1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/Basic/OpenMPKinds.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/AtomicOrdering.h" 30 using namespace clang; 31 using namespace CodeGen; 32 using namespace llvm::omp; 33 34 namespace { 35 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 36 /// for captured expressions. 37 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 38 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 39 for (const auto *C : S.clauses()) { 40 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 41 if (const auto *PreInit = 42 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 43 for (const auto *I : PreInit->decls()) { 44 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 45 CGF.EmitVarDecl(cast<VarDecl>(*I)); 46 } else { 47 CodeGenFunction::AutoVarEmission Emission = 48 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 49 CGF.EmitAutoVarCleanups(Emission); 50 } 51 } 52 } 53 } 54 } 55 } 56 CodeGenFunction::OMPPrivateScope InlinedShareds; 57 58 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 59 return CGF.LambdaCaptureFields.lookup(VD) || 60 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 61 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 62 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 63 } 64 65 public: 66 OMPLexicalScope( 67 CodeGenFunction &CGF, const OMPExecutableDirective &S, 68 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 69 const bool EmitPreInitStmt = true) 70 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 71 InlinedShareds(CGF) { 72 if (EmitPreInitStmt) 73 emitPreInitStmt(CGF, S); 74 if (!CapturedRegion.hasValue()) 75 return; 76 assert(S.hasAssociatedStmt() && 77 "Expected associated statement for inlined directive."); 78 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 79 for (const auto &C : CS->captures()) { 80 if (C.capturesVariable() || C.capturesVariableByCopy()) { 81 auto *VD = C.getCapturedVar(); 82 assert(VD == VD->getCanonicalDecl() && 83 "Canonical decl must be captured."); 84 DeclRefExpr DRE( 85 CGF.getContext(), const_cast<VarDecl *>(VD), 86 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 87 InlinedShareds.isGlobalVarCaptured(VD)), 88 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 89 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 90 return CGF.EmitLValue(&DRE).getAddress(CGF); 91 }); 92 } 93 } 94 (void)InlinedShareds.Privatize(); 95 } 96 }; 97 98 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 99 /// for captured expressions. 100 class OMPParallelScope final : public OMPLexicalScope { 101 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 102 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 103 return !(isOpenMPTargetExecutionDirective(Kind) || 104 isOpenMPLoopBoundSharingDirective(Kind)) && 105 isOpenMPParallelDirective(Kind); 106 } 107 108 public: 109 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 110 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 111 EmitPreInitStmt(S)) {} 112 }; 113 114 /// Lexical scope for OpenMP teams construct, that handles correct codegen 115 /// for captured expressions. 116 class OMPTeamsScope final : public OMPLexicalScope { 117 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 118 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 119 return !isOpenMPTargetExecutionDirective(Kind) && 120 isOpenMPTeamsDirective(Kind); 121 } 122 123 public: 124 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 125 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 126 EmitPreInitStmt(S)) {} 127 }; 128 129 /// Private scope for OpenMP loop-based directives, that supports capturing 130 /// of used expression from loop statement. 131 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 132 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 133 CodeGenFunction::OMPMapVars PreCondVars; 134 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 135 for (const auto *E : S.counters()) { 136 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 137 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 138 (void)PreCondVars.setVarAddr( 139 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 140 } 141 // Mark private vars as undefs. 142 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 143 for (const Expr *IRef : C->varlists()) { 144 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 145 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 146 (void)PreCondVars.setVarAddr( 147 CGF, OrigVD, 148 Address(llvm::UndefValue::get( 149 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 150 OrigVD->getType().getNonReferenceType()))), 151 CGF.getContext().getDeclAlign(OrigVD))); 152 } 153 } 154 } 155 (void)PreCondVars.apply(CGF); 156 // Emit init, __range and __end variables for C++ range loops. 157 const Stmt *Body = 158 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 159 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 160 Body = OMPLoopDirective::tryToFindNextInnerLoop( 161 Body, /*TryImperfectlyNestedLoops=*/true); 162 if (auto *For = dyn_cast<ForStmt>(Body)) { 163 Body = For->getBody(); 164 } else { 165 assert(isa<CXXForRangeStmt>(Body) && 166 "Expected canonical for loop or range-based for loop."); 167 auto *CXXFor = cast<CXXForRangeStmt>(Body); 168 if (const Stmt *Init = CXXFor->getInit()) 169 CGF.EmitStmt(Init); 170 CGF.EmitStmt(CXXFor->getRangeStmt()); 171 CGF.EmitStmt(CXXFor->getEndStmt()); 172 Body = CXXFor->getBody(); 173 } 174 } 175 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 176 for (const auto *I : PreInits->decls()) 177 CGF.EmitVarDecl(cast<VarDecl>(*I)); 178 } 179 PreCondVars.restore(CGF); 180 } 181 182 public: 183 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 184 : CodeGenFunction::RunCleanupsScope(CGF) { 185 emitPreInitStmt(CGF, S); 186 } 187 }; 188 189 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 190 CodeGenFunction::OMPPrivateScope InlinedShareds; 191 192 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 193 return CGF.LambdaCaptureFields.lookup(VD) || 194 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 195 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 196 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 197 } 198 199 public: 200 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 201 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 202 InlinedShareds(CGF) { 203 for (const auto *C : S.clauses()) { 204 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 205 if (const auto *PreInit = 206 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 207 for (const auto *I : PreInit->decls()) { 208 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 209 CGF.EmitVarDecl(cast<VarDecl>(*I)); 210 } else { 211 CodeGenFunction::AutoVarEmission Emission = 212 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 213 CGF.EmitAutoVarCleanups(Emission); 214 } 215 } 216 } 217 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 218 for (const Expr *E : UDP->varlists()) { 219 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 220 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 221 CGF.EmitVarDecl(*OED); 222 } 223 } 224 } 225 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 226 CGF.EmitOMPPrivateClause(S, InlinedShareds); 227 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 228 if (const Expr *E = TG->getReductionRef()) 229 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 230 } 231 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 232 while (CS) { 233 for (auto &C : CS->captures()) { 234 if (C.capturesVariable() || C.capturesVariableByCopy()) { 235 auto *VD = C.getCapturedVar(); 236 assert(VD == VD->getCanonicalDecl() && 237 "Canonical decl must be captured."); 238 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 239 isCapturedVar(CGF, VD) || 240 (CGF.CapturedStmtInfo && 241 InlinedShareds.isGlobalVarCaptured(VD)), 242 VD->getType().getNonReferenceType(), VK_LValue, 243 C.getLocation()); 244 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 245 return CGF.EmitLValue(&DRE).getAddress(CGF); 246 }); 247 } 248 } 249 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 250 } 251 (void)InlinedShareds.Privatize(); 252 } 253 }; 254 255 } // namespace 256 257 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 258 const OMPExecutableDirective &S, 259 const RegionCodeGenTy &CodeGen); 260 261 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 262 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 263 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 264 OrigVD = OrigVD->getCanonicalDecl(); 265 bool IsCaptured = 266 LambdaCaptureFields.lookup(OrigVD) || 267 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 268 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 269 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 270 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 271 return EmitLValue(&DRE); 272 } 273 } 274 return EmitLValue(E); 275 } 276 277 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 278 ASTContext &C = getContext(); 279 llvm::Value *Size = nullptr; 280 auto SizeInChars = C.getTypeSizeInChars(Ty); 281 if (SizeInChars.isZero()) { 282 // getTypeSizeInChars() returns 0 for a VLA. 283 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 284 VlaSizePair VlaSize = getVLASize(VAT); 285 Ty = VlaSize.Type; 286 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 287 : VlaSize.NumElts; 288 } 289 SizeInChars = C.getTypeSizeInChars(Ty); 290 if (SizeInChars.isZero()) 291 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 292 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 293 } 294 return CGM.getSize(SizeInChars); 295 } 296 297 void CodeGenFunction::GenerateOpenMPCapturedVars( 298 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 299 const RecordDecl *RD = S.getCapturedRecordDecl(); 300 auto CurField = RD->field_begin(); 301 auto CurCap = S.captures().begin(); 302 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 303 E = S.capture_init_end(); 304 I != E; ++I, ++CurField, ++CurCap) { 305 if (CurField->hasCapturedVLAType()) { 306 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 307 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 308 CapturedVars.push_back(Val); 309 } else if (CurCap->capturesThis()) { 310 CapturedVars.push_back(CXXThisValue); 311 } else if (CurCap->capturesVariableByCopy()) { 312 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 313 314 // If the field is not a pointer, we need to save the actual value 315 // and load it as a void pointer. 316 if (!CurField->getType()->isAnyPointerType()) { 317 ASTContext &Ctx = getContext(); 318 Address DstAddr = CreateMemTemp( 319 Ctx.getUIntPtrType(), 320 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 321 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 322 323 llvm::Value *SrcAddrVal = EmitScalarConversion( 324 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 325 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 326 LValue SrcLV = 327 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 328 329 // Store the value using the source type pointer. 330 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 331 332 // Load the value using the destination type pointer. 333 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 334 } 335 CapturedVars.push_back(CV); 336 } else { 337 assert(CurCap->capturesVariable() && "Expected capture by reference."); 338 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 339 } 340 } 341 } 342 343 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 344 QualType DstType, StringRef Name, 345 LValue AddrLV) { 346 ASTContext &Ctx = CGF.getContext(); 347 348 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 349 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 350 Ctx.getPointerType(DstType), Loc); 351 Address TmpAddr = 352 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 353 .getAddress(CGF); 354 return TmpAddr; 355 } 356 357 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 358 if (T->isLValueReferenceType()) 359 return C.getLValueReferenceType( 360 getCanonicalParamType(C, T.getNonReferenceType()), 361 /*SpelledAsLValue=*/false); 362 if (T->isPointerType()) 363 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 364 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 365 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 366 return getCanonicalParamType(C, VLA->getElementType()); 367 if (!A->isVariablyModifiedType()) 368 return C.getCanonicalType(T); 369 } 370 return C.getCanonicalParamType(T); 371 } 372 373 namespace { 374 /// Contains required data for proper outlined function codegen. 375 struct FunctionOptions { 376 /// Captured statement for which the function is generated. 377 const CapturedStmt *S = nullptr; 378 /// true if cast to/from UIntPtr is required for variables captured by 379 /// value. 380 const bool UIntPtrCastRequired = true; 381 /// true if only casted arguments must be registered as local args or VLA 382 /// sizes. 383 const bool RegisterCastedArgsOnly = false; 384 /// Name of the generated function. 385 const StringRef FunctionName; 386 /// Location of the non-debug version of the outlined function. 387 SourceLocation Loc; 388 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 389 bool RegisterCastedArgsOnly, StringRef FunctionName, 390 SourceLocation Loc) 391 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 392 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 393 FunctionName(FunctionName), Loc(Loc) {} 394 }; 395 } // namespace 396 397 static llvm::Function *emitOutlinedFunctionPrologue( 398 CodeGenFunction &CGF, FunctionArgList &Args, 399 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 400 &LocalAddrs, 401 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 402 &VLASizes, 403 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 404 const CapturedDecl *CD = FO.S->getCapturedDecl(); 405 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 406 assert(CD->hasBody() && "missing CapturedDecl body"); 407 408 CXXThisValue = nullptr; 409 // Build the argument list. 410 CodeGenModule &CGM = CGF.CGM; 411 ASTContext &Ctx = CGM.getContext(); 412 FunctionArgList TargetArgs; 413 Args.append(CD->param_begin(), 414 std::next(CD->param_begin(), CD->getContextParamPosition())); 415 TargetArgs.append( 416 CD->param_begin(), 417 std::next(CD->param_begin(), CD->getContextParamPosition())); 418 auto I = FO.S->captures().begin(); 419 FunctionDecl *DebugFunctionDecl = nullptr; 420 if (!FO.UIntPtrCastRequired) { 421 FunctionProtoType::ExtProtoInfo EPI; 422 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 423 DebugFunctionDecl = FunctionDecl::Create( 424 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 425 SourceLocation(), DeclarationName(), FunctionTy, 426 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 427 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 428 } 429 for (const FieldDecl *FD : RD->fields()) { 430 QualType ArgType = FD->getType(); 431 IdentifierInfo *II = nullptr; 432 VarDecl *CapVar = nullptr; 433 434 // If this is a capture by copy and the type is not a pointer, the outlined 435 // function argument type should be uintptr and the value properly casted to 436 // uintptr. This is necessary given that the runtime library is only able to 437 // deal with pointers. We can pass in the same way the VLA type sizes to the 438 // outlined function. 439 if (FO.UIntPtrCastRequired && 440 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 441 I->capturesVariableArrayType())) 442 ArgType = Ctx.getUIntPtrType(); 443 444 if (I->capturesVariable() || I->capturesVariableByCopy()) { 445 CapVar = I->getCapturedVar(); 446 II = CapVar->getIdentifier(); 447 } else if (I->capturesThis()) { 448 II = &Ctx.Idents.get("this"); 449 } else { 450 assert(I->capturesVariableArrayType()); 451 II = &Ctx.Idents.get("vla"); 452 } 453 if (ArgType->isVariablyModifiedType()) 454 ArgType = getCanonicalParamType(Ctx, ArgType); 455 VarDecl *Arg; 456 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 457 Arg = ParmVarDecl::Create( 458 Ctx, DebugFunctionDecl, 459 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 460 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 461 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 462 } else { 463 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 464 II, ArgType, ImplicitParamDecl::Other); 465 } 466 Args.emplace_back(Arg); 467 // Do not cast arguments if we emit function with non-original types. 468 TargetArgs.emplace_back( 469 FO.UIntPtrCastRequired 470 ? Arg 471 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 472 ++I; 473 } 474 Args.append( 475 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 476 CD->param_end()); 477 TargetArgs.append( 478 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 479 CD->param_end()); 480 481 // Create the function declaration. 482 const CGFunctionInfo &FuncInfo = 483 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 484 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 485 486 auto *F = 487 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 488 FO.FunctionName, &CGM.getModule()); 489 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 490 if (CD->isNothrow()) 491 F->setDoesNotThrow(); 492 F->setDoesNotRecurse(); 493 494 // Generate the function. 495 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 496 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 497 FO.UIntPtrCastRequired ? FO.Loc 498 : CD->getBody()->getBeginLoc()); 499 unsigned Cnt = CD->getContextParamPosition(); 500 I = FO.S->captures().begin(); 501 for (const FieldDecl *FD : RD->fields()) { 502 // Do not map arguments if we emit function with non-original types. 503 Address LocalAddr(Address::invalid()); 504 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 505 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 506 TargetArgs[Cnt]); 507 } else { 508 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 509 } 510 // If we are capturing a pointer by copy we don't need to do anything, just 511 // use the value that we get from the arguments. 512 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 513 const VarDecl *CurVD = I->getCapturedVar(); 514 if (!FO.RegisterCastedArgsOnly) 515 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 516 ++Cnt; 517 ++I; 518 continue; 519 } 520 521 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 522 AlignmentSource::Decl); 523 if (FD->hasCapturedVLAType()) { 524 if (FO.UIntPtrCastRequired) { 525 ArgLVal = CGF.MakeAddrLValue( 526 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 527 Args[Cnt]->getName(), ArgLVal), 528 FD->getType(), AlignmentSource::Decl); 529 } 530 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 531 const VariableArrayType *VAT = FD->getCapturedVLAType(); 532 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 533 } else if (I->capturesVariable()) { 534 const VarDecl *Var = I->getCapturedVar(); 535 QualType VarTy = Var->getType(); 536 Address ArgAddr = ArgLVal.getAddress(CGF); 537 if (ArgLVal.getType()->isLValueReferenceType()) { 538 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 539 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 540 assert(ArgLVal.getType()->isPointerType()); 541 ArgAddr = CGF.EmitLoadOfPointer( 542 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 543 } 544 if (!FO.RegisterCastedArgsOnly) { 545 LocalAddrs.insert( 546 {Args[Cnt], 547 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 548 } 549 } else if (I->capturesVariableByCopy()) { 550 assert(!FD->getType()->isAnyPointerType() && 551 "Not expecting a captured pointer."); 552 const VarDecl *Var = I->getCapturedVar(); 553 LocalAddrs.insert({Args[Cnt], 554 {Var, FO.UIntPtrCastRequired 555 ? castValueFromUintptr( 556 CGF, I->getLocation(), FD->getType(), 557 Args[Cnt]->getName(), ArgLVal) 558 : ArgLVal.getAddress(CGF)}}); 559 } else { 560 // If 'this' is captured, load it into CXXThisValue. 561 assert(I->capturesThis()); 562 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 563 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 564 } 565 ++Cnt; 566 ++I; 567 } 568 569 return F; 570 } 571 572 llvm::Function * 573 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 574 SourceLocation Loc) { 575 assert( 576 CapturedStmtInfo && 577 "CapturedStmtInfo should be set when generating the captured function"); 578 const CapturedDecl *CD = S.getCapturedDecl(); 579 // Build the argument list. 580 bool NeedWrapperFunction = 581 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 582 FunctionArgList Args; 583 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 584 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 585 SmallString<256> Buffer; 586 llvm::raw_svector_ostream Out(Buffer); 587 Out << CapturedStmtInfo->getHelperName(); 588 if (NeedWrapperFunction) 589 Out << "_debug__"; 590 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 591 Out.str(), Loc); 592 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 593 VLASizes, CXXThisValue, FO); 594 CodeGenFunction::OMPPrivateScope LocalScope(*this); 595 for (const auto &LocalAddrPair : LocalAddrs) { 596 if (LocalAddrPair.second.first) { 597 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 598 return LocalAddrPair.second.second; 599 }); 600 } 601 } 602 (void)LocalScope.Privatize(); 603 for (const auto &VLASizePair : VLASizes) 604 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 605 PGO.assignRegionCounters(GlobalDecl(CD), F); 606 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 607 (void)LocalScope.ForceCleanup(); 608 FinishFunction(CD->getBodyRBrace()); 609 if (!NeedWrapperFunction) 610 return F; 611 612 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 613 /*RegisterCastedArgsOnly=*/true, 614 CapturedStmtInfo->getHelperName(), Loc); 615 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 616 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 617 Args.clear(); 618 LocalAddrs.clear(); 619 VLASizes.clear(); 620 llvm::Function *WrapperF = 621 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 622 WrapperCGF.CXXThisValue, WrapperFO); 623 llvm::SmallVector<llvm::Value *, 4> CallArgs; 624 for (const auto *Arg : Args) { 625 llvm::Value *CallArg; 626 auto I = LocalAddrs.find(Arg); 627 if (I != LocalAddrs.end()) { 628 LValue LV = WrapperCGF.MakeAddrLValue( 629 I->second.second, 630 I->second.first ? I->second.first->getType() : Arg->getType(), 631 AlignmentSource::Decl); 632 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 633 } else { 634 auto EI = VLASizes.find(Arg); 635 if (EI != VLASizes.end()) { 636 CallArg = EI->second.second; 637 } else { 638 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 639 Arg->getType(), 640 AlignmentSource::Decl); 641 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 642 } 643 } 644 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 645 } 646 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 647 WrapperCGF.FinishFunction(); 648 return WrapperF; 649 } 650 651 //===----------------------------------------------------------------------===// 652 // OpenMP Directive Emission 653 //===----------------------------------------------------------------------===// 654 void CodeGenFunction::EmitOMPAggregateAssign( 655 Address DestAddr, Address SrcAddr, QualType OriginalType, 656 const llvm::function_ref<void(Address, Address)> CopyGen) { 657 // Perform element-by-element initialization. 658 QualType ElementTy; 659 660 // Drill down to the base element type on both arrays. 661 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 662 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 663 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 664 665 llvm::Value *SrcBegin = SrcAddr.getPointer(); 666 llvm::Value *DestBegin = DestAddr.getPointer(); 667 // Cast from pointer to array type to pointer to single element. 668 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 669 // The basic structure here is a while-do loop. 670 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 671 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 672 llvm::Value *IsEmpty = 673 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 674 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 675 676 // Enter the loop body, making that address the current address. 677 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 678 EmitBlock(BodyBB); 679 680 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 681 682 llvm::PHINode *SrcElementPHI = 683 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 684 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 685 Address SrcElementCurrent = 686 Address(SrcElementPHI, 687 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 688 689 llvm::PHINode *DestElementPHI = 690 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 691 DestElementPHI->addIncoming(DestBegin, EntryBB); 692 Address DestElementCurrent = 693 Address(DestElementPHI, 694 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 695 696 // Emit copy. 697 CopyGen(DestElementCurrent, SrcElementCurrent); 698 699 // Shift the address forward by one element. 700 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 701 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 702 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 703 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 704 // Check whether we've reached the end. 705 llvm::Value *Done = 706 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 707 Builder.CreateCondBr(Done, DoneBB, BodyBB); 708 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 709 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 710 711 // Done. 712 EmitBlock(DoneBB, /*IsFinished=*/true); 713 } 714 715 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 716 Address SrcAddr, const VarDecl *DestVD, 717 const VarDecl *SrcVD, const Expr *Copy) { 718 if (OriginalType->isArrayType()) { 719 const auto *BO = dyn_cast<BinaryOperator>(Copy); 720 if (BO && BO->getOpcode() == BO_Assign) { 721 // Perform simple memcpy for simple copying. 722 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 723 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 724 EmitAggregateAssign(Dest, Src, OriginalType); 725 } else { 726 // For arrays with complex element types perform element by element 727 // copying. 728 EmitOMPAggregateAssign( 729 DestAddr, SrcAddr, OriginalType, 730 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 731 // Working with the single array element, so have to remap 732 // destination and source variables to corresponding array 733 // elements. 734 CodeGenFunction::OMPPrivateScope Remap(*this); 735 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 736 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 737 (void)Remap.Privatize(); 738 EmitIgnoredExpr(Copy); 739 }); 740 } 741 } else { 742 // Remap pseudo source variable to private copy. 743 CodeGenFunction::OMPPrivateScope Remap(*this); 744 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 745 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 746 (void)Remap.Privatize(); 747 // Emit copying of the whole variable. 748 EmitIgnoredExpr(Copy); 749 } 750 } 751 752 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 753 OMPPrivateScope &PrivateScope) { 754 if (!HaveInsertPoint()) 755 return false; 756 bool DeviceConstTarget = 757 getLangOpts().OpenMPIsDevice && 758 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 759 bool FirstprivateIsLastprivate = false; 760 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 761 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 762 for (const auto *D : C->varlists()) 763 Lastprivates.try_emplace( 764 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 765 C->getKind()); 766 } 767 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 768 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 769 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 770 // Force emission of the firstprivate copy if the directive does not emit 771 // outlined function, like omp for, omp simd, omp distribute etc. 772 bool MustEmitFirstprivateCopy = 773 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 774 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 775 const auto *IRef = C->varlist_begin(); 776 const auto *InitsRef = C->inits().begin(); 777 for (const Expr *IInit : C->private_copies()) { 778 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 779 bool ThisFirstprivateIsLastprivate = 780 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 781 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 782 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 783 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 784 !FD->getType()->isReferenceType() && 785 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 786 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 787 ++IRef; 788 ++InitsRef; 789 continue; 790 } 791 // Do not emit copy for firstprivate constant variables in target regions, 792 // captured by reference. 