1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/AST/StmtOpenMP.h"
20 using namespace clang;
21 using namespace CodeGen;
22 
23 //===----------------------------------------------------------------------===//
24 //                              OpenMP Directive Emission
25 //===----------------------------------------------------------------------===//
26 void CodeGenFunction::EmitOMPAggregateAssign(
27     llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
28     const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) {
29   // Perform element-by-element initialization.
30   QualType ElementTy;
31   auto SrcBegin = SrcAddr;
32   auto DestBegin = DestAddr;
33   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
34   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
35   // Cast from pointer to array type to pointer to single element.
36   SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin,
37                                                          DestBegin->getType());
38   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
39   // The basic structure here is a while-do loop.
40   auto BodyBB = createBasicBlock("omp.arraycpy.body");
41   auto DoneBB = createBasicBlock("omp.arraycpy.done");
42   auto IsEmpty =
43       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
44   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
45 
46   // Enter the loop body, making that address the current address.
47   auto EntryBB = Builder.GetInsertBlock();
48   EmitBlock(BodyBB);
49   auto SrcElementCurrent =
50       Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
51   SrcElementCurrent->addIncoming(SrcBegin, EntryBB);
52   auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2,
53                                               "omp.arraycpy.destElementPast");
54   DestElementCurrent->addIncoming(DestBegin, EntryBB);
55 
56   // Emit copy.
57   CopyGen(DestElementCurrent, SrcElementCurrent);
58 
59   // Shift the address forward by one element.
60   auto DestElementNext = Builder.CreateConstGEP1_32(
61       DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element");
62   auto SrcElementNext = Builder.CreateConstGEP1_32(
63       SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element");
64   // Check whether we've reached the end.
65   auto Done =
66       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
67   Builder.CreateCondBr(Done, DoneBB, BodyBB);
68   DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock());
69   SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock());
70 
71   // Done.
72   EmitBlock(DoneBB, /*IsFinished=*/true);
73 }
74 
75 void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF,
76                                   QualType OriginalType, llvm::Value *DestAddr,
77                                   llvm::Value *SrcAddr, const VarDecl *DestVD,
78                                   const VarDecl *SrcVD, const Expr *Copy) {
79   if (OriginalType->isArrayType()) {
80     auto *BO = dyn_cast<BinaryOperator>(Copy);
81     if (BO && BO->getOpcode() == BO_Assign) {
82       // Perform simple memcpy for simple copying.
83       CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
84     } else {
85       // For arrays with complex element types perform element by element
86       // copying.
87       CGF.EmitOMPAggregateAssign(
88           DestAddr, SrcAddr, OriginalType,
89           [&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement,
90                                           llvm::Value *SrcElement) {
91             // Working with the single array element, so have to remap
92             // destination and source variables to corresponding array
93             // elements.
94             CodeGenFunction::OMPPrivateScope Remap(CGF);
95             Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{
96               return DestElement;
97             });
98             Remap.addPrivate(
99                 SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; });
100             (void)Remap.Privatize();
101             CGF.EmitIgnoredExpr(Copy);
102           });
103     }
104   } else {
105     // Remap pseudo source variable to private copy.
106     CodeGenFunction::OMPPrivateScope Remap(CGF);
107     Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; });
108     Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; });
109     (void)Remap.Privatize();
110     // Emit copying of the whole variable.
111     CGF.EmitIgnoredExpr(Copy);
112   }
113 }
114 
115 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
116                                                 OMPPrivateScope &PrivateScope) {
117   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
118   for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) {
119     auto *C = cast<OMPFirstprivateClause>(*I);
120     auto IRef = C->varlist_begin();
121     auto InitsRef = C->inits().begin();
122     for (auto IInit : C->private_copies()) {
123       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
124       if (EmittedAsFirstprivate.count(OrigVD) == 0) {
125         EmittedAsFirstprivate.insert(OrigVD);
126         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
127         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
128         bool IsRegistered;
129         DeclRefExpr DRE(
130             const_cast<VarDecl *>(OrigVD),
131             /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
132                 OrigVD) != nullptr,
133             (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
134         auto *OriginalAddr = EmitLValue(&DRE).getAddress();
135         QualType Type = OrigVD->getType();
136         if (Type->isArrayType()) {
137           // Emit VarDecl with copy init for arrays.
138           // Get the address of the original variable captured in current
139           // captured region.
140           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
141             auto Emission = EmitAutoVarAlloca(*VD);
142             auto *Init = VD->getInit();
143             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
144               // Perform simple memcpy.
145               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
146                                   Type);
147             } else {
148               EmitOMPAggregateAssign(
149                   Emission.getAllocatedAddress(), OriginalAddr, Type,
150                   [this, VDInit, Init](llvm::Value *DestElement,
151                                        llvm::Value *SrcElement) {
152                     // Clean up any temporaries needed by the initialization.
153                     RunCleanupsScope InitScope(*this);
154                     // Emit initialization for single element.
155                     LocalDeclMap[VDInit] = SrcElement;
156                     EmitAnyExprToMem(Init, DestElement,
157                                      Init->getType().getQualifiers(),
158                                      /*IsInitializer*/ false);
159                     LocalDeclMap.erase(VDInit);
160                   });
161             }
162             EmitAutoVarCleanups(Emission);
163             return Emission.getAllocatedAddress();
164           });
165         } else {
166           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
167             // Emit private VarDecl with copy init.
168             // Remap temp VDInit variable to the address of the original
169             // variable
170             // (for proper handling of captured global variables).
171             LocalDeclMap[VDInit] = OriginalAddr;
172             EmitDecl(*VD);
173             LocalDeclMap.erase(VDInit);
174             return GetAddrOfLocalVar(VD);
175           });
176         }
177         assert(IsRegistered &&
178                "firstprivate var already registered as private");
179         // Silence the warning about unused variable.
180         (void)IsRegistered;
181       }
182       ++IRef, ++InitsRef;
183     }
184   }
185   return !EmittedAsFirstprivate.empty();
186 }
187 
188 void CodeGenFunction::EmitOMPPrivateClause(
189     const OMPExecutableDirective &D,
190     CodeGenFunction::OMPPrivateScope &PrivateScope) {
191   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
192   for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) {
193     auto *C = cast<OMPPrivateClause>(*I);
194     auto IRef = C->varlist_begin();
195     for (auto IInit : C->private_copies()) {
196       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
197       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
198         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
199         bool IsRegistered =
200             PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
201               // Emit private VarDecl with copy init.
202               EmitDecl(*VD);
203               return GetAddrOfLocalVar(VD);
204             });
205         assert(IsRegistered && "private var already registered as private");
206         // Silence the warning about unused variable.
207         (void)IsRegistered;
208       }
209       ++IRef;
210     }
211   }
212 }
213 
214 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
215   // threadprivate_var1 = master_threadprivate_var1;
216   // operator=(threadprivate_var2, master_threadprivate_var2);
217   // ...
218   // __kmpc_barrier(&loc, global_tid);
219   llvm::DenseSet<const VarDecl *> CopiedVars;
220   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
221   for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) {
222     auto *C = cast<OMPCopyinClause>(*I);
223     auto IRef = C->varlist_begin();
224     auto ISrcRef = C->source_exprs().begin();
225     auto IDestRef = C->destination_exprs().begin();
226     for (auto *AssignOp : C->assignment_ops()) {
227       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
228       QualType Type = VD->getType();
229       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
230 
231         // Get the address of the master variable. If we are emitting code with
232         // TLS support, the address is passed from the master as field in the
233         // captured declaration.
234         llvm::Value *MasterAddr;
235         if (getLangOpts().OpenMPUseTLS &&
236             getContext().getTargetInfo().isTLSSupported()) {
237           assert(CapturedStmtInfo->lookup(VD) &&
238                  "Copyin threadprivates should have been captured!");
239           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
240                           VK_LValue, (*IRef)->getExprLoc());
241           MasterAddr = EmitLValue(&DRE).getAddress();
242         } else {
243           MasterAddr = VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
244                                            : CGM.GetAddrOfGlobal(VD);
245         }
246         // Get the address of the threadprivate variable.
247         auto *PrivateAddr = EmitLValue(*IRef).getAddress();
248         if (CopiedVars.size() == 1) {
249           // At first check if current thread is a master thread. If it is, no
250           // need to copy data.
251           CopyBegin = createBasicBlock("copyin.not.master");
252           CopyEnd = createBasicBlock("copyin.not.master.end");
253           Builder.CreateCondBr(
254               Builder.CreateICmpNE(
255                   Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy),
256                   Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)),
257               CopyBegin, CopyEnd);
258           EmitBlock(CopyBegin);
259         }
260         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
261         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
262         EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD,
263                     AssignOp);
264       }
265       ++IRef;
266       ++ISrcRef;
267       ++IDestRef;
268     }
269   }
270   if (CopyEnd) {
271     // Exit out of copying procedure for non-master thread.
