { 3079 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3080 Address PrivatePtr = 3081 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3082 ".firstpriv.ptr.addr"); 3083 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 3084 CallArgs.push_back(PrivatePtr.getPointer()); 3085 } 3086 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3087 CopyFn, CallArgs); 3088 for (auto &&Pair : PrivatePtrs) { 3089 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3090 CGF.getContext().getDeclAlign(Pair.first)); 3091 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3092 } 3093 } 3094 // Privatize all private variables except for in_reduction items. 3095 (void)Scope.Privatize(); 3096 if (InputInfo.NumberOfTargetItems > 0) { 3097 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3098 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3099 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3100 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3101 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3102 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3103 } 3104 3105 Action.Enter(CGF); 3106 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3107 BodyGen(CGF); 3108 }; 3109 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3110 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3111 Data.NumberOfParts); 3112 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3113 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3114 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3115 SourceLocation()); 3116 3117 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), S, OutlinedFn, 3118 SharedsTy, CapturedStruct, &IfCond, Data); 3119 } 3120 3121 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3122 // Emit outlined function for task construct. 3123 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3124 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3125 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3126 const Expr *IfCond = nullptr; 3127 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3128 if (C->getNameModifier() == OMPD_unknown || 3129 C->getNameModifier() == OMPD_task) { 3130 IfCond = C->getCondition(); 3131 break; 3132 } 3133 } 3134 3135 OMPTaskDataTy Data; 3136 // Check if we should emit tied or untied task. 3137 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3138 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3139 CGF.EmitStmt(CS->getCapturedStmt()); 3140 }; 3141 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3142 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3143 const OMPTaskDataTy &Data) { 3144 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 3145 SharedsTy, CapturedStruct, IfCond, 3146 Data); 3147 }; 3148 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3149 } 3150 3151 void CodeGenFunction::EmitOMPTaskyieldDirective( 3152 const OMPTaskyieldDirective &S) { 3153 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 3154 } 3155 3156 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3157 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 3158 } 3159 3160 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3161 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 3162 } 3163 3164 void CodeGenFunction::EmitOMPTaskgroupDirective( 3165 const OMPTaskgroupDirective &S) { 3166 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3167 Action.Enter(CGF); 3168 if (const Expr *E = S.getReductionRef()) { 3169 SmallVector<const Expr *, 4> LHSs; 3170 SmallVector<const Expr *, 4> RHSs; 3171 OMPTaskDataTy Data; 3172 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3173 auto IPriv = C->privates().begin(); 3174 auto IRed = C->reduction_ops().begin(); 3175 auto ILHS = C->lhs_exprs().begin(); 3176 auto IRHS = C->rhs_exprs().begin(); 3177 for (const auto *Ref : C->varlists()) { 3178 Data.ReductionVars.emplace_back(Ref); 3179 Data.ReductionCopies.emplace_back(*IPriv); 3180 Data.ReductionOps.emplace_back(*IRed); 3181 LHSs.emplace_back(*ILHS); 3182 RHSs.emplace_back(*IRHS); 3183 std::advance(IPriv, 1); 3184 std::advance(IRed, 1); 3185 std::advance(ILHS, 1); 3186 std::advance(IRHS, 1); 3187 } 3188 } 3189 llvm::Value *ReductionDesc = 3190 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(), 3191 LHSs, RHSs, Data); 3192 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3193 CGF.EmitVarDecl(*VD); 3194 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3195 /*Volatile=*/false, E->getType()); 3196 } 3197 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3198 }; 3199 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3200 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 3201 } 3202 3203 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3204 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 3205 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 3206 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3207 FlushClause->varlist_end()); 3208 } 3209 return llvm::None; 3210 }(), S.getLocStart()); 3211 } 3212 3213 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3214 const CodeGenLoopTy &CodeGenLoop, 3215 Expr *IncExpr) { 3216 // Emit the loop iteration variable. 3217 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3218 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3219 EmitVarDecl(*IVDecl); 3220 3221 // Emit the iterations count variable. 3222 // If it is not a variable, Sema decided to calculate iterations count on each 3223 // iteration (e.g., it is foldable into a constant). 3224 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3225 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3226 // Emit calculation of the iterations count. 3227 EmitIgnoredExpr(S.getCalcLastIteration()); 3228 } 3229 3230 auto &RT = CGM.getOpenMPRuntime(); 3231 3232 bool HasLastprivateClause = false; 3233 // Check pre-condition. 3234 { 3235 OMPLoopScope PreInitScope(*this, S); 3236 // Skip the entire loop if we don't meet the precondition. 3237 // If the condition constant folds and can be elided, avoid emitting the 3238 // whole loop. 3239 bool CondConstant; 3240 llvm::BasicBlock *ContBlock = nullptr; 3241 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3242 if (!CondConstant) 3243 return; 3244 } else { 3245 auto *ThenBlock = createBasicBlock("omp.precond.then"); 3246 ContBlock = createBasicBlock("omp.precond.end"); 3247 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3248 getProfileCount(&S)); 3249 EmitBlock(ThenBlock); 3250 incrementProfileCounter(&S); 3251 } 3252 3253 emitAlignedClause(*this, S); 3254 // Emit 'then' code. 3255 { 3256 // Emit helper vars inits. 3257 3258 LValue LB = EmitOMPHelperVar( 3259 *this, cast<DeclRefExpr>( 3260 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3261 ? S.getCombinedLowerBoundVariable() 3262 : S.getLowerBoundVariable()))); 3263 LValue UB = EmitOMPHelperVar( 3264 *this, cast<DeclRefExpr>( 3265 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3266 ? S.getCombinedUpperBoundVariable() 3267 : S.getUpperBoundVariable()))); 3268 LValue ST = 3269 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3270 LValue IL = 3271 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3272 3273 OMPPrivateScope LoopScope(*this); 3274 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3275 // Emit implicit barrier to synchronize threads and avoid data races 3276 // on initialization of firstprivate variables and post-update of 3277 // lastprivate variables. 3278 CGM.getOpenMPRuntime().emitBarrierCall( 3279 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 3280 /*ForceSimpleCall=*/true); 3281 } 3282 EmitOMPPrivateClause(S, LoopScope); 3283 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3284 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3285 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3286 EmitOMPReductionClauseInit(S, LoopScope); 3287 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3288 EmitOMPPrivateLoopCounters(S, LoopScope); 3289 (void)LoopScope.Privatize(); 3290 3291 // Detect the distribute schedule kind and chunk. 