1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "llvm/IR/CallSite.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 namespace { 26 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 27 /// for captured expressions. 28 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 29 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 30 for (const auto *C : S.clauses()) { 31 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 32 if (const auto *PreInit = 33 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 } else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope( 57 CodeGenFunction &CGF, const OMPExecutableDirective &S, 58 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 59 const bool EmitPreInitStmt = true) 60 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 61 InlinedShareds(CGF) { 62 if (EmitPreInitStmt) 63 emitPreInitStmt(CGF, S); 64 if (!CapturedRegion.hasValue()) 65 return; 66 assert(S.hasAssociatedStmt() && 67 "Expected associated statement for inlined directive."); 68 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 69 for (const auto &C : CS->captures()) { 70 if (C.capturesVariable() || C.capturesVariableByCopy()) { 71 auto *VD = C.getCapturedVar(); 72 assert(VD == VD->getCanonicalDecl() && 73 "Canonical decl must be captured."); 74 DeclRefExpr DRE( 75 CGF.getContext(), const_cast<VarDecl *>(VD), 76 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 77 InlinedShareds.isGlobalVarCaptured(VD)), 78 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 79 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 80 return CGF.EmitLValue(&DRE).getAddress(); 81 }); 82 } 83 } 84 (void)InlinedShareds.Privatize(); 85 } 86 }; 87 88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 89 /// for captured expressions. 90 class OMPParallelScope final : public OMPLexicalScope { 91 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 92 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 93 return !(isOpenMPTargetExecutionDirective(Kind) || 94 isOpenMPLoopBoundSharingDirective(Kind)) && 95 isOpenMPParallelDirective(Kind); 96 } 97 98 public: 99 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 100 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 101 EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 116 EmitPreInitStmt(S)) {} 117 }; 118 119 /// Private scope for OpenMP loop-based directives, that supports capturing 120 /// of used expression from loop statement. 121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 122 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 123 CodeGenFunction::OMPMapVars PreCondVars; 124 for (const auto *E : S.counters()) { 125 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 126 (void)PreCondVars.setVarAddr( 127 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 128 } 129 (void)PreCondVars.apply(CGF); 130 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 131 for (const auto *I : PreInits->decls()) 132 CGF.EmitVarDecl(cast<VarDecl>(*I)); 133 } 134 PreCondVars.restore(CGF); 135 } 136 137 public: 138 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 139 : CodeGenFunction::RunCleanupsScope(CGF) { 140 emitPreInitStmt(CGF, S); 141 } 142 }; 143 144 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 145 CodeGenFunction::OMPPrivateScope InlinedShareds; 146 147 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 148 return CGF.LambdaCaptureFields.lookup(VD) || 149 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 150 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 151 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 152 } 153 154 public: 155 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 156 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 157 InlinedShareds(CGF) { 158 for (const auto *C : S.clauses()) { 159 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 160 if (const auto *PreInit = 161 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 162 for (const auto *I : PreInit->decls()) { 163 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 164 CGF.EmitVarDecl(cast<VarDecl>(*I)); 165 } else { 166 CodeGenFunction::AutoVarEmission Emission = 167 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 168 CGF.EmitAutoVarCleanups(Emission); 169 } 170 } 171 } 172 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 173 for (const Expr *E : UDP->varlists()) { 174 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 175 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 176 CGF.EmitVarDecl(*OED); 177 } 178 } 179 } 180 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 181 CGF.EmitOMPPrivateClause(S, InlinedShareds); 182 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 183 if (const Expr *E = TG->getReductionRef()) 184 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 185 } 186 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 187 while (CS) { 188 for (auto &C : CS->captures()) { 189 if (C.capturesVariable() || C.capturesVariableByCopy()) { 190 auto *VD = C.getCapturedVar(); 191 assert(VD == VD->getCanonicalDecl() && 192 "Canonical decl must be captured."); 193 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 194 isCapturedVar(CGF, VD) || 195 (CGF.CapturedStmtInfo && 196 InlinedShareds.isGlobalVarCaptured(VD)), 197 VD->getType().getNonReferenceType(), VK_LValue, 198 C.getLocation()); 199 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 200 return CGF.EmitLValue(&DRE).getAddress(); 201 }); 202 } 203 } 204 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 205 } 206 (void)InlinedShareds.Privatize(); 207 } 208 }; 209 210 } // namespace 211 212 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 213 const OMPExecutableDirective &S, 214 const RegionCodeGenTy &CodeGen); 215 216 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 217 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 218 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 219 OrigVD = OrigVD->getCanonicalDecl(); 220 bool IsCaptured = 221 LambdaCaptureFields.lookup(OrigVD) || 222 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 223 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 224 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 225 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 226 return EmitLValue(&DRE); 227 } 228 } 229 return EmitLValue(E); 230 } 231 232 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 233 ASTContext &C = getContext(); 234 llvm::Value *Size = nullptr; 235 auto SizeInChars = C.getTypeSizeInChars(Ty); 236 if (SizeInChars.isZero()) { 237 // getTypeSizeInChars() returns 0 for a VLA. 238 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 239 VlaSizePair VlaSize = getVLASize(VAT); 240 Ty = VlaSize.Type; 241 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 242 : VlaSize.NumElts; 243 } 244 SizeInChars = C.getTypeSizeInChars(Ty); 245 if (SizeInChars.isZero()) 246 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 247 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 248 } 249 return CGM.getSize(SizeInChars); 250 } 251 252 void CodeGenFunction::GenerateOpenMPCapturedVars( 253 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 254 const RecordDecl *RD = S.getCapturedRecordDecl(); 255 auto CurField = RD->field_begin(); 256 auto CurCap = S.captures().begin(); 257 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 258 E = S.capture_init_end(); 259 I != E; ++I, ++CurField, ++CurCap) { 260 if (CurField->hasCapturedVLAType()) { 261 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 262 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 263 CapturedVars.push_back(Val); 264 } else if (CurCap->capturesThis()) { 265 CapturedVars.push_back(CXXThisValue); 266 } else if (CurCap->capturesVariableByCopy()) { 267 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 268 269 // If the field is not a pointer, we need to save the actual value 270 // and load it as a void pointer. 271 if (!CurField->getType()->isAnyPointerType()) { 272 ASTContext &Ctx = getContext(); 273 Address DstAddr = CreateMemTemp( 274 Ctx.getUIntPtrType(), 275 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 276 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 277 278 llvm::Value *SrcAddrVal = EmitScalarConversion( 279 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 280 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 281 LValue SrcLV = 282 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 283 284 // Store the value using the source type pointer. 285 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 286 287 // Load the value using the destination type pointer. 288 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 289 } 290 CapturedVars.push_back(CV); 291 } else { 292 assert(CurCap->capturesVariable() && "Expected capture by reference."); 293 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 294 } 295 } 296 } 297 298 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 299 QualType DstType, StringRef Name, 300 LValue AddrLV, 301 bool isReferenceType = false) { 302 ASTContext &Ctx = CGF.getContext(); 303 304 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 305 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 306 Ctx.getPointerType(DstType), Loc); 307 Address TmpAddr = 308 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 309 .getAddress(); 310 311 // If we are dealing with references we need to return the address of the 312 // reference instead of the reference of the value. 313 if (isReferenceType) { 314 QualType RefType = Ctx.getLValueReferenceType(DstType); 315 llvm::Value *RefVal = TmpAddr.getPointer(); 316 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 317 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 318 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 319 } 320 321 return TmpAddr; 322 } 323 324 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 325 if (T->isLValueReferenceType()) 326 return C.getLValueReferenceType( 327 getCanonicalParamType(C, T.getNonReferenceType()), 328 /*SpelledAsLValue=*/false); 329 if (T->isPointerType()) 330 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 331 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 332 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 333 return getCanonicalParamType(C, VLA->getElementType()); 334 if (!A->isVariablyModifiedType()) 335 return C.getCanonicalType(T); 336 } 337 return C.getCanonicalParamType(T); 338 } 339 340 namespace { 341 /// Contains required data for proper outlined function codegen. 342 struct FunctionOptions { 343 /// Captured statement for which the function is generated. 344 const CapturedStmt *S = nullptr; 345 /// true if cast to/from UIntPtr is required for variables captured by 346 /// value. 347 const bool UIntPtrCastRequired = true; 348 /// true if only casted arguments must be registered as local args or VLA 349 /// sizes. 350 const bool RegisterCastedArgsOnly = false; 351 /// Name of the generated function. 352 const StringRef FunctionName; 353 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 354 bool RegisterCastedArgsOnly, 355 StringRef FunctionName) 356 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 357 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 358 FunctionName(FunctionName) {} 359 }; 360 } 361 362 static llvm::Function *emitOutlinedFunctionPrologue( 363 CodeGenFunction &CGF, FunctionArgList &Args, 364 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 365 &LocalAddrs, 366 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 367 &VLASizes, 368 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 369 const CapturedDecl *CD = FO.S->getCapturedDecl(); 370 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 371 assert(CD->hasBody() && "missing CapturedDecl body"); 372 373 CXXThisValue = nullptr; 374 // Build the argument list. 375 CodeGenModule &CGM = CGF.CGM; 376 ASTContext &Ctx = CGM.getContext(); 377 FunctionArgList TargetArgs; 378 Args.append(CD->param_begin(), 379 std::next(CD->param_begin(), CD->getContextParamPosition())); 380 TargetArgs.append( 381 CD->param_begin(), 382 std::next(CD->param_begin(), CD->getContextParamPosition())); 383 auto I = FO.S->captures().begin(); 384 FunctionDecl *DebugFunctionDecl = nullptr; 385 if (!FO.UIntPtrCastRequired) { 386 FunctionProtoType::ExtProtoInfo EPI; 387 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 388 DebugFunctionDecl = FunctionDecl::Create( 389 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 390 SourceLocation(), DeclarationName(), FunctionTy, 391 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 392 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 393 } 394 for (const FieldDecl *FD : RD->fields()) { 395 QualType ArgType = FD->getType(); 396 IdentifierInfo *II = nullptr; 397 VarDecl *CapVar = nullptr; 398 399 // If this is a capture by copy and the type is not a pointer, the outlined 400 // function argument type should be uintptr and the value properly casted to 401 // uintptr. This is necessary given that the runtime library is only able to 402 // deal with pointers. We can pass in the same way the VLA type sizes to the 403 // outlined function. 404 if (FO.UIntPtrCastRequired && 405 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 406 I->capturesVariableArrayType())) 407 ArgType = Ctx.getUIntPtrType(); 408 409 if (I->capturesVariable() || I->capturesVariableByCopy()) { 410 CapVar = I->getCapturedVar(); 411 II = CapVar->getIdentifier(); 412 } else if (I->capturesThis()) { 413 II = &Ctx.Idents.get("this"); 414 } else { 415 assert(I->capturesVariableArrayType()); 416 II = &Ctx.Idents.get("vla"); 417 } 418 if (ArgType->isVariablyModifiedType()) 419 ArgType = getCanonicalParamType(Ctx, ArgType); 420 VarDecl *Arg; 421 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 422 Arg = ParmVarDecl::Create( 423 Ctx, DebugFunctionDecl, 424 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 425 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 426 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 427 } else { 428 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 429 II, ArgType, ImplicitParamDecl::Other); 430 } 431 Args.emplace_back(Arg); 432 // Do not cast arguments if we emit function with non-original types. 433 TargetArgs.emplace_back( 434 FO.UIntPtrCastRequired 435 ? Arg 436 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 437 ++I; 438 } 439 Args.append( 440 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 441 CD->param_end()); 442 TargetArgs.append( 443 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 444 CD->param_end()); 445 446 // Create the function declaration. 447 const CGFunctionInfo &FuncInfo = 448 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 449 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 450 451 auto *F = 452 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 453 FO.FunctionName, &CGM.getModule()); 454 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 455 if (CD->isNothrow()) 456 F->setDoesNotThrow(); 457 F->setDoesNotRecurse(); 458 459 // Generate the function. 460 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 461 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 462 unsigned Cnt = CD->getContextParamPosition(); 463 I = FO.S->captures().begin(); 464 for (const FieldDecl *FD : RD->fields()) { 465 // Do not map arguments if we emit function with non-original types. 466 Address LocalAddr(Address::invalid()); 467 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 468 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 469 TargetArgs[Cnt]); 470 } else { 471 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 472 } 473 // If we are capturing a pointer by copy we don't need to do anything, just 474 // use the value that we get from the arguments. 475 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 476 const VarDecl *CurVD = I->getCapturedVar(); 477 // If the variable is a reference we need to materialize it here. 478 if (CurVD->getType()->isReferenceType()) { 479 Address RefAddr = CGF.CreateMemTemp( 480 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 481 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 482 /*Volatile=*/false, CurVD->getType()); 483 LocalAddr = RefAddr; 484 } 485 if (!FO.RegisterCastedArgsOnly) 486 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 487 ++Cnt; 488 ++I; 489 continue; 490 } 491 492 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 493 AlignmentSource::Decl); 494 if (FD->hasCapturedVLAType()) { 495 if (FO.UIntPtrCastRequired) { 496 ArgLVal = CGF.MakeAddrLValue( 497 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 498 Args[Cnt]->getName(), ArgLVal), 499 FD->getType(), AlignmentSource::Decl); 500 } 501 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 502 const VariableArrayType *VAT = FD->getCapturedVLAType(); 503 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 504 } else if (I->capturesVariable()) { 505 const VarDecl *Var = I->getCapturedVar(); 506 QualType VarTy = Var->getType(); 507 Address ArgAddr = ArgLVal.getAddress(); 508 if (!VarTy->isReferenceType()) { 509 if (ArgLVal.getType()->isLValueReferenceType()) { 510 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 511 } else if (!VarTy->isVariablyModifiedType() || 512 !VarTy->isPointerType()) { 513 assert(ArgLVal.getType()->isPointerType()); 514 ArgAddr = CGF.EmitLoadOfPointer( 515 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 516 } 517 } 518 if (!FO.RegisterCastedArgsOnly) { 519 LocalAddrs.insert( 520 {Args[Cnt], 521 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 522 } 523 } else if (I->capturesVariableByCopy()) { 524 assert(!FD->getType()->isAnyPointerType() && 525 "Not expecting a captured pointer."); 526 const VarDecl *Var = I->getCapturedVar(); 527 QualType VarTy = Var->getType(); 528 LocalAddrs.insert( 529 {Args[Cnt], 530 {Var, FO.UIntPtrCastRequired 531 ? castValueFromUintptr(CGF, I->getLocation(), 532 FD->getType(), Args[Cnt]->getName(), 533 ArgLVal, VarTy->isReferenceType()) 534 : ArgLVal.getAddress()}}); 535 } else { 536 // If 'this' is captured, load it into CXXThisValue. 537 assert(I->capturesThis()); 538 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 539 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 540 } 541 ++Cnt; 542 ++I; 543 } 544 545 return F; 546 } 547 548 llvm::Function * 549 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 550 assert( 551 CapturedStmtInfo && 552 "CapturedStmtInfo should be set when generating the captured function"); 553 const CapturedDecl *CD = S.getCapturedDecl(); 554 // Build the argument list. 555 bool NeedWrapperFunction = 556 getDebugInfo() && 557 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 558 FunctionArgList Args; 559 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 560 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 561 SmallString<256> Buffer; 562 llvm::raw_svector_ostream Out(Buffer); 563 Out << CapturedStmtInfo->getHelperName(); 564 if (NeedWrapperFunction) 565 Out << "_debug__"; 566 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 567 Out.str()); 568 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 569 VLASizes, CXXThisValue, FO); 570 for (const auto &LocalAddrPair : LocalAddrs) { 571 if (LocalAddrPair.second.first) { 572 setAddrOfLocalVar(LocalAddrPair.second.first, 573 LocalAddrPair.second.second); 574 } 575 } 576 for (const auto &VLASizePair : VLASizes) 577 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 578 PGO.assignRegionCounters(GlobalDecl(CD), F); 579 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 580 FinishFunction(CD->getBodyRBrace()); 581 if (!NeedWrapperFunction) 582 return F; 583 584 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 585 /*RegisterCastedArgsOnly=*/true, 586 CapturedStmtInfo->getHelperName()); 587 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 588 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 589 Args.clear(); 590 LocalAddrs.clear(); 591 VLASizes.clear(); 592 llvm::Function *WrapperF = 593 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 594 WrapperCGF.CXXThisValue, WrapperFO); 595 llvm::SmallVector<llvm::Value *, 4> CallArgs; 596 for (const auto *Arg : Args) { 597 llvm::Value *CallArg; 598 auto I = LocalAddrs.find(Arg); 599 if (I != LocalAddrs.end()) { 600 LValue LV = WrapperCGF.MakeAddrLValue( 601 I->second.second, 602 I->second.first ? I->second.first->getType() : Arg->getType(), 603 AlignmentSource::Decl); 604 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 605 } else { 606 auto EI = VLASizes.find(Arg); 607 if (EI != VLASizes.end()) { 608 CallArg = EI->second.second; 609 } else { 610 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 611 Arg->getType(), 612 AlignmentSource::Decl); 613 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 614 } 615 } 616 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 617 } 618 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 619 F, CallArgs); 620 WrapperCGF.FinishFunction(); 621 return WrapperF; 622 } 623 624 //===----------------------------------------------------------------------===// 625 // OpenMP Directive Emission 626 //===----------------------------------------------------------------------===// 627 void CodeGenFunction::EmitOMPAggregateAssign( 628 Address DestAddr, Address SrcAddr, QualType OriginalType, 629 const llvm::function_ref<void(Address, Address)> CopyGen) { 630 // Perform element-by-element initialization. 631 QualType ElementTy; 632 633 // Drill down to the base element type on both arrays. 634 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 635 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 636 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 637 638 llvm::Value *SrcBegin = SrcAddr.getPointer(); 639 llvm::Value *DestBegin = DestAddr.getPointer(); 640 // Cast from pointer to array type to pointer to single element. 641 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 642 // The basic structure here is a while-do loop. 643 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 644 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 645 llvm::Value *IsEmpty = 646 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 647 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 648 649 // Enter the loop body, making that address the current address. 650 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 651 EmitBlock(BodyBB); 652 653 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 654 655 llvm::PHINode *SrcElementPHI = 656 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 657 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 658 Address SrcElementCurrent = 659 Address(SrcElementPHI, 660 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 661 662 llvm::PHINode *DestElementPHI = 663 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 664 DestElementPHI->addIncoming(DestBegin, EntryBB); 665 Address DestElementCurrent = 666 Address(DestElementPHI, 667 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 668 669 // Emit copy. 670 CopyGen(DestElementCurrent, SrcElementCurrent); 671 672 // Shift the address forward by one element. 673 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 674 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 675 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 676 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 677 // Check whether we've reached the end. 678 llvm::Value *Done = 679 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 680 Builder.CreateCondBr(Done, DoneBB, BodyBB); 681 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 682 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 683 684 // Done. 685 EmitBlock(DoneBB, /*IsFinished=*/true); 686 } 687 688 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 689 Address SrcAddr, const VarDecl *DestVD, 690 const VarDecl *SrcVD, const Expr *Copy) { 691 if (OriginalType->isArrayType()) { 692 const auto *BO = dyn_cast<BinaryOperator>(Copy); 693 if (BO && BO->getOpcode() == BO_Assign) { 694 // Perform simple memcpy for simple copying. 695 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 696 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 697 EmitAggregateAssign(Dest, Src, OriginalType); 698 } else { 699 // For arrays with complex element types perform element by element 700 // copying. 