1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 emitPreInitStmt(CGF, S); 61 if (AsInlined) { 62 if (S.hasAssociatedStmt()) { 63 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 64 for (auto &C : CS->captures()) { 65 if (C.capturesVariable() || C.capturesVariableByCopy()) { 66 auto *VD = C.getCapturedVar(); 67 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 68 isCapturedVar(CGF, VD) || 69 (CGF.CapturedStmtInfo && 70 InlinedShareds.isGlobalVarCaptured(VD)), 71 VD->getType().getNonReferenceType(), VK_LValue, 72 SourceLocation()); 73 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 74 return CGF.EmitLValue(&DRE).getAddress(); 75 }); 76 } 77 } 78 (void)InlinedShareds.Privatize(); 79 } 80 } 81 } 82 }; 83 84 /// Private scope for OpenMP loop-based directives, that supports capturing 85 /// of used expression from loop statement. 86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 87 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 88 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 89 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 90 for (const auto *I : PreInits->decls()) 91 CGF.EmitVarDecl(cast<VarDecl>(*I)); 92 } 93 } 94 } 95 96 public: 97 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 98 : CodeGenFunction::RunCleanupsScope(CGF) { 99 emitPreInitStmt(CGF, S); 100 } 101 }; 102 103 } // namespace 104 105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 106 auto &C = getContext(); 107 llvm::Value *Size = nullptr; 108 auto SizeInChars = C.getTypeSizeInChars(Ty); 109 if (SizeInChars.isZero()) { 110 // getTypeSizeInChars() returns 0 for a VLA. 111 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 112 llvm::Value *ArraySize; 113 std::tie(ArraySize, Ty) = getVLASize(VAT); 114 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 115 } 116 SizeInChars = C.getTypeSizeInChars(Ty); 117 if (SizeInChars.isZero()) 118 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 119 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 120 } else 121 Size = CGM.getSize(SizeInChars); 122 return Size; 123 } 124 125 void CodeGenFunction::GenerateOpenMPCapturedVars( 126 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 127 const RecordDecl *RD = S.getCapturedRecordDecl(); 128 auto CurField = RD->field_begin(); 129 auto CurCap = S.captures().begin(); 130 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 131 E = S.capture_init_end(); 132 I != E; ++I, ++CurField, ++CurCap) { 133 if (CurField->hasCapturedVLAType()) { 134 auto VAT = CurField->getCapturedVLAType(); 135 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 136 CapturedVars.push_back(Val); 137 } else if (CurCap->capturesThis()) 138 CapturedVars.push_back(CXXThisValue); 139 else if (CurCap->capturesVariableByCopy()) { 140 llvm::Value *CV = 141 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 142 143 // If the field is not a pointer, we need to save the actual value 144 // and load it as a void pointer. 145 if (!CurField->getType()->isAnyPointerType()) { 146 auto &Ctx = getContext(); 147 auto DstAddr = CreateMemTemp( 148 Ctx.getUIntPtrType(), 149 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 150 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 151 152 auto *SrcAddrVal = EmitScalarConversion( 153 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 154 Ctx.getPointerType(CurField->getType()), SourceLocation()); 155 LValue SrcLV = 156 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 157 158 // Store the value using the source type pointer. 159 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 160 161 // Load the value using the destination type pointer. 162 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 163 } 164 CapturedVars.push_back(CV); 165 } else { 166 assert(CurCap->capturesVariable() && "Expected capture by reference."); 167 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 168 } 169 } 170 } 171 172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 173 StringRef Name, LValue AddrLV, 174 bool isReferenceType = false) { 175 ASTContext &Ctx = CGF.getContext(); 176 177 auto *CastedPtr = CGF.EmitScalarConversion( 178 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 179 Ctx.getPointerType(DstType), SourceLocation()); 180 auto TmpAddr = 181 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 182 .getAddress(); 183 184 // If we are dealing with references we need to return the address of the 185 // reference instead of the reference of the value. 186 if (isReferenceType) { 187 QualType RefType = Ctx.getLValueReferenceType(DstType); 188 auto *RefVal = TmpAddr.getPointer(); 189 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 190 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 191 CGF.EmitScalarInit(RefVal, TmpLVal); 192 } 193 194 return TmpAddr; 195 } 196 197 llvm::Function * 198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 199 assert( 200 CapturedStmtInfo && 201 "CapturedStmtInfo should be set when generating the captured function"); 202 const CapturedDecl *CD = S.getCapturedDecl(); 203 const RecordDecl *RD = S.getCapturedRecordDecl(); 204 assert(CD->hasBody() && "missing CapturedDecl body"); 205 206 // Build the argument list. 207 ASTContext &Ctx = CGM.getContext(); 208 FunctionArgList Args; 209 Args.append(CD->param_begin(), 210 std::next(CD->param_begin(), CD->getContextParamPosition())); 211 auto I = S.captures().begin(); 212 for (auto *FD : RD->fields()) { 213 QualType ArgType = FD->getType(); 214 IdentifierInfo *II = nullptr; 215 VarDecl *CapVar = nullptr; 216 217 // If this is a capture by copy and the type is not a pointer, the outlined 218 // function argument type should be uintptr and the value properly casted to 219 // uintptr. This is necessary given that the runtime library is only able to 220 // deal with pointers. We can pass in the same way the VLA type sizes to the 221 // outlined function. 222 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 223 I->capturesVariableArrayType()) 224 ArgType = Ctx.getUIntPtrType(); 225 226 if (I->capturesVariable() || I->capturesVariableByCopy()) { 227 CapVar = I->getCapturedVar(); 228 II = CapVar->getIdentifier(); 229 } else if (I->capturesThis()) 230 II = &getContext().Idents.get("this"); 231 else { 232 assert(I->capturesVariableArrayType()); 233 II = &getContext().Idents.get("vla"); 234 } 235 if (ArgType->isVariablyModifiedType()) { 236 bool IsReference = ArgType->isLValueReferenceType(); 237 ArgType = 238 getContext().getCanonicalParamType(ArgType.getNonReferenceType()); 239 if (IsReference && !ArgType->isPointerType()) { 240 ArgType = getContext().getLValueReferenceType( 241 ArgType, /*SpelledAsLValue=*/false); 242 } 243 } 244 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 245 FD->getLocation(), II, ArgType)); 246 ++I; 247 } 248 Args.append( 249 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 250 CD->param_end()); 251 252 // Create the function declaration. 253 FunctionType::ExtInfo ExtInfo; 254 const CGFunctionInfo &FuncInfo = 255 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 256 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 257 258 llvm::Function *F = llvm::Function::Create( 259 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 260 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 261 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 262 if (CD->isNothrow()) 263 F->addFnAttr(llvm::Attribute::NoUnwind); 264 265 // Generate the function. 266 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 267 CD->getBody()->getLocStart()); 268 unsigned Cnt = CD->getContextParamPosition(); 269 I = S.captures().begin(); 270 for (auto *FD : RD->fields()) { 271 // If we are capturing a pointer by copy we don't need to do anything, just 272 // use the value that we get from the arguments. 273 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 274 const VarDecl *CurVD = I->getCapturedVar(); 275 Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]); 276 // If the variable is a reference we need to materialize it here. 277 if (CurVD->getType()->isReferenceType()) { 278 Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(), 279 ".materialized_ref"); 280 EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false, 281 CurVD->getType()); 282 LocalAddr = RefAddr; 283 } 284 setAddrOfLocalVar(CurVD, LocalAddr); 285 ++Cnt; 286 ++I; 287 continue; 288 } 289 290 LValue ArgLVal = 291 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 292 AlignmentSource::Decl); 293 if (FD->hasCapturedVLAType()) { 294 LValue CastedArgLVal = 295 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 296 Args[Cnt]->getName(), ArgLVal), 297 FD->getType(), AlignmentSource::Decl); 298 auto *ExprArg = 299 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 300 auto VAT = FD->getCapturedVLAType(); 301 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 302 } else if (I->capturesVariable()) { 303 auto *Var = I->getCapturedVar(); 304 QualType VarTy = Var->getType(); 305 Address ArgAddr = ArgLVal.getAddress(); 306 if (!VarTy->isReferenceType()) { 307 if (ArgLVal.getType()->isLValueReferenceType()) { 308 ArgAddr = EmitLoadOfReference( 309 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 310 } else { 311 assert(ArgLVal.getType()->isPointerType()); 312 ArgAddr = EmitLoadOfPointer( 313 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 314 } 315 } 316 setAddrOfLocalVar( 317 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 318 } else if (I->capturesVariableByCopy()) { 319 assert(!FD->getType()->isAnyPointerType() && 320 "Not expecting a captured pointer."); 321 auto *Var = I->getCapturedVar(); 322 QualType VarTy = Var->getType(); 323 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 324 Args[Cnt]->getName(), ArgLVal, 325 VarTy->isReferenceType())); 326 } else { 327 // If 'this' is captured, load it into CXXThisValue. 328 assert(I->capturesThis()); 329 CXXThisValue = 330 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 331 } 332 ++Cnt; 333 ++I; 334 } 335 336 PGO.assignRegionCounters(GlobalDecl(CD), F); 337 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 338 FinishFunction(CD->getBodyRBrace()); 339 340 return F; 341 } 342 343 //===----------------------------------------------------------------------===// 344 // OpenMP Directive Emission 345 //===----------------------------------------------------------------------===// 346 void CodeGenFunction::EmitOMPAggregateAssign( 347 Address DestAddr, Address SrcAddr, QualType OriginalType, 348 const llvm::function_ref<void(Address, Address)> &CopyGen) { 349 // Perform element-by-element initialization. 350 QualType ElementTy; 351 352 // Drill down to the base element type on both arrays. 353 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 354 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 355 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 356 357 auto SrcBegin = SrcAddr.getPointer(); 358 auto DestBegin = DestAddr.getPointer(); 359 // Cast from pointer to array type to pointer to single element. 360 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 361 // The basic structure here is a while-do loop. 362 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 363 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 364 auto IsEmpty = 365 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 366 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 367 368 // Enter the loop body, making that address the current address. 369 auto EntryBB = Builder.GetInsertBlock(); 370 EmitBlock(BodyBB); 371 372 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 373 374 llvm::PHINode *SrcElementPHI = 375 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 376 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 377 Address SrcElementCurrent = 378 Address(SrcElementPHI, 379 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 380 381 llvm::PHINode *DestElementPHI = 382 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 383 DestElementPHI->addIncoming(DestBegin, EntryBB); 384 Address DestElementCurrent = 385 Address(DestElementPHI, 386 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 387 388 // Emit copy. 389 CopyGen(DestElementCurrent, SrcElementCurrent); 390 391 // Shift the address forward by one element. 392 auto DestElementNext = Builder.CreateConstGEP1_32( 393 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 394 auto SrcElementNext = Builder.CreateConstGEP1_32( 395 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 396 // Check whether we've reached the end. 397 auto Done = 398 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 399 Builder.CreateCondBr(Done, DoneBB, BodyBB); 400 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 401 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 402 403 // Done. 404 EmitBlock(DoneBB, /*IsFinished=*/true); 405 } 406 407 /// Check if the combiner is a call to UDR combiner and if it is so return the 408 /// UDR decl used for reduction. 409 static const OMPDeclareReductionDecl * 410 getReductionInit(const Expr *ReductionOp) { 411 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 412 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 413 if (auto *DRE = 414 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 415 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 416 return DRD; 417 return nullptr; 418 } 419 420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 421 const OMPDeclareReductionDecl *DRD, 422 const Expr *InitOp, 423 Address Private, Address Original, 424 QualType Ty) { 425 if (DRD->getInitializer()) { 426 std::pair<llvm::Function *, llvm::Function *> Reduction = 427 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 428 auto *CE = cast<CallExpr>(InitOp); 429 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 430 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 431 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 432 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 433 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 434 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 435 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 436 [=]() -> Address { return Private; }); 437 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 438 [=]() -> Address { return Original; }); 439 (void)PrivateScope.Privatize(); 440 RValue Func = RValue::get(Reduction.second); 441 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 442 CGF.EmitIgnoredExpr(InitOp); 443 } else { 444 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 445 auto *GV = new llvm::GlobalVariable( 446 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 447 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 448 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 449 RValue InitRVal; 450 switch (CGF.getEvaluationKind(Ty)) { 451 case TEK_Scalar: 452 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 453 break; 454 case TEK_Complex: 455 InitRVal = 456 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 457 break; 458 case TEK_Aggregate: 459 InitRVal = RValue::getAggregate(LV.getAddress()); 460 break; 461 } 462 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 463 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 464 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 465 /*IsInitializer=*/false); 466 } 467 } 468 469 /// \brief Emit initialization of arrays of complex types. 470 /// \param DestAddr Address of the array. 471 /// \param Type Type of array. 472 /// \param Init Initial expression of array. 473 /// \param SrcAddr Address of the original array. 474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 475 QualType Type, const Expr *Init, 476 Address SrcAddr = Address::invalid()) { 477 auto *DRD = getReductionInit(Init); 478 // Perform element-by-element initialization. 479 QualType ElementTy; 480 481 // Drill down to the base element type on both arrays. 482 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 483 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 484 DestAddr = 485 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 486 if (DRD) 487 SrcAddr = 488 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 489 490 llvm::Value *SrcBegin = nullptr; 491 if (DRD) 492 SrcBegin = SrcAddr.getPointer(); 493 auto DestBegin = DestAddr.getPointer(); 494 // Cast from pointer to array type to pointer to single element. 495 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 496 // The basic structure here is a while-do loop. 497 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 498 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 499 auto IsEmpty = 500 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 501 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 502 503 // Enter the loop body, making that address the current address. 504 auto EntryBB = CGF.Builder.GetInsertBlock(); 505 CGF.EmitBlock(BodyBB); 506 507 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 508 509 llvm::PHINode *SrcElementPHI = nullptr; 510 Address SrcElementCurrent = Address::invalid(); 511 if (DRD) { 512 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 513 "omp.arraycpy.srcElementPast"); 514 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 515 SrcElementCurrent = 516 Address(SrcElementPHI, 517 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 518 } 519 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 520 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 521 DestElementPHI->addIncoming(DestBegin, EntryBB); 522 Address DestElementCurrent = 523 Address(DestElementPHI, 524 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 525 526 // Emit copy. 527 { 528 CodeGenFunction::RunCleanupsScope InitScope(CGF); 529 if (DRD && (DRD->getInitializer() || !Init)) { 530 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 531 SrcElementCurrent, ElementTy); 532 } else 533 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 534 /*IsInitializer=*/false); 535 } 536 537 if (DRD) { 538 // Shift the address forward by one element. 