1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     emitPreInitStmt(CGF, S);
61     if (AsInlined) {
62       if (S.hasAssociatedStmt()) {
63         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
64         for (auto &C : CS->captures()) {
65           if (C.capturesVariable() || C.capturesVariableByCopy()) {
66             auto *VD = C.getCapturedVar();
67             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
68                             isCapturedVar(CGF, VD) ||
69                                 (CGF.CapturedStmtInfo &&
70                                  InlinedShareds.isGlobalVarCaptured(VD)),
71                             VD->getType().getNonReferenceType(), VK_LValue,
72                             SourceLocation());
73             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
74               return CGF.EmitLValue(&DRE).getAddress();
75             });
76           }
77         }
78         (void)InlinedShareds.Privatize();
79       }
80     }
81   }
82 };
83 
84 /// Private scope for OpenMP loop-based directives, that supports capturing
85 /// of used expression from loop statement.
86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
87   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
88     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
89       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
90         for (const auto *I : PreInits->decls())
91           CGF.EmitVarDecl(cast<VarDecl>(*I));
92       }
93     }
94   }
95 
96 public:
97   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
98       : CodeGenFunction::RunCleanupsScope(CGF) {
99     emitPreInitStmt(CGF, S);
100   }
101 };
102 
103 } // namespace
104 
105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
106   auto &C = getContext();
107   llvm::Value *Size = nullptr;
108   auto SizeInChars = C.getTypeSizeInChars(Ty);
109   if (SizeInChars.isZero()) {
110     // getTypeSizeInChars() returns 0 for a VLA.
111     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
112       llvm::Value *ArraySize;
113       std::tie(ArraySize, Ty) = getVLASize(VAT);
114       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
115     }
116     SizeInChars = C.getTypeSizeInChars(Ty);
117     if (SizeInChars.isZero())
118       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
119     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
120   } else
121     Size = CGM.getSize(SizeInChars);
122   return Size;
123 }
124 
125 void CodeGenFunction::GenerateOpenMPCapturedVars(
126     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
127   const RecordDecl *RD = S.getCapturedRecordDecl();
128   auto CurField = RD->field_begin();
129   auto CurCap = S.captures().begin();
130   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
131                                                  E = S.capture_init_end();
132        I != E; ++I, ++CurField, ++CurCap) {
133     if (CurField->hasCapturedVLAType()) {
134       auto VAT = CurField->getCapturedVLAType();
135       auto *Val = VLASizeMap[VAT->getSizeExpr()];
136       CapturedVars.push_back(Val);
137     } else if (CurCap->capturesThis())
138       CapturedVars.push_back(CXXThisValue);
139     else if (CurCap->capturesVariableByCopy()) {
140       llvm::Value *CV =
141           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
142 
143       // If the field is not a pointer, we need to save the actual value
144       // and load it as a void pointer.
145       if (!CurField->getType()->isAnyPointerType()) {
146         auto &Ctx = getContext();
147         auto DstAddr = CreateMemTemp(
148             Ctx.getUIntPtrType(),
149             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
150         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
151 
152         auto *SrcAddrVal = EmitScalarConversion(
153             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
154             Ctx.getPointerType(CurField->getType()), SourceLocation());
155         LValue SrcLV =
156             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
157 
158         // Store the value using the source type pointer.
159         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
160 
161         // Load the value using the destination type pointer.
162         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
163       }
164       CapturedVars.push_back(CV);
165     } else {
166       assert(CurCap->capturesVariable() && "Expected capture by reference.");
167       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
168     }
169   }
170 }
171 
172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
173                                     StringRef Name, LValue AddrLV,
174                                     bool isReferenceType = false) {
175   ASTContext &Ctx = CGF.getContext();
176 
177   auto *CastedPtr = CGF.EmitScalarConversion(
178       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
179       Ctx.getPointerType(DstType), SourceLocation());
180   auto TmpAddr =
181       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
182           .getAddress();
183 
184   // If we are dealing with references we need to return the address of the
185   // reference instead of the reference of the value.
186   if (isReferenceType) {
187     QualType RefType = Ctx.getLValueReferenceType(DstType);
188     auto *RefVal = TmpAddr.getPointer();
189     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
190     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
191     CGF.EmitScalarInit(RefVal, TmpLVal);
192   }
193 
194   return TmpAddr;
195 }
196 
197 llvm::Function *
198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
199   assert(
200       CapturedStmtInfo &&
201       "CapturedStmtInfo should be set when generating the captured function");
202   const CapturedDecl *CD = S.getCapturedDecl();
203   const RecordDecl *RD = S.getCapturedRecordDecl();
204   assert(CD->hasBody() && "missing CapturedDecl body");
205 
206   // Build the argument list.
207   ASTContext &Ctx = CGM.getContext();
208   FunctionArgList Args;
209   Args.append(CD->param_begin(),
210               std::next(CD->param_begin(), CD->getContextParamPosition()));
211   auto I = S.captures().begin();
212   for (auto *FD : RD->fields()) {
213     QualType ArgType = FD->getType();
214     IdentifierInfo *II = nullptr;
215     VarDecl *CapVar = nullptr;
216 
217     // If this is a capture by copy and the type is not a pointer, the outlined
218     // function argument type should be uintptr and the value properly casted to
219     // uintptr. This is necessary given that the runtime library is only able to
220     // deal with pointers. We can pass in the same way the VLA type sizes to the
221     // outlined function.
222     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
223         I->capturesVariableArrayType())
224       ArgType = Ctx.getUIntPtrType();
225 
226     if (I->capturesVariable() || I->capturesVariableByCopy()) {
227       CapVar = I->getCapturedVar();
228       II = CapVar->getIdentifier();
229     } else if (I->capturesThis())
230       II = &getContext().Idents.get("this");
231     else {
232       assert(I->capturesVariableArrayType());
233       II = &getContext().Idents.get("vla");
234     }
235     if (ArgType->isVariablyModifiedType()) {
236       bool IsReference = ArgType->isLValueReferenceType();
237       ArgType =
238           getContext().getCanonicalParamType(ArgType.getNonReferenceType());
239       if (IsReference && !ArgType->isPointerType()) {
240         ArgType = getContext().getLValueReferenceType(
241             ArgType, /*SpelledAsLValue=*/false);
242       }
243     }
244     Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
245                                              FD->getLocation(), II, ArgType));
246     ++I;
247   }
248   Args.append(
249       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
250       CD->param_end());
251 
252   // Create the function declaration.
253   FunctionType::ExtInfo ExtInfo;
254   const CGFunctionInfo &FuncInfo =
255       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
256   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
257 
258   llvm::Function *F = llvm::Function::Create(
259       FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
260       CapturedStmtInfo->getHelperName(), &CGM.getModule());
261   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
262   if (CD->isNothrow())
263     F->addFnAttr(llvm::Attribute::NoUnwind);
264 
265   // Generate the function.
266   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
267                 CD->getBody()->getLocStart());
268   unsigned Cnt = CD->getContextParamPosition();
269   I = S.captures().begin();
270   for (auto *FD : RD->fields()) {
271     // If we are capturing a pointer by copy we don't need to do anything, just
272     // use the value that we get from the arguments.
273     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
274       const VarDecl *CurVD = I->getCapturedVar();
275       Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]);
276       // If the variable is a reference we need to materialize it here.
277       if (CurVD->getType()->isReferenceType()) {
278         Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(),
279                                         ".materialized_ref");
280         EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false,
281                           CurVD->getType());
282         LocalAddr = RefAddr;
283       }
284       setAddrOfLocalVar(CurVD, LocalAddr);
285       ++Cnt;
286       ++I;
287       continue;
288     }
289 
290     LValue ArgLVal =
291         MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
292                        AlignmentSource::Decl);
293     if (FD->hasCapturedVLAType()) {
294       LValue CastedArgLVal =
295           MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
296                                               Args[Cnt]->getName(), ArgLVal),
297                          FD->getType(), AlignmentSource::Decl);
298       auto *ExprArg =
299           EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
300       auto VAT = FD->getCapturedVLAType();
301       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
302     } else if (I->capturesVariable()) {
303       auto *Var = I->getCapturedVar();
304       QualType VarTy = Var->getType();
305       Address ArgAddr = ArgLVal.getAddress();
306       if (!VarTy->isReferenceType()) {
307         if (ArgLVal.getType()->isLValueReferenceType()) {
308           ArgAddr = EmitLoadOfReference(
309               ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
310         } else {
311           assert(ArgLVal.getType()->isPointerType());
312           ArgAddr = EmitLoadOfPointer(
313               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
314         }
315       }
316       setAddrOfLocalVar(
317           Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
318     } else if (I->capturesVariableByCopy()) {
319       assert(!FD->getType()->isAnyPointerType() &&
320              "Not expecting a captured pointer.");
321       auto *Var = I->getCapturedVar();
322       QualType VarTy = Var->getType();
323       setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(),
324                                                   Args[Cnt]->getName(), ArgLVal,
325                                                   VarTy->isReferenceType()));
326     } else {
327       // If 'this' is captured, load it into CXXThisValue.
328       assert(I->capturesThis());
329       CXXThisValue =
330           EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
331     }
332     ++Cnt;
333     ++I;
334   }
335 
336   PGO.assignRegionCounters(GlobalDecl(CD), F);
337   CapturedStmtInfo->EmitBody(*this, CD->getBody());
338   FinishFunction(CD->getBodyRBrace());
339 
340   return F;
341 }
342 
343 //===----------------------------------------------------------------------===//
344 //                              OpenMP Directive Emission
345 //===----------------------------------------------------------------------===//
346 void CodeGenFunction::EmitOMPAggregateAssign(
347     Address DestAddr, Address SrcAddr, QualType OriginalType,
348     const llvm::function_ref<void(Address, Address)> &CopyGen) {
349   // Perform element-by-element initialization.
350   QualType ElementTy;
351 
352   // Drill down to the base element type on both arrays.
353   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
354   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
355   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
356 
357   auto SrcBegin = SrcAddr.getPointer();
358   auto DestBegin = DestAddr.getPointer();
359   // Cast from pointer to array type to pointer to single element.
360   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
361   // The basic structure here is a while-do loop.
362   auto BodyBB = createBasicBlock("omp.arraycpy.body");
363   auto DoneBB = createBasicBlock("omp.arraycpy.done");
364   auto IsEmpty =
365       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
366   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
367 
368   // Enter the loop body, making that address the current address.
369   auto EntryBB = Builder.GetInsertBlock();
370   EmitBlock(BodyBB);
371 
372   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
373 
374   llvm::PHINode *SrcElementPHI =
375     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
376   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
377   Address SrcElementCurrent =
378       Address(SrcElementPHI,
379               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
380 
381   llvm::PHINode *DestElementPHI =
382     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
383   DestElementPHI->addIncoming(DestBegin, EntryBB);
384   Address DestElementCurrent =
385     Address(DestElementPHI,
386             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
387 
388   // Emit copy.
389   CopyGen(DestElementCurrent, SrcElementCurrent);
390 
391   // Shift the address forward by one element.
392   auto DestElementNext = Builder.CreateConstGEP1_32(
393       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
394   auto SrcElementNext = Builder.CreateConstGEP1_32(
395       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
396   // Check whether we've reached the end.
397   auto Done =
398       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
399   Builder.CreateCondBr(Done, DoneBB, BodyBB);
400   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
401   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
402 
403   // Done.
404   EmitBlock(DoneBB, /*IsFinished=*/true);
405 }
406 
407 /// Check if the combiner is a call to UDR combiner and if it is so return the
408 /// UDR decl used for reduction.
409 static const OMPDeclareReductionDecl *
410 getReductionInit(const Expr *ReductionOp) {
411   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
412     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
413       if (auto *DRE =
414               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
415         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
416           return DRD;
417   return nullptr;
418 }
419 
420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
421                                              const OMPDeclareReductionDecl *DRD,
422                                              const Expr *InitOp,
423                                              Address Private, Address Original,
424                                              QualType Ty) {
425   if (DRD->getInitializer()) {
426     std::pair<llvm::Function *, llvm::Function *> Reduction =
427         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
428     auto *CE = cast<CallExpr>(InitOp);
429     auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
430     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
431     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
432     auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
433     auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
434     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
435     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
436                             [=]() -> Address { return Private; });
437     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
438                             [=]() -> Address { return Original; });
439     (void)PrivateScope.Privatize();
440     RValue Func = RValue::get(Reduction.second);
441     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
442     CGF.EmitIgnoredExpr(InitOp);
443   } else {
444     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
445     auto *GV = new llvm::GlobalVariable(
446         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
447         llvm::GlobalValue::PrivateLinkage, Init, ".init");
448     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
449     RValue InitRVal;
450     switch (CGF.getEvaluationKind(Ty)) {
451     case TEK_Scalar:
452       InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation());
453       break;
454     case TEK_Complex:
455       InitRVal =
456           RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation()));
457       break;
458     case TEK_Aggregate:
459       InitRVal = RValue::getAggregate(LV.getAddress());
460       break;
461     }
462     OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue);
463     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
464     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
465                          /*IsInitializer=*/false);
466   }
467 }
468 
469 /// \brief Emit initialization of arrays of complex types.
470 /// \param DestAddr Address of the array.
471 /// \param Type Type of array.
472 /// \param Init Initial expression of array.
473 /// \param SrcAddr Address of the original array.
474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
475                                  QualType Type, const Expr *Init,
476                                  Address SrcAddr = Address::invalid()) {
477   auto *DRD = getReductionInit(Init);
478   // Perform element-by-element initialization.
479   QualType ElementTy;
480 
481   // Drill down to the base element type on both arrays.
482   auto ArrayTy = Type->getAsArrayTypeUnsafe();
483   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
484   DestAddr =
485       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
486   if (DRD)
487     SrcAddr =
488         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
489 
490   llvm::Value *SrcBegin = nullptr;
491   if (DRD)
492     SrcBegin = SrcAddr.getPointer();
493   auto DestBegin = DestAddr.getPointer();
494   // Cast from pointer to array type to pointer to single element.
495   auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
496   // The basic structure here is a while-do loop.
497   auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
498   auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
499   auto IsEmpty =
500       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
501   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
502 
503   // Enter the loop body, making that address the current address.
504   auto EntryBB = CGF.Builder.GetInsertBlock();
505   CGF.EmitBlock(BodyBB);
506 
507   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
508 
509   llvm::PHINode *SrcElementPHI = nullptr;
510   Address SrcElementCurrent = Address::invalid();
511   if (DRD) {
512     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
513                                           "omp.arraycpy.srcElementPast");
514     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
515     SrcElementCurrent =
516         Address(SrcElementPHI,
517                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
518   }
519   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
520       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
521   DestElementPHI->addIncoming(DestBegin, EntryBB);
522   Address DestElementCurrent =
523       Address(DestElementPHI,
524               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
525 
526   // Emit copy.