701 EmitOMPAggregateAssign( 702 DestAddr, SrcAddr, OriginalType, 703 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 704 // Working with the single array element, so have to remap 705 // destination and source variables to corresponding array 706 // elements. 707 CodeGenFunction::OMPPrivateScope Remap(*this); 708 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 709 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 710 (void)Remap.Privatize(); 711 EmitIgnoredExpr(Copy); 712 }); 713 } 714 } else { 715 // Remap pseudo source variable to private copy. 716 CodeGenFunction::OMPPrivateScope Remap(*this); 717 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 718 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 719 (void)Remap.Privatize(); 720 // Emit copying of the whole variable. 721 EmitIgnoredExpr(Copy); 722 } 723 } 724 725 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 726 OMPPrivateScope &PrivateScope) { 727 if (!HaveInsertPoint()) 728 return false; 729 bool FirstprivateIsLastprivate = false; 730 llvm::DenseSet<const VarDecl *> Lastprivates; 731 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 732 for (const auto *D : C->varlists()) 733 Lastprivates.insert( 734 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 735 } 736 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 737 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 738 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 739 // Force emission of the firstprivate copy if the directive does not emit 740 // outlined function, like omp for, omp simd, omp distribute etc. 741 bool MustEmitFirstprivateCopy = 742 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 743 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 744 auto IRef = C->varlist_begin(); 745 auto InitsRef = C->inits().begin(); 746 for (const Expr *IInit : C->private_copies()) { 747 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 748 bool ThisFirstprivateIsLastprivate = 749 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 750 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 751 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 752 !FD->getType()->isReferenceType()) { 753 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 754 ++IRef; 755 ++InitsRef; 756 continue; 757 } 758 FirstprivateIsLastprivate = 759 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 760 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 761 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 762 const auto *VDInit = 763 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 764 bool IsRegistered; 765 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 766 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 767 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 768 LValue OriginalLVal = EmitLValue(&DRE); 769 QualType Type = VD->getType(); 770 if (Type->isArrayType()) { 771 // Emit VarDecl with copy init for arrays. 772 // Get the address of the original variable captured in current 773 // captured region. 774 IsRegistered = PrivateScope.addPrivate( 775 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 776 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 777 const Expr *Init = VD->getInit(); 778 if (!isa<CXXConstructExpr>(Init) || 779 isTrivialInitializer(Init)) { 780 // Perform simple memcpy. 781 LValue Dest = 782 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 783 EmitAggregateAssign(Dest, OriginalLVal, Type); 784 } else { 785 EmitOMPAggregateAssign( 786 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 787 Type, 788 [this, VDInit, Init](Address DestElement, 789 Address SrcElement) { 790 // Clean up any temporaries needed by the 791 // initialization. 792 RunCleanupsScope InitScope(*this); 793 // Emit initialization for single element. 794 setAddrOfLocalVar(VDInit, SrcElement); 795 EmitAnyExprToMem(Init, DestElement, 796 Init->getType().getQualifiers(), 797 /*IsInitializer*/ false); 798 LocalDeclMap.erase(VDInit); 799 }); 800 } 801 EmitAutoVarCleanups(Emission); 802 return Emission.getAllocatedAddress(); 803 }); 804 } else { 805 Address OriginalAddr = OriginalLVal.getAddress(); 806 IsRegistered = PrivateScope.addPrivate( 807 OrigVD, [this, VDInit, OriginalAddr, VD]() { 808 // Emit private VarDecl with copy init. 809 // Remap temp VDInit variable to the address of the original 810 // variable (for proper handling of captured global variables). 811 setAddrOfLocalVar(VDInit, OriginalAddr); 812 EmitDecl(*VD); 813 LocalDeclMap.erase(VDInit); 814 return GetAddrOfLocalVar(VD); 815 }); 816 } 817 assert(IsRegistered && 818 "firstprivate var already registered as private"); 819 // Silence the warning about unused variable. 820 (void)IsRegistered; 821 } 822 ++IRef; 823 ++InitsRef; 824 } 825 } 826 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 827 } 828 829 void CodeGenFunction::EmitOMPPrivateClause( 830 const OMPExecutableDirective &D, 831 CodeGenFunction::OMPPrivateScope &PrivateScope) { 832 if (!HaveInsertPoint()) 833 return; 834 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 835 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 836 auto IRef = C->varlist_begin(); 837 for (const Expr *IInit : C->private_copies()) { 838 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 839 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 840 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 841 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 842 // Emit private VarDecl with copy init. 843 EmitDecl(*VD); 844 return GetAddrOfLocalVar(VD); 845 }); 846 assert(IsRegistered && "private var already registered as private"); 847 // Silence the warning about unused variable. 848 (void)IsRegistered; 849 } 850 ++IRef; 851 } 852 } 853 } 854 855 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 856 if (!HaveInsertPoint()) 857 return false; 858 // threadprivate_var1 = master_threadprivate_var1; 859 // operator=(threadprivate_var2, master_threadprivate_var2); 860 // ... 861 // __kmpc_barrier(&loc, global_tid); 862 llvm::DenseSet<const VarDecl *> CopiedVars; 863 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 864 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 865 auto IRef = C->varlist_begin(); 866 auto ISrcRef = C->source_exprs().begin(); 867 auto IDestRef = C->destination_exprs().begin(); 868 for (const Expr *AssignOp : C->assignment_ops()) { 869 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 870 QualType Type = VD->getType(); 871 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 872 // Get the address of the master variable. If we are emitting code with 873 // TLS support, the address is passed from the master as field in the 874 // captured declaration. 875 Address MasterAddr = Address::invalid(); 876 if (getLangOpts().OpenMPUseTLS && 877 getContext().getTargetInfo().isTLSSupported()) { 878 assert(CapturedStmtInfo->lookup(VD) && 879 "Copyin threadprivates should have been captured!"); 880 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 881 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 882 MasterAddr = EmitLValue(&DRE).getAddress(); 883 LocalDeclMap.erase(VD); 884 } else { 885 MasterAddr = 886 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 887 : CGM.GetAddrOfGlobal(VD), 888 getContext().getDeclAlign(VD)); 889 } 890 // Get the address of the threadprivate variable. 891 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 892 if (CopiedVars.size() == 1) { 893 // At first check if current thread is a master thread. If it is, no 894 // need to copy data. 895 CopyBegin = createBasicBlock("copyin.not.master"); 896 CopyEnd = createBasicBlock("copyin.not.master.end"); 897 Builder.CreateCondBr( 898 Builder.CreateICmpNE( 899 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 900 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 901 CGM.IntPtrTy)), 902 CopyBegin, CopyEnd); 903 EmitBlock(CopyBegin); 904 } 905 const auto *SrcVD = 906 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 907 const auto *DestVD = 908 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 909 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 910 } 911 ++IRef; 912 ++ISrcRef; 913 ++IDestRef; 914 } 915 } 916 if (CopyEnd) { 917 // Exit out of copying procedure for non-master thread. 918 EmitBlock(CopyEnd, /*IsFinished=*/true); 919 return true; 920 } 921 return false; 922 } 923 924 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 925 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 926 if (!HaveInsertPoint()) 927 return false; 928 bool HasAtLeastOneLastprivate = false; 929 llvm::DenseSet<const VarDecl *> SIMDLCVs; 930 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 931 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 932 for (const Expr *C : LoopDirective->counters()) { 933 SIMDLCVs.insert( 934 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 935 } 936 } 937 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 938 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 939 HasAtLeastOneLastprivate = true; 940 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 941 !getLangOpts().OpenMPSimd) 942 break; 943 auto IRef = C->varlist_begin(); 944 auto IDestRef = C->destination_exprs().begin(); 945 for (const Expr *IInit : C->private_copies()) { 946 // Keep the address of the original variable for future update at the end 947 // of the loop. 948 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 949 // Taskloops do not require additional initialization, it is done in 950 // runtime support library. 951 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 952 const auto *DestVD = 953 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 954 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 955 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 956 /*RefersToEnclosingVariableOrCapture=*/ 957 CapturedStmtInfo->lookup(OrigVD) != nullptr, 958 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 959 return EmitLValue(&DRE).getAddress(); 960 }); 961 // Check if the variable is also a firstprivate: in this case IInit is 962 // not generated. Initialization of this variable will happen in codegen 963 // for 'firstprivate' clause. 964 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 965 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 966 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 967 // Emit private VarDecl with copy init. 968 EmitDecl(*VD); 969 return GetAddrOfLocalVar(VD); 970 }); 971 assert(IsRegistered && 972 "lastprivate var already registered as private"); 973 (void)IsRegistered; 974 } 975 } 976 ++IRef; 977 ++IDestRef; 978 } 979 } 980 return HasAtLeastOneLastprivate; 981 } 982 983 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 984 const OMPExecutableDirective &D, bool NoFinals, 985 llvm::Value *IsLastIterCond) { 986 if (!HaveInsertPoint()) 987 return; 988 // Emit following code: 989 // if (<IsLastIterCond>) { 990 // orig_var1 = private_orig_var1; 991 // ... 992 // orig_varn = private_orig_varn; 993 // } 994 llvm::BasicBlock *ThenBB = nullptr; 995 llvm::BasicBlock *DoneBB = nullptr; 996 if (IsLastIterCond) { 997 ThenBB = createBasicBlock(".omp.lastprivate.then"); 998 DoneBB = createBasicBlock(".omp.lastprivate.done"); 999 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1000 EmitBlock(ThenBB); 1001 } 1002 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1003 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1004 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1005 auto IC = LoopDirective->counters().begin(); 1006 for (const Expr *F : LoopDirective->finals()) { 1007 const auto *D = 1008 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1009 if (NoFinals) 1010 AlreadyEmittedVars.insert(D); 1011 else 1012 LoopCountersAndUpdates[D] = F; 1013 ++IC; 1014 } 1015 } 1016 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1017 auto IRef = C->varlist_begin(); 1018 auto ISrcRef = C->source_exprs().begin(); 1019 auto IDestRef = C->destination_exprs().begin(); 1020 for (const Expr *AssignOp : C->assignment_ops()) { 1021 const auto *PrivateVD = 1022 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1023 QualType Type = PrivateVD->getType(); 1024 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1025 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1026 // If lastprivate variable is a loop control variable for loop-based 1027 // directive, update its value before copyin back to original 1028 // variable. 1029 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1030 EmitIgnoredExpr(FinalExpr); 1031 const auto *SrcVD = 1032 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1033 const auto *DestVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1035 // Get the address of the original variable. 1036 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1037 // Get the address of the private variable. 1038 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1039 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1040 PrivateAddr = 1041 Address(Builder.CreateLoad(PrivateAddr), 1042 getNaturalTypeAlignment(RefTy->getPointeeType())); 1043 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1044 } 1045 ++IRef; 1046 ++ISrcRef; 1047 ++IDestRef; 1048 } 1049 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1050 EmitIgnoredExpr(PostUpdate); 1051 } 1052 if (IsLastIterCond) 1053 EmitBlock(DoneBB, /*IsFinished=*/true); 1054 } 1055 1056 void CodeGenFunction::EmitOMPReductionClauseInit( 1057 const OMPExecutableDirective &D, 1058 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1059 if (!HaveInsertPoint()) 1060 return; 1061 SmallVector<const Expr *, 4> Shareds; 1062 SmallVector<const Expr *, 4> Privates; 1063 SmallVector<const Expr *, 4> ReductionOps; 1064 SmallVector<const Expr *, 4> LHSs; 1065 SmallVector<const Expr *, 4> RHSs; 1066 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1067 auto IPriv = C->privates().begin(); 1068 auto IRed = C->reduction_ops().begin(); 1069 auto ILHS = C->lhs_exprs().begin(); 1070 auto IRHS = C->rhs_exprs().begin(); 1071 for (const Expr *Ref : C->varlists()) { 1072 Shareds.emplace_back(Ref); 1073 Privates.emplace_back(*IPriv); 1074 ReductionOps.emplace_back(*IRed); 1075 LHSs.emplace_back(*ILHS); 1076 RHSs.emplace_back(*IRHS); 1077 std::advance(IPriv, 1); 1078 std::advance(IRed, 1); 1079 std::advance(ILHS, 1); 1080 std::advance(IRHS, 1); 1081 } 1082 } 1083 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1084 unsigned Count = 0; 1085 auto ILHS = LHSs.begin(); 1086 auto IRHS = RHSs.begin(); 1087 auto IPriv = Privates.begin(); 1088 for (const Expr *IRef : Shareds) { 1089 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1090 // Emit private VarDecl with reduction init. 1091 RedCG.emitSharedLValue(*this, Count); 1092 RedCG.emitAggregateType(*this, Count); 1093 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1094 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1095 RedCG.getSharedLValue(Count), 1096 [&Emission](CodeGenFunction &CGF) { 1097 CGF.EmitAutoVarInit(Emission); 1098 return true; 1099 }); 1100 EmitAutoVarCleanups(Emission); 1101 Address BaseAddr = RedCG.adjustPrivateAddress( 1102 *this, Count, Emission.getAllocatedAddress()); 1103 bool IsRegistered = PrivateScope.addPrivate( 1104 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1105 assert(IsRegistered && "private var already registered as private"); 1106 // Silence the warning about unused variable. 1107 (void)IsRegistered; 1108 1109 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1110 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1111 QualType Type = PrivateVD->getType(); 1112 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1113 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1114 // Store the address of the original variable associated with the LHS 1115 // implicit variable. 1116 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1117 return RedCG.getSharedLValue(Count).getAddress(); 1118 }); 1119 PrivateScope.addPrivate( 1120 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1121 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1122 isa<ArraySubscriptExpr>(IRef)) { 1123 // Store the address of the original variable associated with the LHS 1124 // implicit variable. 1125 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1126 return RedCG.getSharedLValue(Count).getAddress(); 1127 }); 1128 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1129 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1130 ConvertTypeForMem(RHSVD->getType()), 1131 "rhs.begin"); 1132 }); 1133 } else { 1134 QualType Type = PrivateVD->getType(); 1135 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1136 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1137 // Store the address of the original variable associated with the LHS 1138 // implicit variable. 1139 if (IsArray) { 1140 OriginalAddr = Builder.CreateElementBitCast( 1141 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1142 } 1143 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1144 PrivateScope.addPrivate( 1145 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1146 return IsArray 1147 ? Builder.CreateElementBitCast( 1148 GetAddrOfLocalVar(PrivateVD), 1149 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1150 : GetAddrOfLocalVar(PrivateVD); 1151 }); 1152 } 1153 ++ILHS; 1154 ++IRHS; 1155 ++IPriv; 1156 ++Count; 1157 } 1158 } 1159 1160 void CodeGenFunction::EmitOMPReductionClauseFinal( 1161 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1162 if (!HaveInsertPoint()) 1163 return; 1164 llvm::SmallVector<const Expr *, 8> Privates; 1165 llvm::SmallVector<const Expr *, 8> LHSExprs; 1166 llvm::SmallVector<const Expr *, 8> RHSExprs; 1167 llvm::SmallVector<const Expr *, 8> ReductionOps; 1168 bool HasAtLeastOneReduction = false; 1169 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1170 HasAtLeastOneReduction = true; 1171 Privates.append(C->privates().begin(), C->privates().end()); 1172 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1173 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1174 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1175 } 1176 if (HasAtLeastOneReduction) { 1177 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1178 isOpenMPParallelDirective(D.getDirectiveKind()) || 1179 ReductionKind == OMPD_simd; 1180 bool SimpleReduction = ReductionKind == OMPD_simd; 1181 // Emit nowait reduction if nowait clause is present or directive is a 1182 // parallel directive (it always has implicit barrier). 1183 CGM.getOpenMPRuntime().emitReduction( 1184 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1185 {WithNowait, SimpleReduction, ReductionKind}); 1186 } 1187 } 1188 1189 static void emitPostUpdateForReductionClause( 1190 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1191 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1192 if (!CGF.HaveInsertPoint()) 1193 return; 1194 llvm::BasicBlock *DoneBB = nullptr; 1195 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1196 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1197 if (!DoneBB) { 1198 if (llvm::Value *Cond = CondGen(CGF)) { 1199 // If the first post-update expression is found, emit conditional 1200 // block if it was requested. 1201 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1202 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1203 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1204 CGF.EmitBlock(ThenBB); 1205 } 1206 } 1207 CGF.EmitIgnoredExpr(PostUpdate); 1208 } 1209 } 1210 if (DoneBB) 1211 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1212 } 1213 1214 namespace { 1215 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1216 /// parallel function. This is necessary for combined constructs such as 1217 /// 'distribute parallel for' 1218 typedef llvm::function_ref<void(CodeGenFunction &, 1219 const OMPExecutableDirective &, 1220 llvm::SmallVectorImpl<llvm::Value *> &)> 1221 CodeGenBoundParametersTy; 1222 } // anonymous namespace 1223 1224 static void emitCommonOMPParallelDirective( 1225 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1226 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1227 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1228 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1229 llvm::Value *OutlinedFn = 1230 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1231 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1232 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1233 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1234 llvm::Value *NumThreads = 1235 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1236 /*IgnoreResultAssign=*/true); 1237 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1238 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1239 } 1240 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1241 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1242 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1243 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1244 } 1245 const Expr *IfCond = nullptr; 1246 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1247 if (C->getNameModifier() == OMPD_unknown || 1248 C->getNameModifier() == OMPD_parallel) { 1249 IfCond = C->getCondition(); 1250 break; 1251 } 1252 } 1253 1254 OMPParallelScope Scope(CGF, S); 1255 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1256 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1257 // lower and upper bounds with the pragma 'for' chunking mechanism. 1258 // The following lambda takes care of appending the lower and upper bound 1259 // parameters when necessary 1260 CodeGenBoundParameters(CGF, S, CapturedVars); 1261 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1262 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1263 CapturedVars, IfCond); 1264 } 1265 1266 static void emitEmptyBoundParameters(CodeGenFunction &, 1267 const OMPExecutableDirective &, 1268 llvm::SmallVectorImpl<llvm::Value *> &) {} 1269 1270 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1271 // Emit parallel region as a standalone region. 1272 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1273 Action.Enter(CGF); 1274 OMPPrivateScope PrivateScope(CGF); 1275 bool Copyins = CGF.EmitOMPCopyinClause(S); 1276 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1277 if (Copyins) { 1278 // Emit implicit barrier to synchronize threads and avoid data races on 1279 // propagation master's thread values of threadprivate variables to local 1280 // instances of that variables of all other implicit threads. 1281 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1282 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1283 /*ForceSimpleCall=*/true); 1284 } 1285 CGF.EmitOMPPrivateClause(S, PrivateScope); 1286 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1287 (void)PrivateScope.Privatize(); 1288 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1289 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1290 }; 1291 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1292 emitEmptyBoundParameters); 1293 emitPostUpdateForReductionClause(*this, S, 1294 [](CodeGenFunction &) { return nullptr; }); 1295 } 1296 1297 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1298 JumpDest LoopExit) { 1299 RunCleanupsScope BodyScope(*this); 1300 // Update counters values on current iteration. 1301 for (const Expr *UE : D.updates()) 1302 EmitIgnoredExpr(UE); 1303 // Update the linear variables. 1304 // In distribute directives only loop counters may be marked as linear, no 1305 // need to generate the code for them. 1306 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1307 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1308 for (const Expr *UE : C->updates()) 1309 EmitIgnoredExpr(UE); 1310 } 1311 } 1312 1313 // On a continue in the body, jump to the end. 1314 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1315 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1316 // Emit loop body. 1317 EmitStmt(D.getBody()); 1318 // The end (updates/cleanups). 