539 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 540 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 541 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 542 } 543 544 // Shift the address forward by one element. 545 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 546 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 547 // Check whether we've reached the end. 548 auto Done = 549 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 550 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 551 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 552 553 // Done. 554 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 555 } 556 557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 558 Address SrcAddr, const VarDecl *DestVD, 559 const VarDecl *SrcVD, const Expr *Copy) { 560 if (OriginalType->isArrayType()) { 561 auto *BO = dyn_cast<BinaryOperator>(Copy); 562 if (BO && BO->getOpcode() == BO_Assign) { 563 // Perform simple memcpy for simple copying. 564 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 565 } else { 566 // For arrays with complex element types perform element by element 567 // copying. 568 EmitOMPAggregateAssign( 569 DestAddr, SrcAddr, OriginalType, 570 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 571 // Working with the single array element, so have to remap 572 // destination and source variables to corresponding array 573 // elements. 574 CodeGenFunction::OMPPrivateScope Remap(*this); 575 Remap.addPrivate(DestVD, [DestElement]() -> Address { 576 return DestElement; 577 }); 578 Remap.addPrivate( 579 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 580 (void)Remap.Privatize(); 581 EmitIgnoredExpr(Copy); 582 }); 583 } 584 } else { 585 // Remap pseudo source variable to private copy. 586 CodeGenFunction::OMPPrivateScope Remap(*this); 587 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 588 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 589 (void)Remap.Privatize(); 590 // Emit copying of the whole variable. 591 EmitIgnoredExpr(Copy); 592 } 593 } 594 595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 596 OMPPrivateScope &PrivateScope) { 597 if (!HaveInsertPoint()) 598 return false; 599 bool FirstprivateIsLastprivate = false; 600 llvm::DenseSet<const VarDecl *> Lastprivates; 601 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 602 for (const auto *D : C->varlists()) 603 Lastprivates.insert( 604 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 605 } 606 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 607 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 608 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 609 auto IRef = C->varlist_begin(); 610 auto InitsRef = C->inits().begin(); 611 for (auto IInit : C->private_copies()) { 612 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 613 bool ThisFirstprivateIsLastprivate = 614 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 615 auto *CapFD = CapturesInfo.lookup(OrigVD); 616 auto *FD = CapturedStmtInfo->lookup(OrigVD); 617 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 618 !FD->getType()->isReferenceType()) { 619 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 620 ++IRef; 621 ++InitsRef; 622 continue; 623 } 624 FirstprivateIsLastprivate = 625 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 626 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 627 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 628 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 629 bool IsRegistered; 630 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 631 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 632 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 633 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 634 QualType Type = VD->getType(); 635 if (Type->isArrayType()) { 636 // Emit VarDecl with copy init for arrays. 637 // Get the address of the original variable captured in current 638 // captured region. 639 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 640 auto Emission = EmitAutoVarAlloca(*VD); 641 auto *Init = VD->getInit(); 642 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 643 // Perform simple memcpy. 644 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 645 Type); 646 } else { 647 EmitOMPAggregateAssign( 648 Emission.getAllocatedAddress(), OriginalAddr, Type, 649 [this, VDInit, Init](Address DestElement, 650 Address SrcElement) { 651 // Clean up any temporaries needed by the initialization. 652 RunCleanupsScope InitScope(*this); 653 // Emit initialization for single element. 654 setAddrOfLocalVar(VDInit, SrcElement); 655 EmitAnyExprToMem(Init, DestElement, 656 Init->getType().getQualifiers(), 657 /*IsInitializer*/ false); 658 LocalDeclMap.erase(VDInit); 659 }); 660 } 661 EmitAutoVarCleanups(Emission); 662 return Emission.getAllocatedAddress(); 663 }); 664 } else { 665 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 666 // Emit private VarDecl with copy init. 667 // Remap temp VDInit variable to the address of the original 668 // variable 669 // (for proper handling of captured global variables). 670 setAddrOfLocalVar(VDInit, OriginalAddr); 671 EmitDecl(*VD); 672 LocalDeclMap.erase(VDInit); 673 return GetAddrOfLocalVar(VD); 674 }); 675 } 676 assert(IsRegistered && 677 "firstprivate var already registered as private"); 678 // Silence the warning about unused variable. 679 (void)IsRegistered; 680 } 681 ++IRef; 682 ++InitsRef; 683 } 684 } 685 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 686 } 687 688 void CodeGenFunction::EmitOMPPrivateClause( 689 const OMPExecutableDirective &D, 690 CodeGenFunction::OMPPrivateScope &PrivateScope) { 691 if (!HaveInsertPoint()) 692 return; 693 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 694 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 695 auto IRef = C->varlist_begin(); 696 for (auto IInit : C->private_copies()) { 697 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 698 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 699 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 700 bool IsRegistered = 701 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 702 // Emit private VarDecl with copy init. 703 EmitDecl(*VD); 704 return GetAddrOfLocalVar(VD); 705 }); 706 assert(IsRegistered && "private var already registered as private"); 707 // Silence the warning about unused variable. 708 (void)IsRegistered; 709 } 710 ++IRef; 711 } 712 } 713 } 714 715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 716 if (!HaveInsertPoint()) 717 return false; 718 // threadprivate_var1 = master_threadprivate_var1; 719 // operator=(threadprivate_var2, master_threadprivate_var2); 720 // ... 721 // __kmpc_barrier(&loc, global_tid); 722 llvm::DenseSet<const VarDecl *> CopiedVars; 723 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 724 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 725 auto IRef = C->varlist_begin(); 726 auto ISrcRef = C->source_exprs().begin(); 727 auto IDestRef = C->destination_exprs().begin(); 728 for (auto *AssignOp : C->assignment_ops()) { 729 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 730 QualType Type = VD->getType(); 731 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 732 // Get the address of the master variable. If we are emitting code with 733 // TLS support, the address is passed from the master as field in the 734 // captured declaration. 735 Address MasterAddr = Address::invalid(); 736 if (getLangOpts().OpenMPUseTLS && 737 getContext().getTargetInfo().isTLSSupported()) { 738 assert(CapturedStmtInfo->lookup(VD) && 739 "Copyin threadprivates should have been captured!"); 740 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 741 VK_LValue, (*IRef)->getExprLoc()); 742 MasterAddr = EmitLValue(&DRE).getAddress(); 743 LocalDeclMap.erase(VD); 744 } else { 745 MasterAddr = 746 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 747 : CGM.GetAddrOfGlobal(VD), 748 getContext().getDeclAlign(VD)); 749 } 750 // Get the address of the threadprivate variable. 751 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 752 if (CopiedVars.size() == 1) { 753 // At first check if current thread is a master thread. If it is, no 754 // need to copy data. 755 CopyBegin = createBasicBlock("copyin.not.master"); 756 CopyEnd = createBasicBlock("copyin.not.master.end"); 757 Builder.CreateCondBr( 758 Builder.CreateICmpNE( 759 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 760 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 761 CopyBegin, CopyEnd); 762 EmitBlock(CopyBegin); 763 } 764 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 765 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 766 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 767 } 768 ++IRef; 769 ++ISrcRef; 770 ++IDestRef; 771 } 772 } 773 if (CopyEnd) { 774 // Exit out of copying procedure for non-master thread. 775 EmitBlock(CopyEnd, /*IsFinished=*/true); 776 return true; 777 } 778 return false; 779 } 780 781 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 782 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 783 if (!HaveInsertPoint()) 784 return false; 785 bool HasAtLeastOneLastprivate = false; 786 llvm::DenseSet<const VarDecl *> SIMDLCVs; 787 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 788 auto *LoopDirective = cast<OMPLoopDirective>(&D); 789 for (auto *C : LoopDirective->counters()) { 790 SIMDLCVs.insert( 791 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 792 } 793 } 794 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 795 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 796 HasAtLeastOneLastprivate = true; 797 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 798 break; 799 auto IRef = C->varlist_begin(); 800 auto IDestRef = C->destination_exprs().begin(); 801 for (auto *IInit : C->private_copies()) { 802 // Keep the address of the original variable for future update at the end 803 // of the loop. 804 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 805 // Taskloops do not require additional initialization, it is done in 806 // runtime support library. 807 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 808 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 809 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 810 DeclRefExpr DRE( 811 const_cast<VarDecl *>(OrigVD), 812 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 813 OrigVD) != nullptr, 814 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 815 return EmitLValue(&DRE).getAddress(); 816 }); 817 // Check if the variable is also a firstprivate: in this case IInit is 818 // not generated. Initialization of this variable will happen in codegen 819 // for 'firstprivate' clause. 820 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 821 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 822 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 823 // Emit private VarDecl with copy init. 824 EmitDecl(*VD); 825 return GetAddrOfLocalVar(VD); 826 }); 827 assert(IsRegistered && 828 "lastprivate var already registered as private"); 829 (void)IsRegistered; 830 } 831 } 832 ++IRef; 833 ++IDestRef; 834 } 835 } 836 return HasAtLeastOneLastprivate; 837 } 838 839 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 840 const OMPExecutableDirective &D, bool NoFinals, 841 llvm::Value *IsLastIterCond) { 842 if (!HaveInsertPoint()) 843 return; 844 // Emit following code: 845 // if (<IsLastIterCond>) { 846 // orig_var1 = private_orig_var1; 847 // ... 848 // orig_varn = private_orig_varn; 849 // } 850 llvm::BasicBlock *ThenBB = nullptr; 851 llvm::BasicBlock *DoneBB = nullptr; 852 if (IsLastIterCond) { 853 ThenBB = createBasicBlock(".omp.lastprivate.then"); 854 DoneBB = createBasicBlock(".omp.lastprivate.done"); 855 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 856 EmitBlock(ThenBB); 857 } 858 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 859 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 860 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 861 auto IC = LoopDirective->counters().begin(); 862 for (auto F : LoopDirective->finals()) { 863 auto *D = 864 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 865 if (NoFinals) 866 AlreadyEmittedVars.insert(D); 867 else 868 LoopCountersAndUpdates[D] = F; 869 ++IC; 870 } 871 } 872 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 873 auto IRef = C->varlist_begin(); 874 auto ISrcRef = C->source_exprs().begin(); 875 auto IDestRef = C->destination_exprs().begin(); 876 for (auto *AssignOp : C->assignment_ops()) { 877 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 878 QualType Type = PrivateVD->getType(); 879 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 880 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 881 // If lastprivate variable is a loop control variable for loop-based 882 // directive, update its value before copyin back to original 883 // variable. 884 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 885 EmitIgnoredExpr(FinalExpr); 886 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 887 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 888 // Get the address of the original variable. 889 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 890 // Get the address of the private variable. 891 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 892 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 893 PrivateAddr = 894 Address(Builder.CreateLoad(PrivateAddr), 895 getNaturalTypeAlignment(RefTy->getPointeeType())); 896 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 897 } 898 ++IRef; 899 ++ISrcRef; 900 ++IDestRef; 901 } 902 if (auto *PostUpdate = C->getPostUpdateExpr()) 903 EmitIgnoredExpr(PostUpdate); 904 } 905 if (IsLastIterCond) 906 EmitBlock(DoneBB, /*IsFinished=*/true); 907 } 908 909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 910 LValue BaseLV, llvm::Value *Addr) { 911 Address Tmp = Address::invalid(); 912 Address TopTmp = Address::invalid(); 913 Address MostTopTmp = Address::invalid(); 914 BaseTy = BaseTy.getNonReferenceType(); 915 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 916 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 917 Tmp = CGF.CreateMemTemp(BaseTy); 918 if (TopTmp.isValid()) 919 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 920 else 921 MostTopTmp = Tmp; 922 TopTmp = Tmp; 923 BaseTy = BaseTy->getPointeeType(); 924 } 925 llvm::Type *Ty = BaseLV.getPointer()->getType(); 926 if (Tmp.isValid()) 927 Ty = Tmp.getElementType(); 928 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 929 if (Tmp.isValid()) { 930 CGF.Builder.CreateStore(Addr, Tmp); 931 return MostTopTmp; 932 } 933 return Address(Addr, BaseLV.getAlignment()); 934 } 935 936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 937 LValue BaseLV) { 938 BaseTy = BaseTy.getNonReferenceType(); 939 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 940 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 941 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 942 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 943 else { 944 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 945 BaseTy->castAs<ReferenceType>()); 946 } 947 BaseTy = BaseTy->getPointeeType(); 948 } 949 return CGF.MakeAddrLValue( 950 Address( 951 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 952 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 953 BaseLV.getAlignment()), 954 BaseLV.getType(), BaseLV.getAlignmentSource()); 955 } 956 957 void CodeGenFunction::EmitOMPReductionClauseInit( 958 const OMPExecutableDirective &D, 959 CodeGenFunction::OMPPrivateScope &PrivateScope) { 960 if (!HaveInsertPoint()) 961 return; 962 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 963 auto ILHS = C->lhs_exprs().begin(); 964 auto IRHS = C->rhs_exprs().begin(); 965 auto IPriv = C->privates().begin(); 966 auto IRed = C->reduction_ops().begin(); 967 for (auto IRef : C->varlists()) { 968 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 969 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 970 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 971 auto *DRD = getReductionInit(*IRed); 972 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 973 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 974 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 975 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 976 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 977 Base = TempASE->getBase()->IgnoreParenImpCasts(); 978 auto *DE = cast<DeclRefExpr>(Base); 979 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 980 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 981 auto OASELValueUB = 982 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 983 auto OriginalBaseLValue = EmitLValue(DE); 984 LValue BaseLValue = 985 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 986 OriginalBaseLValue); 987 // Store the address of the original variable associated with the LHS 988 // implicit variable. 989 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 990 return OASELValueLB.getAddress(); 991 }); 992 // Emit reduction copy. 993 bool IsRegistered = PrivateScope.addPrivate( 994 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 995 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 996 // Emit VarDecl with copy init for arrays. 997 // Get the address of the original variable captured in current 998 // captured region. 