527   {
528     CodeGenFunction::RunCleanupsScope InitScope(CGF);
529     if (DRD && (DRD->getInitializer() || !Init)) {
530       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
531                                        SrcElementCurrent, ElementTy);
532     } else
533       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
534                            /*IsInitializer=*/false);
535   }
536 
537   if (DRD) {
538     // Shift the address forward by one element.
539     auto SrcElementNext = CGF.Builder.CreateConstGEP1_32(
540         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
541     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
542   }
543 
544   // Shift the address forward by one element.
545   auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
546       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
547   // Check whether we've reached the end.
548   auto Done =
549       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
550   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
551   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
552 
553   // Done.
554   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
555 }
556 
557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
558                                   Address SrcAddr, const VarDecl *DestVD,
559                                   const VarDecl *SrcVD, const Expr *Copy) {
560   if (OriginalType->isArrayType()) {
561     auto *BO = dyn_cast<BinaryOperator>(Copy);
562     if (BO && BO->getOpcode() == BO_Assign) {
563       // Perform simple memcpy for simple copying.
564       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
565     } else {
566       // For arrays with complex element types perform element by element
567       // copying.
568       EmitOMPAggregateAssign(
569           DestAddr, SrcAddr, OriginalType,
570           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
571             // Working with the single array element, so have to remap
572             // destination and source variables to corresponding array
573             // elements.
574             CodeGenFunction::OMPPrivateScope Remap(*this);
575             Remap.addPrivate(DestVD, [DestElement]() -> Address {
576               return DestElement;
577             });
578             Remap.addPrivate(
579                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
580             (void)Remap.Privatize();
581             EmitIgnoredExpr(Copy);
582           });
583     }
584   } else {
585     // Remap pseudo source variable to private copy.
586     CodeGenFunction::OMPPrivateScope Remap(*this);
587     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
588     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
589     (void)Remap.Privatize();
590     // Emit copying of the whole variable.
591     EmitIgnoredExpr(Copy);
592   }
593 }
594 
595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
596                                                 OMPPrivateScope &PrivateScope) {
597   if (!HaveInsertPoint())
598     return false;
599   bool FirstprivateIsLastprivate = false;
600   llvm::DenseSet<const VarDecl *> Lastprivates;
601   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
602     for (const auto *D : C->varlists())
603       Lastprivates.insert(
604           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
605   }
606   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
607   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
608   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
609     auto IRef = C->varlist_begin();
610     auto InitsRef = C->inits().begin();
611     for (auto IInit : C->private_copies()) {
612       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
613       bool ThisFirstprivateIsLastprivate =
614           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
615       auto *CapFD = CapturesInfo.lookup(OrigVD);
616       auto *FD = CapturedStmtInfo->lookup(OrigVD);
617       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
618           !FD->getType()->isReferenceType()) {
619         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
620         ++IRef;
621         ++InitsRef;
622         continue;
623       }
624       FirstprivateIsLastprivate =
625           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
626       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
627         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
628         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
629         bool IsRegistered;
630         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
631                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
632                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
633         Address OriginalAddr = EmitLValue(&DRE).getAddress();
634         QualType Type = VD->getType();
635         if (Type->isArrayType()) {
636           // Emit VarDecl with copy init for arrays.
637           // Get the address of the original variable captured in current
638           // captured region.
639           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
640             auto Emission = EmitAutoVarAlloca(*VD);
641             auto *Init = VD->getInit();
642             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
643               // Perform simple memcpy.
644               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
645                                   Type);
646             } else {
647               EmitOMPAggregateAssign(
648                   Emission.getAllocatedAddress(), OriginalAddr, Type,
649                   [this, VDInit, Init](Address DestElement,
650                                        Address SrcElement) {
651                     // Clean up any temporaries needed by the initialization.
652                     RunCleanupsScope InitScope(*this);
653                     // Emit initialization for single element.
654                     setAddrOfLocalVar(VDInit, SrcElement);
655                     EmitAnyExprToMem(Init, DestElement,
656                                      Init->getType().getQualifiers(),
657                                      /*IsInitializer*/ false);
658                     LocalDeclMap.erase(VDInit);
659                   });
660             }
661             EmitAutoVarCleanups(Emission);
662             return Emission.getAllocatedAddress();
663           });
664         } else {
665           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
666             // Emit private VarDecl with copy init.
667             // Remap temp VDInit variable to the address of the original
668             // variable
669             // (for proper handling of captured global variables).
670             setAddrOfLocalVar(VDInit, OriginalAddr);
671             EmitDecl(*VD);
672             LocalDeclMap.erase(VDInit);
673             return GetAddrOfLocalVar(VD);
674           });
675         }
676         assert(IsRegistered &&
677                "firstprivate var already registered as private");
678         // Silence the warning about unused variable.
679         (void)IsRegistered;
680       }
681       ++IRef;
682       ++InitsRef;
683     }
684   }
685   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
686 }
687 
688 void CodeGenFunction::EmitOMPPrivateClause(
689     const OMPExecutableDirective &D,
690     CodeGenFunction::OMPPrivateScope &PrivateScope) {
691   if (!HaveInsertPoint())
692     return;
693   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
694   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
695     auto IRef = C->varlist_begin();
696     for (auto IInit : C->private_copies()) {
697       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
698       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
699         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
700         bool IsRegistered =
701             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
702               // Emit private VarDecl with copy init.
703               EmitDecl(*VD);
704               return GetAddrOfLocalVar(VD);
705             });
706         assert(IsRegistered && "private var already registered as private");
707         // Silence the warning about unused variable.
708         (void)IsRegistered;
709       }
710       ++IRef;
711     }
712   }
713 }
714 
715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
716   if (!HaveInsertPoint())
717     return false;
718   // threadprivate_var1 = master_threadprivate_var1;
719   // operator=(threadprivate_var2, master_threadprivate_var2);
720   // ...
721   // __kmpc_barrier(&loc, global_tid);
722   llvm::DenseSet<const VarDecl *> CopiedVars;
723   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
724   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
725     auto IRef = C->varlist_begin();
726     auto ISrcRef = C->source_exprs().begin();
727     auto IDestRef = C->destination_exprs().begin();
728     for (auto *AssignOp : C->assignment_ops()) {
729       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
730       QualType Type = VD->getType();
731       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
732         // Get the address of the master variable. If we are emitting code with
733         // TLS support, the address is passed from the master as field in the
734         // captured declaration.
735         Address MasterAddr = Address::invalid();
736         if (getLangOpts().OpenMPUseTLS &&
737             getContext().getTargetInfo().isTLSSupported()) {
738           assert(CapturedStmtInfo->lookup(VD) &&
739                  "Copyin threadprivates should have been captured!");
740           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
741                           VK_LValue, (*IRef)->getExprLoc());
742           MasterAddr = EmitLValue(&DRE).getAddress();
743           LocalDeclMap.erase(VD);
744         } else {
745           MasterAddr =
746             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
747                                         : CGM.GetAddrOfGlobal(VD),
748                     getContext().getDeclAlign(VD));
749         }
750         // Get the address of the threadprivate variable.
751         Address PrivateAddr = EmitLValue(*IRef).getAddress();
752         if (CopiedVars.size() == 1) {
753           // At first check if current thread is a master thread. If it is, no
754           // need to copy data.
755           CopyBegin = createBasicBlock("copyin.not.master");
756           CopyEnd = createBasicBlock("copyin.not.master.end");
757           Builder.CreateCondBr(
758               Builder.CreateICmpNE(
759                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
760                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
761               CopyBegin, CopyEnd);
762           EmitBlock(CopyBegin);
763         }
764         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
765         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
766         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
767       }
768       ++IRef;
769       ++ISrcRef;
770       ++IDestRef;
771     }
772   }
773   if (CopyEnd) {
774     // Exit out of copying procedure for non-master thread.
775     EmitBlock(CopyEnd, /*IsFinished=*/true);
776     return true;
777   }
778   return false;
779 }
780 
781 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
782     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
783   if (!HaveInsertPoint())
784     return false;
785   bool HasAtLeastOneLastprivate = false;
786   llvm::DenseSet<const VarDecl *> SIMDLCVs;
787   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
788     auto *LoopDirective = cast<OMPLoopDirective>(&D);
789     for (auto *C : LoopDirective->counters()) {
790       SIMDLCVs.insert(
791           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
792     }
793   }
794   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
795   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
796     HasAtLeastOneLastprivate = true;
797     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
798       break;
799     auto IRef = C->varlist_begin();
800     auto IDestRef = C->destination_exprs().begin();
801     for (auto *IInit : C->private_copies()) {
802       // Keep the address of the original variable for future update at the end
803       // of the loop.
804       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
805       // Taskloops do not require additional initialization, it is done in
806       // runtime support library.
807       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
808         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
809         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
810           DeclRefExpr DRE(
811               const_cast<VarDecl *>(OrigVD),
812               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
813                   OrigVD) != nullptr,
814               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
815           return EmitLValue(&DRE).getAddress();
816         });
817         // Check if the variable is also a firstprivate: in this case IInit is
818         // not generated. Initialization of this variable will happen in codegen
819         // for 'firstprivate' clause.
820         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
821           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
822           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
823             // Emit private VarDecl with copy init.
824             EmitDecl(*VD);
825             return GetAddrOfLocalVar(VD);
826           });
827           assert(IsRegistered &&
828                  "lastprivate var already registered as private");
829           (void)IsRegistered;
830         }
831       }
832       ++IRef;
833       ++IDestRef;
834     }
835   }
836   return HasAtLeastOneLastprivate;
837 }
838 
839 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
840     const OMPExecutableDirective &D, bool NoFinals,
841     llvm::Value *IsLastIterCond) {
842   if (!HaveInsertPoint())
843     return;
844   // Emit following code:
845   // if (<IsLastIterCond>) {
846   //   orig_var1 = private_orig_var1;
847   //   ...
848   //   orig_varn = private_orig_varn;
849   // }
850   llvm::BasicBlock *ThenBB = nullptr;
851   llvm::BasicBlock *DoneBB = nullptr;
852   if (IsLastIterCond) {
853     ThenBB = createBasicBlock(".omp.lastprivate.then");
854     DoneBB = createBasicBlock(".omp.lastprivate.done");
855     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
856     EmitBlock(ThenBB);
857   }
858   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
859   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
860   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
861     auto IC = LoopDirective->counters().begin();
862     for (auto F : LoopDirective->finals()) {
863       auto *D =
864           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
865       if (NoFinals)
866         AlreadyEmittedVars.insert(D);
867       else
868         LoopCountersAndUpdates[D] = F;
869       ++IC;
870     }
871   }
872   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
873     auto IRef = C->varlist_begin();
874     auto ISrcRef = C->source_exprs().begin();
875     auto IDestRef = C->destination_exprs().begin();
876     for (auto *AssignOp : C->assignment_ops()) {
877       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
878       QualType Type = PrivateVD->getType();
879       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
880       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
881         // If lastprivate variable is a loop control variable for loop-based
882         // directive, update its value before copyin back to original
883         // variable.
884         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
885           EmitIgnoredExpr(FinalExpr);
886         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
887         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
888         // Get the address of the original variable.
889         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
890         // Get the address of the private variable.
891         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
892         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
893           PrivateAddr =
894               Address(Builder.CreateLoad(PrivateAddr),
895                       getNaturalTypeAlignment(RefTy->getPointeeType()));
896         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
897       }
898       ++IRef;
899       ++ISrcRef;
900       ++IDestRef;
901     }
902     if (auto *PostUpdate = C->getPostUpdateExpr())
903       EmitIgnoredExpr(PostUpdate);
904   }
905   if (IsLastIterCond)
906     EmitBlock(DoneBB, /*IsFinished=*/true);
907 }
908 
909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
910                           LValue BaseLV, llvm::Value *Addr) {
911   Address Tmp = Address::invalid();
912   Address TopTmp = Address::invalid();
913   Address MostTopTmp = Address::invalid();
914   BaseTy = BaseTy.getNonReferenceType();
915   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
916          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
917     Tmp = CGF.CreateMemTemp(BaseTy);
918     if (TopTmp.isValid())
919       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
920     else
921       MostTopTmp = Tmp;
922     TopTmp = Tmp;
923     BaseTy = BaseTy->getPointeeType();
924   }
925   llvm::Type *Ty = BaseLV.getPointer()->getType();
926   if (Tmp.isValid())
927     Ty = Tmp.getElementType();
928   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
929   if (Tmp.isValid()) {
930     CGF.Builder.CreateStore(Addr, Tmp);
931     return MostTopTmp;
932   }
933   return Address(Addr, BaseLV.getAlignment());
934 }
935 
936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
937                           LValue BaseLV) {
938   BaseTy = BaseTy.getNonReferenceType();
939   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
940          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
941     if (auto *PtrTy = BaseTy->getAs<PointerType>())
942       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
943     else {
944       BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
945                                              BaseTy->castAs<ReferenceType>());
946     }
947     BaseTy = BaseTy->getPointeeType();
948   }
949   return CGF.MakeAddrLValue(
950       Address(
951           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
952               BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
953           BaseLV.getAlignment()),
954       BaseLV.getType(), BaseLV.getAlignmentSource());
955 }
956 
957 void CodeGenFunction::EmitOMPReductionClauseInit(
958     const OMPExecutableDirective &D,
959     CodeGenFunction::OMPPrivateScope &PrivateScope) {
960   if (!HaveInsertPoint())
961     return;
962   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
963     auto ILHS = C->lhs_exprs().begin();
964     auto IRHS = C->rhs_exprs().begin();
965     auto IPriv = C->privates().begin();
966     auto IRed = C->reduction_ops().begin();
967     for (auto IRef : C->varlists()) {
968       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
969       auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
970       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
971       auto *DRD = getReductionInit(*IRed);
972       if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
973         auto *Base = OASE->getBase()->IgnoreParenImpCasts();
974         while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
975           Base = TempOASE->getBase()->IgnoreParenImpCasts();
976         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
977           Base = TempASE->getBase()->IgnoreParenImpCasts();
978         auto *DE = cast<DeclRefExpr>(Base);
979         auto *OrigVD = cast<VarDecl>(DE->getDecl());
980         auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
981         auto OASELValueUB =
982             EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
983         auto OriginalBaseLValue = EmitLValue(DE);
984         LValue BaseLValue =
985             loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
986                         OriginalBaseLValue);
987         // Store the address of the original variable associated with the LHS
988         // implicit variable.
989         PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
990           return OASELValueLB.getAddress();
991         });
992         // Emit reduction copy.
993         bool IsRegistered = PrivateScope.addPrivate(
994             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
995                      OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address {
996               // Emit VarDecl with copy init for arrays.