1319 EmitBlock(Continue.getBlock()); 1320 BreakContinueStack.pop_back(); 1321 } 1322 1323 void CodeGenFunction::EmitOMPInnerLoop( 1324 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1325 const Expr *IncExpr, 1326 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1327 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1328 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1329 1330 // Start the loop with a block that tests the condition. 1331 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1332 EmitBlock(CondBlock); 1333 const SourceRange R = S.getSourceRange(); 1334 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1335 SourceLocToDebugLoc(R.getEnd())); 1336 1337 // If there are any cleanups between here and the loop-exit scope, 1338 // create a block to stage a loop exit along. 1339 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1340 if (RequiresCleanup) 1341 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1342 1343 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1344 1345 // Emit condition. 1346 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1347 if (ExitBlock != LoopExit.getBlock()) { 1348 EmitBlock(ExitBlock); 1349 EmitBranchThroughCleanup(LoopExit); 1350 } 1351 1352 EmitBlock(LoopBody); 1353 incrementProfileCounter(&S); 1354 1355 // Create a block for the increment. 1356 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1357 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1358 1359 BodyGen(*this); 1360 1361 // Emit "IV = IV + 1" and a back-edge to the condition block. 1362 EmitBlock(Continue.getBlock()); 1363 EmitIgnoredExpr(IncExpr); 1364 PostIncGen(*this); 1365 BreakContinueStack.pop_back(); 1366 EmitBranch(CondBlock); 1367 LoopStack.pop(); 1368 // Emit the fall-through block. 1369 EmitBlock(LoopExit.getBlock()); 1370 } 1371 1372 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1373 if (!HaveInsertPoint()) 1374 return false; 1375 // Emit inits for the linear variables. 1376 bool HasLinears = false; 1377 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1378 for (const Expr *Init : C->inits()) { 1379 HasLinears = true; 1380 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1381 if (const auto *Ref = 1382 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1383 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1384 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1385 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1386 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1387 VD->getInit()->getType(), VK_LValue, 1388 VD->getInit()->getExprLoc()); 1389 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1390 VD->getType()), 1391 /*capturedByInit=*/false); 1392 EmitAutoVarCleanups(Emission); 1393 } else { 1394 EmitVarDecl(*VD); 1395 } 1396 } 1397 // Emit the linear steps for the linear clauses. 1398 // If a step is not constant, it is pre-calculated before the loop. 1399 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1400 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1401 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1402 // Emit calculation of the linear step. 1403 EmitIgnoredExpr(CS); 1404 } 1405 } 1406 return HasLinears; 1407 } 1408 1409 void CodeGenFunction::EmitOMPLinearClauseFinal( 1410 const OMPLoopDirective &D, 1411 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1412 if (!HaveInsertPoint()) 1413 return; 1414 llvm::BasicBlock *DoneBB = nullptr; 1415 // Emit the final values of the linear variables. 1416 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1417 auto IC = C->varlist_begin(); 1418 for (const Expr *F : C->finals()) { 1419 if (!DoneBB) { 1420 if (llvm::Value *Cond = CondGen(*this)) { 1421 // If the first post-update expression is found, emit conditional 1422 // block if it was requested. 1423 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1424 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1425 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1426 EmitBlock(ThenBB); 1427 } 1428 } 1429 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1430 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1431 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1432 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1433 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1434 CodeGenFunction::OMPPrivateScope VarScope(*this); 1435 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1436 (void)VarScope.Privatize(); 1437 EmitIgnoredExpr(F); 1438 ++IC; 1439 } 1440 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1441 EmitIgnoredExpr(PostUpdate); 1442 } 1443 if (DoneBB) 1444 EmitBlock(DoneBB, /*IsFinished=*/true); 1445 } 1446 1447 static void emitAlignedClause(CodeGenFunction &CGF, 1448 const OMPExecutableDirective &D) { 1449 if (!CGF.HaveInsertPoint()) 1450 return; 1451 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1452 unsigned ClauseAlignment = 0; 1453 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1454 auto *AlignmentCI = 1455 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1456 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1457 } 1458 for (const Expr *E : Clause->varlists()) { 1459 unsigned Alignment = ClauseAlignment; 1460 if (Alignment == 0) { 1461 // OpenMP [2.8.1, Description] 1462 // If no optional parameter is specified, implementation-defined default 1463 // alignments for SIMD instructions on the target platforms are assumed. 1464 Alignment = 1465 CGF.getContext() 1466 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1467 E->getType()->getPointeeType())) 1468 .getQuantity(); 1469 } 1470 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1471 "alignment is not power of 2"); 1472 if (Alignment != 0) { 1473 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1474 CGF.EmitAlignmentAssumption( 1475 PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment); 1476 } 1477 } 1478 } 1479 } 1480 1481 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1482 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1483 if (!HaveInsertPoint()) 1484 return; 1485 auto I = S.private_counters().begin(); 1486 for (const Expr *E : S.counters()) { 1487 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1488 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1489 // Emit var without initialization. 1490 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1491 EmitAutoVarCleanups(VarEmission); 1492 LocalDeclMap.erase(PrivateVD); 1493 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1494 return VarEmission.getAllocatedAddress(); 1495 }); 1496 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1497 VD->hasGlobalStorage()) { 1498 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1499 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1500 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1501 E->getType(), VK_LValue, E->getExprLoc()); 1502 return EmitLValue(&DRE).getAddress(); 1503 }); 1504 } else { 1505 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1506 return VarEmission.getAllocatedAddress(); 1507 }); 1508 } 1509 ++I; 1510 } 1511 // Privatize extra loop counters used in loops for ordered(n) clauses. 1512 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1513 if (!C->getNumForLoops()) 1514 continue; 1515 for (unsigned I = S.getCollapsedNumber(), 1516 E = C->getLoopNumIterations().size(); 1517 I < E; ++I) { 1518 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1519 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1520 // Override only those variables that are really emitted already. 1521 if (LocalDeclMap.count(VD)) { 1522 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1523 return CreateMemTemp(DRE->getType(), VD->getName()); 1524 }); 1525 } 1526 } 1527 } 1528 } 1529 1530 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1531 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1532 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1533 if (!CGF.HaveInsertPoint()) 1534 return; 1535 { 1536 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1537 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1538 (void)PreCondScope.Privatize(); 1539 // Get initial values of real counters. 1540 for (const Expr *I : S.inits()) { 1541 CGF.EmitIgnoredExpr(I); 1542 } 1543 } 1544 // Check that loop is executed at least one time. 1545 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1546 } 1547 1548 void CodeGenFunction::EmitOMPLinearClause( 1549 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1550 if (!HaveInsertPoint()) 1551 return; 1552 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1553 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1554 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1555 for (const Expr *C : LoopDirective->counters()) { 1556 SIMDLCVs.insert( 1557 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1558 } 1559 } 1560 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1561 auto CurPrivate = C->privates().begin(); 1562 for (const Expr *E : C->varlists()) { 1563 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1564 const auto *PrivateVD = 1565 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1566 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1567 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1568 // Emit private VarDecl with copy init. 1569 EmitVarDecl(*PrivateVD); 1570 return GetAddrOfLocalVar(PrivateVD); 1571 }); 1572 assert(IsRegistered && "linear var already registered as private"); 1573 // Silence the warning about unused variable. 1574 (void)IsRegistered; 1575 } else { 1576 EmitVarDecl(*PrivateVD); 1577 } 1578 ++CurPrivate; 1579 } 1580 } 1581 } 1582 1583 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1584 const OMPExecutableDirective &D, 1585 bool IsMonotonic) { 1586 if (!CGF.HaveInsertPoint()) 1587 return; 1588 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1589 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1590 /*ignoreResult=*/true); 1591 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1592 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1593 // In presence of finite 'safelen', it may be unsafe to mark all 1594 // the memory instructions parallel, because loop-carried 1595 // dependences of 'safelen' iterations are possible. 1596 if (!IsMonotonic) 1597 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1598 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1599 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1600 /*ignoreResult=*/true); 1601 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1602 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1603 // In presence of finite 'safelen', it may be unsafe to mark all 1604 // the memory instructions parallel, because loop-carried 1605 // dependences of 'safelen' iterations are possible. 1606 CGF.LoopStack.setParallel(/*Enable=*/false); 1607 } 1608 } 1609 1610 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1611 bool IsMonotonic) { 1612 // Walk clauses and process safelen/lastprivate. 1613 LoopStack.setParallel(!IsMonotonic); 1614 LoopStack.setVectorizeEnable(); 1615 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1616 } 1617 1618 void CodeGenFunction::EmitOMPSimdFinal( 1619 const OMPLoopDirective &D, 1620 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1621 if (!HaveInsertPoint()) 1622 return; 1623 llvm::BasicBlock *DoneBB = nullptr; 1624 auto IC = D.counters().begin(); 1625 auto IPC = D.private_counters().begin(); 1626 for (const Expr *F : D.finals()) { 1627 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1628 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1629 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1630 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1631 OrigVD->hasGlobalStorage() || CED) { 1632 if (!DoneBB) { 1633 if (llvm::Value *Cond = CondGen(*this)) { 1634 // If the first post-update expression is found, emit conditional 1635 // block if it was requested. 1636 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1637 DoneBB = createBasicBlock(".omp.final.done"); 1638 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1639 EmitBlock(ThenBB); 1640 } 1641 } 1642 Address OrigAddr = Address::invalid(); 1643 if (CED) { 1644 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1645 } else { 1646 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1647 /*RefersToEnclosingVariableOrCapture=*/false, 1648 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1649 OrigAddr = EmitLValue(&DRE).getAddress(); 1650 } 1651 OMPPrivateScope VarScope(*this); 1652 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1653 (void)VarScope.Privatize(); 1654 EmitIgnoredExpr(F); 1655 } 1656 ++IC; 1657 ++IPC; 1658 } 1659 if (DoneBB) 1660 EmitBlock(DoneBB, /*IsFinished=*/true); 1661 } 1662 1663 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1664 const OMPLoopDirective &S, 1665 CodeGenFunction::JumpDest LoopExit) { 1666 CGF.EmitOMPLoopBody(S, LoopExit); 1667 CGF.EmitStopPoint(&S); 1668 } 1669 1670 /// Emit a helper variable and return corresponding lvalue. 1671 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1672 const DeclRefExpr *Helper) { 1673 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1674 CGF.EmitVarDecl(*VDecl); 1675 return CGF.EmitLValue(Helper); 1676 } 1677 1678 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1679 PrePostActionTy &Action) { 1680 Action.Enter(CGF); 1681 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1682 "Expected simd directive"); 1683 OMPLoopScope PreInitScope(CGF, S); 1684 // if (PreCond) { 1685 // for (IV in 0..LastIteration) BODY; 1686 // <Final counter/linear vars updates>; 1687 // } 1688 // 1689 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1690 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1691 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1692 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1693 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1694 } 1695 1696 // Emit: if (PreCond) - begin. 1697 // If the condition constant folds and can be elided, avoid emitting the 1698 // whole loop. 1699 bool CondConstant; 1700 llvm::BasicBlock *ContBlock = nullptr; 1701 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1702 if (!CondConstant) 1703 return; 1704 } else { 1705 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1706 ContBlock = CGF.createBasicBlock("simd.if.end"); 1707 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1708 CGF.getProfileCount(&S)); 1709 CGF.EmitBlock(ThenBlock); 1710 CGF.incrementProfileCounter(&S); 1711 } 1712 1713 // Emit the loop iteration variable. 1714 const Expr *IVExpr = S.getIterationVariable(); 1715 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1716 CGF.EmitVarDecl(*IVDecl); 1717 CGF.EmitIgnoredExpr(S.getInit()); 1718 1719 // Emit the iterations count variable. 1720 // If it is not a variable, Sema decided to calculate iterations count on 1721 // each iteration (e.g., it is foldable into a constant). 1722 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1723 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1724 // Emit calculation of the iterations count. 1725 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1726 } 1727 1728 CGF.EmitOMPSimdInit(S); 1729 1730 emitAlignedClause(CGF, S); 1731 (void)CGF.EmitOMPLinearClauseInit(S); 1732 { 1733 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1734 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1735 CGF.EmitOMPLinearClause(S, LoopScope); 1736 CGF.EmitOMPPrivateClause(S, LoopScope); 1737 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1738 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1739 (void)LoopScope.Privatize(); 1740 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1741 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1742 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1743 S.getInc(), 1744 [&S](CodeGenFunction &CGF) { 1745 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1746 CGF.EmitStopPoint(&S); 1747 }, 1748 [](CodeGenFunction &) {}); 1749 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1750 // Emit final copy of the lastprivate variables at the end of loops. 1751 if (HasLastprivateClause) 1752 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1753 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1754 emitPostUpdateForReductionClause(CGF, S, 1755 [](CodeGenFunction &) { return nullptr; }); 1756 } 1757 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1758 // Emit: if (PreCond) - end. 1759 if (ContBlock) { 1760 CGF.EmitBranch(ContBlock); 1761 CGF.EmitBlock(ContBlock, true); 1762 } 1763 } 1764 1765 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1766 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1767 emitOMPSimdRegion(CGF, S, Action); 1768 }; 1769 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1770 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1771 } 1772 1773 void CodeGenFunction::EmitOMPOuterLoop( 1774 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1775 CodeGenFunction::OMPPrivateScope &LoopScope, 1776 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1777 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1778 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1779 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1780 1781 const Expr *IVExpr = S.getIterationVariable(); 1782 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1783 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1784 1785 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1786 1787 // Start the loop with a block that tests the condition. 1788 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1789 EmitBlock(CondBlock); 1790 const SourceRange R = S.getSourceRange(); 1791 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1792 SourceLocToDebugLoc(R.getEnd())); 1793 1794 llvm::Value *BoolCondVal = nullptr; 1795 if (!DynamicOrOrdered) { 1796 // UB = min(UB, GlobalUB) or 1797 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1798 // 'distribute parallel for') 1799 EmitIgnoredExpr(LoopArgs.EUB); 1800 // IV = LB 1801 EmitIgnoredExpr(LoopArgs.Init); 1802 // IV < UB 1803 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1804 } else { 1805 BoolCondVal = 1806 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1807 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1808 } 1809 1810 // If there are any cleanups between here and the loop-exit scope, 1811 // create a block to stage a loop exit along. 1812 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1813 if (LoopScope.requiresCleanups()) 1814 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1815 1816 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1817 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1818 if (ExitBlock != LoopExit.getBlock()) { 1819 EmitBlock(ExitBlock); 1820 EmitBranchThroughCleanup(LoopExit); 1821 } 1822 EmitBlock(LoopBody); 1823 1824 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1825 // LB for loop condition and emitted it above). 1826 if (DynamicOrOrdered) 1827 EmitIgnoredExpr(LoopArgs.Init); 1828 1829 // Create a block for the increment. 1830 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1831 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1832 1833 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1834 // with dynamic/guided scheduling and without ordered clause. 1835 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1836 LoopStack.setParallel(!IsMonotonic); 1837 else 1838 EmitOMPSimdInit(S, IsMonotonic); 1839 1840 SourceLocation Loc = S.getBeginLoc(); 1841 1842 // when 'distribute' is not combined with a 'for': 1843 // while (idx <= UB) { BODY; ++idx; } 1844 // when 'distribute' is combined with a 'for' 1845 // (e.g. 'distribute parallel for') 1846 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1847 EmitOMPInnerLoop( 1848 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1849 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1850 CodeGenLoop(CGF, S, LoopExit); 1851 }, 1852 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1853 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1854 }); 1855 1856 EmitBlock(Continue.getBlock()); 1857 BreakContinueStack.pop_back(); 1858 if (!DynamicOrOrdered) { 1859 // Emit "LB = LB + Stride", "UB = UB + Stride". 1860 EmitIgnoredExpr(LoopArgs.NextLB); 1861 EmitIgnoredExpr(LoopArgs.NextUB); 1862 } 1863 1864 EmitBranch(CondBlock); 1865 LoopStack.pop(); 1866 // Emit the fall-through block. 1867 EmitBlock(LoopExit.getBlock()); 1868 1869 // Tell the runtime we are done. 1870 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1871 if (!DynamicOrOrdered) 1872 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1873 S.getDirectiveKind()); 1874 }; 1875 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1876 } 1877 1878 void CodeGenFunction::EmitOMPForOuterLoop( 1879 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1880 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1881 const OMPLoopArguments &LoopArgs, 1882 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1883 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1884 1885 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1886 const bool DynamicOrOrdered = 1887 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1888 1889 assert((Ordered || 1890 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1891 LoopArgs.Chunk != nullptr)) && 1892 "static non-chunked schedule does not need outer loop"); 1893 1894 // Emit outer loop. 1895 // 1896 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1897 // When schedule(dynamic,chunk_size) is specified, the iterations are 1898 // distributed to threads in the team in chunks as the threads request them. 1899 // Each thread executes a chunk of iterations, then requests another chunk, 1900 // until no chunks remain to be distributed. Each chunk contains chunk_size 1901 // iterations, except for the last chunk to be distributed, which may have 1902 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1903 // 1904 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1905 // to threads in the team in chunks as the executing threads request them. 1906 // Each thread executes a chunk of iterations, then requests another chunk, 1907 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1908 // each chunk is proportional to the number of unassigned iterations divided 1909 // by the number of threads in the team, decreasing to 1. For a chunk_size 1910 // with value k (greater than 1), the size of each chunk is determined in the 1911 // same way, with the restriction that the chunks do not contain fewer than k 1912 // iterations (except for the last chunk to be assigned, which may have fewer 1913 // than k iterations). 1914 // 1915 // When schedule(auto) is specified, the decision regarding scheduling is 1916 // delegated to the compiler and/or runtime system. The programmer gives the 1917 // implementation the freedom to choose any possible mapping of iterations to 1918 // threads in the team. 1919 // 1920 // When schedule(runtime) is specified, the decision regarding scheduling is 1921 // deferred until run time, and the schedule and chunk size are taken from the 1922 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1923 // implementation defined 1924 // 1925 // while(__kmpc_dispatch_next(&LB, &UB)) { 1926 // idx = LB; 1927 // while (idx <= UB) { BODY; ++idx; 1928 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1929 // } // inner loop 1930 // } 1931 // 1932 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1933 // When schedule(static, chunk_size) is specified, iterations are divided into 1934 // chunks of size chunk_size, and the chunks are assigned to the threads in 1935 // the team in a round-robin fashion in the order of the thread number. 