272     EmitBlock(CopyEnd, /*IsFinished=*/true);
273     return true;
274   }
275   return false;
276 }
277 
278 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
279     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
280   bool HasAtLeastOneLastprivate = false;
281   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
282   for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
283     HasAtLeastOneLastprivate = true;
284     auto *C = cast<OMPLastprivateClause>(*I);
285     auto IRef = C->varlist_begin();
286     auto IDestRef = C->destination_exprs().begin();
287     for (auto *IInit : C->private_copies()) {
288       // Keep the address of the original variable for future update at the end
289       // of the loop.
290       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
291       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
292         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
293         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{
294           DeclRefExpr DRE(
295               const_cast<VarDecl *>(OrigVD),
296               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
297                   OrigVD) != nullptr,
298               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
299           return EmitLValue(&DRE).getAddress();
300         });
301         // Check if the variable is also a firstprivate: in this case IInit is
302         // not generated. Initialization of this variable will happen in codegen
303         // for 'firstprivate' clause.
304         if (IInit) {
305           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
306           bool IsRegistered =
307               PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
308                 // Emit private VarDecl with copy init.
309                 EmitDecl(*VD);
310                 return GetAddrOfLocalVar(VD);
311               });
312           assert(IsRegistered &&
313                  "lastprivate var already registered as private");
314           (void)IsRegistered;
315         }
316       }
317       ++IRef, ++IDestRef;
318     }
319   }
320   return HasAtLeastOneLastprivate;
321 }
322 
323 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
324     const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
325   // Emit following code:
326   // if (<IsLastIterCond>) {
327   //   orig_var1 = private_orig_var1;
328   //   ...
329   //   orig_varn = private_orig_varn;
330   // }
331   llvm::BasicBlock *ThenBB = nullptr;
332   llvm::BasicBlock *DoneBB = nullptr;
333   if (IsLastIterCond) {
334     ThenBB = createBasicBlock(".omp.lastprivate.then");
335     DoneBB = createBasicBlock(".omp.lastprivate.done");
336     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
337     EmitBlock(ThenBB);
338   }
339   llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
340   const Expr *LastIterVal = nullptr;
341   const Expr *IVExpr = nullptr;
342   const Expr *IncExpr = nullptr;
343   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
344     if (isOpenMPWorksharingDirective(D.getDirectiveKind())) {
345       LastIterVal = cast<VarDecl>(cast<DeclRefExpr>(
346                                       LoopDirective->getUpperBoundVariable())
347                                       ->getDecl())
348                         ->getAnyInitializer();
349       IVExpr = LoopDirective->getIterationVariable();
350       IncExpr = LoopDirective->getInc();
351       auto IUpdate = LoopDirective->updates().begin();
352       for (auto *E : LoopDirective->counters()) {
353         auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
354         LoopCountersAndUpdates[D] = *IUpdate;
355         ++IUpdate;
356       }
357     }
358   }
359   {
360     llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
361     bool FirstLCV = true;
362     for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
363       auto *C = cast<OMPLastprivateClause>(*I);
364       auto IRef = C->varlist_begin();
365       auto ISrcRef = C->source_exprs().begin();
366       auto IDestRef = C->destination_exprs().begin();
367       for (auto *AssignOp : C->assignment_ops()) {
368         auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
369         QualType Type = PrivateVD->getType();
370         auto *CanonicalVD = PrivateVD->getCanonicalDecl();
371         if (AlreadyEmittedVars.insert(CanonicalVD).second) {
372           // If lastprivate variable is a loop control variable for loop-based
373           // directive, update its value before copyin back to original
374           // variable.
375           if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
376             if (FirstLCV && LastIterVal) {
377               EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
378                                IVExpr->getType().getQualifiers(),
379                                /*IsInitializer=*/false);
380               EmitIgnoredExpr(IncExpr);
381               FirstLCV = false;
382             }
383             EmitIgnoredExpr(UpExpr);
384           }
385           auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
386           auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
387           // Get the address of the original variable.
388           auto *OriginalAddr = GetAddrOfLocalVar(DestVD);
389           // Get the address of the private variable.
390           auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD);
391           EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD,
392                       AssignOp);
393         }
394         ++IRef;
395         ++ISrcRef;
396         ++IDestRef;
397       }
398     }
399   }
400   if (IsLastIterCond) {
401     EmitBlock(DoneBB, /*IsFinished=*/true);
402   }
403 }
404 
405 void CodeGenFunction::EmitOMPReductionClauseInit(
406     const OMPExecutableDirective &D,
407     CodeGenFunction::OMPPrivateScope &PrivateScope) {
408   for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
409     auto *C = cast<OMPReductionClause>(*I);
410     auto ILHS = C->lhs_exprs().begin();
411     auto IRHS = C->rhs_exprs().begin();
412     for (auto IRef : C->varlists()) {
413       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
414       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
415       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
416       // Store the address of the original variable associated with the LHS
417       // implicit variable.
418       PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{
419         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
420                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
421                         IRef->getType(), VK_LValue, IRef->getExprLoc());
422         return EmitLValue(&DRE).getAddress();
423       });
424       // Emit reduction copy.
425       bool IsRegistered =
426           PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{
427             // Emit private VarDecl with reduction init.
428             EmitDecl(*PrivateVD);
429             return GetAddrOfLocalVar(PrivateVD);
430           });
431       assert(IsRegistered && "private var already registered as private");
432       // Silence the warning about unused variable.
433       (void)IsRegistered;
434       ++ILHS, ++IRHS;
435     }
436   }
437 }
438 
439 void CodeGenFunction::EmitOMPReductionClauseFinal(
440     const OMPExecutableDirective &D) {
441   llvm::SmallVector<const Expr *, 8> LHSExprs;
442   llvm::SmallVector<const Expr *, 8> RHSExprs;
443   llvm::SmallVector<const Expr *, 8> ReductionOps;
444   bool HasAtLeastOneReduction = false;
445   for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
446     HasAtLeastOneReduction = true;
447     auto *C = cast<OMPReductionClause>(*I);
448     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
449     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
450     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
451   }
452   if (HasAtLeastOneReduction) {
453     // Emit nowait reduction if nowait clause is present or directive is a
454     // parallel directive (it always has implicit barrier).
455     CGM.getOpenMPRuntime().emitReduction(
456         *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps,
457         D.getSingleClause(OMPC_nowait) ||
458             isOpenMPParallelDirective(D.getDirectiveKind()) ||
459             D.getDirectiveKind() == OMPD_simd,
460         D.getDirectiveKind() == OMPD_simd);
461   }
462 }
463 
464 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
465                                            const OMPExecutableDirective &S,
466                                            OpenMPDirectiveKind InnermostKind,
467                                            const RegionCodeGenTy &CodeGen) {
468   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
469   auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS);
470   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
471       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
472   if (auto C = S.getSingleClause(OMPC_num_threads)) {
473     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
474     auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
475     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
476                                          /*IgnoreResultAssign*/ true);
477     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
478         CGF, NumThreads, NumThreadsClause->getLocStart());
479   }
480   if (auto *C = S.getSingleClause(OMPC_proc_bind)) {
481     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
482     auto *ProcBindClause = cast<OMPProcBindClause>(C);
483     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
484         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
485   }
486   const Expr *IfCond = nullptr;
487   if (auto C = S.getSingleClause(OMPC_if)) {
488     IfCond = cast<OMPIfClause>(C)->getCondition();
489   }
490   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
491                                               CapturedStruct, IfCond);
492 }
493 
494 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
495   LexicalScope Scope(*this, S.getSourceRange());
496   // Emit parallel region as a standalone region.
497   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
498     OMPPrivateScope PrivateScope(CGF);
499     bool Copyins = CGF.EmitOMPCopyinClause(S);
500     bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
501     if (Copyins || Firstprivates) {
502       // Emit implicit barrier to synchronize threads and avoid data races on
503       // initialization of firstprivate variables or propagation master's thread
504       // values of threadprivate variables to local instances of that variables
505       // of all other implicit threads.
506       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
507                                                  OMPD_unknown);
508     }
509     CGF.EmitOMPPrivateClause(S, PrivateScope);
510     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
511     (void)PrivateScope.Privatize();
512     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
513     CGF.EmitOMPReductionClauseFinal(S);
514     // Emit implicit barrier at the end of the 'parallel' directive.
515     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
516                                                OMPD_unknown);
517   };
518   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
519 }
520 
521 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
522                                       JumpDest LoopExit) {
523   RunCleanupsScope BodyScope(*this);
524   // Update counters values on current iteration.
525   for (auto I : D.updates()) {
526     EmitIgnoredExpr(I);
527   }
528   // Update the linear variables.
529   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
530     auto *C = cast<OMPLinearClause>(*I);
531     for (auto U : C->updates()) {
532       EmitIgnoredExpr(U);
533     }
534   }
535 
536   // On a continue in the body, jump to the end.
537   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
538   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
539   // Emit loop body.
540   EmitStmt(D.getBody());
541   // The end (updates/cleanups).
542   EmitBlock(Continue.getBlock());
543   BreakContinueStack.pop_back();
544     // TODO: Update lastprivates if the SeparateIter flag is true.
545     // This will be implemented in a follow-up OMPLastprivateClause patch, but
546     // result should be still correct without it, as we do not make these
547     // variables private yet.