997               // Get the address of the original variable captured in current
998               // captured region.
999               auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
1000                                                  OASELValueLB.getPointer());
1001               Size = Builder.CreateNUWAdd(
1002                   Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1003               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1004                   *this, cast<OpaqueValueExpr>(
1005                              getContext()
1006                                  .getAsVariableArrayType(PrivateVD->getType())
1007                                  ->getSizeExpr()),
1008                   RValue::get(Size));
1009               EmitVariablyModifiedType(PrivateVD->getType());
1010               auto Emission = EmitAutoVarAlloca(*PrivateVD);
1011               auto Addr = Emission.getAllocatedAddress();
1012               auto *Init = PrivateVD->getInit();
1013               EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1014                                    DRD ? *IRed : Init,
1015                                    OASELValueLB.getAddress());
1016               EmitAutoVarCleanups(Emission);
1017               // Emit private VarDecl with reduction init.
1018               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1019                                                    OASELValueLB.getPointer());
1020               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1021               return castToBase(*this, OrigVD->getType(),
1022                                 OASELValueLB.getType(), OriginalBaseLValue,
1023                                 Ptr);
1024             });
1025         assert(IsRegistered && "private var already registered as private");
1026         // Silence the warning about unused variable.
1027         (void)IsRegistered;
1028         PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1029           return GetAddrOfLocalVar(PrivateVD);
1030         });
1031       } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
1032         auto *Base = ASE->getBase()->IgnoreParenImpCasts();
1033         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1034           Base = TempASE->getBase()->IgnoreParenImpCasts();
1035         auto *DE = cast<DeclRefExpr>(Base);
1036         auto *OrigVD = cast<VarDecl>(DE->getDecl());
1037         auto ASELValue = EmitLValue(ASE);
1038         auto OriginalBaseLValue = EmitLValue(DE);
1039         LValue BaseLValue = loadToBegin(
1040             *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
1041         // Store the address of the original variable associated with the LHS
1042         // implicit variable.
1043         PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
1044           return ASELValue.getAddress();
1045         });
1046         // Emit reduction copy.
1047         bool IsRegistered = PrivateScope.addPrivate(
1048             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
1049                      OriginalBaseLValue, DRD, IRed]() -> Address {
1050               // Emit private VarDecl with reduction init.
1051               AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1052               auto Addr = Emission.getAllocatedAddress();
1053               if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1054                 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1055                                                  ASELValue.getAddress(),
1056                                                  ASELValue.getType());
1057               } else
1058                 EmitAutoVarInit(Emission);
1059               EmitAutoVarCleanups(Emission);
1060               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1061                                                    ASELValue.getPointer());
1062               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1063               return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
1064                                 OriginalBaseLValue, Ptr);
1065             });
1066         assert(IsRegistered && "private var already registered as private");
1067         // Silence the warning about unused variable.
1068         (void)IsRegistered;
1069         PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1070           return Builder.CreateElementBitCast(
1071               GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
1072               "rhs.begin");
1073         });
1074       } else {
1075         auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
1076         QualType Type = PrivateVD->getType();
1077         if (getContext().getAsArrayType(Type)) {
1078           // Store the address of the original variable associated with the LHS
1079           // implicit variable.
1080           DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1081                           CapturedStmtInfo->lookup(OrigVD) != nullptr,
1082                           IRef->getType(), VK_LValue, IRef->getExprLoc());
1083           Address OriginalAddr = EmitLValue(&DRE).getAddress();
1084           PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr,
1085                                           LHSVD]() -> Address {
1086             OriginalAddr = Builder.CreateElementBitCast(
1087                 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1088             return OriginalAddr;
1089           });
1090           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
1091             if (Type->isVariablyModifiedType()) {
1092               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1093                   *this, cast<OpaqueValueExpr>(
1094                              getContext()
1095                                  .getAsVariableArrayType(PrivateVD->getType())
1096                                  ->getSizeExpr()),
1097                   RValue::get(
1098                       getTypeSize(OrigVD->getType().getNonReferenceType())));
1099               EmitVariablyModifiedType(Type);
1100             }
1101             auto Emission = EmitAutoVarAlloca(*PrivateVD);
1102             auto Addr = Emission.getAllocatedAddress();
1103             auto *Init = PrivateVD->getInit();
1104             EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1105                                  DRD ? *IRed : Init, OriginalAddr);
1106             EmitAutoVarCleanups(Emission);
1107             return Emission.getAllocatedAddress();
1108           });
1109           assert(IsRegistered && "private var already registered as private");
1110           // Silence the warning about unused variable.
1111           (void)IsRegistered;
1112           PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1113             return Builder.CreateElementBitCast(
1114                 GetAddrOfLocalVar(PrivateVD),
1115                 ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
1116           });
1117         } else {
1118           // Store the address of the original variable associated with the LHS
1119           // implicit variable.
1120           Address OriginalAddr = Address::invalid();
1121           PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef,
1122                                           &OriginalAddr]() -> Address {
1123             DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1124                             CapturedStmtInfo->lookup(OrigVD) != nullptr,
1125                             IRef->getType(), VK_LValue, IRef->getExprLoc());
1126             OriginalAddr = EmitLValue(&DRE).getAddress();
1127             return OriginalAddr;
1128           });
1129           // Emit reduction copy.
1130           bool IsRegistered = PrivateScope.addPrivate(
1131               OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address {
1132                 // Emit private VarDecl with reduction init.
1133                 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1134                 auto Addr = Emission.getAllocatedAddress();
1135                 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1136                   emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1137                                                    OriginalAddr,
1138                                                    PrivateVD->getType());
1139                 } else
1140                   EmitAutoVarInit(Emission);
1141                 EmitAutoVarCleanups(Emission);
1142                 return Addr;
1143               });
1144           assert(IsRegistered && "private var already registered as private");
1145           // Silence the warning about unused variable.
1146           (void)IsRegistered;
1147           PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1148             return GetAddrOfLocalVar(PrivateVD);
1149           });
1150         }
1151       }
1152       ++ILHS;
1153       ++IRHS;
1154       ++IPriv;
1155       ++IRed;
1156     }
1157   }
1158 }
1159 
1160 void CodeGenFunction::EmitOMPReductionClauseFinal(
1161     const OMPExecutableDirective &D) {
1162   if (!HaveInsertPoint())
1163     return;
1164   llvm::SmallVector<const Expr *, 8> Privates;
1165   llvm::SmallVector<const Expr *, 8> LHSExprs;
1166   llvm::SmallVector<const Expr *, 8> RHSExprs;
1167   llvm::SmallVector<const Expr *, 8> ReductionOps;
1168   bool HasAtLeastOneReduction = false;
1169   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1170     HasAtLeastOneReduction = true;
1171     Privates.append(C->privates().begin(), C->privates().end());
1172     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1173     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1174     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1175   }
1176   if (HasAtLeastOneReduction) {
1177     // Emit nowait reduction if nowait clause is present or directive is a
1178     // parallel directive (it always has implicit barrier).
1179     CGM.getOpenMPRuntime().emitReduction(
1180         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1181         D.getSingleClause<OMPNowaitClause>() ||
1182             isOpenMPParallelDirective(D.getDirectiveKind()) ||
1183             D.getDirectiveKind() == OMPD_simd,
1184         D.getDirectiveKind() == OMPD_simd);
1185   }
1186 }
1187 
1188 static void emitPostUpdateForReductionClause(
1189     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1190     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1191   if (!CGF.HaveInsertPoint())
1192     return;
1193   llvm::BasicBlock *DoneBB = nullptr;
1194   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1195     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1196       if (!DoneBB) {
1197         if (auto *Cond = CondGen(CGF)) {
1198           // If the first post-update expression is found, emit conditional
1199           // block if it was requested.
1200           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1201           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1202           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1203           CGF.EmitBlock(ThenBB);
1204         }
1205       }
1206       CGF.EmitIgnoredExpr(PostUpdate);
1207     }
1208   }
1209   if (DoneBB)
1210     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1211 }
1212 
1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
1214                                            const OMPExecutableDirective &S,
1215                                            OpenMPDirectiveKind InnermostKind,
1216                                            const RegionCodeGenTy &CodeGen) {
1217   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1218   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
1219       emitParallelOrTeamsOutlinedFunction(S,
1220           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1221   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1222     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1223     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1224                                          /*IgnoreResultAssign*/ true);
1225     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1226         CGF, NumThreads, NumThreadsClause->getLocStart());
1227   }
1228   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1229     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1230     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1231         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1232   }
1233   const Expr *IfCond = nullptr;
1234   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1235     if (C->getNameModifier() == OMPD_unknown ||
1236         C->getNameModifier() == OMPD_parallel) {
1237       IfCond = C->getCondition();
1238       break;
1239     }
1240   }
1241 
1242   OMPLexicalScope Scope(CGF, S);
1243   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1244   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1245   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1246                                               CapturedVars, IfCond);
1247 }
1248 
1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1250   // Emit parallel region as a standalone region.
1251   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1252     OMPPrivateScope PrivateScope(CGF);
1253     bool Copyins = CGF.EmitOMPCopyinClause(S);
1254     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1255     if (Copyins) {
1256       // Emit implicit barrier to synchronize threads and avoid data races on
1257       // propagation master's thread values of threadprivate variables to local
1258       // instances of that variables of all other implicit threads.
1259       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1260           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1261           /*ForceSimpleCall=*/true);
1262     }
1263     CGF.EmitOMPPrivateClause(S, PrivateScope);
1264     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1265     (void)PrivateScope.Privatize();
1266     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1267     CGF.EmitOMPReductionClauseFinal(S);
1268   };
1269   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
1270   emitPostUpdateForReductionClause(
1271       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1272 }
1273 
1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1275                                       JumpDest LoopExit) {
1276   RunCleanupsScope BodyScope(*this);
1277   // Update counters values on current iteration.
1278   for (auto I : D.updates()) {
1279     EmitIgnoredExpr(I);
1280   }
1281   // Update the linear variables.
1282   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1283     for (auto *U : C->updates())
1284       EmitIgnoredExpr(U);
1285   }
1286 
1287   // On a continue in the body, jump to the end.
1288   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1289   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1290   // Emit loop body.
1291   EmitStmt(D.getBody());
1292   // The end (updates/cleanups).
1293   EmitBlock(Continue.getBlock());
1294   BreakContinueStack.pop_back();
1295 }
1296 
1297 void CodeGenFunction::EmitOMPInnerLoop(
1298     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1299     const Expr *IncExpr,
1300     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1301     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1302   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1303 
1304   // Start the loop with a block that tests the condition.
1305   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1306   EmitBlock(CondBlock);
1307   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1308 
1309   // If there are any cleanups between here and the loop-exit scope,
1310   // create a block to stage a loop exit along.
1311   auto ExitBlock = LoopExit.getBlock();
1312   if (RequiresCleanup)
1313     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1314 
1315   auto LoopBody = createBasicBlock("omp.inner.for.body");
1316 
1317   // Emit condition.
1318   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1319   if (ExitBlock != LoopExit.getBlock()) {
1320     EmitBlock(ExitBlock);
1321     EmitBranchThroughCleanup(LoopExit);
1322   }
1323 
1324   EmitBlock(LoopBody);
1325   incrementProfileCounter(&S);
1326 
1327   // Create a block for the increment.
1328   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1329   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1330 
1331   BodyGen(*this);
1332 
1333   // Emit "IV = IV + 1" and a back-edge to the condition block.
1334   EmitBlock(Continue.getBlock());
1335   EmitIgnoredExpr(IncExpr);
1336   PostIncGen(*this);
1337   BreakContinueStack.pop_back();
1338   EmitBranch(CondBlock);
1339   LoopStack.pop();
1340   // Emit the fall-through block.
1341   EmitBlock(LoopExit.getBlock());
1342 }
1343 
1344 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1345   if (!HaveInsertPoint())
1346     return;
1347   // Emit inits for the linear variables.
1348   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1349     for (auto *Init : C->inits()) {
1350       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1351       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1352         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1353         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1354         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1355                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1356                         VD->getInit()->getType(), VK_LValue,
1357                         VD->getInit()->getExprLoc());
1358         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1359                                                 VD->getType()),
1360                        /*capturedByInit=*/false);
1361         EmitAutoVarCleanups(Emission);
1362       } else
1363         EmitVarDecl(*VD);
1364     }
1365     // Emit the linear steps for the linear clauses.
1366     // If a step is not constant, it is pre-calculated before the loop.
1367     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1368       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1369         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1370         // Emit calculation of the linear step.
1371         EmitIgnoredExpr(CS);
1372       }
1373   }
1374 }
1375 
1376 void CodeGenFunction::EmitOMPLinearClauseFinal(
1377     const OMPLoopDirective &D,
1378     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1379   if (!HaveInsertPoint())
1380     return;
1381   llvm::BasicBlock *DoneBB = nullptr;
1382   // Emit the final values of the linear variables.
1383   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1384     auto IC = C->varlist_begin();
1385     for (auto *F : C->finals()) {
1386       if (!DoneBB) {
1387         if (auto *Cond = CondGen(*this)) {
1388           // If the first post-update expression is found, emit conditional
1389           // block if it was requested.
1390           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1391           DoneBB = createBasicBlock(".omp.linear.pu.done");
1392           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1393           EmitBlock(ThenBB);
1394         }
1395       }
1396       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1397       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1398                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1399                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1400       Address OrigAddr = EmitLValue(&DRE).getAddress();
1401       CodeGenFunction::OMPPrivateScope VarScope(*this);
1402       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1403       (void)VarScope.Privatize();
1404       EmitIgnoredExpr(F);
1405       ++IC;
1406     }
1407     if (auto *PostUpdate = C->getPostUpdateExpr())
1408       EmitIgnoredExpr(PostUpdate);
1409   }
1410   if (DoneBB)
1411     EmitBlock(DoneBB, /*IsFinished=*/true);
1412 }
1413 
1414 static void emitAlignedClause(CodeGenFunction &CGF,
1415                               const OMPExecutableDirective &D) {
1416   if (!CGF.HaveInsertPoint())
1417     return;
1418   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1419     unsigned ClauseAlignment = 0;
1420     if (auto AlignmentExpr = Clause->getAlignment()) {
1421       auto AlignmentCI =
1422           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1423       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1424     }
1425     for (auto E : Clause->varlists()) {
1426       unsigned Alignment = ClauseAlignment;
1427       if (Alignment == 0) {
1428         // OpenMP [2.8.1, Description]
1429         // If no optional parameter is specified, implementation-defined default
1430         // alignments for SIMD instructions on the target platforms are assumed.