3292 llvm::Value *Chunk = nullptr; 3293 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3294 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3295 ScheduleKind = C->getDistScheduleKind(); 3296 if (const auto *Ch = C->getChunkSize()) { 3297 Chunk = EmitScalarExpr(Ch); 3298 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3299 S.getIterationVariable()->getType(), 3300 S.getLocStart()); 3301 } 3302 } 3303 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3304 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3305 3306 // OpenMP [2.10.8, distribute Construct, Description] 3307 // If dist_schedule is specified, kind must be static. If specified, 3308 // iterations are divided into chunks of size chunk_size, chunks are 3309 // assigned to the teams of the league in a round-robin fashion in the 3310 // order of the team number. When no chunk_size is specified, the 3311 // iteration space is divided into chunks that are approximately equal 3312 // in size, and at most one chunk is distributed to each team of the 3313 // league. The size of the chunks is unspecified in this case. 3314 if (RT.isStaticNonchunked(ScheduleKind, 3315 /* Chunked */ Chunk != nullptr)) { 3316 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3317 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3318 CGOpenMPRuntime::StaticRTInput StaticInit( 3319 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3320 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3321 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 3322 StaticInit); 3323 auto LoopExit = 3324 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3325 // UB = min(UB, GlobalUB); 3326 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3327 ? S.getCombinedEnsureUpperBound() 3328 : S.getEnsureUpperBound()); 3329 // IV = LB; 3330 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3331 ? S.getCombinedInit() 3332 : S.getInit()); 3333 3334 Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3335 ? S.getCombinedCond() 3336 : S.getCond(); 3337 3338 // for distribute alone, codegen 3339 // while (idx <= UB) { BODY; ++idx; } 3340 // when combined with 'for' (e.g. as in 'distribute parallel for') 3341 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3342 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3343 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3344 CodeGenLoop(CGF, S, LoopExit); 3345 }, 3346 [](CodeGenFunction &) {}); 3347 EmitBlock(LoopExit.getBlock()); 3348 // Tell the runtime we are done. 3349 RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind()); 3350 } else { 3351 // Emit the outer loop, which requests its work chunk [LB..UB] from 3352 // runtime and runs the inner loop to process it. 3353 const OMPLoopArguments LoopArguments = { 3354 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3355 Chunk}; 3356 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3357 CodeGenLoop); 3358 } 3359 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3360 EmitOMPSimdFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3361 return CGF.Builder.CreateIsNotNull( 3362 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3363 }); 3364 } 3365 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3366 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3367 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3368 OpenMPDirectiveKind ReductionKind = OMPD_unknown; 3369 if (isOpenMPParallelDirective(S.getDirectiveKind()) && 3370 isOpenMPSimdDirective(S.getDirectiveKind())) { 3371 ReductionKind = OMPD_parallel_for_simd; 3372 } else if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3373 ReductionKind = OMPD_parallel_for; 3374 } else if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3375 ReductionKind = OMPD_simd; 3376 } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) && 3377 S.hasClausesOfKind<OMPReductionClause>()) { 3378 llvm_unreachable( 3379 "No reduction clauses is allowed in distribute directive."); 3380 } 3381 EmitOMPReductionClauseFinal(S, ReductionKind); 3382 // Emit post-update of the reduction variables if IsLastIter != 0. 3383 emitPostUpdateForReductionClause( 3384 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3385 return CGF.Builder.CreateIsNotNull( 3386 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3387 }); 3388 } 3389 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3390 if (HasLastprivateClause) { 3391 EmitOMPLastprivateClauseFinal( 3392 S, /*NoFinals=*/false, 3393 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 3394 } 3395 } 3396 3397 // We're now done with the loop, so jump to the continuation block. 3398 if (ContBlock) { 3399 EmitBranch(ContBlock); 3400 EmitBlock(ContBlock, true); 3401 } 3402 } 3403 } 3404 3405 void CodeGenFunction::EmitOMPDistributeDirective( 3406 const OMPDistributeDirective &S) { 3407 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3408 3409 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3410 }; 3411 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3412 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3413 } 3414 3415 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3416 const CapturedStmt *S) { 3417 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3418 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3419 CGF.CapturedStmtInfo = &CapStmtInfo; 3420 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3421 Fn->addFnAttr(llvm::Attribute::NoInline); 3422 return Fn; 3423 } 3424 3425 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3426 if (S.hasClausesOfKind<OMPDependClause>()) { 3427 assert(!S.getAssociatedStmt() && 3428 "No associated statement must be in ordered depend construct."); 3429 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3430 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3431 return; 3432 } 3433 auto *C = S.getSingleClause<OMPSIMDClause>(); 3434 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3435 PrePostActionTy &Action) { 3436 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3437 if (C) { 3438 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3439 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3440 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3441 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3442 OutlinedFn, CapturedVars); 3443 } else { 3444 Action.Enter(CGF); 3445 CGF.EmitStmt(CS->getCapturedStmt()); 3446 } 3447 }; 3448 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3449 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 3450 } 3451 3452 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3453 QualType SrcType, QualType DestType, 3454 SourceLocation Loc) { 3455 assert(CGF.hasScalarEvaluationKind(DestType) && 3456 "DestType must have scalar evaluation kind."); 3457 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3458 return Val.isScalar() 3459 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 3460 Loc) 3461 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 3462 DestType, Loc); 3463 } 3464 3465 static CodeGenFunction::ComplexPairTy 3466 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3467 QualType DestType, SourceLocation Loc) { 3468 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3469 "DestType must have complex evaluation kind."); 3470 CodeGenFunction::ComplexPairTy ComplexVal; 3471 if (Val.isScalar()) { 3472 // Convert the input element to the element type of the complex. 3473 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3474 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3475 DestElementType, Loc); 3476 ComplexVal = CodeGenFunction::ComplexPairTy( 3477 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3478 } else { 3479 assert(Val.isComplex() && "Must be a scalar or complex."); 3480 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3481 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3482 ComplexVal.first = CGF.EmitScalarConversion( 3483 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3484 ComplexVal.second = CGF.EmitScalarConversion( 3485 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3486 } 3487 return ComplexVal; 3488 } 3489 3490 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3491 LValue LVal, RValue RVal) { 3492 if (LVal.isGlobalReg()) { 3493 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3494 } else { 3495 CGF.EmitAtomicStore(RVal, LVal, 3496 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3497 : llvm::AtomicOrdering::Monotonic, 3498 LVal.isVolatile(), /*IsInit=*/false); 3499 } 3500 } 3501 3502 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3503 QualType RValTy, SourceLocation Loc) { 3504 switch (getEvaluationKind(LVal.getType())) { 3505 case TEK_Scalar: 3506 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3507 *this, RVal, RValTy, LVal.getType(), Loc)), 3508 LVal); 3509 break; 3510 case TEK_Complex: 3511 EmitStoreOfComplex( 3512 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3513 /*isInit=*/false); 3514 break; 3515 case TEK_Aggregate: 3516 llvm_unreachable("Must be a scalar or complex."); 3517 } 3518 } 3519 3520 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3521 const Expr *X, const Expr *V, 3522 SourceLocation Loc) { 3523 // v = x; 3524 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3525 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3526 LValue XLValue = CGF.EmitLValue(X); 3527 LValue VLValue = CGF.EmitLValue(V); 3528 RValue Res = XLValue.isGlobalReg() 3529 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3530 : CGF.EmitAtomicLoad( 3531 XLValue, Loc, 3532 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3533 : llvm::AtomicOrdering::Monotonic, 3534 XLValue.isVolatile()); 3535 // OpenMP, 2.12.6, atomic Construct 3536 // Any atomic construct with a seq_cst clause forces the atomically 3537 // performed operation to include an implicit flush operation without a 3538 // list. 3539 if (IsSeqCst) 3540 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3541 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3542 } 3543 3544 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3545 const Expr *X, const Expr *E, 3546 SourceLocation Loc) { 3547 // x = expr; 3548 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3549 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3550 // OpenMP, 2.12.6, atomic Construct 3551 // Any atomic construct with a seq_cst clause forces the atomically 3552 // performed operation to include an implicit flush operation without a 3553 // list. 3554 if (IsSeqCst) 3555 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3556 } 3557 3558 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3559 RValue Update, 3560 BinaryOperatorKind BO, 3561 llvm::AtomicOrdering AO, 3562 bool IsXLHSInRHSPart) { 3563 auto &Context = CGF.CGM.getContext(); 3564 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3565 // expression is simple and atomic is allowed for the given type for the 3566 // target platform. 