1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 26 /// for captured expressions. 27 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 28 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 29 for (const auto *C : S.clauses()) { 30 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 31 if (const auto *PreInit = 32 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 33 for (const auto *I : PreInit->decls()) { 34 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 35 CGF.EmitVarDecl(cast<VarDecl>(*I)); 36 } else { 37 CodeGenFunction::AutoVarEmission Emission = 38 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 39 CGF.EmitAutoVarCleanups(Emission); 40 } 41 } 42 } 43 } 44 } 45 } 46 CodeGenFunction::OMPPrivateScope InlinedShareds; 47 48 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 49 return CGF.LambdaCaptureFields.lookup(VD) || 50 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 51 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 52 } 53 54 public: 55 OMPLexicalScope( 56 CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 58 const bool EmitPreInitStmt = true) 59 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 60 InlinedShareds(CGF) { 61 if (EmitPreInitStmt) 62 emitPreInitStmt(CGF, S); 63 if (!CapturedRegion.hasValue()) 64 return; 65 assert(S.hasAssociatedStmt() && 66 "Expected associated statement for inlined directive."); 67 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 68 for (const auto &C : CS->captures()) { 69 if (C.capturesVariable() || C.capturesVariableByCopy()) { 70 auto *VD = C.getCapturedVar(); 71 assert(VD == VD->getCanonicalDecl() && 72 "Canonical decl must be captured."); 73 DeclRefExpr DRE( 74 CGF.getContext(), const_cast<VarDecl *>(VD), 75 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 76 InlinedShareds.isGlobalVarCaptured(VD)), 77 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 78 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 79 return CGF.EmitLValue(&DRE).getAddress(); 80 }); 81 } 82 } 83 (void)InlinedShareds.Privatize(); 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 100 EmitPreInitStmt(S)) {} 101 }; 102 103 /// Lexical scope for OpenMP teams construct, that handles correct codegen 104 /// for captured expressions. 105 class OMPTeamsScope final : public OMPLexicalScope { 106 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 107 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 108 return !isOpenMPTargetExecutionDirective(Kind) && 109 isOpenMPTeamsDirective(Kind); 110 } 111 112 public: 113 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Private scope for OpenMP loop-based directives, that supports capturing 119 /// of used expression from loop statement. 120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 121 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 122 CodeGenFunction::OMPMapVars PreCondVars; 123 for (const auto *E : S.counters()) { 124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 125 (void)PreCondVars.setVarAddr( 126 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 127 } 128 (void)PreCondVars.apply(CGF); 129 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 130 for (const auto *I : PreInits->decls()) 131 CGF.EmitVarDecl(cast<VarDecl>(*I)); 132 } 133 PreCondVars.restore(CGF); 134 } 135 136 public: 137 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 138 : CodeGenFunction::RunCleanupsScope(CGF) { 139 emitPreInitStmt(CGF, S); 140 } 141 }; 142 143 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 144 CodeGenFunction::OMPPrivateScope InlinedShareds; 145 146 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 147 return CGF.LambdaCaptureFields.lookup(VD) || 148 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 149 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 150 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 151 } 152 153 public: 154 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 155 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 156 InlinedShareds(CGF) { 157 for (const auto *C : S.clauses()) { 158 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 159 if (const auto *PreInit = 160 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 } else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 ASTContext &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 238 VlaSizePair VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } 248 return CGM.getSize(SizeInChars); 249 } 250 251 void CodeGenFunction::GenerateOpenMPCapturedVars( 252 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 253 const RecordDecl *RD = S.getCapturedRecordDecl(); 254 auto CurField = RD->field_begin(); 255 auto CurCap = S.captures().begin(); 256 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 257 E = S.capture_init_end(); 258 I != E; ++I, ++CurField, ++CurCap) { 259 if (CurField->hasCapturedVLAType()) { 260 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 261 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 262 CapturedVars.push_back(Val); 263 } else if (CurCap->capturesThis()) { 264 CapturedVars.push_back(CXXThisValue); 265 } else if (CurCap->capturesVariableByCopy()) { 266 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 267 268 // If the field is not a pointer, we need to save the actual value 269 // and load it as a void pointer. 270 if (!CurField->getType()->isAnyPointerType()) { 271 ASTContext &Ctx = getContext(); 272 Address DstAddr = CreateMemTemp( 273 Ctx.getUIntPtrType(), 274 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 275 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 276 277 llvm::Value *SrcAddrVal = EmitScalarConversion( 278 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 279 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 280 LValue SrcLV = 281 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 282 283 // Store the value using the source type pointer. 284 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 285 286 // Load the value using the destination type pointer. 287 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 288 } 289 CapturedVars.push_back(CV); 290 } else { 291 assert(CurCap->capturesVariable() && "Expected capture by reference."); 292 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 293 } 294 } 295 } 296 297 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 298 QualType DstType, StringRef Name, 299 LValue AddrLV, 300 bool isReferenceType = false) { 301 ASTContext &Ctx = CGF.getContext(); 302 303 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 304 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 305 Ctx.getPointerType(DstType), Loc); 306 Address TmpAddr = 307 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 308 .getAddress(); 309 310 // If we are dealing with references we need to return the address of the 311 // reference instead of the reference of the value. 312 if (isReferenceType) { 313 QualType RefType = Ctx.getLValueReferenceType(DstType); 314 llvm::Value *RefVal = TmpAddr.getPointer(); 315 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 316 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 317 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 318 } 319 320 return TmpAddr; 321 } 322 323 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 324 if (T->isLValueReferenceType()) 325 return C.getLValueReferenceType( 326 getCanonicalParamType(C, T.getNonReferenceType()), 327 /*SpelledAsLValue=*/false); 328 if (T->isPointerType()) 329 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 330 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 331 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 332 return getCanonicalParamType(C, VLA->getElementType()); 333 if (!A->isVariablyModifiedType()) 334 return C.getCanonicalType(T); 335 } 336 return C.getCanonicalParamType(T); 337 } 338 339 namespace { 340 /// Contains required data for proper outlined function codegen. 341 struct FunctionOptions { 342 /// Captured statement for which the function is generated. 343 const CapturedStmt *S = nullptr; 344 /// true if cast to/from UIntPtr is required for variables captured by 345 /// value. 346 const bool UIntPtrCastRequired = true; 347 /// true if only casted arguments must be registered as local args or VLA 348 /// sizes. 349 const bool RegisterCastedArgsOnly = false; 350 /// Name of the generated function. 351 const StringRef FunctionName; 352 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 353 bool RegisterCastedArgsOnly, 354 StringRef FunctionName) 355 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 356 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 357 FunctionName(FunctionName) {} 358 }; 359 } 360 361 static llvm::Function *emitOutlinedFunctionPrologue( 362 CodeGenFunction &CGF, FunctionArgList &Args, 363 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 364 &LocalAddrs, 365 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 366 &VLASizes, 367 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 368 const CapturedDecl *CD = FO.S->getCapturedDecl(); 369 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 370 assert(CD->hasBody() && "missing CapturedDecl body"); 371 372 CXXThisValue = nullptr; 373 // Build the argument list. 374 CodeGenModule &CGM = CGF.CGM; 375 ASTContext &Ctx = CGM.getContext(); 376 FunctionArgList TargetArgs; 377 Args.append(CD->param_begin(), 378 std::next(CD->param_begin(), CD->getContextParamPosition())); 379 TargetArgs.append( 380 CD->param_begin(), 381 std::next(CD->param_begin(), CD->getContextParamPosition())); 382 auto I = FO.S->captures().begin(); 383 FunctionDecl *DebugFunctionDecl = nullptr; 384 if (!FO.UIntPtrCastRequired) { 385 FunctionProtoType::ExtProtoInfo EPI; 386 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 387 DebugFunctionDecl = FunctionDecl::Create( 388 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 389 SourceLocation(), DeclarationName(), FunctionTy, 390 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 391 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 392 } 393 for (const FieldDecl *FD : RD->fields()) { 394 QualType ArgType = FD->getType(); 395 IdentifierInfo *II = nullptr; 396 VarDecl *CapVar = nullptr; 397 398 // If this is a capture by copy and the type is not a pointer, the outlined 399 // function argument type should be uintptr and the value properly casted to 400 // uintptr. This is necessary given that the runtime library is only able to 401 // deal with pointers. We can pass in the same way the VLA type sizes to the 402 // outlined function. 403 if (FO.UIntPtrCastRequired && 404 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 405 I->capturesVariableArrayType())) 406 ArgType = Ctx.getUIntPtrType(); 407 408 if (I->capturesVariable() || I->capturesVariableByCopy()) { 409 CapVar = I->getCapturedVar(); 410 II = CapVar->getIdentifier(); 411 } else if (I->capturesThis()) { 412 II = &Ctx.Idents.get("this"); 413 } else { 414 assert(I->capturesVariableArrayType()); 415 II = &Ctx.Idents.get("vla"); 416 } 417 if (ArgType->isVariablyModifiedType()) 418 ArgType = getCanonicalParamType(Ctx, ArgType); 419 VarDecl *Arg; 420 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 421 Arg = ParmVarDecl::Create( 422 Ctx, DebugFunctionDecl, 423 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 424 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 425 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 426 } else { 427 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 428 II, ArgType, ImplicitParamDecl::Other); 429 } 430 Args.emplace_back(Arg); 431 // Do not cast arguments if we emit function with non-original types. 432 TargetArgs.emplace_back( 433 FO.UIntPtrCastRequired 434 ? Arg 435 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 436 ++I; 437 } 438 Args.append( 439 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 440 CD->param_end()); 441 TargetArgs.append( 442 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 443 CD->param_end()); 444 445 // Create the function declaration. 446 const CGFunctionInfo &FuncInfo = 447 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 448 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 449 450 auto *F = 451 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 452 FO.FunctionName, &CGM.getModule()); 453 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 454 if (CD->isNothrow()) 455 F->setDoesNotThrow(); 456 F->setDoesNotRecurse(); 457 458 // Generate the function. 459 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 460 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 461 unsigned Cnt = CD->getContextParamPosition(); 462 I = FO.S->captures().begin(); 463 for (const FieldDecl *FD : RD->fields()) { 464 // Do not map arguments if we emit function with non-original types. 465 Address LocalAddr(Address::invalid()); 466 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 467 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 468 TargetArgs[Cnt]); 469 } else { 470 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 471 } 472 // If we are capturing a pointer by copy we don't need to do anything, just 473 // use the value that we get from the arguments. 474 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 475 const VarDecl *CurVD = I->getCapturedVar(); 476 // If the variable is a reference we need to materialize it here. 477 if (CurVD->getType()->isReferenceType()) { 478 Address RefAddr = CGF.CreateMemTemp( 479 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 480 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 481 /*Volatile=*/false, CurVD->getType()); 482 LocalAddr = RefAddr; 483 } 484 if (!FO.RegisterCastedArgsOnly) 485 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 486 ++Cnt; 487 ++I; 488 continue; 489 } 490 491 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 492 AlignmentSource::Decl); 493 if (FD->hasCapturedVLAType()) { 494 if (FO.UIntPtrCastRequired) { 495 ArgLVal = CGF.MakeAddrLValue( 496 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 497 Args[Cnt]->getName(), ArgLVal), 498 FD->getType(), AlignmentSource::Decl); 499 } 500 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 501 const VariableArrayType *VAT = FD->getCapturedVLAType(); 502 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 503 } else if (I->capturesVariable()) { 504 const VarDecl *Var = I->getCapturedVar(); 505 QualType VarTy = Var->getType(); 506 Address ArgAddr = ArgLVal.getAddress(); 507 if (!VarTy->isReferenceType()) { 508 if (ArgLVal.getType()->isLValueReferenceType()) { 509 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 510 } else if (!VarTy->isVariablyModifiedType() || 511 !VarTy->isPointerType()) { 512 assert(ArgLVal.getType()->isPointerType()); 513 ArgAddr = CGF.EmitLoadOfPointer( 514 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 515 } 516 } 517 if (!FO.RegisterCastedArgsOnly) { 518 LocalAddrs.insert( 519 {Args[Cnt], 520 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 521 } 522 } else if (I->capturesVariableByCopy()) { 523 assert(!FD->getType()->isAnyPointerType() && 524 "Not expecting a captured pointer."); 525 const VarDecl *Var = I->getCapturedVar(); 526 QualType VarTy = Var->getType(); 527 LocalAddrs.insert( 528 {Args[Cnt], 529 {Var, FO.UIntPtrCastRequired 530 ? castValueFromUintptr(CGF, I->getLocation(), 531 FD->getType(), Args[Cnt]->getName(), 532 ArgLVal, VarTy->isReferenceType()) 533 : ArgLVal.getAddress()}}); 534 } else { 535 // If 'this' is captured, load it into CXXThisValue. 536 assert(I->capturesThis()); 537 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 538 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 539 } 540 ++Cnt; 541 ++I; 542 } 543 544 return F; 545 } 546 547 llvm::Function * 548 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 549 assert( 550 CapturedStmtInfo && 551 "CapturedStmtInfo should be set when generating the captured function"); 552 const CapturedDecl *CD = S.getCapturedDecl(); 553 // Build the argument list. 554 bool NeedWrapperFunction = 555 getDebugInfo() && 556 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 557 FunctionArgList Args; 558 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 559 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 560 SmallString<256> Buffer; 561 llvm::raw_svector_ostream Out(Buffer); 562 Out << CapturedStmtInfo->getHelperName(); 563 if (NeedWrapperFunction) 564 Out << "_debug__"; 565 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 566 Out.str()); 567 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 568 VLASizes, CXXThisValue, FO); 569 for (const auto &LocalAddrPair : LocalAddrs) { 570 if (LocalAddrPair.second.first) { 571 setAddrOfLocalVar(LocalAddrPair.second.first, 572 LocalAddrPair.second.second); 573 } 574 } 575 for (const auto &VLASizePair : VLASizes) 576 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 577 PGO.assignRegionCounters(GlobalDecl(CD), F); 578 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 579 FinishFunction(CD->getBodyRBrace()); 580 if (!NeedWrapperFunction) 581 return F; 582 583 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 584 /*RegisterCastedArgsOnly=*/true, 585 CapturedStmtInfo->getHelperName()); 586 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 587 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 588 Args.clear(); 589 LocalAddrs.clear(); 590 VLASizes.clear(); 591 llvm::Function *WrapperF = 592 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 593 WrapperCGF.CXXThisValue, WrapperFO); 594 llvm::SmallVector<llvm::Value *, 4> CallArgs; 595 for (const auto *Arg : Args) { 596 llvm::Value *CallArg; 597 auto I = LocalAddrs.find(Arg); 598 if (I != LocalAddrs.end()) { 599 LValue LV = WrapperCGF.MakeAddrLValue( 600 I->second.second, 601 I->second.first ? I->second.first->getType() : Arg->getType(), 602 AlignmentSource::Decl); 603 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 604 } else { 605 auto EI = VLASizes.find(Arg); 606 if (EI != VLASizes.end()) { 607 CallArg = EI->second.second; 608 } else { 609 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 610 Arg->getType(), 611 AlignmentSource::Decl); 612 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 613 } 614 } 615 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 616 } 617 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 618 F, CallArgs); 619 WrapperCGF.FinishFunction(); 620 return WrapperF; 621 } 622 623 //===----------------------------------------------------------------------===// 624 // OpenMP Directive Emission 625 //===----------------------------------------------------------------------===// 626 void CodeGenFunction::EmitOMPAggregateAssign( 627 Address DestAddr, Address SrcAddr, QualType OriginalType, 628 const llvm::function_ref<void(Address, Address)> CopyGen) { 629 // Perform element-by-element initialization. 630 QualType ElementTy; 631 632 // Drill down to the base element type on both arrays. 633 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 634 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 635 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 636 637 llvm::Value *SrcBegin = SrcAddr.getPointer(); 638 llvm::Value *DestBegin = DestAddr.getPointer(); 639 // Cast from pointer to array type to pointer to single element. 640 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 641 // The basic structure here is a while-do loop. 642 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 643 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 644 llvm::Value *IsEmpty = 645 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 646 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 647 648 // Enter the loop body, making that address the current address. 