793 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 794 FD && FD->getType()->isReferenceType() && 795 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 796 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 797 OrigVD); 798 ++IRef; 799 ++InitsRef; 800 continue; 801 } 802 FirstprivateIsLastprivate = 803 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 804 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 805 const auto *VDInit = 806 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 807 bool IsRegistered; 808 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 809 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 810 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 811 LValue OriginalLVal; 812 if (!FD) { 813 // Check if the firstprivate variable is just a constant value. 814 ConstantEmission CE = tryEmitAsConstant(&DRE); 815 if (CE && !CE.isReference()) { 816 // Constant value, no need to create a copy. 817 ++IRef; 818 ++InitsRef; 819 continue; 820 } 821 if (CE && CE.isReference()) { 822 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 823 } else { 824 assert(!CE && "Expected non-constant firstprivate."); 825 OriginalLVal = EmitLValue(&DRE); 826 } 827 } else { 828 OriginalLVal = EmitLValue(&DRE); 829 } 830 QualType Type = VD->getType(); 831 if (Type->isArrayType()) { 832 // Emit VarDecl with copy init for arrays. 833 // Get the address of the original variable captured in current 834 // captured region. 835 IsRegistered = PrivateScope.addPrivate( 836 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 837 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 838 const Expr *Init = VD->getInit(); 839 if (!isa<CXXConstructExpr>(Init) || 840 isTrivialInitializer(Init)) { 841 // Perform simple memcpy. 842 LValue Dest = 843 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 844 EmitAggregateAssign(Dest, OriginalLVal, Type); 845 } else { 846 EmitOMPAggregateAssign( 847 Emission.getAllocatedAddress(), 848 OriginalLVal.getAddress(*this), Type, 849 [this, VDInit, Init](Address DestElement, 850 Address SrcElement) { 851 // Clean up any temporaries needed by the 852 // initialization. 853 RunCleanupsScope InitScope(*this); 854 // Emit initialization for single element. 855 setAddrOfLocalVar(VDInit, SrcElement); 856 EmitAnyExprToMem(Init, DestElement, 857 Init->getType().getQualifiers(), 858 /*IsInitializer*/ false); 859 LocalDeclMap.erase(VDInit); 860 }); 861 } 862 EmitAutoVarCleanups(Emission); 863 return Emission.getAllocatedAddress(); 864 }); 865 } else { 866 Address OriginalAddr = OriginalLVal.getAddress(*this); 867 IsRegistered = 868 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 869 ThisFirstprivateIsLastprivate, 870 OrigVD, &Lastprivates, IRef]() { 871 // Emit private VarDecl with copy init. 872 // Remap temp VDInit variable to the address of the original 873 // variable (for proper handling of captured global variables). 874 setAddrOfLocalVar(VDInit, OriginalAddr); 875 EmitDecl(*VD); 876 LocalDeclMap.erase(VDInit); 877 if (ThisFirstprivateIsLastprivate && 878 Lastprivates[OrigVD->getCanonicalDecl()] == 879 OMPC_LASTPRIVATE_conditional) { 880 // Create/init special variable for lastprivate conditionals. 881 Address VDAddr = 882 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 883 *this, OrigVD); 884 llvm::Value *V = EmitLoadOfScalar( 885 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 886 AlignmentSource::Decl), 887 (*IRef)->getExprLoc()); 888 EmitStoreOfScalar(V, 889 MakeAddrLValue(VDAddr, (*IRef)->getType(), 890 AlignmentSource::Decl)); 891 LocalDeclMap.erase(VD); 892 setAddrOfLocalVar(VD, VDAddr); 893 return VDAddr; 894 } 895 return GetAddrOfLocalVar(VD); 896 }); 897 } 898 assert(IsRegistered && 899 "firstprivate var already registered as private"); 900 // Silence the warning about unused variable. 901 (void)IsRegistered; 902 } 903 ++IRef; 904 ++InitsRef; 905 } 906 } 907 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 908 } 909 910 void CodeGenFunction::EmitOMPPrivateClause( 911 const OMPExecutableDirective &D, 912 CodeGenFunction::OMPPrivateScope &PrivateScope) { 913 if (!HaveInsertPoint()) 914 return; 915 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 916 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 917 auto IRef = C->varlist_begin(); 918 for (const Expr *IInit : C->private_copies()) { 919 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 920 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 921 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 922 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 923 // Emit private VarDecl with copy init. 924 EmitDecl(*VD); 925 return GetAddrOfLocalVar(VD); 926 }); 927 assert(IsRegistered && "private var already registered as private"); 928 // Silence the warning about unused variable. 929 (void)IsRegistered; 930 } 931 ++IRef; 932 } 933 } 934 } 935 936 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 937 if (!HaveInsertPoint()) 938 return false; 939 // threadprivate_var1 = master_threadprivate_var1; 940 // operator=(threadprivate_var2, master_threadprivate_var2); 941 // ... 942 // __kmpc_barrier(&loc, global_tid); 943 llvm::DenseSet<const VarDecl *> CopiedVars; 944 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 945 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 946 auto IRef = C->varlist_begin(); 947 auto ISrcRef = C->source_exprs().begin(); 948 auto IDestRef = C->destination_exprs().begin(); 949 for (const Expr *AssignOp : C->assignment_ops()) { 950 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 951 QualType Type = VD->getType(); 952 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 953 // Get the address of the master variable. If we are emitting code with 954 // TLS support, the address is passed from the master as field in the 955 // captured declaration. 956 Address MasterAddr = Address::invalid(); 957 if (getLangOpts().OpenMPUseTLS && 958 getContext().getTargetInfo().isTLSSupported()) { 959 assert(CapturedStmtInfo->lookup(VD) && 960 "Copyin threadprivates should have been captured!"); 961 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 962 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 963 MasterAddr = EmitLValue(&DRE).getAddress(*this); 964 LocalDeclMap.erase(VD); 965 } else { 966 MasterAddr = 967 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 968 : CGM.GetAddrOfGlobal(VD), 969 getContext().getDeclAlign(VD)); 970 } 971 // Get the address of the threadprivate variable. 972 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 973 if (CopiedVars.size() == 1) { 974 // At first check if current thread is a master thread. If it is, no 975 // need to copy data. 976 CopyBegin = createBasicBlock("copyin.not.master"); 977 CopyEnd = createBasicBlock("copyin.not.master.end"); 978 Builder.CreateCondBr( 979 Builder.CreateICmpNE( 980 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 981 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 982 CGM.IntPtrTy)), 983 CopyBegin, CopyEnd); 984 EmitBlock(CopyBegin); 985 } 986 const auto *SrcVD = 987 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 988 const auto *DestVD = 989 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 990 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 991 } 992 ++IRef; 993 ++ISrcRef; 994 ++IDestRef; 995 } 996 } 997 if (CopyEnd) { 998 // Exit out of copying procedure for non-master thread. 999 EmitBlock(CopyEnd, /*IsFinished=*/true); 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1006 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1007 if (!HaveInsertPoint()) 1008 return false; 1009 bool HasAtLeastOneLastprivate = false; 1010 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1011 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1012 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1013 for (const Expr *C : LoopDirective->counters()) { 1014 SIMDLCVs.insert( 1015 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1016 } 1017 } 1018 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1019 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1020 HasAtLeastOneLastprivate = true; 1021 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1022 !getLangOpts().OpenMPSimd) 1023 break; 1024 const auto *IRef = C->varlist_begin(); 1025 const auto *IDestRef = C->destination_exprs().begin(); 1026 for (const Expr *IInit : C->private_copies()) { 1027 // Keep the address of the original variable for future update at the end 1028 // of the loop. 1029 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1030 // Taskloops do not require additional initialization, it is done in 1031 // runtime support library. 1032 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1033 const auto *DestVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1035 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1036 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1037 /*RefersToEnclosingVariableOrCapture=*/ 1038 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1039 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1040 return EmitLValue(&DRE).getAddress(*this); 1041 }); 1042 // Check if the variable is also a firstprivate: in this case IInit is 1043 // not generated. Initialization of this variable will happen in codegen 1044 // for 'firstprivate' clause. 1045 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1046 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1047 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1048 OrigVD]() { 1049 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1050 Address VDAddr = 1051 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1052 OrigVD); 1053 setAddrOfLocalVar(VD, VDAddr); 1054 return VDAddr; 1055 } 1056 // Emit private VarDecl with copy init. 1057 EmitDecl(*VD); 1058 return GetAddrOfLocalVar(VD); 1059 }); 1060 assert(IsRegistered && 1061 "lastprivate var already registered as private"); 1062 (void)IsRegistered; 1063 } 1064 } 1065 ++IRef; 1066 ++IDestRef; 1067 } 1068 } 1069 return HasAtLeastOneLastprivate; 1070 } 1071 1072 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1073 const OMPExecutableDirective &D, bool NoFinals, 1074 llvm::Value *IsLastIterCond) { 1075 if (!HaveInsertPoint()) 1076 return; 1077 // Emit following code: 1078 // if (<IsLastIterCond>) { 1079 // orig_var1 = private_orig_var1; 1080 // ... 1081 // orig_varn = private_orig_varn; 1082 // } 1083 llvm::BasicBlock *ThenBB = nullptr; 1084 llvm::BasicBlock *DoneBB = nullptr; 1085 if (IsLastIterCond) { 1086 // Emit implicit barrier if at least one lastprivate conditional is found 1087 // and this is not a simd mode. 1088 if (!getLangOpts().OpenMPSimd && 1089 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1090 [](const OMPLastprivateClause *C) { 1091 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1092 })) { 1093 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1094 OMPD_unknown, 1095 /*EmitChecks=*/false, 1096 /*ForceSimpleCall=*/true); 1097 } 1098 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1099 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1100 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1101 EmitBlock(ThenBB); 1102 } 1103 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1104 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1105 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1106 auto IC = LoopDirective->counters().begin(); 1107 for (const Expr *F : LoopDirective->finals()) { 1108 const auto *D = 1109 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1110 if (NoFinals) 1111 AlreadyEmittedVars.insert(D); 1112 else 1113 LoopCountersAndUpdates[D] = F; 1114 ++IC; 1115 } 1116 } 1117 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1118 auto IRef = C->varlist_begin(); 1119 auto ISrcRef = C->source_exprs().begin(); 1120 auto IDestRef = C->destination_exprs().begin(); 1121 for (const Expr *AssignOp : C->assignment_ops()) { 1122 const auto *PrivateVD = 1123 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1124 QualType Type = PrivateVD->getType(); 1125 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1126 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1127 // If lastprivate variable is a loop control variable for loop-based 1128 // directive, update its value before copyin back to original 1129 // variable. 1130 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1131 EmitIgnoredExpr(FinalExpr); 1132 const auto *SrcVD = 1133 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1134 const auto *DestVD = 1135 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1136 // Get the address of the private variable. 1137 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1138 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1139 PrivateAddr = 1140 Address(Builder.CreateLoad(PrivateAddr), 1141 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1142 // Store the last value to the private copy in the last iteration. 1143 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1144 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1145 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1146 (*IRef)->getExprLoc()); 1147 // Get the address of the original variable. 1148 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1149 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1150 } 1151 ++IRef; 1152 ++ISrcRef; 1153 ++IDestRef; 1154 } 1155 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1156 EmitIgnoredExpr(PostUpdate); 1157 } 1158 if (IsLastIterCond) 1159 EmitBlock(DoneBB, /*IsFinished=*/true); 1160 } 1161 1162 void CodeGenFunction::EmitOMPReductionClauseInit( 1163 const OMPExecutableDirective &D, 1164 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1165 if (!HaveInsertPoint()) 1166 return; 1167 SmallVector<const Expr *, 4> Shareds; 1168 SmallVector<const Expr *, 4> Privates; 1169 SmallVector<const Expr *, 4> ReductionOps; 1170 SmallVector<const Expr *, 4> LHSs; 1171 SmallVector<const Expr *, 4> RHSs; 1172 OMPTaskDataTy Data; 1173 SmallVector<const Expr *, 4> TaskLHSs; 1174 SmallVector<const Expr *, 4> TaskRHSs; 1175 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1176 Shareds.append(C->varlist_begin(), C->varlist_end()); 1177 Privates.append(C->privates().begin(), C->privates().end()); 1178 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1179 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1180 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1181 if (C->getModifier() == OMPC_REDUCTION_task) { 1182 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1183 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1184 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1185 Data.ReductionOps.append(C->reduction_ops().begin(), 1186 C->reduction_ops().end()); 1187 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1188 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1189 } 1190 } 1191 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1192 unsigned Count = 0; 1193 auto *ILHS = LHSs.begin(); 1194 auto *IRHS = RHSs.begin(); 1195 auto *IPriv = Privates.begin(); 1196 for (const Expr *IRef : Shareds) { 1197 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1198 // Emit private VarDecl with reduction init. 1199 RedCG.emitSharedOrigLValue(*this, Count); 1200 RedCG.emitAggregateType(*this, Count); 1201 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1202 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1203 RedCG.getSharedLValue(Count), 1204 [&Emission](CodeGenFunction &CGF) { 1205 CGF.EmitAutoVarInit(Emission); 1206 return true; 1207 }); 1208 EmitAutoVarCleanups(Emission); 1209 Address BaseAddr = RedCG.adjustPrivateAddress( 1210 *this, Count, Emission.getAllocatedAddress()); 1211 bool IsRegistered = PrivateScope.addPrivate( 1212 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1213 assert(IsRegistered && "private var already registered as private"); 1214 // Silence the warning about unused variable. 1215 (void)IsRegistered; 1216 1217 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1218 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1219 QualType Type = PrivateVD->getType(); 1220 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1221 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1222 // Store the address of the original variable associated with the LHS 1223 // implicit variable. 1224 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1225 return RedCG.getSharedLValue(Count).getAddress(*this); 1226 }); 1227 PrivateScope.addPrivate( 1228 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1229 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1230 isa<ArraySubscriptExpr>(IRef)) { 1231 // Store the address of the original variable associated with the LHS 1232 // implicit variable. 1233 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1234 return RedCG.getSharedLValue(Count).getAddress(*this); 1235 }); 1236 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1237 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1238 ConvertTypeForMem(RHSVD->getType()), 1239 "rhs.begin"); 1240 }); 1241 } else { 1242 QualType Type = PrivateVD->getType(); 1243 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1244 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1245 // Store the address of the original variable associated with the LHS 1246 // implicit variable. 1247 if (IsArray) { 1248 OriginalAddr = Builder.CreateElementBitCast( 1249 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1250 } 1251 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1252 PrivateScope.addPrivate( 1253 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1254 return IsArray 1255 ? Builder.CreateElementBitCast( 1256 GetAddrOfLocalVar(PrivateVD), 1257 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1258 : GetAddrOfLocalVar(PrivateVD); 1259 }); 1260 } 1261 ++ILHS; 1262 ++IRHS; 1263 ++IPriv; 1264 ++Count; 1265 } 1266 if (!Data.ReductionVars.empty()) { 1267 Data.IsReductionWithTaskMod = true; 1268 Data.IsWorksharingReduction = 1269 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1270 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1271 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1272 const Expr *TaskRedRef = nullptr; 1273 switch (D.getDirectiveKind()) { 1274 case OMPD_parallel: 1275 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1276 break; 1277 case OMPD_for: 1278 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1279 break; 1280 case OMPD_sections: 1281 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1282 break; 1283 case OMPD_parallel_for: 1284 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1285 break; 1286 case OMPD_parallel_master: 1287 TaskRedRef = 1288 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1289 break; 1290 case OMPD_parallel_sections: 1291 TaskRedRef = 1292 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1293 break; 1294 case OMPD_target_parallel: 1295 TaskRedRef = 1296 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1297 break; 1298 case OMPD_target_parallel_for: 1299 TaskRedRef = 1300 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1301 break; 1302 case OMPD_distribute_parallel_for: 1303 TaskRedRef = 1304 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1305 break; 1306 case OMPD_teams_distribute_parallel_for: 1307 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1308 .getTaskReductionRefExpr(); 1309 break; 1310 case OMPD_target_teams_distribute_parallel_for: 1311 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1312 .getTaskReductionRefExpr(); 1313 break; 1314 case OMPD_simd: 1315 case OMPD_for_simd: 1316 case OMPD_section: 1317 case OMPD_single: 1318 case OMPD_master: 1319 case OMPD_critical: 1320 case OMPD_parallel_for_simd: 1321 case OMPD_task: 1322 case OMPD_taskyield: 1323 case OMPD_barrier: 1324 case OMPD_taskwait: 1325 case OMPD_taskgroup: 1326 case OMPD_flush: 1327 case OMPD_depobj: 1328 case OMPD_scan: 1329 case OMPD_ordered: 1330 case OMPD_atomic: 1331 case OMPD_teams: 1332 case OMPD_target: 1333 case OMPD_cancellation_point: 1334 case OMPD_cancel: 1335 case OMPD_target_data: 1336 case OMPD_target_enter_data: 1337 case OMPD_target_exit_data: 1338 case OMPD_taskloop: 1339 case OMPD_taskloop_simd: 1340 case OMPD_master_taskloop: 1341 case OMPD_master_taskloop_simd: 1342 case OMPD_parallel_master_taskloop: 1343 case OMPD_parallel_master_taskloop_simd: 1344 case OMPD_distribute: 1345 case OMPD_target_update: 1346 case OMPD_distribute_parallel_for_simd: 1347 case OMPD_distribute_simd: 1348 case OMPD_target_parallel_for_simd: 1349 case OMPD_target_simd: 1350 case OMPD_teams_distribute: 1351 case OMPD_teams_distribute_simd: 1352 case OMPD_teams_distribute_parallel_for_simd: 1353 case OMPD_target_teams: 1354 case OMPD_target_teams_distribute: 1355 case OMPD_target_teams_distribute_parallel_for_simd: 1356 case OMPD_target_teams_distribute_simd: 1357 case OMPD_declare_target: 1358 case OMPD_end_declare_target: 1359 case OMPD_threadprivate: 1360 case OMPD_allocate: 1361 case OMPD_declare_reduction: 1362 case OMPD_declare_mapper: 1363 case OMPD_declare_simd: 1364 case OMPD_requires: 1365 case OMPD_declare_variant: 1366 case OMPD_begin_declare_variant: 1367 case OMPD_end_declare_variant: 1368 case OMPD_unknown: 1369 llvm_unreachable("Enexpected directive with task reductions."); 1370 } 1371 1372 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1373 EmitVarDecl(*VD); 1374 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1375 /*Volatile=*/false, TaskRedRef->getType()); 1376 } 1377 } 1378 1379 void CodeGenFunction::EmitOMPReductionClauseFinal( 1380 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1381 if (!HaveInsertPoint()) 1382 return; 1383 llvm::SmallVector<const Expr *, 8> Privates; 1384 llvm::SmallVector<const Expr *, 8> LHSExprs; 1385 llvm::SmallVector<const Expr *, 8> RHSExprs; 1386 llvm::SmallVector<const Expr *, 8> ReductionOps; 1387 bool HasAtLeastOneReduction = false; 1388 bool IsReductionWithTaskMod = false; 1389 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1390 HasAtLeastOneReduction = true; 1391 Privates.append(C->privates().begin(), C->privates().end()); 1392 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1393 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1394 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1395 IsReductionWithTaskMod = 1396 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1397 } 1398 if (HasAtLeastOneReduction) { 1399 if (IsReductionWithTaskMod) { 1400 CGM.getOpenMPRuntime().emitTaskReductionFini( 1401 *this, D.getBeginLoc(), 1402 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1403 } 1404 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1405 isOpenMPParallelDirective(D.getDirectiveKind()) || 1406 ReductionKind == OMPD_simd; 1407 bool SimpleReduction = ReductionKind == OMPD_simd; 1408 // Emit nowait reduction if nowait clause is present or directive is a 1409 // parallel directive (it always has implicit barrier). 1410 CGM.getOpenMPRuntime().emitReduction( 1411 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1412 {WithNowait, SimpleReduction, ReductionKind}); 1413 } 1414 } 1415 1416 static void emitPostUpdateForReductionClause( 1417 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1418 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1419 if (!CGF.HaveInsertPoint()) 1420 return; 1421 llvm::BasicBlock *DoneBB = nullptr; 1422 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1423 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1424 if (!DoneBB) { 1425 if (llvm::Value *Cond = CondGen(CGF)) { 1426 // If the first post-update expression is found, emit conditional 1427 // block if it was requested. 1428 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1429 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1430 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1431 CGF.EmitBlock(ThenBB); 1432 } 1433 } 1434 CGF.EmitIgnoredExpr(PostUpdate); 1435 } 1436 } 1437 if (DoneBB) 1438 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1439 } 1440 1441 namespace { 1442 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1443 /// parallel function. This is necessary for combined constructs such as 1444 /// 'distribute parallel for' 1445 typedef llvm::function_ref<void(CodeGenFunction &, 1446 const OMPExecutableDirective &, 1447 llvm::SmallVectorImpl<llvm::Value *> &)> 1448 CodeGenBoundParametersTy; 1449 } // anonymous namespace 1450 1451 static void 1452 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1453 const OMPExecutableDirective &S) { 1454 if (CGF.getLangOpts().OpenMP < 50) 1455 return; 1456 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1457 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1458 for (const Expr *Ref : C->varlists()) { 1459 if (!Ref->getType()->isScalarType()) 1460 continue; 1461 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1462 if (!DRE) 1463 continue; 1464 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1465 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1466 } 1467 } 1468 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1469 for (const Expr *Ref : C->varlists()) { 1470 if (!Ref->getType()->isScalarType()) 1471 continue; 1472 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1473 if (!DRE) 1474 continue; 1475 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1476 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1477 } 1478 } 1479 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1480 for (const Expr *Ref : C->varlists()) { 1481 if (!Ref->getType()->isScalarType()) 1482 continue; 1483 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1484 if (!DRE) 1485 continue; 1486 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1487 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1488 } 1489 } 1490 // Privates should ne analyzed since they are not captured at all. 1491 // Task reductions may be skipped - tasks are ignored. 1492 // Firstprivates do not return value but may be passed by reference - no need 1493 // to check for updated lastprivate conditional. 1494 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1495 for (const Expr *Ref : C->varlists()) { 1496 if (!Ref->getType()->isScalarType()) 1497 continue; 1498 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1499 if (!DRE) 1500 continue; 1501 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1502 } 1503 } 1504 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1505 CGF, S, PrivateDecls); 1506 } 1507 1508 static void emitCommonOMPParallelDirective( 1509 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1510 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1511 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1512 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1513 llvm::Function *OutlinedFn = 1514 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1515 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1516 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1517 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1518 llvm::Value *NumThreads = 1519 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1520 /*IgnoreResultAssign=*/true); 1521 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1522 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1523 } 1524 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1525 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1526 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1527 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1528 } 1529 const Expr *IfCond = nullptr; 1530 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1531 if (C->getNameModifier() == OMPD_unknown || 1532 C->getNameModifier() == OMPD_parallel) { 1533 IfCond = C->getCondition(); 1534 break; 1535 } 1536 } 1537 1538 OMPParallelScope Scope(CGF, S); 1539 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1540 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1541 // lower and upper bounds with the pragma 'for' chunking mechanism. 1542 // The following lambda takes care of appending the lower and upper bound 1543 // parameters when necessary 1544 CodeGenBoundParameters(CGF, S, CapturedVars); 1545 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1546 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1547 CapturedVars, IfCond); 1548 } 1549 1550 static void emitEmptyBoundParameters(CodeGenFunction &, 1551 const OMPExecutableDirective &, 1552 llvm::SmallVectorImpl<llvm::Value *> &) {} 1553 1554 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1555 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1556 // Check if we have any if clause associated with the directive. 