1431         Alignment =
1432             CGF.getContext()
1433                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1434                     E->getType()->getPointeeType()))
1435                 .getQuantity();
1436       }
1437       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1438              "alignment is not power of 2");
1439       if (Alignment != 0) {
1440         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1441         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1442       }
1443     }
1444   }
1445 }
1446 
1447 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1448     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1449   if (!HaveInsertPoint())
1450     return;
1451   auto I = S.private_counters().begin();
1452   for (auto *E : S.counters()) {
1453     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1454     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1455     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1456       // Emit var without initialization.
1457       if (!LocalDeclMap.count(PrivateVD)) {
1458         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1459         EmitAutoVarCleanups(VarEmission);
1460       }
1461       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1462                       /*RefersToEnclosingVariableOrCapture=*/false,
1463                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1464       return EmitLValue(&DRE).getAddress();
1465     });
1466     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1467         VD->hasGlobalStorage()) {
1468       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1469         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1470                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1471                         E->getType(), VK_LValue, E->getExprLoc());
1472         return EmitLValue(&DRE).getAddress();
1473       });
1474     }
1475     ++I;
1476   }
1477 }
1478 
1479 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1480                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1481                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1482   if (!CGF.HaveInsertPoint())
1483     return;
1484   {
1485     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1486     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1487     (void)PreCondScope.Privatize();
1488     // Get initial values of real counters.
1489     for (auto I : S.inits()) {
1490       CGF.EmitIgnoredExpr(I);
1491     }
1492   }
1493   // Check that loop is executed at least one time.
1494   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1495 }
1496 
1497 void CodeGenFunction::EmitOMPLinearClause(
1498     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1499   if (!HaveInsertPoint())
1500     return;
1501   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1502   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1503     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1504     for (auto *C : LoopDirective->counters()) {
1505       SIMDLCVs.insert(
1506           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1507     }
1508   }
1509   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1510     auto CurPrivate = C->privates().begin();
1511     for (auto *E : C->varlists()) {
1512       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1513       auto *PrivateVD =
1514           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1515       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1516         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1517           // Emit private VarDecl with copy init.
1518           EmitVarDecl(*PrivateVD);
1519           return GetAddrOfLocalVar(PrivateVD);
1520         });
1521         assert(IsRegistered && "linear var already registered as private");
1522         // Silence the warning about unused variable.
1523         (void)IsRegistered;
1524       } else
1525         EmitVarDecl(*PrivateVD);
1526       ++CurPrivate;
1527     }
1528   }
1529 }
1530 
1531 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1532                                      const OMPExecutableDirective &D,
1533                                      bool IsMonotonic) {
1534   if (!CGF.HaveInsertPoint())
1535     return;
1536   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1537     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1538                                  /*ignoreResult=*/true);
1539     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1540     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1541     // In presence of finite 'safelen', it may be unsafe to mark all
1542     // the memory instructions parallel, because loop-carried
1543     // dependences of 'safelen' iterations are possible.
1544     if (!IsMonotonic)
1545       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1546   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1547     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1548                                  /*ignoreResult=*/true);
1549     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1550     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1551     // In presence of finite 'safelen', it may be unsafe to mark all
1552     // the memory instructions parallel, because loop-carried
1553     // dependences of 'safelen' iterations are possible.
1554     CGF.LoopStack.setParallel(false);
1555   }
1556 }
1557 
1558 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1559                                       bool IsMonotonic) {
1560   // Walk clauses and process safelen/lastprivate.
1561   LoopStack.setParallel(!IsMonotonic);
1562   LoopStack.setVectorizeEnable(true);
1563   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1564 }
1565 
1566 void CodeGenFunction::EmitOMPSimdFinal(
1567     const OMPLoopDirective &D,
1568     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1569   if (!HaveInsertPoint())
1570     return;
1571   llvm::BasicBlock *DoneBB = nullptr;
1572   auto IC = D.counters().begin();
1573   auto IPC = D.private_counters().begin();
1574   for (auto F : D.finals()) {
1575     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1576     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1577     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1578     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1579         OrigVD->hasGlobalStorage() || CED) {
1580       if (!DoneBB) {
1581         if (auto *Cond = CondGen(*this)) {
1582           // If the first post-update expression is found, emit conditional
1583           // block if it was requested.
1584           auto *ThenBB = createBasicBlock(".omp.final.then");
1585           DoneBB = createBasicBlock(".omp.final.done");
1586           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1587           EmitBlock(ThenBB);
1588         }
1589       }
1590       Address OrigAddr = Address::invalid();
1591       if (CED)
1592         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1593       else {
1594         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1595                         /*RefersToEnclosingVariableOrCapture=*/false,
1596                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1597         OrigAddr = EmitLValue(&DRE).getAddress();
1598       }
1599       OMPPrivateScope VarScope(*this);
1600       VarScope.addPrivate(OrigVD,
1601                           [OrigAddr]() -> Address { return OrigAddr; });
1602       (void)VarScope.Privatize();
1603       EmitIgnoredExpr(F);
1604     }
1605     ++IC;
1606     ++IPC;
1607   }
1608   if (DoneBB)
1609     EmitBlock(DoneBB, /*IsFinished=*/true);
1610 }
1611 
1612 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1613   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1614     OMPLoopScope PreInitScope(CGF, S);
1615     // if (PreCond) {
1616     //   for (IV in 0..LastIteration) BODY;
1617     //   <Final counter/linear vars updates>;
1618     // }
1619     //
1620 
1621     // Emit: if (PreCond) - begin.
1622     // If the condition constant folds and can be elided, avoid emitting the
1623     // whole loop.
1624     bool CondConstant;
1625     llvm::BasicBlock *ContBlock = nullptr;
1626     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1627       if (!CondConstant)
1628         return;
1629     } else {
1630       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1631       ContBlock = CGF.createBasicBlock("simd.if.end");
1632       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1633                   CGF.getProfileCount(&S));
1634       CGF.EmitBlock(ThenBlock);
1635       CGF.incrementProfileCounter(&S);
1636     }
1637 
1638     // Emit the loop iteration variable.
1639     const Expr *IVExpr = S.getIterationVariable();
1640     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1641     CGF.EmitVarDecl(*IVDecl);
1642     CGF.EmitIgnoredExpr(S.getInit());
1643 
1644     // Emit the iterations count variable.
1645     // If it is not a variable, Sema decided to calculate iterations count on
1646     // each iteration (e.g., it is foldable into a constant).
1647     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1648       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1649       // Emit calculation of the iterations count.
1650       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1651     }
1652 
1653     CGF.EmitOMPSimdInit(S);
1654 
1655     emitAlignedClause(CGF, S);
1656     CGF.EmitOMPLinearClauseInit(S);
1657     {
1658       OMPPrivateScope LoopScope(CGF);
1659       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1660       CGF.EmitOMPLinearClause(S, LoopScope);
1661       CGF.EmitOMPPrivateClause(S, LoopScope);
1662       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1663       bool HasLastprivateClause =
1664           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1665       (void)LoopScope.Privatize();
1666       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1667                            S.getInc(),
1668                            [&S](CodeGenFunction &CGF) {
1669                              CGF.EmitOMPLoopBody(S, JumpDest());
1670                              CGF.EmitStopPoint(&S);
1671                            },
1672                            [](CodeGenFunction &) {});
1673       CGF.EmitOMPSimdFinal(
1674           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1675       // Emit final copy of the lastprivate variables at the end of loops.
1676       if (HasLastprivateClause)
1677         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1678       CGF.EmitOMPReductionClauseFinal(S);
1679       emitPostUpdateForReductionClause(
1680           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1681     }
1682     CGF.EmitOMPLinearClauseFinal(
1683         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1684     // Emit: if (PreCond) - end.
1685     if (ContBlock) {
1686       CGF.EmitBranch(ContBlock);
1687       CGF.EmitBlock(ContBlock, true);
1688     }
1689   };
1690   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1691   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1692 }
1693 
1694 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
1695     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1696     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1697   auto &RT = CGM.getOpenMPRuntime();
1698 
1699   const Expr *IVExpr = S.getIterationVariable();
1700   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1701   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1702 
1703   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1704 
1705   // Start the loop with a block that tests the condition.
1706   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1707   EmitBlock(CondBlock);
1708   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1709 
1710   llvm::Value *BoolCondVal = nullptr;
1711   if (!DynamicOrOrdered) {
1712     // UB = min(UB, GlobalUB)
1713     EmitIgnoredExpr(S.getEnsureUpperBound());
1714     // IV = LB
1715     EmitIgnoredExpr(S.getInit());
1716     // IV < UB
1717     BoolCondVal = EvaluateExprAsBool(S.getCond());
1718   } else {
1719     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL,
1720                                  LB, UB, ST);
1721   }
1722 
1723   // If there are any cleanups between here and the loop-exit scope,
1724   // create a block to stage a loop exit along.
1725   auto ExitBlock = LoopExit.getBlock();
1726   if (LoopScope.requiresCleanups())
1727     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1728 
1729   auto LoopBody = createBasicBlock("omp.dispatch.body");
1730   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1731   if (ExitBlock != LoopExit.getBlock()) {
1732     EmitBlock(ExitBlock);
1733     EmitBranchThroughCleanup(LoopExit);
1734   }
1735   EmitBlock(LoopBody);
1736 
1737   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1738   // LB for loop condition and emitted it above).
1739   if (DynamicOrOrdered)
1740     EmitIgnoredExpr(S.getInit());
1741 
1742   // Create a block for the increment.
1743   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1744   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1745 
1746   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1747   // with dynamic/guided scheduling and without ordered clause.
1748   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1749     LoopStack.setParallel(!IsMonotonic);
1750   else
1751     EmitOMPSimdInit(S, IsMonotonic);
1752 
1753   SourceLocation Loc = S.getLocStart();
1754   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1755                    [&S, LoopExit](CodeGenFunction &CGF) {
1756                      CGF.EmitOMPLoopBody(S, LoopExit);
1757                      CGF.EmitStopPoint(&S);
1758                    },
1759                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1760                      if (Ordered) {
1761                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1762                            CGF, Loc, IVSize, IVSigned);
1763                      }
1764                    });
1765 
1766   EmitBlock(Continue.getBlock());
1767   BreakContinueStack.pop_back();
1768   if (!DynamicOrOrdered) {
1769     // Emit "LB = LB + Stride", "UB = UB + Stride".
1770     EmitIgnoredExpr(S.getNextLowerBound());
1771     EmitIgnoredExpr(S.getNextUpperBound());
1772   }
1773 
1774   EmitBranch(CondBlock);
1775   LoopStack.pop();
1776   // Emit the fall-through block.
1777   EmitBlock(LoopExit.getBlock());
1778 
1779   // Tell the runtime we are done.
1780   if (!DynamicOrOrdered)
1781     RT.emitForStaticFinish(*this, S.getLocEnd());
1782 
1783 }
1784 
1785 void CodeGenFunction::EmitOMPForOuterLoop(
1786     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1787     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1788     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1789   auto &RT = CGM.getOpenMPRuntime();
1790 
1791   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1792   const bool DynamicOrOrdered =
1793       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1794 
1795   assert((Ordered ||
1796           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1797                                  /*Chunked=*/Chunk != nullptr)) &&
1798          "static non-chunked schedule does not need outer loop");
1799 
1800   // Emit outer loop.
1801   //
1802   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1803   // When schedule(dynamic,chunk_size) is specified, the iterations are
1804   // distributed to threads in the team in chunks as the threads request them.
1805   // Each thread executes a chunk of iterations, then requests another chunk,
1806   // until no chunks remain to be distributed. Each chunk contains chunk_size
1807   // iterations, except for the last chunk to be distributed, which may have
1808   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1809   //
1810   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1811   // to threads in the team in chunks as the executing threads request them.
1812   // Each thread executes a chunk of iterations, then requests another chunk,
1813   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1814   // each chunk is proportional to the number of unassigned iterations divided
1815   // by the number of threads in the team, decreasing to 1. For a chunk_size
1816   // with value k (greater than 1), the size of each chunk is determined in the
1817   // same way, with the restriction that the chunks do not contain fewer than k
1818   // iterations (except for the last chunk to be assigned, which may have fewer
1819   // than k iterations).
1820   //
1821   // When schedule(auto) is specified, the decision regarding scheduling is
1822   // delegated to the compiler and/or runtime system. The programmer gives the
1823   // implementation the freedom to choose any possible mapping of iterations to
1824   // threads in the team.
1825   //
1826   // When schedule(runtime) is specified, the decision regarding scheduling is
1827   // deferred until run time, and the schedule and chunk size are taken from the
1828   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1829   // implementation defined
1830   //
1831   // while(__kmpc_dispatch_next(&LB, &UB)) {
1832   //   idx = LB;
1833   //   while (idx <= UB) { BODY; ++idx;
1834   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1835   //   } // inner loop
1836   // }
1837   //
1838   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1839   // When schedule(static, chunk_size) is specified, iterations are divided into
1840   // chunks of size chunk_size, and the chunks are assigned to the threads in
1841   // the team in a round-robin fashion in the order of the thread number.
1842   //
1843   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1844   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1845   //   LB = LB + ST;
1846   //   UB = UB + ST;
1847   // }
1848   //
1849 
1850   const Expr *IVExpr = S.getIterationVariable();
1851   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1852   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1853 
1854   if (DynamicOrOrdered) {
1855     llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
1856     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1857                            IVSigned, Ordered, UBVal, Chunk);
1858   } else {
1859     RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1860                          Ordered, IL, LB, UB, ST, Chunk);
1861   }
1862 
1863   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB,
1864                    ST, IL, Chunk);
1865 }
1866 
1867 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1868     OpenMPDistScheduleClauseKind ScheduleKind,
1869     const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
1870     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1871 
1872   auto &RT = CGM.getOpenMPRuntime();
1873 
1874   // Emit outer loop.