3567 if (BO == BO_Comma || !Update.isScalar() || 3568 !Update.getScalarVal()->getType()->isIntegerTy() || 3569 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3570 (Update.getScalarVal()->getType() != 3571 X.getAddress().getElementType())) || 3572 !X.getAddress().getElementType()->isIntegerTy() || 3573 !Context.getTargetInfo().hasBuiltinAtomic( 3574 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3575 return std::make_pair(false, RValue::get(nullptr)); 3576 3577 llvm::AtomicRMWInst::BinOp RMWOp; 3578 switch (BO) { 3579 case BO_Add: 3580 RMWOp = llvm::AtomicRMWInst::Add; 3581 break; 3582 case BO_Sub: 3583 if (!IsXLHSInRHSPart) 3584 return std::make_pair(false, RValue::get(nullptr)); 3585 RMWOp = llvm::AtomicRMWInst::Sub; 3586 break; 3587 case BO_And: 3588 RMWOp = llvm::AtomicRMWInst::And; 3589 break; 3590 case BO_Or: 3591 RMWOp = llvm::AtomicRMWInst::Or; 3592 break; 3593 case BO_Xor: 3594 RMWOp = llvm::AtomicRMWInst::Xor; 3595 break; 3596 case BO_LT: 3597 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3598 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3599 : llvm::AtomicRMWInst::Max) 3600 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3601 : llvm::AtomicRMWInst::UMax); 3602 break; 3603 case BO_GT: 3604 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3605 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3606 : llvm::AtomicRMWInst::Min) 3607 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3608 : llvm::AtomicRMWInst::UMin); 3609 break; 3610 case BO_Assign: 3611 RMWOp = llvm::AtomicRMWInst::Xchg; 3612 break; 3613 case BO_Mul: 3614 case BO_Div: 3615 case BO_Rem: 3616 case BO_Shl: 3617 case BO_Shr: 3618 case BO_LAnd: 3619 case BO_LOr: 3620 return std::make_pair(false, RValue::get(nullptr)); 3621 case BO_PtrMemD: 3622 case BO_PtrMemI: 3623 case BO_LE: 3624 case BO_GE: 3625 case BO_EQ: 3626 case BO_NE: 3627 case BO_Cmp: 3628 case BO_AddAssign: 3629 case BO_SubAssign: 3630 case BO_AndAssign: 3631 case BO_OrAssign: 3632 case BO_XorAssign: 3633 case BO_MulAssign: 3634 case BO_DivAssign: 3635 case BO_RemAssign: 3636 case BO_ShlAssign: 3637 case BO_ShrAssign: 3638 case BO_Comma: 3639 llvm_unreachable("Unsupported atomic update operation"); 3640 } 3641 auto *UpdateVal = Update.getScalarVal(); 3642 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3643 UpdateVal = CGF.Builder.CreateIntCast( 3644 IC, X.getAddress().getElementType(), 3645 X.getType()->hasSignedIntegerRepresentation()); 3646 } 3647 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3648 return std::make_pair(true, RValue::get(Res)); 3649 } 3650 3651 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3652 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3653 llvm::AtomicOrdering AO, SourceLocation Loc, 3654 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3655 // Update expressions are allowed to have the following forms: 3656 // x binop= expr; -> xrval + expr; 3657 // x++, ++x -> xrval + 1; 3658 // x--, --x -> xrval - 1; 3659 // x = x binop expr; -> xrval binop expr 3660 // x = expr Op x; - > expr binop xrval; 3661 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3662 if (!Res.first) { 3663 if (X.isGlobalReg()) { 3664 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3665 // 'xrval'. 3666 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3667 } else { 3668 // Perform compare-and-swap procedure. 3669 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3670 } 3671 } 3672 return Res; 3673 } 3674 3675 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3676 const Expr *X, const Expr *E, 3677 const Expr *UE, bool IsXLHSInRHSPart, 3678 SourceLocation Loc) { 3679 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3680 "Update expr in 'atomic update' must be a binary operator."); 3681 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3682 // Update expressions are allowed to have the following forms: 3683 // x binop= expr; -> xrval + expr; 3684 // x++, ++x -> xrval + 1; 3685 // x--, --x -> xrval - 1; 3686 // x = x binop expr; -> xrval binop expr 3687 // x = expr Op x; - > expr binop xrval; 3688 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3689 LValue XLValue = CGF.EmitLValue(X); 3690 RValue ExprRValue = CGF.EmitAnyExpr(E); 3691 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3692 : llvm::AtomicOrdering::Monotonic; 3693 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3694 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3695 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3696 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3697 auto Gen = 3698 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3699 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3700 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3701 return CGF.EmitAnyExpr(UE); 3702 }; 3703 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3704 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3705 // OpenMP, 2.12.6, atomic Construct 3706 // Any atomic construct with a seq_cst clause forces the atomically 3707 // performed operation to include an implicit flush operation without a 3708 // list. 3709 if (IsSeqCst) 3710 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3711 } 3712 3713 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3714 QualType SourceType, QualType ResType, 3715 SourceLocation Loc) { 3716 switch (CGF.getEvaluationKind(ResType)) { 3717 case TEK_Scalar: 3718 return RValue::get( 3719 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3720 case TEK_Complex: { 3721 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3722 return RValue::getComplex(Res.first, Res.second); 3723 } 3724 case TEK_Aggregate: 3725 break; 3726 } 3727 llvm_unreachable("Must be a scalar or complex."); 3728 } 3729 3730 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3731 bool IsPostfixUpdate, const Expr *V, 3732 const Expr *X, const Expr *E, 3733 const Expr *UE, bool IsXLHSInRHSPart, 3734 SourceLocation Loc) { 3735 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3736 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3737 RValue NewVVal; 3738 LValue VLValue = CGF.EmitLValue(V); 3739 LValue XLValue = CGF.EmitLValue(X); 3740 RValue ExprRValue = CGF.EmitAnyExpr(E); 3741 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3742 : llvm::AtomicOrdering::Monotonic; 3743 QualType NewVValType; 3744 if (UE) { 3745 // 'x' is updated with some additional value. 3746 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3747 "Update expr in 'atomic capture' must be a binary operator."); 3748 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3749 // Update expressions are allowed to have the following forms: 3750 // x binop= expr; -> xrval + expr; 3751 // x++, ++x -> xrval + 1; 3752 // x--, --x -> xrval - 1; 3753 // x = x binop expr; -> xrval binop expr 3754 // x = expr Op x; - > expr binop xrval; 3755 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3756 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3757 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3758 NewVValType = XRValExpr->getType(); 3759 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3760 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3761 IsPostfixUpdate](RValue XRValue) -> RValue { 3762 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3763 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3764 RValue Res = CGF.EmitAnyExpr(UE); 3765 NewVVal = IsPostfixUpdate ? XRValue : Res; 3766 return Res; 3767 }; 3768 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3769 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3770 if (Res.first) { 3771 // 'atomicrmw' instruction was generated. 