1557 llvm::Value *IfCond = nullptr; 1558 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1559 IfCond = EmitScalarExpr(C->getCondition(), 1560 /*IgnoreResultAssign=*/true); 1561 1562 llvm::Value *NumThreads = nullptr; 1563 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1564 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1565 /*IgnoreResultAssign=*/true); 1566 1567 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1568 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1569 ProcBind = ProcBindClause->getProcBindKind(); 1570 1571 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1572 1573 // The cleanup callback that finalizes all variabels at the given location, 1574 // thus calls destructors etc. 1575 auto FiniCB = [this](InsertPointTy IP) { 1576 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1577 }; 1578 1579 // Privatization callback that performs appropriate action for 1580 // shared/private/firstprivate/lastprivate/copyin/... variables. 1581 // 1582 // TODO: This defaults to shared right now. 1583 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1584 llvm::Value &Val, llvm::Value *&ReplVal) { 1585 // The next line is appropriate only for variables (Val) with the 1586 // data-sharing attribute "shared". 1587 ReplVal = &Val; 1588 1589 return CodeGenIP; 1590 }; 1591 1592 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1593 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1594 1595 auto BodyGenCB = [ParallelRegionBodyStmt, 1596 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1597 llvm::BasicBlock &ContinuationBB) { 1598 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1599 ContinuationBB); 1600 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1601 CodeGenIP, ContinuationBB); 1602 }; 1603 1604 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1605 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1606 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1607 FiniCB, IfCond, NumThreads, 1608 ProcBind, S.hasCancel())); 1609 return; 1610 } 1611 1612 // Emit parallel region as a standalone region. 1613 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1614 Action.Enter(CGF); 1615 OMPPrivateScope PrivateScope(CGF); 1616 bool Copyins = CGF.EmitOMPCopyinClause(S); 1617 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1618 if (Copyins) { 1619 // Emit implicit barrier to synchronize threads and avoid data races on 1620 // propagation master's thread values of threadprivate variables to local 1621 // instances of that variables of all other implicit threads. 1622 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1623 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1624 /*ForceSimpleCall=*/true); 1625 } 1626 CGF.EmitOMPPrivateClause(S, PrivateScope); 1627 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1628 (void)PrivateScope.Privatize(); 1629 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1630 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1631 }; 1632 { 1633 auto LPCRegion = 1634 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1635 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1636 emitEmptyBoundParameters); 1637 emitPostUpdateForReductionClause(*this, S, 1638 [](CodeGenFunction &) { return nullptr; }); 1639 } 1640 // Check for outer lastprivate conditional update. 1641 checkForLastprivateConditionalUpdate(*this, S); 1642 } 1643 1644 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1645 int MaxLevel, int Level = 0) { 1646 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1647 const Stmt *SimplifiedS = S->IgnoreContainers(); 1648 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1649 PrettyStackTraceLoc CrashInfo( 1650 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1651 "LLVM IR generation of compound statement ('{}')"); 1652 1653 // Keep track of the current cleanup stack depth, including debug scopes. 1654 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1655 for (const Stmt *CurStmt : CS->body()) 1656 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1657 return; 1658 } 1659 if (SimplifiedS == NextLoop) { 1660 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1661 S = For->getBody(); 1662 } else { 1663 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1664 "Expected canonical for loop or range-based for loop."); 1665 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1666 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1667 S = CXXFor->getBody(); 1668 } 1669 if (Level + 1 < MaxLevel) { 1670 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1671 S, /*TryImperfectlyNestedLoops=*/true); 1672 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1673 return; 1674 } 1675 } 1676 CGF.EmitStmt(S); 1677 } 1678 1679 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1680 JumpDest LoopExit) { 1681 RunCleanupsScope BodyScope(*this); 1682 // Update counters values on current iteration. 1683 for (const Expr *UE : D.updates()) 1684 EmitIgnoredExpr(UE); 1685 // Update the linear variables. 1686 // In distribute directives only loop counters may be marked as linear, no 1687 // need to generate the code for them. 1688 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1689 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1690 for (const Expr *UE : C->updates()) 1691 EmitIgnoredExpr(UE); 1692 } 1693 } 1694 1695 // On a continue in the body, jump to the end. 1696 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1697 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1698 for (const Expr *E : D.finals_conditions()) { 1699 if (!E) 1700 continue; 1701 // Check that loop counter in non-rectangular nest fits into the iteration 1702 // space. 1703 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1704 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1705 getProfileCount(D.getBody())); 1706 EmitBlock(NextBB); 1707 } 1708 // Emit loop variables for C++ range loops. 1709 const Stmt *Body = 1710 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1711 // Emit loop body. 1712 emitBody(*this, Body, 1713 OMPLoopDirective::tryToFindNextInnerLoop( 1714 Body, /*TryImperfectlyNestedLoops=*/true), 1715 D.getCollapsedNumber()); 1716 1717 // The end (updates/cleanups). 1718 EmitBlock(Continue.getBlock()); 1719 BreakContinueStack.pop_back(); 1720 } 1721 1722 void CodeGenFunction::EmitOMPInnerLoop( 1723 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1724 const Expr *IncExpr, 1725 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1726 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1727 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1728 1729 // Start the loop with a block that tests the condition. 1730 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1731 EmitBlock(CondBlock); 1732 const SourceRange R = S.getSourceRange(); 1733 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1734 SourceLocToDebugLoc(R.getEnd())); 1735 1736 // If there are any cleanups between here and the loop-exit scope, 1737 // create a block to stage a loop exit along. 1738 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1739 if (RequiresCleanup) 1740 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1741 1742 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1743 1744 // Emit condition. 1745 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1746 if (ExitBlock != LoopExit.getBlock()) { 1747 EmitBlock(ExitBlock); 1748 EmitBranchThroughCleanup(LoopExit); 1749 } 1750 1751 EmitBlock(LoopBody); 1752 incrementProfileCounter(&S); 1753 1754 // Create a block for the increment. 1755 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1756 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1757 1758 BodyGen(*this); 1759 1760 // Emit "IV = IV + 1" and a back-edge to the condition block. 1761 EmitBlock(Continue.getBlock()); 1762 EmitIgnoredExpr(IncExpr); 1763 PostIncGen(*this); 1764 BreakContinueStack.pop_back(); 1765 EmitBranch(CondBlock); 1766 LoopStack.pop(); 1767 // Emit the fall-through block. 1768 EmitBlock(LoopExit.getBlock()); 1769 } 1770 1771 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1772 if (!HaveInsertPoint()) 1773 return false; 1774 // Emit inits for the linear variables. 1775 bool HasLinears = false; 1776 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1777 for (const Expr *Init : C->inits()) { 1778 HasLinears = true; 1779 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1780 if (const auto *Ref = 1781 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1782 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1783 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1784 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1785 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1786 VD->getInit()->getType(), VK_LValue, 1787 VD->getInit()->getExprLoc()); 1788 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1789 VD->getType()), 1790 /*capturedByInit=*/false); 1791 EmitAutoVarCleanups(Emission); 1792 } else { 1793 EmitVarDecl(*VD); 1794 } 1795 } 1796 // Emit the linear steps for the linear clauses. 1797 // If a step is not constant, it is pre-calculated before the loop. 1798 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1799 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1800 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1801 // Emit calculation of the linear step. 1802 EmitIgnoredExpr(CS); 1803 } 1804 } 1805 return HasLinears; 1806 } 1807 1808 void CodeGenFunction::EmitOMPLinearClauseFinal( 1809 const OMPLoopDirective &D, 1810 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1811 if (!HaveInsertPoint()) 1812 return; 1813 llvm::BasicBlock *DoneBB = nullptr; 1814 // Emit the final values of the linear variables. 1815 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1816 auto IC = C->varlist_begin(); 1817 for (const Expr *F : C->finals()) { 1818 if (!DoneBB) { 1819 if (llvm::Value *Cond = CondGen(*this)) { 1820 // If the first post-update expression is found, emit conditional 1821 // block if it was requested. 1822 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1823 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1824 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1825 EmitBlock(ThenBB); 1826 } 1827 } 1828 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1829 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1830 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1831 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1832 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1833 CodeGenFunction::OMPPrivateScope VarScope(*this); 1834 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1835 (void)VarScope.Privatize(); 1836 EmitIgnoredExpr(F); 1837 ++IC; 1838 } 1839 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1840 EmitIgnoredExpr(PostUpdate); 1841 } 1842 if (DoneBB) 1843 EmitBlock(DoneBB, /*IsFinished=*/true); 1844 } 1845 1846 static void emitAlignedClause(CodeGenFunction &CGF, 1847 const OMPExecutableDirective &D) { 1848 if (!CGF.HaveInsertPoint()) 1849 return; 1850 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1851 llvm::APInt ClauseAlignment(64, 0); 1852 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1853 auto *AlignmentCI = 1854 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1855 ClauseAlignment = AlignmentCI->getValue(); 1856 } 1857 for (const Expr *E : Clause->varlists()) { 1858 llvm::APInt Alignment(ClauseAlignment); 1859 if (Alignment == 0) { 1860 // OpenMP [2.8.1, Description] 1861 // If no optional parameter is specified, implementation-defined default 1862 // alignments for SIMD instructions on the target platforms are assumed. 1863 Alignment = 1864 CGF.getContext() 1865 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1866 E->getType()->getPointeeType())) 1867 .getQuantity(); 1868 } 1869 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1870 "alignment is not power of 2"); 1871 if (Alignment != 0) { 1872 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1873 CGF.emitAlignmentAssumption( 1874 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1875 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1876 } 1877 } 1878 } 1879 } 1880 1881 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1882 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1883 if (!HaveInsertPoint()) 1884 return; 1885 auto I = S.private_counters().begin(); 1886 for (const Expr *E : S.counters()) { 1887 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1888 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1889 // Emit var without initialization. 1890 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1891 EmitAutoVarCleanups(VarEmission); 1892 LocalDeclMap.erase(PrivateVD); 1893 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1894 return VarEmission.getAllocatedAddress(); 1895 }); 1896 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1897 VD->hasGlobalStorage()) { 1898 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1899 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1900 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1901 E->getType(), VK_LValue, E->getExprLoc()); 1902 return EmitLValue(&DRE).getAddress(*this); 1903 }); 1904 } else { 1905 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1906 return VarEmission.getAllocatedAddress(); 1907 }); 1908 } 1909 ++I; 1910 } 1911 // Privatize extra loop counters used in loops for ordered(n) clauses. 1912 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1913 if (!C->getNumForLoops()) 1914 continue; 1915 for (unsigned I = S.getCollapsedNumber(), 1916 E = C->getLoopNumIterations().size(); 1917 I < E; ++I) { 1918 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1919 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1920 // Override only those variables that can be captured to avoid re-emission 1921 // of the variables declared within the loops. 1922 if (DRE->refersToEnclosingVariableOrCapture()) { 1923 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1924 return CreateMemTemp(DRE->getType(), VD->getName()); 1925 }); 1926 } 1927 } 1928 } 1929 } 1930 1931 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1932 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1933 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1934 if (!CGF.HaveInsertPoint()) 1935 return; 1936 { 1937 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1938 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1939 (void)PreCondScope.Privatize(); 1940 // Get initial values of real counters. 1941 for (const Expr *I : S.inits()) { 1942 CGF.EmitIgnoredExpr(I); 1943 } 1944 } 1945 // Create temp loop control variables with their init values to support 1946 // non-rectangular loops. 1947 CodeGenFunction::OMPMapVars PreCondVars; 1948 for (const Expr * E: S.dependent_counters()) { 1949 if (!E) 1950 continue; 1951 assert(!E->getType().getNonReferenceType()->isRecordType() && 1952 "dependent counter must not be an iterator."); 1953 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1954 Address CounterAddr = 1955 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1956 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1957 } 1958 (void)PreCondVars.apply(CGF); 1959 for (const Expr *E : S.dependent_inits()) { 1960 if (!E) 1961 continue; 1962 CGF.EmitIgnoredExpr(E); 1963 } 1964 // Check that loop is executed at least one time. 1965 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1966 PreCondVars.restore(CGF); 1967 } 1968 1969 void CodeGenFunction::EmitOMPLinearClause( 1970 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1971 if (!HaveInsertPoint()) 1972 return; 1973 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1974 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1975 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1976 for (const Expr *C : LoopDirective->counters()) { 1977 SIMDLCVs.insert( 1978 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1979 } 1980 } 1981 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1982 auto CurPrivate = C->privates().begin(); 1983 for (const Expr *E : C->varlists()) { 1984 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1985 const auto *PrivateVD = 1986 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1987 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1988 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1989 // Emit private VarDecl with copy init. 1990 EmitVarDecl(*PrivateVD); 1991 return GetAddrOfLocalVar(PrivateVD); 1992 }); 1993 assert(IsRegistered && "linear var already registered as private"); 1994 // Silence the warning about unused variable. 1995 (void)IsRegistered; 1996 } else { 1997 EmitVarDecl(*PrivateVD); 1998 } 1999 ++CurPrivate; 2000 } 2001 } 2002 } 2003 2004 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2005 const OMPExecutableDirective &D, 2006 bool IsMonotonic) { 2007 if (!CGF.HaveInsertPoint()) 2008 return; 2009 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2010 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2011 /*ignoreResult=*/true); 2012 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2013 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2014 // In presence of finite 'safelen', it may be unsafe to mark all 2015 // the memory instructions parallel, because loop-carried 2016 // dependences of 'safelen' iterations are possible. 2017 if (!IsMonotonic) 2018 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2019 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2020 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2021 /*ignoreResult=*/true); 2022 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2023 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2024 // In presence of finite 'safelen', it may be unsafe to mark all 2025 // the memory instructions parallel, because loop-carried 2026 // dependences of 'safelen' iterations are possible. 2027 CGF.LoopStack.setParallel(/*Enable=*/false); 2028 } 2029 } 2030 2031 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 2032 bool IsMonotonic) { 2033 // Walk clauses and process safelen/lastprivate. 2034 LoopStack.setParallel(!IsMonotonic); 2035 LoopStack.setVectorizeEnable(); 2036 emitSimdlenSafelenClause(*this, D, IsMonotonic); 2037 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2038 if (C->getKind() == OMPC_ORDER_concurrent) 2039 LoopStack.setParallel(/*Enable=*/true); 2040 } 2041 2042 void CodeGenFunction::EmitOMPSimdFinal( 2043 const OMPLoopDirective &D, 2044 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2045 if (!HaveInsertPoint()) 2046 return; 2047 llvm::BasicBlock *DoneBB = nullptr; 2048 auto IC = D.counters().begin(); 2049 auto IPC = D.private_counters().begin(); 2050 for (const Expr *F : D.finals()) { 2051 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2052 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2053 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2054 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2055 OrigVD->hasGlobalStorage() || CED) { 2056 if (!DoneBB) { 2057 if (llvm::Value *Cond = CondGen(*this)) { 2058 // If the first post-update expression is found, emit conditional 2059 // block if it was requested. 2060 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2061 DoneBB = createBasicBlock(".omp.final.done"); 2062 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2063 EmitBlock(ThenBB); 2064 } 2065 } 2066 Address OrigAddr = Address::invalid(); 2067 if (CED) { 2068 OrigAddr = 2069 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2070 } else { 2071 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2072 /*RefersToEnclosingVariableOrCapture=*/false, 2073 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2074 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2075 } 2076 OMPPrivateScope VarScope(*this); 2077 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2078 (void)VarScope.Privatize(); 2079 EmitIgnoredExpr(F); 2080 } 2081 ++IC; 2082 ++IPC; 2083 } 2084 if (DoneBB) 2085 EmitBlock(DoneBB, /*IsFinished=*/true); 2086 } 2087 2088 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2089 const OMPLoopDirective &S, 2090 CodeGenFunction::JumpDest LoopExit) { 2091 CGF.EmitOMPLoopBody(S, LoopExit); 2092 CGF.EmitStopPoint(&S); 2093 } 2094 2095 /// Emit a helper variable and return corresponding lvalue. 2096 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2097 const DeclRefExpr *Helper) { 2098 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2099 CGF.EmitVarDecl(*VDecl); 2100 return CGF.EmitLValue(Helper); 2101 } 2102 2103 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2104 const RegionCodeGenTy &SimdInitGen, 2105 const RegionCodeGenTy &BodyCodeGen) { 2106 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2107 PrePostActionTy &) { 2108 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2109 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2110 SimdInitGen(CGF); 2111 2112 BodyCodeGen(CGF); 2113 }; 2114 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2115 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2116 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2117 2118 BodyCodeGen(CGF); 2119 }; 2120 const Expr *IfCond = nullptr; 2121 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2122 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2123 if (CGF.getLangOpts().OpenMP >= 50 && 2124 (C->getNameModifier() == OMPD_unknown || 2125 C->getNameModifier() == OMPD_simd)) { 2126 IfCond = C->getCondition(); 2127 break; 2128 } 2129 } 2130 } 2131 if (IfCond) { 2132 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2133 } else { 2134 RegionCodeGenTy ThenRCG(ThenGen); 2135 ThenRCG(CGF); 2136 } 2137 } 2138 2139 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2140 PrePostActionTy &Action) { 2141 Action.Enter(CGF); 2142 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2143 "Expected simd directive"); 2144 OMPLoopScope PreInitScope(CGF, S); 2145 // if (PreCond) { 2146 // for (IV in 0..LastIteration) BODY; 2147 // <Final counter/linear vars updates>; 2148 // } 2149 // 2150 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2151 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2152 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2153 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2154 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2155 } 2156 2157 // Emit: if (PreCond) - begin. 2158 // If the condition constant folds and can be elided, avoid emitting the 2159 // whole loop. 2160 bool CondConstant; 2161 llvm::BasicBlock *ContBlock = nullptr; 2162 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2163 if (!CondConstant) 2164 return; 2165 } else { 2166 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2167 ContBlock = CGF.createBasicBlock("simd.if.end"); 2168 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2169 CGF.getProfileCount(&S)); 2170 CGF.EmitBlock(ThenBlock); 2171 CGF.incrementProfileCounter(&S); 2172 } 2173 2174 // Emit the loop iteration variable. 2175 const Expr *IVExpr = S.getIterationVariable(); 2176 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2177 CGF.EmitVarDecl(*IVDecl); 2178 CGF.EmitIgnoredExpr(S.getInit()); 2179 2180 // Emit the iterations count variable. 2181 // If it is not a variable, Sema decided to calculate iterations count on 2182 // each iteration (e.g., it is foldable into a constant). 2183 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2184 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2185 // Emit calculation of the iterations count. 2186 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2187 } 2188 2189 emitAlignedClause(CGF, S); 2190 (void)CGF.EmitOMPLinearClauseInit(S); 2191 { 2192 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2193 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2194 CGF.EmitOMPLinearClause(S, LoopScope); 2195 CGF.EmitOMPPrivateClause(S, LoopScope); 2196 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2197 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2198 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2199 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2200 (void)LoopScope.Privatize(); 2201 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2202 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2203 2204 emitCommonSimdLoop( 2205 CGF, S, 2206 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2207 CGF.EmitOMPSimdInit(S); 2208 }, 2209 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2210 CGF.EmitOMPInnerLoop( 2211 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2212 [&S](CodeGenFunction &CGF) { 2213 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 2214 CGF.EmitStopPoint(&S); 2215 }, 2216 [](CodeGenFunction &) {}); 2217 }); 2218 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2219 // Emit final copy of the lastprivate variables at the end of loops. 2220 if (HasLastprivateClause) 2221 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2222 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2223 emitPostUpdateForReductionClause(CGF, S, 2224 [](CodeGenFunction &) { return nullptr; }); 2225 } 2226 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2227 // Emit: if (PreCond) - end. 2228 if (ContBlock) { 2229 CGF.EmitBranch(ContBlock); 2230 CGF.EmitBlock(ContBlock, true); 2231 } 2232 } 2233 2234 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2235 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2236 emitOMPSimdRegion(CGF, S, Action); 2237 }; 2238 { 2239 auto LPCRegion = 2240 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2241 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2242 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2243 } 2244 // Check for outer lastprivate conditional update. 2245 checkForLastprivateConditionalUpdate(*this, S); 2246 } 2247 2248 void CodeGenFunction::EmitOMPOuterLoop( 2249 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2250 CodeGenFunction::OMPPrivateScope &LoopScope, 2251 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2252 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2253 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2254 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2255 2256 const Expr *IVExpr = S.getIterationVariable(); 2257 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2258 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2259 2260 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2261 2262 // Start the loop with a block that tests the condition. 2263 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2264 EmitBlock(CondBlock); 2265 const SourceRange R = S.getSourceRange(); 2266 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2267 SourceLocToDebugLoc(R.getEnd())); 2268 2269 llvm::Value *BoolCondVal = nullptr; 2270 if (!DynamicOrOrdered) { 2271 // UB = min(UB, GlobalUB) or 2272 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2273 // 'distribute parallel for') 2274 EmitIgnoredExpr(LoopArgs.EUB); 2275 // IV = LB 2276 EmitIgnoredExpr(LoopArgs.Init); 2277 // IV < UB 2278 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2279 } else { 2280 BoolCondVal = 2281 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2282 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2283 } 2284 2285 // If there are any cleanups between here and the loop-exit scope, 2286 // create a block to stage a loop exit along. 2287 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2288 if (LoopScope.requiresCleanups()) 2289 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2290 2291 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2292 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2293 if (ExitBlock != LoopExit.getBlock()) { 2294 EmitBlock(ExitBlock); 2295 EmitBranchThroughCleanup(LoopExit); 2296 } 2297 EmitBlock(LoopBody); 2298 2299 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2300 // LB for loop condition and emitted it above). 2301 if (DynamicOrOrdered) 2302 EmitIgnoredExpr(LoopArgs.Init); 2303 2304 // Create a block for the increment. 2305 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2306 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2307 2308 emitCommonSimdLoop( 2309 *this, S, 2310 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2311 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2312 // with dynamic/guided scheduling and without ordered clause. 2313 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2314 CGF.LoopStack.setParallel(!IsMonotonic); 2315 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2316 if (C->getKind() == OMPC_ORDER_concurrent) 2317 CGF.LoopStack.setParallel(/*Enable=*/true); 2318 } else { 2319 CGF.EmitOMPSimdInit(S, IsMonotonic); 2320 } 2321 }, 2322 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2323 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2324 SourceLocation Loc = S.getBeginLoc(); 2325 // when 'distribute' is not combined with a 'for': 2326 // while (idx <= UB) { BODY; ++idx; } 2327 // when 'distribute' is combined with a 'for' 2328 // (e.g. 