548 }
549 
550 void CodeGenFunction::EmitOMPInnerLoop(
551     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
552     const Expr *IncExpr,
553     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
554     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
555   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
556 
557   // Start the loop with a block that tests the condition.
558   auto CondBlock = createBasicBlock("omp.inner.for.cond");
559   EmitBlock(CondBlock);
560   LoopStack.push(CondBlock);
561 
562   // If there are any cleanups between here and the loop-exit scope,
563   // create a block to stage a loop exit along.
564   auto ExitBlock = LoopExit.getBlock();
565   if (RequiresCleanup)
566     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
567 
568   auto LoopBody = createBasicBlock("omp.inner.for.body");
569 
570   // Emit condition.
571   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
572   if (ExitBlock != LoopExit.getBlock()) {
573     EmitBlock(ExitBlock);
574     EmitBranchThroughCleanup(LoopExit);
575   }
576 
577   EmitBlock(LoopBody);
578   incrementProfileCounter(&S);
579 
580   // Create a block for the increment.
581   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
582   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
583 
584   BodyGen(*this);
585 
586   // Emit "IV = IV + 1" and a back-edge to the condition block.
587   EmitBlock(Continue.getBlock());
588   EmitIgnoredExpr(IncExpr);
589   PostIncGen(*this);
590   BreakContinueStack.pop_back();
591   EmitBranch(CondBlock);
592   LoopStack.pop();
593   // Emit the fall-through block.
594   EmitBlock(LoopExit.getBlock());
595 }
596 
597 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
598   // Emit inits for the linear variables.
599   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
600     auto *C = cast<OMPLinearClause>(*I);
601     for (auto Init : C->inits()) {
602       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
603       auto *OrigVD = cast<VarDecl>(
604           cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl());
605       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
606                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
607                       VD->getInit()->getType(), VK_LValue,
608                       VD->getInit()->getExprLoc());
609       AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
610       EmitExprAsInit(&DRE, VD,
611                      MakeAddrLValue(Emission.getAllocatedAddress(),
612                                     VD->getType(), Emission.Alignment),
613                      /*capturedByInit=*/false);
614       EmitAutoVarCleanups(Emission);
615     }
616     // Emit the linear steps for the linear clauses.
617     // If a step is not constant, it is pre-calculated before the loop.
618     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
619       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
620         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
621         // Emit calculation of the linear step.
622         EmitIgnoredExpr(CS);
623       }
624   }
625 }
626 
627 static void emitLinearClauseFinal(CodeGenFunction &CGF,
628                                   const OMPLoopDirective &D) {
629   // Emit the final values of the linear variables.
630   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
631     auto *C = cast<OMPLinearClause>(*I);
632     auto IC = C->varlist_begin();
633     for (auto F : C->finals()) {
634       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
635       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
636                       CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
637                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
638       auto *OrigAddr = CGF.EmitLValue(&DRE).getAddress();
639       CodeGenFunction::OMPPrivateScope VarScope(CGF);
640       VarScope.addPrivate(OrigVD,
641                           [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
642       (void)VarScope.Privatize();
643       CGF.EmitIgnoredExpr(F);
644       ++IC;
645     }
646   }
647 }
648 
649 static void emitAlignedClause(CodeGenFunction &CGF,
650                               const OMPExecutableDirective &D) {
651   for (auto &&I = D.getClausesOfKind(OMPC_aligned); I; ++I) {
652     auto *Clause = cast<OMPAlignedClause>(*I);
653     unsigned ClauseAlignment = 0;
654     if (auto AlignmentExpr = Clause->getAlignment()) {
655       auto AlignmentCI =
656           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
657       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
658     }
659     for (auto E : Clause->varlists()) {
660       unsigned Alignment = ClauseAlignment;
661       if (Alignment == 0) {
662         // OpenMP [2.8.1, Description]
663         // If no optional parameter is specified, implementation-defined default
664         // alignments for SIMD instructions on the target platforms are assumed.
665         Alignment =
666             CGF.getContext()
667                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
668                     E->getType()->getPointeeType()))
669                 .getQuantity();
670       }
671       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
672              "alignment is not power of 2");
673       if (Alignment != 0) {
674         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
675         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
676       }
677     }
678   }
679 }
680 
681 static void emitPrivateLoopCounters(CodeGenFunction &CGF,
682                                     CodeGenFunction::OMPPrivateScope &LoopScope,
683                                     ArrayRef<Expr *> Counters,
684                                     ArrayRef<Expr *> PrivateCounters) {
685   auto I = PrivateCounters.begin();
686   for (auto *E : Counters) {
687     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
688     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
689     llvm::Value *Addr;
690     (void)LoopScope.addPrivate(PrivateVD, [&]() -> llvm::Value * {
691       // Emit var without initialization.
692       auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD);
693       CGF.EmitAutoVarCleanups(VarEmission);
694       Addr = VarEmission.getAllocatedAddress();
695       return Addr;
696     });
697     (void)LoopScope.addPrivate(VD, [&]() -> llvm::Value * { return Addr; });
698     ++I;
699   }
700 }
701 
702 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
703                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
704                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
705   {
706     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
707     emitPrivateLoopCounters(CGF, PreCondScope, S.counters(),
708                             S.private_counters());
709     (void)PreCondScope.Privatize();
710     // Get initial values of real counters.
711     for (auto I : S.inits()) {
712       CGF.EmitIgnoredExpr(I);
713     }
714   }
715   // Check that loop is executed at least one time.
716   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
717 }
718 
719 static void
720 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
721                       CodeGenFunction::OMPPrivateScope &PrivateScope) {
722   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
723     auto *C = cast<OMPLinearClause>(*I);
724     auto CurPrivate = C->privates().begin();
725     for (auto *E : C->varlists()) {
726       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
727       auto *PrivateVD =
728           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
729       bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> llvm::Value * {
730         // Emit private VarDecl with copy init.
731         CGF.EmitVarDecl(*PrivateVD);
732         return CGF.GetAddrOfLocalVar(PrivateVD);
733       });
734       assert(IsRegistered && "linear var already registered as private");
735       // Silence the warning about unused variable.
736       (void)IsRegistered;
737       ++CurPrivate;
738     }
739   }
740 }
741 
742 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
743                                      const OMPExecutableDirective &D) {
744   if (auto *C =
745           cast_or_null<OMPSimdlenClause>(D.getSingleClause(OMPC_simdlen))) {
746     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
747                                  /*ignoreResult=*/true);
748     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
749     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
750     // In presence of finite 'safelen', it may be unsafe to mark all
751     // the memory instructions parallel, because loop-carried
752     // dependences of 'safelen' iterations are possible.
753     CGF.LoopStack.setParallel(!D.getSingleClause(OMPC_safelen));
754   } else if (auto *C = cast_or_null<OMPSafelenClause>(
755                  D.getSingleClause(OMPC_safelen))) {
756     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
757                                  /*ignoreResult=*/true);
758     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
759     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
760     // In presence of finite 'safelen', it may be unsafe to mark all
761     // the memory instructions parallel, because loop-carried
762     // dependences of 'safelen' iterations are possible.
763     CGF.LoopStack.setParallel(false);
764   }
765 }
766 
767 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) {
768   // Walk clauses and process safelen/lastprivate.
769   LoopStack.setParallel();
770   LoopStack.setVectorizeEnable(true);
771   emitSimdlenSafelenClause(*this, D);
772 }
773 
774 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) {
775   auto IC = D.counters().begin();
776   for (auto F : D.finals()) {
777     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
778     if (LocalDeclMap.lookup(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) {
779       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
780                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
781                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
782       auto *OrigAddr = EmitLValue(&DRE).getAddress();
783       OMPPrivateScope VarScope(*this);
784       VarScope.addPrivate(OrigVD,
785                           [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
786       (void)VarScope.Privatize();
787       EmitIgnoredExpr(F);
788     }
789     ++IC;
790   }
791   emitLinearClauseFinal(*this, D);
792 }
793 
794 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
795   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
796     // if (PreCond) {
797     //   for (IV in 0..LastIteration) BODY;
798     //   <Final counter/linear vars updates>;
799     // }
800     //
801 
802     // Emit: if (PreCond) - begin.
803     // If the condition constant folds and can be elided, avoid emitting the
804     // whole loop.
805     bool CondConstant;
806     llvm::BasicBlock *ContBlock = nullptr;
807     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
808       if (!CondConstant)
809         return;
810     } else {
811       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
812       ContBlock = CGF.createBasicBlock("simd.if.end");
813       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
814                   CGF.getProfileCount(&S));
815       CGF.EmitBlock(ThenBlock);
816       CGF.incrementProfileCounter(&S);
817     }
818 
819     // Emit the loop iteration variable.
820     const Expr *IVExpr = S.getIterationVariable();
821     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
822     CGF.EmitVarDecl(*IVDecl);
823     CGF.EmitIgnoredExpr(S.getInit());
824 
825     // Emit the iterations count variable.
826     // If it is not a variable, Sema decided to calculate iterations count on
827     // each iteration (e.g., it is foldable into a constant).
828     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
829       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
830       // Emit calculation of the iterations count.