999 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 1000 OASELValueLB.getPointer()); 1001 Size = Builder.CreateNUWAdd( 1002 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 1003 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1004 *this, cast<OpaqueValueExpr>( 1005 getContext() 1006 .getAsVariableArrayType(PrivateVD->getType()) 1007 ->getSizeExpr()), 1008 RValue::get(Size)); 1009 EmitVariablyModifiedType(PrivateVD->getType()); 1010 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1011 auto Addr = Emission.getAllocatedAddress(); 1012 auto *Init = PrivateVD->getInit(); 1013 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1014 DRD ? *IRed : Init, 1015 OASELValueLB.getAddress()); 1016 EmitAutoVarCleanups(Emission); 1017 // Emit private VarDecl with reduction init. 1018 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1019 OASELValueLB.getPointer()); 1020 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1021 return castToBase(*this, OrigVD->getType(), 1022 OASELValueLB.getType(), OriginalBaseLValue, 1023 Ptr); 1024 }); 1025 assert(IsRegistered && "private var already registered as private"); 1026 // Silence the warning about unused variable. 1027 (void)IsRegistered; 1028 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1029 return GetAddrOfLocalVar(PrivateVD); 1030 }); 1031 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1032 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1033 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1034 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1035 auto *DE = cast<DeclRefExpr>(Base); 1036 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1037 auto ASELValue = EmitLValue(ASE); 1038 auto OriginalBaseLValue = EmitLValue(DE); 1039 LValue BaseLValue = loadToBegin( 1040 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1041 // Store the address of the original variable associated with the LHS 1042 // implicit variable. 1043 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 1044 return ASELValue.getAddress(); 1045 }); 1046 // Emit reduction copy. 1047 bool IsRegistered = PrivateScope.addPrivate( 1048 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1049 OriginalBaseLValue, DRD, IRed]() -> Address { 1050 // Emit private VarDecl with reduction init. 1051 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1052 auto Addr = Emission.getAllocatedAddress(); 1053 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1054 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1055 ASELValue.getAddress(), 1056 ASELValue.getType()); 1057 } else 1058 EmitAutoVarInit(Emission); 1059 EmitAutoVarCleanups(Emission); 1060 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1061 ASELValue.getPointer()); 1062 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1063 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1064 OriginalBaseLValue, Ptr); 1065 }); 1066 assert(IsRegistered && "private var already registered as private"); 1067 // Silence the warning about unused variable. 1068 (void)IsRegistered; 1069 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1070 return Builder.CreateElementBitCast( 1071 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1072 "rhs.begin"); 1073 }); 1074 } else { 1075 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1076 QualType Type = PrivateVD->getType(); 1077 if (getContext().getAsArrayType(Type)) { 1078 // Store the address of the original variable associated with the LHS 1079 // implicit variable. 1080 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1081 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1082 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1083 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1084 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1085 LHSVD]() -> Address { 1086 OriginalAddr = Builder.CreateElementBitCast( 1087 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1088 return OriginalAddr; 1089 }); 1090 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1091 if (Type->isVariablyModifiedType()) { 1092 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1093 *this, cast<OpaqueValueExpr>( 1094 getContext() 1095 .getAsVariableArrayType(PrivateVD->getType()) 1096 ->getSizeExpr()), 1097 RValue::get( 1098 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1099 EmitVariablyModifiedType(Type); 1100 } 1101 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1102 auto Addr = Emission.getAllocatedAddress(); 1103 auto *Init = PrivateVD->getInit(); 1104 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1105 DRD ? *IRed : Init, OriginalAddr); 1106 EmitAutoVarCleanups(Emission); 1107 return Emission.getAllocatedAddress(); 1108 }); 1109 assert(IsRegistered && "private var already registered as private"); 1110 // Silence the warning about unused variable. 1111 (void)IsRegistered; 1112 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1113 return Builder.CreateElementBitCast( 1114 GetAddrOfLocalVar(PrivateVD), 1115 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1116 }); 1117 } else { 1118 // Store the address of the original variable associated with the LHS 1119 // implicit variable. 1120 Address OriginalAddr = Address::invalid(); 1121 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1122 &OriginalAddr]() -> Address { 1123 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1124 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1125 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1126 OriginalAddr = EmitLValue(&DRE).getAddress(); 1127 return OriginalAddr; 1128 }); 1129 // Emit reduction copy. 1130 bool IsRegistered = PrivateScope.addPrivate( 1131 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1132 // Emit private VarDecl with reduction init. 1133 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1134 auto Addr = Emission.getAllocatedAddress(); 1135 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1136 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1137 OriginalAddr, 1138 PrivateVD->getType()); 1139 } else 1140 EmitAutoVarInit(Emission); 1141 EmitAutoVarCleanups(Emission); 1142 return Addr; 1143 }); 1144 assert(IsRegistered && "private var already registered as private"); 1145 // Silence the warning about unused variable. 1146 (void)IsRegistered; 1147 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1148 return GetAddrOfLocalVar(PrivateVD); 1149 }); 1150 } 1151 } 1152 ++ILHS; 1153 ++IRHS; 1154 ++IPriv; 1155 ++IRed; 1156 } 1157 } 1158 } 1159 1160 void CodeGenFunction::EmitOMPReductionClauseFinal( 1161 const OMPExecutableDirective &D) { 1162 if (!HaveInsertPoint()) 1163 return; 1164 llvm::SmallVector<const Expr *, 8> Privates; 1165 llvm::SmallVector<const Expr *, 8> LHSExprs; 1166 llvm::SmallVector<const Expr *, 8> RHSExprs; 1167 llvm::SmallVector<const Expr *, 8> ReductionOps; 1168 bool HasAtLeastOneReduction = false; 1169 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1170 HasAtLeastOneReduction = true; 1171 Privates.append(C->privates().begin(), C->privates().end()); 1172 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1173 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1174 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1175 } 1176 if (HasAtLeastOneReduction) { 1177 // Emit nowait reduction if nowait clause is present or directive is a 1178 // parallel directive (it always has implicit barrier). 1179 CGM.getOpenMPRuntime().emitReduction( 1180 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1181 D.getSingleClause<OMPNowaitClause>() || 1182 isOpenMPParallelDirective(D.getDirectiveKind()) || 1183 D.getDirectiveKind() == OMPD_simd, 1184 D.getDirectiveKind() == OMPD_simd); 1185 } 1186 } 1187 1188 static void emitPostUpdateForReductionClause( 1189 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1190 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1191 if (!CGF.HaveInsertPoint()) 1192 return; 1193 llvm::BasicBlock *DoneBB = nullptr; 1194 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1195 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1196 if (!DoneBB) { 1197 if (auto *Cond = CondGen(CGF)) { 1198 // If the first post-update expression is found, emit conditional 1199 // block if it was requested. 1200 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1201 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1202 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1203 CGF.EmitBlock(ThenBB); 1204 } 1205 } 1206 CGF.EmitIgnoredExpr(PostUpdate); 1207 } 1208 } 1209 if (DoneBB) 1210 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1211 } 1212 1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1214 const OMPExecutableDirective &S, 1215 OpenMPDirectiveKind InnermostKind, 1216 const RegionCodeGenTy &CodeGen) { 1217 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1218 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 1219 emitParallelOrTeamsOutlinedFunction(S, 1220 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1221 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1222 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1223 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1224 /*IgnoreResultAssign*/ true); 1225 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1226 CGF, NumThreads, NumThreadsClause->getLocStart()); 1227 } 1228 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1229 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1230 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1231 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1232 } 1233 const Expr *IfCond = nullptr; 1234 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1235 if (C->getNameModifier() == OMPD_unknown || 1236 C->getNameModifier() == OMPD_parallel) { 1237 IfCond = C->getCondition(); 1238 break; 1239 } 1240 } 1241 1242 OMPLexicalScope Scope(CGF, S); 1243 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1244 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1245 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1246 CapturedVars, IfCond); 1247 } 1248 1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1250 // Emit parallel region as a standalone region. 1251 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1252 OMPPrivateScope PrivateScope(CGF); 1253 bool Copyins = CGF.EmitOMPCopyinClause(S); 1254 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1255 if (Copyins) { 1256 // Emit implicit barrier to synchronize threads and avoid data races on 1257 // propagation master's thread values of threadprivate variables to local 1258 // instances of that variables of all other implicit threads. 1259 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1260 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1261 /*ForceSimpleCall=*/true); 1262 } 1263 CGF.EmitOMPPrivateClause(S, PrivateScope); 1264 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1265 (void)PrivateScope.Privatize(); 1266 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1267 CGF.EmitOMPReductionClauseFinal(S); 1268 }; 1269 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1270 emitPostUpdateForReductionClause( 1271 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1272 } 1273 1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1275 JumpDest LoopExit) { 1276 RunCleanupsScope BodyScope(*this); 1277 // Update counters values on current iteration. 1278 for (auto I : D.updates()) { 1279 EmitIgnoredExpr(I); 1280 } 1281 // Update the linear variables. 1282 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1283 for (auto *U : C->updates()) 1284 EmitIgnoredExpr(U); 1285 } 1286 1287 // On a continue in the body, jump to the end. 1288 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1289 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1290 // Emit loop body. 1291 EmitStmt(D.getBody()); 1292 // The end (updates/cleanups). 1293 EmitBlock(Continue.getBlock()); 1294 BreakContinueStack.pop_back(); 1295 } 1296 1297 void CodeGenFunction::EmitOMPInnerLoop( 1298 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1299 const Expr *IncExpr, 1300 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1301 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1302 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1303 1304 // Start the loop with a block that tests the condition. 1305 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1306 EmitBlock(CondBlock); 1307 LoopStack.push(CondBlock, Builder.getCurrentDebugLocation()); 1308 1309 // If there are any cleanups between here and the loop-exit scope, 1310 // create a block to stage a loop exit along. 1311 auto ExitBlock = LoopExit.getBlock(); 1312 if (RequiresCleanup) 1313 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1314 1315 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1316 1317 // Emit condition. 1318 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1319 if (ExitBlock != LoopExit.getBlock()) { 1320 EmitBlock(ExitBlock); 1321 EmitBranchThroughCleanup(LoopExit); 1322 } 1323 1324 EmitBlock(LoopBody); 1325 incrementProfileCounter(&S); 1326 1327 // Create a block for the increment. 1328 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1329 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1330 1331 BodyGen(*this); 1332 1333 // Emit "IV = IV + 1" and a back-edge to the condition block. 1334 EmitBlock(Continue.getBlock()); 1335 EmitIgnoredExpr(IncExpr); 1336 PostIncGen(*this); 1337 BreakContinueStack.pop_back(); 1338 EmitBranch(CondBlock); 1339 LoopStack.pop(); 1340 // Emit the fall-through block. 1341 EmitBlock(LoopExit.getBlock()); 1342 } 1343 1344 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1345 if (!HaveInsertPoint()) 1346 return; 1347 // Emit inits for the linear variables. 1348 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1349 for (auto *Init : C->inits()) { 1350 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1351 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1352 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1353 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1354 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1355 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1356 VD->getInit()->getType(), VK_LValue, 1357 VD->getInit()->getExprLoc()); 1358 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1359 VD->getType()), 1360 /*capturedByInit=*/false); 1361 EmitAutoVarCleanups(Emission); 1362 } else 1363 EmitVarDecl(*VD); 1364 } 1365 // Emit the linear steps for the linear clauses. 1366 // If a step is not constant, it is pre-calculated before the loop. 1367 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1368 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1369 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1370 // Emit calculation of the linear step. 1371 EmitIgnoredExpr(CS); 1372 } 1373 } 1374 } 1375 1376 void CodeGenFunction::EmitOMPLinearClauseFinal( 1377 const OMPLoopDirective &D, 1378 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1379 if (!HaveInsertPoint()) 1380 return; 1381 llvm::BasicBlock *DoneBB = nullptr; 1382 // Emit the final values of the linear variables. 1383 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1384 auto IC = C->varlist_begin(); 1385 for (auto *F : C->finals()) { 1386 if (!DoneBB) { 1387 if (auto *Cond = CondGen(*this)) { 1388 // If the first post-update expression is found, emit conditional 1389 // block if it was requested. 1390 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1391 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1392 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1393 EmitBlock(ThenBB); 1394 } 1395 } 1396 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1397 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1398 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1399 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1400 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1401 CodeGenFunction::OMPPrivateScope VarScope(*this); 1402 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1403 (void)VarScope.Privatize(); 1404 EmitIgnoredExpr(F); 1405 ++IC; 1406 } 1407 if (auto *PostUpdate = C->getPostUpdateExpr()) 1408 EmitIgnoredExpr(PostUpdate); 1409 } 1410 if (DoneBB) 1411 EmitBlock(DoneBB, /*IsFinished=*/true); 1412 } 1413 1414 static void emitAlignedClause(CodeGenFunction &CGF, 1415 const OMPExecutableDirective &D) { 1416 if (!CGF.HaveInsertPoint()) 1417 return; 1418 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1419 unsigned ClauseAlignment = 0; 1420 if (auto AlignmentExpr = Clause->getAlignment()) { 1421 auto AlignmentCI = 1422 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1423 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1424 } 1425 for (auto E : Clause->varlists()) { 1426 unsigned Alignment = ClauseAlignment; 1427 if (Alignment == 0) { 1428 // OpenMP [2.8.1, Description] 1429 // If no optional parameter is specified, implementation-defined default 1430 // alignments for SIMD instructions on the target platforms are assumed. 1431 Alignment = 1432 CGF.getContext() 1433 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1434 E->getType()->getPointeeType())) 1435 .getQuantity(); 1436 } 1437 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1438 "alignment is not power of 2"); 1439 if (Alignment != 0) { 1440 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1441 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1442 } 1443 } 1444 } 1445 } 1446 1447 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1448 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1449 if (!HaveInsertPoint()) 1450 return; 1451 auto I = S.private_counters().begin(); 1452 for (auto *E : S.counters()) { 1453 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1454 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1455 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1456 // Emit var without initialization. 