1936 // 1937 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1938 // while (idx <= UB) { BODY; ++idx; } // inner loop 1939 // LB = LB + ST; 1940 // UB = UB + ST; 1941 // } 1942 // 1943 1944 const Expr *IVExpr = S.getIterationVariable(); 1945 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1946 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1947 1948 if (DynamicOrOrdered) { 1949 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1950 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1951 llvm::Value *LBVal = DispatchBounds.first; 1952 llvm::Value *UBVal = DispatchBounds.second; 1953 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1954 LoopArgs.Chunk}; 1955 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1956 IVSigned, Ordered, DipatchRTInputValues); 1957 } else { 1958 CGOpenMPRuntime::StaticRTInput StaticInit( 1959 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1960 LoopArgs.ST, LoopArgs.Chunk); 1961 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1962 ScheduleKind, StaticInit); 1963 } 1964 1965 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1966 const unsigned IVSize, 1967 const bool IVSigned) { 1968 if (Ordered) { 1969 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1970 IVSigned); 1971 } 1972 }; 1973 1974 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1975 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1976 OuterLoopArgs.IncExpr = S.getInc(); 1977 OuterLoopArgs.Init = S.getInit(); 1978 OuterLoopArgs.Cond = S.getCond(); 1979 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1980 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1981 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1982 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1983 } 1984 1985 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1986 const unsigned IVSize, const bool IVSigned) {} 1987 1988 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1989 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1990 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1991 const CodeGenLoopTy &CodeGenLoopContent) { 1992 1993 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1994 1995 // Emit outer loop. 1996 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1997 // dynamic 1998 // 1999 2000 const Expr *IVExpr = S.getIterationVariable(); 2001 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2002 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2003 2004 CGOpenMPRuntime::StaticRTInput StaticInit( 2005 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2006 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2007 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2008 2009 // for combined 'distribute' and 'for' the increment expression of distribute 2010 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2011 Expr *IncExpr; 2012 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2013 IncExpr = S.getDistInc(); 2014 else 2015 IncExpr = S.getInc(); 2016 2017 // this routine is shared by 'omp distribute parallel for' and 2018 // 'omp distribute': select the right EUB expression depending on the 2019 // directive 2020 OMPLoopArguments OuterLoopArgs; 2021 OuterLoopArgs.LB = LoopArgs.LB; 2022 OuterLoopArgs.UB = LoopArgs.UB; 2023 OuterLoopArgs.ST = LoopArgs.ST; 2024 OuterLoopArgs.IL = LoopArgs.IL; 2025 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2026 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2027 ? S.getCombinedEnsureUpperBound() 2028 : S.getEnsureUpperBound(); 2029 OuterLoopArgs.IncExpr = IncExpr; 2030 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2031 ? S.getCombinedInit() 2032 : S.getInit(); 2033 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2034 ? S.getCombinedCond() 2035 : S.getCond(); 2036 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2037 ? S.getCombinedNextLowerBound() 2038 : S.getNextLowerBound(); 2039 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2040 ? S.getCombinedNextUpperBound() 2041 : S.getNextUpperBound(); 2042 2043 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2044 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2045 emitEmptyOrdered); 2046 } 2047 2048 static std::pair<LValue, LValue> 2049 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2050 const OMPExecutableDirective &S) { 2051 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2052 LValue LB = 2053 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2054 LValue UB = 2055 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2056 2057 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2058 // parallel for') we need to use the 'distribute' 2059 // chunk lower and upper bounds rather than the whole loop iteration 2060 // space. These are parameters to the outlined function for 'parallel' 2061 // and we copy the bounds of the previous schedule into the 2062 // the current ones. 2063 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2064 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2065 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2066 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2067 PrevLBVal = CGF.EmitScalarConversion( 2068 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2069 LS.getIterationVariable()->getType(), 2070 LS.getPrevLowerBoundVariable()->getExprLoc()); 2071 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2072 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2073 PrevUBVal = CGF.EmitScalarConversion( 2074 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2075 LS.getIterationVariable()->getType(), 2076 LS.getPrevUpperBoundVariable()->getExprLoc()); 2077 2078 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2079 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2080 2081 return {LB, UB}; 2082 } 2083 2084 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2085 /// we need to use the LB and UB expressions generated by the worksharing 2086 /// code generation support, whereas in non combined situations we would 2087 /// just emit 0 and the LastIteration expression 2088 /// This function is necessary due to the difference of the LB and UB 2089 /// types for the RT emission routines for 'for_static_init' and 2090 /// 'for_dispatch_init' 2091 static std::pair<llvm::Value *, llvm::Value *> 2092 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2093 const OMPExecutableDirective &S, 2094 Address LB, Address UB) { 2095 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2096 const Expr *IVExpr = LS.getIterationVariable(); 2097 // when implementing a dynamic schedule for a 'for' combined with a 2098 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2099 // is not normalized as each team only executes its own assigned 2100 // distribute chunk 2101 QualType IteratorTy = IVExpr->getType(); 2102 llvm::Value *LBVal = 2103 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2104 llvm::Value *UBVal = 2105 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2106 return {LBVal, UBVal}; 2107 } 2108 2109 static void emitDistributeParallelForDistributeInnerBoundParams( 2110 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2111 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2112 const auto &Dir = cast<OMPLoopDirective>(S); 2113 LValue LB = 2114 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2115 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2116 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2117 CapturedVars.push_back(LBCast); 2118 LValue UB = 2119 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2120 2121 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2122 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2123 CapturedVars.push_back(UBCast); 2124 } 2125 2126 static void 2127 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2128 const OMPLoopDirective &S, 2129 CodeGenFunction::JumpDest LoopExit) { 2130 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2131 PrePostActionTy &Action) { 2132 Action.Enter(CGF); 2133 bool HasCancel = false; 2134 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2135 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2136 HasCancel = D->hasCancel(); 2137 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2138 HasCancel = D->hasCancel(); 2139 else if (const auto *D = 2140 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2141 HasCancel = D->hasCancel(); 2142 } 2143 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2144 HasCancel); 2145 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2146 emitDistributeParallelForInnerBounds, 2147 emitDistributeParallelForDispatchBounds); 2148 }; 2149 2150 emitCommonOMPParallelDirective( 2151 CGF, S, 2152 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2153 CGInlinedWorksharingLoop, 2154 emitDistributeParallelForDistributeInnerBoundParams); 2155 } 2156 2157 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2158 const OMPDistributeParallelForDirective &S) { 2159 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2160 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2161 S.getDistInc()); 2162 }; 2163 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2164 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2165 } 2166 2167 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2168 const OMPDistributeParallelForSimdDirective &S) { 2169 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2170 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2171 S.getDistInc()); 2172 }; 2173 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2174 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2175 } 2176 2177 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2178 const OMPDistributeSimdDirective &S) { 2179 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2180 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2181 }; 2182 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2183 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2184 } 2185 2186 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2187 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2188 // Emit SPMD target parallel for region as a standalone region. 2189 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2190 emitOMPSimdRegion(CGF, S, Action); 2191 }; 2192 llvm::Function *Fn; 2193 llvm::Constant *Addr; 2194 // Emit target region as a standalone region. 2195 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2196 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2197 assert(Fn && Addr && "Target device function emission failed."); 2198 } 2199 2200 void CodeGenFunction::EmitOMPTargetSimdDirective( 2201 const OMPTargetSimdDirective &S) { 2202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2203 emitOMPSimdRegion(CGF, S, Action); 2204 }; 2205 emitCommonOMPTargetDirective(*this, S, CodeGen); 2206 } 2207 2208 namespace { 2209 struct ScheduleKindModifiersTy { 2210 OpenMPScheduleClauseKind Kind; 2211 OpenMPScheduleClauseModifier M1; 2212 OpenMPScheduleClauseModifier M2; 2213 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2214 OpenMPScheduleClauseModifier M1, 2215 OpenMPScheduleClauseModifier M2) 2216 : Kind(Kind), M1(M1), M2(M2) {} 2217 }; 2218 } // namespace 2219 2220 bool CodeGenFunction::EmitOMPWorksharingLoop( 2221 const OMPLoopDirective &S, Expr *EUB, 2222 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2223 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2224 // Emit the loop iteration variable. 2225 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2226 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2227 EmitVarDecl(*IVDecl); 2228 2229 // Emit the iterations count variable. 2230 // If it is not a variable, Sema decided to calculate iterations count on each 2231 // iteration (e.g., it is foldable into a constant). 2232 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2233 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2234 // Emit calculation of the iterations count. 2235 EmitIgnoredExpr(S.getCalcLastIteration()); 2236 } 2237 2238 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2239 2240 bool HasLastprivateClause; 2241 // Check pre-condition. 2242 { 2243 OMPLoopScope PreInitScope(*this, S); 2244 // Skip the entire loop if we don't meet the precondition. 2245 // If the condition constant folds and can be elided, avoid emitting the 2246 // whole loop. 2247 bool CondConstant; 2248 llvm::BasicBlock *ContBlock = nullptr; 2249 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2250 if (!CondConstant) 2251 return false; 2252 } else { 2253 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2254 ContBlock = createBasicBlock("omp.precond.end"); 2255 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2256 getProfileCount(&S)); 2257 EmitBlock(ThenBlock); 2258 incrementProfileCounter(&S); 2259 } 2260 2261 RunCleanupsScope DoacrossCleanupScope(*this); 2262 bool Ordered = false; 2263 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2264 if (OrderedClause->getNumForLoops()) 2265 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2266 else 2267 Ordered = true; 2268 } 2269 2270 llvm::DenseSet<const Expr *> EmittedFinals; 2271 emitAlignedClause(*this, S); 2272 bool HasLinears = EmitOMPLinearClauseInit(S); 2273 // Emit helper vars inits. 2274 2275 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2276 LValue LB = Bounds.first; 2277 LValue UB = Bounds.second; 2278 LValue ST = 2279 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2280 LValue IL = 2281 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2282 2283 // Emit 'then' code. 2284 { 2285 OMPPrivateScope LoopScope(*this); 2286 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2287 // Emit implicit barrier to synchronize threads and avoid data races on 2288 // initialization of firstprivate variables and post-update of 2289 // lastprivate variables. 2290 CGM.getOpenMPRuntime().emitBarrierCall( 2291 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2292 /*ForceSimpleCall=*/true); 2293 } 2294 EmitOMPPrivateClause(S, LoopScope); 2295 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2296 EmitOMPReductionClauseInit(S, LoopScope); 2297 EmitOMPPrivateLoopCounters(S, LoopScope); 2298 EmitOMPLinearClause(S, LoopScope); 2299 (void)LoopScope.Privatize(); 2300 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2301 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2302 2303 // Detect the loop schedule kind and chunk. 2304 const Expr *ChunkExpr = nullptr; 2305 OpenMPScheduleTy ScheduleKind; 2306 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2307 ScheduleKind.Schedule = C->getScheduleKind(); 2308 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2309 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2310 ChunkExpr = C->getChunkSize(); 2311 } else { 2312 // Default behaviour for schedule clause. 2313 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2314 *this, S, ScheduleKind.Schedule, ChunkExpr); 2315 } 2316 bool HasChunkSizeOne = false; 2317 llvm::Value *Chunk = nullptr; 2318 if (ChunkExpr) { 2319 Chunk = EmitScalarExpr(ChunkExpr); 2320 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2321 S.getIterationVariable()->getType(), 2322 S.getBeginLoc()); 2323 Expr::EvalResult Result; 2324 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2325 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2326 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2327 } 2328 } 2329 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2330 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2331 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2332 // If the static schedule kind is specified or if the ordered clause is 2333 // specified, and if no monotonic modifier is specified, the effect will 2334 // be as if the monotonic modifier was specified. 2335 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2336 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2337 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2338 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2339 /* Chunked */ Chunk != nullptr) || 2340 StaticChunkedOne) && 2341 !Ordered) { 2342 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2343 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2344 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2345 // When no chunk_size is specified, the iteration space is divided into 2346 // chunks that are approximately equal in size, and at most one chunk is 2347 // distributed to each thread. Note that the size of the chunks is 2348 // unspecified in this case. 2349 CGOpenMPRuntime::StaticRTInput StaticInit( 2350 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2351 UB.getAddress(), ST.getAddress(), 2352 StaticChunkedOne ? Chunk : nullptr); 2353 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2354 ScheduleKind, StaticInit); 2355 JumpDest LoopExit = 2356 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2357 // UB = min(UB, GlobalUB); 2358 if (!StaticChunkedOne) 2359 EmitIgnoredExpr(S.getEnsureUpperBound()); 2360 // IV = LB; 2361 EmitIgnoredExpr(S.getInit()); 2362 // For unchunked static schedule generate: 2363 // 2364 // while (idx <= UB) { 2365 // BODY; 2366 // ++idx; 2367 // } 2368 // 2369 // For static schedule with chunk one: 2370 // 2371 // while (IV <= PrevUB) { 2372 // BODY; 2373 // IV += ST; 2374 // } 2375 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2376 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2377 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2378 [&S, LoopExit](CodeGenFunction &CGF) { 2379 CGF.EmitOMPLoopBody(S, LoopExit); 2380 CGF.EmitStopPoint(&S); 2381 }, 2382 [](CodeGenFunction &) {}); 2383 EmitBlock(LoopExit.getBlock()); 2384 // Tell the runtime we are done. 2385 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2386 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2387 S.getDirectiveKind()); 2388 }; 2389 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2390 } else { 2391 const bool IsMonotonic = 2392 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2393 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2394 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2395 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2396 // Emit the outer loop, which requests its work chunk [LB..UB] from 2397 // runtime and runs the inner loop to process it. 2398 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2399 ST.getAddress(), IL.getAddress(), 2400 Chunk, EUB); 2401 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2402 LoopArguments, CGDispatchBounds); 2403 } 2404 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2405 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2406 return CGF.Builder.CreateIsNotNull( 2407 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2408 }); 2409 } 2410 EmitOMPReductionClauseFinal( 2411 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2412 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2413 : /*Parallel only*/ OMPD_parallel); 2414 // Emit post-update of the reduction variables if IsLastIter != 0. 2415 emitPostUpdateForReductionClause( 2416 *this, S, [IL, &S](CodeGenFunction &CGF) { 2417 return CGF.Builder.CreateIsNotNull( 2418 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2419 }); 2420 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2421 if (HasLastprivateClause) 2422 EmitOMPLastprivateClauseFinal( 2423 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2424 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2425 } 2426 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2427 return CGF.Builder.CreateIsNotNull( 2428 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2429 }); 2430 DoacrossCleanupScope.ForceCleanup(); 2431 // We're now done with the loop, so jump to the continuation block. 2432 if (ContBlock) { 2433 EmitBranch(ContBlock); 2434 EmitBlock(ContBlock, /*IsFinished=*/true); 2435 } 2436 } 2437 return HasLastprivateClause; 2438 } 2439 2440 /// The following two functions generate expressions for the loop lower 2441 /// and upper bounds in case of static and dynamic (dispatch) schedule 2442 /// of the associated 'for' or 'distribute' loop. 2443 static std::pair<LValue, LValue> 2444 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2445 const auto &LS = cast<OMPLoopDirective>(S); 2446 LValue LB = 2447 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2448 LValue UB = 2449 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2450 return {LB, UB}; 2451 } 2452 2453 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2454 /// consider the lower and upper bound expressions generated by the 2455 /// worksharing loop support, but we use 0 and the iteration space size as 2456 /// constants 2457 static std::pair<llvm::Value *, llvm::Value *> 2458 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2459 Address LB, Address UB) { 2460 const auto &LS = cast<OMPLoopDirective>(S); 2461 const Expr *IVExpr = LS.getIterationVariable(); 2462 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2463 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2464 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2465 return {LBVal, UBVal}; 2466 } 2467 2468 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2469 bool HasLastprivates = false; 2470 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2471 PrePostActionTy &) { 2472 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2473 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2474 emitForLoopBounds, 2475 emitDispatchForLoopBounds); 2476 }; 2477 { 2478 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2479 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2480 S.hasCancel()); 2481 } 2482 2483 // Emit an implicit barrier at the end. 2484 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2485 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2486 } 2487 2488 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2489 bool HasLastprivates = false; 2490 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2491 PrePostActionTy &) { 2492 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2493 emitForLoopBounds, 2494 emitDispatchForLoopBounds); 2495 }; 2496 { 2497 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2498 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2499 } 2500 2501 // Emit an implicit barrier at the end. 2502 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2503 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2504 } 2505 2506 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2507 const Twine &Name, 2508 llvm::Value *Init = nullptr) { 2509 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2510 if (Init) 2511 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2512 return LVal; 2513 } 2514 2515 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2516 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2517 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2518 bool HasLastprivates = false; 2519 auto &&CodeGen = [&S, CapturedStmt, CS, 2520 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2521 ASTContext &C = CGF.getContext(); 2522 QualType KmpInt32Ty = 2523 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2524 // Emit helper vars inits. 2525 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2526 CGF.Builder.getInt32(0)); 2527 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2528 ? CGF.Builder.getInt32(CS->size() - 1) 2529 : CGF.Builder.getInt32(0); 2530 LValue UB = 2531 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2532 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2533 CGF.Builder.getInt32(1)); 2534 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2535 CGF.Builder.getInt32(0)); 2536 // Loop counter. 2537 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2538 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2539 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2540 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2541 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2542 // Generate condition for loop. 2543 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2544 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2545 // Increment for loop counter. 2546 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2547 S.getBeginLoc(), true); 2548 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2549 // Iterate through all sections and emit a switch construct: 2550 // switch (IV) { 2551 // case 0: 2552 // <SectionStmt[0]>; 2553 // break; 2554 // ... 2555 // case <NumSection> - 1: 2556 // <SectionStmt[<NumSection> - 1]>; 2557 // break; 2558 // } 2559 // .omp.sections.exit: 2560 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2561 llvm::SwitchInst *SwitchStmt = 2562 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2563 ExitBB, CS == nullptr ? 