1875   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1876   // dynamic
1877   //
1878 
1879   const Expr *IVExpr = S.getIterationVariable();
1880   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1881   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1882 
1883   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
1884                               IVSize, IVSigned, /* Ordered = */ false,
1885                               IL, LB, UB, ST, Chunk);
1886 
1887   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false,
1888                    S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk);
1889 }
1890 
1891 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1892     const OMPDistributeParallelForDirective &S) {
1893   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1894   CGM.getOpenMPRuntime().emitInlinedDirective(
1895       *this, OMPD_distribute_parallel_for,
1896       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1897         OMPLoopScope PreInitScope(CGF, S);
1898         CGF.EmitStmt(
1899             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1900       });
1901 }
1902 
1903 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1904     const OMPDistributeParallelForSimdDirective &S) {
1905   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1906   CGM.getOpenMPRuntime().emitInlinedDirective(
1907       *this, OMPD_distribute_parallel_for_simd,
1908       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1909         OMPLoopScope PreInitScope(CGF, S);
1910         CGF.EmitStmt(
1911             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1912       });
1913 }
1914 
1915 void CodeGenFunction::EmitOMPDistributeSimdDirective(
1916     const OMPDistributeSimdDirective &S) {
1917   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1918   CGM.getOpenMPRuntime().emitInlinedDirective(
1919       *this, OMPD_distribute_simd,
1920       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1921         OMPLoopScope PreInitScope(CGF, S);
1922         CGF.EmitStmt(
1923             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1924       });
1925 }
1926 
1927 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
1928     const OMPTargetParallelForSimdDirective &S) {
1929   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1930   CGM.getOpenMPRuntime().emitInlinedDirective(
1931       *this, OMPD_target_parallel_for_simd,
1932       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1933         OMPLoopScope PreInitScope(CGF, S);
1934         CGF.EmitStmt(
1935             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1936       });
1937 }
1938 
1939 void CodeGenFunction::EmitOMPTargetSimdDirective(
1940     const OMPTargetSimdDirective &S) {
1941   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1942   CGM.getOpenMPRuntime().emitInlinedDirective(
1943       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1944         OMPLoopScope PreInitScope(CGF, S);
1945         CGF.EmitStmt(
1946             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1947       });
1948 }
1949 
1950 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
1951     const OMPTeamsDistributeDirective &S) {
1952   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1953   CGM.getOpenMPRuntime().emitInlinedDirective(
1954       *this, OMPD_teams_distribute,
1955       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1956         OMPLoopScope PreInitScope(CGF, S);
1957         CGF.EmitStmt(
1958             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1959       });
1960 }
1961 
1962 /// \brief Emit a helper variable and return corresponding lvalue.
1963 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1964                                const DeclRefExpr *Helper) {
1965   auto VDecl = cast<VarDecl>(Helper->getDecl());
1966   CGF.EmitVarDecl(*VDecl);
1967   return CGF.EmitLValue(Helper);
1968 }
1969 
1970 namespace {
1971   struct ScheduleKindModifiersTy {
1972     OpenMPScheduleClauseKind Kind;
1973     OpenMPScheduleClauseModifier M1;
1974     OpenMPScheduleClauseModifier M2;
1975     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
1976                             OpenMPScheduleClauseModifier M1,
1977                             OpenMPScheduleClauseModifier M2)
1978         : Kind(Kind), M1(M1), M2(M2) {}
1979   };
1980 } // namespace
1981 
1982 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1983   // Emit the loop iteration variable.
1984   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1985   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1986   EmitVarDecl(*IVDecl);
1987 
1988   // Emit the iterations count variable.
1989   // If it is not a variable, Sema decided to calculate iterations count on each
1990   // iteration (e.g., it is foldable into a constant).
1991   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1992     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1993     // Emit calculation of the iterations count.
1994     EmitIgnoredExpr(S.getCalcLastIteration());
1995   }
1996 
1997   auto &RT = CGM.getOpenMPRuntime();
1998 
1999   bool HasLastprivateClause;
2000   // Check pre-condition.
2001   {
2002     OMPLoopScope PreInitScope(*this, S);
2003     // Skip the entire loop if we don't meet the precondition.
2004     // If the condition constant folds and can be elided, avoid emitting the
2005     // whole loop.
2006     bool CondConstant;
2007     llvm::BasicBlock *ContBlock = nullptr;
2008     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2009       if (!CondConstant)
2010         return false;
2011     } else {
2012       auto *ThenBlock = createBasicBlock("omp.precond.then");
2013       ContBlock = createBasicBlock("omp.precond.end");
2014       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2015                   getProfileCount(&S));
2016       EmitBlock(ThenBlock);
2017       incrementProfileCounter(&S);
2018     }
2019 
2020     bool Ordered = false;
2021     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2022       if (OrderedClause->getNumForLoops())
2023         RT.emitDoacrossInit(*this, S);
2024       else
2025         Ordered = true;
2026     }
2027 
2028     llvm::DenseSet<const Expr *> EmittedFinals;
2029     emitAlignedClause(*this, S);
2030     EmitOMPLinearClauseInit(S);
2031     // Emit helper vars inits.
2032     LValue LB =
2033         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2034     LValue UB =
2035         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2036     LValue ST =
2037         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2038     LValue IL =
2039         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2040 
2041     // Emit 'then' code.
2042     {
2043       OMPPrivateScope LoopScope(*this);
2044       if (EmitOMPFirstprivateClause(S, LoopScope)) {
2045         // Emit implicit barrier to synchronize threads and avoid data races on
2046         // initialization of firstprivate variables and post-update of
2047         // lastprivate variables.
2048         CGM.getOpenMPRuntime().emitBarrierCall(
2049             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2050             /*ForceSimpleCall=*/true);
2051       }
2052       EmitOMPPrivateClause(S, LoopScope);
2053       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2054       EmitOMPReductionClauseInit(S, LoopScope);
2055       EmitOMPPrivateLoopCounters(S, LoopScope);
2056       EmitOMPLinearClause(S, LoopScope);
2057       (void)LoopScope.Privatize();
2058 
2059       // Detect the loop schedule kind and chunk.
2060       llvm::Value *Chunk = nullptr;
2061       OpenMPScheduleTy ScheduleKind;
2062       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2063         ScheduleKind.Schedule = C->getScheduleKind();
2064         ScheduleKind.M1 = C->getFirstScheduleModifier();
2065         ScheduleKind.M2 = C->getSecondScheduleModifier();
2066         if (const auto *Ch = C->getChunkSize()) {
2067           Chunk = EmitScalarExpr(Ch);
2068           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2069                                        S.getIterationVariable()->getType(),
2070                                        S.getLocStart());
2071         }
2072       }
2073       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2074       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2075       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2076       // If the static schedule kind is specified or if the ordered clause is
2077       // specified, and if no monotonic modifier is specified, the effect will
2078       // be as if the monotonic modifier was specified.
2079       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2080                                 /* Chunked */ Chunk != nullptr) &&
2081           !Ordered) {
2082         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2083           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2084         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2085         // When no chunk_size is specified, the iteration space is divided into
2086         // chunks that are approximately equal in size, and at most one chunk is
2087         // distributed to each thread. Note that the size of the chunks is
2088         // unspecified in this case.
2089         RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
2090                              IVSize, IVSigned, Ordered,
2091                              IL.getAddress(), LB.getAddress(),
2092                              UB.getAddress(), ST.getAddress());
2093         auto LoopExit =
2094             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2095         // UB = min(UB, GlobalUB);
2096         EmitIgnoredExpr(S.getEnsureUpperBound());
2097         // IV = LB;
2098         EmitIgnoredExpr(S.getInit());
2099         // while (idx <= UB) { BODY; ++idx; }
2100         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2101                          S.getInc(),
2102                          [&S, LoopExit](CodeGenFunction &CGF) {
2103                            CGF.EmitOMPLoopBody(S, LoopExit);
2104                            CGF.EmitStopPoint(&S);
2105                          },
2106                          [](CodeGenFunction &) {});
2107         EmitBlock(LoopExit.getBlock());
2108         // Tell the runtime we are done.
2109         RT.emitForStaticFinish(*this, S.getLocStart());
2110       } else {
2111         const bool IsMonotonic =
2112             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2113             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2114             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2115             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2116         // Emit the outer loop, which requests its work chunk [LB..UB] from
2117         // runtime and runs the inner loop to process it.
2118         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2119                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2120                             IL.getAddress(), Chunk);
2121       }
2122       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2123         EmitOMPSimdFinal(S,
2124                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2125                            return CGF.Builder.CreateIsNotNull(
2126                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2127                          });
2128       }
2129       EmitOMPReductionClauseFinal(S);
2130       // Emit post-update of the reduction variables if IsLastIter != 0.
2131       emitPostUpdateForReductionClause(
2132           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2133             return CGF.Builder.CreateIsNotNull(
2134                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2135           });
2136       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2137       if (HasLastprivateClause)
2138         EmitOMPLastprivateClauseFinal(
2139             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2140             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2141     }
2142     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2143       return CGF.Builder.CreateIsNotNull(
2144           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2145     });
2146     // We're now done with the loop, so jump to the continuation block.
2147     if (ContBlock) {
2148       EmitBranch(ContBlock);
2149       EmitBlock(ContBlock, true);
2150     }
2151   }
2152   return HasLastprivateClause;
2153 }
2154 
2155 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2156   bool HasLastprivates = false;
2157   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2158                                           PrePostActionTy &) {
2159     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2160   };
2161   {
2162     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2163     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2164                                                 S.hasCancel());
2165   }
2166 
2167   // Emit an implicit barrier at the end.
2168   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2169     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2170   }
2171 }
2172 
2173 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2174   bool HasLastprivates = false;
2175   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2176                                           PrePostActionTy &) {
2177     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2178   };
2179   {
2180     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2181     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2182   }
2183 
2184   // Emit an implicit barrier at the end.
2185   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2186     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2187   }
2188 }
2189 
2190 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2191                                 const Twine &Name,
2192                                 llvm::Value *Init = nullptr) {
2193   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2194   if (Init)
2195     CGF.EmitScalarInit(Init, LVal);
2196   return LVal;
2197 }
2198 
2199 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2200   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2201   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2202   bool HasLastprivates = false;
2203   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2204                                                     PrePostActionTy &) {
2205     auto &C = CGF.CGM.getContext();
2206     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2207     // Emit helper vars inits.
2208     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2209                                   CGF.Builder.getInt32(0));
2210     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2211                                       : CGF.Builder.getInt32(0);
2212     LValue UB =
2213         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2214     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2215                                   CGF.Builder.getInt32(1));
2216     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2217                                   CGF.Builder.getInt32(0));
2218     // Loop counter.
2219     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2220     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2221     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2222     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2223     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2224     // Generate condition for loop.
2225     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2226                         OK_Ordinary, S.getLocStart(),
2227                         /*fpContractable=*/false);
2228     // Increment for loop counter.
2229     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2230                       S.getLocStart());
2231     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2232       // Iterate through all sections and emit a switch construct:
2233       // switch (IV) {
2234       //   case 0:
2235       //     <SectionStmt[0]>;
2236       //     break;
2237       // ...
2238       //   case <NumSection> - 1:
2239       //     <SectionStmt[<NumSection> - 1]>;
2240       //     break;
2241       // }
2242       // .omp.sections.exit:
2243       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2244       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2245           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2246           CS == nullptr ? 1 : CS->size());
2247       if (CS) {
2248         unsigned CaseNumber = 0;
2249         for (auto *SubStmt : CS->children()) {
2250           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2251           CGF.EmitBlock(CaseBB);
2252           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2253           CGF.EmitStmt(SubStmt);
2254           CGF.EmitBranch(ExitBB);
2255           ++CaseNumber;
2256         }
2257       } else {
2258         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2259         CGF.EmitBlock(CaseBB);
2260         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2261         CGF.EmitStmt(Stmt);
2262         CGF.EmitBranch(ExitBB);
2263       }
2264       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2265     };
2266 
2267     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2268     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2269       // Emit implicit barrier to synchronize threads and avoid data races on
2270       // initialization of firstprivate variables and post-update of lastprivate
2271       // variables.
2272       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2273           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2274           /*ForceSimpleCall=*/true);
2275     }
2276     CGF.EmitOMPPrivateClause(S, LoopScope);
2277     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2278     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2279     (void)LoopScope.Privatize();
2280 
2281     // Emit static non-chunked loop.
2282     OpenMPScheduleTy ScheduleKind;
2283     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2284     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2285         CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32,
2286         /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
2287         UB.getAddress(), ST.getAddress());
2288     // UB = min(UB, GlobalUB);
2289     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2290     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2291         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2292     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2293     // IV = LB;
2294     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2295     // while (idx <= UB) { BODY; ++idx; }
2296     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2297                          [](CodeGenFunction &) {});
2298     // Tell the runtime we are done.
2299     CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
2300     CGF.EmitOMPReductionClauseFinal(S);
2301     // Emit post-update of the reduction variables if IsLastIter != 0.
2302     emitPostUpdateForReductionClause(
2303         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2304           return CGF.Builder.CreateIsNotNull(
2305               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2306         });
2307 
2308     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2309     if (HasLastprivates)
2310       CGF.EmitOMPLastprivateClauseFinal(
2311           S, /*NoFinals=*/false,
2312           CGF.Builder.CreateIsNotNull(
2313               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2314   };
2315 
2316   bool HasCancel = false;
2317   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2318     HasCancel = OSD->hasCancel();
2319   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2320     HasCancel = OPSD->hasCancel();
2321   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2322                                               HasCancel);
2323   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2324   // clause. Otherwise the barrier will be generated by the codegen for the
2325   // directive.
2326   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2327     // Emit implicit barrier to synchronize threads and avoid data races on
2328     // initialization of firstprivate variables.
2329     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2330                                            OMPD_unknown);
2331   }
2332 }
2333 
2334 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2335   {
2336     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2337     EmitSections(S);
2338   }
2339   // Emit an implicit barrier at the end.
2340   if (!S.getSingleClause<OMPNowaitClause>()) {
2341     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2342                                            OMPD_sections);
2343   }
2344 }
2345 
2346 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2347   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2348     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2349   };
2350   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2351   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2352                                               S.hasCancel());
2353 }
2354 
2355 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2356   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2357   llvm::SmallVector<const Expr *, 8> DestExprs;
2358   llvm::SmallVector<const Expr *, 8> SrcExprs;
2359   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2360   // Check if there are any 'copyprivate' clauses associated with this
2361   // 'single' construct.
2362   // Build a list of copyprivate variables along with helper expressions
2363   // (<source>, <destination>, <destination>=<source> expressions)
2364   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2365     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2366     DestExprs.append(C->destination_exprs().begin(),
2367                      C->destination_exprs().end());
2368     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2369     AssignmentOps.append(C->assignment_ops().begin(),
2370                          C->assignment_ops().end());
2371   }
2372   // Emit code for 'single' region along with 'copyprivate' clauses
2373   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2374     Action.Enter(CGF);
2375     OMPPrivateScope SingleScope(CGF);
2376     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2377     CGF.EmitOMPPrivateClause(S, SingleScope);
2378     (void)SingleScope.Privatize();
2379     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2380   };
2381   {
2382     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2383     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2384                                             CopyprivateVars, DestExprs,
2385                                             SrcExprs, AssignmentOps);
2386   }
2387   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2388   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2389   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2390     CGM.getOpenMPRuntime().emitBarrierCall(
2391         *this, S.getLocStart(),
2392         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2393   }
2394 }
2395 
2396 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2397   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2398     Action.Enter(CGF);
2399     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2400   };
2401   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2402   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2403 }
2404 
2405 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2406   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2407     Action.Enter(CGF);
2408     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2409   };
2410   Expr *Hint = nullptr;
2411   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2412     Hint = HintClause->getHint();
2413   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2414   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2415                                             S.getDirectiveName().getAsString(),
2416                                             CodeGen, S.getLocStart(), Hint);
2417 }
2418 
2419 void CodeGenFunction::EmitOMPParallelForDirective(
2420     const OMPParallelForDirective &S) {
2421   // Emit directive as a combined directive that consists of two implicit
2422   // directives: 'parallel' with 'for' directive.