1457 if (!LocalDeclMap.count(PrivateVD)) { 1458 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1459 EmitAutoVarCleanups(VarEmission); 1460 } 1461 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1462 /*RefersToEnclosingVariableOrCapture=*/false, 1463 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1464 return EmitLValue(&DRE).getAddress(); 1465 }); 1466 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1467 VD->hasGlobalStorage()) { 1468 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1469 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1470 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1471 E->getType(), VK_LValue, E->getExprLoc()); 1472 return EmitLValue(&DRE).getAddress(); 1473 }); 1474 } 1475 ++I; 1476 } 1477 } 1478 1479 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1480 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1481 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1482 if (!CGF.HaveInsertPoint()) 1483 return; 1484 { 1485 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1486 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1487 (void)PreCondScope.Privatize(); 1488 // Get initial values of real counters. 1489 for (auto I : S.inits()) { 1490 CGF.EmitIgnoredExpr(I); 1491 } 1492 } 1493 // Check that loop is executed at least one time. 1494 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1495 } 1496 1497 void CodeGenFunction::EmitOMPLinearClause( 1498 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1499 if (!HaveInsertPoint()) 1500 return; 1501 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1502 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1503 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1504 for (auto *C : LoopDirective->counters()) { 1505 SIMDLCVs.insert( 1506 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1507 } 1508 } 1509 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1510 auto CurPrivate = C->privates().begin(); 1511 for (auto *E : C->varlists()) { 1512 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1513 auto *PrivateVD = 1514 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1515 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1516 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1517 // Emit private VarDecl with copy init. 1518 EmitVarDecl(*PrivateVD); 1519 return GetAddrOfLocalVar(PrivateVD); 1520 }); 1521 assert(IsRegistered && "linear var already registered as private"); 1522 // Silence the warning about unused variable. 1523 (void)IsRegistered; 1524 } else 1525 EmitVarDecl(*PrivateVD); 1526 ++CurPrivate; 1527 } 1528 } 1529 } 1530 1531 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1532 const OMPExecutableDirective &D, 1533 bool IsMonotonic) { 1534 if (!CGF.HaveInsertPoint()) 1535 return; 1536 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1537 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1538 /*ignoreResult=*/true); 1539 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1540 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1541 // In presence of finite 'safelen', it may be unsafe to mark all 1542 // the memory instructions parallel, because loop-carried 1543 // dependences of 'safelen' iterations are possible. 1544 if (!IsMonotonic) 1545 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1546 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1547 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1548 /*ignoreResult=*/true); 1549 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1550 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1551 // In presence of finite 'safelen', it may be unsafe to mark all 1552 // the memory instructions parallel, because loop-carried 1553 // dependences of 'safelen' iterations are possible. 1554 CGF.LoopStack.setParallel(false); 1555 } 1556 } 1557 1558 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1559 bool IsMonotonic) { 1560 // Walk clauses and process safelen/lastprivate. 1561 LoopStack.setParallel(!IsMonotonic); 1562 LoopStack.setVectorizeEnable(true); 1563 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1564 } 1565 1566 void CodeGenFunction::EmitOMPSimdFinal( 1567 const OMPLoopDirective &D, 1568 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1569 if (!HaveInsertPoint()) 1570 return; 1571 llvm::BasicBlock *DoneBB = nullptr; 1572 auto IC = D.counters().begin(); 1573 auto IPC = D.private_counters().begin(); 1574 for (auto F : D.finals()) { 1575 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1576 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1577 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1578 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1579 OrigVD->hasGlobalStorage() || CED) { 1580 if (!DoneBB) { 1581 if (auto *Cond = CondGen(*this)) { 1582 // If the first post-update expression is found, emit conditional 1583 // block if it was requested. 1584 auto *ThenBB = createBasicBlock(".omp.final.then"); 1585 DoneBB = createBasicBlock(".omp.final.done"); 1586 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1587 EmitBlock(ThenBB); 1588 } 1589 } 1590 Address OrigAddr = Address::invalid(); 1591 if (CED) 1592 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1593 else { 1594 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1595 /*RefersToEnclosingVariableOrCapture=*/false, 1596 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1597 OrigAddr = EmitLValue(&DRE).getAddress(); 1598 } 1599 OMPPrivateScope VarScope(*this); 1600 VarScope.addPrivate(OrigVD, 1601 [OrigAddr]() -> Address { return OrigAddr; }); 1602 (void)VarScope.Privatize(); 1603 EmitIgnoredExpr(F); 1604 } 1605 ++IC; 1606 ++IPC; 1607 } 1608 if (DoneBB) 1609 EmitBlock(DoneBB, /*IsFinished=*/true); 1610 } 1611 1612 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1613 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1614 OMPLoopScope PreInitScope(CGF, S); 1615 // if (PreCond) { 1616 // for (IV in 0..LastIteration) BODY; 1617 // <Final counter/linear vars updates>; 1618 // } 1619 // 1620 1621 // Emit: if (PreCond) - begin. 1622 // If the condition constant folds and can be elided, avoid emitting the 1623 // whole loop. 1624 bool CondConstant; 1625 llvm::BasicBlock *ContBlock = nullptr; 1626 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1627 if (!CondConstant) 1628 return; 1629 } else { 1630 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1631 ContBlock = CGF.createBasicBlock("simd.if.end"); 1632 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1633 CGF.getProfileCount(&S)); 1634 CGF.EmitBlock(ThenBlock); 1635 CGF.incrementProfileCounter(&S); 1636 } 1637 1638 // Emit the loop iteration variable. 1639 const Expr *IVExpr = S.getIterationVariable(); 1640 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1641 CGF.EmitVarDecl(*IVDecl); 1642 CGF.EmitIgnoredExpr(S.getInit()); 1643 1644 // Emit the iterations count variable. 1645 // If it is not a variable, Sema decided to calculate iterations count on 1646 // each iteration (e.g., it is foldable into a constant). 1647 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1648 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1649 // Emit calculation of the iterations count. 1650 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1651 } 1652 1653 CGF.EmitOMPSimdInit(S); 1654 1655 emitAlignedClause(CGF, S); 1656 CGF.EmitOMPLinearClauseInit(S); 1657 { 1658 OMPPrivateScope LoopScope(CGF); 1659 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1660 CGF.EmitOMPLinearClause(S, LoopScope); 1661 CGF.EmitOMPPrivateClause(S, LoopScope); 1662 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1663 bool HasLastprivateClause = 1664 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1665 (void)LoopScope.Privatize(); 1666 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1667 S.getInc(), 1668 [&S](CodeGenFunction &CGF) { 1669 CGF.EmitOMPLoopBody(S, JumpDest()); 1670 CGF.EmitStopPoint(&S); 1671 }, 1672 [](CodeGenFunction &) {}); 1673 CGF.EmitOMPSimdFinal( 1674 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1675 // Emit final copy of the lastprivate variables at the end of loops. 1676 if (HasLastprivateClause) 1677 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1678 CGF.EmitOMPReductionClauseFinal(S); 1679 emitPostUpdateForReductionClause( 1680 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1681 } 1682 CGF.EmitOMPLinearClauseFinal( 1683 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1684 // Emit: if (PreCond) - end. 1685 if (ContBlock) { 1686 CGF.EmitBranch(ContBlock); 1687 CGF.EmitBlock(ContBlock, true); 1688 } 1689 }; 1690 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1691 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1692 } 1693 1694 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1695 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1696 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1697 auto &RT = CGM.getOpenMPRuntime(); 1698 1699 const Expr *IVExpr = S.getIterationVariable(); 1700 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1701 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1702 1703 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1704 1705 // Start the loop with a block that tests the condition. 1706 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1707 EmitBlock(CondBlock); 1708 LoopStack.push(CondBlock, Builder.getCurrentDebugLocation()); 1709 1710 llvm::Value *BoolCondVal = nullptr; 1711 if (!DynamicOrOrdered) { 1712 // UB = min(UB, GlobalUB) 1713 EmitIgnoredExpr(S.getEnsureUpperBound()); 1714 // IV = LB 1715 EmitIgnoredExpr(S.getInit()); 1716 // IV < UB 1717 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1718 } else { 1719 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1720 LB, UB, ST); 1721 } 1722 1723 // If there are any cleanups between here and the loop-exit scope, 1724 // create a block to stage a loop exit along. 1725 auto ExitBlock = LoopExit.getBlock(); 1726 if (LoopScope.requiresCleanups()) 1727 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1728 1729 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1730 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1731 if (ExitBlock != LoopExit.getBlock()) { 1732 EmitBlock(ExitBlock); 1733 EmitBranchThroughCleanup(LoopExit); 1734 } 1735 EmitBlock(LoopBody); 1736 1737 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1738 // LB for loop condition and emitted it above). 1739 if (DynamicOrOrdered) 1740 EmitIgnoredExpr(S.getInit()); 1741 1742 // Create a block for the increment. 1743 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1744 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1745 1746 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1747 // with dynamic/guided scheduling and without ordered clause. 1748 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1749 LoopStack.setParallel(!IsMonotonic); 1750 else 1751 EmitOMPSimdInit(S, IsMonotonic); 1752 1753 SourceLocation Loc = S.getLocStart(); 1754 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1755 [&S, LoopExit](CodeGenFunction &CGF) { 1756 CGF.EmitOMPLoopBody(S, LoopExit); 1757 CGF.EmitStopPoint(&S); 1758 }, 1759 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1760 if (Ordered) { 1761 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1762 CGF, Loc, IVSize, IVSigned); 1763 } 1764 }); 1765 1766 EmitBlock(Continue.getBlock()); 1767 BreakContinueStack.pop_back(); 1768 if (!DynamicOrOrdered) { 1769 // Emit "LB = LB + Stride", "UB = UB + Stride". 1770 EmitIgnoredExpr(S.getNextLowerBound()); 1771 EmitIgnoredExpr(S.getNextUpperBound()); 1772 } 1773 1774 EmitBranch(CondBlock); 1775 LoopStack.pop(); 1776 // Emit the fall-through block. 1777 EmitBlock(LoopExit.getBlock()); 1778 1779 // Tell the runtime we are done. 1780 if (!DynamicOrOrdered) 1781 RT.emitForStaticFinish(*this, S.getLocEnd()); 1782 1783 } 1784 1785 void CodeGenFunction::EmitOMPForOuterLoop( 1786 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1787 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1788 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1789 auto &RT = CGM.getOpenMPRuntime(); 1790 1791 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1792 const bool DynamicOrOrdered = 1793 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1794 1795 assert((Ordered || 1796 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1797 /*Chunked=*/Chunk != nullptr)) && 1798 "static non-chunked schedule does not need outer loop"); 1799 1800 // Emit outer loop. 1801 // 1802 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1803 // When schedule(dynamic,chunk_size) is specified, the iterations are 1804 // distributed to threads in the team in chunks as the threads request them. 1805 // Each thread executes a chunk of iterations, then requests another chunk, 1806 // until no chunks remain to be distributed. Each chunk contains chunk_size 1807 // iterations, except for the last chunk to be distributed, which may have 1808 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1809 // 1810 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1811 // to threads in the team in chunks as the executing threads request them. 1812 // Each thread executes a chunk of iterations, then requests another chunk, 1813 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1814 // each chunk is proportional to the number of unassigned iterations divided 1815 // by the number of threads in the team, decreasing to 1. For a chunk_size 1816 // with value k (greater than 1), the size of each chunk is determined in the 1817 // same way, with the restriction that the chunks do not contain fewer than k 1818 // iterations (except for the last chunk to be assigned, which may have fewer 1819 // than k iterations). 1820 // 1821 // When schedule(auto) is specified, the decision regarding scheduling is 1822 // delegated to the compiler and/or runtime system. The programmer gives the 1823 // implementation the freedom to choose any possible mapping of iterations to 1824 // threads in the team. 1825 // 1826 // When schedule(runtime) is specified, the decision regarding scheduling is 1827 // deferred until run time, and the schedule and chunk size are taken from the 1828 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1829 // implementation defined 1830 // 1831 // while(__kmpc_dispatch_next(&LB, &UB)) { 1832 // idx = LB; 1833 // while (idx <= UB) { BODY; ++idx; 1834 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1835 // } // inner loop 1836 // } 1837 // 1838 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1839 // When schedule(static, chunk_size) is specified, iterations are divided into 1840 // chunks of size chunk_size, and the chunks are assigned to the threads in 1841 // the team in a round-robin fashion in the order of the thread number. 1842 // 1843 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1844 // while (idx <= UB) { BODY; ++idx; } // inner loop 1845 // LB = LB + ST; 1846 // UB = UB + ST; 1847 // } 1848 // 1849 1850 const Expr *IVExpr = S.getIterationVariable(); 1851 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1852 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1853 1854 if (DynamicOrOrdered) { 1855 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1856 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1857 IVSigned, Ordered, UBVal, Chunk); 1858 } else { 1859 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1860 Ordered, IL, LB, UB, ST, Chunk); 1861 } 1862 1863 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1864 ST, IL, Chunk); 1865 } 1866 1867 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1868 OpenMPDistScheduleClauseKind ScheduleKind, 1869 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1870 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1871 1872 auto &RT = CGM.getOpenMPRuntime(); 1873 1874 // Emit outer loop. 1875 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1876 // dynamic 1877 // 1878 1879 const Expr *IVExpr = S.getIterationVariable(); 1880 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1881 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1882 1883 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1884 IVSize, IVSigned, /* Ordered = */ false, 1885 IL, LB, UB, ST, Chunk); 1886 1887 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1888 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1889 } 1890 1891 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 1892 const OMPDistributeParallelForDirective &S) { 1893 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1894 CGM.getOpenMPRuntime().emitInlinedDirective( 1895 *this, OMPD_distribute_parallel_for, 1896 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1897 OMPLoopScope PreInitScope(CGF, S); 1898 CGF.EmitStmt( 1899 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1900 }); 1901 } 1902 1903 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 1904 const OMPDistributeParallelForSimdDirective &S) { 1905 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1906 CGM.getOpenMPRuntime().emitInlinedDirective( 1907 *this, OMPD_distribute_parallel_for_simd, 1908 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1909 OMPLoopScope PreInitScope(CGF, S); 1910 CGF.EmitStmt( 1911 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1912 }); 1913 } 1914 1915 void CodeGenFunction::EmitOMPDistributeSimdDirective( 1916 const OMPDistributeSimdDirective &S) { 1917 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1918 CGM.getOpenMPRuntime().emitInlinedDirective( 1919 *this, OMPD_distribute_simd, 1920 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1921 OMPLoopScope PreInitScope(CGF, S); 1922 CGF.EmitStmt( 1923 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1924 }); 1925 } 1926 1927 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 1928 const OMPTargetParallelForSimdDirective &S) { 1929 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1930 CGM.getOpenMPRuntime().emitInlinedDirective( 1931 *this, OMPD_target_parallel_for_simd, 1932 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1933 OMPLoopScope PreInitScope(CGF, S); 1934 CGF.EmitStmt( 1935 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1936 }); 1937 } 1938 1939 void CodeGenFunction::EmitOMPTargetSimdDirective( 1940 const OMPTargetSimdDirective &S) { 1941 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1942 CGM.getOpenMPRuntime().emitInlinedDirective( 1943 *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1944 OMPLoopScope PreInitScope(CGF, S); 1945 CGF.EmitStmt( 1946 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1947 }); 1948 } 1949 1950 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 1951 const OMPTeamsDistributeDirective &S) { 1952 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1953 CGM.getOpenMPRuntime().emitInlinedDirective( 1954 *this, OMPD_teams_distribute, 1955 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1956 OMPLoopScope PreInitScope(CGF, S); 1957 CGF.EmitStmt( 1958 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1959 }); 1960 } 1961 1962 /// \brief Emit a helper variable and return corresponding lvalue. 