'distribute parallel for') 2329 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2330 CGF.EmitOMPInnerLoop( 2331 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2332 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2333 CodeGenLoop(CGF, S, LoopExit); 2334 }, 2335 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2336 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2337 }); 2338 }); 2339 2340 EmitBlock(Continue.getBlock()); 2341 BreakContinueStack.pop_back(); 2342 if (!DynamicOrOrdered) { 2343 // Emit "LB = LB + Stride", "UB = UB + Stride". 2344 EmitIgnoredExpr(LoopArgs.NextLB); 2345 EmitIgnoredExpr(LoopArgs.NextUB); 2346 } 2347 2348 EmitBranch(CondBlock); 2349 LoopStack.pop(); 2350 // Emit the fall-through block. 2351 EmitBlock(LoopExit.getBlock()); 2352 2353 // Tell the runtime we are done. 2354 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2355 if (!DynamicOrOrdered) 2356 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2357 S.getDirectiveKind()); 2358 }; 2359 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2360 } 2361 2362 void CodeGenFunction::EmitOMPForOuterLoop( 2363 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2364 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2365 const OMPLoopArguments &LoopArgs, 2366 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2367 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2368 2369 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2370 const bool DynamicOrOrdered = 2371 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2372 2373 assert((Ordered || 2374 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2375 LoopArgs.Chunk != nullptr)) && 2376 "static non-chunked schedule does not need outer loop"); 2377 2378 // Emit outer loop. 2379 // 2380 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2381 // When schedule(dynamic,chunk_size) is specified, the iterations are 2382 // distributed to threads in the team in chunks as the threads request them. 2383 // Each thread executes a chunk of iterations, then requests another chunk, 2384 // until no chunks remain to be distributed. Each chunk contains chunk_size 2385 // iterations, except for the last chunk to be distributed, which may have 2386 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2387 // 2388 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2389 // to threads in the team in chunks as the executing threads request them. 2390 // Each thread executes a chunk of iterations, then requests another chunk, 2391 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2392 // each chunk is proportional to the number of unassigned iterations divided 2393 // by the number of threads in the team, decreasing to 1. For a chunk_size 2394 // with value k (greater than 1), the size of each chunk is determined in the 2395 // same way, with the restriction that the chunks do not contain fewer than k 2396 // iterations (except for the last chunk to be assigned, which may have fewer 2397 // than k iterations). 2398 // 2399 // When schedule(auto) is specified, the decision regarding scheduling is 2400 // delegated to the compiler and/or runtime system. The programmer gives the 2401 // implementation the freedom to choose any possible mapping of iterations to 2402 // threads in the team. 2403 // 2404 // When schedule(runtime) is specified, the decision regarding scheduling is 2405 // deferred until run time, and the schedule and chunk size are taken from the 2406 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2407 // implementation defined 2408 // 2409 // while(__kmpc_dispatch_next(&LB, &UB)) { 2410 // idx = LB; 2411 // while (idx <= UB) { BODY; ++idx; 2412 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2413 // } // inner loop 2414 // } 2415 // 2416 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2417 // When schedule(static, chunk_size) is specified, iterations are divided into 2418 // chunks of size chunk_size, and the chunks are assigned to the threads in 2419 // the team in a round-robin fashion in the order of the thread number. 2420 // 2421 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2422 // while (idx <= UB) { BODY; ++idx; } // inner loop 2423 // LB = LB + ST; 2424 // UB = UB + ST; 2425 // } 2426 // 2427 2428 const Expr *IVExpr = S.getIterationVariable(); 2429 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2430 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2431 2432 if (DynamicOrOrdered) { 2433 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2434 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2435 llvm::Value *LBVal = DispatchBounds.first; 2436 llvm::Value *UBVal = DispatchBounds.second; 2437 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2438 LoopArgs.Chunk}; 2439 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2440 IVSigned, Ordered, DipatchRTInputValues); 2441 } else { 2442 CGOpenMPRuntime::StaticRTInput StaticInit( 2443 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2444 LoopArgs.ST, LoopArgs.Chunk); 2445 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2446 ScheduleKind, StaticInit); 2447 } 2448 2449 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2450 const unsigned IVSize, 2451 const bool IVSigned) { 2452 if (Ordered) { 2453 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2454 IVSigned); 2455 } 2456 }; 2457 2458 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2459 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2460 OuterLoopArgs.IncExpr = S.getInc(); 2461 OuterLoopArgs.Init = S.getInit(); 2462 OuterLoopArgs.Cond = S.getCond(); 2463 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2464 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2465 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2466 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2467 } 2468 2469 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2470 const unsigned IVSize, const bool IVSigned) {} 2471 2472 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2473 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2474 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2475 const CodeGenLoopTy &CodeGenLoopContent) { 2476 2477 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2478 2479 // Emit outer loop. 2480 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2481 // dynamic 2482 // 2483 2484 const Expr *IVExpr = S.getIterationVariable(); 2485 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2486 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2487 2488 CGOpenMPRuntime::StaticRTInput StaticInit( 2489 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2490 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2491 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2492 2493 // for combined 'distribute' and 'for' the increment expression of distribute 2494 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2495 Expr *IncExpr; 2496 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2497 IncExpr = S.getDistInc(); 2498 else 2499 IncExpr = S.getInc(); 2500 2501 // this routine is shared by 'omp distribute parallel for' and 2502 // 'omp distribute': select the right EUB expression depending on the 2503 // directive 2504 OMPLoopArguments OuterLoopArgs; 2505 OuterLoopArgs.LB = LoopArgs.LB; 2506 OuterLoopArgs.UB = LoopArgs.UB; 2507 OuterLoopArgs.ST = LoopArgs.ST; 2508 OuterLoopArgs.IL = LoopArgs.IL; 2509 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2510 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2511 ? S.getCombinedEnsureUpperBound() 2512 : S.getEnsureUpperBound(); 2513 OuterLoopArgs.IncExpr = IncExpr; 2514 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2515 ? S.getCombinedInit() 2516 : S.getInit(); 2517 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2518 ? S.getCombinedCond() 2519 : S.getCond(); 2520 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2521 ? S.getCombinedNextLowerBound() 2522 : S.getNextLowerBound(); 2523 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2524 ? S.getCombinedNextUpperBound() 2525 : S.getNextUpperBound(); 2526 2527 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2528 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2529 emitEmptyOrdered); 2530 } 2531 2532 static std::pair<LValue, LValue> 2533 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2534 const OMPExecutableDirective &S) { 2535 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2536 LValue LB = 2537 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2538 LValue UB = 2539 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2540 2541 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2542 // parallel for') we need to use the 'distribute' 2543 // chunk lower and upper bounds rather than the whole loop iteration 2544 // space. These are parameters to the outlined function for 'parallel' 2545 // and we copy the bounds of the previous schedule into the 2546 // the current ones. 2547 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2548 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2549 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2550 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2551 PrevLBVal = CGF.EmitScalarConversion( 2552 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2553 LS.getIterationVariable()->getType(), 2554 LS.getPrevLowerBoundVariable()->getExprLoc()); 2555 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2556 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2557 PrevUBVal = CGF.EmitScalarConversion( 2558 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2559 LS.getIterationVariable()->getType(), 2560 LS.getPrevUpperBoundVariable()->getExprLoc()); 2561 2562 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2563 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2564 2565 return {LB, UB}; 2566 } 2567 2568 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2569 /// we need to use the LB and UB expressions generated by the worksharing 2570 /// code generation support, whereas in non combined situations we would 2571 /// just emit 0 and the LastIteration expression 2572 /// This function is necessary due to the difference of the LB and UB 2573 /// types for the RT emission routines for 'for_static_init' and 2574 /// 'for_dispatch_init' 2575 static std::pair<llvm::Value *, llvm::Value *> 2576 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2577 const OMPExecutableDirective &S, 2578 Address LB, Address UB) { 2579 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2580 const Expr *IVExpr = LS.getIterationVariable(); 2581 // when implementing a dynamic schedule for a 'for' combined with a 2582 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2583 // is not normalized as each team only executes its own assigned 2584 // distribute chunk 2585 QualType IteratorTy = IVExpr->getType(); 2586 llvm::Value *LBVal = 2587 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2588 llvm::Value *UBVal = 2589 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2590 return {LBVal, UBVal}; 2591 } 2592 2593 static void emitDistributeParallelForDistributeInnerBoundParams( 2594 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2595 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2596 const auto &Dir = cast<OMPLoopDirective>(S); 2597 LValue LB = 2598 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2599 llvm::Value *LBCast = 2600 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2601 CGF.SizeTy, /*isSigned=*/false); 2602 CapturedVars.push_back(LBCast); 2603 LValue UB = 2604 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2605 2606 llvm::Value *UBCast = 2607 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2608 CGF.SizeTy, /*isSigned=*/false); 2609 CapturedVars.push_back(UBCast); 2610 } 2611 2612 static void 2613 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2614 const OMPLoopDirective &S, 2615 CodeGenFunction::JumpDest LoopExit) { 2616 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2617 PrePostActionTy &Action) { 2618 Action.Enter(CGF); 2619 bool HasCancel = false; 2620 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2621 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2622 HasCancel = D->hasCancel(); 2623 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2624 HasCancel = D->hasCancel(); 2625 else if (const auto *D = 2626 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2627 HasCancel = D->hasCancel(); 2628 } 2629 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2630 HasCancel); 2631 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2632 emitDistributeParallelForInnerBounds, 2633 emitDistributeParallelForDispatchBounds); 2634 }; 2635 2636 emitCommonOMPParallelDirective( 2637 CGF, S, 2638 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2639 CGInlinedWorksharingLoop, 2640 emitDistributeParallelForDistributeInnerBoundParams); 2641 } 2642 2643 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2644 const OMPDistributeParallelForDirective &S) { 2645 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2646 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2647 S.getDistInc()); 2648 }; 2649 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2650 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2651 } 2652 2653 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2654 const OMPDistributeParallelForSimdDirective &S) { 2655 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2656 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2657 S.getDistInc()); 2658 }; 2659 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2660 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2661 } 2662 2663 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2664 const OMPDistributeSimdDirective &S) { 2665 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2666 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2667 }; 2668 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2669 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2670 } 2671 2672 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2673 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2674 // Emit SPMD target parallel for region as a standalone region. 2675 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2676 emitOMPSimdRegion(CGF, S, Action); 2677 }; 2678 llvm::Function *Fn; 2679 llvm::Constant *Addr; 2680 // Emit target region as a standalone region. 2681 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2682 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2683 assert(Fn && Addr && "Target device function emission failed."); 2684 } 2685 2686 void CodeGenFunction::EmitOMPTargetSimdDirective( 2687 const OMPTargetSimdDirective &S) { 2688 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2689 emitOMPSimdRegion(CGF, S, Action); 2690 }; 2691 emitCommonOMPTargetDirective(*this, S, CodeGen); 2692 } 2693 2694 namespace { 2695 struct ScheduleKindModifiersTy { 2696 OpenMPScheduleClauseKind Kind; 2697 OpenMPScheduleClauseModifier M1; 2698 OpenMPScheduleClauseModifier M2; 2699 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2700 OpenMPScheduleClauseModifier M1, 2701 OpenMPScheduleClauseModifier M2) 2702 : Kind(Kind), M1(M1), M2(M2) {} 2703 }; 2704 } // namespace 2705 2706 bool CodeGenFunction::EmitOMPWorksharingLoop( 2707 const OMPLoopDirective &S, Expr *EUB, 2708 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2709 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2710 // Emit the loop iteration variable. 2711 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2712 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2713 EmitVarDecl(*IVDecl); 2714 2715 // Emit the iterations count variable. 2716 // If it is not a variable, Sema decided to calculate iterations count on each 2717 // iteration (e.g., it is foldable into a constant). 2718 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2719 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2720 // Emit calculation of the iterations count. 2721 EmitIgnoredExpr(S.getCalcLastIteration()); 2722 } 2723 2724 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2725 2726 bool HasLastprivateClause; 2727 // Check pre-condition. 2728 { 2729 OMPLoopScope PreInitScope(*this, S); 2730 // Skip the entire loop if we don't meet the precondition. 2731 // If the condition constant folds and can be elided, avoid emitting the 2732 // whole loop. 2733 bool CondConstant; 2734 llvm::BasicBlock *ContBlock = nullptr; 2735 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2736 if (!CondConstant) 2737 return false; 2738 } else { 2739 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2740 ContBlock = createBasicBlock("omp.precond.end"); 2741 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2742 getProfileCount(&S)); 2743 EmitBlock(ThenBlock); 2744 incrementProfileCounter(&S); 2745 } 2746 2747 RunCleanupsScope DoacrossCleanupScope(*this); 2748 bool Ordered = false; 2749 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2750 if (OrderedClause->getNumForLoops()) 2751 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2752 else 2753 Ordered = true; 2754 } 2755 2756 llvm::DenseSet<const Expr *> EmittedFinals; 2757 emitAlignedClause(*this, S); 2758 bool HasLinears = EmitOMPLinearClauseInit(S); 2759 // Emit helper vars inits. 2760 2761 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2762 LValue LB = Bounds.first; 2763 LValue UB = Bounds.second; 2764 LValue ST = 2765 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2766 LValue IL = 2767 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2768 2769 // Emit 'then' code. 2770 { 2771 OMPPrivateScope LoopScope(*this); 2772 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2773 // Emit implicit barrier to synchronize threads and avoid data races on 2774 // initialization of firstprivate variables and post-update of 2775 // lastprivate variables. 2776 CGM.getOpenMPRuntime().emitBarrierCall( 2777 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2778 /*ForceSimpleCall=*/true); 2779 } 2780 EmitOMPPrivateClause(S, LoopScope); 2781 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2782 *this, S, EmitLValue(S.getIterationVariable())); 2783 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2784 EmitOMPReductionClauseInit(S, LoopScope); 2785 EmitOMPPrivateLoopCounters(S, LoopScope); 2786 EmitOMPLinearClause(S, LoopScope); 2787 (void)LoopScope.Privatize(); 2788 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2789 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2790 2791 // Detect the loop schedule kind and chunk. 2792 const Expr *ChunkExpr = nullptr; 2793 OpenMPScheduleTy ScheduleKind; 2794 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2795 ScheduleKind.Schedule = C->getScheduleKind(); 2796 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2797 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2798 ChunkExpr = C->getChunkSize(); 2799 } else { 2800 // Default behaviour for schedule clause. 2801 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2802 *this, S, ScheduleKind.Schedule, ChunkExpr); 2803 } 2804 bool HasChunkSizeOne = false; 2805 llvm::Value *Chunk = nullptr; 2806 if (ChunkExpr) { 2807 Chunk = EmitScalarExpr(ChunkExpr); 2808 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2809 S.getIterationVariable()->getType(), 2810 S.getBeginLoc()); 2811 Expr::EvalResult Result; 2812 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2813 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2814 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2815 } 2816 } 2817 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2818 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2819 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2820 // If the static schedule kind is specified or if the ordered clause is 2821 // specified, and if no monotonic modifier is specified, the effect will 2822 // be as if the monotonic modifier was specified. 2823 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2824 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2825 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2826 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2827 /* Chunked */ Chunk != nullptr) || 2828 StaticChunkedOne) && 2829 !Ordered) { 2830 JumpDest LoopExit = 2831 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2832 emitCommonSimdLoop( 2833 *this, S, 2834 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2835 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2836 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2837 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2838 if (C->getKind() == OMPC_ORDER_concurrent) 2839 CGF.LoopStack.setParallel(/*Enable=*/true); 2840 } 2841 }, 2842 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2843 &S, ScheduleKind, LoopExit, 2844 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2845 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2846 // When no chunk_size is specified, the iteration space is divided 2847 // into chunks that are approximately equal in size, and at most 2848 // one chunk is distributed to each thread. Note that the size of 2849 // the chunks is unspecified in this case. 2850 CGOpenMPRuntime::StaticRTInput StaticInit( 2851 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2852 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2853 StaticChunkedOne ? Chunk : nullptr); 2854 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2855 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2856 StaticInit); 2857 // UB = min(UB, GlobalUB); 2858 if (!StaticChunkedOne) 2859 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2860 // IV = LB; 2861 CGF.EmitIgnoredExpr(S.getInit()); 2862 // For unchunked static schedule generate: 2863 // 2864 // while (idx <= UB) { 2865 // BODY; 2866 // ++idx; 2867 // } 2868 // 2869 // For static schedule with chunk one: 2870 // 2871 // while (IV <= PrevUB) { 2872 // BODY; 2873 // IV += ST; 2874 // } 2875 CGF.EmitOMPInnerLoop( 2876 S, LoopScope.requiresCleanups(), 2877 StaticChunkedOne ? S.getCombinedParForInDistCond() 2878 : S.getCond(), 2879 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2880 [&S, LoopExit](CodeGenFunction &CGF) { 2881 CGF.EmitOMPLoopBody(S, LoopExit); 2882 CGF.EmitStopPoint(&S); 2883 }, 2884 [](CodeGenFunction &) {}); 2885 }); 2886 EmitBlock(LoopExit.getBlock()); 2887 // Tell the runtime we are done. 2888 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2889 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2890 S.getDirectiveKind()); 2891 }; 2892 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2893 } else { 2894 const bool IsMonotonic = 2895 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2896 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2897 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2898 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2899 // Emit the outer loop, which requests its work chunk [LB..UB] from 2900 // runtime and runs the inner loop to process it. 2901 const OMPLoopArguments LoopArguments( 2902 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2903 IL.getAddress(*this), Chunk, EUB); 2904 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2905 LoopArguments, CGDispatchBounds); 2906 } 2907 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2908 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2909 return CGF.Builder.CreateIsNotNull( 2910 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2911 }); 2912 } 2913 EmitOMPReductionClauseFinal( 2914 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2915 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2916 : /*Parallel only*/ OMPD_parallel); 2917 // Emit post-update of the reduction variables if IsLastIter != 0. 2918 emitPostUpdateForReductionClause( 2919 *this, S, [IL, &S](CodeGenFunction &CGF) { 2920 return CGF.Builder.CreateIsNotNull( 2921 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2922 }); 2923 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2924 if (HasLastprivateClause) 2925 EmitOMPLastprivateClauseFinal( 2926 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2927 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2928 } 2929 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2930 return CGF.Builder.CreateIsNotNull( 2931 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2932 }); 2933 DoacrossCleanupScope.ForceCleanup(); 2934 // We're now done with the loop, so jump to the continuation block. 2935 if (ContBlock) { 2936 EmitBranch(ContBlock); 2937 EmitBlock(ContBlock, /*IsFinished=*/true); 2938 } 2939 } 2940 return HasLastprivateClause; 2941 } 2942 2943 /// The following two functions generate expressions for the loop lower 2944 /// and upper bounds in case of static and dynamic (dispatch) schedule 2945 /// of the associated 'for' or 'distribute' loop. 2946 static std::pair<LValue, LValue> 2947 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2948 const auto &LS = cast<OMPLoopDirective>(S); 2949 LValue LB = 2950 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2951 LValue UB = 2952 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2953 return {LB, UB}; 2954 } 2955 2956 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2957 /// consider the lower and upper bound expressions generated by the 2958 /// worksharing loop support, but we use 0 and the iteration space size as 2959 /// constants 2960 static std::pair<llvm::Value *, llvm::Value *> 2961 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2962 Address LB, Address UB) { 2963 const auto &LS = cast<OMPLoopDirective>(S); 2964 const Expr *IVExpr = LS.getIterationVariable(); 2965 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2966 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2967 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2968 return {LBVal, UBVal}; 2969 } 2970 2971 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2972 bool HasLastprivates = false; 2973 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2974 PrePostActionTy &) { 2975 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2976 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2977 emitForLoopBounds, 2978 emitDispatchForLoopBounds); 2979 }; 2980 { 2981 auto LPCRegion = 2982 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2983 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2984 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2985 S.hasCancel()); 2986 } 2987 2988 // Emit an implicit barrier at the end. 2989 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2990 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2991 // Check for outer lastprivate conditional update. 2992 checkForLastprivateConditionalUpdate(*this, S); 2993 } 2994 2995 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2996 bool HasLastprivates = false; 2997 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2998 PrePostActionTy &) { 2999 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3000 emitForLoopBounds, 3001 emitDispatchForLoopBounds); 3002 }; 3003 { 3004 auto LPCRegion = 3005 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3006 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3007 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3008 } 3009 3010 // Emit an implicit barrier at the end. 3011 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3012 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3013 // Check for outer lastprivate conditional update. 3014 checkForLastprivateConditionalUpdate(*this, S); 3015 } 3016 3017 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3018 const Twine &Name, 3019 llvm::Value *Init = nullptr) { 3020 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3021 if (Init) 3022 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3023 return LVal; 3024 } 3025 3026 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3027 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3028 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3029 bool HasLastprivates = false; 3030 auto &&CodeGen = [&S, CapturedStmt, CS, 3031 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3032 const ASTContext &C = CGF.getContext(); 3033 QualType KmpInt32Ty = 3034 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3035 // Emit helper vars inits. 