831       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
832     }
833 
834     CGF.EmitOMPSimdInit(S);
835 
836     emitAlignedClause(CGF, S);
837     CGF.EmitOMPLinearClauseInit(S);
838     bool HasLastprivateClause;
839     {
840       OMPPrivateScope LoopScope(CGF);
841       emitPrivateLoopCounters(CGF, LoopScope, S.counters(),
842                               S.private_counters());
843       emitPrivateLinearVars(CGF, S, LoopScope);
844       CGF.EmitOMPPrivateClause(S, LoopScope);
845       CGF.EmitOMPReductionClauseInit(S, LoopScope);
846       HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
847       (void)LoopScope.Privatize();
848       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
849                            S.getInc(),
850                            [&S](CodeGenFunction &CGF) {
851                              CGF.EmitOMPLoopBody(S, JumpDest());
852                              CGF.EmitStopPoint(&S);
853                            },
854                            [](CodeGenFunction &) {});
855       // Emit final copy of the lastprivate variables at the end of loops.
856       if (HasLastprivateClause) {
857         CGF.EmitOMPLastprivateClauseFinal(S);
858       }
859       CGF.EmitOMPReductionClauseFinal(S);
860     }
861     CGF.EmitOMPSimdFinal(S);
862     // Emit: if (PreCond) - end.
863     if (ContBlock) {
864       CGF.EmitBranch(ContBlock);
865       CGF.EmitBlock(ContBlock, true);
866     }
867   };
868   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
869 }
870 
871 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
872                                           const OMPLoopDirective &S,
873                                           OMPPrivateScope &LoopScope,
874                                           bool Ordered, llvm::Value *LB,
875                                           llvm::Value *UB, llvm::Value *ST,
876                                           llvm::Value *IL, llvm::Value *Chunk) {
877   auto &RT = CGM.getOpenMPRuntime();
878 
879   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
880   const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
881 
882   assert((Ordered ||
883           !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
884          "static non-chunked schedule does not need outer loop");
885 
886   // Emit outer loop.
887   //
888   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
889   // When schedule(dynamic,chunk_size) is specified, the iterations are
890   // distributed to threads in the team in chunks as the threads request them.
891   // Each thread executes a chunk of iterations, then requests another chunk,
892   // until no chunks remain to be distributed. Each chunk contains chunk_size
893   // iterations, except for the last chunk to be distributed, which may have
894   // fewer iterations. When no chunk_size is specified, it defaults to 1.
895   //
896   // When schedule(guided,chunk_size) is specified, the iterations are assigned
897   // to threads in the team in chunks as the executing threads request them.
898   // Each thread executes a chunk of iterations, then requests another chunk,
899   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
900   // each chunk is proportional to the number of unassigned iterations divided
901   // by the number of threads in the team, decreasing to 1. For a chunk_size
902   // with value k (greater than 1), the size of each chunk is determined in the
903   // same way, with the restriction that the chunks do not contain fewer than k
904   // iterations (except for the last chunk to be assigned, which may have fewer
905   // than k iterations).
906   //
907   // When schedule(auto) is specified, the decision regarding scheduling is
908   // delegated to the compiler and/or runtime system. The programmer gives the
909   // implementation the freedom to choose any possible mapping of iterations to
910   // threads in the team.
911   //
912   // When schedule(runtime) is specified, the decision regarding scheduling is
913   // deferred until run time, and the schedule and chunk size are taken from the
914   // run-sched-var ICV. If the ICV is set to auto, the schedule is
915   // implementation defined
916   //
917   // while(__kmpc_dispatch_next(&LB, &UB)) {
918   //   idx = LB;
919   //   while (idx <= UB) { BODY; ++idx;
920   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
921   //   } // inner loop
922   // }
923   //
924   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
925   // When schedule(static, chunk_size) is specified, iterations are divided into
926   // chunks of size chunk_size, and the chunks are assigned to the threads in
927   // the team in a round-robin fashion in the order of the thread number.
928   //
929   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
930   //   while (idx <= UB) { BODY; ++idx; } // inner loop
931   //   LB = LB + ST;
932   //   UB = UB + ST;
933   // }
934   //
935 
936   const Expr *IVExpr = S.getIterationVariable();
937   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
938   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
939 
940   RT.emitForInit(
941       *this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB,
942       (DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal()
943                         : UB),
944       ST, Chunk);
945 
946   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
947 
948   // Start the loop with a block that tests the condition.
949   auto CondBlock = createBasicBlock("omp.dispatch.cond");
950   EmitBlock(CondBlock);
951   LoopStack.push(CondBlock);
952 
953   llvm::Value *BoolCondVal = nullptr;
954   if (!DynamicOrOrdered) {
955     // UB = min(UB, GlobalUB)
956     EmitIgnoredExpr(S.getEnsureUpperBound());
957     // IV = LB
958     EmitIgnoredExpr(S.getInit());
959     // IV < UB
960     BoolCondVal = EvaluateExprAsBool(S.getCond());
961   } else {
962     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
963                                     IL, LB, UB, ST);
964   }
965 
966   // If there are any cleanups between here and the loop-exit scope,
967   // create a block to stage a loop exit along.
968   auto ExitBlock = LoopExit.getBlock();
969   if (LoopScope.requiresCleanups())
970     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
971 
972   auto LoopBody = createBasicBlock("omp.dispatch.body");
973   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
974   if (ExitBlock != LoopExit.getBlock()) {
975     EmitBlock(ExitBlock);
976     EmitBranchThroughCleanup(LoopExit);
977   }
978   EmitBlock(LoopBody);
979 
980   // Emit "IV = LB" (in case of static schedule, we have already calculated new
981   // LB for loop condition and emitted it above).
982   if (DynamicOrOrdered)
983     EmitIgnoredExpr(S.getInit());
984 
985   // Create a block for the increment.
986   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
987   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
988 
989   // Generate !llvm.loop.parallel metadata for loads and stores for loops
990   // with dynamic/guided scheduling and without ordered clause.
991   if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
992     LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic ||
993                            ScheduleKind == OMPC_SCHEDULE_guided) &&
994                           !Ordered);
995   } else {
996     EmitOMPSimdInit(S);
997   }
998 
999   SourceLocation Loc = S.getLocStart();
1000   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1001                    [&S, LoopExit](CodeGenFunction &CGF) {
1002                      CGF.EmitOMPLoopBody(S, LoopExit);
1003                      CGF.EmitStopPoint(&S);
1004                    },
1005                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1006                      if (Ordered) {
1007                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1008                            CGF, Loc, IVSize, IVSigned);
1009                      }
1010                    });
1011 
1012   EmitBlock(Continue.getBlock());
1013   BreakContinueStack.pop_back();
1014   if (!DynamicOrOrdered) {
1015     // Emit "LB = LB + Stride", "UB = UB + Stride".
1016     EmitIgnoredExpr(S.getNextLowerBound());
1017     EmitIgnoredExpr(S.getNextUpperBound());
1018   }
1019 
1020   EmitBranch(CondBlock);
1021   LoopStack.pop();
1022   // Emit the fall-through block.
1023   EmitBlock(LoopExit.getBlock());
1024 
1025   // Tell the runtime we are done.
1026   if (!DynamicOrOrdered)
1027     RT.emitForStaticFinish(*this, S.getLocEnd());
1028 }
1029 
1030 /// \brief Emit a helper variable and return corresponding lvalue.
1031 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1032                                const DeclRefExpr *Helper) {
1033   auto VDecl = cast<VarDecl>(Helper->getDecl());
1034   CGF.EmitVarDecl(*VDecl);
1035   return CGF.EmitLValue(Helper);
1036 }
1037 
1038 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind>
1039 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
1040                    bool OuterRegion) {
1041   // Detect the loop schedule kind and chunk.
1042   auto ScheduleKind = OMPC_SCHEDULE_unknown;
1043   llvm::Value *Chunk = nullptr;
1044   if (auto *C =
1045           cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) {
1046     ScheduleKind = C->getScheduleKind();
1047     if (const auto *Ch = C->getChunkSize()) {
1048       if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
1049         if (OuterRegion) {
1050           const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
1051           CGF.EmitVarDecl(*ImpVar);
1052           CGF.EmitStoreThroughLValue(
1053               CGF.EmitAnyExpr(Ch),
1054               CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
1055                                              ImpVar->getType()));
1056         } else {
1057           Ch = ImpRef;
1058         }
1059       }
1060       if (!C->getHelperChunkSize() || !OuterRegion) {
1061         Chunk = CGF.EmitScalarExpr(Ch);
1062         Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
1063                                          S.getIterationVariable()->getType(),
1064                                          S.getLocStart());
1065       }
1066     }
1067   }
1068   return std::make_pair(Chunk, ScheduleKind);
1069 }
1070 
1071 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1072   // Emit the loop iteration variable.
1073   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1074   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1075   EmitVarDecl(*IVDecl);
1076 
1077   // Emit the iterations count variable.
1078   // If it is not a variable, Sema decided to calculate iterations count on each
1079   // iteration (e.g., it is foldable into a constant).
1080   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1081     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1082     // Emit calculation of the iterations count.