1963 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1964 const DeclRefExpr *Helper) { 1965 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1966 CGF.EmitVarDecl(*VDecl); 1967 return CGF.EmitLValue(Helper); 1968 } 1969 1970 namespace { 1971 struct ScheduleKindModifiersTy { 1972 OpenMPScheduleClauseKind Kind; 1973 OpenMPScheduleClauseModifier M1; 1974 OpenMPScheduleClauseModifier M2; 1975 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 1976 OpenMPScheduleClauseModifier M1, 1977 OpenMPScheduleClauseModifier M2) 1978 : Kind(Kind), M1(M1), M2(M2) {} 1979 }; 1980 } // namespace 1981 1982 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1983 // Emit the loop iteration variable. 1984 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1985 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1986 EmitVarDecl(*IVDecl); 1987 1988 // Emit the iterations count variable. 1989 // If it is not a variable, Sema decided to calculate iterations count on each 1990 // iteration (e.g., it is foldable into a constant). 1991 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1992 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1993 // Emit calculation of the iterations count. 1994 EmitIgnoredExpr(S.getCalcLastIteration()); 1995 } 1996 1997 auto &RT = CGM.getOpenMPRuntime(); 1998 1999 bool HasLastprivateClause; 2000 // Check pre-condition. 2001 { 2002 OMPLoopScope PreInitScope(*this, S); 2003 // Skip the entire loop if we don't meet the precondition. 2004 // If the condition constant folds and can be elided, avoid emitting the 2005 // whole loop. 2006 bool CondConstant; 2007 llvm::BasicBlock *ContBlock = nullptr; 2008 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2009 if (!CondConstant) 2010 return false; 2011 } else { 2012 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2013 ContBlock = createBasicBlock("omp.precond.end"); 2014 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2015 getProfileCount(&S)); 2016 EmitBlock(ThenBlock); 2017 incrementProfileCounter(&S); 2018 } 2019 2020 bool Ordered = false; 2021 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2022 if (OrderedClause->getNumForLoops()) 2023 RT.emitDoacrossInit(*this, S); 2024 else 2025 Ordered = true; 2026 } 2027 2028 llvm::DenseSet<const Expr *> EmittedFinals; 2029 emitAlignedClause(*this, S); 2030 EmitOMPLinearClauseInit(S); 2031 // Emit helper vars inits. 2032 LValue LB = 2033 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2034 LValue UB = 2035 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2036 LValue ST = 2037 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2038 LValue IL = 2039 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2040 2041 // Emit 'then' code. 2042 { 2043 OMPPrivateScope LoopScope(*this); 2044 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2045 // Emit implicit barrier to synchronize threads and avoid data races on 2046 // initialization of firstprivate variables and post-update of 2047 // lastprivate variables. 2048 CGM.getOpenMPRuntime().emitBarrierCall( 2049 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2050 /*ForceSimpleCall=*/true); 2051 } 2052 EmitOMPPrivateClause(S, LoopScope); 2053 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2054 EmitOMPReductionClauseInit(S, LoopScope); 2055 EmitOMPPrivateLoopCounters(S, LoopScope); 2056 EmitOMPLinearClause(S, LoopScope); 2057 (void)LoopScope.Privatize(); 2058 2059 // Detect the loop schedule kind and chunk. 2060 llvm::Value *Chunk = nullptr; 2061 OpenMPScheduleTy ScheduleKind; 2062 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2063 ScheduleKind.Schedule = C->getScheduleKind(); 2064 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2065 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2066 if (const auto *Ch = C->getChunkSize()) { 2067 Chunk = EmitScalarExpr(Ch); 2068 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2069 S.getIterationVariable()->getType(), 2070 S.getLocStart()); 2071 } 2072 } 2073 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2074 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2075 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2076 // If the static schedule kind is specified or if the ordered clause is 2077 // specified, and if no monotonic modifier is specified, the effect will 2078 // be as if the monotonic modifier was specified. 2079 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2080 /* Chunked */ Chunk != nullptr) && 2081 !Ordered) { 2082 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2083 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2084 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2085 // When no chunk_size is specified, the iteration space is divided into 2086 // chunks that are approximately equal in size, and at most one chunk is 2087 // distributed to each thread. Note that the size of the chunks is 2088 // unspecified in this case. 2089 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 2090 IVSize, IVSigned, Ordered, 2091 IL.getAddress(), LB.getAddress(), 2092 UB.getAddress(), ST.getAddress()); 2093 auto LoopExit = 2094 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2095 // UB = min(UB, GlobalUB); 2096 EmitIgnoredExpr(S.getEnsureUpperBound()); 2097 // IV = LB; 2098 EmitIgnoredExpr(S.getInit()); 2099 // while (idx <= UB) { BODY; ++idx; } 2100 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2101 S.getInc(), 2102 [&S, LoopExit](CodeGenFunction &CGF) { 2103 CGF.EmitOMPLoopBody(S, LoopExit); 2104 CGF.EmitStopPoint(&S); 2105 }, 2106 [](CodeGenFunction &) {}); 2107 EmitBlock(LoopExit.getBlock()); 2108 // Tell the runtime we are done. 2109 RT.emitForStaticFinish(*this, S.getLocStart()); 2110 } else { 2111 const bool IsMonotonic = 2112 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2113 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2114 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2115 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2116 // Emit the outer loop, which requests its work chunk [LB..UB] from 2117 // runtime and runs the inner loop to process it. 2118 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2119 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2120 IL.getAddress(), Chunk); 2121 } 2122 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2123 EmitOMPSimdFinal(S, 2124 [&](CodeGenFunction &CGF) -> llvm::Value * { 2125 return CGF.Builder.CreateIsNotNull( 2126 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2127 }); 2128 } 2129 EmitOMPReductionClauseFinal(S); 2130 // Emit post-update of the reduction variables if IsLastIter != 0. 2131 emitPostUpdateForReductionClause( 2132 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2133 return CGF.Builder.CreateIsNotNull( 2134 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2135 }); 2136 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2137 if (HasLastprivateClause) 2138 EmitOMPLastprivateClauseFinal( 2139 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2140 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2141 } 2142 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2143 return CGF.Builder.CreateIsNotNull( 2144 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2145 }); 2146 // We're now done with the loop, so jump to the continuation block. 2147 if (ContBlock) { 2148 EmitBranch(ContBlock); 2149 EmitBlock(ContBlock, true); 2150 } 2151 } 2152 return HasLastprivateClause; 2153 } 2154 2155 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2156 bool HasLastprivates = false; 2157 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2158 PrePostActionTy &) { 2159 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2160 }; 2161 { 2162 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2163 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2164 S.hasCancel()); 2165 } 2166 2167 // Emit an implicit barrier at the end. 2168 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2169 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2170 } 2171 } 2172 2173 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2174 bool HasLastprivates = false; 2175 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2176 PrePostActionTy &) { 2177 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2178 }; 2179 { 2180 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2181 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2182 } 2183 2184 // Emit an implicit barrier at the end. 2185 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2186 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2187 } 2188 } 2189 2190 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2191 const Twine &Name, 2192 llvm::Value *Init = nullptr) { 2193 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2194 if (Init) 2195 CGF.EmitScalarInit(Init, LVal); 2196 return LVal; 2197 } 2198 2199 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2200 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2201 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2202 bool HasLastprivates = false; 2203 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2204 PrePostActionTy &) { 2205 auto &C = CGF.CGM.getContext(); 2206 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2207 // Emit helper vars inits. 2208 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2209 CGF.Builder.getInt32(0)); 2210 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2211 : CGF.Builder.getInt32(0); 2212 LValue UB = 2213 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2214 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2215 CGF.Builder.getInt32(1)); 2216 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2217 CGF.Builder.getInt32(0)); 2218 // Loop counter. 2219 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2220 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2221 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2222 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2223 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2224 // Generate condition for loop. 2225 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2226 OK_Ordinary, S.getLocStart(), 2227 /*fpContractable=*/false); 2228 // Increment for loop counter. 2229 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2230 S.getLocStart()); 2231 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2232 // Iterate through all sections and emit a switch construct: 2233 // switch (IV) { 2234 // case 0: 2235 // <SectionStmt[0]>; 2236 // break; 2237 // ... 2238 // case <NumSection> - 1: 2239 // <SectionStmt[<NumSection> - 1]>; 2240 // break; 2241 // } 2242 // .omp.sections.exit: 2243 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2244 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2245 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2246 CS == nullptr ? 1 : CS->size()); 2247 if (CS) { 2248 unsigned CaseNumber = 0; 2249 for (auto *SubStmt : CS->children()) { 2250 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2251 CGF.EmitBlock(CaseBB); 2252 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2253 CGF.EmitStmt(SubStmt); 2254 CGF.EmitBranch(ExitBB); 2255 ++CaseNumber; 2256 } 2257 } else { 2258 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2259 CGF.EmitBlock(CaseBB); 2260 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2261 CGF.EmitStmt(Stmt); 2262 CGF.EmitBranch(ExitBB); 2263 } 2264 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2265 }; 2266 2267 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2268 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2269 // Emit implicit barrier to synchronize threads and avoid data races on 2270 // initialization of firstprivate variables and post-update of lastprivate 2271 // variables. 2272 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2273 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2274 /*ForceSimpleCall=*/true); 2275 } 2276 CGF.EmitOMPPrivateClause(S, LoopScope); 2277 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2278 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2279 (void)LoopScope.Privatize(); 2280 2281 // Emit static non-chunked loop. 2282 OpenMPScheduleTy ScheduleKind; 2283 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2284 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2285 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2286 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2287 UB.getAddress(), ST.getAddress()); 2288 // UB = min(UB, GlobalUB); 2289 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2290 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2291 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2292 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2293 // IV = LB; 2294 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2295 // while (idx <= UB) { BODY; ++idx; } 2296 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2297 [](CodeGenFunction &) {}); 2298 // Tell the runtime we are done. 2299 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 2300 CGF.EmitOMPReductionClauseFinal(S); 2301 // Emit post-update of the reduction variables if IsLastIter != 0. 2302 emitPostUpdateForReductionClause( 2303 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2304 return CGF.Builder.CreateIsNotNull( 2305 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2306 }); 2307 2308 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2309 if (HasLastprivates) 2310 CGF.EmitOMPLastprivateClauseFinal( 2311 S, /*NoFinals=*/false, 2312 CGF.Builder.CreateIsNotNull( 2313 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2314 }; 2315 2316 bool HasCancel = false; 2317 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2318 HasCancel = OSD->hasCancel(); 2319 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2320 HasCancel = OPSD->hasCancel(); 2321 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2322 HasCancel); 2323 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2324 // clause. Otherwise the barrier will be generated by the codegen for the 2325 // directive. 2326 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2327 // Emit implicit barrier to synchronize threads and avoid data races on 2328 // initialization of firstprivate variables. 2329 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2330 OMPD_unknown); 2331 } 2332 } 2333 2334 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2335 { 2336 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2337 EmitSections(S); 2338 } 2339 // Emit an implicit barrier at the end. 2340 if (!S.getSingleClause<OMPNowaitClause>()) { 2341 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2342 OMPD_sections); 2343 } 2344 } 2345 2346 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2347 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2348 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2349 }; 2350 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2351 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2352 S.hasCancel()); 2353 } 2354 2355 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2356 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2357 llvm::SmallVector<const Expr *, 8> DestExprs; 2358 llvm::SmallVector<const Expr *, 8> SrcExprs; 2359 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2360 // Check if there are any 'copyprivate' clauses associated with this 2361 // 'single' construct. 