3036 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3037 CGF.Builder.getInt32(0)); 3038 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3039 ? CGF.Builder.getInt32(CS->size() - 1) 3040 : CGF.Builder.getInt32(0); 3041 LValue UB = 3042 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3043 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3044 CGF.Builder.getInt32(1)); 3045 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3046 CGF.Builder.getInt32(0)); 3047 // Loop counter. 3048 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3049 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3050 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3051 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3052 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3053 // Generate condition for loop. 3054 BinaryOperator *Cond = BinaryOperator::Create( 3055 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary, 3056 S.getBeginLoc(), FPOptions(C.getLangOpts())); 3057 // Increment for loop counter. 3058 UnaryOperator *Inc = UnaryOperator::Create( 3059 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 3060 S.getBeginLoc(), true, FPOptions(C.getLangOpts())); 3061 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3062 // Iterate through all sections and emit a switch construct: 3063 // switch (IV) { 3064 // case 0: 3065 // <SectionStmt[0]>; 3066 // break; 3067 // ... 3068 // case <NumSection> - 1: 3069 // <SectionStmt[<NumSection> - 1]>; 3070 // break; 3071 // } 3072 // .omp.sections.exit: 3073 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3074 llvm::SwitchInst *SwitchStmt = 3075 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3076 ExitBB, CS == nullptr ? 1 : CS->size()); 3077 if (CS) { 3078 unsigned CaseNumber = 0; 3079 for (const Stmt *SubStmt : CS->children()) { 3080 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3081 CGF.EmitBlock(CaseBB); 3082 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3083 CGF.EmitStmt(SubStmt); 3084 CGF.EmitBranch(ExitBB); 3085 ++CaseNumber; 3086 } 3087 } else { 3088 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3089 CGF.EmitBlock(CaseBB); 3090 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3091 CGF.EmitStmt(CapturedStmt); 3092 CGF.EmitBranch(ExitBB); 3093 } 3094 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3095 }; 3096 3097 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3098 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3099 // Emit implicit barrier to synchronize threads and avoid data races on 3100 // initialization of firstprivate variables and post-update of lastprivate 3101 // variables. 3102 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3103 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3104 /*ForceSimpleCall=*/true); 3105 } 3106 CGF.EmitOMPPrivateClause(S, LoopScope); 3107 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3108 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3109 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3110 (void)LoopScope.Privatize(); 3111 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3112 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3113 3114 // Emit static non-chunked loop. 3115 OpenMPScheduleTy ScheduleKind; 3116 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3117 CGOpenMPRuntime::StaticRTInput StaticInit( 3118 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3119 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3120 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3121 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3122 // UB = min(UB, GlobalUB); 3123 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3124 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3125 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3126 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3127 // IV = LB; 3128 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3129 // while (idx <= UB) { BODY; ++idx; } 3130 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3131 [](CodeGenFunction &) {}); 3132 // Tell the runtime we are done. 3133 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3134 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3135 S.getDirectiveKind()); 3136 }; 3137 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3138 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3139 // Emit post-update of the reduction variables if IsLastIter != 0. 3140 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3141 return CGF.Builder.CreateIsNotNull( 3142 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3143 }); 3144 3145 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3146 if (HasLastprivates) 3147 CGF.EmitOMPLastprivateClauseFinal( 3148 S, /*NoFinals=*/false, 3149 CGF.Builder.CreateIsNotNull( 3150 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3151 }; 3152 3153 bool HasCancel = false; 3154 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3155 HasCancel = OSD->hasCancel(); 3156 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3157 HasCancel = OPSD->hasCancel(); 3158 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3159 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3160 HasCancel); 3161 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3162 // clause. Otherwise the barrier will be generated by the codegen for the 3163 // directive. 3164 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3165 // Emit implicit barrier to synchronize threads and avoid data races on 3166 // initialization of firstprivate variables. 3167 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3168 OMPD_unknown); 3169 } 3170 } 3171 3172 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3173 { 3174 auto LPCRegion = 3175 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3176 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3177 EmitSections(S); 3178 } 3179 // Emit an implicit barrier at the end. 3180 if (!S.getSingleClause<OMPNowaitClause>()) { 3181 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3182 OMPD_sections); 3183 } 3184 // Check for outer lastprivate conditional update. 3185 checkForLastprivateConditionalUpdate(*this, S); 3186 } 3187 3188 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3189 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3190 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3191 }; 3192 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3193 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 3194 S.hasCancel()); 3195 } 3196 3197 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3198 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3199 llvm::SmallVector<const Expr *, 8> DestExprs; 3200 llvm::SmallVector<const Expr *, 8> SrcExprs; 3201 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3202 // Check if there are any 'copyprivate' clauses associated with this 3203 // 'single' construct. 3204 // Build a list of copyprivate variables along with helper expressions 3205 // (<source>, <destination>, <destination>=<source> expressions) 3206 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3207 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3208 DestExprs.append(C->destination_exprs().begin(), 3209 C->destination_exprs().end()); 3210 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3211 AssignmentOps.append(C->assignment_ops().begin(), 3212 C->assignment_ops().end()); 3213 } 3214 // Emit code for 'single' region along with 'copyprivate' clauses 3215 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3216 Action.Enter(CGF); 3217 OMPPrivateScope SingleScope(CGF); 3218 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3219 CGF.EmitOMPPrivateClause(S, SingleScope); 3220 (void)SingleScope.Privatize(); 3221 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3222 }; 3223 { 3224 auto LPCRegion = 3225 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3226 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3227 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3228 CopyprivateVars, DestExprs, 3229 SrcExprs, AssignmentOps); 3230 } 3231 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3232 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3233 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3234 CGM.getOpenMPRuntime().emitBarrierCall( 3235 *this, S.getBeginLoc(), 3236 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3237 } 3238 // Check for outer lastprivate conditional update. 3239 checkForLastprivateConditionalUpdate(*this, S); 3240 } 3241 3242 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3243 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3244 Action.Enter(CGF); 3245 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3246 }; 3247 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3248 } 3249 3250 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3251 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 3252 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3253 3254 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3255 const Stmt *MasterRegionBodyStmt = CS->getCapturedStmt(); 3256 3257 auto FiniCB = [this](InsertPointTy IP) { 3258 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3259 }; 3260 3261 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3262 InsertPointTy CodeGenIP, 3263 llvm::BasicBlock &FiniBB) { 3264 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3265 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3266 CodeGenIP, FiniBB); 3267 }; 3268 3269 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3270 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3271 Builder.restoreIP(OMPBuilder->CreateMaster(Builder, BodyGenCB, FiniCB)); 3272 3273 return; 3274 } 3275 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3276 emitMaster(*this, S); 3277 } 3278 3279 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3280 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 3281 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3282 3283 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3284 const Stmt *CriticalRegionBodyStmt = CS->getCapturedStmt(); 3285 const Expr *Hint = nullptr; 3286 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3287 Hint = HintClause->getHint(); 3288 3289 // TODO: This is slightly different from what's currently being done in 3290 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 3291 // about typing is final. 3292 llvm::Value *HintInst = nullptr; 3293 if (Hint) 3294 HintInst = 3295 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 3296 3297 auto FiniCB = [this](InsertPointTy IP) { 3298 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3299 }; 3300 3301 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 3302 InsertPointTy CodeGenIP, 3303 llvm::BasicBlock &FiniBB) { 3304 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3305 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 3306 CodeGenIP, FiniBB); 3307 }; 3308 3309 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3310 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3311 Builder.restoreIP(OMPBuilder->CreateCritical( 3312 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 3313 HintInst)); 3314 3315 return; 3316 } 3317 3318 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3319 Action.Enter(CGF); 3320 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3321 }; 3322 const Expr *Hint = nullptr; 3323 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3324 Hint = HintClause->getHint(); 3325 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3326 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3327 S.getDirectiveName().getAsString(), 3328 CodeGen, S.getBeginLoc(), Hint); 3329 } 3330 3331 void CodeGenFunction::EmitOMPParallelForDirective( 3332 const OMPParallelForDirective &S) { 3333 // Emit directive as a combined directive that consists of two implicit 3334 // directives: 'parallel' with 'for' directive. 3335 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3336 Action.Enter(CGF); 3337 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 3338 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3339 emitDispatchForLoopBounds); 3340 }; 3341 { 3342 auto LPCRegion = 3343 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3344 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3345 emitEmptyBoundParameters); 3346 } 3347 // Check for outer lastprivate conditional update. 3348 checkForLastprivateConditionalUpdate(*this, S); 3349 } 3350 3351 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3352 const OMPParallelForSimdDirective &S) { 3353 // Emit directive as a combined directive that consists of two implicit 3354 // directives: 'parallel' with 'for' directive. 3355 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3356 Action.Enter(CGF); 3357 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3358 emitDispatchForLoopBounds); 3359 }; 3360 { 3361 auto LPCRegion = 3362 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3363 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 3364 emitEmptyBoundParameters); 3365 } 3366 // Check for outer lastprivate conditional update. 3367 checkForLastprivateConditionalUpdate(*this, S); 3368 } 3369 3370 void CodeGenFunction::EmitOMPParallelMasterDirective( 3371 const OMPParallelMasterDirective &S) { 3372 // Emit directive as a combined directive that consists of two implicit 3373 // directives: 'parallel' with 'master' directive. 3374 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3375 Action.Enter(CGF); 3376 OMPPrivateScope PrivateScope(CGF); 3377 bool Copyins = CGF.EmitOMPCopyinClause(S); 3378 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3379 if (Copyins) { 3380 // Emit implicit barrier to synchronize threads and avoid data races on 3381 // propagation master's thread values of threadprivate variables to local 3382 // instances of that variables of all other implicit threads. 3383 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3384 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3385 /*ForceSimpleCall=*/true); 3386 } 3387 CGF.EmitOMPPrivateClause(S, PrivateScope); 3388 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3389 (void)PrivateScope.Privatize(); 3390 emitMaster(CGF, S); 3391 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3392 }; 3393 { 3394 auto LPCRegion = 3395 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3396 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3397 emitEmptyBoundParameters); 3398 emitPostUpdateForReductionClause(*this, S, 3399 [](CodeGenFunction &) { return nullptr; }); 3400 } 3401 // Check for outer lastprivate conditional update. 3402 checkForLastprivateConditionalUpdate(*this, S); 3403 } 3404 3405 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3406 const OMPParallelSectionsDirective &S) { 3407 // Emit directive as a combined directive that consists of two implicit 3408 // directives: 'parallel' with 'sections' directive. 3409 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3410 Action.Enter(CGF); 3411 CGF.EmitSections(S); 3412 }; 3413 { 3414 auto LPCRegion = 3415 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3416 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3417 emitEmptyBoundParameters); 3418 } 3419 // Check for outer lastprivate conditional update. 3420 checkForLastprivateConditionalUpdate(*this, S); 3421 } 3422 3423 void CodeGenFunction::EmitOMPTaskBasedDirective( 3424 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3425 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3426 OMPTaskDataTy &Data) { 3427 // Emit outlined function for task construct. 3428 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3429 auto I = CS->getCapturedDecl()->param_begin(); 3430 auto PartId = std::next(I); 3431 auto TaskT = std::next(I, 4); 3432 // Check if the task is final 3433 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3434 // If the condition constant folds and can be elided, try to avoid emitting 3435 // the condition and the dead arm of the if/else. 3436 const Expr *Cond = Clause->getCondition(); 3437 bool CondConstant; 3438 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3439 Data.Final.setInt(CondConstant); 3440 else 3441 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3442 } else { 3443 // By default the task is not final. 3444 Data.Final.setInt(/*IntVal=*/false); 3445 } 3446 // Check if the task has 'priority' clause. 3447 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3448 const Expr *Prio = Clause->getPriority(); 3449 Data.Priority.setInt(/*IntVal=*/true); 3450 Data.Priority.setPointer(EmitScalarConversion( 3451 EmitScalarExpr(Prio), Prio->getType(), 3452 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3453 Prio->getExprLoc())); 3454 } 3455 // The first function argument for tasks is a thread id, the second one is a 3456 // part id (0 for tied tasks, >=0 for untied task). 3457 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3458 // Get list of private variables. 3459 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3460 auto IRef = C->varlist_begin(); 3461 for (const Expr *IInit : C->private_copies()) { 3462 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3463 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3464 Data.PrivateVars.push_back(*IRef); 3465 Data.PrivateCopies.push_back(IInit); 3466 } 3467 ++IRef; 3468 } 3469 } 3470 EmittedAsPrivate.clear(); 3471 // Get list of firstprivate variables. 3472 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3473 auto IRef = C->varlist_begin(); 3474 auto IElemInitRef = C->inits().begin(); 3475 for (const Expr *IInit : C->private_copies()) { 3476 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3477 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3478 Data.FirstprivateVars.push_back(*IRef); 3479 Data.FirstprivateCopies.push_back(IInit); 3480 Data.FirstprivateInits.push_back(*IElemInitRef); 3481 } 3482 ++IRef; 3483 ++IElemInitRef; 3484 } 3485 } 3486 // Get list of lastprivate variables (for taskloops). 3487 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3488 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3489 auto IRef = C->varlist_begin(); 3490 auto ID = C->destination_exprs().begin(); 3491 for (const Expr *IInit : C->private_copies()) { 3492 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3493 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3494 Data.LastprivateVars.push_back(*IRef); 3495 Data.LastprivateCopies.push_back(IInit); 3496 } 3497 LastprivateDstsOrigs.insert( 3498 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3499 cast<DeclRefExpr>(*IRef)}); 3500 ++IRef; 3501 ++ID; 3502 } 3503 } 3504 SmallVector<const Expr *, 4> LHSs; 3505 SmallVector<const Expr *, 4> RHSs; 3506 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3507 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3508 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3509 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3510 Data.ReductionOps.append(C->reduction_ops().begin(), 3511 C->reduction_ops().end()); 3512 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3513 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3514 } 3515 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3516 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3517 // Build list of dependences. 3518 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3519 OMPTaskDataTy::DependData &DD = 3520 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3521 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3522 } 3523 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3524 CapturedRegion](CodeGenFunction &CGF, 3525 PrePostActionTy &Action) { 3526 // Set proper addresses for generated private copies. 3527 OMPPrivateScope Scope(CGF); 3528 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 3529 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3530 !Data.LastprivateVars.empty()) { 3531 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3532 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3533 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3534 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3535 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3536 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3537 CS->getCapturedDecl()->getParam(PrivatesParam))); 3538 // Map privates. 3539 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3540 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3541 CallArgs.push_back(PrivatesPtr); 3542 for (const Expr *E : Data.PrivateVars) { 3543 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3544 Address PrivatePtr = CGF.CreateMemTemp( 3545 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3546 PrivatePtrs.emplace_back(VD, PrivatePtr); 3547 CallArgs.push_back(PrivatePtr.getPointer()); 3548 } 3549 for (const Expr *E : Data.FirstprivateVars) { 3550 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3551 Address PrivatePtr = 3552 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3553 ".firstpriv.ptr.addr"); 3554 PrivatePtrs.emplace_back(VD, PrivatePtr); 3555 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 3556 CallArgs.push_back(PrivatePtr.getPointer()); 3557 } 3558 for (const Expr *E : Data.LastprivateVars) { 3559 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3560 Address PrivatePtr = 3561 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3562 ".lastpriv.ptr.addr"); 3563 PrivatePtrs.emplace_back(VD, PrivatePtr); 3564 CallArgs.push_back(PrivatePtr.getPointer()); 3565 } 3566 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3567 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3568 for (const auto &Pair : LastprivateDstsOrigs) { 3569 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3570 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3571 /*RefersToEnclosingVariableOrCapture=*/ 3572 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3573 Pair.second->getType(), VK_LValue, 3574 Pair.second->getExprLoc()); 3575 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3576 return CGF.EmitLValue(&DRE).getAddress(CGF); 3577 }); 3578 } 3579 for (const auto &Pair : PrivatePtrs) { 3580 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3581 CGF.getContext().getDeclAlign(Pair.first)); 3582 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3583 } 3584 } 3585 if (Data.Reductions) { 3586 OMPPrivateScope FirstprivateScope(CGF); 3587 for (const auto &Pair : FirstprivatePtrs) { 3588 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3589 CGF.getContext().getDeclAlign(Pair.first)); 3590 FirstprivateScope.addPrivate(Pair.first, 3591 [Replacement]() { return Replacement; }); 3592 } 3593 (void)FirstprivateScope.Privatize(); 3594 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3595 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 3596 Data.ReductionCopies, Data.ReductionOps); 3597 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3598 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3599 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3600 RedCG.emitSharedOrigLValue(CGF, Cnt); 3601 RedCG.emitAggregateType(CGF, Cnt); 3602 // FIXME: This must removed once the runtime library is fixed. 3603 // Emit required threadprivate variables for 3604 // initializer/combiner/finalizer. 3605 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3606 RedCG, Cnt); 3607 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3608 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3609 Replacement = 3610 Address(CGF.EmitScalarConversion( 3611 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3612 CGF.getContext().getPointerType( 3613 Data.ReductionCopies[Cnt]->getType()), 3614 Data.ReductionCopies[Cnt]->getExprLoc()), 3615 Replacement.getAlignment()); 3616 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3617 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3618 [Replacement]() { return Replacement; }); 3619 } 3620 } 3621 // Privatize all private variables except for in_reduction items. 3622 (void)Scope.Privatize(); 3623 SmallVector<const Expr *, 4> InRedVars; 3624 SmallVector<const Expr *, 4> InRedPrivs; 3625 SmallVector<const Expr *, 4> InRedOps; 3626 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3627 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3628 auto IPriv = C->privates().begin(); 3629 auto IRed = C->reduction_ops().begin(); 3630 auto ITD = C->taskgroup_descriptors().begin(); 3631 for (const Expr *Ref : C->varlists()) { 3632 InRedVars.emplace_back(Ref); 3633 InRedPrivs.emplace_back(*IPriv); 3634 InRedOps.emplace_back(*IRed); 3635 TaskgroupDescriptors.emplace_back(*ITD); 3636 std::advance(IPriv, 1); 3637 std::advance(IRed, 1); 3638 std::advance(ITD, 1); 3639 } 3640 } 3641 // Privatize in_reduction items here, because taskgroup descriptors must be 3642 // privatized earlier. 3643 OMPPrivateScope InRedScope(CGF); 3644 if (!InRedVars.empty()) { 3645 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 3646 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3647 RedCG.emitSharedOrigLValue(CGF, Cnt); 3648 RedCG.emitAggregateType(CGF, Cnt); 3649 // The taskgroup descriptor variable is always implicit firstprivate and 3650 // privatized already during processing of the firstprivates. 3651 // FIXME: This must removed once the runtime library is fixed. 3652 // Emit required threadprivate variables for 3653 // initializer/combiner/finalizer. 3654 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3655 RedCG, Cnt); 3656 llvm::Value *ReductionsPtr; 3657 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 3658 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 3659 TRExpr->getExprLoc()); 3660 } else { 3661 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 3662 } 3663 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3664 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3665 Replacement = Address( 3666 CGF.EmitScalarConversion( 3667 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3668 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3669 InRedPrivs[Cnt]->getExprLoc()), 3670 Replacement.getAlignment()); 3671 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3672 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3673 [Replacement]() { return Replacement; }); 3674 } 3675 } 3676 (void)InRedScope.Privatize(); 3677 3678 Action.Enter(CGF); 3679 BodyGen(CGF); 3680 }; 3681 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3682 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3683 Data.NumberOfParts); 3684 OMPLexicalScope Scope(*this, S, llvm::None, 3685 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3686 !isOpenMPSimdDirective(S.getDirectiveKind())); 3687 TaskGen(*this, OutlinedFn, Data); 3688 } 3689 3690 static ImplicitParamDecl * 3691 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3692 QualType Ty, CapturedDecl *CD, 3693 SourceLocation Loc) { 3694 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3695 ImplicitParamDecl::Other); 3696 auto *OrigRef = DeclRefExpr::Create( 3697 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3698 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3699 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3700 ImplicitParamDecl::Other); 3701 auto *PrivateRef = DeclRefExpr::Create( 3702 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3703 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3704 QualType ElemType = C.getBaseElementType(Ty); 3705 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3706 ImplicitParamDecl::Other); 3707 auto *InitRef = DeclRefExpr::Create( 3708 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3709 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3710 PrivateVD->setInitStyle(VarDecl::CInit); 3711 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3712 InitRef, /*BasePath=*/nullptr, 3713 VK_RValue)); 3714 Data.FirstprivateVars.emplace_back(OrigRef); 3715 Data.FirstprivateCopies.emplace_back(PrivateRef); 3716 Data.FirstprivateInits.emplace_back(InitRef); 3717 return OrigVD; 3718 } 3719 3720 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3721 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3722 OMPTargetDataInfo &InputInfo) { 3723 // Emit outlined function for task construct. 3724 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3725 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3726 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3727 auto I = CS->getCapturedDecl()->param_begin(); 3728 auto PartId = std::next(I); 3729 auto TaskT = std::next(I, 4); 3730 OMPTaskDataTy Data; 3731 // The task is not final. 3732 Data.Final.setInt(/*IntVal=*/false); 3733 // Get list of firstprivate variables. 