649 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 650 EmitBlock(BodyBB); 651 652 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 653 654 llvm::PHINode *SrcElementPHI = 655 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 656 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 657 Address SrcElementCurrent = 658 Address(SrcElementPHI, 659 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 660 661 llvm::PHINode *DestElementPHI = 662 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 663 DestElementPHI->addIncoming(DestBegin, EntryBB); 664 Address DestElementCurrent = 665 Address(DestElementPHI, 666 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 667 668 // Emit copy. 669 CopyGen(DestElementCurrent, SrcElementCurrent); 670 671 // Shift the address forward by one element. 672 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 673 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 674 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 675 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 676 // Check whether we've reached the end. 677 llvm::Value *Done = 678 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 679 Builder.CreateCondBr(Done, DoneBB, BodyBB); 680 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 681 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 682 683 // Done. 684 EmitBlock(DoneBB, /*IsFinished=*/true); 685 } 686 687 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 688 Address SrcAddr, const VarDecl *DestVD, 689 const VarDecl *SrcVD, const Expr *Copy) { 690 if (OriginalType->isArrayType()) { 691 const auto *BO = dyn_cast<BinaryOperator>(Copy); 692 if (BO && BO->getOpcode() == BO_Assign) { 693 // Perform simple memcpy for simple copying. 694 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 695 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 696 EmitAggregateAssign(Dest, Src, OriginalType); 697 } else { 698 // For arrays with complex element types perform element by element 699 // copying. 700 EmitOMPAggregateAssign( 701 DestAddr, SrcAddr, OriginalType, 702 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 703 // Working with the single array element, so have to remap 704 // destination and source variables to corresponding array 705 // elements. 706 CodeGenFunction::OMPPrivateScope Remap(*this); 707 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 708 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 709 (void)Remap.Privatize(); 710 EmitIgnoredExpr(Copy); 711 }); 712 } 713 } else { 714 // Remap pseudo source variable to private copy. 715 CodeGenFunction::OMPPrivateScope Remap(*this); 716 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 717 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 718 (void)Remap.Privatize(); 719 // Emit copying of the whole variable. 720 EmitIgnoredExpr(Copy); 721 } 722 } 723 724 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 725 OMPPrivateScope &PrivateScope) { 726 if (!HaveInsertPoint()) 727 return false; 728 bool DeviceConstTarget = 729 getLangOpts().OpenMPIsDevice && 730 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 731 bool FirstprivateIsLastprivate = false; 732 llvm::DenseSet<const VarDecl *> Lastprivates; 733 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 734 for (const auto *D : C->varlists()) 735 Lastprivates.insert( 736 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 737 } 738 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 739 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 740 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 741 // Force emission of the firstprivate copy if the directive does not emit 742 // outlined function, like omp for, omp simd, omp distribute etc. 743 bool MustEmitFirstprivateCopy = 744 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 745 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 746 auto IRef = C->varlist_begin(); 747 auto InitsRef = C->inits().begin(); 748 for (const Expr *IInit : C->private_copies()) { 749 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 750 bool ThisFirstprivateIsLastprivate = 751 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 752 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 753 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 754 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 755 !FD->getType()->isReferenceType() && 756 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 757 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 758 ++IRef; 759 ++InitsRef; 760 continue; 761 } 762 // Do not emit copy for firstprivate constant variables in target regions, 763 // captured by reference. 764 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 765 FD && FD->getType()->isReferenceType() && 766 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 767 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 768 OrigVD); 769 ++IRef; 770 ++InitsRef; 771 continue; 772 } 773 FirstprivateIsLastprivate = 774 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 775 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 776 const auto *VDInit = 777 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 778 bool IsRegistered; 779 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 780 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 781 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 782 LValue OriginalLVal = EmitLValue(&DRE); 783 QualType Type = VD->getType(); 784 if (Type->isArrayType()) { 785 // Emit VarDecl with copy init for arrays. 786 // Get the address of the original variable captured in current 787 // captured region. 788 IsRegistered = PrivateScope.addPrivate( 789 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 790 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 791 const Expr *Init = VD->getInit(); 792 if (!isa<CXXConstructExpr>(Init) || 793 isTrivialInitializer(Init)) { 794 // Perform simple memcpy. 795 LValue Dest = 796 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 797 EmitAggregateAssign(Dest, OriginalLVal, Type); 798 } else { 799 EmitOMPAggregateAssign( 800 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 801 Type, 802 [this, VDInit, Init](Address DestElement, 803 Address SrcElement) { 804 // Clean up any temporaries needed by the 805 // initialization. 806 RunCleanupsScope InitScope(*this); 807 // Emit initialization for single element. 808 setAddrOfLocalVar(VDInit, SrcElement); 809 EmitAnyExprToMem(Init, DestElement, 810 Init->getType().getQualifiers(), 811 /*IsInitializer*/ false); 812 LocalDeclMap.erase(VDInit); 813 }); 814 } 815 EmitAutoVarCleanups(Emission); 816 return Emission.getAllocatedAddress(); 817 }); 818 } else { 819 Address OriginalAddr = OriginalLVal.getAddress(); 820 IsRegistered = PrivateScope.addPrivate( 821 OrigVD, [this, VDInit, OriginalAddr, VD]() { 822 // Emit private VarDecl with copy init. 823 // Remap temp VDInit variable to the address of the original 824 // variable (for proper handling of captured global variables). 825 setAddrOfLocalVar(VDInit, OriginalAddr); 826 EmitDecl(*VD); 827 LocalDeclMap.erase(VDInit); 828 return GetAddrOfLocalVar(VD); 829 }); 830 } 831 assert(IsRegistered && 832 "firstprivate var already registered as private"); 833 // Silence the warning about unused variable. 834 (void)IsRegistered; 835 } 836 ++IRef; 837 ++InitsRef; 838 } 839 } 840 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 841 } 842 843 void CodeGenFunction::EmitOMPPrivateClause( 844 const OMPExecutableDirective &D, 845 CodeGenFunction::OMPPrivateScope &PrivateScope) { 846 if (!HaveInsertPoint()) 847 return; 848 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 849 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 850 auto IRef = C->varlist_begin(); 851 for (const Expr *IInit : C->private_copies()) { 852 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 853 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 854 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 855 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 856 // Emit private VarDecl with copy init. 857 EmitDecl(*VD); 858 return GetAddrOfLocalVar(VD); 859 }); 860 assert(IsRegistered && "private var already registered as private"); 861 // Silence the warning about unused variable. 862 (void)IsRegistered; 863 } 864 ++IRef; 865 } 866 } 867 } 868 869 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 870 if (!HaveInsertPoint()) 871 return false; 872 // threadprivate_var1 = master_threadprivate_var1; 873 // operator=(threadprivate_var2, master_threadprivate_var2); 874 // ... 875 // __kmpc_barrier(&loc, global_tid); 876 llvm::DenseSet<const VarDecl *> CopiedVars; 877 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 878 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 879 auto IRef = C->varlist_begin(); 880 auto ISrcRef = C->source_exprs().begin(); 881 auto IDestRef = C->destination_exprs().begin(); 882 for (const Expr *AssignOp : C->assignment_ops()) { 883 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 884 QualType Type = VD->getType(); 885 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 886 // Get the address of the master variable. If we are emitting code with 887 // TLS support, the address is passed from the master as field in the 888 // captured declaration. 889 Address MasterAddr = Address::invalid(); 890 if (getLangOpts().OpenMPUseTLS && 891 getContext().getTargetInfo().isTLSSupported()) { 892 assert(CapturedStmtInfo->lookup(VD) && 893 "Copyin threadprivates should have been captured!"); 894 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 895 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 896 MasterAddr = EmitLValue(&DRE).getAddress(); 897 LocalDeclMap.erase(VD); 898 } else { 899 MasterAddr = 900 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 901 : CGM.GetAddrOfGlobal(VD), 902 getContext().getDeclAlign(VD)); 903 } 904 // Get the address of the threadprivate variable. 905 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 906 if (CopiedVars.size() == 1) { 907 // At first check if current thread is a master thread. If it is, no 908 // need to copy data. 909 CopyBegin = createBasicBlock("copyin.not.master"); 910 CopyEnd = createBasicBlock("copyin.not.master.end"); 911 Builder.CreateCondBr( 912 Builder.CreateICmpNE( 913 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 914 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 915 CGM.IntPtrTy)), 916 CopyBegin, CopyEnd); 917 EmitBlock(CopyBegin); 918 } 919 const auto *SrcVD = 920 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 921 const auto *DestVD = 922 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 923 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 924 } 925 ++IRef; 926 ++ISrcRef; 927 ++IDestRef; 928 } 929 } 930 if (CopyEnd) { 931 // Exit out of copying procedure for non-master thread. 932 EmitBlock(CopyEnd, /*IsFinished=*/true); 933 return true; 934 } 935 return false; 936 } 937 938 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 939 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 940 if (!HaveInsertPoint()) 941 return false; 942 bool HasAtLeastOneLastprivate = false; 943 llvm::DenseSet<const VarDecl *> SIMDLCVs; 944 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 945 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 946 for (const Expr *C : LoopDirective->counters()) { 947 SIMDLCVs.insert( 948 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 949 } 950 } 951 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 952 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 953 HasAtLeastOneLastprivate = true; 954 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 955 !getLangOpts().OpenMPSimd) 956 break; 957 auto IRef = C->varlist_begin(); 958 auto IDestRef = C->destination_exprs().begin(); 959 for (const Expr *IInit : C->private_copies()) { 960 // Keep the address of the original variable for future update at the end 961 // of the loop. 962 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 963 // Taskloops do not require additional initialization, it is done in 964 // runtime support library. 965 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 966 const auto *DestVD = 967 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 968 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 969 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 970 /*RefersToEnclosingVariableOrCapture=*/ 971 CapturedStmtInfo->lookup(OrigVD) != nullptr, 972 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 973 return EmitLValue(&DRE).getAddress(); 974 }); 975 // Check if the variable is also a firstprivate: in this case IInit is 976 // not generated. Initialization of this variable will happen in codegen 977 // for 'firstprivate' clause. 978 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 979 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 980 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 981 // Emit private VarDecl with copy init. 982 EmitDecl(*VD); 983 return GetAddrOfLocalVar(VD); 984 }); 985 assert(IsRegistered && 986 "lastprivate var already registered as private"); 987 (void)IsRegistered; 988 } 989 } 990 ++IRef; 991 ++IDestRef; 992 } 993 } 994 return HasAtLeastOneLastprivate; 995 } 996 997 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 998 const OMPExecutableDirective &D, bool NoFinals, 999 llvm::Value *IsLastIterCond) { 1000 if (!HaveInsertPoint()) 1001 return; 1002 // Emit following code: 1003 // if (<IsLastIterCond>) { 1004 // orig_var1 = private_orig_var1; 1005 // ... 1006 // orig_varn = private_orig_varn; 1007 // } 1008 llvm::BasicBlock *ThenBB = nullptr; 1009 llvm::BasicBlock *DoneBB = nullptr; 1010 if (IsLastIterCond) { 1011 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1012 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1013 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1014 EmitBlock(ThenBB); 1015 } 1016 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1017 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1018 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1019 auto IC = LoopDirective->counters().begin(); 1020 for (const Expr *F : LoopDirective->finals()) { 1021 const auto *D = 1022 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1023 if (NoFinals) 1024 AlreadyEmittedVars.insert(D); 1025 else 1026 LoopCountersAndUpdates[D] = F; 1027 ++IC; 1028 } 1029 } 1030 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1031 auto IRef = C->varlist_begin(); 1032 auto ISrcRef = C->source_exprs().begin(); 1033 auto IDestRef = C->destination_exprs().begin(); 1034 for (const Expr *AssignOp : C->assignment_ops()) { 1035 const auto *PrivateVD = 1036 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1037 QualType Type = PrivateVD->getType(); 1038 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1039 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1040 // If lastprivate variable is a loop control variable for loop-based 1041 // directive, update its value before copyin back to original 1042 // variable. 1043 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1044 EmitIgnoredExpr(FinalExpr); 1045 const auto *SrcVD = 1046 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1047 const auto *DestVD = 1048 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1049 // Get the address of the original variable. 1050 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1051 // Get the address of the private variable. 1052 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1053 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1054 PrivateAddr = 1055 Address(Builder.CreateLoad(PrivateAddr), 1056 getNaturalTypeAlignment(RefTy->getPointeeType())); 1057 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1058 } 1059 ++IRef; 1060 ++ISrcRef; 1061 ++IDestRef; 1062 } 1063 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1064 EmitIgnoredExpr(PostUpdate); 1065 } 1066 if (IsLastIterCond) 1067 EmitBlock(DoneBB, /*IsFinished=*/true); 1068 } 1069 1070 void CodeGenFunction::EmitOMPReductionClauseInit( 1071 const OMPExecutableDirective &D, 1072 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1073 if (!HaveInsertPoint()) 1074 return; 1075 SmallVector<const Expr *, 4> Shareds; 1076 SmallVector<const Expr *, 4> Privates; 1077 SmallVector<const Expr *, 4> ReductionOps; 1078 SmallVector<const Expr *, 4> LHSs; 1079 SmallVector<const Expr *, 4> RHSs; 1080 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1081 auto IPriv = C->privates().begin(); 1082 auto IRed = C->reduction_ops().begin(); 1083 auto ILHS = C->lhs_exprs().begin(); 1084 auto IRHS = C->rhs_exprs().begin(); 1085 for (const Expr *Ref : C->varlists()) { 1086 Shareds.emplace_back(Ref); 1087 Privates.emplace_back(*IPriv); 1088 ReductionOps.emplace_back(*IRed); 1089 LHSs.emplace_back(*ILHS); 1090 RHSs.emplace_back(*IRHS); 1091 std::advance(IPriv, 1); 1092 std::advance(IRed, 1); 1093 std::advance(ILHS, 1); 1094 std::advance(IRHS, 1); 1095 } 1096 } 1097 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1098 unsigned Count = 0; 1099 auto ILHS = LHSs.begin(); 1100 auto IRHS = RHSs.begin(); 1101 auto IPriv = Privates.begin(); 1102 for (const Expr *IRef : Shareds) { 1103 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1104 // Emit private VarDecl with reduction init. 1105 RedCG.emitSharedLValue(*this, Count); 1106 RedCG.emitAggregateType(*this, Count); 1107 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1108 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1109 RedCG.getSharedLValue(Count), 1110 [&Emission](CodeGenFunction &CGF) { 1111 CGF.EmitAutoVarInit(Emission); 1112 return true; 1113 }); 1114 EmitAutoVarCleanups(Emission); 1115 Address BaseAddr = RedCG.adjustPrivateAddress( 1116 *this, Count, Emission.getAllocatedAddress()); 1117 bool IsRegistered = PrivateScope.addPrivate( 1118 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1119 assert(IsRegistered && "private var already registered as private"); 1120 // Silence the warning about unused variable. 1121 (void)IsRegistered; 1122 1123 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1124 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1125 QualType Type = PrivateVD->getType(); 1126 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1127 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1128 // Store the address of the original variable associated with the LHS 1129 // implicit variable. 1130 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1131 return RedCG.getSharedLValue(Count).getAddress(); 1132 }); 1133 PrivateScope.addPrivate( 1134 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1135 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1136 isa<ArraySubscriptExpr>(IRef)) { 1137 // Store the address of the original variable associated with the LHS 1138 // implicit variable. 1139 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1140 return RedCG.getSharedLValue(Count).getAddress(); 1141 }); 1142 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1143 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1144 ConvertTypeForMem(RHSVD->getType()), 1145 "rhs.begin"); 1146 }); 1147 } else { 1148 QualType Type = PrivateVD->getType(); 1149 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1150 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1151 // Store the address of the original variable associated with the LHS 1152 // implicit variable. 