2362 // Build a list of copyprivate variables along with helper expressions 2363 // (<source>, <destination>, <destination>=<source> expressions) 2364 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2365 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2366 DestExprs.append(C->destination_exprs().begin(), 2367 C->destination_exprs().end()); 2368 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2369 AssignmentOps.append(C->assignment_ops().begin(), 2370 C->assignment_ops().end()); 2371 } 2372 // Emit code for 'single' region along with 'copyprivate' clauses 2373 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2374 Action.Enter(CGF); 2375 OMPPrivateScope SingleScope(CGF); 2376 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2377 CGF.EmitOMPPrivateClause(S, SingleScope); 2378 (void)SingleScope.Privatize(); 2379 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2380 }; 2381 { 2382 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2383 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2384 CopyprivateVars, DestExprs, 2385 SrcExprs, AssignmentOps); 2386 } 2387 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2388 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2389 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2390 CGM.getOpenMPRuntime().emitBarrierCall( 2391 *this, S.getLocStart(), 2392 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2393 } 2394 } 2395 2396 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2397 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2398 Action.Enter(CGF); 2399 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2400 }; 2401 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2402 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2403 } 2404 2405 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2406 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2407 Action.Enter(CGF); 2408 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2409 }; 2410 Expr *Hint = nullptr; 2411 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2412 Hint = HintClause->getHint(); 2413 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2414 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2415 S.getDirectiveName().getAsString(), 2416 CodeGen, S.getLocStart(), Hint); 2417 } 2418 2419 void CodeGenFunction::EmitOMPParallelForDirective( 2420 const OMPParallelForDirective &S) { 2421 // Emit directive as a combined directive that consists of two implicit 2422 // directives: 'parallel' with 'for' directive. 2423 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2424 CGF.EmitOMPWorksharingLoop(S); 2425 }; 2426 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2427 } 2428 2429 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2430 const OMPParallelForSimdDirective &S) { 2431 // Emit directive as a combined directive that consists of two implicit 2432 // directives: 'parallel' with 'for' directive. 2433 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2434 CGF.EmitOMPWorksharingLoop(S); 2435 }; 2436 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2437 } 2438 2439 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2440 const OMPParallelSectionsDirective &S) { 2441 // Emit directive as a combined directive that consists of two implicit 2442 // directives: 'parallel' with 'sections' directive. 2443 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2444 CGF.EmitSections(S); 2445 }; 2446 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2447 } 2448 2449 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2450 const RegionCodeGenTy &BodyGen, 2451 const TaskGenTy &TaskGen, 2452 OMPTaskDataTy &Data) { 2453 // Emit outlined function for task construct. 2454 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2455 auto *I = CS->getCapturedDecl()->param_begin(); 2456 auto *PartId = std::next(I); 2457 auto *TaskT = std::next(I, 4); 2458 // Check if the task is final 2459 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2460 // If the condition constant folds and can be elided, try to avoid emitting 2461 // the condition and the dead arm of the if/else. 2462 auto *Cond = Clause->getCondition(); 2463 bool CondConstant; 2464 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2465 Data.Final.setInt(CondConstant); 2466 else 2467 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2468 } else { 2469 // By default the task is not final. 2470 Data.Final.setInt(/*IntVal=*/false); 2471 } 2472 // Check if the task has 'priority' clause. 2473 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2474 auto *Prio = Clause->getPriority(); 2475 Data.Priority.setInt(/*IntVal=*/true); 2476 Data.Priority.setPointer(EmitScalarConversion( 2477 EmitScalarExpr(Prio), Prio->getType(), 2478 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2479 Prio->getExprLoc())); 2480 } 2481 // The first function argument for tasks is a thread id, the second one is a 2482 // part id (0 for tied tasks, >=0 for untied task). 2483 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2484 // Get list of private variables. 2485 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2486 auto IRef = C->varlist_begin(); 2487 for (auto *IInit : C->private_copies()) { 2488 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2489 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2490 Data.PrivateVars.push_back(*IRef); 2491 Data.PrivateCopies.push_back(IInit); 2492 } 2493 ++IRef; 2494 } 2495 } 2496 EmittedAsPrivate.clear(); 2497 // Get list of firstprivate variables. 2498 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2499 auto IRef = C->varlist_begin(); 2500 auto IElemInitRef = C->inits().begin(); 2501 for (auto *IInit : C->private_copies()) { 2502 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2503 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2504 Data.FirstprivateVars.push_back(*IRef); 2505 Data.FirstprivateCopies.push_back(IInit); 2506 Data.FirstprivateInits.push_back(*IElemInitRef); 2507 } 2508 ++IRef; 2509 ++IElemInitRef; 2510 } 2511 } 2512 // Get list of lastprivate variables (for taskloops). 2513 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2514 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2515 auto IRef = C->varlist_begin(); 2516 auto ID = C->destination_exprs().begin(); 2517 for (auto *IInit : C->private_copies()) { 2518 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2519 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2520 Data.LastprivateVars.push_back(*IRef); 2521 Data.LastprivateCopies.push_back(IInit); 2522 } 2523 LastprivateDstsOrigs.insert( 2524 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2525 cast<DeclRefExpr>(*IRef)}); 2526 ++IRef; 2527 ++ID; 2528 } 2529 } 2530 // Build list of dependences. 2531 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2532 for (auto *IRef : C->varlists()) 2533 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2534 auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2535 CodeGenFunction &CGF, PrePostActionTy &Action) { 2536 // Set proper addresses for generated private copies. 2537 OMPPrivateScope Scope(CGF); 2538 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2539 !Data.LastprivateVars.empty()) { 2540 auto *CopyFn = CGF.Builder.CreateLoad( 2541 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2542 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2543 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2544 // Map privates. 2545 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2546 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2547 CallArgs.push_back(PrivatesPtr); 2548 for (auto *E : Data.PrivateVars) { 2549 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2550 Address PrivatePtr = CGF.CreateMemTemp( 2551 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2552 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2553 CallArgs.push_back(PrivatePtr.getPointer()); 2554 } 2555 for (auto *E : Data.FirstprivateVars) { 2556 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2557 Address PrivatePtr = 2558 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2559 ".firstpriv.ptr.addr"); 2560 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2561 CallArgs.push_back(PrivatePtr.getPointer()); 2562 } 2563 for (auto *E : Data.LastprivateVars) { 2564 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2565 Address PrivatePtr = 2566 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2567 ".lastpriv.ptr.addr"); 2568 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2569 CallArgs.push_back(PrivatePtr.getPointer()); 2570 } 2571 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2572 for (auto &&Pair : LastprivateDstsOrigs) { 2573 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2574 DeclRefExpr DRE( 2575 const_cast<VarDecl *>(OrigVD), 2576 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2577 OrigVD) != nullptr, 2578 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2579 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2580 return CGF.EmitLValue(&DRE).getAddress(); 2581 }); 2582 } 2583 for (auto &&Pair : PrivatePtrs) { 2584 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2585 CGF.getContext().getDeclAlign(Pair.first)); 2586 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2587 } 2588 } 2589 (void)Scope.Privatize(); 2590 2591 Action.Enter(CGF); 2592 BodyGen(CGF); 2593 }; 2594 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2595 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2596 Data.NumberOfParts); 2597 OMPLexicalScope Scope(*this, S); 2598 TaskGen(*this, OutlinedFn, Data); 2599 } 2600 2601 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2602 // Emit outlined function for task construct. 2603 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2604 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2605 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2606 const Expr *IfCond = nullptr; 2607 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2608 if (C->getNameModifier() == OMPD_unknown || 2609 C->getNameModifier() == OMPD_task) { 2610 IfCond = C->getCondition(); 2611 break; 2612 } 2613 } 2614 2615 OMPTaskDataTy Data; 2616 // Check if we should emit tied or untied task. 2617 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2618 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2619 CGF.EmitStmt(CS->getCapturedStmt()); 2620 }; 2621 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2622 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2623 const OMPTaskDataTy &Data) { 2624 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2625 SharedsTy, CapturedStruct, IfCond, 2626 Data); 2627 }; 2628 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2629 } 2630 2631 void CodeGenFunction::EmitOMPTaskyieldDirective( 2632 const OMPTaskyieldDirective &S) { 2633 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2634 } 2635 2636 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2637 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2638 } 2639 2640 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2641 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2642 } 2643 2644 void CodeGenFunction::EmitOMPTaskgroupDirective( 2645 const OMPTaskgroupDirective &S) { 2646 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2647 Action.Enter(CGF); 2648 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2649 }; 2650 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2651 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2652 } 2653 2654 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2655 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2656 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2657 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2658 FlushClause->varlist_end()); 2659 } 2660 return llvm::None; 2661 }(), S.getLocStart()); 2662 } 2663 2664 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2665 // Emit the loop iteration variable. 2666 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2667 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2668 EmitVarDecl(*IVDecl); 2669 2670 // Emit the iterations count variable. 2671 // If it is not a variable, Sema decided to calculate iterations count on each 2672 // iteration (e.g., it is foldable into a constant). 2673 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2674 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2675 // Emit calculation of the iterations count. 2676 EmitIgnoredExpr(S.getCalcLastIteration()); 2677 } 2678 2679 auto &RT = CGM.getOpenMPRuntime(); 2680 2681 // Check pre-condition. 2682 { 2683 OMPLoopScope PreInitScope(*this, S); 2684 // Skip the entire loop if we don't meet the precondition. 2685 // If the condition constant folds and can be elided, avoid emitting the 2686 // whole loop. 2687 bool CondConstant; 2688 llvm::BasicBlock *ContBlock = nullptr; 2689 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2690 if (!CondConstant) 2691 return; 2692 } else { 2693 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2694 ContBlock = createBasicBlock("omp.precond.end"); 2695 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2696 getProfileCount(&S)); 2697 EmitBlock(ThenBlock); 2698 incrementProfileCounter(&S); 2699 } 2700 2701 // Emit 'then' code. 2702 { 2703 // Emit helper vars inits. 2704 LValue LB = 2705 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2706 LValue UB = 2707 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2708 LValue ST = 2709 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2710 LValue IL = 2711 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2712 2713 OMPPrivateScope LoopScope(*this); 2714 EmitOMPPrivateLoopCounters(S, LoopScope); 2715 (void)LoopScope.Privatize(); 2716 2717 // Detect the distribute schedule kind and chunk. 2718 llvm::Value *Chunk = nullptr; 2719 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2720 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2721 ScheduleKind = C->getDistScheduleKind(); 2722 if (const auto *Ch = C->getChunkSize()) { 2723 Chunk = EmitScalarExpr(Ch); 2724 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2725 S.getIterationVariable()->getType(), 2726 S.getLocStart()); 2727 } 2728 } 2729 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2730 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2731 2732 // OpenMP [2.10.8, distribute Construct, Description] 2733 // If dist_schedule is specified, kind must be static. If specified, 2734 // iterations are divided into chunks of size chunk_size, chunks are 2735 // assigned to the teams of the league in a round-robin fashion in the 2736 // order of the team number. When no chunk_size is specified, the 2737 // iteration space is divided into chunks that are approximately equal 2738 // in size, and at most one chunk is distributed to each team of the 2739 // league. The size of the chunks is unspecified in this case. 2740 if (RT.isStaticNonchunked(ScheduleKind, 2741 /* Chunked */ Chunk != nullptr)) { 2742 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2743 IVSize, IVSigned, /* Ordered = */ false, 2744 IL.getAddress(), LB.getAddress(), 2745 UB.getAddress(), ST.getAddress()); 2746 auto LoopExit = 2747 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2748 // UB = min(UB, GlobalUB); 2749 EmitIgnoredExpr(S.getEnsureUpperBound()); 2750 // IV = LB; 2751 EmitIgnoredExpr(S.getInit()); 2752 // while (idx <= UB) { BODY; ++idx; } 2753 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2754 S.getInc(), 2755 [&S, LoopExit](CodeGenFunction &CGF) { 2756 CGF.EmitOMPLoopBody(S, LoopExit); 2757 CGF.EmitStopPoint(&S); 2758 }, 2759 [](CodeGenFunction &) {}); 2760 EmitBlock(LoopExit.getBlock()); 2761 // Tell the runtime we are done. 2762 RT.emitForStaticFinish(*this, S.getLocStart()); 2763 } else { 2764 // Emit the outer loop, which requests its work chunk [LB..UB] from 2765 // runtime and runs the inner loop to process it. 2766 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2767 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2768 IL.getAddress(), Chunk); 2769 } 2770 } 2771 2772 // We're now done with the loop, so jump to the continuation block. 2773 if (ContBlock) { 2774 EmitBranch(ContBlock); 2775 EmitBlock(ContBlock, true); 2776 } 2777 } 2778 } 2779 2780 void CodeGenFunction::EmitOMPDistributeDirective( 2781 const OMPDistributeDirective &S) { 2782 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2783 CGF.EmitOMPDistributeLoop(S); 2784 }; 2785 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2786 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2787 false); 2788 } 2789 2790 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2791 const CapturedStmt *S) { 2792 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2793 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2794 CGF.CapturedStmtInfo = &CapStmtInfo; 2795 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2796 Fn->addFnAttr(llvm::Attribute::NoInline); 2797 return Fn; 2798 } 2799 2800 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2801 if (!S.getAssociatedStmt()) { 2802 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2803 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2804 return; 2805 } 2806 auto *C = S.getSingleClause<OMPSIMDClause>(); 2807 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2808 PrePostActionTy &Action) { 2809 if (C) { 2810 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2811 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2812 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2813 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2814 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2815 } else { 2816 Action.Enter(CGF); 2817 CGF.EmitStmt( 2818 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2819 } 2820 }; 2821 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2822 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2823 } 2824 2825 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2826 QualType SrcType, QualType DestType, 2827 SourceLocation Loc) { 2828 assert(CGF.hasScalarEvaluationKind(DestType) && 2829 "DestType must have scalar evaluation kind."); 2830 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2831 return Val.isScalar() 2832 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2833 Loc) 2834 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2835 DestType, Loc); 2836 } 2837 2838 static CodeGenFunction::ComplexPairTy 2839 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2840 QualType DestType, SourceLocation Loc) { 2841 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2842 "DestType must have complex evaluation kind."); 2843 CodeGenFunction::ComplexPairTy ComplexVal; 2844 if (Val.isScalar()) { 2845 // Convert the input element to the element type of the complex. 