3772 if (IsPostfixUpdate) { 3773 // Use old value from 'atomicrmw'. 3774 NewVVal = Res.second; 3775 } else { 3776 // 'atomicrmw' does not provide new value, so evaluate it using old 3777 // value of 'x'. 3778 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3779 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3780 NewVVal = CGF.EmitAnyExpr(UE); 3781 } 3782 } 3783 } else { 3784 // 'x' is simply rewritten with some 'expr'. 3785 NewVValType = X->getType().getNonReferenceType(); 3786 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3787 X->getType().getNonReferenceType(), Loc); 3788 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3789 NewVVal = XRValue; 3790 return ExprRValue; 3791 }; 3792 // Try to perform atomicrmw xchg, otherwise simple exchange. 3793 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3794 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3795 Loc, Gen); 3796 if (Res.first) { 3797 // 'atomicrmw' instruction was generated. 3798 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3799 } 3800 } 3801 // Emit post-update store to 'v' of old/new 'x' value. 3802 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3803 // OpenMP, 2.12.6, atomic Construct 3804 // Any atomic construct with a seq_cst clause forces the atomically 3805 // performed operation to include an implicit flush operation without a 3806 // list. 3807 if (IsSeqCst) 3808 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3809 } 3810 3811 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3812 bool IsSeqCst, bool IsPostfixUpdate, 3813 const Expr *X, const Expr *V, const Expr *E, 3814 const Expr *UE, bool IsXLHSInRHSPart, 3815 SourceLocation Loc) { 3816 switch (Kind) { 3817 case OMPC_read: 3818 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3819 break; 3820 case OMPC_write: 3821 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3822 break; 3823 case OMPC_unknown: 3824 case OMPC_update: 3825 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3826 break; 3827 case OMPC_capture: 3828 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3829 IsXLHSInRHSPart, Loc); 3830 break; 3831 case OMPC_if: 3832 case OMPC_final: 3833 case OMPC_num_threads: 3834 case OMPC_private: 3835 case OMPC_firstprivate: 3836 case OMPC_lastprivate: 3837 case OMPC_reduction: 3838 case OMPC_task_reduction: 3839 case OMPC_in_reduction: 3840 case OMPC_safelen: 3841 case OMPC_simdlen: 3842 case OMPC_collapse: 3843 case OMPC_default: 3844 case OMPC_seq_cst: 3845 case OMPC_shared: 3846 case OMPC_linear: 3847 case OMPC_aligned: 3848 case OMPC_copyin: 3849 case OMPC_copyprivate: 3850 case OMPC_flush: 3851 case OMPC_proc_bind: 3852 case OMPC_schedule: 3853 case OMPC_ordered: 3854 case OMPC_nowait: 3855 case OMPC_untied: 3856 case OMPC_threadprivate: 3857 case OMPC_depend: 3858 case OMPC_mergeable: 3859 case OMPC_device: 3860 case OMPC_threads: 3861 case OMPC_simd: 3862 case OMPC_map: 3863 case OMPC_num_teams: 3864 case OMPC_thread_limit: 3865 case OMPC_priority: 3866 case OMPC_grainsize: 3867 case OMPC_nogroup: 3868 case OMPC_num_tasks: 3869 case OMPC_hint: 3870 case OMPC_dist_schedule: 3871 case OMPC_defaultmap: 3872 case OMPC_uniform: 3873 case OMPC_to: 3874 case OMPC_from: 3875 case OMPC_use_device_ptr: 3876 case OMPC_is_device_ptr: 3877 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3878 } 3879 } 3880 3881 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3882 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3883 OpenMPClauseKind Kind = OMPC_unknown; 3884 for (auto *C : S.clauses()) { 3885 // Find first clause (skip seq_cst clause, if it is first). 3886 if (C->getClauseKind() != OMPC_seq_cst) { 3887 Kind = C->getClauseKind(); 3888 break; 3889 } 3890 } 3891 3892 const auto *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3893 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3894 enterFullExpression(EWC); 3895 } 3896 // Processing for statements under 'atomic capture'. 3897 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3898 for (const auto *C : Compound->body()) { 3899 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3900 enterFullExpression(EWC); 3901 } 3902 } 3903 } 3904 3905 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3906 PrePostActionTy &) { 3907 CGF.EmitStopPoint(CS); 3908 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3909 S.getV(), S.getExpr(), S.getUpdateExpr(), 3910 S.isXLHSInRHSPart(), S.getLocStart()); 3911 }; 3912 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3913 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3914 } 3915 3916 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3917 const OMPExecutableDirective &S, 3918 const RegionCodeGenTy &CodeGen) { 3919 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3920 CodeGenModule &CGM = CGF.CGM; 3921 3922 // On device emit this construct as inlined code. 3923 if (CGM.getLangOpts().OpenMPIsDevice) { 3924 OMPLexicalScope Scope(CGF, S, OMPD_target); 3925 CGM.getOpenMPRuntime().emitInlinedDirective( 3926 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3927 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 3928 }); 3929 return; 3930 } 3931 3932 llvm::Function *Fn = nullptr; 3933 llvm::Constant *FnID = nullptr; 3934 3935 const Expr *IfCond = nullptr; 3936 // Check for the at most one if clause associated with the target region. 3937 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3938 if (C->getNameModifier() == OMPD_unknown || 3939 C->getNameModifier() == OMPD_target) { 3940 IfCond = C->getCondition(); 3941 break; 3942 } 3943 } 3944 3945 // Check if we have any device clause associated with the directive. 3946 const Expr *Device = nullptr; 3947 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3948 Device = C->getDevice(); 3949 } 3950 3951 // Check if we have an if clause whose conditional always evaluates to false 3952 // or if we do not have any targets specified. If so the target region is not 3953 // an offload entry point. 3954 bool IsOffloadEntry = true; 3955 if (IfCond) { 3956 bool Val; 3957 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3958 IsOffloadEntry = false; 3959 } 3960 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3961 IsOffloadEntry = false; 3962 3963 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3964 StringRef ParentName; 3965 // In case we have Ctors/Dtors we use the complete type variant to produce 3966 // the mangling of the device outlined kernel. 3967 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3968 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3969 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3970 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3971 else 3972 ParentName = 3973 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3974 3975 // Emit target region as a standalone region. 3976 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3977 IsOffloadEntry, CodeGen); 3978 OMPLexicalScope Scope(CGF, S, OMPD_task); 3979 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 3980 } 3981 3982 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3983 PrePostActionTy &Action) { 3984 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3985 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3986 CGF.EmitOMPPrivateClause(S, PrivateScope); 3987 (void)PrivateScope.Privatize(); 3988 3989 Action.Enter(CGF); 3990 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 3991 } 3992 3993 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3994 StringRef ParentName, 3995 const OMPTargetDirective &S) { 3996 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3997 emitTargetRegion(CGF, S, Action); 3998 }; 3999 llvm::Function *Fn; 4000 llvm::Constant *Addr; 4001 // Emit target region as a standalone region. 4002 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4003 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4004 assert(Fn && Addr && "Target device function emission failed."); 4005 } 4006 4007 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4008 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4009 emitTargetRegion(CGF, S, Action); 4010 }; 4011 emitCommonOMPTargetDirective(*this, S, CodeGen); 4012 } 4013 4014 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4015 const OMPExecutableDirective &S, 4016 OpenMPDirectiveKind InnermostKind, 4017 const RegionCodeGenTy &CodeGen) { 4018 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4019 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4020 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4021 4022 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 4023 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 4024 if (NT || TL) { 4025 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 4026 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 4027 4028 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4029 S.getLocStart()); 4030 } 4031 4032 OMPTeamsScope Scope(CGF, S); 4033 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4034 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4035 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 4036 CapturedVars); 4037 } 4038 4039 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4040 // Emit teams region as a standalone region. 