1 : CS->size()); 2564 if (CS) { 2565 unsigned CaseNumber = 0; 2566 for (const Stmt *SubStmt : CS->children()) { 2567 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2568 CGF.EmitBlock(CaseBB); 2569 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2570 CGF.EmitStmt(SubStmt); 2571 CGF.EmitBranch(ExitBB); 2572 ++CaseNumber; 2573 } 2574 } else { 2575 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2576 CGF.EmitBlock(CaseBB); 2577 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2578 CGF.EmitStmt(CapturedStmt); 2579 CGF.EmitBranch(ExitBB); 2580 } 2581 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2582 }; 2583 2584 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2585 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2586 // Emit implicit barrier to synchronize threads and avoid data races on 2587 // initialization of firstprivate variables and post-update of lastprivate 2588 // variables. 2589 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2590 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2591 /*ForceSimpleCall=*/true); 2592 } 2593 CGF.EmitOMPPrivateClause(S, LoopScope); 2594 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2595 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2596 (void)LoopScope.Privatize(); 2597 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2598 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2599 2600 // Emit static non-chunked loop. 2601 OpenMPScheduleTy ScheduleKind; 2602 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2603 CGOpenMPRuntime::StaticRTInput StaticInit( 2604 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2605 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2606 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2607 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2608 // UB = min(UB, GlobalUB); 2609 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2610 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2611 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2612 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2613 // IV = LB; 2614 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2615 // while (idx <= UB) { BODY; ++idx; } 2616 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2617 [](CodeGenFunction &) {}); 2618 // Tell the runtime we are done. 2619 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2620 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2621 S.getDirectiveKind()); 2622 }; 2623 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2624 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2625 // Emit post-update of the reduction variables if IsLastIter != 0. 2626 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2627 return CGF.Builder.CreateIsNotNull( 2628 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2629 }); 2630 2631 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2632 if (HasLastprivates) 2633 CGF.EmitOMPLastprivateClauseFinal( 2634 S, /*NoFinals=*/false, 2635 CGF.Builder.CreateIsNotNull( 2636 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2637 }; 2638 2639 bool HasCancel = false; 2640 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2641 HasCancel = OSD->hasCancel(); 2642 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2643 HasCancel = OPSD->hasCancel(); 2644 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2645 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2646 HasCancel); 2647 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2648 // clause. Otherwise the barrier will be generated by the codegen for the 2649 // directive. 2650 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2651 // Emit implicit barrier to synchronize threads and avoid data races on 2652 // initialization of firstprivate variables. 2653 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2654 OMPD_unknown); 2655 } 2656 } 2657 2658 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2659 { 2660 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2661 EmitSections(S); 2662 } 2663 // Emit an implicit barrier at the end. 2664 if (!S.getSingleClause<OMPNowaitClause>()) { 2665 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2666 OMPD_sections); 2667 } 2668 } 2669 2670 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2671 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2672 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2673 }; 2674 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2675 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2676 S.hasCancel()); 2677 } 2678 2679 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2680 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2681 llvm::SmallVector<const Expr *, 8> DestExprs; 2682 llvm::SmallVector<const Expr *, 8> SrcExprs; 2683 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2684 // Check if there are any 'copyprivate' clauses associated with this 2685 // 'single' construct. 2686 // Build a list of copyprivate variables along with helper expressions 2687 // (<source>, <destination>, <destination>=<source> expressions) 2688 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2689 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2690 DestExprs.append(C->destination_exprs().begin(), 2691 C->destination_exprs().end()); 2692 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2693 AssignmentOps.append(C->assignment_ops().begin(), 2694 C->assignment_ops().end()); 2695 } 2696 // Emit code for 'single' region along with 'copyprivate' clauses 2697 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2698 Action.Enter(CGF); 2699 OMPPrivateScope SingleScope(CGF); 2700 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2701 CGF.EmitOMPPrivateClause(S, SingleScope); 2702 (void)SingleScope.Privatize(); 2703 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2704 }; 2705 { 2706 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2707 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2708 CopyprivateVars, DestExprs, 2709 SrcExprs, AssignmentOps); 2710 } 2711 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2712 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2713 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2714 CGM.getOpenMPRuntime().emitBarrierCall( 2715 *this, S.getBeginLoc(), 2716 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2717 } 2718 } 2719 2720 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2721 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2722 Action.Enter(CGF); 2723 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2724 }; 2725 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2726 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2727 } 2728 2729 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2730 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2731 Action.Enter(CGF); 2732 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2733 }; 2734 const Expr *Hint = nullptr; 2735 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2736 Hint = HintClause->getHint(); 2737 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2738 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2739 S.getDirectiveName().getAsString(), 2740 CodeGen, S.getBeginLoc(), Hint); 2741 } 2742 2743 void CodeGenFunction::EmitOMPParallelForDirective( 2744 const OMPParallelForDirective &S) { 2745 // Emit directive as a combined directive that consists of two implicit 2746 // directives: 'parallel' with 'for' directive. 2747 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2748 Action.Enter(CGF); 2749 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2750 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2751 emitDispatchForLoopBounds); 2752 }; 2753 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2754 emitEmptyBoundParameters); 2755 } 2756 2757 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2758 const OMPParallelForSimdDirective &S) { 2759 // Emit directive as a combined directive that consists of two implicit 2760 // directives: 'parallel' with 'for' directive. 2761 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2762 Action.Enter(CGF); 2763 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2764 emitDispatchForLoopBounds); 2765 }; 2766 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2767 emitEmptyBoundParameters); 2768 } 2769 2770 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2771 const OMPParallelSectionsDirective &S) { 2772 // Emit directive as a combined directive that consists of two implicit 2773 // directives: 'parallel' with 'sections' directive. 2774 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2775 Action.Enter(CGF); 2776 CGF.EmitSections(S); 2777 }; 2778 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2779 emitEmptyBoundParameters); 2780 } 2781 2782 void CodeGenFunction::EmitOMPTaskBasedDirective( 2783 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2784 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2785 OMPTaskDataTy &Data) { 2786 // Emit outlined function for task construct. 2787 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2788 auto I = CS->getCapturedDecl()->param_begin(); 2789 auto PartId = std::next(I); 2790 auto TaskT = std::next(I, 4); 2791 // Check if the task is final 2792 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2793 // If the condition constant folds and can be elided, try to avoid emitting 2794 // the condition and the dead arm of the if/else. 2795 const Expr *Cond = Clause->getCondition(); 2796 bool CondConstant; 2797 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2798 Data.Final.setInt(CondConstant); 2799 else 2800 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2801 } else { 2802 // By default the task is not final. 2803 Data.Final.setInt(/*IntVal=*/false); 2804 } 2805 // Check if the task has 'priority' clause. 2806 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2807 const Expr *Prio = Clause->getPriority(); 2808 Data.Priority.setInt(/*IntVal=*/true); 2809 Data.Priority.setPointer(EmitScalarConversion( 2810 EmitScalarExpr(Prio), Prio->getType(), 2811 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2812 Prio->getExprLoc())); 2813 } 2814 // The first function argument for tasks is a thread id, the second one is a 2815 // part id (0 for tied tasks, >=0 for untied task). 2816 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2817 // Get list of private variables. 2818 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2819 auto IRef = C->varlist_begin(); 2820 for (const Expr *IInit : C->private_copies()) { 2821 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2822 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2823 Data.PrivateVars.push_back(*IRef); 2824 Data.PrivateCopies.push_back(IInit); 2825 } 2826 ++IRef; 2827 } 2828 } 2829 EmittedAsPrivate.clear(); 2830 // Get list of firstprivate variables. 2831 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2832 auto IRef = C->varlist_begin(); 2833 auto IElemInitRef = C->inits().begin(); 2834 for (const Expr *IInit : C->private_copies()) { 2835 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2836 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2837 Data.FirstprivateVars.push_back(*IRef); 2838 Data.FirstprivateCopies.push_back(IInit); 2839 Data.FirstprivateInits.push_back(*IElemInitRef); 2840 } 2841 ++IRef; 2842 ++IElemInitRef; 2843 } 2844 } 2845 // Get list of lastprivate variables (for taskloops). 2846 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2847 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2848 auto IRef = C->varlist_begin(); 2849 auto ID = C->destination_exprs().begin(); 2850 for (const Expr *IInit : C->private_copies()) { 2851 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2852 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2853 Data.LastprivateVars.push_back(*IRef); 2854 Data.LastprivateCopies.push_back(IInit); 2855 } 2856 LastprivateDstsOrigs.insert( 2857 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2858 cast<DeclRefExpr>(*IRef)}); 2859 ++IRef; 2860 ++ID; 2861 } 2862 } 2863 SmallVector<const Expr *, 4> LHSs; 2864 SmallVector<const Expr *, 4> RHSs; 2865 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2866 auto IPriv = C->privates().begin(); 2867 auto IRed = C->reduction_ops().begin(); 2868 auto ILHS = C->lhs_exprs().begin(); 2869 auto IRHS = C->rhs_exprs().begin(); 2870 for (const Expr *Ref : C->varlists()) { 2871 Data.ReductionVars.emplace_back(Ref); 2872 Data.ReductionCopies.emplace_back(*IPriv); 2873 Data.ReductionOps.emplace_back(*IRed); 2874 LHSs.emplace_back(*ILHS); 2875 RHSs.emplace_back(*IRHS); 2876 std::advance(IPriv, 1); 2877 std::advance(IRed, 1); 2878 std::advance(ILHS, 1); 2879 std::advance(IRHS, 1); 2880 } 2881 } 2882 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2883 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2884 // Build list of dependences. 2885 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2886 for (const Expr *IRef : C->varlists()) 2887 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2888 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2889 CapturedRegion](CodeGenFunction &CGF, 2890 PrePostActionTy &Action) { 2891 // Set proper addresses for generated private copies. 2892 OMPPrivateScope Scope(CGF); 2893 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2894 !Data.LastprivateVars.empty()) { 2895 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2896 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2897 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2898 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2899 CS->getCapturedDecl()->getParam(PrivatesParam))); 2900 // Map privates. 2901 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2902 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2903 CallArgs.push_back(PrivatesPtr); 2904 for (const Expr *E : Data.PrivateVars) { 2905 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2906 Address PrivatePtr = CGF.CreateMemTemp( 2907 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2908 PrivatePtrs.emplace_back(VD, PrivatePtr); 2909 CallArgs.push_back(PrivatePtr.getPointer()); 2910 } 2911 for (const Expr *E : Data.FirstprivateVars) { 2912 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2913 Address PrivatePtr = 2914 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2915 ".firstpriv.ptr.addr"); 2916 PrivatePtrs.emplace_back(VD, PrivatePtr); 2917 CallArgs.push_back(PrivatePtr.getPointer()); 2918 } 2919 for (const Expr *E : Data.LastprivateVars) { 2920 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2921 Address PrivatePtr = 2922 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2923 ".lastpriv.ptr.addr"); 2924 PrivatePtrs.emplace_back(VD, PrivatePtr); 2925 CallArgs.push_back(PrivatePtr.getPointer()); 2926 } 2927 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 2928 CopyFn, CallArgs); 2929 for (const auto &Pair : LastprivateDstsOrigs) { 2930 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2931 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2932 /*RefersToEnclosingVariableOrCapture=*/ 2933 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2934 Pair.second->getType(), VK_LValue, 2935 Pair.second->getExprLoc()); 2936 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2937 return CGF.EmitLValue(&DRE).getAddress(); 2938 }); 2939 } 2940 for (const auto &Pair : PrivatePtrs) { 2941 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2942 CGF.getContext().getDeclAlign(Pair.first)); 2943 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2944 } 2945 } 2946 if (Data.Reductions) { 2947 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2948 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2949 Data.ReductionOps); 2950 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2951 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2952 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2953 RedCG.emitSharedLValue(CGF, Cnt); 2954 RedCG.emitAggregateType(CGF, Cnt); 2955 // FIXME: This must removed once the runtime library is fixed. 2956 // Emit required threadprivate variables for 2957 // initializer/combiner/finalizer. 2958 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2959 RedCG, Cnt); 2960 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2961 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2962 Replacement = 2963 Address(CGF.EmitScalarConversion( 2964 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2965 CGF.getContext().getPointerType( 2966 Data.ReductionCopies[Cnt]->getType()), 2967 Data.ReductionCopies[Cnt]->getExprLoc()), 2968 Replacement.getAlignment()); 2969 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2970 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2971 [Replacement]() { return Replacement; }); 2972 } 2973 } 2974 // Privatize all private variables except for in_reduction items. 2975 (void)Scope.Privatize(); 2976 SmallVector<const Expr *, 4> InRedVars; 2977 SmallVector<const Expr *, 4> InRedPrivs; 2978 SmallVector<const Expr *, 4> InRedOps; 2979 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2980 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2981 auto IPriv = C->privates().begin(); 2982 auto IRed = C->reduction_ops().begin(); 2983 auto ITD = C->taskgroup_descriptors().begin(); 2984 for (const Expr *Ref : C->varlists()) { 2985 InRedVars.emplace_back(Ref); 2986 InRedPrivs.emplace_back(*IPriv); 2987 InRedOps.emplace_back(*IRed); 2988 TaskgroupDescriptors.emplace_back(*ITD); 2989 std::advance(IPriv, 1); 2990 std::advance(IRed, 1); 2991 std::advance(ITD, 1); 2992 } 2993 } 2994 // Privatize in_reduction items here, because taskgroup descriptors must be 2995 // privatized earlier. 2996 OMPPrivateScope InRedScope(CGF); 2997 if (!InRedVars.empty()) { 2998 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2999 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3000 RedCG.emitSharedLValue(CGF, Cnt); 3001 RedCG.emitAggregateType(CGF, Cnt); 3002 // The taskgroup descriptor variable is always implicit firstprivate and 3003 // privatized already during processing of the firstprivates. 3004 // FIXME: This must removed once the runtime library is fixed. 3005 // Emit required threadprivate variables for 3006 // initializer/combiner/finalizer. 3007 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3008 RedCG, Cnt); 3009 llvm::Value *ReductionsPtr = 3010 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3011 TaskgroupDescriptors[Cnt]->getExprLoc()); 3012 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3013 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3014 Replacement = Address( 3015 CGF.EmitScalarConversion( 3016 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3017 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3018 InRedPrivs[Cnt]->getExprLoc()), 3019 Replacement.getAlignment()); 3020 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3021 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3022 [Replacement]() { return Replacement; }); 3023 } 3024 } 3025 (void)InRedScope.Privatize(); 3026 3027 Action.Enter(CGF); 3028 BodyGen(CGF); 3029 }; 3030 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3031 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3032 Data.NumberOfParts); 3033 OMPLexicalScope Scope(*this, S); 3034 TaskGen(*this, OutlinedFn, Data); 3035 } 3036 3037 static ImplicitParamDecl * 3038 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3039 QualType Ty, CapturedDecl *CD, 3040 SourceLocation Loc) { 3041 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3042 ImplicitParamDecl::Other); 3043 auto *OrigRef = DeclRefExpr::Create( 3044 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3045 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3046 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3047 ImplicitParamDecl::Other); 3048 auto *PrivateRef = DeclRefExpr::Create( 3049 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3050 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3051 QualType ElemType = C.getBaseElementType(Ty); 3052 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3053 ImplicitParamDecl::Other); 3054 auto *InitRef = DeclRefExpr::Create( 3055 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3056 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3057 PrivateVD->setInitStyle(VarDecl::CInit); 3058 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3059 InitRef, /*BasePath=*/nullptr, 3060 VK_RValue)); 3061 Data.FirstprivateVars.emplace_back(OrigRef); 3062 Data.FirstprivateCopies.emplace_back(PrivateRef); 3063 Data.FirstprivateInits.emplace_back(InitRef); 3064 return OrigVD; 3065 } 3066 3067 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3068 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3069 OMPTargetDataInfo &InputInfo) { 3070 // Emit outlined function for task construct. 3071 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3072 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3073 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3074 auto I = CS->getCapturedDecl()->param_begin(); 3075 auto PartId = std::next(I); 3076 auto TaskT = std::next(I, 4); 3077 OMPTaskDataTy Data; 3078 // The task is not final. 3079 Data.Final.setInt(/*IntVal=*/false); 3080 // Get list of firstprivate variables. 3081 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3082 auto IRef = C->varlist_begin(); 3083 auto IElemInitRef = C->inits().begin(); 3084 for (auto *IInit : C->private_copies()) { 3085 Data.FirstprivateVars.push_back(*IRef); 3086 Data.FirstprivateCopies.push_back(IInit); 3087 Data.FirstprivateInits.push_back(*IElemInitRef); 3088 ++IRef; 3089 ++IElemInitRef; 3090 } 3091 } 3092 OMPPrivateScope TargetScope(*this); 3093 VarDecl *BPVD = nullptr; 3094 VarDecl *PVD = nullptr; 3095 VarDecl *SVD = nullptr; 3096 if (InputInfo.NumberOfTargetItems > 0) { 3097 auto *CD = CapturedDecl::Create( 3098 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3099 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3100 QualType BaseAndPointersType = getContext().getConstantArrayType( 3101 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3102 /*IndexTypeQuals=*/0); 3103 BPVD = createImplicitFirstprivateForType( 3104 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3105 PVD = createImplicitFirstprivateForType( 3106 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3107 QualType SizesType = getContext().getConstantArrayType( 3108 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3109 /*IndexTypeQuals=*/0); 3110 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3111 S.getBeginLoc()); 3112 TargetScope.addPrivate( 3113 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3114 TargetScope.addPrivate(PVD, 3115 [&InputInfo]() { return InputInfo.PointersArray; }); 3116 TargetScope.addPrivate(SVD, 3117 [&InputInfo]() { return InputInfo.SizesArray; }); 3118 } 3119 (void)TargetScope.Privatize(); 3120 // Build list of dependences. 3121 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3122 for (const Expr *IRef : C->varlists()) 3123 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3124 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3125 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3126 // Set proper addresses for generated private copies. 3127 OMPPrivateScope Scope(CGF); 3128 if (!Data.FirstprivateVars.empty()) { 3129 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3130 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3131 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3132 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3133 CS->getCapturedDecl()->getParam(PrivatesParam))); 3134 // Map privates. 3135 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3136 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3137 CallArgs.push_back(PrivatesPtr); 3138 for (const Expr *E : Data.FirstprivateVars) { 3139 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3140 Address PrivatePtr = 3141 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3142 ".firstpriv.ptr.addr"); 3143 PrivatePtrs.emplace_back(VD, PrivatePtr); 3144 CallArgs.push_back(PrivatePtr.getPointer()); 3145 } 3146 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3147 CopyFn, CallArgs); 3148 for (const auto &Pair : PrivatePtrs) { 3149 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3150 CGF.getContext().getDeclAlign(Pair.first)); 3151 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3152 } 3153 } 3154 // Privatize all private variables except for in_reduction items. 