3734 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3735 auto IRef = C->varlist_begin(); 3736 auto IElemInitRef = C->inits().begin(); 3737 for (auto *IInit : C->private_copies()) { 3738 Data.FirstprivateVars.push_back(*IRef); 3739 Data.FirstprivateCopies.push_back(IInit); 3740 Data.FirstprivateInits.push_back(*IElemInitRef); 3741 ++IRef; 3742 ++IElemInitRef; 3743 } 3744 } 3745 OMPPrivateScope TargetScope(*this); 3746 VarDecl *BPVD = nullptr; 3747 VarDecl *PVD = nullptr; 3748 VarDecl *SVD = nullptr; 3749 if (InputInfo.NumberOfTargetItems > 0) { 3750 auto *CD = CapturedDecl::Create( 3751 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3752 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3753 QualType BaseAndPointersType = getContext().getConstantArrayType( 3754 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3755 /*IndexTypeQuals=*/0); 3756 BPVD = createImplicitFirstprivateForType( 3757 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3758 PVD = createImplicitFirstprivateForType( 3759 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3760 QualType SizesType = getContext().getConstantArrayType( 3761 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3762 ArrSize, nullptr, ArrayType::Normal, 3763 /*IndexTypeQuals=*/0); 3764 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3765 S.getBeginLoc()); 3766 TargetScope.addPrivate( 3767 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3768 TargetScope.addPrivate(PVD, 3769 [&InputInfo]() { return InputInfo.PointersArray; }); 3770 TargetScope.addPrivate(SVD, 3771 [&InputInfo]() { return InputInfo.SizesArray; }); 3772 } 3773 (void)TargetScope.Privatize(); 3774 // Build list of dependences. 3775 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3776 OMPTaskDataTy::DependData &DD = 3777 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3778 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3779 } 3780 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3781 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3782 // Set proper addresses for generated private copies. 3783 OMPPrivateScope Scope(CGF); 3784 if (!Data.FirstprivateVars.empty()) { 3785 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3786 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3787 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3788 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3789 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3790 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3791 CS->getCapturedDecl()->getParam(PrivatesParam))); 3792 // Map privates. 3793 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3794 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3795 CallArgs.push_back(PrivatesPtr); 3796 for (const Expr *E : Data.FirstprivateVars) { 3797 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3798 Address PrivatePtr = 3799 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3800 ".firstpriv.ptr.addr"); 3801 PrivatePtrs.emplace_back(VD, PrivatePtr); 3802 CallArgs.push_back(PrivatePtr.getPointer()); 3803 } 3804 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3805 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3806 for (const auto &Pair : PrivatePtrs) { 3807 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3808 CGF.getContext().getDeclAlign(Pair.first)); 3809 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3810 } 3811 } 3812 // Privatize all private variables except for in_reduction items. 3813 (void)Scope.Privatize(); 3814 if (InputInfo.NumberOfTargetItems > 0) { 3815 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3816 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3817 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3818 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3819 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3820 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3821 } 3822 3823 Action.Enter(CGF); 3824 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3825 BodyGen(CGF); 3826 }; 3827 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3828 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3829 Data.NumberOfParts); 3830 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3831 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3832 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3833 SourceLocation()); 3834 3835 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3836 SharedsTy, CapturedStruct, &IfCond, Data); 3837 } 3838 3839 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3840 // Emit outlined function for task construct. 3841 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3842 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3843 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3844 const Expr *IfCond = nullptr; 3845 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3846 if (C->getNameModifier() == OMPD_unknown || 3847 C->getNameModifier() == OMPD_task) { 3848 IfCond = C->getCondition(); 3849 break; 3850 } 3851 } 3852 3853 OMPTaskDataTy Data; 3854 // Check if we should emit tied or untied task. 3855 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3856 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3857 CGF.EmitStmt(CS->getCapturedStmt()); 3858 }; 3859 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3860 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3861 const OMPTaskDataTy &Data) { 3862 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3863 SharedsTy, CapturedStruct, IfCond, 3864 Data); 3865 }; 3866 auto LPCRegion = 3867 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3868 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3869 } 3870 3871 void CodeGenFunction::EmitOMPTaskyieldDirective( 3872 const OMPTaskyieldDirective &S) { 3873 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3874 } 3875 3876 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3877 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3878 } 3879 3880 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3881 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3882 } 3883 3884 void CodeGenFunction::EmitOMPTaskgroupDirective( 3885 const OMPTaskgroupDirective &S) { 3886 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3887 Action.Enter(CGF); 3888 if (const Expr *E = S.getReductionRef()) { 3889 SmallVector<const Expr *, 4> LHSs; 3890 SmallVector<const Expr *, 4> RHSs; 3891 OMPTaskDataTy Data; 3892 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3893 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3894 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3895 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3896 Data.ReductionOps.append(C->reduction_ops().begin(), 3897 C->reduction_ops().end()); 3898 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3899 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3900 } 3901 llvm::Value *ReductionDesc = 3902 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3903 LHSs, RHSs, Data); 3904 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3905 CGF.EmitVarDecl(*VD); 3906 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3907 /*Volatile=*/false, E->getType()); 3908 } 3909 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3910 }; 3911 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3912 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3913 } 3914 3915 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3916 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 3917 ? llvm::AtomicOrdering::NotAtomic 3918 : llvm::AtomicOrdering::AcquireRelease; 3919 CGM.getOpenMPRuntime().emitFlush( 3920 *this, 3921 [&S]() -> ArrayRef<const Expr *> { 3922 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3923 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3924 FlushClause->varlist_end()); 3925 return llvm::None; 3926 }(), 3927 S.getBeginLoc(), AO); 3928 } 3929 3930 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 3931 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 3932 LValue DOLVal = EmitLValue(DO->getDepobj()); 3933 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 3934 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 3935 DC->getModifier()); 3936 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 3937 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 3938 *this, Dependencies, DC->getBeginLoc()); 3939 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 3940 return; 3941 } 3942 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 3943 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 3944 return; 3945 } 3946 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 3947 CGM.getOpenMPRuntime().emitUpdateClause( 3948 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 3949 return; 3950 } 3951 } 3952 3953 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3954 const CodeGenLoopTy &CodeGenLoop, 3955 Expr *IncExpr) { 3956 // Emit the loop iteration variable. 3957 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3958 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3959 EmitVarDecl(*IVDecl); 3960 3961 // Emit the iterations count variable. 3962 // If it is not a variable, Sema decided to calculate iterations count on each 3963 // iteration (e.g., it is foldable into a constant). 3964 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3965 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3966 // Emit calculation of the iterations count. 3967 EmitIgnoredExpr(S.getCalcLastIteration()); 3968 } 3969 3970 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3971 3972 bool HasLastprivateClause = false; 3973 // Check pre-condition. 3974 { 3975 OMPLoopScope PreInitScope(*this, S); 3976 // Skip the entire loop if we don't meet the precondition. 3977 // If the condition constant folds and can be elided, avoid emitting the 3978 // whole loop. 3979 bool CondConstant; 3980 llvm::BasicBlock *ContBlock = nullptr; 3981 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3982 if (!CondConstant) 3983 return; 3984 } else { 3985 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3986 ContBlock = createBasicBlock("omp.precond.end"); 3987 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3988 getProfileCount(&S)); 3989 EmitBlock(ThenBlock); 3990 incrementProfileCounter(&S); 3991 } 3992 3993 emitAlignedClause(*this, S); 3994 // Emit 'then' code. 3995 { 3996 // Emit helper vars inits. 3997 3998 LValue LB = EmitOMPHelperVar( 3999 *this, cast<DeclRefExpr>( 4000 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4001 ? S.getCombinedLowerBoundVariable() 4002 : S.getLowerBoundVariable()))); 4003 LValue UB = EmitOMPHelperVar( 4004 *this, cast<DeclRefExpr>( 4005 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4006 ? S.getCombinedUpperBoundVariable() 4007 : S.getUpperBoundVariable()))); 4008 LValue ST = 4009 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 4010 LValue IL = 4011 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 4012 4013 OMPPrivateScope LoopScope(*this); 4014 if (EmitOMPFirstprivateClause(S, LoopScope)) { 4015 // Emit implicit barrier to synchronize threads and avoid data races 4016 // on initialization of firstprivate variables and post-update of 4017 // lastprivate variables. 4018 CGM.getOpenMPRuntime().emitBarrierCall( 4019 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4020 /*ForceSimpleCall=*/true); 4021 } 4022 EmitOMPPrivateClause(S, LoopScope); 4023 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4024 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4025 !isOpenMPTeamsDirective(S.getDirectiveKind())) 4026 EmitOMPReductionClauseInit(S, LoopScope); 4027 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 4028 EmitOMPPrivateLoopCounters(S, LoopScope); 4029 (void)LoopScope.Privatize(); 4030 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4031 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 4032 4033 // Detect the distribute schedule kind and chunk. 4034 llvm::Value *Chunk = nullptr; 4035 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 4036 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 4037 ScheduleKind = C->getDistScheduleKind(); 4038 if (const Expr *Ch = C->getChunkSize()) { 4039 Chunk = EmitScalarExpr(Ch); 4040 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 4041 S.getIterationVariable()->getType(), 4042 S.getBeginLoc()); 4043 } 4044 } else { 4045 // Default behaviour for dist_schedule clause. 4046 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 4047 *this, S, ScheduleKind, Chunk); 4048 } 4049 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 4050 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 4051 4052 // OpenMP [2.10.8, distribute Construct, Description] 4053 // If dist_schedule is specified, kind must be static. If specified, 4054 // iterations are divided into chunks of size chunk_size, chunks are 4055 // assigned to the teams of the league in a round-robin fashion in the 4056 // order of the team number. When no chunk_size is specified, the 4057 // iteration space is divided into chunks that are approximately equal 4058 // in size, and at most one chunk is distributed to each team of the 4059 // league. The size of the chunks is unspecified in this case. 4060 bool StaticChunked = RT.isStaticChunked( 4061 ScheduleKind, /* Chunked */ Chunk != nullptr) && 4062 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 4063 if (RT.isStaticNonchunked(ScheduleKind, 4064 /* Chunked */ Chunk != nullptr) || 4065 StaticChunked) { 4066 CGOpenMPRuntime::StaticRTInput StaticInit( 4067 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 4068 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4069 StaticChunked ? Chunk : nullptr); 4070 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 4071 StaticInit); 4072 JumpDest LoopExit = 4073 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 4074 // UB = min(UB, GlobalUB); 4075 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4076 ? S.getCombinedEnsureUpperBound() 4077 : S.getEnsureUpperBound()); 4078 // IV = LB; 4079 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4080 ? S.getCombinedInit() 4081 : S.getInit()); 4082 4083 const Expr *Cond = 4084 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4085 ? S.getCombinedCond() 4086 : S.getCond(); 4087 4088 if (StaticChunked) 4089 Cond = S.getCombinedDistCond(); 4090 4091 // For static unchunked schedules generate: 4092 // 4093 // 1. For distribute alone, codegen 4094 // while (idx <= UB) { 4095 // BODY; 4096 // ++idx; 4097 // } 4098 // 4099 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 4100 // while (idx <= UB) { 4101 // <CodeGen rest of pragma>(LB, UB); 4102 // idx += ST; 4103 // } 4104 // 4105 // For static chunk one schedule generate: 4106 // 4107 // while (IV <= GlobalUB) { 4108 // <CodeGen rest of pragma>(LB, UB); 4109 // LB += ST; 4110 // UB += ST; 4111 // UB = min(UB, GlobalUB); 4112 // IV = LB; 4113 // } 4114 // 4115 emitCommonSimdLoop( 4116 *this, S, 4117 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4118 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4119 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 4120 }, 4121 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 4122 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 4123 CGF.EmitOMPInnerLoop( 4124 S, LoopScope.requiresCleanups(), Cond, IncExpr, 4125 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 4126 CodeGenLoop(CGF, S, LoopExit); 4127 }, 4128 [&S, StaticChunked](CodeGenFunction &CGF) { 4129 if (StaticChunked) { 4130 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 4131 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 4132 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 4133 CGF.EmitIgnoredExpr(S.getCombinedInit()); 4134 } 4135 }); 4136 }); 4137 EmitBlock(LoopExit.getBlock()); 4138 // Tell the runtime we are done. 4139 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 4140 } else { 4141 // Emit the outer loop, which requests its work chunk [LB..UB] from 4142 // runtime and runs the inner loop to process it. 4143 const OMPLoopArguments LoopArguments = { 4144 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4145 IL.getAddress(*this), Chunk}; 4146 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 4147 CodeGenLoop); 4148 } 4149 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 4150 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 4151 return CGF.Builder.CreateIsNotNull( 4152 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4153 }); 4154 } 4155 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4156 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4157 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 4158 EmitOMPReductionClauseFinal(S, OMPD_simd); 4159 // Emit post-update of the reduction variables if IsLastIter != 0. 4160 emitPostUpdateForReductionClause( 4161 *this, S, [IL, &S](CodeGenFunction &CGF) { 4162 return CGF.Builder.CreateIsNotNull( 4163 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4164 }); 4165 } 4166 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4167 if (HasLastprivateClause) { 4168 EmitOMPLastprivateClauseFinal( 4169 S, /*NoFinals=*/false, 4170 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 4171 } 4172 } 4173 4174 // We're now done with the loop, so jump to the continuation block. 4175 if (ContBlock) { 4176 EmitBranch(ContBlock); 4177 EmitBlock(ContBlock, true); 4178 } 4179 } 4180 } 4181 4182 void CodeGenFunction::EmitOMPDistributeDirective( 4183 const OMPDistributeDirective &S) { 4184 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4185 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4186 }; 4187 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4188 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 4189 } 4190 4191 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4192 const CapturedStmt *S, 4193 SourceLocation Loc) { 4194 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4195 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4196 CGF.CapturedStmtInfo = &CapStmtInfo; 4197 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4198 Fn->setDoesNotRecurse(); 4199 return Fn; 4200 } 4201 4202 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4203 if (S.hasClausesOfKind<OMPDependClause>()) { 4204 assert(!S.getAssociatedStmt() && 4205 "No associated statement must be in ordered depend construct."); 4206 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4207 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4208 return; 4209 } 4210 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4211 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4212 PrePostActionTy &Action) { 4213 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4214 if (C) { 4215 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4216 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4217 llvm::Function *OutlinedFn = 4218 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4219 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4220 OutlinedFn, CapturedVars); 4221 } else { 4222 Action.Enter(CGF); 4223 CGF.EmitStmt(CS->getCapturedStmt()); 4224 } 4225 }; 4226 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4227 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4228 } 4229 4230 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4231 QualType SrcType, QualType DestType, 4232 SourceLocation Loc) { 4233 assert(CGF.hasScalarEvaluationKind(DestType) && 4234 "DestType must have scalar evaluation kind."); 4235 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4236 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4237 DestType, Loc) 4238 : CGF.EmitComplexToScalarConversion( 4239 Val.getComplexVal(), SrcType, DestType, Loc); 4240 } 4241 4242 static CodeGenFunction::ComplexPairTy 4243 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4244 QualType DestType, SourceLocation Loc) { 4245 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4246 "DestType must have complex evaluation kind."); 4247 CodeGenFunction::ComplexPairTy ComplexVal; 4248 if (Val.isScalar()) { 4249 // Convert the input element to the element type of the complex. 4250 QualType DestElementType = 4251 DestType->castAs<ComplexType>()->getElementType(); 4252 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4253 Val.getScalarVal(), SrcType, DestElementType, Loc); 4254 ComplexVal = CodeGenFunction::ComplexPairTy( 4255 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4256 } else { 4257 assert(Val.isComplex() && "Must be a scalar or complex."); 4258 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4259 QualType DestElementType = 4260 DestType->castAs<ComplexType>()->getElementType(); 4261 ComplexVal.first = CGF.EmitScalarConversion( 4262 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4263 ComplexVal.second = CGF.EmitScalarConversion( 4264 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4265 } 4266 return ComplexVal; 4267 } 4268 4269 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4270 LValue LVal, RValue RVal) { 4271 if (LVal.isGlobalReg()) 4272 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4273 else 4274 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4275 } 4276 4277 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4278 llvm::AtomicOrdering AO, LValue LVal, 4279 SourceLocation Loc) { 4280 if (LVal.isGlobalReg()) 4281 return CGF.EmitLoadOfLValue(LVal, Loc); 4282 return CGF.EmitAtomicLoad( 4283 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4284 LVal.isVolatile()); 4285 } 4286 4287 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4288 QualType RValTy, SourceLocation Loc) { 4289 switch (getEvaluationKind(LVal.getType())) { 4290 case TEK_Scalar: 4291 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4292 *this, RVal, RValTy, LVal.getType(), Loc)), 4293 LVal); 4294 break; 4295 case TEK_Complex: 4296 EmitStoreOfComplex( 4297 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4298 /*isInit=*/false); 4299 break; 4300 case TEK_Aggregate: 4301 llvm_unreachable("Must be a scalar or complex."); 4302 } 4303 } 4304 4305 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4306 const Expr *X, const Expr *V, 4307 SourceLocation Loc) { 4308 // v = x; 4309 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4310 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4311 LValue XLValue = CGF.EmitLValue(X); 4312 LValue VLValue = CGF.EmitLValue(V); 4313 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 4314 // OpenMP, 2.17.7, atomic Construct 4315 // If the read or capture clause is specified and the acquire, acq_rel, or 4316 // seq_cst clause is specified then the strong flush on exit from the atomic 4317 // operation is also an acquire flush. 4318 switch (AO) { 4319 case llvm::AtomicOrdering::Acquire: 4320 case llvm::AtomicOrdering::AcquireRelease: 4321 case llvm::AtomicOrdering::SequentiallyConsistent: 4322 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4323 llvm::AtomicOrdering::Acquire); 4324 break; 4325 case llvm::AtomicOrdering::Monotonic: 4326 case llvm::AtomicOrdering::Release: 4327 break; 4328 case llvm::AtomicOrdering::NotAtomic: 4329 case llvm::AtomicOrdering::Unordered: 4330 llvm_unreachable("Unexpected ordering."); 4331 } 4332 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4333 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4334 } 4335 4336 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 4337 llvm::AtomicOrdering AO, const Expr *X, 4338 const Expr *E, SourceLocation Loc) { 4339 // x = expr; 4340 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4341 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4342 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4343 // OpenMP, 2.17.7, atomic Construct 4344 // If the write, update, or capture clause is specified and the release, 4345 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4346 // the atomic operation is also a release flush. 4347 switch (AO) { 4348 case llvm::AtomicOrdering::Release: 4349 case llvm::AtomicOrdering::AcquireRelease: 4350 case llvm::AtomicOrdering::SequentiallyConsistent: 4351 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4352 llvm::AtomicOrdering::Release); 4353 break; 4354 case llvm::AtomicOrdering::Acquire: 4355 case llvm::AtomicOrdering::Monotonic: 4356 break; 4357 case llvm::AtomicOrdering::NotAtomic: 4358 case llvm::AtomicOrdering::Unordered: 4359 llvm_unreachable("Unexpected ordering."); 4360 } 4361 } 4362 4363 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 4364 RValue Update, 4365 BinaryOperatorKind BO, 4366 llvm::AtomicOrdering AO, 4367 bool IsXLHSInRHSPart) { 4368 ASTContext &Context = CGF.getContext(); 4369 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4370 // expression is simple and atomic is allowed for the given type for the 4371 // target platform. 4372 if (BO == BO_Comma || !Update.isScalar() || 4373 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4374 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4375 (Update.getScalarVal()->getType() != 4376 X.getAddress(CGF).getElementType())) || 4377 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4378 !Context.getTargetInfo().hasBuiltinAtomic( 4379 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4380 return std::make_pair(false, RValue::get(nullptr)); 4381 4382 llvm::AtomicRMWInst::BinOp RMWOp; 4383 switch (BO) { 4384 case BO_Add: 4385 RMWOp = llvm::AtomicRMWInst::Add; 4386 break; 4387 case BO_Sub: 4388 if (!IsXLHSInRHSPart) 4389 return std::make_pair(false, RValue::get(nullptr)); 4390 RMWOp = llvm::AtomicRMWInst::Sub; 4391 break; 4392 case BO_And: 4393 RMWOp = llvm::AtomicRMWInst::And; 4394 break; 4395 case BO_Or: 4396 RMWOp = llvm::AtomicRMWInst::Or; 4397 break; 4398 case BO_Xor: 4399 RMWOp = llvm::AtomicRMWInst::Xor; 4400 break; 4401 case BO_LT: 4402 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4403 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4404 : llvm::AtomicRMWInst::Max) 4405 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4406 : llvm::AtomicRMWInst::UMax); 4407 break; 4408 case BO_GT: 4409 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4410 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4411 : llvm::AtomicRMWInst::Min) 4412 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4413 : llvm::AtomicRMWInst::UMin); 4414 break; 4415 case BO_Assign: 4416 RMWOp = llvm::AtomicRMWInst::Xchg; 4417 break; 4418 case BO_Mul: 4419 case BO_Div: 4420 case BO_Rem: 4421 case BO_Shl: 4422 case BO_Shr: 4423 case BO_LAnd: 4424 case BO_LOr: 4425 return std::make_pair(false, RValue::get(nullptr)); 4426 case BO_PtrMemD: 4427 case BO_PtrMemI: 4428 case BO_LE: 4429 case BO_GE: 4430 case BO_EQ: 4431 case BO_NE: 4432 case BO_Cmp: 4433 case BO_AddAssign: 4434 case BO_SubAssign: 4435 case BO_AndAssign: 4436 case BO_OrAssign: 4437 case BO_XorAssign: 4438 case BO_MulAssign: 4439 case BO_DivAssign: 4440 case BO_RemAssign: 4441 case BO_ShlAssign: 4442 case BO_ShrAssign: 4443 case BO_Comma: 4444 llvm_unreachable("Unsupported atomic update operation"); 4445 } 4446 llvm::Value *UpdateVal = Update.getScalarVal(); 4447 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 4448 UpdateVal = CGF.Builder.CreateIntCast( 4449 IC, X.getAddress(CGF).getElementType(), 4450 X.getType()->hasSignedIntegerRepresentation()); 4451 } 4452 llvm::Value *Res = 4453 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 4454 return std::make_pair(true, RValue::get(Res)); 4455 } 4456 4457 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 4458 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 4459 llvm::AtomicOrdering AO, SourceLocation Loc, 4460 const llvm::function_ref<RValue(RValue)> CommonGen) { 4461 // Update expressions are allowed to have the following forms: 4462 // x binop= expr; -> xrval + expr; 4463 // x++, ++x -> xrval + 1; 4464 // x--, --x -> xrval - 1; 4465 // x = x binop expr; -> xrval binop expr 4466 // x = expr Op x; - > expr binop xrval; 4467 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 4468 if (!Res.first) { 4469 if (X.isGlobalReg()) { 4470 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 4471 // 'xrval'. 4472 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 4473 } else { 4474 // Perform compare-and-swap procedure. 