4041 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4042 OMPPrivateScope PrivateScope(CGF); 4043 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4044 CGF.EmitOMPPrivateClause(S, PrivateScope); 4045 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4046 (void)PrivateScope.Privatize(); 4047 Action.Enter(CGF); 4048 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4049 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4050 }; 4051 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4052 emitPostUpdateForReductionClause( 4053 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4054 } 4055 4056 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4057 const OMPTargetTeamsDirective &S) { 4058 auto *CS = S.getCapturedStmt(OMPD_teams); 4059 Action.Enter(CGF); 4060 // Emit teams region as a standalone region. 4061 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4062 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4063 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4064 CGF.EmitOMPPrivateClause(S, PrivateScope); 4065 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4066 (void)PrivateScope.Privatize(); 4067 Action.Enter(CGF); 4068 CGF.EmitStmt(CS->getCapturedStmt()); 4069 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4070 }; 4071 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4072 emitPostUpdateForReductionClause( 4073 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4074 } 4075 4076 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4077 CodeGenModule &CGM, StringRef ParentName, 4078 const OMPTargetTeamsDirective &S) { 4079 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4080 emitTargetTeamsRegion(CGF, Action, S); 4081 }; 4082 llvm::Function *Fn; 4083 llvm::Constant *Addr; 4084 // Emit target region as a standalone region. 4085 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4086 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4087 assert(Fn && Addr && "Target device function emission failed."); 4088 } 4089 4090 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4091 const OMPTargetTeamsDirective &S) { 4092 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4093 emitTargetTeamsRegion(CGF, Action, S); 4094 }; 4095 emitCommonOMPTargetDirective(*this, S, CodeGen); 4096 } 4097 4098 static void 4099 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4100 const OMPTargetTeamsDistributeDirective &S) { 4101 Action.Enter(CGF); 4102 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4103 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4104 }; 4105 4106 // Emit teams region as a standalone region. 4107 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4108 PrePostActionTy &Action) { 4109 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4110 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4111 (void)PrivateScope.Privatize(); 4112 Action.Enter(CGF); 4113 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4114 CodeGenDistribute); 4115 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4116 }; 4117 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4118 emitPostUpdateForReductionClause(CGF, S, 4119 [](CodeGenFunction &) { return nullptr; }); 4120 } 4121 4122 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4123 CodeGenModule &CGM, StringRef ParentName, 4124 const OMPTargetTeamsDistributeDirective &S) { 4125 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4126 emitTargetTeamsDistributeRegion(CGF, Action, S); 4127 }; 4128 llvm::Function *Fn; 4129 llvm::Constant *Addr; 4130 // Emit target region as a standalone region. 4131 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4132 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4133 assert(Fn && Addr && "Target device function emission failed."); 4134 } 4135 4136 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4137 const OMPTargetTeamsDistributeDirective &S) { 4138 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4139 emitTargetTeamsDistributeRegion(CGF, Action, S); 4140 }; 4141 emitCommonOMPTargetDirective(*this, S, CodeGen); 4142 } 4143 4144 static void emitTargetTeamsDistributeSimdRegion( 4145 CodeGenFunction &CGF, PrePostActionTy &Action, 4146 const OMPTargetTeamsDistributeSimdDirective &S) { 4147 Action.Enter(CGF); 4148 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4149 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4150 }; 4151 4152 // Emit teams region as a standalone region. 4153 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4154 PrePostActionTy &Action) { 4155 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4156 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4157 (void)PrivateScope.Privatize(); 4158 Action.Enter(CGF); 4159 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4160 CodeGenDistribute); 4161 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4162 }; 4163 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4164 emitPostUpdateForReductionClause(CGF, S, 4165 [](CodeGenFunction &) { return nullptr; }); 4166 } 4167 4168 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4169 CodeGenModule &CGM, StringRef ParentName, 4170 const OMPTargetTeamsDistributeSimdDirective &S) { 4171 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4172 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4173 }; 4174 llvm::Function *Fn; 4175 llvm::Constant *Addr; 4176 // Emit target region as a standalone region. 4177 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4178 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4179 assert(Fn && Addr && "Target device function emission failed."); 4180 } 4181 4182 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4183 const OMPTargetTeamsDistributeSimdDirective &S) { 4184 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4185 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4186 }; 4187 emitCommonOMPTargetDirective(*this, S, CodeGen); 4188 } 4189 4190 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4191 const OMPTeamsDistributeDirective &S) { 4192 4193 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4194 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4195 }; 4196 4197 // Emit teams region as a standalone region. 4198 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4199 PrePostActionTy &Action) { 4200 OMPPrivateScope PrivateScope(CGF); 4201 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4202 (void)PrivateScope.Privatize(); 4203 Action.Enter(CGF); 4204 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4205 CodeGenDistribute); 4206 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4207 }; 4208 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4209 emitPostUpdateForReductionClause(*this, S, 4210 [](CodeGenFunction &) { return nullptr; }); 4211 } 4212 4213 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4214 const OMPTeamsDistributeSimdDirective &S) { 4215 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4216 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4217 }; 4218 4219 // Emit teams region as a standalone region. 4220 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4221 PrePostActionTy &Action) { 4222 OMPPrivateScope PrivateScope(CGF); 4223 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4224 (void)PrivateScope.Privatize(); 4225 Action.Enter(CGF); 4226 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4227 CodeGenDistribute); 4228 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4229 }; 4230 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4231 emitPostUpdateForReductionClause(*this, S, 4232 [](CodeGenFunction &) { return nullptr; }); 4233 } 4234 4235 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4236 const OMPTeamsDistributeParallelForDirective &S) { 4237 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4238 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4239 S.getDistInc()); 4240 }; 4241 4242 // Emit teams region as a standalone region. 