2423   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2424     CGF.EmitOMPWorksharingLoop(S);
2425   };
2426   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
2427 }
2428 
2429 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2430     const OMPParallelForSimdDirective &S) {
2431   // Emit directive as a combined directive that consists of two implicit
2432   // directives: 'parallel' with 'for' directive.
2433   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2434     CGF.EmitOMPWorksharingLoop(S);
2435   };
2436   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
2437 }
2438 
2439 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2440     const OMPParallelSectionsDirective &S) {
2441   // Emit directive as a combined directive that consists of two implicit
2442   // directives: 'parallel' with 'sections' directive.
2443   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2444     CGF.EmitSections(S);
2445   };
2446   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
2447 }
2448 
2449 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2450                                                 const RegionCodeGenTy &BodyGen,
2451                                                 const TaskGenTy &TaskGen,
2452                                                 OMPTaskDataTy &Data) {
2453   // Emit outlined function for task construct.
2454   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2455   auto *I = CS->getCapturedDecl()->param_begin();
2456   auto *PartId = std::next(I);
2457   auto *TaskT = std::next(I, 4);
2458   // Check if the task is final
2459   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2460     // If the condition constant folds and can be elided, try to avoid emitting
2461     // the condition and the dead arm of the if/else.
2462     auto *Cond = Clause->getCondition();
2463     bool CondConstant;
2464     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2465       Data.Final.setInt(CondConstant);
2466     else
2467       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2468   } else {
2469     // By default the task is not final.
2470     Data.Final.setInt(/*IntVal=*/false);
2471   }
2472   // Check if the task has 'priority' clause.
2473   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2474     auto *Prio = Clause->getPriority();
2475     Data.Priority.setInt(/*IntVal=*/true);
2476     Data.Priority.setPointer(EmitScalarConversion(
2477         EmitScalarExpr(Prio), Prio->getType(),
2478         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2479         Prio->getExprLoc()));
2480   }
2481   // The first function argument for tasks is a thread id, the second one is a
2482   // part id (0 for tied tasks, >=0 for untied task).
2483   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2484   // Get list of private variables.
2485   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2486     auto IRef = C->varlist_begin();
2487     for (auto *IInit : C->private_copies()) {
2488       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2489       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2490         Data.PrivateVars.push_back(*IRef);
2491         Data.PrivateCopies.push_back(IInit);
2492       }
2493       ++IRef;
2494     }
2495   }
2496   EmittedAsPrivate.clear();
2497   // Get list of firstprivate variables.
2498   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2499     auto IRef = C->varlist_begin();
2500     auto IElemInitRef = C->inits().begin();
2501     for (auto *IInit : C->private_copies()) {
2502       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2503       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2504         Data.FirstprivateVars.push_back(*IRef);
2505         Data.FirstprivateCopies.push_back(IInit);
2506         Data.FirstprivateInits.push_back(*IElemInitRef);
2507       }
2508       ++IRef;
2509       ++IElemInitRef;
2510     }
2511   }
2512   // Get list of lastprivate variables (for taskloops).
2513   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2514   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2515     auto IRef = C->varlist_begin();
2516     auto ID = C->destination_exprs().begin();
2517     for (auto *IInit : C->private_copies()) {
2518       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2519       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2520         Data.LastprivateVars.push_back(*IRef);
2521         Data.LastprivateCopies.push_back(IInit);
2522       }
2523       LastprivateDstsOrigs.insert(
2524           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2525            cast<DeclRefExpr>(*IRef)});
2526       ++IRef;
2527       ++ID;
2528     }
2529   }
2530   // Build list of dependences.
2531   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2532     for (auto *IRef : C->varlists())
2533       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2534   auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs](
2535       CodeGenFunction &CGF, PrePostActionTy &Action) {
2536     // Set proper addresses for generated private copies.
2537     OMPPrivateScope Scope(CGF);
2538     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2539         !Data.LastprivateVars.empty()) {
2540       auto *CopyFn = CGF.Builder.CreateLoad(
2541           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2542       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2543           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2544       // Map privates.
2545       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2546       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2547       CallArgs.push_back(PrivatesPtr);
2548       for (auto *E : Data.PrivateVars) {
2549         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2550         Address PrivatePtr = CGF.CreateMemTemp(
2551             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2552         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2553         CallArgs.push_back(PrivatePtr.getPointer());
2554       }
2555       for (auto *E : Data.FirstprivateVars) {
2556         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2557         Address PrivatePtr =
2558             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2559                               ".firstpriv.ptr.addr");
2560         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2561         CallArgs.push_back(PrivatePtr.getPointer());
2562       }
2563       for (auto *E : Data.LastprivateVars) {
2564         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2565         Address PrivatePtr =
2566             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2567                               ".lastpriv.ptr.addr");
2568         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2569         CallArgs.push_back(PrivatePtr.getPointer());
2570       }
2571       CGF.EmitRuntimeCall(CopyFn, CallArgs);
2572       for (auto &&Pair : LastprivateDstsOrigs) {
2573         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2574         DeclRefExpr DRE(
2575             const_cast<VarDecl *>(OrigVD),
2576             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2577                 OrigVD) != nullptr,
2578             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2579         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2580           return CGF.EmitLValue(&DRE).getAddress();
2581         });
2582       }
2583       for (auto &&Pair : PrivatePtrs) {
2584         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2585                             CGF.getContext().getDeclAlign(Pair.first));
2586         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2587       }
2588     }
2589     (void)Scope.Privatize();
2590 
2591     Action.Enter(CGF);
2592     BodyGen(CGF);
2593   };
2594   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2595       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2596       Data.NumberOfParts);
2597   OMPLexicalScope Scope(*this, S);
2598   TaskGen(*this, OutlinedFn, Data);
2599 }
2600 
2601 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2602   // Emit outlined function for task construct.
2603   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2604   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2605   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2606   const Expr *IfCond = nullptr;
2607   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2608     if (C->getNameModifier() == OMPD_unknown ||
2609         C->getNameModifier() == OMPD_task) {
2610       IfCond = C->getCondition();
2611       break;
2612     }
2613   }
2614 
2615   OMPTaskDataTy Data;
2616   // Check if we should emit tied or untied task.
2617   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2618   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2619     CGF.EmitStmt(CS->getCapturedStmt());
2620   };
2621   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2622                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2623                             const OMPTaskDataTy &Data) {
2624     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2625                                             SharedsTy, CapturedStruct, IfCond,
2626                                             Data);
2627   };
2628   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2629 }
2630 
2631 void CodeGenFunction::EmitOMPTaskyieldDirective(
2632     const OMPTaskyieldDirective &S) {
2633   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2634 }
2635 
2636 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2637   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2638 }
2639 
2640 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2641   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2642 }
2643 
2644 void CodeGenFunction::EmitOMPTaskgroupDirective(
2645     const OMPTaskgroupDirective &S) {
2646   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2647     Action.Enter(CGF);
2648     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2649   };
2650   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2651   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
2652 }
2653 
2654 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
2655   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
2656     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
2657       return llvm::makeArrayRef(FlushClause->varlist_begin(),
2658                                 FlushClause->varlist_end());
2659     }
2660     return llvm::None;
2661   }(), S.getLocStart());
2662 }
2663 
2664 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) {
2665   // Emit the loop iteration variable.
2666   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2667   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2668   EmitVarDecl(*IVDecl);
2669 
2670   // Emit the iterations count variable.
2671   // If it is not a variable, Sema decided to calculate iterations count on each
2672   // iteration (e.g., it is foldable into a constant).
2673   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2674     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2675     // Emit calculation of the iterations count.
2676     EmitIgnoredExpr(S.getCalcLastIteration());
2677   }
2678 
2679   auto &RT = CGM.getOpenMPRuntime();
2680 
2681   // Check pre-condition.
2682   {
2683     OMPLoopScope PreInitScope(*this, S);
2684     // Skip the entire loop if we don't meet the precondition.
2685     // If the condition constant folds and can be elided, avoid emitting the
2686     // whole loop.
2687     bool CondConstant;
2688     llvm::BasicBlock *ContBlock = nullptr;
2689     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2690       if (!CondConstant)
2691         return;
2692     } else {
2693       auto *ThenBlock = createBasicBlock("omp.precond.then");
2694       ContBlock = createBasicBlock("omp.precond.end");
2695       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2696                   getProfileCount(&S));
2697       EmitBlock(ThenBlock);
2698       incrementProfileCounter(&S);
2699     }
2700 
2701     // Emit 'then' code.
2702     {
2703       // Emit helper vars inits.
2704       LValue LB =
2705           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2706       LValue UB =
2707           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2708       LValue ST =
2709           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2710       LValue IL =
2711           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2712 
2713       OMPPrivateScope LoopScope(*this);
2714       EmitOMPPrivateLoopCounters(S, LoopScope);
2715       (void)LoopScope.Privatize();
2716 
2717       // Detect the distribute schedule kind and chunk.
2718       llvm::Value *Chunk = nullptr;
2719       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
2720       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
2721         ScheduleKind = C->getDistScheduleKind();
2722         if (const auto *Ch = C->getChunkSize()) {
2723           Chunk = EmitScalarExpr(Ch);
2724           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2725           S.getIterationVariable()->getType(),
2726           S.getLocStart());
2727         }
2728       }
2729       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2730       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2731 
2732       // OpenMP [2.10.8, distribute Construct, Description]
2733       // If dist_schedule is specified, kind must be static. If specified,
2734       // iterations are divided into chunks of size chunk_size, chunks are
2735       // assigned to the teams of the league in a round-robin fashion in the
2736       // order of the team number. When no chunk_size is specified, the
2737       // iteration space is divided into chunks that are approximately equal
2738       // in size, and at most one chunk is distributed to each team of the
2739       // league. The size of the chunks is unspecified in this case.
2740       if (RT.isStaticNonchunked(ScheduleKind,
2741                                 /* Chunked */ Chunk != nullptr)) {
2742         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
2743                              IVSize, IVSigned, /* Ordered = */ false,
2744                              IL.getAddress(), LB.getAddress(),
2745                              UB.getAddress(), ST.getAddress());
2746         auto LoopExit =
2747             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2748         // UB = min(UB, GlobalUB);
2749         EmitIgnoredExpr(S.getEnsureUpperBound());
2750         // IV = LB;
2751         EmitIgnoredExpr(S.getInit());
2752         // while (idx <= UB) { BODY; ++idx; }
2753         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2754                          S.getInc(),
2755                          [&S, LoopExit](CodeGenFunction &CGF) {
2756                            CGF.EmitOMPLoopBody(S, LoopExit);
2757                            CGF.EmitStopPoint(&S);
2758                          },
2759                          [](CodeGenFunction &) {});
2760         EmitBlock(LoopExit.getBlock());
2761         // Tell the runtime we are done.
2762         RT.emitForStaticFinish(*this, S.getLocStart());
2763       } else {
2764         // Emit the outer loop, which requests its work chunk [LB..UB] from
2765         // runtime and runs the inner loop to process it.
2766         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope,
2767                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2768                             IL.getAddress(), Chunk);
2769       }
2770     }
2771 
2772     // We're now done with the loop, so jump to the continuation block.
2773     if (ContBlock) {
2774       EmitBranch(ContBlock);
2775       EmitBlock(ContBlock, true);
2776     }
2777   }
2778 }
2779 
2780 void CodeGenFunction::EmitOMPDistributeDirective(
2781     const OMPDistributeDirective &S) {
2782   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2783     CGF.EmitOMPDistributeLoop(S);
2784   };
2785   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2786   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
2787                                               false);
2788 }
2789 
2790 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
2791                                                    const CapturedStmt *S) {
2792   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
2793   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
2794   CGF.CapturedStmtInfo = &CapStmtInfo;
2795   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
2796   Fn->addFnAttr(llvm::Attribute::NoInline);
2797   return Fn;
2798 }
2799 
2800 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
2801   if (!S.getAssociatedStmt()) {
2802     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
2803       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
2804     return;
2805   }
2806   auto *C = S.getSingleClause<OMPSIMDClause>();
2807   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
2808                                  PrePostActionTy &Action) {
2809     if (C) {
2810       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2811       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
2812       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
2813       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
2814       CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
2815     } else {
2816       Action.Enter(CGF);
2817       CGF.EmitStmt(
2818           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2819     }
2820   };
2821   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2822   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
2823 }
2824 
2825 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
2826                                          QualType SrcType, QualType DestType,
2827                                          SourceLocation Loc) {
2828   assert(CGF.hasScalarEvaluationKind(DestType) &&
2829          "DestType must have scalar evaluation kind.");
2830   assert(!Val.isAggregate() && "Must be a scalar or complex.");
2831   return Val.isScalar()
2832              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
2833                                         Loc)
2834              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
2835                                                  DestType, Loc);
2836 }
2837 
2838 static CodeGenFunction::ComplexPairTy
2839 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
2840                       QualType DestType, SourceLocation Loc) {
2841   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
2842          "DestType must have complex evaluation kind.");
2843   CodeGenFunction::ComplexPairTy ComplexVal;
2844   if (Val.isScalar()) {
2845     // Convert the input element to the element type of the complex.
2846     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2847     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
2848                                               DestElementType, Loc);
2849     ComplexVal = CodeGenFunction::ComplexPairTy(
2850         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
2851   } else {
2852     assert(Val.isComplex() && "Must be a scalar or complex.");
2853     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
2854     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2855     ComplexVal.first = CGF.EmitScalarConversion(
2856         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
2857     ComplexVal.second = CGF.EmitScalarConversion(
2858         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
2859   }
2860   return ComplexVal;
2861 }
2862 
2863 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
2864                                   LValue LVal, RValue RVal) {
2865   if (LVal.isGlobalReg()) {
2866     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
2867   } else {
2868     CGF.EmitAtomicStore(RVal, LVal,
2869                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2870                                  : llvm::AtomicOrdering::Monotonic,
2871                         LVal.isVolatile(), /*IsInit=*/false);
2872   }
2873 }
2874 
2875 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
2876                                          QualType RValTy, SourceLocation Loc) {
2877   switch (getEvaluationKind(LVal.getType())) {
2878   case TEK_Scalar:
2879     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
2880                                *this, RVal, RValTy, LVal.getType(), Loc)),
2881                            LVal);
2882     break;
2883   case TEK_Complex:
2884     EmitStoreOfComplex(
2885         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
2886         /*isInit=*/false);
2887     break;
2888   case TEK_Aggregate:
2889     llvm_unreachable("Must be a scalar or complex.");
2890   }
2891 }
2892 
2893 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
2894                                   const Expr *X, const Expr *V,
2895                                   SourceLocation Loc) {
2896   // v = x;
2897   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
2898   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
2899   LValue XLValue = CGF.EmitLValue(X);
2900   LValue VLValue = CGF.EmitLValue(V);
2901   RValue Res = XLValue.isGlobalReg()
2902                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
2903                    : CGF.EmitAtomicLoad(
2904                          XLValue, Loc,
2905                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2906                                   : llvm::AtomicOrdering::Monotonic,
2907                          XLValue.isVolatile());
2908   // OpenMP, 2.12.6, atomic Construct
2909   // Any atomic construct with a seq_cst clause forces the atomically
2910   // performed operation to include an implicit flush operation without a
2911   // list.