3155 (void)Scope.Privatize(); 3156 if (InputInfo.NumberOfTargetItems > 0) { 3157 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3158 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3159 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3160 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3161 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3162 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3163 } 3164 3165 Action.Enter(CGF); 3166 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3167 BodyGen(CGF); 3168 }; 3169 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3170 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3171 Data.NumberOfParts); 3172 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3173 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3174 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3175 SourceLocation()); 3176 3177 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3178 SharedsTy, CapturedStruct, &IfCond, Data); 3179 } 3180 3181 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3182 // Emit outlined function for task construct. 3183 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3184 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3185 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3186 const Expr *IfCond = nullptr; 3187 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3188 if (C->getNameModifier() == OMPD_unknown || 3189 C->getNameModifier() == OMPD_task) { 3190 IfCond = C->getCondition(); 3191 break; 3192 } 3193 } 3194 3195 OMPTaskDataTy Data; 3196 // Check if we should emit tied or untied task. 3197 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3198 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3199 CGF.EmitStmt(CS->getCapturedStmt()); 3200 }; 3201 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3202 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3203 const OMPTaskDataTy &Data) { 3204 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3205 SharedsTy, CapturedStruct, IfCond, 3206 Data); 3207 }; 3208 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3209 } 3210 3211 void CodeGenFunction::EmitOMPTaskyieldDirective( 3212 const OMPTaskyieldDirective &S) { 3213 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3214 } 3215 3216 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3217 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3218 } 3219 3220 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3221 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3222 } 3223 3224 void CodeGenFunction::EmitOMPTaskgroupDirective( 3225 const OMPTaskgroupDirective &S) { 3226 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3227 Action.Enter(CGF); 3228 if (const Expr *E = S.getReductionRef()) { 3229 SmallVector<const Expr *, 4> LHSs; 3230 SmallVector<const Expr *, 4> RHSs; 3231 OMPTaskDataTy Data; 3232 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3233 auto IPriv = C->privates().begin(); 3234 auto IRed = C->reduction_ops().begin(); 3235 auto ILHS = C->lhs_exprs().begin(); 3236 auto IRHS = C->rhs_exprs().begin(); 3237 for (const Expr *Ref : C->varlists()) { 3238 Data.ReductionVars.emplace_back(Ref); 3239 Data.ReductionCopies.emplace_back(*IPriv); 3240 Data.ReductionOps.emplace_back(*IRed); 3241 LHSs.emplace_back(*ILHS); 3242 RHSs.emplace_back(*IRHS); 3243 std::advance(IPriv, 1); 3244 std::advance(IRed, 1); 3245 std::advance(ILHS, 1); 3246 std::advance(IRHS, 1); 3247 } 3248 } 3249 llvm::Value *ReductionDesc = 3250 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3251 LHSs, RHSs, Data); 3252 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3253 CGF.EmitVarDecl(*VD); 3254 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3255 /*Volatile=*/false, E->getType()); 3256 } 3257 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3258 }; 3259 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3260 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3261 } 3262 3263 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3264 CGM.getOpenMPRuntime().emitFlush( 3265 *this, 3266 [&S]() -> ArrayRef<const Expr *> { 3267 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3268 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3269 FlushClause->varlist_end()); 3270 return llvm::None; 3271 }(), 3272 S.getBeginLoc()); 3273 } 3274 3275 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3276 const CodeGenLoopTy &CodeGenLoop, 3277 Expr *IncExpr) { 3278 // Emit the loop iteration variable. 3279 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3280 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3281 EmitVarDecl(*IVDecl); 3282 3283 // Emit the iterations count variable. 3284 // If it is not a variable, Sema decided to calculate iterations count on each 3285 // iteration (e.g., it is foldable into a constant). 3286 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3287 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3288 // Emit calculation of the iterations count. 3289 EmitIgnoredExpr(S.getCalcLastIteration()); 3290 } 3291 3292 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3293 3294 bool HasLastprivateClause = false; 3295 // Check pre-condition. 3296 { 3297 OMPLoopScope PreInitScope(*this, S); 3298 // Skip the entire loop if we don't meet the precondition. 3299 // If the condition constant folds and can be elided, avoid emitting the 3300 // whole loop. 3301 bool CondConstant; 3302 llvm::BasicBlock *ContBlock = nullptr; 3303 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3304 if (!CondConstant) 3305 return; 3306 } else { 3307 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3308 ContBlock = createBasicBlock("omp.precond.end"); 3309 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3310 getProfileCount(&S)); 3311 EmitBlock(ThenBlock); 3312 incrementProfileCounter(&S); 3313 } 3314 3315 emitAlignedClause(*this, S); 3316 // Emit 'then' code. 3317 { 3318 // Emit helper vars inits. 3319 3320 LValue LB = EmitOMPHelperVar( 3321 *this, cast<DeclRefExpr>( 3322 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3323 ? S.getCombinedLowerBoundVariable() 3324 : S.getLowerBoundVariable()))); 3325 LValue UB = EmitOMPHelperVar( 3326 *this, cast<DeclRefExpr>( 3327 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3328 ? S.getCombinedUpperBoundVariable() 3329 : S.getUpperBoundVariable()))); 3330 LValue ST = 3331 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3332 LValue IL = 3333 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3334 3335 OMPPrivateScope LoopScope(*this); 3336 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3337 // Emit implicit barrier to synchronize threads and avoid data races 3338 // on initialization of firstprivate variables and post-update of 3339 // lastprivate variables. 3340 CGM.getOpenMPRuntime().emitBarrierCall( 3341 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3342 /*ForceSimpleCall=*/true); 3343 } 3344 EmitOMPPrivateClause(S, LoopScope); 3345 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3346 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3347 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3348 EmitOMPReductionClauseInit(S, LoopScope); 3349 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3350 EmitOMPPrivateLoopCounters(S, LoopScope); 3351 (void)LoopScope.Privatize(); 3352 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3353 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3354 3355 // Detect the distribute schedule kind and chunk. 3356 llvm::Value *Chunk = nullptr; 3357 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3358 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3359 ScheduleKind = C->getDistScheduleKind(); 3360 if (const Expr *Ch = C->getChunkSize()) { 3361 Chunk = EmitScalarExpr(Ch); 3362 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3363 S.getIterationVariable()->getType(), 3364 S.getBeginLoc()); 3365 } 3366 } else { 3367 // Default behaviour for dist_schedule clause. 3368 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3369 *this, S, ScheduleKind, Chunk); 3370 } 3371 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3372 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3373 3374 // OpenMP [2.10.8, distribute Construct, Description] 3375 // If dist_schedule is specified, kind must be static. If specified, 3376 // iterations are divided into chunks of size chunk_size, chunks are 3377 // assigned to the teams of the league in a round-robin fashion in the 3378 // order of the team number. When no chunk_size is specified, the 3379 // iteration space is divided into chunks that are approximately equal 3380 // in size, and at most one chunk is distributed to each team of the 3381 // league. The size of the chunks is unspecified in this case. 3382 bool StaticChunked = RT.isStaticChunked( 3383 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3384 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3385 if (RT.isStaticNonchunked(ScheduleKind, 3386 /* Chunked */ Chunk != nullptr) || 3387 StaticChunked) { 3388 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3389 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3390 CGOpenMPRuntime::StaticRTInput StaticInit( 3391 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3392 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3393 StaticChunked ? Chunk : nullptr); 3394 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3395 StaticInit); 3396 JumpDest LoopExit = 3397 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3398 // UB = min(UB, GlobalUB); 3399 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3400 ? S.getCombinedEnsureUpperBound() 3401 : S.getEnsureUpperBound()); 3402 // IV = LB; 3403 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3404 ? S.getCombinedInit() 3405 : S.getInit()); 3406 3407 const Expr *Cond = 3408 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3409 ? S.getCombinedCond() 3410 : S.getCond(); 3411 3412 if (StaticChunked) 3413 Cond = S.getCombinedDistCond(); 3414 3415 // For static unchunked schedules generate: 3416 // 3417 // 1. For distribute alone, codegen 3418 // while (idx <= UB) { 3419 // BODY; 3420 // ++idx; 3421 // } 3422 // 3423 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3424 // while (idx <= UB) { 3425 // <CodeGen rest of pragma>(LB, UB); 3426 // idx += ST; 3427 // } 3428 // 3429 // For static chunk one schedule generate: 3430 // 3431 // while (IV <= GlobalUB) { 3432 // <CodeGen rest of pragma>(LB, UB); 3433 // LB += ST; 3434 // UB += ST; 3435 // UB = min(UB, GlobalUB); 3436 // IV = LB; 3437 // } 3438 // 3439 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3440 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3441 CodeGenLoop(CGF, S, LoopExit); 3442 }, 3443 [&S, StaticChunked](CodeGenFunction &CGF) { 3444 if (StaticChunked) { 3445 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3446 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3447 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3448 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3449 } 3450 }); 3451 EmitBlock(LoopExit.getBlock()); 3452 // Tell the runtime we are done. 3453 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3454 } else { 3455 // Emit the outer loop, which requests its work chunk [LB..UB] from 3456 // runtime and runs the inner loop to process it. 3457 const OMPLoopArguments LoopArguments = { 3458 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3459 Chunk}; 3460 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3461 CodeGenLoop); 3462 } 3463 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3464 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3465 return CGF.Builder.CreateIsNotNull( 3466 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3467 }); 3468 } 3469 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3470 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3471 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3472 EmitOMPReductionClauseFinal(S, OMPD_simd); 3473 // Emit post-update of the reduction variables if IsLastIter != 0. 3474 emitPostUpdateForReductionClause( 3475 *this, S, [IL, &S](CodeGenFunction &CGF) { 3476 return CGF.Builder.CreateIsNotNull( 3477 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3478 }); 3479 } 3480 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3481 if (HasLastprivateClause) { 3482 EmitOMPLastprivateClauseFinal( 3483 S, /*NoFinals=*/false, 3484 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3485 } 3486 } 3487 3488 // We're now done with the loop, so jump to the continuation block. 3489 if (ContBlock) { 3490 EmitBranch(ContBlock); 3491 EmitBlock(ContBlock, true); 3492 } 3493 } 3494 } 3495 3496 void CodeGenFunction::EmitOMPDistributeDirective( 3497 const OMPDistributeDirective &S) { 3498 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3499 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3500 }; 3501 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3502 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3503 } 3504 3505 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3506 const CapturedStmt *S) { 3507 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3508 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3509 CGF.CapturedStmtInfo = &CapStmtInfo; 3510 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3511 Fn->setDoesNotRecurse(); 3512 return Fn; 3513 } 3514 3515 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3516 if (S.hasClausesOfKind<OMPDependClause>()) { 3517 assert(!S.getAssociatedStmt() && 3518 "No associated statement must be in ordered depend construct."); 3519 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3520 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3521 return; 3522 } 3523 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3524 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3525 PrePostActionTy &Action) { 3526 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3527 if (C) { 3528 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3529 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3530 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3531 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3532 OutlinedFn, CapturedVars); 3533 } else { 3534 Action.Enter(CGF); 3535 CGF.EmitStmt(CS->getCapturedStmt()); 3536 } 3537 }; 3538 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3539 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3540 } 3541 3542 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3543 QualType SrcType, QualType DestType, 3544 SourceLocation Loc) { 3545 assert(CGF.hasScalarEvaluationKind(DestType) && 3546 "DestType must have scalar evaluation kind."); 3547 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3548 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3549 DestType, Loc) 3550 : CGF.EmitComplexToScalarConversion( 3551 Val.getComplexVal(), SrcType, DestType, Loc); 3552 } 3553 3554 static CodeGenFunction::ComplexPairTy 3555 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3556 QualType DestType, SourceLocation Loc) { 3557 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3558 "DestType must have complex evaluation kind."); 3559 CodeGenFunction::ComplexPairTy ComplexVal; 3560 if (Val.isScalar()) { 3561 // Convert the input element to the element type of the complex. 3562 QualType DestElementType = 3563 DestType->castAs<ComplexType>()->getElementType(); 3564 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3565 Val.getScalarVal(), SrcType, DestElementType, Loc); 3566 ComplexVal = CodeGenFunction::ComplexPairTy( 3567 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3568 } else { 3569 assert(Val.isComplex() && "Must be a scalar or complex."); 3570 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3571 QualType DestElementType = 3572 DestType->castAs<ComplexType>()->getElementType(); 3573 ComplexVal.first = CGF.EmitScalarConversion( 3574 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3575 ComplexVal.second = CGF.EmitScalarConversion( 3576 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3577 } 3578 return ComplexVal; 3579 } 3580 3581 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3582 LValue LVal, RValue RVal) { 3583 if (LVal.isGlobalReg()) { 3584 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3585 } else { 3586 CGF.EmitAtomicStore(RVal, LVal, 3587 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3588 : llvm::AtomicOrdering::Monotonic, 3589 LVal.isVolatile(), /*IsInit=*/false); 3590 } 3591 } 3592 3593 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3594 QualType RValTy, SourceLocation Loc) { 3595 switch (getEvaluationKind(LVal.getType())) { 3596 case TEK_Scalar: 3597 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3598 *this, RVal, RValTy, LVal.getType(), Loc)), 3599 LVal); 3600 break; 3601 case TEK_Complex: 3602 EmitStoreOfComplex( 3603 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3604 /*isInit=*/false); 3605 break; 3606 case TEK_Aggregate: 3607 llvm_unreachable("Must be a scalar or complex."); 3608 } 3609 } 3610 3611 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3612 const Expr *X, const Expr *V, 3613 SourceLocation Loc) { 3614 // v = x; 3615 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3616 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3617 LValue XLValue = CGF.EmitLValue(X); 3618 LValue VLValue = CGF.EmitLValue(V); 3619 RValue Res = XLValue.isGlobalReg() 3620 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3621 : CGF.EmitAtomicLoad( 3622 XLValue, Loc, 3623 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3624 : llvm::AtomicOrdering::Monotonic, 3625 XLValue.isVolatile()); 3626 // OpenMP, 2.12.6, atomic Construct 3627 // Any atomic construct with a seq_cst clause forces the atomically 3628 // performed operation to include an implicit flush operation without a 3629 // list. 3630 if (IsSeqCst) 3631 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3632 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3633 } 3634 3635 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3636 const Expr *X, const Expr *E, 3637 SourceLocation Loc) { 3638 // x = expr; 3639 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3640 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3641 // OpenMP, 2.12.6, atomic Construct 3642 // Any atomic construct with a seq_cst clause forces the atomically 3643 // performed operation to include an implicit flush operation without a 3644 // list. 3645 if (IsSeqCst) 3646 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3647 } 3648 3649 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3650 RValue Update, 3651 BinaryOperatorKind BO, 3652 llvm::AtomicOrdering AO, 3653 bool IsXLHSInRHSPart) { 3654 ASTContext &Context = CGF.getContext(); 3655 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3656 // expression is simple and atomic is allowed for the given type for the 3657 // target platform. 3658 if (BO == BO_Comma || !Update.isScalar() || 3659 !Update.getScalarVal()->getType()->isIntegerTy() || 3660 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3661 (Update.getScalarVal()->getType() != 3662 X.getAddress().getElementType())) || 3663 !X.getAddress().getElementType()->isIntegerTy() || 3664 !Context.getTargetInfo().hasBuiltinAtomic( 3665 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3666 return std::make_pair(false, RValue::get(nullptr)); 3667 3668 llvm::AtomicRMWInst::BinOp RMWOp; 3669 switch (BO) { 3670 case BO_Add: 3671 RMWOp = llvm::AtomicRMWInst::Add; 3672 break; 3673 case BO_Sub: 3674 if (!IsXLHSInRHSPart) 3675 return std::make_pair(false, RValue::get(nullptr)); 3676 RMWOp = llvm::AtomicRMWInst::Sub; 3677 break; 3678 case BO_And: 3679 RMWOp = llvm::AtomicRMWInst::And; 3680 break; 3681 case BO_Or: 3682 RMWOp = llvm::AtomicRMWInst::Or; 3683 break; 3684 case BO_Xor: 3685 RMWOp = llvm::AtomicRMWInst::Xor; 3686 break; 3687 case BO_LT: 3688 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3689 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3690 : llvm::AtomicRMWInst::Max) 3691 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3692 : llvm::AtomicRMWInst::UMax); 3693 break; 3694 case BO_GT: 3695 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3696 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3697 : llvm::AtomicRMWInst::Min) 3698 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3699 : llvm::AtomicRMWInst::UMin); 3700 break; 3701 case BO_Assign: 3702 RMWOp = llvm::AtomicRMWInst::Xchg; 3703 break; 3704 case BO_Mul: 3705 case BO_Div: 3706 case BO_Rem: 3707 case BO_Shl: 3708 case BO_Shr: 3709 case BO_LAnd: 3710 case BO_LOr: 3711 return std::make_pair(false, RValue::get(nullptr)); 3712 case BO_PtrMemD: 3713 case BO_PtrMemI: 3714 case BO_LE: 3715 case BO_GE: 3716 case BO_EQ: 3717 case BO_NE: 3718 case BO_Cmp: 3719 case BO_AddAssign: 3720 case BO_SubAssign: 3721 case BO_AndAssign: 3722 case BO_OrAssign: 3723 case BO_XorAssign: 3724 case BO_MulAssign: 3725 case BO_DivAssign: 3726 case BO_RemAssign: 3727 case BO_ShlAssign: 3728 case BO_ShrAssign: 3729 case BO_Comma: 3730 llvm_unreachable("Unsupported atomic update operation"); 3731 } 3732 llvm::Value *UpdateVal = Update.getScalarVal(); 3733 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3734 UpdateVal = CGF.Builder.CreateIntCast( 3735 IC, X.getAddress().getElementType(), 3736 X.getType()->hasSignedIntegerRepresentation()); 3737 } 3738 llvm::Value *Res = 3739 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3740 return std::make_pair(true, RValue::get(Res)); 3741 } 3742 3743 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3744 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3745 llvm::AtomicOrdering AO, SourceLocation Loc, 3746 const llvm::function_ref<RValue(RValue)> CommonGen) { 3747 // Update expressions are allowed to have the following forms: 3748 // x binop= expr; -> xrval + expr; 3749 // x++, ++x -> xrval + 1; 3750 // x--, --x -> xrval - 1; 3751 // x = x binop expr; -> xrval binop expr 3752 // x = expr Op x; - > expr binop xrval; 3753 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3754 if (!Res.first) { 3755 if (X.isGlobalReg()) { 3756 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3757 // 'xrval'. 3758 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3759 } else { 3760 // Perform compare-and-swap procedure. 3761 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3762 } 3763 } 3764 return Res; 3765 } 3766 3767 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3768 const Expr *X, const Expr *E, 3769 const Expr *UE, bool IsXLHSInRHSPart, 3770 SourceLocation Loc) { 3771 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3772 "Update expr in 'atomic update' must be a binary operator."); 3773 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3774 // Update expressions are allowed to have the following forms: 3775 // x binop= expr; -> xrval + expr; 3776 // x++, ++x -> xrval + 1; 3777 // x--, --x -> xrval - 1; 3778 // x = x binop expr; -> xrval binop expr 3779 // x = expr Op x; - > expr binop xrval; 3780 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3781 LValue XLValue = CGF.EmitLValue(X); 3782 RValue ExprRValue = CGF.EmitAnyExpr(E); 3783 llvm::AtomicOrdering AO = IsSeqCst 3784 ? llvm::AtomicOrdering::SequentiallyConsistent 3785 : llvm::AtomicOrdering::Monotonic; 3786 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3787 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3788 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3789 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3790 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3791 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3792 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3793 return CGF.EmitAnyExpr(UE); 3794 }; 3795 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3796 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3797 // OpenMP, 2.12.6, atomic Construct 3798 // Any atomic construct with a seq_cst clause forces the atomically 3799 // performed operation to include an implicit flush operation without a 3800 // list. 3801 if (IsSeqCst) 3802 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3803 } 3804 3805 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3806 QualType SourceType, QualType ResType, 3807 SourceLocation Loc) { 3808 switch (CGF.getEvaluationKind(ResType)) { 3809 case TEK_Scalar: 3810 return RValue::get( 3811 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3812 case TEK_Complex: { 3813 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3814 return RValue::getComplex(Res.first, Res.second); 3815 } 3816 case TEK_Aggregate: 3817 break; 3818 } 3819 llvm_unreachable("Must be a scalar or complex."); 3820 } 3821 3822 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3823 bool IsPostfixUpdate, const Expr *V, 3824 const Expr *X, const Expr *E, 3825 const Expr *UE, bool IsXLHSInRHSPart, 3826 SourceLocation Loc) { 3827 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3828 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3829 RValue NewVVal; 3830 LValue VLValue = CGF.EmitLValue(V); 3831 LValue XLValue = CGF.EmitLValue(X); 3832 RValue ExprRValue = CGF.EmitAnyExpr(E); 3833 llvm::AtomicOrdering AO = IsSeqCst 3834 ? llvm::AtomicOrdering::SequentiallyConsistent 3835 : llvm::AtomicOrdering::Monotonic; 3836 QualType NewVValType; 3837 if (UE) { 3838 // 'x' is updated with some additional value. 