2846 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2847 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2848 DestElementType, Loc); 2849 ComplexVal = CodeGenFunction::ComplexPairTy( 2850 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2851 } else { 2852 assert(Val.isComplex() && "Must be a scalar or complex."); 2853 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2854 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2855 ComplexVal.first = CGF.EmitScalarConversion( 2856 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2857 ComplexVal.second = CGF.EmitScalarConversion( 2858 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2859 } 2860 return ComplexVal; 2861 } 2862 2863 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2864 LValue LVal, RValue RVal) { 2865 if (LVal.isGlobalReg()) { 2866 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2867 } else { 2868 CGF.EmitAtomicStore(RVal, LVal, 2869 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2870 : llvm::AtomicOrdering::Monotonic, 2871 LVal.isVolatile(), /*IsInit=*/false); 2872 } 2873 } 2874 2875 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2876 QualType RValTy, SourceLocation Loc) { 2877 switch (getEvaluationKind(LVal.getType())) { 2878 case TEK_Scalar: 2879 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2880 *this, RVal, RValTy, LVal.getType(), Loc)), 2881 LVal); 2882 break; 2883 case TEK_Complex: 2884 EmitStoreOfComplex( 2885 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 2886 /*isInit=*/false); 2887 break; 2888 case TEK_Aggregate: 2889 llvm_unreachable("Must be a scalar or complex."); 2890 } 2891 } 2892 2893 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2894 const Expr *X, const Expr *V, 2895 SourceLocation Loc) { 2896 // v = x; 2897 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2898 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2899 LValue XLValue = CGF.EmitLValue(X); 2900 LValue VLValue = CGF.EmitLValue(V); 2901 RValue Res = XLValue.isGlobalReg() 2902 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2903 : CGF.EmitAtomicLoad( 2904 XLValue, Loc, 2905 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2906 : llvm::AtomicOrdering::Monotonic, 2907 XLValue.isVolatile()); 2908 // OpenMP, 2.12.6, atomic Construct 2909 // Any atomic construct with a seq_cst clause forces the atomically 2910 // performed operation to include an implicit flush operation without a 2911 // list. 2912 if (IsSeqCst) 2913 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2914 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 2915 } 2916 2917 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2918 const Expr *X, const Expr *E, 2919 SourceLocation Loc) { 2920 // x = expr; 2921 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2922 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2923 // OpenMP, 2.12.6, atomic Construct 2924 // Any atomic construct with a seq_cst clause forces the atomically 2925 // performed operation to include an implicit flush operation without a 2926 // list. 2927 if (IsSeqCst) 2928 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2929 } 2930 2931 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2932 RValue Update, 2933 BinaryOperatorKind BO, 2934 llvm::AtomicOrdering AO, 2935 bool IsXLHSInRHSPart) { 2936 auto &Context = CGF.CGM.getContext(); 2937 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2938 // expression is simple and atomic is allowed for the given type for the 2939 // target platform. 2940 if (BO == BO_Comma || !Update.isScalar() || 2941 !Update.getScalarVal()->getType()->isIntegerTy() || 2942 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2943 (Update.getScalarVal()->getType() != 2944 X.getAddress().getElementType())) || 2945 !X.getAddress().getElementType()->isIntegerTy() || 2946 !Context.getTargetInfo().hasBuiltinAtomic( 2947 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 2948 return std::make_pair(false, RValue::get(nullptr)); 2949 2950 llvm::AtomicRMWInst::BinOp RMWOp; 2951 switch (BO) { 2952 case BO_Add: 2953 RMWOp = llvm::AtomicRMWInst::Add; 2954 break; 2955 case BO_Sub: 2956 if (!IsXLHSInRHSPart) 2957 return std::make_pair(false, RValue::get(nullptr)); 2958 RMWOp = llvm::AtomicRMWInst::Sub; 2959 break; 2960 case BO_And: 2961 RMWOp = llvm::AtomicRMWInst::And; 2962 break; 2963 case BO_Or: 2964 RMWOp = llvm::AtomicRMWInst::Or; 2965 break; 2966 case BO_Xor: 2967 RMWOp = llvm::AtomicRMWInst::Xor; 2968 break; 2969 case BO_LT: 2970 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2971 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 2972 : llvm::AtomicRMWInst::Max) 2973 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 2974 : llvm::AtomicRMWInst::UMax); 2975 break; 2976 case BO_GT: 2977 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2978 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 2979 : llvm::AtomicRMWInst::Min) 2980 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 2981 : llvm::AtomicRMWInst::UMin); 2982 break; 2983 case BO_Assign: 2984 RMWOp = llvm::AtomicRMWInst::Xchg; 2985 break; 2986 case BO_Mul: 2987 case BO_Div: 2988 case BO_Rem: 2989 case BO_Shl: 2990 case BO_Shr: 2991 case BO_LAnd: 2992 case BO_LOr: 2993 return std::make_pair(false, RValue::get(nullptr)); 2994 case BO_PtrMemD: 2995 case BO_PtrMemI: 2996 case BO_LE: 2997 case BO_GE: 2998 case BO_EQ: 2999 case BO_NE: 3000 case BO_AddAssign: 3001 case BO_SubAssign: 3002 case BO_AndAssign: 3003 case BO_OrAssign: 3004 case BO_XorAssign: 3005 case BO_MulAssign: 3006 case BO_DivAssign: 3007 case BO_RemAssign: 3008 case BO_ShlAssign: 3009 case BO_ShrAssign: 3010 case BO_Comma: 3011 llvm_unreachable("Unsupported atomic update operation"); 3012 } 3013 auto *UpdateVal = Update.getScalarVal(); 3014 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3015 UpdateVal = CGF.Builder.CreateIntCast( 3016 IC, X.getAddress().getElementType(), 3017 X.getType()->hasSignedIntegerRepresentation()); 3018 } 3019 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3020 return std::make_pair(true, RValue::get(Res)); 3021 } 3022 3023 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3024 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3025 llvm::AtomicOrdering AO, SourceLocation Loc, 3026 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3027 // Update expressions are allowed to have the following forms: 3028 // x binop= expr; -> xrval + expr; 3029 // x++, ++x -> xrval + 1; 3030 // x--, --x -> xrval - 1; 3031 // x = x binop expr; -> xrval binop expr 3032 // x = expr Op x; - > expr binop xrval; 3033 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3034 if (!Res.first) { 3035 if (X.isGlobalReg()) { 3036 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3037 // 'xrval'. 3038 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3039 } else { 3040 // Perform compare-and-swap procedure. 3041 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3042 } 3043 } 3044 return Res; 3045 } 3046 3047 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3048 const Expr *X, const Expr *E, 3049 const Expr *UE, bool IsXLHSInRHSPart, 3050 SourceLocation Loc) { 3051 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3052 "Update expr in 'atomic update' must be a binary operator."); 3053 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3054 // Update expressions are allowed to have the following forms: 3055 // x binop= expr; -> xrval + expr; 3056 // x++, ++x -> xrval + 1; 3057 // x--, --x -> xrval - 1; 3058 // x = x binop expr; -> xrval binop expr 3059 // x = expr Op x; - > expr binop xrval; 3060 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3061 LValue XLValue = CGF.EmitLValue(X); 3062 RValue ExprRValue = CGF.EmitAnyExpr(E); 3063 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3064 : llvm::AtomicOrdering::Monotonic; 3065 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3066 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3067 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3068 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3069 auto Gen = 3070 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3071 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3072 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3073 return CGF.EmitAnyExpr(UE); 3074 }; 3075 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3076 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3077 // OpenMP, 2.12.6, atomic Construct 3078 // Any atomic construct with a seq_cst clause forces the atomically 3079 // performed operation to include an implicit flush operation without a 3080 // list. 3081 if (IsSeqCst) 3082 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3083 } 3084 3085 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3086 QualType SourceType, QualType ResType, 3087 SourceLocation Loc) { 3088 switch (CGF.getEvaluationKind(ResType)) { 3089 case TEK_Scalar: 3090 return RValue::get( 3091 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3092 case TEK_Complex: { 3093 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3094 return RValue::getComplex(Res.first, Res.second); 3095 } 3096 case TEK_Aggregate: 3097 break; 3098 } 3099 llvm_unreachable("Must be a scalar or complex."); 3100 } 3101 3102 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3103 bool IsPostfixUpdate, const Expr *V, 3104 const Expr *X, const Expr *E, 3105 const Expr *UE, bool IsXLHSInRHSPart, 3106 SourceLocation Loc) { 3107 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3108 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3109 RValue NewVVal; 3110 LValue VLValue = CGF.EmitLValue(V); 3111 LValue XLValue = CGF.EmitLValue(X); 3112 RValue ExprRValue = CGF.EmitAnyExpr(E); 3113 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3114 : llvm::AtomicOrdering::Monotonic; 3115 QualType NewVValType; 3116 if (UE) { 3117 // 'x' is updated with some additional value. 3118 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3119 "Update expr in 'atomic capture' must be a binary operator."); 3120 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3121 // Update expressions are allowed to have the following forms: 3122 // x binop= expr; -> xrval + expr; 3123 // x++, ++x -> xrval + 1; 3124 // x--, --x -> xrval - 1; 3125 // x = x binop expr; -> xrval binop expr 3126 // x = expr Op x; - > expr binop xrval; 3127 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3128 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3129 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3130 NewVValType = XRValExpr->getType(); 3131 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3132 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3133 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 3134 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3135 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3136 RValue Res = CGF.EmitAnyExpr(UE); 3137 NewVVal = IsPostfixUpdate ? XRValue : Res; 3138 return Res; 3139 }; 3140 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3141 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3142 if (Res.first) { 3143 // 'atomicrmw' instruction was generated. 3144 if (IsPostfixUpdate) { 3145 // Use old value from 'atomicrmw'. 3146 NewVVal = Res.second; 3147 } else { 3148 // 'atomicrmw' does not provide new value, so evaluate it using old 3149 // value of 'x'. 3150 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3151 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3152 NewVVal = CGF.EmitAnyExpr(UE); 3153 } 3154 } 3155 } else { 3156 // 'x' is simply rewritten with some 'expr'. 3157 NewVValType = X->getType().getNonReferenceType(); 3158 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3159 X->getType().getNonReferenceType(), Loc); 3160 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 3161 NewVVal = XRValue; 3162 return ExprRValue; 3163 }; 3164 // Try to perform atomicrmw xchg, otherwise simple exchange. 3165 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3166 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3167 Loc, Gen); 3168 if (Res.first) { 3169 // 'atomicrmw' instruction was generated. 3170 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3171 } 3172 } 3173 // Emit post-update store to 'v' of old/new 'x' value. 3174 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3175 // OpenMP, 2.12.6, atomic Construct 3176 // Any atomic construct with a seq_cst clause forces the atomically 3177 // performed operation to include an implicit flush operation without a 3178 // list. 3179 if (IsSeqCst) 3180 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3181 } 3182 3183 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3184 bool IsSeqCst, bool IsPostfixUpdate, 3185 const Expr *X, const Expr *V, const Expr *E, 3186 const Expr *UE, bool IsXLHSInRHSPart, 3187 SourceLocation Loc) { 3188 switch (Kind) { 3189 case OMPC_read: 3190 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3191 break; 3192 case OMPC_write: 3193 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3194 break; 3195 case OMPC_unknown: 3196 case OMPC_update: 3197 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3198 break; 3199 case OMPC_capture: 3200 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3201 IsXLHSInRHSPart, Loc); 3202 break; 3203 case OMPC_if: 3204 case OMPC_final: 3205 case OMPC_num_threads: 3206 case OMPC_private: 3207 case OMPC_firstprivate: 3208 case OMPC_lastprivate: 3209 case OMPC_reduction: 3210 case OMPC_safelen: 3211 case OMPC_simdlen: 3212 case OMPC_collapse: 3213 case OMPC_default: 3214 case OMPC_seq_cst: 3215 case OMPC_shared: 3216 case OMPC_linear: 3217 case OMPC_aligned: 3218 case OMPC_copyin: 3219 case OMPC_copyprivate: 3220 case OMPC_flush: 3221 case OMPC_proc_bind: 3222 case OMPC_schedule: 3223 case OMPC_ordered: 3224 case OMPC_nowait: 3225 case OMPC_untied: 3226 case OMPC_threadprivate: 3227 case OMPC_depend: 3228 case OMPC_mergeable: 3229 case OMPC_device: 3230 case OMPC_threads: 3231 case OMPC_simd: 3232 case OMPC_map: 3233 case OMPC_num_teams: 3234 case OMPC_thread_limit: 3235 case OMPC_priority: 3236 case OMPC_grainsize: 3237 case OMPC_nogroup: 3238 case OMPC_num_tasks: 3239 case OMPC_hint: 3240 case OMPC_dist_schedule: 3241 case OMPC_defaultmap: 3242 case OMPC_uniform: 3243 case OMPC_to: 3244 case OMPC_from: 3245 case OMPC_use_device_ptr: 3246 case OMPC_is_device_ptr: 3247 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3248 } 3249 } 3250 3251 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3252 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3253 OpenMPClauseKind Kind = OMPC_unknown; 3254 for (auto *C : S.clauses()) { 3255 // Find first clause (skip seq_cst clause, if it is first). 3256 if (C->getClauseKind() != OMPC_seq_cst) { 3257 Kind = C->getClauseKind(); 3258 break; 3259 } 3260 } 3261 3262 const auto *CS = 3263 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3264 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3265 enterFullExpression(EWC); 3266 } 3267 // Processing for statements under 'atomic capture'. 3268 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3269 for (const auto *C : Compound->body()) { 3270 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3271 enterFullExpression(EWC); 3272 } 3273 } 3274 } 3275 3276 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3277 PrePostActionTy &) { 3278 CGF.EmitStopPoint(CS); 3279 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3280 S.getV(), S.getExpr(), S.getUpdateExpr(), 3281 S.isXLHSInRHSPart(), S.getLocStart()); 3282 }; 3283 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3284 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3285 } 3286 3287 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/> 3288 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction( 3289 CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName, 3290 bool IsOffloadEntry) { 3291 llvm::Function *OutlinedFn = nullptr; 3292 llvm::Constant *OutlinedFnID = nullptr; 3293 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3294 OMPPrivateScope PrivateScope(CGF); 3295 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3296 CGF.EmitOMPPrivateClause(S, PrivateScope); 3297 (void)PrivateScope.Privatize(); 3298 3299 Action.Enter(CGF); 3300 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3301 }; 3302 // Emit target region as a standalone region. 3303 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3304 S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); 3305 return std::make_pair(OutlinedFn, OutlinedFnID); 3306 } 3307 3308 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3309 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3310 3311 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3312 GenerateOpenMPCapturedVars(CS, CapturedVars); 3313 3314 llvm::Function *Fn = nullptr; 3315 llvm::Constant *FnID = nullptr; 3316 3317 // Check if we have any if clause associated with the directive. 3318 const Expr *IfCond = nullptr; 3319 3320 if (auto *C = S.getSingleClause<OMPIfClause>()) { 3321 IfCond = C->getCondition(); 3322 } 3323 3324 // Check if we have any device clause associated with the directive. 3325 const Expr *Device = nullptr; 3326 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3327 Device = C->getDevice(); 3328 } 3329 3330 // Check if we have an if clause whose conditional always evaluates to false 3331 // or if we do not have any targets specified. If so the target region is not 3332 // an offload entry point. 