2912   if (IsSeqCst)
2913     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2914   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
2915 }
2916 
2917 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
2918                                    const Expr *X, const Expr *E,
2919                                    SourceLocation Loc) {
2920   // x = expr;
2921   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
2922   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
2923   // OpenMP, 2.12.6, atomic Construct
2924   // Any atomic construct with a seq_cst clause forces the atomically
2925   // performed operation to include an implicit flush operation without a
2926   // list.
2927   if (IsSeqCst)
2928     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2929 }
2930 
2931 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
2932                                                 RValue Update,
2933                                                 BinaryOperatorKind BO,
2934                                                 llvm::AtomicOrdering AO,
2935                                                 bool IsXLHSInRHSPart) {
2936   auto &Context = CGF.CGM.getContext();
2937   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
2938   // expression is simple and atomic is allowed for the given type for the
2939   // target platform.
2940   if (BO == BO_Comma || !Update.isScalar() ||
2941       !Update.getScalarVal()->getType()->isIntegerTy() ||
2942       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
2943                         (Update.getScalarVal()->getType() !=
2944                          X.getAddress().getElementType())) ||
2945       !X.getAddress().getElementType()->isIntegerTy() ||
2946       !Context.getTargetInfo().hasBuiltinAtomic(
2947           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
2948     return std::make_pair(false, RValue::get(nullptr));
2949 
2950   llvm::AtomicRMWInst::BinOp RMWOp;
2951   switch (BO) {
2952   case BO_Add:
2953     RMWOp = llvm::AtomicRMWInst::Add;
2954     break;
2955   case BO_Sub:
2956     if (!IsXLHSInRHSPart)
2957       return std::make_pair(false, RValue::get(nullptr));
2958     RMWOp = llvm::AtomicRMWInst::Sub;
2959     break;
2960   case BO_And:
2961     RMWOp = llvm::AtomicRMWInst::And;
2962     break;
2963   case BO_Or:
2964     RMWOp = llvm::AtomicRMWInst::Or;
2965     break;
2966   case BO_Xor:
2967     RMWOp = llvm::AtomicRMWInst::Xor;
2968     break;
2969   case BO_LT:
2970     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2971                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
2972                                    : llvm::AtomicRMWInst::Max)
2973                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
2974                                    : llvm::AtomicRMWInst::UMax);
2975     break;
2976   case BO_GT:
2977     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2978                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
2979                                    : llvm::AtomicRMWInst::Min)
2980                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
2981                                    : llvm::AtomicRMWInst::UMin);
2982     break;
2983   case BO_Assign:
2984     RMWOp = llvm::AtomicRMWInst::Xchg;
2985     break;
2986   case BO_Mul:
2987   case BO_Div:
2988   case BO_Rem:
2989   case BO_Shl:
2990   case BO_Shr:
2991   case BO_LAnd:
2992   case BO_LOr:
2993     return std::make_pair(false, RValue::get(nullptr));
2994   case BO_PtrMemD:
2995   case BO_PtrMemI:
2996   case BO_LE:
2997   case BO_GE:
2998   case BO_EQ:
2999   case BO_NE:
3000   case BO_AddAssign:
3001   case BO_SubAssign:
3002   case BO_AndAssign:
3003   case BO_OrAssign:
3004   case BO_XorAssign:
3005   case BO_MulAssign:
3006   case BO_DivAssign:
3007   case BO_RemAssign:
3008   case BO_ShlAssign:
3009   case BO_ShrAssign:
3010   case BO_Comma:
3011     llvm_unreachable("Unsupported atomic update operation");
3012   }
3013   auto *UpdateVal = Update.getScalarVal();
3014   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3015     UpdateVal = CGF.Builder.CreateIntCast(
3016         IC, X.getAddress().getElementType(),
3017         X.getType()->hasSignedIntegerRepresentation());
3018   }
3019   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3020   return std::make_pair(true, RValue::get(Res));
3021 }
3022 
3023 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3024     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3025     llvm::AtomicOrdering AO, SourceLocation Loc,
3026     const llvm::function_ref<RValue(RValue)> &CommonGen) {
3027   // Update expressions are allowed to have the following forms:
3028   // x binop= expr; -> xrval + expr;
3029   // x++, ++x -> xrval + 1;
3030   // x--, --x -> xrval - 1;
3031   // x = x binop expr; -> xrval binop expr
3032   // x = expr Op x; - > expr binop xrval;
3033   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3034   if (!Res.first) {
3035     if (X.isGlobalReg()) {
3036       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3037       // 'xrval'.
3038       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3039     } else {
3040       // Perform compare-and-swap procedure.
3041       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3042     }
3043   }
3044   return Res;
3045 }
3046 
3047 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3048                                     const Expr *X, const Expr *E,
3049                                     const Expr *UE, bool IsXLHSInRHSPart,
3050                                     SourceLocation Loc) {
3051   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3052          "Update expr in 'atomic update' must be a binary operator.");
3053   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3054   // Update expressions are allowed to have the following forms:
3055   // x binop= expr; -> xrval + expr;
3056   // x++, ++x -> xrval + 1;
3057   // x--, --x -> xrval - 1;
3058   // x = x binop expr; -> xrval binop expr
3059   // x = expr Op x; - > expr binop xrval;
3060   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3061   LValue XLValue = CGF.EmitLValue(X);
3062   RValue ExprRValue = CGF.EmitAnyExpr(E);
3063   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3064                      : llvm::AtomicOrdering::Monotonic;
3065   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3066   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3067   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3068   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3069   auto Gen =
3070       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3071         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3072         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3073         return CGF.EmitAnyExpr(UE);
3074       };
3075   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3076       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3077   // OpenMP, 2.12.6, atomic Construct
3078   // Any atomic construct with a seq_cst clause forces the atomically
3079   // performed operation to include an implicit flush operation without a
3080   // list.
3081   if (IsSeqCst)
3082     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3083 }
3084 
3085 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3086                             QualType SourceType, QualType ResType,
3087                             SourceLocation Loc) {
3088   switch (CGF.getEvaluationKind(ResType)) {
3089   case TEK_Scalar:
3090     return RValue::get(
3091         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3092   case TEK_Complex: {
3093     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3094     return RValue::getComplex(Res.first, Res.second);
3095   }
3096   case TEK_Aggregate:
3097     break;
3098   }
3099   llvm_unreachable("Must be a scalar or complex.");
3100 }
3101 
3102 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3103                                      bool IsPostfixUpdate, const Expr *V,
3104                                      const Expr *X, const Expr *E,
3105                                      const Expr *UE, bool IsXLHSInRHSPart,
3106                                      SourceLocation Loc) {
3107   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3108   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3109   RValue NewVVal;
3110   LValue VLValue = CGF.EmitLValue(V);
3111   LValue XLValue = CGF.EmitLValue(X);
3112   RValue ExprRValue = CGF.EmitAnyExpr(E);
3113   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3114                      : llvm::AtomicOrdering::Monotonic;
3115   QualType NewVValType;
3116   if (UE) {
3117     // 'x' is updated with some additional value.
3118     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3119            "Update expr in 'atomic capture' must be a binary operator.");
3120     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3121     // Update expressions are allowed to have the following forms:
3122     // x binop= expr; -> xrval + expr;
3123     // x++, ++x -> xrval + 1;
3124     // x--, --x -> xrval - 1;
3125     // x = x binop expr; -> xrval binop expr
3126     // x = expr Op x; - > expr binop xrval;
3127     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3128     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3129     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3130     NewVValType = XRValExpr->getType();
3131     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3132     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3133                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
3134       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3135       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3136       RValue Res = CGF.EmitAnyExpr(UE);
3137       NewVVal = IsPostfixUpdate ? XRValue : Res;
3138       return Res;
3139     };
3140     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3141         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3142     if (Res.first) {
3143       // 'atomicrmw' instruction was generated.
3144       if (IsPostfixUpdate) {
3145         // Use old value from 'atomicrmw'.
3146         NewVVal = Res.second;
3147       } else {
3148         // 'atomicrmw' does not provide new value, so evaluate it using old
3149         // value of 'x'.
3150         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3151         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3152         NewVVal = CGF.EmitAnyExpr(UE);
3153       }
3154     }
3155   } else {
3156     // 'x' is simply rewritten with some 'expr'.
3157     NewVValType = X->getType().getNonReferenceType();
3158     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3159                                X->getType().getNonReferenceType(), Loc);
3160     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
3161       NewVVal = XRValue;
3162       return ExprRValue;
3163     };
3164     // Try to perform atomicrmw xchg, otherwise simple exchange.
3165     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3166         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3167         Loc, Gen);
3168     if (Res.first) {
3169       // 'atomicrmw' instruction was generated.
3170       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3171     }
3172   }
3173   // Emit post-update store to 'v' of old/new 'x' value.
3174   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3175   // OpenMP, 2.12.6, atomic Construct
3176   // Any atomic construct with a seq_cst clause forces the atomically
3177   // performed operation to include an implicit flush operation without a
3178   // list.
3179   if (IsSeqCst)
3180     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3181 }
3182 
3183 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3184                               bool IsSeqCst, bool IsPostfixUpdate,
3185                               const Expr *X, const Expr *V, const Expr *E,
3186                               const Expr *UE, bool IsXLHSInRHSPart,
3187                               SourceLocation Loc) {
3188   switch (Kind) {
3189   case OMPC_read:
3190     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3191     break;
3192   case OMPC_write:
3193     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3194     break;
3195   case OMPC_unknown:
3196   case OMPC_update:
3197     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3198     break;
3199   case OMPC_capture:
3200     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3201                              IsXLHSInRHSPart, Loc);
3202     break;
3203   case OMPC_if:
3204   case OMPC_final:
3205   case OMPC_num_threads:
3206   case OMPC_private:
3207   case OMPC_firstprivate:
3208   case OMPC_lastprivate:
3209   case OMPC_reduction:
3210   case OMPC_safelen:
3211   case OMPC_simdlen:
3212   case OMPC_collapse:
3213   case OMPC_default:
3214   case OMPC_seq_cst:
3215   case OMPC_shared:
3216   case OMPC_linear:
3217   case OMPC_aligned:
3218   case OMPC_copyin:
3219   case OMPC_copyprivate:
3220   case OMPC_flush:
3221   case OMPC_proc_bind:
3222   case OMPC_schedule:
3223   case OMPC_ordered:
3224   case OMPC_nowait:
3225   case OMPC_untied:
3226   case OMPC_threadprivate:
3227   case OMPC_depend:
3228   case OMPC_mergeable:
3229   case OMPC_device:
3230   case OMPC_threads:
3231   case OMPC_simd:
3232   case OMPC_map:
3233   case OMPC_num_teams:
3234   case OMPC_thread_limit:
3235   case OMPC_priority:
3236   case OMPC_grainsize:
3237   case OMPC_nogroup:
3238   case OMPC_num_tasks:
3239   case OMPC_hint:
3240   case OMPC_dist_schedule:
3241   case OMPC_defaultmap:
3242   case OMPC_uniform:
3243   case OMPC_to:
3244   case OMPC_from:
3245   case OMPC_use_device_ptr:
3246   case OMPC_is_device_ptr:
3247     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3248   }
3249 }
3250 
3251 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3252   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3253   OpenMPClauseKind Kind = OMPC_unknown;
3254   for (auto *C : S.clauses()) {
3255     // Find first clause (skip seq_cst clause, if it is first).
3256     if (C->getClauseKind() != OMPC_seq_cst) {
3257       Kind = C->getClauseKind();
3258       break;
3259     }
3260   }
3261 
3262   const auto *CS =
3263       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3264   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3265     enterFullExpression(EWC);
3266   }
3267   // Processing for statements under 'atomic capture'.
3268   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3269     for (const auto *C : Compound->body()) {
3270       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3271         enterFullExpression(EWC);
3272       }
3273     }
3274   }
3275 
3276   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3277                                             PrePostActionTy &) {
3278     CGF.EmitStopPoint(CS);
3279     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3280                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3281                       S.isXLHSInRHSPart(), S.getLocStart());
3282   };
3283   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3284   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3285 }
3286 
3287 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/>
3288 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
3289     CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName,
3290     bool IsOffloadEntry) {
3291   llvm::Function *OutlinedFn = nullptr;
3292   llvm::Constant *OutlinedFnID = nullptr;
3293   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3294     OMPPrivateScope PrivateScope(CGF);
3295     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3296     CGF.EmitOMPPrivateClause(S, PrivateScope);
3297     (void)PrivateScope.Privatize();
3298 
3299     Action.Enter(CGF);
3300     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3301   };
3302   // Emit target region as a standalone region.
3303   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3304       S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen);
3305   return std::make_pair(OutlinedFn, OutlinedFnID);
3306 }
3307 
3308 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3309   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3310 
3311   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3312   GenerateOpenMPCapturedVars(CS, CapturedVars);
3313 
3314   llvm::Function *Fn = nullptr;
3315   llvm::Constant *FnID = nullptr;
3316 
3317   // Check if we have any if clause associated with the directive.
3318   const Expr *IfCond = nullptr;
3319 
3320   if (auto *C = S.getSingleClause<OMPIfClause>()) {
3321     IfCond = C->getCondition();
3322   }
3323 
3324   // Check if we have any device clause associated with the directive.
3325   const Expr *Device = nullptr;
3326   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3327     Device = C->getDevice();
3328   }
3329 
3330   // Check if we have an if clause whose conditional always evaluates to false
3331   // or if we do not have any targets specified. If so the target region is not
3332   // an offload entry point.
3333   bool IsOffloadEntry = true;
3334   if (IfCond) {
3335     bool Val;
3336     if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3337       IsOffloadEntry = false;
3338   }
3339   if (CGM.getLangOpts().OMPTargetTriples.empty())
3340     IsOffloadEntry = false;
3341 
3342   assert(CurFuncDecl && "No parent declaration for target region!");
3343   StringRef ParentName;
3344   // In case we have Ctors/Dtors we use the complete type variant to produce
3345   // the mangling of the device outlined kernel.