1153 if (IsArray) { 1154 OriginalAddr = Builder.CreateElementBitCast( 1155 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1156 } 1157 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1158 PrivateScope.addPrivate( 1159 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1160 return IsArray 1161 ? Builder.CreateElementBitCast( 1162 GetAddrOfLocalVar(PrivateVD), 1163 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1164 : GetAddrOfLocalVar(PrivateVD); 1165 }); 1166 } 1167 ++ILHS; 1168 ++IRHS; 1169 ++IPriv; 1170 ++Count; 1171 } 1172 } 1173 1174 void CodeGenFunction::EmitOMPReductionClauseFinal( 1175 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1176 if (!HaveInsertPoint()) 1177 return; 1178 llvm::SmallVector<const Expr *, 8> Privates; 1179 llvm::SmallVector<const Expr *, 8> LHSExprs; 1180 llvm::SmallVector<const Expr *, 8> RHSExprs; 1181 llvm::SmallVector<const Expr *, 8> ReductionOps; 1182 bool HasAtLeastOneReduction = false; 1183 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1184 HasAtLeastOneReduction = true; 1185 Privates.append(C->privates().begin(), C->privates().end()); 1186 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1187 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1188 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1189 } 1190 if (HasAtLeastOneReduction) { 1191 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1192 isOpenMPParallelDirective(D.getDirectiveKind()) || 1193 ReductionKind == OMPD_simd; 1194 bool SimpleReduction = ReductionKind == OMPD_simd; 1195 // Emit nowait reduction if nowait clause is present or directive is a 1196 // parallel directive (it always has implicit barrier). 1197 CGM.getOpenMPRuntime().emitReduction( 1198 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1199 {WithNowait, SimpleReduction, ReductionKind}); 1200 } 1201 } 1202 1203 static void emitPostUpdateForReductionClause( 1204 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1205 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1206 if (!CGF.HaveInsertPoint()) 1207 return; 1208 llvm::BasicBlock *DoneBB = nullptr; 1209 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1210 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1211 if (!DoneBB) { 1212 if (llvm::Value *Cond = CondGen(CGF)) { 1213 // If the first post-update expression is found, emit conditional 1214 // block if it was requested. 1215 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1216 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1217 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1218 CGF.EmitBlock(ThenBB); 1219 } 1220 } 1221 CGF.EmitIgnoredExpr(PostUpdate); 1222 } 1223 } 1224 if (DoneBB) 1225 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1226 } 1227 1228 namespace { 1229 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1230 /// parallel function. This is necessary for combined constructs such as 1231 /// 'distribute parallel for' 1232 typedef llvm::function_ref<void(CodeGenFunction &, 1233 const OMPExecutableDirective &, 1234 llvm::SmallVectorImpl<llvm::Value *> &)> 1235 CodeGenBoundParametersTy; 1236 } // anonymous namespace 1237 1238 static void emitCommonOMPParallelDirective( 1239 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1240 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1241 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1242 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1243 llvm::Function *OutlinedFn = 1244 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1245 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1246 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1247 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1248 llvm::Value *NumThreads = 1249 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1250 /*IgnoreResultAssign=*/true); 1251 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1252 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1253 } 1254 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1255 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1256 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1257 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1258 } 1259 const Expr *IfCond = nullptr; 1260 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1261 if (C->getNameModifier() == OMPD_unknown || 1262 C->getNameModifier() == OMPD_parallel) { 1263 IfCond = C->getCondition(); 1264 break; 1265 } 1266 } 1267 1268 OMPParallelScope Scope(CGF, S); 1269 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1270 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1271 // lower and upper bounds with the pragma 'for' chunking mechanism. 1272 // The following lambda takes care of appending the lower and upper bound 1273 // parameters when necessary 1274 CodeGenBoundParameters(CGF, S, CapturedVars); 1275 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1276 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1277 CapturedVars, IfCond); 1278 } 1279 1280 static void emitEmptyBoundParameters(CodeGenFunction &, 1281 const OMPExecutableDirective &, 1282 llvm::SmallVectorImpl<llvm::Value *> &) {} 1283 1284 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1285 // Emit parallel region as a standalone region. 1286 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1287 Action.Enter(CGF); 1288 OMPPrivateScope PrivateScope(CGF); 1289 bool Copyins = CGF.EmitOMPCopyinClause(S); 1290 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1291 if (Copyins) { 1292 // Emit implicit barrier to synchronize threads and avoid data races on 1293 // propagation master's thread values of threadprivate variables to local 1294 // instances of that variables of all other implicit threads. 1295 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1296 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1297 /*ForceSimpleCall=*/true); 1298 } 1299 CGF.EmitOMPPrivateClause(S, PrivateScope); 1300 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1301 (void)PrivateScope.Privatize(); 1302 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1303 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1304 }; 1305 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1306 emitEmptyBoundParameters); 1307 emitPostUpdateForReductionClause(*this, S, 1308 [](CodeGenFunction &) { return nullptr; }); 1309 } 1310 1311 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1312 JumpDest LoopExit) { 1313 RunCleanupsScope BodyScope(*this); 1314 // Update counters values on current iteration. 1315 for (const Expr *UE : D.updates()) 1316 EmitIgnoredExpr(UE); 1317 // Update the linear variables. 1318 // In distribute directives only loop counters may be marked as linear, no 1319 // need to generate the code for them. 1320 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1321 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1322 for (const Expr *UE : C->updates()) 1323 EmitIgnoredExpr(UE); 1324 } 1325 } 1326 1327 // On a continue in the body, jump to the end. 1328 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1329 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1330 // Emit loop body. 1331 EmitStmt(D.getBody()); 1332 // The end (updates/cleanups). 1333 EmitBlock(Continue.getBlock()); 1334 BreakContinueStack.pop_back(); 1335 } 1336 1337 void CodeGenFunction::EmitOMPInnerLoop( 1338 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1339 const Expr *IncExpr, 1340 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1341 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1342 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1343 1344 // Start the loop with a block that tests the condition. 1345 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1346 EmitBlock(CondBlock); 1347 const SourceRange R = S.getSourceRange(); 1348 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1349 SourceLocToDebugLoc(R.getEnd())); 1350 1351 // If there are any cleanups between here and the loop-exit scope, 1352 // create a block to stage a loop exit along. 1353 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1354 if (RequiresCleanup) 1355 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1356 1357 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1358 1359 // Emit condition. 1360 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1361 if (ExitBlock != LoopExit.getBlock()) { 1362 EmitBlock(ExitBlock); 1363 EmitBranchThroughCleanup(LoopExit); 1364 } 1365 1366 EmitBlock(LoopBody); 1367 incrementProfileCounter(&S); 1368 1369 // Create a block for the increment. 1370 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1371 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1372 1373 BodyGen(*this); 1374 1375 // Emit "IV = IV + 1" and a back-edge to the condition block. 1376 EmitBlock(Continue.getBlock()); 1377 EmitIgnoredExpr(IncExpr); 1378 PostIncGen(*this); 1379 BreakContinueStack.pop_back(); 1380 EmitBranch(CondBlock); 1381 LoopStack.pop(); 1382 // Emit the fall-through block. 1383 EmitBlock(LoopExit.getBlock()); 1384 } 1385 1386 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1387 if (!HaveInsertPoint()) 1388 return false; 1389 // Emit inits for the linear variables. 1390 bool HasLinears = false; 1391 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1392 for (const Expr *Init : C->inits()) { 1393 HasLinears = true; 1394 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1395 if (const auto *Ref = 1396 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1397 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1398 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1399 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1400 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1401 VD->getInit()->getType(), VK_LValue, 1402 VD->getInit()->getExprLoc()); 1403 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1404 VD->getType()), 1405 /*capturedByInit=*/false); 1406 EmitAutoVarCleanups(Emission); 1407 } else { 1408 EmitVarDecl(*VD); 1409 } 1410 } 1411 // Emit the linear steps for the linear clauses. 1412 // If a step is not constant, it is pre-calculated before the loop. 1413 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1414 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1415 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1416 // Emit calculation of the linear step. 1417 EmitIgnoredExpr(CS); 1418 } 1419 } 1420 return HasLinears; 1421 } 1422 1423 void CodeGenFunction::EmitOMPLinearClauseFinal( 1424 const OMPLoopDirective &D, 1425 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1426 if (!HaveInsertPoint()) 1427 return; 1428 llvm::BasicBlock *DoneBB = nullptr; 1429 // Emit the final values of the linear variables. 1430 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1431 auto IC = C->varlist_begin(); 1432 for (const Expr *F : C->finals()) { 1433 if (!DoneBB) { 1434 if (llvm::Value *Cond = CondGen(*this)) { 1435 // If the first post-update expression is found, emit conditional 1436 // block if it was requested. 1437 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1438 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1439 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1440 EmitBlock(ThenBB); 1441 } 1442 } 1443 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1444 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1445 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1446 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1447 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1448 CodeGenFunction::OMPPrivateScope VarScope(*this); 1449 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1450 (void)VarScope.Privatize(); 1451 EmitIgnoredExpr(F); 1452 ++IC; 1453 } 1454 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1455 EmitIgnoredExpr(PostUpdate); 1456 } 1457 if (DoneBB) 1458 EmitBlock(DoneBB, /*IsFinished=*/true); 1459 } 1460 1461 static void emitAlignedClause(CodeGenFunction &CGF, 1462 const OMPExecutableDirective &D) { 1463 if (!CGF.HaveInsertPoint()) 1464 return; 1465 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1466 unsigned ClauseAlignment = 0; 1467 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1468 auto *AlignmentCI = 1469 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1470 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1471 } 1472 for (const Expr *E : Clause->varlists()) { 1473 unsigned Alignment = ClauseAlignment; 1474 if (Alignment == 0) { 1475 // OpenMP [2.8.1, Description] 1476 // If no optional parameter is specified, implementation-defined default 1477 // alignments for SIMD instructions on the target platforms are assumed. 1478 Alignment = 1479 CGF.getContext() 1480 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1481 E->getType()->getPointeeType())) 1482 .getQuantity(); 1483 } 1484 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1485 "alignment is not power of 2"); 1486 if (Alignment != 0) { 1487 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1488 CGF.EmitAlignmentAssumption( 1489 PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment); 1490 } 1491 } 1492 } 1493 } 1494 1495 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1496 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1497 if (!HaveInsertPoint()) 1498 return; 1499 auto I = S.private_counters().begin(); 1500 for (const Expr *E : S.counters()) { 1501 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1502 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1503 // Emit var without initialization. 1504 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1505 EmitAutoVarCleanups(VarEmission); 1506 LocalDeclMap.erase(PrivateVD); 1507 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1508 return VarEmission.getAllocatedAddress(); 1509 }); 1510 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1511 VD->hasGlobalStorage()) { 1512 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1513 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1514 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1515 E->getType(), VK_LValue, E->getExprLoc()); 1516 return EmitLValue(&DRE).getAddress(); 1517 }); 1518 } else { 1519 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1520 return VarEmission.getAllocatedAddress(); 1521 }); 1522 } 1523 ++I; 1524 } 1525 // Privatize extra loop counters used in loops for ordered(n) clauses. 1526 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1527 if (!C->getNumForLoops()) 1528 continue; 1529 for (unsigned I = S.getCollapsedNumber(), 1530 E = C->getLoopNumIterations().size(); 1531 I < E; ++I) { 1532 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1533 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1534 // Override only those variables that can be captured to avoid re-emission 1535 // of the variables declared within the loops. 1536 if (DRE->refersToEnclosingVariableOrCapture()) { 1537 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1538 return CreateMemTemp(DRE->getType(), VD->getName()); 1539 }); 1540 } 1541 } 1542 } 1543 } 1544 1545 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1546 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1547 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1548 if (!CGF.HaveInsertPoint()) 1549 return; 1550 { 1551 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1552 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1553 (void)PreCondScope.Privatize(); 1554 // Get initial values of real counters. 1555 for (const Expr *I : S.inits()) { 1556 CGF.EmitIgnoredExpr(I); 1557 } 1558 } 1559 // Check that loop is executed at least one time. 1560 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1561 } 1562 1563 void CodeGenFunction::EmitOMPLinearClause( 1564 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1565 if (!HaveInsertPoint()) 1566 return; 1567 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1568 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1569 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1570 for (const Expr *C : LoopDirective->counters()) { 1571 SIMDLCVs.insert( 1572 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1573 } 1574 } 1575 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1576 auto CurPrivate = C->privates().begin(); 1577 for (const Expr *E : C->varlists()) { 1578 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1579 const auto *PrivateVD = 1580 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1581 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1582 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1583 // Emit private VarDecl with copy init. 1584 EmitVarDecl(*PrivateVD); 1585 return GetAddrOfLocalVar(PrivateVD); 1586 }); 1587 assert(IsRegistered && "linear var already registered as private"); 1588 // Silence the warning about unused variable. 1589 (void)IsRegistered; 1590 } else { 1591 EmitVarDecl(*PrivateVD); 1592 } 1593 ++CurPrivate; 1594 } 1595 } 1596 } 1597 1598 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1599 const OMPExecutableDirective &D, 1600 bool IsMonotonic) { 1601 if (!CGF.HaveInsertPoint()) 1602 return; 1603 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1604 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1605 /*ignoreResult=*/true); 1606 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1607 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1608 // In presence of finite 'safelen', it may be unsafe to mark all 1609 // the memory instructions parallel, because loop-carried 1610 // dependences of 'safelen' iterations are possible. 1611 if (!IsMonotonic) 1612 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1613 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1614 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1615 /*ignoreResult=*/true); 1616 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1617 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1618 // In presence of finite 'safelen', it may be unsafe to mark all 1619 // the memory instructions parallel, because loop-carried 1620 // dependences of 'safelen' iterations are possible. 1621 CGF.LoopStack.setParallel(/*Enable=*/false); 1622 } 1623 } 1624 1625 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1626 bool IsMonotonic) { 1627 // Walk clauses and process safelen/lastprivate. 1628 LoopStack.setParallel(!IsMonotonic); 1629 LoopStack.setVectorizeEnable(); 1630 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1631 } 1632 1633 void CodeGenFunction::EmitOMPSimdFinal( 1634 const OMPLoopDirective &D, 1635 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1636 if (!HaveInsertPoint()) 1637 return; 1638 llvm::BasicBlock *DoneBB = nullptr; 1639 auto IC = D.counters().begin(); 1640 auto IPC = D.private_counters().begin(); 1641 for (const Expr *F : D.finals()) { 1642 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1643 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1644 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1645 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1646 OrigVD->hasGlobalStorage() || CED) { 1647 if (!DoneBB) { 1648 if (llvm::Value *Cond = CondGen(*this)) { 1649 // If the first post-update expression is found, emit conditional 1650 // block if it was requested. 