4475 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 4476 } 4477 } 4478 return Res; 4479 } 4480 4481 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 4482 llvm::AtomicOrdering AO, const Expr *X, 4483 const Expr *E, const Expr *UE, 4484 bool IsXLHSInRHSPart, SourceLocation Loc) { 4485 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4486 "Update expr in 'atomic update' must be a binary operator."); 4487 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4488 // Update expressions are allowed to have the following forms: 4489 // x binop= expr; -> xrval + expr; 4490 // x++, ++x -> xrval + 1; 4491 // x--, --x -> xrval - 1; 4492 // x = x binop expr; -> xrval binop expr 4493 // x = expr Op x; - > expr binop xrval; 4494 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4495 LValue XLValue = CGF.EmitLValue(X); 4496 RValue ExprRValue = CGF.EmitAnyExpr(E); 4497 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4498 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4499 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4500 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4501 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4502 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4503 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4504 return CGF.EmitAnyExpr(UE); 4505 }; 4506 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4507 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4508 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4509 // OpenMP, 2.17.7, atomic Construct 4510 // If the write, update, or capture clause is specified and the release, 4511 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4512 // the atomic operation is also a release flush. 4513 switch (AO) { 4514 case llvm::AtomicOrdering::Release: 4515 case llvm::AtomicOrdering::AcquireRelease: 4516 case llvm::AtomicOrdering::SequentiallyConsistent: 4517 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4518 llvm::AtomicOrdering::Release); 4519 break; 4520 case llvm::AtomicOrdering::Acquire: 4521 case llvm::AtomicOrdering::Monotonic: 4522 break; 4523 case llvm::AtomicOrdering::NotAtomic: 4524 case llvm::AtomicOrdering::Unordered: 4525 llvm_unreachable("Unexpected ordering."); 4526 } 4527 } 4528 4529 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4530 QualType SourceType, QualType ResType, 4531 SourceLocation Loc) { 4532 switch (CGF.getEvaluationKind(ResType)) { 4533 case TEK_Scalar: 4534 return RValue::get( 4535 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4536 case TEK_Complex: { 4537 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4538 return RValue::getComplex(Res.first, Res.second); 4539 } 4540 case TEK_Aggregate: 4541 break; 4542 } 4543 llvm_unreachable("Must be a scalar or complex."); 4544 } 4545 4546 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 4547 llvm::AtomicOrdering AO, 4548 bool IsPostfixUpdate, const Expr *V, 4549 const Expr *X, const Expr *E, 4550 const Expr *UE, bool IsXLHSInRHSPart, 4551 SourceLocation Loc) { 4552 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4553 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4554 RValue NewVVal; 4555 LValue VLValue = CGF.EmitLValue(V); 4556 LValue XLValue = CGF.EmitLValue(X); 4557 RValue ExprRValue = CGF.EmitAnyExpr(E); 4558 QualType NewVValType; 4559 if (UE) { 4560 // 'x' is updated with some additional value. 4561 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4562 "Update expr in 'atomic capture' must be a binary operator."); 4563 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4564 // Update expressions are allowed to have the following forms: 4565 // x binop= expr; -> xrval + expr; 4566 // x++, ++x -> xrval + 1; 4567 // x--, --x -> xrval - 1; 4568 // x = x binop expr; -> xrval binop expr 4569 // x = expr Op x; - > expr binop xrval; 4570 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4571 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4572 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4573 NewVValType = XRValExpr->getType(); 4574 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4575 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4576 IsPostfixUpdate](RValue XRValue) { 4577 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4578 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4579 RValue Res = CGF.EmitAnyExpr(UE); 4580 NewVVal = IsPostfixUpdate ? XRValue : Res; 4581 return Res; 4582 }; 4583 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4584 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4585 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4586 if (Res.first) { 4587 // 'atomicrmw' instruction was generated. 4588 if (IsPostfixUpdate) { 4589 // Use old value from 'atomicrmw'. 4590 NewVVal = Res.second; 4591 } else { 4592 // 'atomicrmw' does not provide new value, so evaluate it using old 4593 // value of 'x'. 4594 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4595 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4596 NewVVal = CGF.EmitAnyExpr(UE); 4597 } 4598 } 4599 } else { 4600 // 'x' is simply rewritten with some 'expr'. 4601 NewVValType = X->getType().getNonReferenceType(); 4602 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4603 X->getType().getNonReferenceType(), Loc); 4604 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4605 NewVVal = XRValue; 4606 return ExprRValue; 4607 }; 4608 // Try to perform atomicrmw xchg, otherwise simple exchange. 4609 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4610 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4611 Loc, Gen); 4612 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4613 if (Res.first) { 4614 // 'atomicrmw' instruction was generated. 4615 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4616 } 4617 } 4618 // Emit post-update store to 'v' of old/new 'x' value. 4619 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4620 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4621 // OpenMP, 2.17.7, atomic Construct 4622 // If the write, update, or capture clause is specified and the release, 4623 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4624 // the atomic operation is also a release flush. 4625 // If the read or capture clause is specified and the acquire, acq_rel, or 4626 // seq_cst clause is specified then the strong flush on exit from the atomic 4627 // operation is also an acquire flush. 4628 switch (AO) { 4629 case llvm::AtomicOrdering::Release: 4630 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4631 llvm::AtomicOrdering::Release); 4632 break; 4633 case llvm::AtomicOrdering::Acquire: 4634 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4635 llvm::AtomicOrdering::Acquire); 4636 break; 4637 case llvm::AtomicOrdering::AcquireRelease: 4638 case llvm::AtomicOrdering::SequentiallyConsistent: 4639 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4640 llvm::AtomicOrdering::AcquireRelease); 4641 break; 4642 case llvm::AtomicOrdering::Monotonic: 4643 break; 4644 case llvm::AtomicOrdering::NotAtomic: 4645 case llvm::AtomicOrdering::Unordered: 4646 llvm_unreachable("Unexpected ordering."); 4647 } 4648 } 4649 4650 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4651 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 4652 const Expr *X, const Expr *V, const Expr *E, 4653 const Expr *UE, bool IsXLHSInRHSPart, 4654 SourceLocation Loc) { 4655 switch (Kind) { 4656 case OMPC_read: 4657 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 4658 break; 4659 case OMPC_write: 4660 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 4661 break; 4662 case OMPC_unknown: 4663 case OMPC_update: 4664 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 4665 break; 4666 case OMPC_capture: 4667 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 4668 IsXLHSInRHSPart, Loc); 4669 break; 4670 case OMPC_if: 4671 case OMPC_final: 4672 case OMPC_num_threads: 4673 case OMPC_private: 4674 case OMPC_firstprivate: 4675 case OMPC_lastprivate: 4676 case OMPC_reduction: 4677 case OMPC_task_reduction: 4678 case OMPC_in_reduction: 4679 case OMPC_safelen: 4680 case OMPC_simdlen: 4681 case OMPC_allocator: 4682 case OMPC_allocate: 4683 case OMPC_collapse: 4684 case OMPC_default: 4685 case OMPC_seq_cst: 4686 case OMPC_acq_rel: 4687 case OMPC_acquire: 4688 case OMPC_release: 4689 case OMPC_relaxed: 4690 case OMPC_shared: 4691 case OMPC_linear: 4692 case OMPC_aligned: 4693 case OMPC_copyin: 4694 case OMPC_copyprivate: 4695 case OMPC_flush: 4696 case OMPC_depobj: 4697 case OMPC_proc_bind: 4698 case OMPC_schedule: 4699 case OMPC_ordered: 4700 case OMPC_nowait: 4701 case OMPC_untied: 4702 case OMPC_threadprivate: 4703 case OMPC_depend: 4704 case OMPC_mergeable: 4705 case OMPC_device: 4706 case OMPC_threads: 4707 case OMPC_simd: 4708 case OMPC_map: 4709 case OMPC_num_teams: 4710 case OMPC_thread_limit: 4711 case OMPC_priority: 4712 case OMPC_grainsize: 4713 case OMPC_nogroup: 4714 case OMPC_num_tasks: 4715 case OMPC_hint: 4716 case OMPC_dist_schedule: 4717 case OMPC_defaultmap: 4718 case OMPC_uniform: 4719 case OMPC_to: 4720 case OMPC_from: 4721 case OMPC_use_device_ptr: 4722 case OMPC_is_device_ptr: 4723 case OMPC_unified_address: 4724 case OMPC_unified_shared_memory: 4725 case OMPC_reverse_offload: 4726 case OMPC_dynamic_allocators: 4727 case OMPC_atomic_default_mem_order: 4728 case OMPC_device_type: 4729 case OMPC_match: 4730 case OMPC_nontemporal: 4731 case OMPC_order: 4732 case OMPC_destroy: 4733 case OMPC_detach: 4734 case OMPC_inclusive: 4735 case OMPC_exclusive: 4736 case OMPC_uses_allocators: 4737 case OMPC_affinity: 4738 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4739 } 4740 } 4741 4742 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4743 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 4744 bool MemOrderingSpecified = false; 4745 if (S.getSingleClause<OMPSeqCstClause>()) { 4746 AO = llvm::AtomicOrdering::SequentiallyConsistent; 4747 MemOrderingSpecified = true; 4748 } else if (S.getSingleClause<OMPAcqRelClause>()) { 4749 AO = llvm::AtomicOrdering::AcquireRelease; 4750 MemOrderingSpecified = true; 4751 } else if (S.getSingleClause<OMPAcquireClause>()) { 4752 AO = llvm::AtomicOrdering::Acquire; 4753 MemOrderingSpecified = true; 4754 } else if (S.getSingleClause<OMPReleaseClause>()) { 4755 AO = llvm::AtomicOrdering::Release; 4756 MemOrderingSpecified = true; 4757 } else if (S.getSingleClause<OMPRelaxedClause>()) { 4758 AO = llvm::AtomicOrdering::Monotonic; 4759 MemOrderingSpecified = true; 4760 } 4761 OpenMPClauseKind Kind = OMPC_unknown; 4762 for (const OMPClause *C : S.clauses()) { 4763 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 4764 // if it is first). 4765 if (C->getClauseKind() != OMPC_seq_cst && 4766 C->getClauseKind() != OMPC_acq_rel && 4767 C->getClauseKind() != OMPC_acquire && 4768 C->getClauseKind() != OMPC_release && 4769 C->getClauseKind() != OMPC_relaxed) { 4770 Kind = C->getClauseKind(); 4771 break; 4772 } 4773 } 4774 if (!MemOrderingSpecified) { 4775 llvm::AtomicOrdering DefaultOrder = 4776 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 4777 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 4778 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 4779 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 4780 Kind == OMPC_capture)) { 4781 AO = DefaultOrder; 4782 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 4783 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 4784 AO = llvm::AtomicOrdering::Release; 4785 } else if (Kind == OMPC_read) { 4786 assert(Kind == OMPC_read && "Unexpected atomic kind."); 4787 AO = llvm::AtomicOrdering::Acquire; 4788 } 4789 } 4790 } 4791 4792 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4793 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4794 enterFullExpression(FE); 4795 // Processing for statements under 'atomic capture'. 4796 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4797 for (const Stmt *C : Compound->body()) { 4798 if (const auto *FE = dyn_cast<FullExpr>(C)) 4799 enterFullExpression(FE); 4800 } 4801 } 4802 4803 auto &&CodeGen = [&S, Kind, AO, CS](CodeGenFunction &CGF, 4804 PrePostActionTy &) { 4805 CGF.EmitStopPoint(CS); 4806 emitOMPAtomicExpr(CGF, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 4807 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 4808 S.getBeginLoc()); 4809 }; 4810 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4811 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4812 } 4813 4814 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4815 const OMPExecutableDirective &S, 4816 const RegionCodeGenTy &CodeGen) { 4817 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4818 CodeGenModule &CGM = CGF.CGM; 4819 4820 // On device emit this construct as inlined code. 4821 if (CGM.getLangOpts().OpenMPIsDevice) { 4822 OMPLexicalScope Scope(CGF, S, OMPD_target); 4823 CGM.getOpenMPRuntime().emitInlinedDirective( 4824 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4825 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4826 }); 4827 return; 4828 } 4829 4830 auto LPCRegion = 4831 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 4832 llvm::Function *Fn = nullptr; 4833 llvm::Constant *FnID = nullptr; 4834 4835 const Expr *IfCond = nullptr; 4836 // Check for the at most one if clause associated with the target region. 4837 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4838 if (C->getNameModifier() == OMPD_unknown || 4839 C->getNameModifier() == OMPD_target) { 4840 IfCond = C->getCondition(); 4841 break; 4842 } 4843 } 4844 4845 // Check if we have any device clause associated with the directive. 4846 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 4847 nullptr, OMPC_DEVICE_unknown); 4848 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4849 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 4850 4851 // Check if we have an if clause whose conditional always evaluates to false 4852 // or if we do not have any targets specified. If so the target region is not 4853 // an offload entry point. 4854 bool IsOffloadEntry = true; 4855 if (IfCond) { 4856 bool Val; 4857 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4858 IsOffloadEntry = false; 4859 } 4860 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4861 IsOffloadEntry = false; 4862 4863 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4864 StringRef ParentName; 4865 // In case we have Ctors/Dtors we use the complete type variant to produce 4866 // the mangling of the device outlined kernel. 4867 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4868 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4869 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4870 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4871 else 4872 ParentName = 4873 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4874 4875 // Emit target region as a standalone region. 4876 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4877 IsOffloadEntry, CodeGen); 4878 OMPLexicalScope Scope(CGF, S, OMPD_task); 4879 auto &&SizeEmitter = 4880 [IsOffloadEntry](CodeGenFunction &CGF, 4881 const OMPLoopDirective &D) -> llvm::Value * { 4882 if (IsOffloadEntry) { 4883 OMPLoopScope(CGF, D); 4884 // Emit calculation of the iterations count. 4885 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4886 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4887 /*isSigned=*/false); 4888 return NumIterations; 4889 } 4890 return nullptr; 4891 }; 4892 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4893 SizeEmitter); 4894 } 4895 4896 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4897 PrePostActionTy &Action) { 4898 Action.Enter(CGF); 4899 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4900 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4901 CGF.EmitOMPPrivateClause(S, PrivateScope); 4902 (void)PrivateScope.Privatize(); 4903 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4904 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4905 4906 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4907 } 4908 4909 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4910 StringRef ParentName, 4911 const OMPTargetDirective &S) { 4912 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4913 emitTargetRegion(CGF, S, Action); 4914 }; 4915 llvm::Function *Fn; 4916 llvm::Constant *Addr; 4917 // Emit target region as a standalone region. 4918 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4919 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4920 assert(Fn && Addr && "Target device function emission failed."); 4921 } 4922 4923 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4924 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4925 emitTargetRegion(CGF, S, Action); 4926 }; 4927 emitCommonOMPTargetDirective(*this, S, CodeGen); 4928 } 4929 4930 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4931 const OMPExecutableDirective &S, 4932 OpenMPDirectiveKind InnermostKind, 4933 const RegionCodeGenTy &CodeGen) { 4934 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4935 llvm::Function *OutlinedFn = 4936 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4937 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4938 4939 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4940 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4941 if (NT || TL) { 4942 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4943 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4944 4945 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4946 S.getBeginLoc()); 4947 } 4948 4949 OMPTeamsScope Scope(CGF, S); 4950 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4951 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4952 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4953 CapturedVars); 4954 } 4955 4956 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4957 // Emit teams region as a standalone region. 4958 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4959 Action.Enter(CGF); 4960 OMPPrivateScope PrivateScope(CGF); 4961 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4962 CGF.EmitOMPPrivateClause(S, PrivateScope); 4963 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4964 (void)PrivateScope.Privatize(); 4965 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4966 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4967 }; 4968 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4969 emitPostUpdateForReductionClause(*this, S, 4970 [](CodeGenFunction &) { return nullptr; }); 4971 } 4972 4973 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4974 const OMPTargetTeamsDirective &S) { 4975 auto *CS = S.getCapturedStmt(OMPD_teams); 4976 Action.Enter(CGF); 4977 // Emit teams region as a standalone region. 4978 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4979 Action.Enter(CGF); 4980 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4981 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4982 CGF.EmitOMPPrivateClause(S, PrivateScope); 4983 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4984 (void)PrivateScope.Privatize(); 4985 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4986 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4987 CGF.EmitStmt(CS->getCapturedStmt()); 4988 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4989 }; 4990 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4991 emitPostUpdateForReductionClause(CGF, S, 4992 [](CodeGenFunction &) { return nullptr; }); 4993 } 4994 4995 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4996 CodeGenModule &CGM, StringRef ParentName, 4997 const OMPTargetTeamsDirective &S) { 4998 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4999 emitTargetTeamsRegion(CGF, Action, S); 5000 }; 5001 llvm::Function *Fn; 5002 llvm::Constant *Addr; 5003 // Emit target region as a standalone region. 5004 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5005 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5006 assert(Fn && Addr && "Target device function emission failed."); 5007 } 5008 5009 void CodeGenFunction::EmitOMPTargetTeamsDirective( 5010 const OMPTargetTeamsDirective &S) { 5011 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5012 emitTargetTeamsRegion(CGF, Action, S); 5013 }; 5014 emitCommonOMPTargetDirective(*this, S, CodeGen); 5015 } 5016 5017 static void 5018 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5019 const OMPTargetTeamsDistributeDirective &S) { 5020 Action.Enter(CGF); 5021 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5022 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5023 }; 5024 5025 // Emit teams region as a standalone region. 5026 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5027 PrePostActionTy &Action) { 5028 Action.Enter(CGF); 5029 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5030 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5031 (void)PrivateScope.Privatize(); 5032 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5033 CodeGenDistribute); 5034 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5035 }; 5036 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 5037 emitPostUpdateForReductionClause(CGF, S, 5038 [](CodeGenFunction &) { return nullptr; }); 5039 } 5040 5041 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 5042 CodeGenModule &CGM, StringRef ParentName, 5043 const OMPTargetTeamsDistributeDirective &S) { 5044 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5045 emitTargetTeamsDistributeRegion(CGF, Action, S); 5046 }; 5047 llvm::Function *Fn; 5048 llvm::Constant *Addr; 5049 // Emit target region as a standalone region. 5050 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5051 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5052 assert(Fn && Addr && "Target device function emission failed."); 5053 } 5054 5055 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 5056 const OMPTargetTeamsDistributeDirective &S) { 5057 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5058 emitTargetTeamsDistributeRegion(CGF, Action, S); 5059 }; 5060 emitCommonOMPTargetDirective(*this, S, CodeGen); 5061 } 5062 5063 static void emitTargetTeamsDistributeSimdRegion( 5064 CodeGenFunction &CGF, PrePostActionTy &Action, 5065 const OMPTargetTeamsDistributeSimdDirective &S) { 5066 Action.Enter(CGF); 5067 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5068 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5069 }; 5070 5071 // Emit teams region as a standalone region. 5072 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5073 PrePostActionTy &Action) { 5074 Action.Enter(CGF); 5075 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5076 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5077 (void)PrivateScope.Privatize(); 5078 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5079 CodeGenDistribute); 5080 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5081 }; 5082 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 5083 emitPostUpdateForReductionClause(CGF, S, 5084 [](CodeGenFunction &) { return nullptr; }); 5085 } 5086 5087 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 5088 CodeGenModule &CGM, StringRef ParentName, 5089 const OMPTargetTeamsDistributeSimdDirective &S) { 5090 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5091 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5092 }; 5093 llvm::Function *Fn; 5094 llvm::Constant *Addr; 5095 // Emit target region as a standalone region. 5096 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5097 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5098 assert(Fn && Addr && "Target device function emission failed."); 5099 } 5100 5101 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 5102 const OMPTargetTeamsDistributeSimdDirective &S) { 5103 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5104 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5105 }; 5106 emitCommonOMPTargetDirective(*this, S, CodeGen); 5107 } 5108 5109 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 5110 const OMPTeamsDistributeDirective &S) { 5111 5112 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5113 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5114 }; 5115 5116 // Emit teams region as a standalone region. 5117 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5118 PrePostActionTy &Action) { 5119 Action.Enter(CGF); 5120 OMPPrivateScope PrivateScope(CGF); 5121 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5122 (void)PrivateScope.Privatize(); 5123 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5124 CodeGenDistribute); 5125 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5126 }; 5127 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5128 emitPostUpdateForReductionClause(*this, S, 5129 [](CodeGenFunction &) { return nullptr; }); 5130 } 5131 5132 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 5133 const OMPTeamsDistributeSimdDirective &S) { 5134 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5135 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5136 }; 5137 5138 // Emit teams region as a standalone region. 5139 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5140 PrePostActionTy &Action) { 5141 Action.Enter(CGF); 5142 OMPPrivateScope PrivateScope(CGF); 5143 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5144 (void)PrivateScope.Privatize(); 5145 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 5146 CodeGenDistribute); 5147 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5148 }; 5149 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 5150 emitPostUpdateForReductionClause(*this, S, 5151 [](CodeGenFunction &) { return nullptr; }); 5152 } 5153 5154 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 5155 const OMPTeamsDistributeParallelForDirective &S) { 5156 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5157 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5158 S.getDistInc()); 5159 }; 5160 5161 // Emit teams region as a standalone region. 5162 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5163 PrePostActionTy &Action) { 5164 Action.Enter(CGF); 5165 OMPPrivateScope PrivateScope(CGF); 5166 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5167 (void)PrivateScope.Privatize(); 5168 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5169 CodeGenDistribute); 5170 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5171 }; 5172 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 5173 emitPostUpdateForReductionClause(*this, S, 5174 [](CodeGenFunction &) { return nullptr; }); 5175 } 5176 5177 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 5178 const OMPTeamsDistributeParallelForSimdDirective &S) { 5179 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5180 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5181 S.getDistInc()); 5182 }; 5183 5184 // Emit teams region as a standalone region. 5185 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5186 PrePostActionTy &Action) { 5187 Action.Enter(CGF); 5188 OMPPrivateScope PrivateScope(CGF); 5189 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5190 (void)PrivateScope.Privatize(); 5191 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5192 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5193 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5194 }; 5195 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 5196 CodeGen); 5197 emitPostUpdateForReductionClause(*this, S, 5198 [](CodeGenFunction &) { return nullptr; }); 5199 } 5200 5201 static void emitTargetTeamsDistributeParallelForRegion( 5202 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 5203 PrePostActionTy &Action) { 5204 Action.Enter(CGF); 5205 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5206 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5207 S.getDistInc()); 5208 }; 5209 5210 // Emit teams region as a standalone region. 5211 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5212 PrePostActionTy &Action) { 5213 Action.Enter(CGF); 5214 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5215 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5216 (void)PrivateScope.Privatize(); 5217 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5218 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5219 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5220 }; 5221 5222 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 5223 CodeGenTeams); 5224 emitPostUpdateForReductionClause(CGF, S, 5225 [](CodeGenFunction &) { return nullptr; }); 5226 } 5227 5228 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5229 CodeGenModule &CGM, StringRef ParentName, 5230 const OMPTargetTeamsDistributeParallelForDirective &S) { 5231 // Emit SPMD target teams distribute parallel for region as a standalone 5232 // region. 5233 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5234 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5235 }; 5236 llvm::Function *Fn; 5237 llvm::Constant *Addr; 5238 // Emit target region as a standalone region. 5239 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5240 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5241 assert(Fn && Addr && "Target device function emission failed."); 5242 } 5243 5244 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5245 const OMPTargetTeamsDistributeParallelForDirective &S) { 5246 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5247 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5248 }; 5249 emitCommonOMPTargetDirective(*this, S, CodeGen); 5250 } 5251 5252 static void emitTargetTeamsDistributeParallelForSimdRegion( 5253 CodeGenFunction &CGF, 5254 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5255 PrePostActionTy &Action) { 5256 Action.Enter(CGF); 5257 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5258 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5259 S.getDistInc()); 5260 }; 5261 5262 // Emit teams region as a standalone region. 