1083     EmitIgnoredExpr(S.getCalcLastIteration());
1084   }
1085 
1086   auto &RT = CGM.getOpenMPRuntime();
1087 
1088   bool HasLastprivateClause;
1089   // Check pre-condition.
1090   {
1091     // Skip the entire loop if we don't meet the precondition.
1092     // If the condition constant folds and can be elided, avoid emitting the
1093     // whole loop.
1094     bool CondConstant;
1095     llvm::BasicBlock *ContBlock = nullptr;
1096     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1097       if (!CondConstant)
1098         return false;
1099     } else {
1100       auto *ThenBlock = createBasicBlock("omp.precond.then");
1101       ContBlock = createBasicBlock("omp.precond.end");
1102       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
1103                   getProfileCount(&S));
1104       EmitBlock(ThenBlock);
1105       incrementProfileCounter(&S);
1106     }
1107 
1108     emitAlignedClause(*this, S);
1109     EmitOMPLinearClauseInit(S);
1110     // Emit 'then' code.
1111     {
1112       // Emit helper vars inits.
1113       LValue LB =
1114           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1115       LValue UB =
1116           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1117       LValue ST =
1118           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
1119       LValue IL =
1120           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
1121 
1122       OMPPrivateScope LoopScope(*this);
1123       if (EmitOMPFirstprivateClause(S, LoopScope)) {
1124         // Emit implicit barrier to synchronize threads and avoid data races on
1125         // initialization of firstprivate variables.
1126         CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
1127                                                OMPD_unknown);
1128       }
1129       EmitOMPPrivateClause(S, LoopScope);
1130       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
1131       EmitOMPReductionClauseInit(S, LoopScope);
1132       emitPrivateLoopCounters(*this, LoopScope, S.counters(),
1133                               S.private_counters());
1134       emitPrivateLinearVars(*this, S, LoopScope);
1135       (void)LoopScope.Privatize();
1136 
1137       // Detect the loop schedule kind and chunk.
1138       llvm::Value *Chunk;
1139       OpenMPScheduleClauseKind ScheduleKind;
1140       auto ScheduleInfo =
1141           emitScheduleClause(*this, S, /*OuterRegion=*/false);
1142       Chunk = ScheduleInfo.first;
1143       ScheduleKind = ScheduleInfo.second;
1144       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1145       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1146       const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr;
1147       if (RT.isStaticNonchunked(ScheduleKind,
1148                                 /* Chunked */ Chunk != nullptr) &&
1149           !Ordered) {
1150         if (isOpenMPSimdDirective(S.getDirectiveKind())) {
1151           EmitOMPSimdInit(S);
1152         }
1153         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1154         // When no chunk_size is specified, the iteration space is divided into
1155         // chunks that are approximately equal in size, and at most one chunk is
1156         // distributed to each thread. Note that the size of the chunks is
1157         // unspecified in this case.
1158         RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1159                        Ordered, IL.getAddress(), LB.getAddress(),
1160                        UB.getAddress(), ST.getAddress());
1161         auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
1162         // UB = min(UB, GlobalUB);
1163         EmitIgnoredExpr(S.getEnsureUpperBound());
1164         // IV = LB;
1165         EmitIgnoredExpr(S.getInit());
1166         // while (idx <= UB) { BODY; ++idx; }
1167         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1168                          S.getInc(),
1169                          [&S, LoopExit](CodeGenFunction &CGF) {
1170                            CGF.EmitOMPLoopBody(S, LoopExit);
1171                            CGF.EmitStopPoint(&S);
1172                          },
1173                          [](CodeGenFunction &) {});
1174         EmitBlock(LoopExit.getBlock());
1175         // Tell the runtime we are done.
1176         RT.emitForStaticFinish(*this, S.getLocStart());
1177       } else {
1178         // Emit the outer loop, which requests its work chunk [LB..UB] from
1179         // runtime and runs the inner loop to process it.
1180         EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered,
1181                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
1182                             IL.getAddress(), Chunk);
1183       }
1184       EmitOMPReductionClauseFinal(S);
1185       // Emit final copy of the lastprivate variables if IsLastIter != 0.
1186       if (HasLastprivateClause)
1187         EmitOMPLastprivateClauseFinal(
1188             S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
1189     }
1190     if (isOpenMPSimdDirective(S.getDirectiveKind())) {
1191       EmitOMPSimdFinal(S);
1192     }
1193     // We're now done with the loop, so jump to the continuation block.
1194     if (ContBlock) {
1195       EmitBranch(ContBlock);
1196       EmitBlock(ContBlock, true);
1197     }
1198   }
1199   return HasLastprivateClause;
1200 }
1201 
1202 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
1203   LexicalScope Scope(*this, S.getSourceRange());
1204   bool HasLastprivates = false;
1205   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
1206     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
1207   };
1208   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen);
1209 
1210   // Emit an implicit barrier at the end.
1211   if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
1212     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
1213   }
1214 }
1215 
1216 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
1217   LexicalScope Scope(*this, S.getSourceRange());
1218   bool HasLastprivates = false;
1219   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
1220     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
1221   };
1222   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1223 
1224   // Emit an implicit barrier at the end.
1225   if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
1226     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
1227   }
1228 }
1229 
1230 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
1231                                 const Twine &Name,
1232                                 llvm::Value *Init = nullptr) {
1233   auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
1234   if (Init)
1235     CGF.EmitScalarInit(Init, LVal);
1236   return LVal;
1237 }
1238 
1239 OpenMPDirectiveKind
1240 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
1241   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
1242   auto *CS = dyn_cast<CompoundStmt>(Stmt);
1243   if (CS && CS->size() > 1) {
1244     bool HasLastprivates = false;
1245     auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
1246       auto &C = CGF.CGM.getContext();
1247       auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1248       // Emit helper vars inits.
1249       LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
1250                                     CGF.Builder.getInt32(0));
1251       auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
1252       LValue UB =
1253           createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
1254       LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
1255                                     CGF.Builder.getInt32(1));
1256       LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
1257                                     CGF.Builder.getInt32(0));
1258       // Loop counter.
1259       LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
1260       OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
1261       CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
1262       OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
1263       CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
1264       // Generate condition for loop.
1265       BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
1266                           OK_Ordinary, S.getLocStart(),
1267                           /*fpContractable=*/false);
1268       // Increment for loop counter.
1269       UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
1270                         OK_Ordinary, S.getLocStart());
1271       auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
1272         // Iterate through all sections and emit a switch construct:
1273         // switch (IV) {
1274         //   case 0:
1275         //     <SectionStmt[0]>;
1276         //     break;
1277         // ...
1278         //   case <NumSection> - 1:
1279         //     <SectionStmt[<NumSection> - 1]>;
1280         //     break;
1281         // }
1282         // .omp.sections.exit:
1283         auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
1284         auto *SwitchStmt = CGF.Builder.CreateSwitch(
1285             CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
1286             CS->size());
1287         unsigned CaseNumber = 0;
1288         for (auto *SubStmt : CS->children()) {
1289           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
1290           CGF.EmitBlock(CaseBB);
1291           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
1292           CGF.EmitStmt(SubStmt);
1293           CGF.EmitBranch(ExitBB);
1294           ++CaseNumber;
1295         }
1296         CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1297       };
1298 
1299       CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1300       if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
1301         // Emit implicit barrier to synchronize threads and avoid data races on
1302         // initialization of firstprivate variables.
1303         CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1304                                                    OMPD_unknown);
1305       }
1306       CGF.EmitOMPPrivateClause(S, LoopScope);
1307       HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1308       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1309       (void)LoopScope.Privatize();
1310 
1311       // Emit static non-chunked loop.
1312       CGF.CGM.getOpenMPRuntime().emitForInit(
1313           CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
1314           /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
1315           LB.getAddress(), UB.getAddress(), ST.getAddress());
1316       // UB = min(UB, GlobalUB);
1317       auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
1318       auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
1319           CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
1320       CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
1321       // IV = LB;
1322       CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
1323       // while (idx <= UB) { BODY; ++idx; }
1324       CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
1325                            [](CodeGenFunction &) {});
1326       // Tell the runtime we are done.
1327       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
1328       CGF.EmitOMPReductionClauseFinal(S);
1329 
1330       // Emit final copy of the lastprivate variables if IsLastIter != 0.
1331       if (HasLastprivates)
1332         CGF.EmitOMPLastprivateClauseFinal(
1333             S, CGF.Builder.CreateIsNotNull(
1334                    CGF.EmitLoadOfScalar(IL, S.getLocStart())));
1335     };
1336 
1337     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen);
1338     // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
1339     // clause. Otherwise the barrier will be generated by the codegen for the
1340     // directive.
1341     if (HasLastprivates && S.getSingleClause(OMPC_nowait)) {
1342       // Emit implicit barrier to synchronize threads and avoid data races on
1343       // initialization of firstprivate variables.
1344       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
1345                                              OMPD_unknown);
1346     }
1347     return OMPD_sections;
1348   }
1349   // If only one section is found - no need to generate loop, emit as a single
1350   // region.
1351   bool HasFirstprivates;
1352   // No need to generate reductions for sections with single section region, we
1353   // can use original shared variables for all operations.