1651 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1652 DoneBB = createBasicBlock(".omp.final.done"); 1653 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1654 EmitBlock(ThenBB); 1655 } 1656 } 1657 Address OrigAddr = Address::invalid(); 1658 if (CED) { 1659 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1660 } else { 1661 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1662 /*RefersToEnclosingVariableOrCapture=*/false, 1663 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1664 OrigAddr = EmitLValue(&DRE).getAddress(); 1665 } 1666 OMPPrivateScope VarScope(*this); 1667 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1668 (void)VarScope.Privatize(); 1669 EmitIgnoredExpr(F); 1670 } 1671 ++IC; 1672 ++IPC; 1673 } 1674 if (DoneBB) 1675 EmitBlock(DoneBB, /*IsFinished=*/true); 1676 } 1677 1678 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1679 const OMPLoopDirective &S, 1680 CodeGenFunction::JumpDest LoopExit) { 1681 CGF.EmitOMPLoopBody(S, LoopExit); 1682 CGF.EmitStopPoint(&S); 1683 } 1684 1685 /// Emit a helper variable and return corresponding lvalue. 1686 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1687 const DeclRefExpr *Helper) { 1688 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1689 CGF.EmitVarDecl(*VDecl); 1690 return CGF.EmitLValue(Helper); 1691 } 1692 1693 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1694 PrePostActionTy &Action) { 1695 Action.Enter(CGF); 1696 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1697 "Expected simd directive"); 1698 OMPLoopScope PreInitScope(CGF, S); 1699 // if (PreCond) { 1700 // for (IV in 0..LastIteration) BODY; 1701 // <Final counter/linear vars updates>; 1702 // } 1703 // 1704 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1705 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1706 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1707 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1708 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1709 } 1710 1711 // Emit: if (PreCond) - begin. 1712 // If the condition constant folds and can be elided, avoid emitting the 1713 // whole loop. 1714 bool CondConstant; 1715 llvm::BasicBlock *ContBlock = nullptr; 1716 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1717 if (!CondConstant) 1718 return; 1719 } else { 1720 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1721 ContBlock = CGF.createBasicBlock("simd.if.end"); 1722 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1723 CGF.getProfileCount(&S)); 1724 CGF.EmitBlock(ThenBlock); 1725 CGF.incrementProfileCounter(&S); 1726 } 1727 1728 // Emit the loop iteration variable. 1729 const Expr *IVExpr = S.getIterationVariable(); 1730 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1731 CGF.EmitVarDecl(*IVDecl); 1732 CGF.EmitIgnoredExpr(S.getInit()); 1733 1734 // Emit the iterations count variable. 1735 // If it is not a variable, Sema decided to calculate iterations count on 1736 // each iteration (e.g., it is foldable into a constant). 1737 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1738 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1739 // Emit calculation of the iterations count. 1740 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1741 } 1742 1743 CGF.EmitOMPSimdInit(S); 1744 1745 emitAlignedClause(CGF, S); 1746 (void)CGF.EmitOMPLinearClauseInit(S); 1747 { 1748 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1749 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1750 CGF.EmitOMPLinearClause(S, LoopScope); 1751 CGF.EmitOMPPrivateClause(S, LoopScope); 1752 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1753 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1754 (void)LoopScope.Privatize(); 1755 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1756 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1757 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1758 S.getInc(), 1759 [&S](CodeGenFunction &CGF) { 1760 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1761 CGF.EmitStopPoint(&S); 1762 }, 1763 [](CodeGenFunction &) {}); 1764 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1765 // Emit final copy of the lastprivate variables at the end of loops. 1766 if (HasLastprivateClause) 1767 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1768 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1769 emitPostUpdateForReductionClause(CGF, S, 1770 [](CodeGenFunction &) { return nullptr; }); 1771 } 1772 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1773 // Emit: if (PreCond) - end. 1774 if (ContBlock) { 1775 CGF.EmitBranch(ContBlock); 1776 CGF.EmitBlock(ContBlock, true); 1777 } 1778 } 1779 1780 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1781 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1782 emitOMPSimdRegion(CGF, S, Action); 1783 }; 1784 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1785 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1786 } 1787 1788 void CodeGenFunction::EmitOMPOuterLoop( 1789 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1790 CodeGenFunction::OMPPrivateScope &LoopScope, 1791 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1792 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1793 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1794 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1795 1796 const Expr *IVExpr = S.getIterationVariable(); 1797 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1798 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1799 1800 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1801 1802 // Start the loop with a block that tests the condition. 1803 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1804 EmitBlock(CondBlock); 1805 const SourceRange R = S.getSourceRange(); 1806 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1807 SourceLocToDebugLoc(R.getEnd())); 1808 1809 llvm::Value *BoolCondVal = nullptr; 1810 if (!DynamicOrOrdered) { 1811 // UB = min(UB, GlobalUB) or 1812 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1813 // 'distribute parallel for') 1814 EmitIgnoredExpr(LoopArgs.EUB); 1815 // IV = LB 1816 EmitIgnoredExpr(LoopArgs.Init); 1817 // IV < UB 1818 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1819 } else { 1820 BoolCondVal = 1821 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1822 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1823 } 1824 1825 // If there are any cleanups between here and the loop-exit scope, 1826 // create a block to stage a loop exit along. 1827 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1828 if (LoopScope.requiresCleanups()) 1829 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1830 1831 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1832 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1833 if (ExitBlock != LoopExit.getBlock()) { 1834 EmitBlock(ExitBlock); 1835 EmitBranchThroughCleanup(LoopExit); 1836 } 1837 EmitBlock(LoopBody); 1838 1839 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1840 // LB for loop condition and emitted it above). 1841 if (DynamicOrOrdered) 1842 EmitIgnoredExpr(LoopArgs.Init); 1843 1844 // Create a block for the increment. 1845 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1846 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1847 1848 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1849 // with dynamic/guided scheduling and without ordered clause. 1850 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1851 LoopStack.setParallel(!IsMonotonic); 1852 else 1853 EmitOMPSimdInit(S, IsMonotonic); 1854 1855 SourceLocation Loc = S.getBeginLoc(); 1856 1857 // when 'distribute' is not combined with a 'for': 1858 // while (idx <= UB) { BODY; ++idx; } 1859 // when 'distribute' is combined with a 'for' 1860 // (e.g. 'distribute parallel for') 1861 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1862 EmitOMPInnerLoop( 1863 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1864 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1865 CodeGenLoop(CGF, S, LoopExit); 1866 }, 1867 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1868 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1869 }); 1870 1871 EmitBlock(Continue.getBlock()); 1872 BreakContinueStack.pop_back(); 1873 if (!DynamicOrOrdered) { 1874 // Emit "LB = LB + Stride", "UB = UB + Stride". 1875 EmitIgnoredExpr(LoopArgs.NextLB); 1876 EmitIgnoredExpr(LoopArgs.NextUB); 1877 } 1878 1879 EmitBranch(CondBlock); 1880 LoopStack.pop(); 1881 // Emit the fall-through block. 1882 EmitBlock(LoopExit.getBlock()); 1883 1884 // Tell the runtime we are done. 1885 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1886 if (!DynamicOrOrdered) 1887 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1888 S.getDirectiveKind()); 1889 }; 1890 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1891 } 1892 1893 void CodeGenFunction::EmitOMPForOuterLoop( 1894 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1895 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1896 const OMPLoopArguments &LoopArgs, 1897 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1898 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1899 1900 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1901 const bool DynamicOrOrdered = 1902 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1903 1904 assert((Ordered || 1905 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1906 LoopArgs.Chunk != nullptr)) && 1907 "static non-chunked schedule does not need outer loop"); 1908 1909 // Emit outer loop. 1910 // 1911 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1912 // When schedule(dynamic,chunk_size) is specified, the iterations are 1913 // distributed to threads in the team in chunks as the threads request them. 1914 // Each thread executes a chunk of iterations, then requests another chunk, 1915 // until no chunks remain to be distributed. Each chunk contains chunk_size 1916 // iterations, except for the last chunk to be distributed, which may have 1917 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1918 // 1919 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1920 // to threads in the team in chunks as the executing threads request them. 1921 // Each thread executes a chunk of iterations, then requests another chunk, 1922 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1923 // each chunk is proportional to the number of unassigned iterations divided 1924 // by the number of threads in the team, decreasing to 1. For a chunk_size 1925 // with value k (greater than 1), the size of each chunk is determined in the 1926 // same way, with the restriction that the chunks do not contain fewer than k 1927 // iterations (except for the last chunk to be assigned, which may have fewer 1928 // than k iterations). 1929 // 1930 // When schedule(auto) is specified, the decision regarding scheduling is 1931 // delegated to the compiler and/or runtime system. The programmer gives the 1932 // implementation the freedom to choose any possible mapping of iterations to 1933 // threads in the team. 1934 // 1935 // When schedule(runtime) is specified, the decision regarding scheduling is 1936 // deferred until run time, and the schedule and chunk size are taken from the 1937 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1938 // implementation defined 1939 // 1940 // while(__kmpc_dispatch_next(&LB, &UB)) { 1941 // idx = LB; 1942 // while (idx <= UB) { BODY; ++idx; 1943 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1944 // } // inner loop 1945 // } 1946 // 1947 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1948 // When schedule(static, chunk_size) is specified, iterations are divided into 1949 // chunks of size chunk_size, and the chunks are assigned to the threads in 1950 // the team in a round-robin fashion in the order of the thread number. 1951 // 1952 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1953 // while (idx <= UB) { BODY; ++idx; } // inner loop 1954 // LB = LB + ST; 1955 // UB = UB + ST; 1956 // } 1957 // 1958 1959 const Expr *IVExpr = S.getIterationVariable(); 1960 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1961 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1962 1963 if (DynamicOrOrdered) { 1964 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1965 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1966 llvm::Value *LBVal = DispatchBounds.first; 1967 llvm::Value *UBVal = DispatchBounds.second; 1968 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1969 LoopArgs.Chunk}; 1970 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1971 IVSigned, Ordered, DipatchRTInputValues); 1972 } else { 1973 CGOpenMPRuntime::StaticRTInput StaticInit( 1974 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1975 LoopArgs.ST, LoopArgs.Chunk); 1976 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1977 ScheduleKind, StaticInit); 1978 } 1979 1980 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1981 const unsigned IVSize, 1982 const bool IVSigned) { 1983 if (Ordered) { 1984 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1985 IVSigned); 1986 } 1987 }; 1988 1989 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1990 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1991 OuterLoopArgs.IncExpr = S.getInc(); 1992 OuterLoopArgs.Init = S.getInit(); 1993 OuterLoopArgs.Cond = S.getCond(); 1994 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1995 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1996 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1997 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1998 } 1999 2000 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2001 const unsigned IVSize, const bool IVSigned) {} 2002 2003 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2004 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2005 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2006 const CodeGenLoopTy &CodeGenLoopContent) { 2007 2008 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2009 2010 // Emit outer loop. 2011 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2012 // dynamic 2013 // 2014 2015 const Expr *IVExpr = S.getIterationVariable(); 2016 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2017 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2018 2019 CGOpenMPRuntime::StaticRTInput StaticInit( 2020 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2021 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2022 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2023 2024 // for combined 'distribute' and 'for' the increment expression of distribute 2025 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2026 Expr *IncExpr; 2027 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2028 IncExpr = S.getDistInc(); 2029 else 2030 IncExpr = S.getInc(); 2031 2032 // this routine is shared by 'omp distribute parallel for' and 2033 // 'omp distribute': select the right EUB expression depending on the 2034 // directive 2035 OMPLoopArguments OuterLoopArgs; 2036 OuterLoopArgs.LB = LoopArgs.LB; 2037 OuterLoopArgs.UB = LoopArgs.UB; 2038 OuterLoopArgs.ST = LoopArgs.ST; 2039 OuterLoopArgs.IL = LoopArgs.IL; 2040 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2041 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2042 ? S.getCombinedEnsureUpperBound() 2043 : S.getEnsureUpperBound(); 2044 OuterLoopArgs.IncExpr = IncExpr; 2045 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2046 ? S.getCombinedInit() 2047 : S.getInit(); 2048 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2049 ? S.getCombinedCond() 2050 : S.getCond(); 2051 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2052 ? S.getCombinedNextLowerBound() 2053 : S.getNextLowerBound(); 2054 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2055 ? S.getCombinedNextUpperBound() 2056 : S.getNextUpperBound(); 2057 2058 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2059 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2060 emitEmptyOrdered); 2061 } 2062 2063 static std::pair<LValue, LValue> 2064 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2065 const OMPExecutableDirective &S) { 2066 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2067 LValue LB = 2068 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2069 LValue UB = 2070 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2071 2072 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2073 // parallel for') we need to use the 'distribute' 2074 // chunk lower and upper bounds rather than the whole loop iteration 2075 // space. These are parameters to the outlined function for 'parallel' 2076 // and we copy the bounds of the previous schedule into the 2077 // the current ones. 2078 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2079 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2080 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2081 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2082 PrevLBVal = CGF.EmitScalarConversion( 2083 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2084 LS.getIterationVariable()->getType(), 2085 LS.getPrevLowerBoundVariable()->getExprLoc()); 2086 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2087 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2088 PrevUBVal = CGF.EmitScalarConversion( 2089 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2090 LS.getIterationVariable()->getType(), 2091 LS.getPrevUpperBoundVariable()->getExprLoc()); 2092 2093 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2094 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2095 2096 return {LB, UB}; 2097 } 2098 2099 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2100 /// we need to use the LB and UB expressions generated by the worksharing 2101 /// code generation support, whereas in non combined situations we would 2102 /// just emit 0 and the LastIteration expression 2103 /// This function is necessary due to the difference of the LB and UB 2104 /// types for the RT emission routines for 'for_static_init' and 2105 /// 'for_dispatch_init' 2106 static std::pair<llvm::Value *, llvm::Value *> 2107 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2108 const OMPExecutableDirective &S, 2109 Address LB, Address UB) { 2110 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2111 const Expr *IVExpr = LS.getIterationVariable(); 2112 // when implementing a dynamic schedule for a 'for' combined with a 2113 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2114 // is not normalized as each team only executes its own assigned 2115 // distribute chunk 2116 QualType IteratorTy = IVExpr->getType(); 2117 llvm::Value *LBVal = 2118 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2119 llvm::Value *UBVal = 2120 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2121 return {LBVal, UBVal}; 2122 } 2123 2124 static void emitDistributeParallelForDistributeInnerBoundParams( 2125 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2126 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2127 const auto &Dir = cast<OMPLoopDirective>(S); 2128 LValue LB = 2129 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2130 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2131 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2132 CapturedVars.push_back(LBCast); 2133 LValue UB = 2134 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2135 2136 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2137 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2138 CapturedVars.push_back(UBCast); 2139 } 2140 2141 static void 2142 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2143 const OMPLoopDirective &S, 2144 CodeGenFunction::JumpDest LoopExit) { 2145 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2146 PrePostActionTy &Action) { 2147 Action.Enter(CGF); 2148 bool HasCancel = false; 2149 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2150 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2151 HasCancel = D->hasCancel(); 2152 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2153 HasCancel = D->hasCancel(); 2154 else if (const auto *D = 2155 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2156 HasCancel = D->hasCancel(); 2157 } 2158 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2159 HasCancel); 2160 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2161 emitDistributeParallelForInnerBounds, 2162 emitDistributeParallelForDispatchBounds); 2163 }; 2164 2165 emitCommonOMPParallelDirective( 2166 CGF, S, 2167 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2168 CGInlinedWorksharingLoop, 2169 emitDistributeParallelForDistributeInnerBoundParams); 2170 } 2171 2172 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2173 const OMPDistributeParallelForDirective &S) { 2174 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2175 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2176 S.getDistInc()); 2177 }; 2178 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2179 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2180 } 2181 2182 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2183 const OMPDistributeParallelForSimdDirective &S) { 2184 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2185 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2186 S.getDistInc()); 2187 }; 2188 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2189 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2190 } 2191 2192 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2193 const OMPDistributeSimdDirective &S) { 2194 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2195 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2196 }; 2197 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2198 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2199 } 2200 2201 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2202 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2203 // Emit SPMD target parallel for region as a standalone region. 