5263 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5264 PrePostActionTy &Action) { 5265 Action.Enter(CGF); 5266 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5267 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5268 (void)PrivateScope.Privatize(); 5269 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5270 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5271 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5272 }; 5273 5274 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5275 CodeGenTeams); 5276 emitPostUpdateForReductionClause(CGF, S, 5277 [](CodeGenFunction &) { return nullptr; }); 5278 } 5279 5280 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5281 CodeGenModule &CGM, StringRef ParentName, 5282 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5283 // Emit SPMD target teams distribute parallel for simd region as a standalone 5284 // region. 5285 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5286 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5287 }; 5288 llvm::Function *Fn; 5289 llvm::Constant *Addr; 5290 // Emit target region as a standalone region. 5291 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5292 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5293 assert(Fn && Addr && "Target device function emission failed."); 5294 } 5295 5296 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5297 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5298 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5299 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5300 }; 5301 emitCommonOMPTargetDirective(*this, S, CodeGen); 5302 } 5303 5304 void CodeGenFunction::EmitOMPCancellationPointDirective( 5305 const OMPCancellationPointDirective &S) { 5306 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5307 S.getCancelRegion()); 5308 } 5309 5310 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5311 const Expr *IfCond = nullptr; 5312 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5313 if (C->getNameModifier() == OMPD_unknown || 5314 C->getNameModifier() == OMPD_cancel) { 5315 IfCond = C->getCondition(); 5316 break; 5317 } 5318 } 5319 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 5320 // TODO: This check is necessary as we only generate `omp parallel` through 5321 // the OpenMPIRBuilder for now. 5322 if (S.getCancelRegion() == OMPD_parallel) { 5323 llvm::Value *IfCondition = nullptr; 5324 if (IfCond) 5325 IfCondition = EmitScalarExpr(IfCond, 5326 /*IgnoreResultAssign=*/true); 5327 return Builder.restoreIP( 5328 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5329 } 5330 } 5331 5332 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5333 S.getCancelRegion()); 5334 } 5335 5336 CodeGenFunction::JumpDest 5337 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5338 if (Kind == OMPD_parallel || Kind == OMPD_task || 5339 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 5340 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 5341 return ReturnBlock; 5342 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5343 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5344 Kind == OMPD_distribute_parallel_for || 5345 Kind == OMPD_target_parallel_for || 5346 Kind == OMPD_teams_distribute_parallel_for || 5347 Kind == OMPD_target_teams_distribute_parallel_for); 5348 return OMPCancelStack.getExitBlock(); 5349 } 5350 5351 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5352 const OMPClause &NC, OMPPrivateScope &PrivateScope, 5353 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5354 const auto &C = cast<OMPUseDevicePtrClause>(NC); 5355 auto OrigVarIt = C.varlist_begin(); 5356 auto InitIt = C.inits().begin(); 5357 for (const Expr *PvtVarIt : C.private_copies()) { 5358 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 5359 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 5360 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 5361 5362 // In order to identify the right initializer we need to match the 5363 // declaration used by the mapping logic. In some cases we may get 5364 // OMPCapturedExprDecl that refers to the original declaration. 5365 const ValueDecl *MatchingVD = OrigVD; 5366 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5367 // OMPCapturedExprDecl are used to privative fields of the current 5368 // structure. 5369 const auto *ME = cast<MemberExpr>(OED->getInit()); 5370 assert(isa<CXXThisExpr>(ME->getBase()) && 5371 "Base should be the current struct!"); 5372 MatchingVD = ME->getMemberDecl(); 5373 } 5374 5375 // If we don't have information about the current list item, move on to 5376 // the next one. 5377 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 5378 if (InitAddrIt == CaptureDeviceAddrMap.end()) 5379 continue; 5380 5381 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 5382 InitAddrIt, InitVD, 5383 PvtVD]() { 5384 // Initialize the temporary initialization variable with the address we 5385 // get from the runtime library. We have to cast the source address 5386 // because it is always a void *. References are materialized in the 5387 // privatization scope, so the initialization here disregards the fact 5388 // the original variable is a reference. 5389 QualType AddrQTy = 5390 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 5391 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 5392 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 5393 setAddrOfLocalVar(InitVD, InitAddr); 5394 5395 // Emit private declaration, it will be initialized by the value we 5396 // declaration we just added to the local declarations map. 5397 EmitDecl(*PvtVD); 5398 5399 // The initialization variables reached its purpose in the emission 5400 // of the previous declaration, so we don't need it anymore. 5401 LocalDeclMap.erase(InitVD); 5402 5403 // Return the address of the private variable. 5404 return GetAddrOfLocalVar(PvtVD); 5405 }); 5406 assert(IsRegistered && "firstprivate var already registered as private"); 5407 // Silence the warning about unused variable. 5408 (void)IsRegistered; 5409 5410 ++OrigVarIt; 5411 ++InitIt; 5412 } 5413 } 5414 5415 // Generate the instructions for '#pragma omp target data' directive. 5416 void CodeGenFunction::EmitOMPTargetDataDirective( 5417 const OMPTargetDataDirective &S) { 5418 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 5419 5420 // Create a pre/post action to signal the privatization of the device pointer. 5421 // This action can be replaced by the OpenMP runtime code generation to 5422 // deactivate privatization. 5423 bool PrivatizeDevicePointers = false; 5424 class DevicePointerPrivActionTy : public PrePostActionTy { 5425 bool &PrivatizeDevicePointers; 5426 5427 public: 5428 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 5429 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 5430 void Enter(CodeGenFunction &CGF) override { 5431 PrivatizeDevicePointers = true; 5432 } 5433 }; 5434 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 5435 5436 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 5437 CodeGenFunction &CGF, PrePostActionTy &Action) { 5438 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5439 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5440 }; 5441 5442 // Codegen that selects whether to generate the privatization code or not. 5443 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 5444 &InnermostCodeGen](CodeGenFunction &CGF, 5445 PrePostActionTy &Action) { 5446 RegionCodeGenTy RCG(InnermostCodeGen); 5447 PrivatizeDevicePointers = false; 5448 5449 // Call the pre-action to change the status of PrivatizeDevicePointers if 5450 // needed. 5451 Action.Enter(CGF); 5452 5453 if (PrivatizeDevicePointers) { 5454 OMPPrivateScope PrivateScope(CGF); 5455 // Emit all instances of the use_device_ptr clause. 5456 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 5457 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 5458 Info.CaptureDeviceAddrMap); 5459 (void)PrivateScope.Privatize(); 5460 RCG(CGF); 5461 } else { 5462 RCG(CGF); 5463 } 5464 }; 5465 5466 // Forward the provided action to the privatization codegen. 5467 RegionCodeGenTy PrivRCG(PrivCodeGen); 5468 PrivRCG.setAction(Action); 5469 5470 // Notwithstanding the body of the region is emitted as inlined directive, 5471 // we don't use an inline scope as changes in the references inside the 5472 // region are expected to be visible outside, so we do not privative them. 5473 OMPLexicalScope Scope(CGF, S); 5474 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 5475 PrivRCG); 5476 }; 5477 5478 RegionCodeGenTy RCG(CodeGen); 5479 5480 // If we don't have target devices, don't bother emitting the data mapping 5481 // code. 5482 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 5483 RCG(*this); 5484 return; 5485 } 5486 5487 // Check if we have any if clause associated with the directive. 5488 const Expr *IfCond = nullptr; 5489 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5490 IfCond = C->getCondition(); 5491 5492 // Check if we have any device clause associated with the directive. 5493 const Expr *Device = nullptr; 5494 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5495 Device = C->getDevice(); 5496 5497 // Set the action to signal privatization of device pointers. 5498 RCG.setAction(PrivAction); 5499 5500 // Emit region code. 5501 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 5502 Info); 5503 } 5504 5505 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 5506 const OMPTargetEnterDataDirective &S) { 5507 // If we don't have target devices, don't bother emitting the data mapping 5508 // code. 5509 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5510 return; 5511 5512 // Check if we have any if clause associated with the directive. 5513 const Expr *IfCond = nullptr; 5514 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5515 IfCond = C->getCondition(); 5516 5517 // Check if we have any device clause associated with the directive. 5518 const Expr *Device = nullptr; 5519 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5520 Device = C->getDevice(); 5521 5522 OMPLexicalScope Scope(*this, S, OMPD_task); 5523 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5524 } 5525 5526 void CodeGenFunction::EmitOMPTargetExitDataDirective( 5527 const OMPTargetExitDataDirective &S) { 5528 // If we don't have target devices, don't bother emitting the data mapping 5529 // code. 5530 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5531 return; 5532 5533 // Check if we have any if clause associated with the directive. 5534 const Expr *IfCond = nullptr; 5535 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5536 IfCond = C->getCondition(); 5537 5538 // Check if we have any device clause associated with the directive. 5539 const Expr *Device = nullptr; 5540 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5541 Device = C->getDevice(); 5542 5543 OMPLexicalScope Scope(*this, S, OMPD_task); 5544 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5545 } 5546 5547 static void emitTargetParallelRegion(CodeGenFunction &CGF, 5548 const OMPTargetParallelDirective &S, 5549 PrePostActionTy &Action) { 5550 // Get the captured statement associated with the 'parallel' region. 5551 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 5552 Action.Enter(CGF); 5553 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5554 Action.Enter(CGF); 5555 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5556 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5557 CGF.EmitOMPPrivateClause(S, PrivateScope); 5558 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5559 (void)PrivateScope.Privatize(); 5560 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5561 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5562 // TODO: Add support for clauses. 5563 CGF.EmitStmt(CS->getCapturedStmt()); 5564 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 5565 }; 5566 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 5567 emitEmptyBoundParameters); 5568 emitPostUpdateForReductionClause(CGF, S, 5569 [](CodeGenFunction &) { return nullptr; }); 5570 } 5571 5572 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 5573 CodeGenModule &CGM, StringRef ParentName, 5574 const OMPTargetParallelDirective &S) { 5575 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5576 emitTargetParallelRegion(CGF, S, Action); 5577 }; 5578 llvm::Function *Fn; 5579 llvm::Constant *Addr; 5580 // Emit target region as a standalone region. 5581 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5582 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5583 assert(Fn && Addr && "Target device function emission failed."); 5584 } 5585 5586 void CodeGenFunction::EmitOMPTargetParallelDirective( 5587 const OMPTargetParallelDirective &S) { 5588 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5589 emitTargetParallelRegion(CGF, S, Action); 5590 }; 5591 emitCommonOMPTargetDirective(*this, S, CodeGen); 5592 } 5593 5594 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5595 const OMPTargetParallelForDirective &S, 5596 PrePostActionTy &Action) { 5597 Action.Enter(CGF); 5598 // Emit directive as a combined directive that consists of two implicit 5599 // directives: 'parallel' with 'for' directive. 5600 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5601 Action.Enter(CGF); 5602 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5603 CGF, OMPD_target_parallel_for, S.hasCancel()); 5604 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5605 emitDispatchForLoopBounds); 5606 }; 5607 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5608 emitEmptyBoundParameters); 5609 } 5610 5611 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5612 CodeGenModule &CGM, StringRef ParentName, 5613 const OMPTargetParallelForDirective &S) { 5614 // Emit SPMD target parallel for region as a standalone region. 5615 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5616 emitTargetParallelForRegion(CGF, S, Action); 5617 }; 5618 llvm::Function *Fn; 5619 llvm::Constant *Addr; 5620 // Emit target region as a standalone region. 5621 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5622 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5623 assert(Fn && Addr && "Target device function emission failed."); 5624 } 5625 5626 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5627 const OMPTargetParallelForDirective &S) { 5628 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5629 emitTargetParallelForRegion(CGF, S, Action); 5630 }; 5631 emitCommonOMPTargetDirective(*this, S, CodeGen); 5632 } 5633 5634 static void 5635 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5636 const OMPTargetParallelForSimdDirective &S, 5637 PrePostActionTy &Action) { 5638 Action.Enter(CGF); 5639 // Emit directive as a combined directive that consists of two implicit 5640 // directives: 'parallel' with 'for' directive. 5641 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5642 Action.Enter(CGF); 5643 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5644 emitDispatchForLoopBounds); 5645 }; 5646 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5647 emitEmptyBoundParameters); 5648 } 5649 5650 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5651 CodeGenModule &CGM, StringRef ParentName, 5652 const OMPTargetParallelForSimdDirective &S) { 5653 // Emit SPMD target parallel for region as a standalone region. 5654 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5655 emitTargetParallelForSimdRegion(CGF, S, Action); 5656 }; 5657 llvm::Function *Fn; 5658 llvm::Constant *Addr; 5659 // Emit target region as a standalone region. 5660 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5661 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5662 assert(Fn && Addr && "Target device function emission failed."); 5663 } 5664 5665 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5666 const OMPTargetParallelForSimdDirective &S) { 5667 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5668 emitTargetParallelForSimdRegion(CGF, S, Action); 5669 }; 5670 emitCommonOMPTargetDirective(*this, S, CodeGen); 5671 } 5672 5673 /// Emit a helper variable and return corresponding lvalue. 5674 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5675 const ImplicitParamDecl *PVD, 5676 CodeGenFunction::OMPPrivateScope &Privates) { 5677 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5678 Privates.addPrivate(VDecl, 5679 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5680 } 5681 5682 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5683 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5684 // Emit outlined function for task construct. 5685 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5686 Address CapturedStruct = Address::invalid(); 5687 { 5688 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5689 CapturedStruct = GenerateCapturedStmtArgument(*CS); 5690 } 5691 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5692 const Expr *IfCond = nullptr; 5693 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5694 if (C->getNameModifier() == OMPD_unknown || 5695 C->getNameModifier() == OMPD_taskloop) { 5696 IfCond = C->getCondition(); 5697 break; 5698 } 5699 } 5700 5701 OMPTaskDataTy Data; 5702 // Check if taskloop must be emitted without taskgroup. 5703 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5704 // TODO: Check if we should emit tied or untied task. 5705 Data.Tied = true; 5706 // Set scheduling for taskloop 5707 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5708 // grainsize clause 5709 Data.Schedule.setInt(/*IntVal=*/false); 5710 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5711 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5712 // num_tasks clause 5713 Data.Schedule.setInt(/*IntVal=*/true); 5714 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5715 } 5716 5717 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5718 // if (PreCond) { 5719 // for (IV in 0..LastIteration) BODY; 5720 // <Final counter/linear vars updates>; 5721 // } 5722 // 5723 5724 // Emit: if (PreCond) - begin. 5725 // If the condition constant folds and can be elided, avoid emitting the 5726 // whole loop. 5727 bool CondConstant; 5728 llvm::BasicBlock *ContBlock = nullptr; 5729 OMPLoopScope PreInitScope(CGF, S); 5730 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5731 if (!CondConstant) 5732 return; 5733 } else { 5734 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5735 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5736 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5737 CGF.getProfileCount(&S)); 5738 CGF.EmitBlock(ThenBlock); 5739 CGF.incrementProfileCounter(&S); 5740 } 5741 5742 (void)CGF.EmitOMPLinearClauseInit(S); 5743 5744 OMPPrivateScope LoopScope(CGF); 5745 // Emit helper vars inits. 5746 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5747 auto *I = CS->getCapturedDecl()->param_begin(); 5748 auto *LBP = std::next(I, LowerBound); 5749 auto *UBP = std::next(I, UpperBound); 5750 auto *STP = std::next(I, Stride); 5751 auto *LIP = std::next(I, LastIter); 5752 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5753 LoopScope); 5754 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5755 LoopScope); 5756 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5757 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5758 LoopScope); 5759 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5760 CGF.EmitOMPLinearClause(S, LoopScope); 5761 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5762 (void)LoopScope.Privatize(); 5763 // Emit the loop iteration variable. 5764 const Expr *IVExpr = S.getIterationVariable(); 5765 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5766 CGF.EmitVarDecl(*IVDecl); 5767 CGF.EmitIgnoredExpr(S.getInit()); 5768 5769 // Emit the iterations count variable. 5770 // If it is not a variable, Sema decided to calculate iterations count on 5771 // each iteration (e.g., it is foldable into a constant). 5772 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5773 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5774 // Emit calculation of the iterations count. 5775 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5776 } 5777 5778 { 5779 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5780 emitCommonSimdLoop( 5781 CGF, S, 5782 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5783 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5784 CGF.EmitOMPSimdInit(S); 5785 }, 5786 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5787 CGF.EmitOMPInnerLoop( 5788 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5789 [&S](CodeGenFunction &CGF) { 5790 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5791 CGF.EmitStopPoint(&S); 5792 }, 5793 [](CodeGenFunction &) {}); 5794 }); 5795 } 5796 // Emit: if (PreCond) - end. 5797 if (ContBlock) { 5798 CGF.EmitBranch(ContBlock); 5799 CGF.EmitBlock(ContBlock, true); 5800 } 5801 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5802 if (HasLastprivateClause) { 5803 CGF.EmitOMPLastprivateClauseFinal( 5804 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5805 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5806 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5807 (*LIP)->getType(), S.getBeginLoc()))); 5808 } 5809 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5810 return CGF.Builder.CreateIsNotNull( 5811 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5812 (*LIP)->getType(), S.getBeginLoc())); 5813 }); 5814 }; 5815 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5816 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5817 const OMPTaskDataTy &Data) { 5818 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5819 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5820 OMPLoopScope PreInitScope(CGF, S); 5821 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5822 OutlinedFn, SharedsTy, 5823 CapturedStruct, IfCond, Data); 5824 }; 5825 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5826 CodeGen); 5827 }; 5828 if (Data.Nogroup) { 5829 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5830 } else { 5831 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5832 *this, 5833 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5834 PrePostActionTy &Action) { 5835 Action.Enter(CGF); 5836 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5837 Data); 5838 }, 5839 S.getBeginLoc()); 5840 } 5841 } 5842 5843 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5844 auto LPCRegion = 5845 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5846 EmitOMPTaskLoopBasedDirective(S); 5847 } 5848 5849 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5850 const OMPTaskLoopSimdDirective &S) { 5851 auto LPCRegion = 5852 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5853 OMPLexicalScope Scope(*this, S); 5854 EmitOMPTaskLoopBasedDirective(S); 5855 } 5856 5857 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5858 const OMPMasterTaskLoopDirective &S) { 5859 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5860 Action.Enter(CGF); 5861 EmitOMPTaskLoopBasedDirective(S); 5862 }; 5863 auto LPCRegion = 5864 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5865 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5866 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5867 } 5868 5869 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5870 const OMPMasterTaskLoopSimdDirective &S) { 5871 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5872 Action.Enter(CGF); 5873 EmitOMPTaskLoopBasedDirective(S); 5874 }; 5875 auto LPCRegion = 5876 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5877 OMPLexicalScope Scope(*this, S); 5878 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5879 } 5880 5881 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5882 const OMPParallelMasterTaskLoopDirective &S) { 5883 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5884 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5885 PrePostActionTy &Action) { 5886 Action.Enter(CGF); 5887 CGF.EmitOMPTaskLoopBasedDirective(S); 5888 }; 5889 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5890 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5891 S.getBeginLoc()); 5892 }; 5893 auto LPCRegion = 5894 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5895 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5896 emitEmptyBoundParameters); 5897 } 5898 5899 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5900 const OMPParallelMasterTaskLoopSimdDirective &S) { 5901 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5902 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5903 PrePostActionTy &Action) { 5904 Action.Enter(CGF); 5905 CGF.EmitOMPTaskLoopBasedDirective(S); 5906 }; 5907 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5908 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5909 S.getBeginLoc()); 5910 }; 5911 auto LPCRegion = 5912 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5913 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5914 emitEmptyBoundParameters); 5915 } 5916 5917 // Generate the instructions for '#pragma omp target update' directive. 5918 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5919 const OMPTargetUpdateDirective &S) { 5920 // If we don't have target devices, don't bother emitting the data mapping 5921 // code. 5922 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5923 return; 5924 5925 // Check if we have any if clause associated with the directive. 5926 const Expr *IfCond = nullptr; 5927 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5928 IfCond = C->getCondition(); 5929 5930 // Check if we have any device clause associated with the directive. 5931 const Expr *Device = nullptr; 5932 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5933 Device = C->getDevice(); 5934 5935 OMPLexicalScope Scope(*this, S, OMPD_task); 5936 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5937 } 5938 5939 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5940 const OMPExecutableDirective &D) { 5941 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5942 return; 5943 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5944 OMPPrivateScope GlobalsScope(CGF); 5945 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 5946 // Capture global firstprivates to avoid crash. 5947 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 5948 for (const Expr *Ref : C->varlists()) { 5949 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 5950 if (!DRE) 5951 continue; 5952 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 5953 if (!VD || VD->hasLocalStorage()) 5954 continue; 5955 if (!CGF.LocalDeclMap.count(VD)) { 5956 LValue GlobLVal = CGF.EmitLValue(Ref); 5957 GlobalsScope.addPrivate( 5958 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5959 } 5960 } 5961 } 5962 } 5963 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5964 (void)GlobalsScope.Privatize(); 5965 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5966 } else { 5967 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5968 for (const Expr *E : LD->counters()) { 5969 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5970 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5971 LValue GlobLVal = CGF.EmitLValue(E); 5972 GlobalsScope.addPrivate( 5973 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5974 } 5975 if (isa<OMPCapturedExprDecl>(VD)) { 5976 // Emit only those that were not explicitly referenced in clauses. 5977 if (!CGF.LocalDeclMap.count(VD)) 5978 CGF.EmitVarDecl(*VD); 5979 } 5980 } 5981 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5982 if (!C->getNumForLoops()) 5983 continue; 5984 for (unsigned I = LD->getCollapsedNumber(), 5985 E = C->getLoopNumIterations().size(); 5986 I < E; ++I) { 5987 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5988 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5989 // Emit only those that were not explicitly referenced in clauses. 5990 if (!CGF.LocalDeclMap.count(VD)) 5991 CGF.EmitVarDecl(*VD); 5992 } 5993 } 5994 } 5995 } 5996 (void)GlobalsScope.Privatize(); 5997 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5998 } 5999 }; 6000 { 6001 auto LPCRegion = 6002 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 6003 OMPSimdLexicalScope Scope(*this, D); 6004 CGM.getOpenMPRuntime().emitInlinedDirective( 6005 *this, 6006 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 6007 : D.getDirectiveKind(), 6008 CodeGen); 6009 } 6010 // Check for outer lastprivate conditional update. 6011 checkForLastprivateConditionalUpdate(*this, D); 6012 } 6013