1354   bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty();
1355   // No need to generate lastprivates for sections with single section region,
1356   // we can use original shared variable for all calculations with barrier at
1357   // the end of the sections.
1358   bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty();
1359   auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
1360     CodeGenFunction::OMPPrivateScope SingleScope(CGF);
1361     HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
1362     CGF.EmitOMPPrivateClause(S, SingleScope);
1363     (void)SingleScope.Privatize();
1364 
1365     CGF.EmitStmt(Stmt);
1366   };
1367   CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
1368                                           llvm::None, llvm::None, llvm::None,
1369                                           llvm::None);
1370   // Emit barrier for firstprivates, lastprivates or reductions only if
1371   // 'sections' directive has 'nowait' clause. Otherwise the barrier will be
1372   // generated by the codegen for the directive.
1373   if ((HasFirstprivates || HasLastprivates || HasReductions) &&
1374       S.getSingleClause(OMPC_nowait)) {
1375     // Emit implicit barrier to synchronize threads and avoid data races on
1376     // initialization of firstprivate variables.
1377     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown);
1378   }
1379   return OMPD_single;
1380 }
1381 
1382 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
1383   LexicalScope Scope(*this, S.getSourceRange());
1384   OpenMPDirectiveKind EmittedAs = EmitSections(S);
1385   // Emit an implicit barrier at the end.
1386   if (!S.getSingleClause(OMPC_nowait)) {
1387     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
1388   }
1389 }
1390 
1391 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
1392   LexicalScope Scope(*this, S.getSourceRange());
1393   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1394     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1395     CGF.EnsureInsertPoint();
1396   };
1397   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen);
1398 }
1399 
1400 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
1401   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
1402   llvm::SmallVector<const Expr *, 8> DestExprs;
1403   llvm::SmallVector<const Expr *, 8> SrcExprs;
1404   llvm::SmallVector<const Expr *, 8> AssignmentOps;
1405   // Check if there are any 'copyprivate' clauses associated with this
1406   // 'single'
1407   // construct.
1408   // Build a list of copyprivate variables along with helper expressions
1409   // (<source>, <destination>, <destination>=<source> expressions)
1410   for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) {
1411     auto *C = cast<OMPCopyprivateClause>(*I);
1412     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
1413     DestExprs.append(C->destination_exprs().begin(),
1414                      C->destination_exprs().end());
1415     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
1416     AssignmentOps.append(C->assignment_ops().begin(),
1417                          C->assignment_ops().end());
1418   }
1419   LexicalScope Scope(*this, S.getSourceRange());
1420   // Emit code for 'single' region along with 'copyprivate' clauses
1421   bool HasFirstprivates;
1422   auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
1423     CodeGenFunction::OMPPrivateScope SingleScope(CGF);
1424     HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
1425     CGF.EmitOMPPrivateClause(S, SingleScope);
1426     (void)SingleScope.Privatize();
1427 
1428     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1429     CGF.EnsureInsertPoint();
1430   };
1431   CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
1432                                           CopyprivateVars, DestExprs, SrcExprs,
1433                                           AssignmentOps);
1434   // Emit an implicit barrier at the end (to avoid data race on firstprivate
1435   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
1436   if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) &&
1437       CopyprivateVars.empty()) {
1438     CGM.getOpenMPRuntime().emitBarrierCall(
1439         *this, S.getLocStart(),
1440         S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single);
1441   }
1442 }
1443 
1444 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
1445   LexicalScope Scope(*this, S.getSourceRange());
1446   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1447     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1448     CGF.EnsureInsertPoint();
1449   };
1450   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
1451 }
1452 
1453 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
1454   LexicalScope Scope(*this, S.getSourceRange());
1455   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1456     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1457     CGF.EnsureInsertPoint();
1458   };
1459   CGM.getOpenMPRuntime().emitCriticalRegion(
1460       *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart());
1461 }
1462 
1463 void CodeGenFunction::EmitOMPParallelForDirective(
1464     const OMPParallelForDirective &S) {
1465   // Emit directive as a combined directive that consists of two implicit
1466   // directives: 'parallel' with 'for' directive.
1467   LexicalScope Scope(*this, S.getSourceRange());
1468   (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
1469   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1470     CGF.EmitOMPWorksharingLoop(S);
1471     // Emit implicit barrier at the end of parallel region, but this barrier
1472     // is at the end of 'for' directive, so emit it as the implicit barrier for
1473     // this 'for' directive.
1474     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1475                                                OMPD_parallel);
1476   };
1477   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
1478 }
1479 
1480 void CodeGenFunction::EmitOMPParallelForSimdDirective(
1481     const OMPParallelForSimdDirective &S) {
1482   // Emit directive as a combined directive that consists of two implicit
1483   // directives: 'parallel' with 'for' directive.
1484   LexicalScope Scope(*this, S.getSourceRange());
1485   (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
1486   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1487     CGF.EmitOMPWorksharingLoop(S);
1488     // Emit implicit barrier at the end of parallel region, but this barrier
1489     // is at the end of 'for' directive, so emit it as the implicit barrier for
1490     // this 'for' directive.
1491     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1492                                                OMPD_parallel);
1493   };
1494   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
1495 }
1496 
1497 void CodeGenFunction::EmitOMPParallelSectionsDirective(
1498     const OMPParallelSectionsDirective &S) {
1499   // Emit directive as a combined directive that consists of two implicit
1500   // directives: 'parallel' with 'sections' directive.
1501   LexicalScope Scope(*this, S.getSourceRange());
1502   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1503     (void)CGF.EmitSections(S);
1504     // Emit implicit barrier at the end of parallel region.
1505     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1506                                                OMPD_parallel);
1507   };
1508   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
1509 }
1510 
1511 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
1512   // Emit outlined function for task construct.
1513   LexicalScope Scope(*this, S.getSourceRange());
1514   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1515   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
1516   auto *I = CS->getCapturedDecl()->param_begin();
1517   auto *PartId = std::next(I);
1518   // The first function argument for tasks is a thread id, the second one is a
1519   // part id (0 for tied tasks, >=0 for untied task).
1520   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
1521   // Get list of private variables.
1522   llvm::SmallVector<const Expr *, 8> PrivateVars;
1523   llvm::SmallVector<const Expr *, 8> PrivateCopies;
1524   for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) {
1525     auto *C = cast<OMPPrivateClause>(*I);
1526     auto IRef = C->varlist_begin();
1527     for (auto *IInit : C->private_copies()) {
1528       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1529       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
1530         PrivateVars.push_back(*IRef);
1531         PrivateCopies.push_back(IInit);
1532       }
1533       ++IRef;
1534     }
1535   }
1536   EmittedAsPrivate.clear();
1537   // Get list of firstprivate variables.
1538   llvm::SmallVector<const Expr *, 8> FirstprivateVars;
1539   llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
1540   llvm::SmallVector<const Expr *, 8> FirstprivateInits;
1541   for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) {
1542     auto *C = cast<OMPFirstprivateClause>(*I);
1543     auto IRef = C->varlist_begin();
1544     auto IElemInitRef = C->inits().begin();
1545     for (auto *IInit : C->private_copies()) {
1546       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1547       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
1548         FirstprivateVars.push_back(*IRef);
1549         FirstprivateCopies.push_back(IInit);
1550         FirstprivateInits.push_back(*IElemInitRef);
1551       }
1552       ++IRef, ++IElemInitRef;
1553     }
1554   }
1555   // Build list of dependences.
1556   llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8>
1557       Dependences;
1558   for (auto &&I = S.getClausesOfKind(OMPC_depend); I; ++I) {
1559     auto *C = cast<OMPDependClause>(*I);
1560     for (auto *IRef : C->varlists()) {
1561       Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
1562     }
1563   }
1564   auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
1565       CodeGenFunction &CGF) {
1566     // Set proper addresses for generated private copies.
1567     auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
1568     OMPPrivateScope Scope(CGF);
1569     if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
1570       auto *CopyFn = CGF.Builder.CreateAlignedLoad(
1571           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)),
1572           CGF.PointerAlignInBytes);
1573       auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad(
1574           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)),
1575           CGF.PointerAlignInBytes);
1576       // Map privates.
1577       llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16>
1578           PrivatePtrs;
1579       llvm::SmallVector<llvm::Value *, 16> CallArgs;
1580       CallArgs.push_back(PrivatesPtr);
1581       for (auto *E : PrivateVars) {
1582         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1583         auto *PrivatePtr =
1584             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
1585         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
1586         CallArgs.push_back(PrivatePtr);
1587       }
1588       for (auto *E : FirstprivateVars) {
1589         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1590         auto *PrivatePtr =
1591             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
1592         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
1593         CallArgs.push_back(PrivatePtr);
1594       }
1595       CGF.EmitRuntimeCall(CopyFn, CallArgs);
1596       for (auto &&Pair : PrivatePtrs) {
1597         auto *Replacement =
1598             CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes);
1599         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
1600       }
1601     }
1602     (void)Scope.Privatize();
1603     if (*PartId) {
1604       // TODO: emit code for untied tasks.