3333 bool IsOffloadEntry = true; 3334 if (IfCond) { 3335 bool Val; 3336 if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3337 IsOffloadEntry = false; 3338 } 3339 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3340 IsOffloadEntry = false; 3341 3342 assert(CurFuncDecl && "No parent declaration for target region!"); 3343 StringRef ParentName; 3344 // In case we have Ctors/Dtors we use the complete type variant to produce 3345 // the mangling of the device outlined kernel. 3346 if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl)) 3347 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3348 else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl)) 3349 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3350 else 3351 ParentName = 3352 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl))); 3353 3354 std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction( 3355 CGM, S, ParentName, IsOffloadEntry); 3356 OMPLexicalScope Scope(*this, S); 3357 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device, 3358 CapturedVars); 3359 } 3360 3361 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3362 const OMPExecutableDirective &S, 3363 OpenMPDirectiveKind InnermostKind, 3364 const RegionCodeGenTy &CodeGen) { 3365 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3366 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 3367 emitParallelOrTeamsOutlinedFunction(S, 3368 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3369 3370 const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S); 3371 const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>(); 3372 const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>(); 3373 if (NT || TL) { 3374 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3375 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3376 3377 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3378 S.getLocStart()); 3379 } 3380 3381 OMPLexicalScope Scope(CGF, S); 3382 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3383 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3384 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3385 CapturedVars); 3386 } 3387 3388 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3389 // Emit parallel region as a standalone region. 3390 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3391 OMPPrivateScope PrivateScope(CGF); 3392 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3393 CGF.EmitOMPPrivateClause(S, PrivateScope); 3394 (void)PrivateScope.Privatize(); 3395 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3396 }; 3397 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3398 } 3399 3400 void CodeGenFunction::EmitOMPCancellationPointDirective( 3401 const OMPCancellationPointDirective &S) { 3402 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3403 S.getCancelRegion()); 3404 } 3405 3406 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3407 const Expr *IfCond = nullptr; 3408 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3409 if (C->getNameModifier() == OMPD_unknown || 3410 C->getNameModifier() == OMPD_cancel) { 3411 IfCond = C->getCondition(); 3412 break; 3413 } 3414 } 3415 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3416 S.getCancelRegion()); 3417 } 3418 3419 CodeGenFunction::JumpDest 3420 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3421 if (Kind == OMPD_parallel || Kind == OMPD_task) 3422 return ReturnBlock; 3423 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3424 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 3425 return BreakContinueStack.back().BreakBlock; 3426 } 3427 3428 void CodeGenFunction::EmitOMPUseDevicePtrClause( 3429 const OMPClause &NC, OMPPrivateScope &PrivateScope, 3430 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 3431 const auto &C = cast<OMPUseDevicePtrClause>(NC); 3432 auto OrigVarIt = C.varlist_begin(); 3433 auto InitIt = C.inits().begin(); 3434 for (auto PvtVarIt : C.private_copies()) { 3435 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 3436 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 3437 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 3438 3439 // In order to identify the right initializer we need to match the 3440 // declaration used by the mapping logic. In some cases we may get 3441 // OMPCapturedExprDecl that refers to the original declaration. 3442 const ValueDecl *MatchingVD = OrigVD; 3443 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 3444 // OMPCapturedExprDecl are used to privative fields of the current 3445 // structure. 3446 auto *ME = cast<MemberExpr>(OED->getInit()); 3447 assert(isa<CXXThisExpr>(ME->getBase()) && 3448 "Base should be the current struct!"); 3449 MatchingVD = ME->getMemberDecl(); 3450 } 3451 3452 // If we don't have information about the current list item, move on to 3453 // the next one. 3454 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 3455 if (InitAddrIt == CaptureDeviceAddrMap.end()) 3456 continue; 3457 3458 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 3459 // Initialize the temporary initialization variable with the address we 3460 // get from the runtime library. We have to cast the source address 3461 // because it is always a void *. References are materialized in the 3462 // privatization scope, so the initialization here disregards the fact 3463 // the original variable is a reference. 3464 QualType AddrQTy = 3465 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 3466 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 3467 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 3468 setAddrOfLocalVar(InitVD, InitAddr); 3469 3470 // Emit private declaration, it will be initialized by the value we 3471 // declaration we just added to the local declarations map. 3472 EmitDecl(*PvtVD); 3473 3474 // The initialization variables reached its purpose in the emission 3475 // ofthe previous declaration, so we don't need it anymore. 3476 LocalDeclMap.erase(InitVD); 3477 3478 // Return the address of the private variable. 3479 return GetAddrOfLocalVar(PvtVD); 3480 }); 3481 assert(IsRegistered && "firstprivate var already registered as private"); 3482 // Silence the warning about unused variable. 3483 (void)IsRegistered; 3484 3485 ++OrigVarIt; 3486 ++InitIt; 3487 } 3488 } 3489 3490 // Generate the instructions for '#pragma omp target data' directive. 3491 void CodeGenFunction::EmitOMPTargetDataDirective( 3492 const OMPTargetDataDirective &S) { 3493 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 3494 3495 // Create a pre/post action to signal the privatization of the device pointer. 3496 // This action can be replaced by the OpenMP runtime code generation to 3497 // deactivate privatization. 3498 bool PrivatizeDevicePointers = false; 3499 class DevicePointerPrivActionTy : public PrePostActionTy { 3500 bool &PrivatizeDevicePointers; 3501 3502 public: 3503 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 3504 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 3505 void Enter(CodeGenFunction &CGF) override { 3506 PrivatizeDevicePointers = true; 3507 } 3508 }; 3509 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 3510 3511 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 3512 CodeGenFunction &CGF, PrePostActionTy &Action) { 3513 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3514 CGF.EmitStmt( 3515 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3516 }; 3517 3518 // Codegen that selects wheather to generate the privatization code or not. 3519 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 3520 &InnermostCodeGen](CodeGenFunction &CGF, 3521 PrePostActionTy &Action) { 3522 RegionCodeGenTy RCG(InnermostCodeGen); 3523 PrivatizeDevicePointers = false; 3524 3525 // Call the pre-action to change the status of PrivatizeDevicePointers if 3526 // needed. 3527 Action.Enter(CGF); 3528 3529 if (PrivatizeDevicePointers) { 3530 OMPPrivateScope PrivateScope(CGF); 3531 // Emit all instances of the use_device_ptr clause. 3532 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 3533 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 3534 Info.CaptureDeviceAddrMap); 3535 (void)PrivateScope.Privatize(); 3536 RCG(CGF); 3537 } else 3538 RCG(CGF); 3539 }; 3540 3541 // Forward the provided action to the privatization codegen. 3542 RegionCodeGenTy PrivRCG(PrivCodeGen); 3543 PrivRCG.setAction(Action); 3544 3545 // Notwithstanding the body of the region is emitted as inlined directive, 3546 // we don't use an inline scope as changes in the references inside the 3547 // region are expected to be visible outside, so we do not privative them. 3548 OMPLexicalScope Scope(CGF, S); 3549 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 3550 PrivRCG); 3551 }; 3552 3553 RegionCodeGenTy RCG(CodeGen); 3554 3555 // If we don't have target devices, don't bother emitting the data mapping 3556 // code. 3557 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3558 RCG(*this); 3559 return; 3560 } 3561 3562 // Check if we have any if clause associated with the directive. 3563 const Expr *IfCond = nullptr; 3564 if (auto *C = S.getSingleClause<OMPIfClause>()) 3565 IfCond = C->getCondition(); 3566 3567 // Check if we have any device clause associated with the directive. 3568 const Expr *Device = nullptr; 3569 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3570 Device = C->getDevice(); 3571 3572 // Set the action to signal privatization of device pointers. 3573 RCG.setAction(PrivAction); 3574 3575 // Emit region code. 3576 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 3577 Info); 3578 } 3579 3580 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3581 const OMPTargetEnterDataDirective &S) { 3582 // If we don't have target devices, don't bother emitting the data mapping 3583 // code. 3584 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3585 return; 3586 3587 // Check if we have any if clause associated with the directive. 3588 const Expr *IfCond = nullptr; 3589 if (auto *C = S.getSingleClause<OMPIfClause>()) 3590 IfCond = C->getCondition(); 3591 3592 // Check if we have any device clause associated with the directive. 3593 const Expr *Device = nullptr; 3594 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3595 Device = C->getDevice(); 3596 3597 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3598 } 3599 3600 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3601 const OMPTargetExitDataDirective &S) { 3602 // If we don't have target devices, don't bother emitting the data mapping 3603 // code. 3604 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3605 return; 3606 3607 // Check if we have any if clause associated with the directive. 3608 const Expr *IfCond = nullptr; 3609 if (auto *C = S.getSingleClause<OMPIfClause>()) 3610 IfCond = C->getCondition(); 3611 3612 // Check if we have any device clause associated with the directive. 3613 const Expr *Device = nullptr; 3614 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3615 Device = C->getDevice(); 3616 3617 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3618 } 3619 3620 void CodeGenFunction::EmitOMPTargetParallelDirective( 3621 const OMPTargetParallelDirective &S) { 3622 // TODO: codegen for target parallel. 3623 } 3624 3625 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3626 const OMPTargetParallelForDirective &S) { 3627 // TODO: codegen for target parallel for. 3628 } 3629 3630 /// Emit a helper variable and return corresponding lvalue. 3631 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3632 const ImplicitParamDecl *PVD, 3633 CodeGenFunction::OMPPrivateScope &Privates) { 3634 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3635 Privates.addPrivate( 3636 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3637 } 3638 3639 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3640 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3641 // Emit outlined function for task construct. 3642 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3643 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3644 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3645 const Expr *IfCond = nullptr; 3646 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3647 if (C->getNameModifier() == OMPD_unknown || 3648 C->getNameModifier() == OMPD_taskloop) { 3649 IfCond = C->getCondition(); 3650 break; 3651 } 3652 } 3653 3654 OMPTaskDataTy Data; 3655 // Check if taskloop must be emitted without taskgroup. 3656 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3657 // TODO: Check if we should emit tied or untied task. 3658 Data.Tied = true; 3659 // Set scheduling for taskloop 3660 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3661 // grainsize clause 3662 Data.Schedule.setInt(/*IntVal=*/false); 3663 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3664 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3665 // num_tasks clause 3666 Data.Schedule.setInt(/*IntVal=*/true); 3667 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3668 } 3669 3670 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3671 // if (PreCond) { 3672 // for (IV in 0..LastIteration) BODY; 3673 // <Final counter/linear vars updates>; 3674 // } 3675 // 3676 3677 // Emit: if (PreCond) - begin. 3678 // If the condition constant folds and can be elided, avoid emitting the 3679 // whole loop. 3680 bool CondConstant; 3681 llvm::BasicBlock *ContBlock = nullptr; 3682 OMPLoopScope PreInitScope(CGF, S); 3683 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3684 if (!CondConstant) 3685 return; 3686 } else { 3687 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3688 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3689 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3690 CGF.getProfileCount(&S)); 3691 CGF.EmitBlock(ThenBlock); 3692 CGF.incrementProfileCounter(&S); 3693 } 3694 3695 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3696 CGF.EmitOMPSimdInit(S); 3697 3698 OMPPrivateScope LoopScope(CGF); 3699 // Emit helper vars inits. 3700 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3701 auto *I = CS->getCapturedDecl()->param_begin(); 3702 auto *LBP = std::next(I, LowerBound); 3703 auto *UBP = std::next(I, UpperBound); 3704 auto *STP = std::next(I, Stride); 3705 auto *LIP = std::next(I, LastIter); 3706 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3707 LoopScope); 3708 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3709 LoopScope); 3710 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3711 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3712 LoopScope); 3713 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3714 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3715 (void)LoopScope.Privatize(); 3716 // Emit the loop iteration variable. 3717 const Expr *IVExpr = S.getIterationVariable(); 3718 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3719 CGF.EmitVarDecl(*IVDecl); 3720 CGF.EmitIgnoredExpr(S.getInit()); 3721 3722 // Emit the iterations count variable. 3723 // If it is not a variable, Sema decided to calculate iterations count on 3724 // each iteration (e.g., it is foldable into a constant). 3725 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3726 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3727 // Emit calculation of the iterations count. 3728 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3729 } 3730 3731 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3732 S.getInc(), 3733 [&S](CodeGenFunction &CGF) { 3734 CGF.EmitOMPLoopBody(S, JumpDest()); 3735 CGF.EmitStopPoint(&S); 3736 }, 3737 [](CodeGenFunction &) {}); 3738 // Emit: if (PreCond) - end. 3739 if (ContBlock) { 3740 CGF.EmitBranch(ContBlock); 3741 CGF.EmitBlock(ContBlock, true); 3742 } 3743 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3744 if (HasLastprivateClause) { 3745 CGF.EmitOMPLastprivateClauseFinal( 3746 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3747 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3748 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3749 (*LIP)->getType(), S.getLocStart()))); 3750 } 3751 }; 3752 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3753 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3754 const OMPTaskDataTy &Data) { 3755 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 3756 OMPLoopScope PreInitScope(CGF, S); 3757 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 3758 OutlinedFn, SharedsTy, 3759 CapturedStruct, IfCond, Data); 3760 }; 3761 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 3762 CodeGen); 3763 }; 3764 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3765 } 3766 3767 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 3768 EmitOMPTaskLoopBasedDirective(S); 3769 } 3770 3771 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 3772 const OMPTaskLoopSimdDirective &S) { 3773 EmitOMPTaskLoopBasedDirective(S); 3774 } 3775 3776 // Generate the instructions for '#pragma omp target update' directive. 3777 void CodeGenFunction::EmitOMPTargetUpdateDirective( 3778 const OMPTargetUpdateDirective &S) { 3779 // If we don't have target devices, don't bother emitting the data mapping 3780 // code. 3781 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3782 return; 3783 3784 // Check if we have any if clause associated with the directive. 3785 const Expr *IfCond = nullptr; 3786 if (auto *C = S.getSingleClause<OMPIfClause>()) 3787 IfCond = C->getCondition(); 3788 3789 // Check if we have any device clause associated with the directive. 3790 const Expr *Device = nullptr; 3791 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3792 Device = C->getDevice(); 3793 3794 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3795 } 3796