3839 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3840 "Update expr in 'atomic capture' must be a binary operator."); 3841 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3842 // Update expressions are allowed to have the following forms: 3843 // x binop= expr; -> xrval + expr; 3844 // x++, ++x -> xrval + 1; 3845 // x--, --x -> xrval - 1; 3846 // x = x binop expr; -> xrval binop expr 3847 // x = expr Op x; - > expr binop xrval; 3848 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3849 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3850 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3851 NewVValType = XRValExpr->getType(); 3852 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3853 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3854 IsPostfixUpdate](RValue XRValue) { 3855 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3856 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3857 RValue Res = CGF.EmitAnyExpr(UE); 3858 NewVVal = IsPostfixUpdate ? XRValue : Res; 3859 return Res; 3860 }; 3861 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3862 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3863 if (Res.first) { 3864 // 'atomicrmw' instruction was generated. 3865 if (IsPostfixUpdate) { 3866 // Use old value from 'atomicrmw'. 3867 NewVVal = Res.second; 3868 } else { 3869 // 'atomicrmw' does not provide new value, so evaluate it using old 3870 // value of 'x'. 3871 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3872 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3873 NewVVal = CGF.EmitAnyExpr(UE); 3874 } 3875 } 3876 } else { 3877 // 'x' is simply rewritten with some 'expr'. 3878 NewVValType = X->getType().getNonReferenceType(); 3879 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3880 X->getType().getNonReferenceType(), Loc); 3881 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3882 NewVVal = XRValue; 3883 return ExprRValue; 3884 }; 3885 // Try to perform atomicrmw xchg, otherwise simple exchange. 3886 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3887 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3888 Loc, Gen); 3889 if (Res.first) { 3890 // 'atomicrmw' instruction was generated. 3891 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3892 } 3893 } 3894 // Emit post-update store to 'v' of old/new 'x' value. 3895 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3896 // OpenMP, 2.12.6, atomic Construct 3897 // Any atomic construct with a seq_cst clause forces the atomically 3898 // performed operation to include an implicit flush operation without a 3899 // list. 3900 if (IsSeqCst) 3901 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3902 } 3903 3904 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3905 bool IsSeqCst, bool IsPostfixUpdate, 3906 const Expr *X, const Expr *V, const Expr *E, 3907 const Expr *UE, bool IsXLHSInRHSPart, 3908 SourceLocation Loc) { 3909 switch (Kind) { 3910 case OMPC_read: 3911 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3912 break; 3913 case OMPC_write: 3914 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3915 break; 3916 case OMPC_unknown: 3917 case OMPC_update: 3918 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3919 break; 3920 case OMPC_capture: 3921 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3922 IsXLHSInRHSPart, Loc); 3923 break; 3924 case OMPC_if: 3925 case OMPC_final: 3926 case OMPC_num_threads: 3927 case OMPC_private: 3928 case OMPC_firstprivate: 3929 case OMPC_lastprivate: 3930 case OMPC_reduction: 3931 case OMPC_task_reduction: 3932 case OMPC_in_reduction: 3933 case OMPC_safelen: 3934 case OMPC_simdlen: 3935 case OMPC_collapse: 3936 case OMPC_default: 3937 case OMPC_seq_cst: 3938 case OMPC_shared: 3939 case OMPC_linear: 3940 case OMPC_aligned: 3941 case OMPC_copyin: 3942 case OMPC_copyprivate: 3943 case OMPC_flush: 3944 case OMPC_proc_bind: 3945 case OMPC_schedule: 3946 case OMPC_ordered: 3947 case OMPC_nowait: 3948 case OMPC_untied: 3949 case OMPC_threadprivate: 3950 case OMPC_depend: 3951 case OMPC_mergeable: 3952 case OMPC_device: 3953 case OMPC_threads: 3954 case OMPC_simd: 3955 case OMPC_map: 3956 case OMPC_num_teams: 3957 case OMPC_thread_limit: 3958 case OMPC_priority: 3959 case OMPC_grainsize: 3960 case OMPC_nogroup: 3961 case OMPC_num_tasks: 3962 case OMPC_hint: 3963 case OMPC_dist_schedule: 3964 case OMPC_defaultmap: 3965 case OMPC_uniform: 3966 case OMPC_to: 3967 case OMPC_from: 3968 case OMPC_use_device_ptr: 3969 case OMPC_is_device_ptr: 3970 case OMPC_unified_address: 3971 case OMPC_unified_shared_memory: 3972 case OMPC_reverse_offload: 3973 case OMPC_dynamic_allocators: 3974 case OMPC_atomic_default_mem_order: 3975 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3976 } 3977 } 3978 3979 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3980 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3981 OpenMPClauseKind Kind = OMPC_unknown; 3982 for (const OMPClause *C : S.clauses()) { 3983 // Find first clause (skip seq_cst clause, if it is first). 3984 if (C->getClauseKind() != OMPC_seq_cst) { 3985 Kind = C->getClauseKind(); 3986 break; 3987 } 3988 } 3989 3990 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3991 if (const auto *FE = dyn_cast<FullExpr>(CS)) 3992 enterFullExpression(FE); 3993 // Processing for statements under 'atomic capture'. 3994 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3995 for (const Stmt *C : Compound->body()) { 3996 if (const auto *FE = dyn_cast<FullExpr>(C)) 3997 enterFullExpression(FE); 3998 } 3999 } 4000 4001 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4002 PrePostActionTy &) { 4003 CGF.EmitStopPoint(CS); 4004 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4005 S.getV(), S.getExpr(), S.getUpdateExpr(), 4006 S.isXLHSInRHSPart(), S.getBeginLoc()); 4007 }; 4008 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4009 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4010 } 4011 4012 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4013 const OMPExecutableDirective &S, 4014 const RegionCodeGenTy &CodeGen) { 4015 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4016 CodeGenModule &CGM = CGF.CGM; 4017 4018 // On device emit this construct as inlined code. 4019 if (CGM.getLangOpts().OpenMPIsDevice) { 4020 OMPLexicalScope Scope(CGF, S, OMPD_target); 4021 CGM.getOpenMPRuntime().emitInlinedDirective( 4022 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4023 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4024 }); 4025 return; 4026 } 4027 4028 llvm::Function *Fn = nullptr; 4029 llvm::Constant *FnID = nullptr; 4030 4031 const Expr *IfCond = nullptr; 4032 // Check for the at most one if clause associated with the target region. 4033 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4034 if (C->getNameModifier() == OMPD_unknown || 4035 C->getNameModifier() == OMPD_target) { 4036 IfCond = C->getCondition(); 4037 break; 4038 } 4039 } 4040 4041 // Check if we have any device clause associated with the directive. 4042 const Expr *Device = nullptr; 4043 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4044 Device = C->getDevice(); 4045 4046 // Check if we have an if clause whose conditional always evaluates to false 4047 // or if we do not have any targets specified. If so the target region is not 4048 // an offload entry point. 4049 bool IsOffloadEntry = true; 4050 if (IfCond) { 4051 bool Val; 4052 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4053 IsOffloadEntry = false; 4054 } 4055 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4056 IsOffloadEntry = false; 4057 4058 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4059 StringRef ParentName; 4060 // In case we have Ctors/Dtors we use the complete type variant to produce 4061 // the mangling of the device outlined kernel. 4062 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4063 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4064 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4065 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4066 else 4067 ParentName = 4068 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4069 4070 // Emit target region as a standalone region. 4071 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4072 IsOffloadEntry, CodeGen); 4073 OMPLexicalScope Scope(CGF, S, OMPD_task); 4074 auto &&SizeEmitter = [](CodeGenFunction &CGF, const OMPLoopDirective &D) { 4075 OMPLoopScope(CGF, D); 4076 // Emit calculation of the iterations count. 4077 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4078 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4079 /*IsSigned=*/false); 4080 return NumIterations; 4081 }; 4082 CGM.getOpenMPRuntime().emitTargetNumIterationsCall(CGF, S, Device, 4083 SizeEmitter); 4084 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4085 } 4086 4087 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4088 PrePostActionTy &Action) { 4089 Action.Enter(CGF); 4090 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4091 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4092 CGF.EmitOMPPrivateClause(S, PrivateScope); 4093 (void)PrivateScope.Privatize(); 4094 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4095 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4096 4097 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4098 } 4099 4100 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4101 StringRef ParentName, 4102 const OMPTargetDirective &S) { 4103 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4104 emitTargetRegion(CGF, S, Action); 4105 }; 4106 llvm::Function *Fn; 4107 llvm::Constant *Addr; 4108 // Emit target region as a standalone region. 4109 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4110 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4111 assert(Fn && Addr && "Target device function emission failed."); 4112 } 4113 4114 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4115 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4116 emitTargetRegion(CGF, S, Action); 4117 }; 4118 emitCommonOMPTargetDirective(*this, S, CodeGen); 4119 } 4120 4121 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4122 const OMPExecutableDirective &S, 4123 OpenMPDirectiveKind InnermostKind, 4124 const RegionCodeGenTy &CodeGen) { 4125 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4126 llvm::Value *OutlinedFn = 4127 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4128 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4129 4130 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4131 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4132 if (NT || TL) { 4133 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4134 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4135 4136 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4137 S.getBeginLoc()); 4138 } 4139 4140 OMPTeamsScope Scope(CGF, S); 4141 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4142 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4143 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4144 CapturedVars); 4145 } 4146 4147 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4148 // Emit teams region as a standalone region. 4149 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4150 Action.Enter(CGF); 4151 OMPPrivateScope PrivateScope(CGF); 4152 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4153 CGF.EmitOMPPrivateClause(S, PrivateScope); 4154 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4155 (void)PrivateScope.Privatize(); 4156 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4157 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4158 }; 4159 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4160 emitPostUpdateForReductionClause(*this, S, 4161 [](CodeGenFunction &) { return nullptr; }); 4162 } 4163 4164 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4165 const OMPTargetTeamsDirective &S) { 4166 auto *CS = S.getCapturedStmt(OMPD_teams); 4167 Action.Enter(CGF); 4168 // Emit teams region as a standalone region. 4169 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4170 Action.Enter(CGF); 4171 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4172 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4173 CGF.EmitOMPPrivateClause(S, PrivateScope); 4174 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4175 (void)PrivateScope.Privatize(); 4176 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4177 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4178 CGF.EmitStmt(CS->getCapturedStmt()); 4179 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4180 }; 4181 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4182 emitPostUpdateForReductionClause(CGF, S, 4183 [](CodeGenFunction &) { return nullptr; }); 4184 } 4185 4186 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4187 CodeGenModule &CGM, StringRef ParentName, 4188 const OMPTargetTeamsDirective &S) { 4189 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4190 emitTargetTeamsRegion(CGF, Action, S); 4191 }; 4192 llvm::Function *Fn; 4193 llvm::Constant *Addr; 4194 // Emit target region as a standalone region. 4195 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4196 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4197 assert(Fn && Addr && "Target device function emission failed."); 4198 } 4199 4200 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4201 const OMPTargetTeamsDirective &S) { 4202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4203 emitTargetTeamsRegion(CGF, Action, S); 4204 }; 4205 emitCommonOMPTargetDirective(*this, S, CodeGen); 4206 } 4207 4208 static void 4209 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4210 const OMPTargetTeamsDistributeDirective &S) { 4211 Action.Enter(CGF); 4212 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4213 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4214 }; 4215 4216 // Emit teams region as a standalone region. 4217 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4218 PrePostActionTy &Action) { 4219 Action.Enter(CGF); 4220 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4221 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4222 (void)PrivateScope.Privatize(); 4223 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4224 CodeGenDistribute); 4225 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4226 }; 4227 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4228 emitPostUpdateForReductionClause(CGF, S, 4229 [](CodeGenFunction &) { return nullptr; }); 4230 } 4231 4232 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4233 CodeGenModule &CGM, StringRef ParentName, 4234 const OMPTargetTeamsDistributeDirective &S) { 4235 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4236 emitTargetTeamsDistributeRegion(CGF, Action, S); 4237 }; 4238 llvm::Function *Fn; 4239 llvm::Constant *Addr; 4240 // Emit target region as a standalone region. 4241 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4242 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4243 assert(Fn && Addr && "Target device function emission failed."); 4244 } 4245 4246 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4247 const OMPTargetTeamsDistributeDirective &S) { 4248 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4249 emitTargetTeamsDistributeRegion(CGF, Action, S); 4250 }; 4251 emitCommonOMPTargetDirective(*this, S, CodeGen); 4252 } 4253 4254 static void emitTargetTeamsDistributeSimdRegion( 4255 CodeGenFunction &CGF, PrePostActionTy &Action, 4256 const OMPTargetTeamsDistributeSimdDirective &S) { 4257 Action.Enter(CGF); 4258 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4259 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4260 }; 4261 4262 // Emit teams region as a standalone region. 4263 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4264 PrePostActionTy &Action) { 4265 Action.Enter(CGF); 4266 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4267 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4268 (void)PrivateScope.Privatize(); 4269 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4270 CodeGenDistribute); 4271 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4272 }; 4273 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4274 emitPostUpdateForReductionClause(CGF, S, 4275 [](CodeGenFunction &) { return nullptr; }); 4276 } 4277 4278 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4279 CodeGenModule &CGM, StringRef ParentName, 4280 const OMPTargetTeamsDistributeSimdDirective &S) { 4281 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4282 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4283 }; 4284 llvm::Function *Fn; 4285 llvm::Constant *Addr; 4286 // Emit target region as a standalone region. 4287 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4288 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4289 assert(Fn && Addr && "Target device function emission failed."); 4290 } 4291 4292 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4293 const OMPTargetTeamsDistributeSimdDirective &S) { 4294 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4295 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4296 }; 4297 emitCommonOMPTargetDirective(*this, S, CodeGen); 4298 } 4299 4300 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4301 const OMPTeamsDistributeDirective &S) { 4302 4303 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4304 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4305 }; 4306 4307 // Emit teams region as a standalone region. 4308 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4309 PrePostActionTy &Action) { 4310 Action.Enter(CGF); 4311 OMPPrivateScope PrivateScope(CGF); 4312 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4313 (void)PrivateScope.Privatize(); 4314 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4315 CodeGenDistribute); 4316 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4317 }; 4318 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4319 emitPostUpdateForReductionClause(*this, S, 4320 [](CodeGenFunction &) { return nullptr; }); 4321 } 4322 4323 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4324 const OMPTeamsDistributeSimdDirective &S) { 4325 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4326 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4327 }; 4328 4329 // Emit teams region as a standalone region. 4330 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4331 PrePostActionTy &Action) { 4332 Action.Enter(CGF); 4333 OMPPrivateScope PrivateScope(CGF); 4334 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4335 (void)PrivateScope.Privatize(); 4336 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4337 CodeGenDistribute); 4338 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4339 }; 4340 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4341 emitPostUpdateForReductionClause(*this, S, 4342 [](CodeGenFunction &) { return nullptr; }); 4343 } 4344 4345 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4346 const OMPTeamsDistributeParallelForDirective &S) { 4347 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4348 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4349 S.getDistInc()); 4350 }; 4351 4352 // Emit teams region as a standalone region. 4353 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4354 PrePostActionTy &Action) { 4355 Action.Enter(CGF); 4356 OMPPrivateScope PrivateScope(CGF); 4357 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4358 (void)PrivateScope.Privatize(); 4359 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4360 CodeGenDistribute); 4361 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4362 }; 4363 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4364 emitPostUpdateForReductionClause(*this, S, 4365 [](CodeGenFunction &) { return nullptr; }); 4366 } 4367 4368 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4369 const OMPTeamsDistributeParallelForSimdDirective &S) { 4370 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4371 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4372 S.getDistInc()); 4373 }; 4374 4375 // Emit teams region as a standalone region. 4376 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4377 PrePostActionTy &Action) { 4378 Action.Enter(CGF); 4379 OMPPrivateScope PrivateScope(CGF); 4380 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4381 (void)PrivateScope.Privatize(); 4382 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4383 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4384 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4385 }; 4386 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4387 emitPostUpdateForReductionClause(*this, S, 4388 [](CodeGenFunction &) { return nullptr; }); 4389 } 4390 4391 static void emitTargetTeamsDistributeParallelForRegion( 4392 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4393 PrePostActionTy &Action) { 4394 Action.Enter(CGF); 4395 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4396 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4397 S.getDistInc()); 4398 }; 4399 4400 // Emit teams region as a standalone region. 4401 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4402 PrePostActionTy &Action) { 4403 Action.Enter(CGF); 4404 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4405 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4406 (void)PrivateScope.Privatize(); 4407 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4408 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4409 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4410 }; 4411 4412 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4413 CodeGenTeams); 4414 emitPostUpdateForReductionClause(CGF, S, 4415 [](CodeGenFunction &) { return nullptr; }); 4416 } 4417 4418 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4419 CodeGenModule &CGM, StringRef ParentName, 4420 const OMPTargetTeamsDistributeParallelForDirective &S) { 4421 // Emit SPMD target teams distribute parallel for region as a standalone 4422 // region. 4423 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4424 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4425 }; 4426 llvm::Function *Fn; 4427 llvm::Constant *Addr; 4428 // Emit target region as a standalone region. 4429 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4430 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4431 assert(Fn && Addr && "Target device function emission failed."); 4432 } 4433 4434 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4435 const OMPTargetTeamsDistributeParallelForDirective &S) { 4436 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4437 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4438 }; 4439 emitCommonOMPTargetDirective(*this, S, CodeGen); 4440 } 4441 4442 static void emitTargetTeamsDistributeParallelForSimdRegion( 4443 CodeGenFunction &CGF, 4444 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4445 PrePostActionTy &Action) { 4446 Action.Enter(CGF); 4447 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4448 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4449 S.getDistInc()); 4450 }; 4451 4452 // Emit teams region as a standalone region. 