1605     }
1606     CGF.EmitStmt(CS->getCapturedStmt());
1607   };
1608   auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
1609       S, *I, OMPD_task, CodeGen);
1610   // Check if we should emit tied or untied task.
1611   bool Tied = !S.getSingleClause(OMPC_untied);
1612   // Check if the task is final
1613   llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
1614   if (auto *Clause = S.getSingleClause(OMPC_final)) {
1615     // If the condition constant folds and can be elided, try to avoid emitting
1616     // the condition and the dead arm of the if/else.
1617     auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
1618     bool CondConstant;
1619     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
1620       Final.setInt(CondConstant);
1621     else
1622       Final.setPointer(EvaluateExprAsBool(Cond));
1623   } else {
1624     // By default the task is not final.
1625     Final.setInt(/*IntVal=*/false);
1626   }
1627   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
1628   const Expr *IfCond = nullptr;
1629   if (auto C = S.getSingleClause(OMPC_if)) {
1630     IfCond = cast<OMPIfClause>(C)->getCondition();
1631   }
1632   CGM.getOpenMPRuntime().emitTaskCall(
1633       *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
1634       CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
1635       FirstprivateCopies, FirstprivateInits, Dependences);
1636 }
1637 
1638 void CodeGenFunction::EmitOMPTaskyieldDirective(
1639     const OMPTaskyieldDirective &S) {
1640   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
1641 }
1642 
1643 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
1644   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
1645 }
1646 
1647 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
1648   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
1649 }
1650 
1651 void CodeGenFunction::EmitOMPTaskgroupDirective(
1652     const OMPTaskgroupDirective &S) {
1653   LexicalScope Scope(*this, S.getSourceRange());
1654   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1655     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1656     CGF.EnsureInsertPoint();
1657   };
1658   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
1659 }
1660 
1661 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
1662   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
1663     if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
1664       auto FlushClause = cast<OMPFlushClause>(C);
1665       return llvm::makeArrayRef(FlushClause->varlist_begin(),
1666                                 FlushClause->varlist_end());
1667     }
1668     return llvm::None;
1669   }(), S.getLocStart());
1670 }
1671 
1672 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
1673   LexicalScope Scope(*this, S.getSourceRange());
1674   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1675     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1676     CGF.EnsureInsertPoint();
1677   };
1678   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart());
1679 }
1680 
1681 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
1682                                          QualType SrcType, QualType DestType,
1683                                          SourceLocation Loc) {
1684   assert(CGF.hasScalarEvaluationKind(DestType) &&
1685          "DestType must have scalar evaluation kind.");
1686   assert(!Val.isAggregate() && "Must be a scalar or complex.");
1687   return Val.isScalar()
1688              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
1689                                         Loc)
1690              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
1691                                                  DestType, Loc);
1692 }
1693 
1694 static CodeGenFunction::ComplexPairTy
1695 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
1696                       QualType DestType, SourceLocation Loc) {
1697   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
1698          "DestType must have complex evaluation kind.");
1699   CodeGenFunction::ComplexPairTy ComplexVal;
1700   if (Val.isScalar()) {
1701     // Convert the input element to the element type of the complex.
1702     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
1703     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
1704                                               DestElementType, Loc);
1705     ComplexVal = CodeGenFunction::ComplexPairTy(
1706         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
1707   } else {
1708     assert(Val.isComplex() && "Must be a scalar or complex.");
1709     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
1710     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
1711     ComplexVal.first = CGF.EmitScalarConversion(
1712         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
1713     ComplexVal.second = CGF.EmitScalarConversion(
1714         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
1715   }
1716   return ComplexVal;
1717 }
1718 
1719 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
1720                                   LValue LVal, RValue RVal) {
1721   if (LVal.isGlobalReg()) {
1722     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
1723   } else {
1724     CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
1725                                              : llvm::Monotonic,
1726                         LVal.isVolatile(), /*IsInit=*/false);
1727   }
1728 }
1729 
1730 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
1731                             QualType RValTy, SourceLocation Loc) {
1732   switch (CGF.getEvaluationKind(LVal.getType())) {
1733   case TEK_Scalar:
1734     CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue(
1735                                    CGF, RVal, RValTy, LVal.getType(), Loc)),
1736                                LVal);
1737     break;
1738   case TEK_Complex:
1739     CGF.EmitStoreOfComplex(
1740         convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal,
1741         /*isInit=*/false);
1742     break;
1743   case TEK_Aggregate:
1744     llvm_unreachable("Must be a scalar or complex.");
1745   }
1746 }
1747 
1748 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
1749                                   const Expr *X, const Expr *V,
1750                                   SourceLocation Loc) {
1751   // v = x;
1752   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
1753   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
1754   LValue XLValue = CGF.EmitLValue(X);
1755   LValue VLValue = CGF.EmitLValue(V);
1756   RValue Res = XLValue.isGlobalReg()
1757                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
1758                    : CGF.EmitAtomicLoad(XLValue, Loc,
1759                                         IsSeqCst ? llvm::SequentiallyConsistent
1760                                                  : llvm::Monotonic,
1761                                         XLValue.isVolatile());
1762   // OpenMP, 2.12.6, atomic Construct
1763   // Any atomic construct with a seq_cst clause forces the atomically
1764   // performed operation to include an implicit flush operation without a
1765   // list.
1766   if (IsSeqCst)
1767     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1768   emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc);
1769 }
1770 
1771 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
1772                                    const Expr *X, const Expr *E,
1773                                    SourceLocation Loc) {
1774   // x = expr;
1775   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
1776   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
1777   // OpenMP, 2.12.6, atomic Construct
1778   // Any atomic construct with a seq_cst clause forces the atomically
1779   // performed operation to include an implicit flush operation without a
1780   // list.
1781   if (IsSeqCst)
1782     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1783 }
1784 
1785 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
1786                                                 RValue Update,
1787                                                 BinaryOperatorKind BO,
1788                                                 llvm::AtomicOrdering AO,
1789                                                 bool IsXLHSInRHSPart) {
1790   auto &Context = CGF.CGM.getContext();
1791   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
1792   // expression is simple and atomic is allowed for the given type for the
1793   // target platform.
1794   if (BO == BO_Comma || !Update.isScalar() ||
1795       !Update.getScalarVal()->getType()->isIntegerTy() ||
1796       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
1797                         (Update.getScalarVal()->getType() !=
1798                          X.getAddress()->getType()->getPointerElementType())) ||
1799       !X.getAddress()->getType()->getPointerElementType()->isIntegerTy() ||
1800       !Context.getTargetInfo().hasBuiltinAtomic(
1801           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
1802     return std::make_pair(false, RValue::get(nullptr));
1803 
1804   llvm::AtomicRMWInst::BinOp RMWOp;
1805   switch (BO) {
1806   case BO_Add:
1807     RMWOp = llvm::AtomicRMWInst::Add;
1808     break;
1809   case BO_Sub:
1810     if (!IsXLHSInRHSPart)
1811       return std::make_pair(false, RValue::get(nullptr));
1812     RMWOp = llvm::AtomicRMWInst::Sub;
1813     break;
1814   case BO_And:
1815     RMWOp = llvm::AtomicRMWInst::And;
1816     break;
1817   case BO_Or:
1818     RMWOp = llvm::AtomicRMWInst::Or;
1819     break;
1820   case BO_Xor:
1821     RMWOp = llvm::AtomicRMWInst::Xor;
1822     break;
1823   case BO_LT:
1824     RMWOp = X.getType()->hasSignedIntegerRepresentation()
1825                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
1826                                    : llvm::AtomicRMWInst::Max)
1827                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
1828                                    : llvm::AtomicRMWInst::UMax);
1829     break;
1830   case BO_GT:
1831     RMWOp = X.getType()->hasSignedIntegerRepresentation()
1832                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
1833                                    : llvm::AtomicRMWInst::Min)
1834                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
1835                                    : llvm::AtomicRMWInst::UMin);
1836     break;
1837   case BO_Assign:
1838     RMWOp = llvm::AtomicRMWInst::Xchg;
1839     break;
1840   case BO_Mul:
1841   case BO_Div:
1842   case BO_Rem:
1843   case BO_Shl:
1844   case BO_Shr:
1845   case BO_LAnd:
1846   case BO_LOr:
1847     return std::make_pair(false, RValue::get(nullptr));
1848   case BO_PtrMemD:
1849   case BO_PtrMemI:
1850   case BO_LE:
1851   case BO_GE:
1852   case BO_EQ:
1853   case BO_NE:
1854   case BO_AddAssign:
1855   case BO_SubAssign:
1856   case BO_AndAssign:
1857   case BO_OrAssign:
1858   case BO_XorAssign:
1859   case BO_MulAssign:
1860   case BO_DivAssign:
1861   case BO_RemAssign:
1862   case BO_ShlAssign:
1863   case BO_ShrAssign:
1864   case BO_Comma:
1865     llvm_unreachable("Unsupported atomic update operation");
1866   }
1867   auto *UpdateVal = Update.getScalarVal();
1868   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
1869     UpdateVal = CGF.Builder.CreateIntCast(
1870         IC, X.getAddress()->getType()->getPointerElementType(),
1871         X.getType()->hasSignedIntegerRepresentation());
1872   }
1873   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO);
1874   return std::make_pair(true, RValue::get(Res));
1875 }
1876 
1877 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
1878     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
1879     llvm::AtomicOrdering AO, SourceLocation Loc,
1880     const llvm::function_ref<RValue(RValue)> &CommonGen) {
1881   // Update expressions are allowed to have the following forms:
1882   // x binop= expr; -> xrval + expr;
1883   // x++, ++x -> xrval + 1;
1884   // x--, --x -> xrval - 1;
1885   // x = x binop expr; -> xrval binop expr
1886   // x = expr Op x; - > expr binop xrval;
1887   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
1888   if (!Res.first) {
1889     if (X.isGlobalReg()) {
1890       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
1891       // 'xrval'.