4243 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4244 PrePostActionTy &Action) { 4245 OMPPrivateScope PrivateScope(CGF); 4246 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4247 (void)PrivateScope.Privatize(); 4248 Action.Enter(CGF); 4249 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4250 CodeGenDistribute); 4251 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4252 }; 4253 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4254 emitPostUpdateForReductionClause(*this, S, 4255 [](CodeGenFunction &) { return nullptr; }); 4256 } 4257 4258 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4259 const OMPTeamsDistributeParallelForSimdDirective &S) { 4260 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4261 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4262 S.getDistInc()); 4263 }; 4264 4265 // Emit teams region as a standalone region. 4266 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4267 PrePostActionTy &Action) { 4268 OMPPrivateScope PrivateScope(CGF); 4269 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4270 (void)PrivateScope.Privatize(); 4271 Action.Enter(CGF); 4272 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4273 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4274 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4275 }; 4276 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4277 emitPostUpdateForReductionClause(*this, S, 4278 [](CodeGenFunction &) { return nullptr; }); 4279 } 4280 4281 static void emitTargetTeamsDistributeParallelForRegion( 4282 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4283 PrePostActionTy &Action) { 4284 Action.Enter(CGF); 4285 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4286 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4287 S.getDistInc()); 4288 }; 4289 4290 // Emit teams region as a standalone region. 4291 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4292 PrePostActionTy &Action) { 4293 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4294 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4295 (void)PrivateScope.Privatize(); 4296 Action.Enter(CGF); 4297 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4298 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4299 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4300 }; 4301 4302 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4303 CodeGenTeams); 4304 emitPostUpdateForReductionClause(CGF, S, 4305 [](CodeGenFunction &) { return nullptr; }); 4306 } 4307 4308 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4309 CodeGenModule &CGM, StringRef ParentName, 4310 const OMPTargetTeamsDistributeParallelForDirective &S) { 4311 // Emit SPMD target teams distribute parallel for region as a standalone 4312 // region. 4313 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4314 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4315 }; 4316 llvm::Function *Fn; 4317 llvm::Constant *Addr; 4318 // Emit target region as a standalone region. 4319 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4320 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4321 assert(Fn && Addr && "Target device function emission failed."); 4322 } 4323 4324 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4325 const OMPTargetTeamsDistributeParallelForDirective &S) { 4326 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4327 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4328 }; 4329 emitCommonOMPTargetDirective(*this, S, CodeGen); 4330 } 4331 4332 static void emitTargetTeamsDistributeParallelForSimdRegion( 4333 CodeGenFunction &CGF, 4334 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4335 PrePostActionTy &Action) { 4336 Action.Enter(CGF); 4337 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4338 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4339 S.getDistInc()); 4340 }; 4341 4342 // Emit teams region as a standalone region. 4343 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4344 PrePostActionTy &Action) { 4345 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4346 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4347 (void)PrivateScope.Privatize(); 4348 Action.Enter(CGF); 4349 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4350 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4351 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4352 }; 4353 4354 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4355 CodeGenTeams); 4356 emitPostUpdateForReductionClause(CGF, S, 4357 [](CodeGenFunction &) { return nullptr; }); 4358 } 4359 4360 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4361 CodeGenModule &CGM, StringRef ParentName, 4362 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4363 // Emit SPMD target teams distribute parallel for simd region as a standalone 4364 // region. 4365 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4366 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4367 }; 4368 llvm::Function *Fn; 4369 llvm::Constant *Addr; 4370 // Emit target region as a standalone region. 4371 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4372 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4373 assert(Fn && Addr && "Target device function emission failed."); 4374 } 4375 4376 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4377 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4378 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4379 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4380 }; 4381 emitCommonOMPTargetDirective(*this, S, CodeGen); 4382 } 4383 4384 void CodeGenFunction::EmitOMPCancellationPointDirective( 4385 const OMPCancellationPointDirective &S) { 4386 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 4387 S.getCancelRegion()); 4388 } 4389 4390 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4391 const Expr *IfCond = nullptr; 4392 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4393 if (C->getNameModifier() == OMPD_unknown || 4394 C->getNameModifier() == OMPD_cancel) { 4395 IfCond = C->getCondition(); 4396 break; 4397 } 4398 } 4399 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 4400 S.getCancelRegion()); 4401 } 4402 4403 CodeGenFunction::JumpDest 4404 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4405 if (Kind == OMPD_parallel || Kind == OMPD_task || 4406 Kind == OMPD_target_parallel) 4407 return ReturnBlock; 4408 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4409 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4410 Kind == OMPD_distribute_parallel_for || 4411 Kind == OMPD_target_parallel_for || 4412 Kind == OMPD_teams_distribute_parallel_for || 4413 Kind == OMPD_target_teams_distribute_parallel_for); 4414 return OMPCancelStack.getExitBlock(); 4415 } 4416 4417 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4418 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4419 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4420 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4421 auto OrigVarIt = C.varlist_begin(); 4422 auto InitIt = C.inits().begin(); 4423 for (auto PvtVarIt : C.private_copies()) { 4424 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4425 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4426 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4427 4428 // In order to identify the right initializer we need to match the 4429 // declaration used by the mapping logic. In some cases we may get 4430 // OMPCapturedExprDecl that refers to the original declaration. 4431 const ValueDecl *MatchingVD = OrigVD; 4432 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4433 // OMPCapturedExprDecl are used to privative fields of the current 4434 // structure. 4435 auto *ME = cast<MemberExpr>(OED->getInit()); 4436 assert(isa<CXXThisExpr>(ME->getBase()) && 4437 "Base should be the current struct!"); 4438 MatchingVD = ME->getMemberDecl(); 4439 } 4440 4441 // If we don't have information about the current list item, move on to 4442 // the next one. 4443 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4444 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4445 continue; 4446 4447 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 4448 // Initialize the temporary initialization variable with the address we 4449 // get from the runtime library. We have to cast the source address 4450 // because it is always a void *. References are materialized in the 4451 // privatization scope, so the initialization here disregards the fact 4452 // the original variable is a reference. 4453 QualType AddrQTy = 4454 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4455 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4456 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4457 setAddrOfLocalVar(InitVD, InitAddr); 4458 4459 // Emit private declaration, it will be initialized by the value we 4460 // declaration we just added to the local declarations map. 4461 EmitDecl(*PvtVD); 4462 4463 // The initialization variables reached its purpose in the emission 4464 // ofthe previous declaration, so we don't need it anymore. 4465 LocalDeclMap.erase(InitVD); 4466 4467 // Return the address of the private variable. 4468 return GetAddrOfLocalVar(PvtVD); 4469 }); 4470 assert(IsRegistered && "firstprivate var already registered as private"); 4471 // Silence the warning about unused variable. 