4453 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4454 PrePostActionTy &Action) { 4455 Action.Enter(CGF); 4456 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4457 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4458 (void)PrivateScope.Privatize(); 4459 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4460 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4461 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4462 }; 4463 4464 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4465 CodeGenTeams); 4466 emitPostUpdateForReductionClause(CGF, S, 4467 [](CodeGenFunction &) { return nullptr; }); 4468 } 4469 4470 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4471 CodeGenModule &CGM, StringRef ParentName, 4472 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4473 // Emit SPMD target teams distribute parallel for simd region as a standalone 4474 // region. 4475 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4476 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4477 }; 4478 llvm::Function *Fn; 4479 llvm::Constant *Addr; 4480 // Emit target region as a standalone region. 4481 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4482 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4483 assert(Fn && Addr && "Target device function emission failed."); 4484 } 4485 4486 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4487 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4488 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4489 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4490 }; 4491 emitCommonOMPTargetDirective(*this, S, CodeGen); 4492 } 4493 4494 void CodeGenFunction::EmitOMPCancellationPointDirective( 4495 const OMPCancellationPointDirective &S) { 4496 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4497 S.getCancelRegion()); 4498 } 4499 4500 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4501 const Expr *IfCond = nullptr; 4502 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4503 if (C->getNameModifier() == OMPD_unknown || 4504 C->getNameModifier() == OMPD_cancel) { 4505 IfCond = C->getCondition(); 4506 break; 4507 } 4508 } 4509 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4510 S.getCancelRegion()); 4511 } 4512 4513 CodeGenFunction::JumpDest 4514 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4515 if (Kind == OMPD_parallel || Kind == OMPD_task || 4516 Kind == OMPD_target_parallel) 4517 return ReturnBlock; 4518 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4519 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4520 Kind == OMPD_distribute_parallel_for || 4521 Kind == OMPD_target_parallel_for || 4522 Kind == OMPD_teams_distribute_parallel_for || 4523 Kind == OMPD_target_teams_distribute_parallel_for); 4524 return OMPCancelStack.getExitBlock(); 4525 } 4526 4527 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4528 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4529 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4530 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4531 auto OrigVarIt = C.varlist_begin(); 4532 auto InitIt = C.inits().begin(); 4533 for (const Expr *PvtVarIt : C.private_copies()) { 4534 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4535 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4536 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4537 4538 // In order to identify the right initializer we need to match the 4539 // declaration used by the mapping logic. In some cases we may get 4540 // OMPCapturedExprDecl that refers to the original declaration. 4541 const ValueDecl *MatchingVD = OrigVD; 4542 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4543 // OMPCapturedExprDecl are used to privative fields of the current 4544 // structure. 4545 const auto *ME = cast<MemberExpr>(OED->getInit()); 4546 assert(isa<CXXThisExpr>(ME->getBase()) && 4547 "Base should be the current struct!"); 4548 MatchingVD = ME->getMemberDecl(); 4549 } 4550 4551 // If we don't have information about the current list item, move on to 4552 // the next one. 4553 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4554 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4555 continue; 4556 4557 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4558 InitAddrIt, InitVD, 4559 PvtVD]() { 4560 // Initialize the temporary initialization variable with the address we 4561 // get from the runtime library. We have to cast the source address 4562 // because it is always a void *. References are materialized in the 4563 // privatization scope, so the initialization here disregards the fact 4564 // the original variable is a reference. 4565 QualType AddrQTy = 4566 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4567 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4568 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4569 setAddrOfLocalVar(InitVD, InitAddr); 4570 4571 // Emit private declaration, it will be initialized by the value we 4572 // declaration we just added to the local declarations map. 4573 EmitDecl(*PvtVD); 4574 4575 // The initialization variables reached its purpose in the emission 4576 // of the previous declaration, so we don't need it anymore. 4577 LocalDeclMap.erase(InitVD); 4578 4579 // Return the address of the private variable. 4580 return GetAddrOfLocalVar(PvtVD); 4581 }); 4582 assert(IsRegistered && "firstprivate var already registered as private"); 4583 // Silence the warning about unused variable. 4584 (void)IsRegistered; 4585 4586 ++OrigVarIt; 4587 ++InitIt; 4588 } 4589 } 4590 4591 // Generate the instructions for '#pragma omp target data' directive. 4592 void CodeGenFunction::EmitOMPTargetDataDirective( 4593 const OMPTargetDataDirective &S) { 4594 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4595 4596 // Create a pre/post action to signal the privatization of the device pointer. 4597 // This action can be replaced by the OpenMP runtime code generation to 4598 // deactivate privatization. 4599 bool PrivatizeDevicePointers = false; 4600 class DevicePointerPrivActionTy : public PrePostActionTy { 4601 bool &PrivatizeDevicePointers; 4602 4603 public: 4604 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4605 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4606 void Enter(CodeGenFunction &CGF) override { 4607 PrivatizeDevicePointers = true; 4608 } 4609 }; 4610 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4611 4612 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4613 CodeGenFunction &CGF, PrePostActionTy &Action) { 4614 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4615 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4616 }; 4617 4618 // Codegen that selects whether to generate the privatization code or not. 4619 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4620 &InnermostCodeGen](CodeGenFunction &CGF, 4621 PrePostActionTy &Action) { 4622 RegionCodeGenTy RCG(InnermostCodeGen); 4623 PrivatizeDevicePointers = false; 4624 4625 // Call the pre-action to change the status of PrivatizeDevicePointers if 4626 // needed. 4627 Action.Enter(CGF); 4628 4629 if (PrivatizeDevicePointers) { 4630 OMPPrivateScope PrivateScope(CGF); 4631 // Emit all instances of the use_device_ptr clause. 4632 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4633 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4634 Info.CaptureDeviceAddrMap); 4635 (void)PrivateScope.Privatize(); 4636 RCG(CGF); 4637 } else { 4638 RCG(CGF); 4639 } 4640 }; 4641 4642 // Forward the provided action to the privatization codegen. 4643 RegionCodeGenTy PrivRCG(PrivCodeGen); 4644 PrivRCG.setAction(Action); 4645 4646 // Notwithstanding the body of the region is emitted as inlined directive, 4647 // we don't use an inline scope as changes in the references inside the 4648 // region are expected to be visible outside, so we do not privative them. 4649 OMPLexicalScope Scope(CGF, S); 4650 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4651 PrivRCG); 4652 }; 4653 4654 RegionCodeGenTy RCG(CodeGen); 4655 4656 // If we don't have target devices, don't bother emitting the data mapping 4657 // code. 4658 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4659 RCG(*this); 4660 return; 4661 } 4662 4663 // Check if we have any if clause associated with the directive. 4664 const Expr *IfCond = nullptr; 4665 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4666 IfCond = C->getCondition(); 4667 4668 // Check if we have any device clause associated with the directive. 4669 const Expr *Device = nullptr; 4670 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4671 Device = C->getDevice(); 4672 4673 // Set the action to signal privatization of device pointers. 4674 RCG.setAction(PrivAction); 4675 4676 // Emit region code. 4677 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4678 Info); 4679 } 4680 4681 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4682 const OMPTargetEnterDataDirective &S) { 4683 // If we don't have target devices, don't bother emitting the data mapping 4684 // code. 4685 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4686 return; 4687 4688 // Check if we have any if clause associated with the directive. 4689 const Expr *IfCond = nullptr; 4690 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4691 IfCond = C->getCondition(); 4692 4693 // Check if we have any device clause associated with the directive. 4694 const Expr *Device = nullptr; 4695 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4696 Device = C->getDevice(); 4697 4698 OMPLexicalScope Scope(*this, S, OMPD_task); 4699 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4700 } 4701 4702 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4703 const OMPTargetExitDataDirective &S) { 4704 // If we don't have target devices, don't bother emitting the data mapping 4705 // code. 4706 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4707 return; 4708 4709 // Check if we have any if clause associated with the directive. 4710 const Expr *IfCond = nullptr; 4711 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4712 IfCond = C->getCondition(); 4713 4714 // Check if we have any device clause associated with the directive. 4715 const Expr *Device = nullptr; 4716 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4717 Device = C->getDevice(); 4718 4719 OMPLexicalScope Scope(*this, S, OMPD_task); 4720 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4721 } 4722 4723 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4724 const OMPTargetParallelDirective &S, 4725 PrePostActionTy &Action) { 4726 // Get the captured statement associated with the 'parallel' region. 4727 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4728 Action.Enter(CGF); 4729 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4730 Action.Enter(CGF); 4731 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4732 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4733 CGF.EmitOMPPrivateClause(S, PrivateScope); 4734 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4735 (void)PrivateScope.Privatize(); 4736 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4737 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4738 // TODO: Add support for clauses. 4739 CGF.EmitStmt(CS->getCapturedStmt()); 4740 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4741 }; 4742 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4743 emitEmptyBoundParameters); 4744 emitPostUpdateForReductionClause(CGF, S, 4745 [](CodeGenFunction &) { return nullptr; }); 4746 } 4747 4748 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4749 CodeGenModule &CGM, StringRef ParentName, 4750 const OMPTargetParallelDirective &S) { 4751 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4752 emitTargetParallelRegion(CGF, S, Action); 4753 }; 4754 llvm::Function *Fn; 4755 llvm::Constant *Addr; 4756 // Emit target region as a standalone region. 4757 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4758 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4759 assert(Fn && Addr && "Target device function emission failed."); 4760 } 4761 4762 void CodeGenFunction::EmitOMPTargetParallelDirective( 4763 const OMPTargetParallelDirective &S) { 4764 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4765 emitTargetParallelRegion(CGF, S, Action); 4766 }; 4767 emitCommonOMPTargetDirective(*this, S, CodeGen); 4768 } 4769 4770 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4771 const OMPTargetParallelForDirective &S, 4772 PrePostActionTy &Action) { 4773 Action.Enter(CGF); 4774 // Emit directive as a combined directive that consists of two implicit 4775 // directives: 'parallel' with 'for' directive. 4776 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4777 Action.Enter(CGF); 4778 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4779 CGF, OMPD_target_parallel_for, S.hasCancel()); 4780 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4781 emitDispatchForLoopBounds); 4782 }; 4783 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4784 emitEmptyBoundParameters); 4785 } 4786 4787 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4788 CodeGenModule &CGM, StringRef ParentName, 4789 const OMPTargetParallelForDirective &S) { 4790 // Emit SPMD target parallel for region as a standalone region. 4791 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4792 emitTargetParallelForRegion(CGF, S, Action); 4793 }; 4794 llvm::Function *Fn; 4795 llvm::Constant *Addr; 4796 // Emit target region as a standalone region. 4797 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4798 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4799 assert(Fn && Addr && "Target device function emission failed."); 4800 } 4801 4802 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4803 const OMPTargetParallelForDirective &S) { 4804 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4805 emitTargetParallelForRegion(CGF, S, Action); 4806 }; 4807 emitCommonOMPTargetDirective(*this, S, CodeGen); 4808 } 4809 4810 static void 4811 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4812 const OMPTargetParallelForSimdDirective &S, 4813 PrePostActionTy &Action) { 4814 Action.Enter(CGF); 4815 // Emit directive as a combined directive that consists of two implicit 4816 // directives: 'parallel' with 'for' directive. 4817 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4818 Action.Enter(CGF); 4819 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4820 emitDispatchForLoopBounds); 4821 }; 4822 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4823 emitEmptyBoundParameters); 4824 } 4825 4826 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4827 CodeGenModule &CGM, StringRef ParentName, 4828 const OMPTargetParallelForSimdDirective &S) { 4829 // Emit SPMD target parallel for region as a standalone region. 4830 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4831 emitTargetParallelForSimdRegion(CGF, S, Action); 4832 }; 4833 llvm::Function *Fn; 4834 llvm::Constant *Addr; 4835 // Emit target region as a standalone region. 4836 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4837 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4838 assert(Fn && Addr && "Target device function emission failed."); 4839 } 4840 4841 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4842 const OMPTargetParallelForSimdDirective &S) { 4843 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4844 emitTargetParallelForSimdRegion(CGF, S, Action); 4845 }; 4846 emitCommonOMPTargetDirective(*this, S, CodeGen); 4847 } 4848 4849 /// Emit a helper variable and return corresponding lvalue. 4850 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4851 const ImplicitParamDecl *PVD, 4852 CodeGenFunction::OMPPrivateScope &Privates) { 4853 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4854 Privates.addPrivate(VDecl, 4855 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4856 } 4857 4858 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4859 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4860 // Emit outlined function for task construct. 4861 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4862 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4863 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4864 const Expr *IfCond = nullptr; 4865 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4866 if (C->getNameModifier() == OMPD_unknown || 4867 C->getNameModifier() == OMPD_taskloop) { 4868 IfCond = C->getCondition(); 4869 break; 4870 } 4871 } 4872 4873 OMPTaskDataTy Data; 4874 // Check if taskloop must be emitted without taskgroup. 4875 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4876 // TODO: Check if we should emit tied or untied task. 4877 Data.Tied = true; 4878 // Set scheduling for taskloop 4879 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4880 // grainsize clause 4881 Data.Schedule.setInt(/*IntVal=*/false); 4882 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4883 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4884 // num_tasks clause 4885 Data.Schedule.setInt(/*IntVal=*/true); 4886 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4887 } 4888 4889 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4890 // if (PreCond) { 4891 // for (IV in 0..LastIteration) BODY; 4892 // <Final counter/linear vars updates>; 4893 // } 4894 // 4895 4896 // Emit: if (PreCond) - begin. 4897 // If the condition constant folds and can be elided, avoid emitting the 4898 // whole loop. 4899 bool CondConstant; 4900 llvm::BasicBlock *ContBlock = nullptr; 4901 OMPLoopScope PreInitScope(CGF, S); 4902 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4903 if (!CondConstant) 4904 return; 4905 } else { 4906 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4907 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4908 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4909 CGF.getProfileCount(&S)); 4910 CGF.EmitBlock(ThenBlock); 4911 CGF.incrementProfileCounter(&S); 4912 } 4913 4914 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4915 CGF.EmitOMPSimdInit(S); 4916 4917 OMPPrivateScope LoopScope(CGF); 4918 // Emit helper vars inits. 4919 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4920 auto *I = CS->getCapturedDecl()->param_begin(); 4921 auto *LBP = std::next(I, LowerBound); 4922 auto *UBP = std::next(I, UpperBound); 4923 auto *STP = std::next(I, Stride); 4924 auto *LIP = std::next(I, LastIter); 4925 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4926 LoopScope); 4927 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4928 LoopScope); 4929 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4930 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4931 LoopScope); 4932 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4933 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4934 (void)LoopScope.Privatize(); 4935 // Emit the loop iteration variable. 4936 const Expr *IVExpr = S.getIterationVariable(); 4937 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4938 CGF.EmitVarDecl(*IVDecl); 4939 CGF.EmitIgnoredExpr(S.getInit()); 4940 4941 // Emit the iterations count variable. 4942 // If it is not a variable, Sema decided to calculate iterations count on 4943 // each iteration (e.g., it is foldable into a constant). 4944 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4945 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4946 // Emit calculation of the iterations count. 4947 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4948 } 4949 4950 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4951 S.getInc(), 4952 [&S](CodeGenFunction &CGF) { 4953 CGF.EmitOMPLoopBody(S, JumpDest()); 4954 CGF.EmitStopPoint(&S); 4955 }, 4956 [](CodeGenFunction &) {}); 4957 // Emit: if (PreCond) - end. 4958 if (ContBlock) { 4959 CGF.EmitBranch(ContBlock); 4960 CGF.EmitBlock(ContBlock, true); 4961 } 4962 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4963 if (HasLastprivateClause) { 4964 CGF.EmitOMPLastprivateClauseFinal( 4965 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4966 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4967 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4968 (*LIP)->getType(), S.getBeginLoc()))); 4969 } 4970 }; 4971 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4972 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4973 const OMPTaskDataTy &Data) { 4974 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4975 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4976 OMPLoopScope PreInitScope(CGF, S); 4977 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4978 OutlinedFn, SharedsTy, 4979 CapturedStruct, IfCond, Data); 4980 }; 4981 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4982 CodeGen); 4983 }; 4984 if (Data.Nogroup) { 4985 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4986 } else { 4987 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4988 *this, 4989 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4990 PrePostActionTy &Action) { 4991 Action.Enter(CGF); 4992 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4993 Data); 4994 }, 4995 S.getBeginLoc()); 4996 } 4997 } 4998 4999 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5000 EmitOMPTaskLoopBasedDirective(S); 5001 } 5002 5003 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5004 const OMPTaskLoopSimdDirective &S) { 5005 EmitOMPTaskLoopBasedDirective(S); 5006 } 5007 5008 // Generate the instructions for '#pragma omp target update' directive. 5009 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5010 const OMPTargetUpdateDirective &S) { 5011 // If we don't have target devices, don't bother emitting the data mapping 5012 // code. 5013 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5014 return; 5015 5016 // Check if we have any if clause associated with the directive. 5017 const Expr *IfCond = nullptr; 5018 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5019 IfCond = C->getCondition(); 5020 5021 // Check if we have any device clause associated with the directive. 5022 const Expr *Device = nullptr; 5023 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5024 Device = C->getDevice(); 5025 5026 OMPLexicalScope Scope(*this, S, OMPD_task); 5027 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5028 } 5029 5030 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5031 const OMPExecutableDirective &D) { 5032 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5033 return; 5034 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5035 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5036 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5037 } else { 5038 OMPPrivateScope LoopGlobals(CGF); 5039 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5040 for (const Expr *E : LD->counters()) { 5041 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5042 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5043 LValue GlobLVal = CGF.EmitLValue(E); 5044 LoopGlobals.addPrivate( 5045 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5046 } 5047 if (isa<OMPCapturedExprDecl>(VD)) { 5048 // Emit only those that were not explicitly referenced in clauses. 5049 if (!CGF.LocalDeclMap.count(VD)) 5050 CGF.EmitVarDecl(*VD); 5051 } 5052 } 5053 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5054 if (!C->getNumForLoops()) 5055 continue; 5056 for (unsigned I = LD->getCollapsedNumber(), 5057 E = C->getLoopNumIterations().size(); 5058 I < E; ++I) { 5059 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5060 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5061 // Emit only those that were not explicitly referenced in clauses. 5062 if (!CGF.LocalDeclMap.count(VD)) 5063 CGF.EmitVarDecl(*VD); 5064 } 5065 } 5066 } 5067 } 5068 LoopGlobals.Privatize(); 5069 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5070 } 5071 }; 5072 OMPSimdLexicalScope Scope(*this, D); 5073 CGM.getOpenMPRuntime().emitInlinedDirective( 5074 *this, 5075 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5076 : D.getDirectiveKind(), 5077 CodeGen); 5078 } 5079 5080