3346   if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
3347     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3348   else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
3349     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3350   else
3351     ParentName =
3352         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
3353 
3354   std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction(
3355       CGM, S, ParentName, IsOffloadEntry);
3356   OMPLexicalScope Scope(*this, S);
3357   CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
3358                                         CapturedVars);
3359 }
3360 
3361 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3362                                         const OMPExecutableDirective &S,
3363                                         OpenMPDirectiveKind InnermostKind,
3364                                         const RegionCodeGenTy &CodeGen) {
3365   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3366   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
3367       emitParallelOrTeamsOutlinedFunction(S,
3368           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3369 
3370   const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S);
3371   const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>();
3372   const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>();
3373   if (NT || TL) {
3374     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3375     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3376 
3377     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3378                                                   S.getLocStart());
3379   }
3380 
3381   OMPLexicalScope Scope(CGF, S);
3382   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3383   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3384   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3385                                            CapturedVars);
3386 }
3387 
3388 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3389   // Emit parallel region as a standalone region.
3390   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3391     OMPPrivateScope PrivateScope(CGF);
3392     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3393     CGF.EmitOMPPrivateClause(S, PrivateScope);
3394     (void)PrivateScope.Privatize();
3395     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3396   };
3397   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3398 }
3399 
3400 void CodeGenFunction::EmitOMPCancellationPointDirective(
3401     const OMPCancellationPointDirective &S) {
3402   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3403                                                    S.getCancelRegion());
3404 }
3405 
3406 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3407   const Expr *IfCond = nullptr;
3408   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3409     if (C->getNameModifier() == OMPD_unknown ||
3410         C->getNameModifier() == OMPD_cancel) {
3411       IfCond = C->getCondition();
3412       break;
3413     }
3414   }
3415   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3416                                         S.getCancelRegion());
3417 }
3418 
3419 CodeGenFunction::JumpDest
3420 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3421   if (Kind == OMPD_parallel || Kind == OMPD_task)
3422     return ReturnBlock;
3423   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3424          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
3425   return BreakContinueStack.back().BreakBlock;
3426 }
3427 
3428 void CodeGenFunction::EmitOMPUseDevicePtrClause(
3429     const OMPClause &NC, OMPPrivateScope &PrivateScope,
3430     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
3431   const auto &C = cast<OMPUseDevicePtrClause>(NC);
3432   auto OrigVarIt = C.varlist_begin();
3433   auto InitIt = C.inits().begin();
3434   for (auto PvtVarIt : C.private_copies()) {
3435     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
3436     auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
3437     auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
3438 
3439     // In order to identify the right initializer we need to match the
3440     // declaration used by the mapping logic. In some cases we may get
3441     // OMPCapturedExprDecl that refers to the original declaration.
3442     const ValueDecl *MatchingVD = OrigVD;
3443     if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
3444       // OMPCapturedExprDecl are used to privative fields of the current
3445       // structure.
3446       auto *ME = cast<MemberExpr>(OED->getInit());
3447       assert(isa<CXXThisExpr>(ME->getBase()) &&
3448              "Base should be the current struct!");
3449       MatchingVD = ME->getMemberDecl();
3450     }
3451 
3452     // If we don't have information about the current list item, move on to
3453     // the next one.
3454     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
3455     if (InitAddrIt == CaptureDeviceAddrMap.end())
3456       continue;
3457 
3458     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
3459       // Initialize the temporary initialization variable with the address we
3460       // get from the runtime library. We have to cast the source address
3461       // because it is always a void *. References are materialized in the
3462       // privatization scope, so the initialization here disregards the fact
3463       // the original variable is a reference.
3464       QualType AddrQTy =
3465           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
3466       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
3467       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
3468       setAddrOfLocalVar(InitVD, InitAddr);
3469 
3470       // Emit private declaration, it will be initialized by the value we
3471       // declaration we just added to the local declarations map.
3472       EmitDecl(*PvtVD);
3473 
3474       // The initialization variables reached its purpose in the emission
3475       // ofthe previous declaration, so we don't need it anymore.
3476       LocalDeclMap.erase(InitVD);
3477 
3478       // Return the address of the private variable.
3479       return GetAddrOfLocalVar(PvtVD);
3480     });
3481     assert(IsRegistered && "firstprivate var already registered as private");
3482     // Silence the warning about unused variable.
3483     (void)IsRegistered;
3484 
3485     ++OrigVarIt;
3486     ++InitIt;
3487   }
3488 }
3489 
3490 // Generate the instructions for '#pragma omp target data' directive.
3491 void CodeGenFunction::EmitOMPTargetDataDirective(
3492     const OMPTargetDataDirective &S) {
3493   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
3494 
3495   // Create a pre/post action to signal the privatization of the device pointer.
3496   // This action can be replaced by the OpenMP runtime code generation to
3497   // deactivate privatization.
3498   bool PrivatizeDevicePointers = false;
3499   class DevicePointerPrivActionTy : public PrePostActionTy {
3500     bool &PrivatizeDevicePointers;
3501 
3502   public:
3503     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
3504         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
3505     void Enter(CodeGenFunction &CGF) override {
3506       PrivatizeDevicePointers = true;
3507     }
3508   };
3509   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
3510 
3511   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
3512       CodeGenFunction &CGF, PrePostActionTy &Action) {
3513     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3514       CGF.EmitStmt(
3515           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3516     };
3517 
3518     // Codegen that selects wheather to generate the privatization code or not.
3519     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
3520                           &InnermostCodeGen](CodeGenFunction &CGF,
3521                                              PrePostActionTy &Action) {
3522       RegionCodeGenTy RCG(InnermostCodeGen);
3523       PrivatizeDevicePointers = false;
3524 
3525       // Call the pre-action to change the status of PrivatizeDevicePointers if
3526       // needed.
3527       Action.Enter(CGF);
3528 
3529       if (PrivatizeDevicePointers) {
3530         OMPPrivateScope PrivateScope(CGF);
3531         // Emit all instances of the use_device_ptr clause.
3532         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
3533           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
3534                                         Info.CaptureDeviceAddrMap);
3535         (void)PrivateScope.Privatize();
3536         RCG(CGF);
3537       } else
3538         RCG(CGF);
3539     };
3540 
3541     // Forward the provided action to the privatization codegen.
3542     RegionCodeGenTy PrivRCG(PrivCodeGen);
3543     PrivRCG.setAction(Action);
3544 
3545     // Notwithstanding the body of the region is emitted as inlined directive,
3546     // we don't use an inline scope as changes in the references inside the
3547     // region are expected to be visible outside, so we do not privative them.
3548     OMPLexicalScope Scope(CGF, S);
3549     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
3550                                                     PrivRCG);
3551   };
3552 
3553   RegionCodeGenTy RCG(CodeGen);
3554 
3555   // If we don't have target devices, don't bother emitting the data mapping
3556   // code.
3557   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
3558     RCG(*this);
3559     return;
3560   }
3561 
3562   // Check if we have any if clause associated with the directive.
3563   const Expr *IfCond = nullptr;
3564   if (auto *C = S.getSingleClause<OMPIfClause>())
3565     IfCond = C->getCondition();
3566 
3567   // Check if we have any device clause associated with the directive.
3568   const Expr *Device = nullptr;
3569   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3570     Device = C->getDevice();
3571 
3572   // Set the action to signal privatization of device pointers.
3573   RCG.setAction(PrivAction);
3574 
3575   // Emit region code.
3576   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
3577                                              Info);
3578 }
3579 
3580 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
3581     const OMPTargetEnterDataDirective &S) {
3582   // If we don't have target devices, don't bother emitting the data mapping
3583   // code.
3584   if (CGM.getLangOpts().OMPTargetTriples.empty())
3585     return;
3586 
3587   // Check if we have any if clause associated with the directive.
3588   const Expr *IfCond = nullptr;
3589   if (auto *C = S.getSingleClause<OMPIfClause>())
3590     IfCond = C->getCondition();
3591 
3592   // Check if we have any device clause associated with the directive.
3593   const Expr *Device = nullptr;
3594   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3595     Device = C->getDevice();
3596 
3597   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3598 }
3599 
3600 void CodeGenFunction::EmitOMPTargetExitDataDirective(
3601     const OMPTargetExitDataDirective &S) {
3602   // If we don't have target devices, don't bother emitting the data mapping
3603   // code.
3604   if (CGM.getLangOpts().OMPTargetTriples.empty())
3605     return;
3606 
3607   // Check if we have any if clause associated with the directive.
3608   const Expr *IfCond = nullptr;
3609   if (auto *C = S.getSingleClause<OMPIfClause>())
3610     IfCond = C->getCondition();
3611 
3612   // Check if we have any device clause associated with the directive.
3613   const Expr *Device = nullptr;
3614   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3615     Device = C->getDevice();
3616 
3617   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3618 }
3619 
3620 void CodeGenFunction::EmitOMPTargetParallelDirective(
3621     const OMPTargetParallelDirective &S) {
3622   // TODO: codegen for target parallel.
3623 }
3624 
3625 void CodeGenFunction::EmitOMPTargetParallelForDirective(
3626     const OMPTargetParallelForDirective &S) {
3627   // TODO: codegen for target parallel for.
3628 }
3629 
3630 /// Emit a helper variable and return corresponding lvalue.
3631 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
3632                      const ImplicitParamDecl *PVD,
3633                      CodeGenFunction::OMPPrivateScope &Privates) {
3634   auto *VDecl = cast<VarDecl>(Helper->getDecl());
3635   Privates.addPrivate(
3636       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
3637 }
3638 
3639 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
3640   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
3641   // Emit outlined function for task construct.
3642   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3643   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
3644   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3645   const Expr *IfCond = nullptr;
3646   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3647     if (C->getNameModifier() == OMPD_unknown ||
3648         C->getNameModifier() == OMPD_taskloop) {
3649       IfCond = C->getCondition();
3650       break;
3651     }
3652   }
3653 
3654   OMPTaskDataTy Data;
3655   // Check if taskloop must be emitted without taskgroup.
3656   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
3657   // TODO: Check if we should emit tied or untied task.
3658   Data.Tied = true;
3659   // Set scheduling for taskloop
3660   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
3661     // grainsize clause
3662     Data.Schedule.setInt(/*IntVal=*/false);
3663     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
3664   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
3665     // num_tasks clause
3666     Data.Schedule.setInt(/*IntVal=*/true);
3667     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
3668   }
3669 
3670   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
3671     // if (PreCond) {
3672     //   for (IV in 0..LastIteration) BODY;
3673     //   <Final counter/linear vars updates>;
3674     // }
3675     //
3676 
3677     // Emit: if (PreCond) - begin.
3678     // If the condition constant folds and can be elided, avoid emitting the
3679     // whole loop.
3680     bool CondConstant;
3681     llvm::BasicBlock *ContBlock = nullptr;
3682     OMPLoopScope PreInitScope(CGF, S);
3683     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3684       if (!CondConstant)
3685         return;
3686     } else {
3687       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
3688       ContBlock = CGF.createBasicBlock("taskloop.if.end");
3689       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
3690                   CGF.getProfileCount(&S));
3691       CGF.EmitBlock(ThenBlock);
3692       CGF.incrementProfileCounter(&S);
3693     }
3694 
3695     if (isOpenMPSimdDirective(S.getDirectiveKind()))
3696       CGF.EmitOMPSimdInit(S);
3697 
3698     OMPPrivateScope LoopScope(CGF);
3699     // Emit helper vars inits.
3700     enum { LowerBound = 5, UpperBound, Stride, LastIter };
3701     auto *I = CS->getCapturedDecl()->param_begin();
3702     auto *LBP = std::next(I, LowerBound);
3703     auto *UBP = std::next(I, UpperBound);
3704     auto *STP = std::next(I, Stride);
3705     auto *LIP = std::next(I, LastIter);
3706     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
3707              LoopScope);
3708     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
3709              LoopScope);
3710     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
3711     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
3712              LoopScope);
3713     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
3714     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3715     (void)LoopScope.Privatize();
3716     // Emit the loop iteration variable.
3717     const Expr *IVExpr = S.getIterationVariable();
3718     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
3719     CGF.EmitVarDecl(*IVDecl);
3720     CGF.EmitIgnoredExpr(S.getInit());
3721 
3722     // Emit the iterations count variable.
3723     // If it is not a variable, Sema decided to calculate iterations count on
3724     // each iteration (e.g., it is foldable into a constant).
3725     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3726       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3727       // Emit calculation of the iterations count.
3728       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
3729     }
3730 
3731     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
3732                          S.getInc(),
3733                          [&S](CodeGenFunction &CGF) {
3734                            CGF.EmitOMPLoopBody(S, JumpDest());
3735                            CGF.EmitStopPoint(&S);
3736                          },
3737                          [](CodeGenFunction &) {});
3738     // Emit: if (PreCond) - end.
3739     if (ContBlock) {
3740       CGF.EmitBranch(ContBlock);
3741       CGF.EmitBlock(ContBlock, true);
3742     }
3743     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3744     if (HasLastprivateClause) {
3745       CGF.EmitOMPLastprivateClauseFinal(
3746           S, isOpenMPSimdDirective(S.getDirectiveKind()),
3747           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
3748               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
3749               (*LIP)->getType(), S.getLocStart())));
3750     }
3751   };
3752   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3753                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3754                             const OMPTaskDataTy &Data) {
3755     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
3756       OMPLoopScope PreInitScope(CGF, S);
3757       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
3758                                                   OutlinedFn, SharedsTy,
3759                                                   CapturedStruct, IfCond, Data);
3760     };
3761     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
3762                                                     CodeGen);
3763   };
3764   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
3765 }
3766 
3767 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
3768   EmitOMPTaskLoopBasedDirective(S);
3769 }
3770 
3771 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
3772     const OMPTaskLoopSimdDirective &S) {
3773   EmitOMPTaskLoopBasedDirective(S);
3774 }
3775 
3776 // Generate the instructions for '#pragma omp target update' directive.
3777 void CodeGenFunction::EmitOMPTargetUpdateDirective(
3778     const OMPTargetUpdateDirective &S) {
3779   // If we don't have target devices, don't bother emitting the data mapping
3780   // code.
3781   if (CGM.getLangOpts().OMPTargetTriples.empty())
3782     return;
3783 
3784   // Check if we have any if clause associated with the directive.
3785   const Expr *IfCond = nullptr;
3786   if (auto *C = S.getSingleClause<OMPIfClause>())
3787     IfCond = C->getCondition();
3788 
3789   // Check if we have any device clause associated with the directive.
3790   const Expr *Device = nullptr;
3791   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3792     Device = C->getDevice();
3793 
3794   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3795 }
3796