4472 (void)IsRegistered; 4473 4474 ++OrigVarIt; 4475 ++InitIt; 4476 } 4477 } 4478 4479 // Generate the instructions for '#pragma omp target data' directive. 4480 void CodeGenFunction::EmitOMPTargetDataDirective( 4481 const OMPTargetDataDirective &S) { 4482 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4483 4484 // Create a pre/post action to signal the privatization of the device pointer. 4485 // This action can be replaced by the OpenMP runtime code generation to 4486 // deactivate privatization. 4487 bool PrivatizeDevicePointers = false; 4488 class DevicePointerPrivActionTy : public PrePostActionTy { 4489 bool &PrivatizeDevicePointers; 4490 4491 public: 4492 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4493 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4494 void Enter(CodeGenFunction &CGF) override { 4495 PrivatizeDevicePointers = true; 4496 } 4497 }; 4498 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4499 4500 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4501 CodeGenFunction &CGF, PrePostActionTy &Action) { 4502 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4503 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4504 }; 4505 4506 // Codegen that selects wheather to generate the privatization code or not. 4507 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4508 &InnermostCodeGen](CodeGenFunction &CGF, 4509 PrePostActionTy &Action) { 4510 RegionCodeGenTy RCG(InnermostCodeGen); 4511 PrivatizeDevicePointers = false; 4512 4513 // Call the pre-action to change the status of PrivatizeDevicePointers if 4514 // needed. 4515 Action.Enter(CGF); 4516 4517 if (PrivatizeDevicePointers) { 4518 OMPPrivateScope PrivateScope(CGF); 4519 // Emit all instances of the use_device_ptr clause. 4520 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4521 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4522 Info.CaptureDeviceAddrMap); 4523 (void)PrivateScope.Privatize(); 4524 RCG(CGF); 4525 } else 4526 RCG(CGF); 4527 }; 4528 4529 // Forward the provided action to the privatization codegen. 4530 RegionCodeGenTy PrivRCG(PrivCodeGen); 4531 PrivRCG.setAction(Action); 4532 4533 // Notwithstanding the body of the region is emitted as inlined directive, 4534 // we don't use an inline scope as changes in the references inside the 4535 // region are expected to be visible outside, so we do not privative them. 4536 OMPLexicalScope Scope(CGF, S); 4537 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4538 PrivRCG); 4539 }; 4540 4541 RegionCodeGenTy RCG(CodeGen); 4542 4543 // If we don't have target devices, don't bother emitting the data mapping 4544 // code. 4545 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4546 RCG(*this); 4547 return; 4548 } 4549 4550 // Check if we have any if clause associated with the directive. 4551 const Expr *IfCond = nullptr; 4552 if (auto *C = S.getSingleClause<OMPIfClause>()) 4553 IfCond = C->getCondition(); 4554 4555 // Check if we have any device clause associated with the directive. 4556 const Expr *Device = nullptr; 4557 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4558 Device = C->getDevice(); 4559 4560 // Set the action to signal privatization of device pointers. 4561 RCG.setAction(PrivAction); 4562 4563 // Emit region code. 4564 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4565 Info); 4566 } 4567 4568 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4569 const OMPTargetEnterDataDirective &S) { 4570 // If we don't have target devices, don't bother emitting the data mapping 4571 // code. 4572 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4573 return; 4574 4575 // Check if we have any if clause associated with the directive. 4576 const Expr *IfCond = nullptr; 4577 if (auto *C = S.getSingleClause<OMPIfClause>()) 4578 IfCond = C->getCondition(); 4579 4580 // Check if we have any device clause associated with the directive. 4581 const Expr *Device = nullptr; 4582 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4583 Device = C->getDevice(); 4584 4585 OMPLexicalScope Scope(*this, S, OMPD_task); 4586 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4587 } 4588 4589 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4590 const OMPTargetExitDataDirective &S) { 4591 // If we don't have target devices, don't bother emitting the data mapping 4592 // code. 4593 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4594 return; 4595 4596 // Check if we have any if clause associated with the directive. 4597 const Expr *IfCond = nullptr; 4598 if (auto *C = S.getSingleClause<OMPIfClause>()) 4599 IfCond = C->getCondition(); 4600 4601 // Check if we have any device clause associated with the directive. 4602 const Expr *Device = nullptr; 4603 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4604 Device = C->getDevice(); 4605 4606 OMPLexicalScope Scope(*this, S, OMPD_task); 4607 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4608 } 4609 4610 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4611 const OMPTargetParallelDirective &S, 4612 PrePostActionTy &Action) { 4613 // Get the captured statement associated with the 'parallel' region. 4614 auto *CS = S.getCapturedStmt(OMPD_parallel); 4615 Action.Enter(CGF); 4616 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4617 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4618 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4619 CGF.EmitOMPPrivateClause(S, PrivateScope); 4620 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4621 (void)PrivateScope.Privatize(); 4622 Action.Enter(CGF); 4623 // TODO: Add support for clauses. 4624 CGF.EmitStmt(CS->getCapturedStmt()); 4625 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4626 }; 4627 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4628 emitEmptyBoundParameters); 4629 emitPostUpdateForReductionClause( 4630 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4631 } 4632 4633 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4634 CodeGenModule &CGM, StringRef ParentName, 4635 const OMPTargetParallelDirective &S) { 4636 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4637 emitTargetParallelRegion(CGF, S, Action); 4638 }; 4639 llvm::Function *Fn; 4640 llvm::Constant *Addr; 4641 // Emit target region as a standalone region. 4642 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4643 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4644 assert(Fn && Addr && "Target device function emission failed."); 4645 } 4646 4647 void CodeGenFunction::EmitOMPTargetParallelDirective( 4648 const OMPTargetParallelDirective &S) { 4649 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4650 emitTargetParallelRegion(CGF, S, Action); 4651 }; 4652 emitCommonOMPTargetDirective(*this, S, CodeGen); 4653 } 4654 4655 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4656 const OMPTargetParallelForDirective &S, 4657 PrePostActionTy &Action) { 4658 Action.Enter(CGF); 4659 // Emit directive as a combined directive that consists of two implicit 4660 // directives: 'parallel' with 'for' directive. 4661 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4662 Action.Enter(CGF); 4663 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4664 CGF, OMPD_target_parallel_for, S.hasCancel()); 4665 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4666 emitDispatchForLoopBounds); 4667 }; 4668 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4669 emitEmptyBoundParameters); 4670 } 4671 4672 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4673 CodeGenModule &CGM, StringRef ParentName, 4674 const OMPTargetParallelForDirective &S) { 4675 // Emit SPMD target parallel for region as a standalone region. 4676 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4677 emitTargetParallelForRegion(CGF, S, Action); 4678 }; 4679 llvm::Function *Fn; 4680 llvm::Constant *Addr; 4681 // Emit target region as a standalone region. 4682 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4683 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4684 assert(Fn && Addr && "Target device function emission failed."); 4685 } 4686 4687 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4688 const OMPTargetParallelForDirective &S) { 4689 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4690 emitTargetParallelForRegion(CGF, S, Action); 4691 }; 4692 emitCommonOMPTargetDirective(*this, S, CodeGen); 4693 } 4694 4695 static void 4696 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4697 const OMPTargetParallelForSimdDirective &S, 4698 PrePostActionTy &Action) { 4699 Action.Enter(CGF); 4700 // Emit directive as a combined directive that consists of two implicit 4701 // directives: 'parallel' with 'for' directive. 