2204 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2205 emitOMPSimdRegion(CGF, S, Action); 2206 }; 2207 llvm::Function *Fn; 2208 llvm::Constant *Addr; 2209 // Emit target region as a standalone region. 2210 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2211 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2212 assert(Fn && Addr && "Target device function emission failed."); 2213 } 2214 2215 void CodeGenFunction::EmitOMPTargetSimdDirective( 2216 const OMPTargetSimdDirective &S) { 2217 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2218 emitOMPSimdRegion(CGF, S, Action); 2219 }; 2220 emitCommonOMPTargetDirective(*this, S, CodeGen); 2221 } 2222 2223 namespace { 2224 struct ScheduleKindModifiersTy { 2225 OpenMPScheduleClauseKind Kind; 2226 OpenMPScheduleClauseModifier M1; 2227 OpenMPScheduleClauseModifier M2; 2228 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2229 OpenMPScheduleClauseModifier M1, 2230 OpenMPScheduleClauseModifier M2) 2231 : Kind(Kind), M1(M1), M2(M2) {} 2232 }; 2233 } // namespace 2234 2235 bool CodeGenFunction::EmitOMPWorksharingLoop( 2236 const OMPLoopDirective &S, Expr *EUB, 2237 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2238 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2239 // Emit the loop iteration variable. 2240 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2241 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2242 EmitVarDecl(*IVDecl); 2243 2244 // Emit the iterations count variable. 2245 // If it is not a variable, Sema decided to calculate iterations count on each 2246 // iteration (e.g., it is foldable into a constant). 2247 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2248 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2249 // Emit calculation of the iterations count. 2250 EmitIgnoredExpr(S.getCalcLastIteration()); 2251 } 2252 2253 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2254 2255 bool HasLastprivateClause; 2256 // Check pre-condition. 2257 { 2258 OMPLoopScope PreInitScope(*this, S); 2259 // Skip the entire loop if we don't meet the precondition. 2260 // If the condition constant folds and can be elided, avoid emitting the 2261 // whole loop. 2262 bool CondConstant; 2263 llvm::BasicBlock *ContBlock = nullptr; 2264 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2265 if (!CondConstant) 2266 return false; 2267 } else { 2268 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2269 ContBlock = createBasicBlock("omp.precond.end"); 2270 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2271 getProfileCount(&S)); 2272 EmitBlock(ThenBlock); 2273 incrementProfileCounter(&S); 2274 } 2275 2276 RunCleanupsScope DoacrossCleanupScope(*this); 2277 bool Ordered = false; 2278 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2279 if (OrderedClause->getNumForLoops()) 2280 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2281 else 2282 Ordered = true; 2283 } 2284 2285 llvm::DenseSet<const Expr *> EmittedFinals; 2286 emitAlignedClause(*this, S); 2287 bool HasLinears = EmitOMPLinearClauseInit(S); 2288 // Emit helper vars inits. 2289 2290 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2291 LValue LB = Bounds.first; 2292 LValue UB = Bounds.second; 2293 LValue ST = 2294 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2295 LValue IL = 2296 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2297 2298 // Emit 'then' code. 2299 { 2300 OMPPrivateScope LoopScope(*this); 2301 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2302 // Emit implicit barrier to synchronize threads and avoid data races on 2303 // initialization of firstprivate variables and post-update of 2304 // lastprivate variables. 2305 CGM.getOpenMPRuntime().emitBarrierCall( 2306 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2307 /*ForceSimpleCall=*/true); 2308 } 2309 EmitOMPPrivateClause(S, LoopScope); 2310 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2311 EmitOMPReductionClauseInit(S, LoopScope); 2312 EmitOMPPrivateLoopCounters(S, LoopScope); 2313 EmitOMPLinearClause(S, LoopScope); 2314 (void)LoopScope.Privatize(); 2315 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2316 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2317 2318 // Detect the loop schedule kind and chunk. 2319 const Expr *ChunkExpr = nullptr; 2320 OpenMPScheduleTy ScheduleKind; 2321 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2322 ScheduleKind.Schedule = C->getScheduleKind(); 2323 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2324 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2325 ChunkExpr = C->getChunkSize(); 2326 } else { 2327 // Default behaviour for schedule clause. 2328 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2329 *this, S, ScheduleKind.Schedule, ChunkExpr); 2330 } 2331 bool HasChunkSizeOne = false; 2332 llvm::Value *Chunk = nullptr; 2333 if (ChunkExpr) { 2334 Chunk = EmitScalarExpr(ChunkExpr); 2335 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2336 S.getIterationVariable()->getType(), 2337 S.getBeginLoc()); 2338 Expr::EvalResult Result; 2339 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2340 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2341 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2342 } 2343 } 2344 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2345 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2346 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2347 // If the static schedule kind is specified or if the ordered clause is 2348 // specified, and if no monotonic modifier is specified, the effect will 2349 // be as if the monotonic modifier was specified. 2350 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2351 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2352 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2353 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2354 /* Chunked */ Chunk != nullptr) || 2355 StaticChunkedOne) && 2356 !Ordered) { 2357 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2358 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2359 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2360 // When no chunk_size is specified, the iteration space is divided into 2361 // chunks that are approximately equal in size, and at most one chunk is 2362 // distributed to each thread. Note that the size of the chunks is 2363 // unspecified in this case. 2364 CGOpenMPRuntime::StaticRTInput StaticInit( 2365 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2366 UB.getAddress(), ST.getAddress(), 2367 StaticChunkedOne ? Chunk : nullptr); 2368 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2369 ScheduleKind, StaticInit); 2370 JumpDest LoopExit = 2371 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2372 // UB = min(UB, GlobalUB); 2373 if (!StaticChunkedOne) 2374 EmitIgnoredExpr(S.getEnsureUpperBound()); 2375 // IV = LB; 2376 EmitIgnoredExpr(S.getInit()); 2377 // For unchunked static schedule generate: 2378 // 2379 // while (idx <= UB) { 2380 // BODY; 2381 // ++idx; 2382 // } 2383 // 2384 // For static schedule with chunk one: 2385 // 2386 // while (IV <= PrevUB) { 2387 // BODY; 2388 // IV += ST; 2389 // } 2390 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2391 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2392 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2393 [&S, LoopExit](CodeGenFunction &CGF) { 2394 CGF.EmitOMPLoopBody(S, LoopExit); 2395 CGF.EmitStopPoint(&S); 2396 }, 2397 [](CodeGenFunction &) {}); 2398 EmitBlock(LoopExit.getBlock()); 2399 // Tell the runtime we are done. 2400 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2401 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2402 S.getDirectiveKind()); 2403 }; 2404 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2405 } else { 2406 const bool IsMonotonic = 2407 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2408 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2409 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2410 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2411 // Emit the outer loop, which requests its work chunk [LB..UB] from 2412 // runtime and runs the inner loop to process it. 2413 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2414 ST.getAddress(), IL.getAddress(), 2415 Chunk, EUB); 2416 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2417 LoopArguments, CGDispatchBounds); 2418 } 2419 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2420 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2421 return CGF.Builder.CreateIsNotNull( 2422 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2423 }); 2424 } 2425 EmitOMPReductionClauseFinal( 2426 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2427 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2428 : /*Parallel only*/ OMPD_parallel); 2429 // Emit post-update of the reduction variables if IsLastIter != 0. 2430 emitPostUpdateForReductionClause( 2431 *this, S, [IL, &S](CodeGenFunction &CGF) { 2432 return CGF.Builder.CreateIsNotNull( 2433 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2434 }); 2435 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2436 if (HasLastprivateClause) 2437 EmitOMPLastprivateClauseFinal( 2438 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2439 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2440 } 2441 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2442 return CGF.Builder.CreateIsNotNull( 2443 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2444 }); 2445 DoacrossCleanupScope.ForceCleanup(); 2446 // We're now done with the loop, so jump to the continuation block. 2447 if (ContBlock) { 2448 EmitBranch(ContBlock); 2449 EmitBlock(ContBlock, /*IsFinished=*/true); 2450 } 2451 } 2452 return HasLastprivateClause; 2453 } 2454 2455 /// The following two functions generate expressions for the loop lower 2456 /// and upper bounds in case of static and dynamic (dispatch) schedule 2457 /// of the associated 'for' or 'distribute' loop. 2458 static std::pair<LValue, LValue> 2459 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2460 const auto &LS = cast<OMPLoopDirective>(S); 2461 LValue LB = 2462 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2463 LValue UB = 2464 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2465 return {LB, UB}; 2466 } 2467 2468 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2469 /// consider the lower and upper bound expressions generated by the 2470 /// worksharing loop support, but we use 0 and the iteration space size as 2471 /// constants 2472 static std::pair<llvm::Value *, llvm::Value *> 2473 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2474 Address LB, Address UB) { 2475 const auto &LS = cast<OMPLoopDirective>(S); 2476 const Expr *IVExpr = LS.getIterationVariable(); 2477 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2478 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2479 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2480 return {LBVal, UBVal}; 2481 } 2482 2483 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2484 bool HasLastprivates = false; 2485 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2486 PrePostActionTy &) { 2487 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2488 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2489 emitForLoopBounds, 2490 emitDispatchForLoopBounds); 2491 }; 2492 { 2493 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2494 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2495 S.hasCancel()); 2496 } 2497 2498 // Emit an implicit barrier at the end. 2499 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2500 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2501 } 2502 2503 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2504 bool HasLastprivates = false; 2505 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2506 PrePostActionTy &) { 2507 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2508 emitForLoopBounds, 2509 emitDispatchForLoopBounds); 2510 }; 2511 { 2512 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2513 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2514 } 2515 2516 // Emit an implicit barrier at the end. 2517 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2518 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2519 } 2520 2521 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2522 const Twine &Name, 2523 llvm::Value *Init = nullptr) { 2524 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2525 if (Init) 2526 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2527 return LVal; 2528 } 2529 2530 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2531 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2532 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2533 bool HasLastprivates = false; 2534 auto &&CodeGen = [&S, CapturedStmt, CS, 2535 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2536 ASTContext &C = CGF.getContext(); 2537 QualType KmpInt32Ty = 2538 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2539 // Emit helper vars inits. 2540 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2541 CGF.Builder.getInt32(0)); 2542 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2543 ? CGF.Builder.getInt32(CS->size() - 1) 2544 : CGF.Builder.getInt32(0); 2545 LValue UB = 2546 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2547 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2548 CGF.Builder.getInt32(1)); 2549 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2550 CGF.Builder.getInt32(0)); 2551 // Loop counter. 2552 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2553 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2554 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2555 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2556 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2557 // Generate condition for loop. 2558 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2559 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2560 // Increment for loop counter. 2561 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2562 S.getBeginLoc(), true); 2563 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2564 // Iterate through all sections and emit a switch construct: 2565 // switch (IV) { 2566 // case 0: 2567 // <SectionStmt[0]>; 2568 // break; 2569 // ... 2570 // case <NumSection> - 1: 2571 // <SectionStmt[<NumSection> - 1]>; 2572 // break; 2573 // } 2574 // .omp.sections.exit: 2575 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2576 llvm::SwitchInst *SwitchStmt = 2577 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2578 ExitBB, CS == nullptr ? 1 : CS->size()); 2579 if (CS) { 2580 unsigned CaseNumber = 0; 2581 for (const Stmt *SubStmt : CS->children()) { 2582 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2583 CGF.EmitBlock(CaseBB); 2584 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2585 CGF.EmitStmt(SubStmt); 2586 CGF.EmitBranch(ExitBB); 2587 ++CaseNumber; 2588 } 2589 } else { 2590 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2591 CGF.EmitBlock(CaseBB); 2592 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2593 CGF.EmitStmt(CapturedStmt); 2594 CGF.EmitBranch(ExitBB); 2595 } 2596 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2597 }; 2598 2599 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2600 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2601 // Emit implicit barrier to synchronize threads and avoid data races on 2602 // initialization of firstprivate variables and post-update of lastprivate 2603 // variables. 2604 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2605 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2606 /*ForceSimpleCall=*/true); 2607 } 2608 CGF.EmitOMPPrivateClause(S, LoopScope); 2609 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2610 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2611 (void)LoopScope.Privatize(); 2612 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2613 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2614 2615 // Emit static non-chunked loop. 2616 OpenMPScheduleTy ScheduleKind; 2617 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2618 CGOpenMPRuntime::StaticRTInput StaticInit( 2619 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2620 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2621 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2622 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2623 // UB = min(UB, GlobalUB); 2624 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2625 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2626 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2627 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2628 // IV = LB; 2629 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2630 // while (idx <= UB) { BODY; ++idx; } 2631 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2632 [](CodeGenFunction &) {}); 2633 // Tell the runtime we are done. 2634 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2635 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2636 S.getDirectiveKind()); 2637 }; 2638 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2639 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2640 // Emit post-update of the reduction variables if IsLastIter != 0. 