1892       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
1893     } else {
1894       // Perform compare-and-swap procedure.
1895       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
1896     }
1897   }
1898   return Res;
1899 }
1900 
1901 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
1902                                     const Expr *X, const Expr *E,
1903                                     const Expr *UE, bool IsXLHSInRHSPart,
1904                                     SourceLocation Loc) {
1905   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
1906          "Update expr in 'atomic update' must be a binary operator.");
1907   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
1908   // Update expressions are allowed to have the following forms:
1909   // x binop= expr; -> xrval + expr;
1910   // x++, ++x -> xrval + 1;
1911   // x--, --x -> xrval - 1;
1912   // x = x binop expr; -> xrval binop expr
1913   // x = expr Op x; - > expr binop xrval;
1914   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
1915   LValue XLValue = CGF.EmitLValue(X);
1916   RValue ExprRValue = CGF.EmitAnyExpr(E);
1917   auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
1918   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
1919   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
1920   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
1921   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
1922   auto Gen =
1923       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
1924         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1925         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
1926         return CGF.EmitAnyExpr(UE);
1927       };
1928   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
1929       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
1930   // OpenMP, 2.12.6, atomic Construct
1931   // Any atomic construct with a seq_cst clause forces the atomically
1932   // performed operation to include an implicit flush operation without a
1933   // list.
1934   if (IsSeqCst)
1935     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1936 }
1937 
1938 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
1939                             QualType SourceType, QualType ResType,
1940                             SourceLocation Loc) {
1941   switch (CGF.getEvaluationKind(ResType)) {
1942   case TEK_Scalar:
1943     return RValue::get(
1944         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
1945   case TEK_Complex: {
1946     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
1947     return RValue::getComplex(Res.first, Res.second);
1948   }
1949   case TEK_Aggregate:
1950     break;
1951   }
1952   llvm_unreachable("Must be a scalar or complex.");
1953 }
1954 
1955 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
1956                                      bool IsPostfixUpdate, const Expr *V,
1957                                      const Expr *X, const Expr *E,
1958                                      const Expr *UE, bool IsXLHSInRHSPart,
1959                                      SourceLocation Loc) {
1960   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
1961   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
1962   RValue NewVVal;
1963   LValue VLValue = CGF.EmitLValue(V);
1964   LValue XLValue = CGF.EmitLValue(X);
1965   RValue ExprRValue = CGF.EmitAnyExpr(E);
1966   auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
1967   QualType NewVValType;
1968   if (UE) {
1969     // 'x' is updated with some additional value.
1970     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
1971            "Update expr in 'atomic capture' must be a binary operator.");
1972     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
1973     // Update expressions are allowed to have the following forms:
1974     // x binop= expr; -> xrval + expr;
1975     // x++, ++x -> xrval + 1;
1976     // x--, --x -> xrval - 1;
1977     // x = x binop expr; -> xrval binop expr
1978     // x = expr Op x; - > expr binop xrval;
1979     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
1980     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
1981     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
1982     NewVValType = XRValExpr->getType();
1983     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
1984     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
1985                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
1986       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1987       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
1988       RValue Res = CGF.EmitAnyExpr(UE);
1989       NewVVal = IsPostfixUpdate ? XRValue : Res;
1990       return Res;
1991     };
1992     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
1993         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
1994     if (Res.first) {
1995       // 'atomicrmw' instruction was generated.
1996       if (IsPostfixUpdate) {
1997         // Use old value from 'atomicrmw'.
1998         NewVVal = Res.second;
1999       } else {
2000         // 'atomicrmw' does not provide new value, so evaluate it using old
2001         // value of 'x'.
2002         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
2003         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
2004         NewVVal = CGF.EmitAnyExpr(UE);
2005       }
2006     }
2007   } else {
2008     // 'x' is simply rewritten with some 'expr'.
2009     NewVValType = X->getType().getNonReferenceType();
2010     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
2011                                X->getType().getNonReferenceType(), Loc);
2012     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
2013       NewVVal = XRValue;
2014       return ExprRValue;
2015     };
2016     // Try to perform atomicrmw xchg, otherwise simple exchange.
2017     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
2018         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
2019         Loc, Gen);
2020     if (Res.first) {
2021       // 'atomicrmw' instruction was generated.
2022       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
2023     }
2024   }
2025   // Emit post-update store to 'v' of old/new 'x' value.
2026   emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc);
2027   // OpenMP, 2.12.6, atomic Construct
2028   // Any atomic construct with a seq_cst clause forces the atomically
2029   // performed operation to include an implicit flush operation without a
2030   // list.
2031   if (IsSeqCst)
2032     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2033 }
2034 
2035 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
2036                               bool IsSeqCst, bool IsPostfixUpdate,
2037                               const Expr *X, const Expr *V, const Expr *E,
2038                               const Expr *UE, bool IsXLHSInRHSPart,
2039                               SourceLocation Loc) {
2040   switch (Kind) {
2041   case OMPC_read:
2042     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
2043     break;
2044   case OMPC_write:
2045     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
2046     break;
2047   case OMPC_unknown:
2048   case OMPC_update:
2049     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
2050     break;
2051   case OMPC_capture:
2052     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
2053                              IsXLHSInRHSPart, Loc);
2054     break;
2055   case OMPC_if:
2056   case OMPC_final:
2057   case OMPC_num_threads:
2058   case OMPC_private:
2059   case OMPC_firstprivate:
2060   case OMPC_lastprivate:
2061   case OMPC_reduction:
2062   case OMPC_safelen:
2063   case OMPC_simdlen:
2064   case OMPC_collapse:
2065   case OMPC_default:
2066   case OMPC_seq_cst:
2067   case OMPC_shared:
2068   case OMPC_linear:
2069   case OMPC_aligned:
2070   case OMPC_copyin:
2071   case OMPC_copyprivate:
2072   case OMPC_flush:
2073   case OMPC_proc_bind:
2074   case OMPC_schedule:
2075   case OMPC_ordered:
2076   case OMPC_nowait:
2077   case OMPC_untied:
2078   case OMPC_threadprivate:
2079   case OMPC_depend:
2080   case OMPC_mergeable:
2081   case OMPC_device:
2082     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
2083   }
2084 }
2085 
2086 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
2087   bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
2088   OpenMPClauseKind Kind = OMPC_unknown;
2089   for (auto *C : S.clauses()) {
2090     // Find first clause (skip seq_cst clause, if it is first).
2091     if (C->getClauseKind() != OMPC_seq_cst) {
2092       Kind = C->getClauseKind();
2093       break;
2094     }
2095   }
2096 
2097   const auto *CS =
2098       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
2099   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
2100     enterFullExpression(EWC);
2101   }
2102   // Processing for statements under 'atomic capture'.
2103   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
2104     for (const auto *C : Compound->body()) {
2105       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
2106         enterFullExpression(EWC);
2107       }
2108     }
2109   }
2110 
2111   LexicalScope Scope(*this, S.getSourceRange());
2112   auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) {
2113     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
2114                       S.getV(), S.getExpr(), S.getUpdateExpr(),
2115                       S.isXLHSInRHSPart(), S.getLocStart());
2116   };
2117   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
2118 }
2119 
2120 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
2121   llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
2122 }
2123 
2124 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
2125   llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
2126 }
2127 
2128 void CodeGenFunction::EmitOMPCancellationPointDirective(
2129     const OMPCancellationPointDirective &S) {
2130   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
2131                                                    S.getCancelRegion());
2132 }
2133 
2134 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
2135   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(),
2136                                         S.getCancelRegion());
2137 }
2138 
2139 CodeGenFunction::JumpDest
2140 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
2141   if (Kind == OMPD_parallel || Kind == OMPD_task)
2142     return ReturnBlock;
2143   else if (Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections)
2144     return BreakContinueStack.empty() ? JumpDest()
2145                                       : BreakContinueStack.back().BreakBlock;
2146   return JumpDest();
2147 }
2148 
2149 // Generate the instructions for '#pragma omp target data' directive.
2150 void CodeGenFunction::EmitOMPTargetDataDirective(
2151     const OMPTargetDataDirective &S) {
2152 
2153   // emit the code inside the construct for now
2154   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2155   CGM.getOpenMPRuntime().emitInlinedDirective(
2156       *this, OMPD_target_data,
2157       [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
2158 }
2159