4702 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4703 Action.Enter(CGF); 4704 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4705 emitDispatchForLoopBounds); 4706 }; 4707 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4708 emitEmptyBoundParameters); 4709 } 4710 4711 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4712 CodeGenModule &CGM, StringRef ParentName, 4713 const OMPTargetParallelForSimdDirective &S) { 4714 // Emit SPMD target parallel for region as a standalone region. 4715 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4716 emitTargetParallelForSimdRegion(CGF, S, Action); 4717 }; 4718 llvm::Function *Fn; 4719 llvm::Constant *Addr; 4720 // Emit target region as a standalone region. 4721 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4722 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4723 assert(Fn && Addr && "Target device function emission failed."); 4724 } 4725 4726 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4727 const OMPTargetParallelForSimdDirective &S) { 4728 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4729 emitTargetParallelForSimdRegion(CGF, S, Action); 4730 }; 4731 emitCommonOMPTargetDirective(*this, S, CodeGen); 4732 } 4733 4734 /// Emit a helper variable and return corresponding lvalue. 4735 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4736 const ImplicitParamDecl *PVD, 4737 CodeGenFunction::OMPPrivateScope &Privates) { 4738 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4739 Privates.addPrivate( 4740 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 4741 } 4742 4743 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4744 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4745 // Emit outlined function for task construct. 4746 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4747 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 4748 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4749 const Expr *IfCond = nullptr; 4750 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4751 if (C->getNameModifier() == OMPD_unknown || 4752 C->getNameModifier() == OMPD_taskloop) { 4753 IfCond = C->getCondition(); 4754 break; 4755 } 4756 } 4757 4758 OMPTaskDataTy Data; 4759 // Check if taskloop must be emitted without taskgroup. 4760 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4761 // TODO: Check if we should emit tied or untied task. 4762 Data.Tied = true; 4763 // Set scheduling for taskloop 4764 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4765 // grainsize clause 4766 Data.Schedule.setInt(/*IntVal=*/false); 4767 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4768 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4769 // num_tasks clause 4770 Data.Schedule.setInt(/*IntVal=*/true); 4771 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4772 } 4773 4774 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4775 // if (PreCond) { 4776 // for (IV in 0..LastIteration) BODY; 4777 // <Final counter/linear vars updates>; 4778 // } 4779 // 4780 4781 // Emit: if (PreCond) - begin. 4782 // If the condition constant folds and can be elided, avoid emitting the 4783 // whole loop. 4784 bool CondConstant; 4785 llvm::BasicBlock *ContBlock = nullptr; 4786 OMPLoopScope PreInitScope(CGF, S); 4787 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4788 if (!CondConstant) 4789 return; 4790 } else { 4791 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4792 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4793 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4794 CGF.getProfileCount(&S)); 4795 CGF.EmitBlock(ThenBlock); 4796 CGF.incrementProfileCounter(&S); 4797 } 4798 4799 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4800 CGF.EmitOMPSimdInit(S); 4801 4802 OMPPrivateScope LoopScope(CGF); 4803 // Emit helper vars inits. 4804 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4805 auto *I = CS->getCapturedDecl()->param_begin(); 4806 auto *LBP = std::next(I, LowerBound); 4807 auto *UBP = std::next(I, UpperBound); 4808 auto *STP = std::next(I, Stride); 4809 auto *LIP = std::next(I, LastIter); 4810 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4811 LoopScope); 4812 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4813 LoopScope); 4814 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4815 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4816 LoopScope); 4817 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4818 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4819 (void)LoopScope.Privatize(); 4820 // Emit the loop iteration variable. 4821 const Expr *IVExpr = S.getIterationVariable(); 4822 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4823 CGF.EmitVarDecl(*IVDecl); 4824 CGF.EmitIgnoredExpr(S.getInit()); 4825 4826 // Emit the iterations count variable. 4827 // If it is not a variable, Sema decided to calculate iterations count on 4828 // each iteration (e.g., it is foldable into a constant). 4829 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4830 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4831 // Emit calculation of the iterations count. 4832 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4833 } 4834 4835 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4836 S.getInc(), 4837 [&S](CodeGenFunction &CGF) { 4838 CGF.EmitOMPLoopBody(S, JumpDest()); 4839 CGF.EmitStopPoint(&S); 4840 }, 4841 [](CodeGenFunction &) {}); 4842 // Emit: if (PreCond) - end. 4843 if (ContBlock) { 4844 CGF.EmitBranch(ContBlock); 4845 CGF.EmitBlock(ContBlock, true); 4846 } 4847 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4848 if (HasLastprivateClause) { 4849 CGF.EmitOMPLastprivateClauseFinal( 4850 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4851 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4852 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4853 (*LIP)->getType(), S.getLocStart()))); 4854 } 4855 }; 4856 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4857 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4858 const OMPTaskDataTy &Data) { 4859 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4860 OMPLoopScope PreInitScope(CGF, S); 4861 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4862 OutlinedFn, SharedsTy, 4863 CapturedStruct, IfCond, Data); 4864 }; 4865 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4866 CodeGen); 4867 }; 4868 if (Data.Nogroup) { 4869 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4870 } else { 4871 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4872 *this, 4873 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4874 PrePostActionTy &Action) { 4875 Action.Enter(CGF); 4876 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4877 Data); 4878 }, 4879 S.getLocStart()); 4880 } 4881 } 4882 4883 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4884 EmitOMPTaskLoopBasedDirective(S); 4885 } 4886 4887 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4888 const OMPTaskLoopSimdDirective &S) { 4889 EmitOMPTaskLoopBasedDirective(S); 4890 } 4891 4892 // Generate the instructions for '#pragma omp target update' directive. 4893 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4894 const OMPTargetUpdateDirective &S) { 4895 // If we don't have target devices, don't bother emitting the data mapping 4896 // code. 4897 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4898 return; 4899 4900 // Check if we have any if clause associated with the directive. 4901 const Expr *IfCond = nullptr; 4902 if (auto *C = S.getSingleClause<OMPIfClause>()) 4903 IfCond = C->getCondition(); 4904 4905 // Check if we have any device clause associated with the directive. 4906 const Expr *Device = nullptr; 4907 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4908 Device = C->getDevice(); 4909 4910 OMPLexicalScope Scope(*this, S, OMPD_task); 4911 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4912 } 4913 4914 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 4915 const OMPExecutableDirective &D) { 4916 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 4917 return; 4918 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 4919 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 4920 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 4921 } else { 4922 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 4923 for (const auto *E : LD->counters()) { 4924 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 4925 cast<DeclRefExpr>(E)->getDecl())) { 4926 // Emit only those that were not explicitly referenced in clauses. 4927 if (!CGF.LocalDeclMap.count(VD)) 4928 CGF.EmitVarDecl(*VD); 4929 } 4930 } 4931 } 4932 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 4933 } 4934 }; 4935 OMPSimdLexicalScope Scope(*this, D); 4936 CGM.getOpenMPRuntime().emitInlinedDirective( 4937 *this, 4938 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 4939 : D.getDirectiveKind(), 4940 CodeGen); 4941 } 4942