2641 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2642 return CGF.Builder.CreateIsNotNull( 2643 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2644 }); 2645 2646 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2647 if (HasLastprivates) 2648 CGF.EmitOMPLastprivateClauseFinal( 2649 S, /*NoFinals=*/false, 2650 CGF.Builder.CreateIsNotNull( 2651 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2652 }; 2653 2654 bool HasCancel = false; 2655 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2656 HasCancel = OSD->hasCancel(); 2657 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2658 HasCancel = OPSD->hasCancel(); 2659 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2660 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2661 HasCancel); 2662 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2663 // clause. Otherwise the barrier will be generated by the codegen for the 2664 // directive. 2665 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2666 // Emit implicit barrier to synchronize threads and avoid data races on 2667 // initialization of firstprivate variables. 2668 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2669 OMPD_unknown); 2670 } 2671 } 2672 2673 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2674 { 2675 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2676 EmitSections(S); 2677 } 2678 // Emit an implicit barrier at the end. 2679 if (!S.getSingleClause<OMPNowaitClause>()) { 2680 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2681 OMPD_sections); 2682 } 2683 } 2684 2685 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2686 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2687 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2688 }; 2689 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2690 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2691 S.hasCancel()); 2692 } 2693 2694 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2695 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2696 llvm::SmallVector<const Expr *, 8> DestExprs; 2697 llvm::SmallVector<const Expr *, 8> SrcExprs; 2698 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2699 // Check if there are any 'copyprivate' clauses associated with this 2700 // 'single' construct. 2701 // Build a list of copyprivate variables along with helper expressions 2702 // (<source>, <destination>, <destination>=<source> expressions) 2703 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2704 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2705 DestExprs.append(C->destination_exprs().begin(), 2706 C->destination_exprs().end()); 2707 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2708 AssignmentOps.append(C->assignment_ops().begin(), 2709 C->assignment_ops().end()); 2710 } 2711 // Emit code for 'single' region along with 'copyprivate' clauses 2712 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2713 Action.Enter(CGF); 2714 OMPPrivateScope SingleScope(CGF); 2715 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2716 CGF.EmitOMPPrivateClause(S, SingleScope); 2717 (void)SingleScope.Privatize(); 2718 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2719 }; 2720 { 2721 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2722 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2723 CopyprivateVars, DestExprs, 2724 SrcExprs, AssignmentOps); 2725 } 2726 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2727 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2728 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2729 CGM.getOpenMPRuntime().emitBarrierCall( 2730 *this, S.getBeginLoc(), 2731 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2732 } 2733 } 2734 2735 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2736 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2737 Action.Enter(CGF); 2738 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2739 }; 2740 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2741 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2742 } 2743 2744 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2745 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2746 Action.Enter(CGF); 2747 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2748 }; 2749 const Expr *Hint = nullptr; 2750 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2751 Hint = HintClause->getHint(); 2752 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2753 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2754 S.getDirectiveName().getAsString(), 2755 CodeGen, S.getBeginLoc(), Hint); 2756 } 2757 2758 void CodeGenFunction::EmitOMPParallelForDirective( 2759 const OMPParallelForDirective &S) { 2760 // Emit directive as a combined directive that consists of two implicit 2761 // directives: 'parallel' with 'for' directive. 2762 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2763 Action.Enter(CGF); 2764 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2765 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2766 emitDispatchForLoopBounds); 2767 }; 2768 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2769 emitEmptyBoundParameters); 2770 } 2771 2772 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2773 const OMPParallelForSimdDirective &S) { 2774 // Emit directive as a combined directive that consists of two implicit 2775 // directives: 'parallel' with 'for' directive. 2776 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2777 Action.Enter(CGF); 2778 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2779 emitDispatchForLoopBounds); 2780 }; 2781 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2782 emitEmptyBoundParameters); 2783 } 2784 2785 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2786 const OMPParallelSectionsDirective &S) { 2787 // Emit directive as a combined directive that consists of two implicit 2788 // directives: 'parallel' with 'sections' directive. 2789 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2790 Action.Enter(CGF); 2791 CGF.EmitSections(S); 2792 }; 2793 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2794 emitEmptyBoundParameters); 2795 } 2796 2797 void CodeGenFunction::EmitOMPTaskBasedDirective( 2798 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2799 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2800 OMPTaskDataTy &Data) { 2801 // Emit outlined function for task construct. 2802 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2803 auto I = CS->getCapturedDecl()->param_begin(); 2804 auto PartId = std::next(I); 2805 auto TaskT = std::next(I, 4); 2806 // Check if the task is final 2807 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2808 // If the condition constant folds and can be elided, try to avoid emitting 2809 // the condition and the dead arm of the if/else. 2810 const Expr *Cond = Clause->getCondition(); 2811 bool CondConstant; 2812 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2813 Data.Final.setInt(CondConstant); 2814 else 2815 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2816 } else { 2817 // By default the task is not final. 2818 Data.Final.setInt(/*IntVal=*/false); 2819 } 2820 // Check if the task has 'priority' clause. 2821 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2822 const Expr *Prio = Clause->getPriority(); 2823 Data.Priority.setInt(/*IntVal=*/true); 2824 Data.Priority.setPointer(EmitScalarConversion( 2825 EmitScalarExpr(Prio), Prio->getType(), 2826 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2827 Prio->getExprLoc())); 2828 } 2829 // The first function argument for tasks is a thread id, the second one is a 2830 // part id (0 for tied tasks, >=0 for untied task). 2831 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2832 // Get list of private variables. 2833 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2834 auto IRef = C->varlist_begin(); 2835 for (const Expr *IInit : C->private_copies()) { 2836 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2837 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2838 Data.PrivateVars.push_back(*IRef); 2839 Data.PrivateCopies.push_back(IInit); 2840 } 2841 ++IRef; 2842 } 2843 } 2844 EmittedAsPrivate.clear(); 2845 // Get list of firstprivate variables. 2846 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2847 auto IRef = C->varlist_begin(); 2848 auto IElemInitRef = C->inits().begin(); 2849 for (const Expr *IInit : C->private_copies()) { 2850 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2851 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2852 Data.FirstprivateVars.push_back(*IRef); 2853 Data.FirstprivateCopies.push_back(IInit); 2854 Data.FirstprivateInits.push_back(*IElemInitRef); 2855 } 2856 ++IRef; 2857 ++IElemInitRef; 2858 } 2859 } 2860 // Get list of lastprivate variables (for taskloops). 2861 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2862 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2863 auto IRef = C->varlist_begin(); 2864 auto ID = C->destination_exprs().begin(); 2865 for (const Expr *IInit : C->private_copies()) { 2866 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2867 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2868 Data.LastprivateVars.push_back(*IRef); 2869 Data.LastprivateCopies.push_back(IInit); 2870 } 2871 LastprivateDstsOrigs.insert( 2872 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2873 cast<DeclRefExpr>(*IRef)}); 2874 ++IRef; 2875 ++ID; 2876 } 2877 } 2878 SmallVector<const Expr *, 4> LHSs; 2879 SmallVector<const Expr *, 4> RHSs; 2880 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2881 auto IPriv = C->privates().begin(); 2882 auto IRed = C->reduction_ops().begin(); 2883 auto ILHS = C->lhs_exprs().begin(); 2884 auto IRHS = C->rhs_exprs().begin(); 2885 for (const Expr *Ref : C->varlists()) { 2886 Data.ReductionVars.emplace_back(Ref); 2887 Data.ReductionCopies.emplace_back(*IPriv); 2888 Data.ReductionOps.emplace_back(*IRed); 2889 LHSs.emplace_back(*ILHS); 2890 RHSs.emplace_back(*IRHS); 2891 std::advance(IPriv, 1); 2892 std::advance(IRed, 1); 2893 std::advance(ILHS, 1); 2894 std::advance(IRHS, 1); 2895 } 2896 } 2897 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2898 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2899 // Build list of dependences. 2900 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2901 for (const Expr *IRef : C->varlists()) 2902 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2903 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2904 CapturedRegion](CodeGenFunction &CGF, 2905 PrePostActionTy &Action) { 2906 // Set proper addresses for generated private copies. 2907 OMPPrivateScope Scope(CGF); 2908 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2909 !Data.LastprivateVars.empty()) { 2910 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 2911 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 2912 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2913 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2914 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2915 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2916 CS->getCapturedDecl()->getParam(PrivatesParam))); 2917 // Map privates. 2918 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2919 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2920 CallArgs.push_back(PrivatesPtr); 2921 for (const Expr *E : Data.PrivateVars) { 2922 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2923 Address PrivatePtr = CGF.CreateMemTemp( 2924 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2925 PrivatePtrs.emplace_back(VD, PrivatePtr); 2926 CallArgs.push_back(PrivatePtr.getPointer()); 2927 } 2928 for (const Expr *E : Data.FirstprivateVars) { 2929 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2930 Address PrivatePtr = 2931 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2932 ".firstpriv.ptr.addr"); 2933 PrivatePtrs.emplace_back(VD, PrivatePtr); 2934 CallArgs.push_back(PrivatePtr.getPointer()); 2935 } 2936 for (const Expr *E : Data.LastprivateVars) { 2937 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2938 Address PrivatePtr = 2939 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2940 ".lastpriv.ptr.addr"); 2941 PrivatePtrs.emplace_back(VD, PrivatePtr); 2942 CallArgs.push_back(PrivatePtr.getPointer()); 2943 } 2944 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2945 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 2946 for (const auto &Pair : LastprivateDstsOrigs) { 2947 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2948 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2949 /*RefersToEnclosingVariableOrCapture=*/ 2950 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2951 Pair.second->getType(), VK_LValue, 2952 Pair.second->getExprLoc()); 2953 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2954 return CGF.EmitLValue(&DRE).getAddress(); 2955 }); 2956 } 2957 for (const auto &Pair : PrivatePtrs) { 2958 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2959 CGF.getContext().getDeclAlign(Pair.first)); 2960 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2961 } 2962 } 2963 if (Data.Reductions) { 2964 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2965 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2966 Data.ReductionOps); 2967 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2968 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2969 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2970 RedCG.emitSharedLValue(CGF, Cnt); 2971 RedCG.emitAggregateType(CGF, Cnt); 2972 // FIXME: This must removed once the runtime library is fixed. 2973 // Emit required threadprivate variables for 2974 // initializer/combiner/finalizer. 2975 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2976 RedCG, Cnt); 2977 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2978 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2979 Replacement = 2980 Address(CGF.EmitScalarConversion( 2981 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2982 CGF.getContext().getPointerType( 2983 Data.ReductionCopies[Cnt]->getType()), 2984 Data.ReductionCopies[Cnt]->getExprLoc()), 2985 Replacement.getAlignment()); 2986 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2987 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2988 [Replacement]() { return Replacement; }); 2989 } 2990 } 2991 // Privatize all private variables except for in_reduction items. 2992 (void)Scope.Privatize(); 2993 SmallVector<const Expr *, 4> InRedVars; 2994 SmallVector<const Expr *, 4> InRedPrivs; 2995 SmallVector<const Expr *, 4> InRedOps; 2996 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2997 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2998 auto IPriv = C->privates().begin(); 2999 auto IRed = C->reduction_ops().begin(); 3000 auto ITD = C->taskgroup_descriptors().begin(); 3001 for (const Expr *Ref : C->varlists()) { 3002 InRedVars.emplace_back(Ref); 3003 InRedPrivs.emplace_back(*IPriv); 3004 InRedOps.emplace_back(*IRed); 3005 TaskgroupDescriptors.emplace_back(*ITD); 3006 std::advance(IPriv, 1); 3007 std::advance(IRed, 1); 3008 std::advance(ITD, 1); 3009 } 3010 } 3011 // Privatize in_reduction items here, because taskgroup descriptors must be 3012 // privatized earlier. 3013 OMPPrivateScope InRedScope(CGF); 3014 if (!InRedVars.empty()) { 3015 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3016 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3017 RedCG.emitSharedLValue(CGF, Cnt); 3018 RedCG.emitAggregateType(CGF, Cnt); 3019 // The taskgroup descriptor variable is always implicit firstprivate and 3020 // privatized already during processing of the firstprivates. 3021 // FIXME: This must removed once the runtime library is fixed. 3022 // Emit required threadprivate variables for 3023 // initializer/combiner/finalizer. 3024 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3025 RedCG, Cnt); 3026 llvm::Value *ReductionsPtr = 3027 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3028 TaskgroupDescriptors[Cnt]->getExprLoc()); 3029 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3030 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3031 Replacement = Address( 3032 CGF.EmitScalarConversion( 3033 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3034 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3035 InRedPrivs[Cnt]->getExprLoc()), 3036 Replacement.getAlignment()); 3037 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3038 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3039 [Replacement]() { return Replacement; }); 3040 } 3041 } 3042 (void)InRedScope.Privatize(); 3043 3044 Action.Enter(CGF); 3045 BodyGen(CGF); 3046 }; 3047 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3048 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3049 Data.NumberOfParts); 3050 OMPLexicalScope Scope(*this, S); 3051 TaskGen(*this, OutlinedFn, Data); 3052 } 3053 3054 static ImplicitParamDecl * 3055 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3056 QualType Ty, CapturedDecl *CD, 3057 SourceLocation Loc) { 3058 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3059 ImplicitParamDecl::Other); 3060 auto *OrigRef = DeclRefExpr::Create( 3061 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3062 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3063 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3064 ImplicitParamDecl::Other); 3065 auto *PrivateRef = DeclRefExpr::Create( 3066 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3067 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3068 QualType ElemType = C.getBaseElementType(Ty); 3069 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3070 ImplicitParamDecl::Other); 3071 auto *InitRef = DeclRefExpr::Create( 3072 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3073 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3074 PrivateVD->setInitStyle(VarDecl::CInit); 3075 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3076 InitRef, /*BasePath=*/nullptr, 3077 VK_RValue)); 3078 Data.FirstprivateVars.emplace_back(OrigRef); 3079 Data.FirstprivateCopies.emplace_back(PrivateRef); 3080 Data.FirstprivateInits.emplace_back(InitRef); 3081 return OrigVD; 3082 } 3083 3084 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3085 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3086 OMPTargetDataInfo &InputInfo) { 3087 // Emit outlined function for task construct. 3088 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3089 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3090 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3091 auto I = CS->getCapturedDecl()->param_begin(); 3092 auto PartId = std::next(I); 3093 auto TaskT = std::next(I, 4); 3094 OMPTaskDataTy Data; 3095 // The task is not final. 3096 Data.Final.setInt(/*IntVal=*/false); 3097 // Get list of firstprivate variables. 3098 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3099 auto IRef = C->varlist_begin(); 3100 auto IElemInitRef = C->inits().begin(); 3101 for (auto *IInit : C->private_copies()) { 3102 Data.FirstprivateVars.push_back(*IRef); 3103 Data.FirstprivateCopies.push_back(IInit); 3104 Data.FirstprivateInits.push_back(*IElemInitRef); 3105 ++IRef; 3106 ++IElemInitRef; 3107 } 3108 } 3109 OMPPrivateScope TargetScope(*this); 3110 VarDecl *BPVD = nullptr; 3111 VarDecl *PVD = nullptr; 3112 VarDecl *SVD = nullptr; 3113 if (InputInfo.NumberOfTargetItems > 0) { 3114 auto *CD = CapturedDecl::Create( 3115 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3116 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3117 QualType BaseAndPointersType = getContext().getConstantArrayType( 3118 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3119 /*IndexTypeQuals=*/0); 3120 BPVD = createImplicitFirstprivateForType( 3121 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3122 PVD = createImplicitFirstprivateForType( 3123 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3124 QualType SizesType = getContext().getConstantArrayType( 3125 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3126 /*IndexTypeQuals=*/0); 3127 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3128 S.getBeginLoc()); 3129 TargetScope.addPrivate( 3130 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3131 TargetScope.addPrivate(PVD, 3132 [&InputInfo]() { return InputInfo.PointersArray; }); 3133 TargetScope.addPrivate(SVD, 3134 [&InputInfo]() { return InputInfo.SizesArray; }); 3135 } 3136 (void)TargetScope.Privatize(); 3137 // Build list of dependences. 3138 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3139 for (const Expr *IRef : C->varlists()) 3140 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3141 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3142 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3143 // Set proper addresses for generated private copies. 3144 OMPPrivateScope Scope(CGF); 3145 if (!Data.FirstprivateVars.empty()) { 3146 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3147 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3148 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3149 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3150 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3151 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3152 CS->getCapturedDecl()->getParam(PrivatesParam))); 3153 // Map privates. 3154 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3155 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3156 CallArgs.push_back(PrivatesPtr); 3157 for (const Expr *E : Data.FirstprivateVars) { 3158 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3159 Address PrivatePtr = 3160 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3161 ".firstpriv.ptr.addr"); 3162 PrivatePtrs.emplace_back(VD, PrivatePtr); 3163 CallArgs.push_back(PrivatePtr.getPointer()); 3164 } 3165 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3166 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3167 for (const auto &Pair : PrivatePtrs) { 3168 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3169 CGF.getContext().getDeclAlign(Pair.first)); 3170 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3171 } 3172 } 3173 // Privatize all private variables except for in_reduction items. 3174 (void)Scope.Privatize(); 3175 if (InputInfo.NumberOfTargetItems > 0) { 3176 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3177 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3178 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3179 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3180 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3181 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3182 } 3183 3184 Action.Enter(CGF); 3185 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3186 BodyGen(CGF); 3187 }; 3188 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3189 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3190 Data.NumberOfParts); 3191 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3192 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3193 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3194 SourceLocation()); 3195 3196 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3197 SharedsTy, CapturedStruct, &IfCond, Data); 3198 } 3199 3200 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3201 // Emit outlined function for task construct. 3202 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3203 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3204 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3205 const Expr *IfCond = nullptr; 3206 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3207 if (C->getNameModifier() == OMPD_unknown || 3208 C->getNameModifier() == OMPD_task) { 3209 IfCond = C->getCondition(); 3210 break; 3211 } 3212 } 3213 3214 OMPTaskDataTy Data; 3215 // Check if we should emit tied or untied task. 3216 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3217 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3218 CGF.EmitStmt(CS->getCapturedStmt()); 3219 }; 3220 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3221 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3222 const OMPTaskDataTy &Data) { 3223 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3224 SharedsTy, CapturedStruct, IfCond, 3225 Data); 3226 }; 3227 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3228 } 3229 3230 void CodeGenFunction::EmitOMPTaskyieldDirective( 3231 const OMPTaskyieldDirective &S) { 3232 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3233 } 3234 3235 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3236 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3237 } 3238 3239 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3240 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3241 } 3242 3243 void CodeGenFunction::EmitOMPTaskgroupDirective( 3244 const OMPTaskgroupDirective &S) { 3245 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3246 Action.Enter(CGF); 3247 if (const Expr *E = S.getReductionRef()) { 3248 SmallVector<const Expr *, 4> LHSs; 3249 SmallVector<const Expr *, 4> RHSs; 3250 OMPTaskDataTy Data; 3251 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3252 auto IPriv = C->privates().begin(); 3253 auto IRed = C->reduction_ops().begin(); 3254 auto ILHS = C->lhs_exprs().begin(); 3255 auto IRHS = C->rhs_exprs().begin(); 3256 for (const Expr *Ref : C->varlists()) { 3257 Data.ReductionVars.emplace_back(Ref); 3258 Data.ReductionCopies.emplace_back(*IPriv); 3259 Data.ReductionOps.emplace_back(*IRed); 3260 LHSs.emplace_back(*ILHS); 3261 RHSs.emplace_back(*IRHS); 3262 std::advance(IPriv, 1); 3263 std::advance(IRed, 1); 3264 std::advance(ILHS, 1); 3265 std::advance(IRHS, 1); 3266 } 3267 } 3268 llvm::Value *ReductionDesc = 3269 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3270 LHSs, RHSs, Data); 3271 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3272 CGF.EmitVarDecl(*VD); 3273 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3274 /*Volatile=*/false, E->getType()); 3275 } 3276 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3277 }; 3278 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3279 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3280 } 3281 3282 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3283 CGM.getOpenMPRuntime().emitFlush( 3284 *this, 3285 [&S]() -> ArrayRef<const Expr *> { 3286 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3287 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3288 FlushClause->varlist_end()); 3289 return llvm::None; 3290 }(), 3291 S.getBeginLoc()); 3292 } 3293 3294 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3295 const CodeGenLoopTy &CodeGenLoop, 3296 Expr *IncExpr) { 3297 // Emit the loop iteration variable. 3298 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3299 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3300 EmitVarDecl(*IVDecl); 3301 3302 // Emit the iterations count variable. 3303 // If it is not a variable, Sema decided to calculate iterations count on each 3304 // iteration (e.g., it is foldable into a constant). 3305 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3306 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3307 // Emit calculation of the iterations count. 3308 EmitIgnoredExpr(S.getCalcLastIteration()); 3309 } 3310 3311 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3312 3313 bool HasLastprivateClause = false; 3314 // Check pre-condition. 3315 { 3316 OMPLoopScope PreInitScope(*this, S); 3317 // Skip the entire loop if we don't meet the precondition. 3318 // If the condition constant folds and can be elided, avoid emitting the 3319 // whole loop. 3320 bool CondConstant; 3321 llvm::BasicBlock *ContBlock = nullptr; 3322 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3323 if (!CondConstant) 3324 return; 3325 } else { 3326 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3327 ContBlock = createBasicBlock("omp.precond.end"); 3328 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3329 getProfileCount(&S)); 3330 EmitBlock(ThenBlock); 3331 incrementProfileCounter(&S); 3332 } 3333 3334 emitAlignedClause(*this, S); 3335 // Emit 'then' code. 3336 { 3337 // Emit helper vars inits. 3338 3339 LValue LB = EmitOMPHelperVar( 3340 *this, cast<DeclRefExpr>( 3341 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3342 ? S.getCombinedLowerBoundVariable() 3343 : S.getLowerBoundVariable()))); 3344 LValue UB = EmitOMPHelperVar( 3345 *this, cast<DeclRefExpr>( 3346 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3347 ? S.getCombinedUpperBoundVariable() 3348 : S.getUpperBoundVariable()))); 3349 LValue ST = 3350 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3351 LValue IL = 3352 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3353 3354 OMPPrivateScope LoopScope(*this); 3355 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3356 // Emit implicit barrier to synchronize threads and avoid data races 3357 // on initialization of firstprivate variables and post-update of 3358 // lastprivate variables. 3359 CGM.getOpenMPRuntime().emitBarrierCall( 3360 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3361 /*ForceSimpleCall=*/true); 3362 } 3363 EmitOMPPrivateClause(S, LoopScope); 3364 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3365 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3366 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3367 EmitOMPReductionClauseInit(S, LoopScope); 3368 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3369 EmitOMPPrivateLoopCounters(S, LoopScope); 3370 (void)LoopScope.Privatize(); 3371 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3372 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3373 3374 // Detect the distribute schedule kind and chunk. 3375 llvm::Value *Chunk = nullptr; 3376 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3377 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3378 ScheduleKind = C->getDistScheduleKind(); 3379 if (const Expr *Ch = C->getChunkSize()) { 3380 Chunk = EmitScalarExpr(Ch); 3381 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3382 S.getIterationVariable()->getType(), 3383 S.getBeginLoc()); 3384 } 3385 } else { 3386 // Default behaviour for dist_schedule clause. 3387 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3388 *this, S, ScheduleKind, Chunk); 3389 } 3390 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3391 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3392 3393 // OpenMP [2.10.8, distribute Construct, Description] 3394 // If dist_schedule is specified, kind must be static. If specified, 3395 // iterations are divided into chunks of size chunk_size, chunks are 3396 // assigned to the teams of the league in a round-robin fashion in the 3397 // order of the team number. When no chunk_size is specified, the 3398 // iteration space is divided into chunks that are approximately equal 3399 // in size, and at most one chunk is distributed to each team of the 3400 // league. The size of the chunks is unspecified in this case. 3401 bool StaticChunked = RT.isStaticChunked( 3402 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3403 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3404 if (RT.isStaticNonchunked(ScheduleKind, 3405 /* Chunked */ Chunk != nullptr) || 3406 StaticChunked) { 3407 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3408 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3409 CGOpenMPRuntime::StaticRTInput StaticInit( 3410 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3411 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3412 StaticChunked ? Chunk : nullptr); 3413 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3414 StaticInit); 3415 JumpDest LoopExit = 3416 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3417 // UB = min(UB, GlobalUB); 3418 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3419 ? S.getCombinedEnsureUpperBound() 3420 : S.getEnsureUpperBound()); 3421 // IV = LB; 3422 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3423 ? S.getCombinedInit() 3424 : S.getInit()); 3425 3426 const Expr *Cond = 3427 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3428 ? S.getCombinedCond() 3429 : S.getCond(); 3430 3431 if (StaticChunked) 3432 Cond = S.getCombinedDistCond(); 3433 3434 // For static unchunked schedules generate: 3435 // 3436 // 1. For distribute alone, codegen 3437 // while (idx <= UB) { 3438 // BODY; 3439 // ++idx; 3440 // } 3441 // 3442 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3443 // while (idx <= UB) { 3444 // <CodeGen rest of pragma>(LB, UB); 3445 // idx += ST; 3446 // } 3447 // 3448 // For static chunk one schedule generate: 3449 // 3450 // while (IV <= GlobalUB) { 3451 // <CodeGen rest of pragma>(LB, UB); 3452 // LB += ST; 3453 // UB += ST; 3454 // UB = min(UB, GlobalUB); 3455 // IV = LB; 3456 // } 3457 // 3458 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3459 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3460 CodeGenLoop(CGF, S, LoopExit); 3461 }, 3462 [&S, StaticChunked](CodeGenFunction &CGF) { 3463 if (StaticChunked) { 3464 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3465 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3466 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3467 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3468 } 3469 }); 3470 EmitBlock(LoopExit.getBlock()); 3471 // Tell the runtime we are done. 3472 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3473 } else { 3474 // Emit the outer loop, which requests its work chunk [LB..UB] from 3475 // runtime and runs the inner loop to process it. 3476 const OMPLoopArguments LoopArguments = { 3477 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3478 Chunk}; 3479 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3480 CodeGenLoop); 3481 } 3482 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3483 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3484 return CGF.Builder.CreateIsNotNull( 3485 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3486 }); 3487 } 3488 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3489 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3490 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3491 EmitOMPReductionClauseFinal(S, OMPD_simd); 3492 // Emit post-update of the reduction variables if IsLastIter != 0. 3493 emitPostUpdateForReductionClause( 3494 *this, S, [IL, &S](CodeGenFunction &CGF) { 3495 return CGF.Builder.CreateIsNotNull( 3496 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3497 }); 3498 } 3499 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3500 if (HasLastprivateClause) { 3501 EmitOMPLastprivateClauseFinal( 3502 S, /*NoFinals=*/false, 3503 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3504 } 3505 } 3506 3507 // We're now done with the loop, so jump to the continuation block. 3508 if (ContBlock) { 3509 EmitBranch(ContBlock); 3510 EmitBlock(ContBlock, true); 3511 } 3512 } 3513 } 3514 3515 void CodeGenFunction::EmitOMPDistributeDirective( 3516 const OMPDistributeDirective &S) { 3517 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3518 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3519 }; 3520 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3521 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3522 } 3523 3524 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3525 const CapturedStmt *S) { 3526 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3527 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3528 CGF.CapturedStmtInfo = &CapStmtInfo; 3529 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3530 Fn->setDoesNotRecurse(); 3531 return Fn; 3532 } 3533 3534 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3535 if (S.hasClausesOfKind<OMPDependClause>()) { 3536 assert(!S.getAssociatedStmt() && 3537 "No associated statement must be in ordered depend construct."); 3538 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3539 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3540 return; 3541 } 3542 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3543 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3544 PrePostActionTy &Action) { 3545 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3546 if (C) { 3547 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3548 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3549 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3550 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3551 OutlinedFn, CapturedVars); 3552 } else { 3553 Action.Enter(CGF); 3554 CGF.EmitStmt(CS->getCapturedStmt()); 3555 } 3556 }; 3557 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3558 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3559 } 3560 3561 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3562 QualType SrcType, QualType DestType, 3563 SourceLocation Loc) { 3564 assert(CGF.hasScalarEvaluationKind(DestType) && 3565 "DestType must have scalar evaluation kind."); 3566 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3567 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3568 DestType, Loc) 3569 : CGF.EmitComplexToScalarConversion( 3570 Val.getComplexVal(), SrcType, DestType, Loc); 3571 } 3572 3573 static CodeGenFunction::ComplexPairTy 3574 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3575 QualType DestType, SourceLocation Loc) { 3576 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3577 "DestType must have complex evaluation kind."); 3578 CodeGenFunction::ComplexPairTy ComplexVal; 3579 if (Val.isScalar()) { 3580 // Convert the input element to the element type of the complex. 3581 QualType DestElementType = 3582 DestType->castAs<ComplexType>()->getElementType(); 3583 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3584 Val.getScalarVal(), SrcType, DestElementType, Loc); 3585 ComplexVal = CodeGenFunction::ComplexPairTy( 3586 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3587 } else { 3588 assert(Val.isComplex() && "Must be a scalar or complex."); 3589 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3590 QualType DestElementType = 3591 DestType->castAs<ComplexType>()->getElementType(); 3592 ComplexVal.first = CGF.EmitScalarConversion( 3593 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3594 ComplexVal.second = CGF.EmitScalarConversion( 3595 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3596 } 3597 return ComplexVal; 3598 } 3599 3600 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3601 LValue LVal, RValue RVal) { 3602 if (LVal.isGlobalReg()) { 3603 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3604 } else { 3605 CGF.EmitAtomicStore(RVal, LVal, 3606 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3607 : llvm::AtomicOrdering::Monotonic, 3608 LVal.isVolatile(), /*IsInit=*/false); 3609 } 3610 } 3611 3612 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3613 QualType RValTy, SourceLocation Loc) { 3614 switch (getEvaluationKind(LVal.getType())) { 3615 case TEK_Scalar: 3616 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3617 *this, RVal, RValTy, LVal.getType(), Loc)), 3618 LVal); 3619 break; 3620 case TEK_Complex: 3621 EmitStoreOfComplex( 3622 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3623 /*isInit=*/false); 3624 break; 3625 case TEK_Aggregate: 3626 llvm_unreachable("Must be a scalar or complex."); 3627 } 3628 } 3629 3630 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3631 const Expr *X, const Expr *V, 3632 SourceLocation Loc) { 3633 // v = x; 3634 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3635 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3636 LValue XLValue = CGF.EmitLValue(X); 3637 LValue VLValue = CGF.EmitLValue(V); 3638 RValue Res = XLValue.isGlobalReg() 3639 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3640 : CGF.EmitAtomicLoad( 3641 XLValue, Loc, 3642 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3643 : llvm::AtomicOrdering::Monotonic, 3644 XLValue.isVolatile()); 3645 // OpenMP, 2.12.6, atomic Construct 3646 // Any atomic construct with a seq_cst clause forces the atomically 3647 // performed operation to include an implicit flush operation without a 3648 // list. 3649 if (IsSeqCst) 3650 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3651 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3652 } 3653 3654 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3655 const Expr *X, const Expr *E, 3656 SourceLocation Loc) { 3657 // x = expr; 3658 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3659 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3660 // OpenMP, 2.12.6, atomic Construct 3661 // Any atomic construct with a seq_cst clause forces the atomically 3662 // performed operation to include an implicit flush operation without a 3663 // list. 3664 if (IsSeqCst) 3665 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3666 } 3667 3668 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3669 RValue Update, 3670 BinaryOperatorKind BO, 3671 llvm::AtomicOrdering AO, 3672 bool IsXLHSInRHSPart) { 3673 ASTContext &Context = CGF.getContext(); 3674 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3675 // expression is simple and atomic is allowed for the given type for the 3676 // target platform. 3677 if (BO == BO_Comma || !Update.isScalar() || 3678 !Update.getScalarVal()->getType()->isIntegerTy() || 3679 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3680 (Update.getScalarVal()->getType() != 3681 X.getAddress().getElementType())) || 3682 !X.getAddress().getElementType()->isIntegerTy() || 3683 !Context.getTargetInfo().hasBuiltinAtomic( 3684 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3685 return std::make_pair(false, RValue::get(nullptr)); 3686 3687 llvm::AtomicRMWInst::BinOp RMWOp; 3688 switch (BO) { 3689 case BO_Add: 3690 RMWOp = llvm::AtomicRMWInst::Add; 3691 break; 3692 case BO_Sub: 3693 if (!IsXLHSInRHSPart) 3694 return std::make_pair(false, RValue::get(nullptr)); 3695 RMWOp = llvm::AtomicRMWInst::Sub; 3696 break; 3697 case BO_And: 3698 RMWOp = llvm::AtomicRMWInst::And; 3699 break; 3700 case BO_Or: 3701 RMWOp = llvm::AtomicRMWInst::Or; 3702 break; 3703 case BO_Xor: 3704 RMWOp = llvm::AtomicRMWInst::Xor; 3705 break; 3706 case BO_LT: 3707 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3708 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3709 : llvm::AtomicRMWInst::Max) 3710 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3711 : llvm::AtomicRMWInst::UMax); 3712 break; 3713 case BO_GT: 3714 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3715 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3716 : llvm::AtomicRMWInst::Min) 3717 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3718 : llvm::AtomicRMWInst::UMin); 3719 break; 3720 case BO_Assign: 3721 RMWOp = llvm::AtomicRMWInst::Xchg; 3722 break; 3723 case BO_Mul: 3724 case BO_Div: 3725 case BO_Rem: 3726 case BO_Shl: 3727 case BO_Shr: 3728 case BO_LAnd: 3729 case BO_LOr: 3730 return std::make_pair(false, RValue::get(nullptr)); 3731 case BO_PtrMemD: 3732 case BO_PtrMemI: 3733 case BO_LE: 3734 case BO_GE: 3735 case BO_EQ: 3736 case BO_NE: 3737 case BO_Cmp: 3738 case BO_AddAssign: 3739 case BO_SubAssign: 3740 case BO_AndAssign: 3741 case BO_OrAssign: 3742 case BO_XorAssign: 3743 case BO_MulAssign: 3744 case BO_DivAssign: 3745 case BO_RemAssign: 3746 case BO_ShlAssign: 3747 case BO_ShrAssign: 3748 case BO_Comma: 3749 llvm_unreachable("Unsupported atomic update operation"); 3750 } 3751 llvm::Value *UpdateVal = Update.getScalarVal(); 3752 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3753 UpdateVal = CGF.Builder.CreateIntCast( 3754 IC, X.getAddress().getElementType(), 3755 X.getType()->hasSignedIntegerRepresentation()); 3756 } 3757 llvm::Value *Res = 3758 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3759 return std::make_pair(true, RValue::get(Res)); 3760 } 3761 3762 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3763 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3764 llvm::AtomicOrdering AO, SourceLocation Loc, 3765 const llvm::function_ref<RValue(RValue)> CommonGen) { 3766 // Update expressions are allowed to have the following forms: 3767 // x binop= expr; -> xrval + expr; 3768 // x++, ++x -> xrval + 1; 3769 // x--, --x -> xrval - 1; 3770 // x = x binop expr; -> xrval binop expr 3771 // x = expr Op x; - > expr binop xrval; 3772 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3773 if (!Res.first) { 3774 if (X.isGlobalReg()) { 3775 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3776 // 'xrval'. 3777 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3778 } else { 3779 // Perform compare-and-swap procedure. 3780 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3781 } 3782 } 3783 return Res; 3784 } 3785 3786 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3787 const Expr *X, const Expr *E, 3788 const Expr *UE, bool IsXLHSInRHSPart, 3789 SourceLocation Loc) { 3790 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3791 "Update expr in 'atomic update' must be a binary operator."); 3792 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3793 // Update expressions are allowed to have the following forms: 3794 // x binop= expr; -> xrval + expr; 3795 // x++, ++x -> xrval + 1; 3796 // x--, --x -> xrval - 1; 3797 // x = x binop expr; -> xrval binop expr 3798 // x = expr Op x; - > expr binop xrval; 3799 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3800 LValue XLValue = CGF.EmitLValue(X); 3801 RValue ExprRValue = CGF.EmitAnyExpr(E); 3802 llvm::AtomicOrdering AO = IsSeqCst 3803 ? llvm::AtomicOrdering::SequentiallyConsistent 3804 : llvm::AtomicOrdering::Monotonic; 3805 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3806 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3807 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3808 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3809 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3810 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3811 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3812 return CGF.EmitAnyExpr(UE); 3813 }; 3814 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3815 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3816 // OpenMP, 2.12.6, atomic Construct 3817 // Any atomic construct with a seq_cst clause forces the atomically 3818 // performed operation to include an implicit flush operation without a 3819 // list. 3820 if (IsSeqCst) 3821 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3822 } 3823 3824 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3825 QualType SourceType, QualType ResType, 3826 SourceLocation Loc) { 3827 switch (CGF.getEvaluationKind(ResType)) { 3828 case TEK_Scalar: 3829 return RValue::get( 3830 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3831 case TEK_Complex: { 3832 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3833 return RValue::getComplex(Res.first, Res.second); 3834 } 3835 case TEK_Aggregate: 3836 break; 3837 } 3838 llvm_unreachable("Must be a scalar or complex."); 3839 } 3840 3841 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3842 bool IsPostfixUpdate, const Expr *V, 3843 const Expr *X, const Expr *E, 3844 const Expr *UE, bool IsXLHSInRHSPart, 3845 SourceLocation Loc) { 3846 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3847 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3848 RValue NewVVal; 3849 LValue VLValue = CGF.EmitLValue(V); 3850 LValue XLValue = CGF.EmitLValue(X); 3851 RValue ExprRValue = CGF.EmitAnyExpr(E); 3852 llvm::AtomicOrdering AO = IsSeqCst 3853 ? llvm::AtomicOrdering::SequentiallyConsistent 3854 : llvm::AtomicOrdering::Monotonic; 3855 QualType NewVValType; 3856 if (UE) { 3857 // 'x' is updated with some additional value. 3858 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3859 "Update expr in 'atomic capture' must be a binary operator."); 3860 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3861 // Update expressions are allowed to have the following forms: 3862 // x binop= expr; -> xrval + expr; 3863 // x++, ++x -> xrval + 1; 3864 // x--, --x -> xrval - 1; 3865 // x = x binop expr; -> xrval binop expr 3866 // x = expr Op x; - > expr binop xrval; 3867 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3868 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3869 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3870 NewVValType = XRValExpr->getType(); 3871 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3872 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3873 IsPostfixUpdate](RValue XRValue) { 3874 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3875 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3876 RValue Res = CGF.EmitAnyExpr(UE); 3877 NewVVal = IsPostfixUpdate ? XRValue : Res; 3878 return Res; 3879 }; 3880 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3881 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3882 if (Res.first) { 3883 // 'atomicrmw' instruction was generated. 3884 if (IsPostfixUpdate) { 3885 // Use old value from 'atomicrmw'. 3886 NewVVal = Res.second; 3887 } else { 3888 // 'atomicrmw' does not provide new value, so evaluate it using old 3889 // value of 'x'. 3890 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3891 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3892 NewVVal = CGF.EmitAnyExpr(UE); 3893 } 3894 } 3895 } else { 3896 // 'x' is simply rewritten with some 'expr'. 3897 NewVValType = X->getType().getNonReferenceType(); 3898 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3899 X->getType().getNonReferenceType(), Loc); 3900 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3901 NewVVal = XRValue; 3902 return ExprRValue; 3903 }; 3904 // Try to perform atomicrmw xchg, otherwise simple exchange. 3905 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3906 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3907 Loc, Gen); 3908 if (Res.first) { 3909 // 'atomicrmw' instruction was generated. 3910 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3911 } 3912 } 3913 // Emit post-update store to 'v' of old/new 'x' value. 3914 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3915 // OpenMP, 2.12.6, atomic Construct 3916 // Any atomic construct with a seq_cst clause forces the atomically 3917 // performed operation to include an implicit flush operation without a 3918 // list. 3919 if (IsSeqCst) 3920 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3921 } 3922 3923 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3924 bool IsSeqCst, bool IsPostfixUpdate, 3925 const Expr *X, const Expr *V, const Expr *E, 3926 const Expr *UE, bool IsXLHSInRHSPart, 3927 SourceLocation Loc) { 3928 switch (Kind) { 3929 case OMPC_read: 3930 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3931 break; 3932 case OMPC_write: 3933 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3934 break; 3935 case OMPC_unknown: 3936 case OMPC_update: 3937 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3938 break; 3939 case OMPC_capture: 3940 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3941 IsXLHSInRHSPart, Loc); 3942 break; 3943 case OMPC_if: 3944 case OMPC_final: 3945 case OMPC_num_threads: 3946 case OMPC_private: 3947 case OMPC_firstprivate: 3948 case OMPC_lastprivate: 3949 case OMPC_reduction: 3950 case OMPC_task_reduction: 3951 case OMPC_in_reduction: 3952 case OMPC_safelen: 3953 case OMPC_simdlen: 3954 case OMPC_allocator: 3955 case OMPC_allocate: 3956 case OMPC_collapse: 3957 case OMPC_default: 3958 case OMPC_seq_cst: 3959 case OMPC_shared: 3960 case OMPC_linear: 3961 case OMPC_aligned: 3962 case OMPC_copyin: 3963 case OMPC_copyprivate: 3964 case OMPC_flush: 3965 case OMPC_proc_bind: 3966 case OMPC_schedule: 3967 case OMPC_ordered: 3968 case OMPC_nowait: 3969 case OMPC_untied: 3970 case OMPC_threadprivate: 3971 case OMPC_depend: 3972 case OMPC_mergeable: 3973 case OMPC_device: 3974 case OMPC_threads: 3975 case OMPC_simd: 3976 case OMPC_map: 3977 case OMPC_num_teams: 3978 case OMPC_thread_limit: 3979 case OMPC_priority: 3980 case OMPC_grainsize: 3981 case OMPC_nogroup: 3982 case OMPC_num_tasks: 3983 case OMPC_hint: 3984 case OMPC_dist_schedule: 3985 case OMPC_defaultmap: 3986 case OMPC_uniform: 3987 case OMPC_to: 3988 case OMPC_from: 3989 case OMPC_use_device_ptr: 3990 case OMPC_is_device_ptr: 3991 case OMPC_unified_address: 3992 case OMPC_unified_shared_memory: 3993 case OMPC_reverse_offload: 3994 case OMPC_dynamic_allocators: 3995 case OMPC_atomic_default_mem_order: 3996 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3997 } 3998 } 3999 4000 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4001 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4002 OpenMPClauseKind Kind = OMPC_unknown; 4003 for (const OMPClause *C : S.clauses()) { 4004 // Find first clause (skip seq_cst clause, if it is first). 4005 if (C->getClauseKind() != OMPC_seq_cst) { 4006 Kind = C->getClauseKind(); 4007 break; 4008 } 4009 } 4010 4011 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4012 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4013 enterFullExpression(FE); 4014 // Processing for statements under 'atomic capture'. 4015 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4016 for (const Stmt *C : Compound->body()) { 4017 if (const auto *FE = dyn_cast<FullExpr>(C)) 4018 enterFullExpression(FE); 4019 } 4020 } 4021 4022 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4023 PrePostActionTy &) { 4024 CGF.EmitStopPoint(CS); 4025 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4026 S.getV(), S.getExpr(), S.getUpdateExpr(), 4027 S.isXLHSInRHSPart(), S.getBeginLoc()); 4028 }; 4029 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4030 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4031 } 4032 4033 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4034 const OMPExecutableDirective &S, 4035 const RegionCodeGenTy &CodeGen) { 4036 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4037 CodeGenModule &CGM = CGF.CGM; 4038 4039 // On device emit this construct as inlined code. 4040 if (CGM.getLangOpts().OpenMPIsDevice) { 4041 OMPLexicalScope Scope(CGF, S, OMPD_target); 4042 CGM.getOpenMPRuntime().emitInlinedDirective( 4043 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4044 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4045 }); 4046 return; 4047 } 4048 4049 llvm::Function *Fn = nullptr; 4050 llvm::Constant *FnID = nullptr; 4051 4052 const Expr *IfCond = nullptr; 4053 // Check for the at most one if clause associated with the target region. 4054 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4055 if (C->getNameModifier() == OMPD_unknown || 4056 C->getNameModifier() == OMPD_target) { 4057 IfCond = C->getCondition(); 4058 break; 4059 } 4060 } 4061 4062 // Check if we have any device clause associated with the directive. 4063 const Expr *Device = nullptr; 4064 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4065 Device = C->getDevice(); 4066 4067 // Check if we have an if clause whose conditional always evaluates to false 4068 // or if we do not have any targets specified. If so the target region is not 4069 // an offload entry point. 4070 bool IsOffloadEntry = true; 4071 if (IfCond) { 4072 bool Val; 4073 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4074 IsOffloadEntry = false; 4075 } 4076 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4077 IsOffloadEntry = false; 4078 4079 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4080 StringRef ParentName; 4081 // In case we have Ctors/Dtors we use the complete type variant to produce 4082 // the mangling of the device outlined kernel. 4083 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4084 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4085 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4086 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4087 else 4088 ParentName = 4089 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4090 4091 // Emit target region as a standalone region. 4092 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4093 IsOffloadEntry, CodeGen); 4094 OMPLexicalScope Scope(CGF, S, OMPD_task); 4095 auto &&SizeEmitter = [](CodeGenFunction &CGF, const OMPLoopDirective &D) { 4096 OMPLoopScope(CGF, D); 4097 // Emit calculation of the iterations count. 4098 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4099 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4100 /*IsSigned=*/false); 4101 return NumIterations; 4102 }; 4103 if (IsOffloadEntry) 4104 CGM.getOpenMPRuntime().emitTargetNumIterationsCall(CGF, S, Device, 4105 SizeEmitter); 4106 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4107 } 4108 4109 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4110 PrePostActionTy &Action) { 4111 Action.Enter(CGF); 4112 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4113 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4114 CGF.EmitOMPPrivateClause(S, PrivateScope); 4115 (void)PrivateScope.Privatize(); 4116 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4117 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4118 4119 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4120 } 4121 4122 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4123 StringRef ParentName, 4124 const OMPTargetDirective &S) { 4125 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4126 emitTargetRegion(CGF, S, Action); 4127 }; 4128 llvm::Function *Fn; 4129 llvm::Constant *Addr; 4130 // Emit target region as a standalone region. 4131 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4132 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4133 assert(Fn && Addr && "Target device function emission failed."); 4134 } 4135 4136 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4137 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4138 emitTargetRegion(CGF, S, Action); 4139 }; 4140 emitCommonOMPTargetDirective(*this, S, CodeGen); 4141 } 4142 4143 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4144 const OMPExecutableDirective &S, 4145 OpenMPDirectiveKind InnermostKind, 4146 const RegionCodeGenTy &CodeGen) { 4147 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4148 llvm::Function *OutlinedFn = 4149 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4150 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4151 4152 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4153 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4154 if (NT || TL) { 4155 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4156 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4157 4158 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4159 S.getBeginLoc()); 4160 } 4161 4162 OMPTeamsScope Scope(CGF, S); 4163 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4164 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4165 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4166 CapturedVars); 4167 } 4168 4169 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4170 // Emit teams region as a standalone region. 4171 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4172 Action.Enter(CGF); 4173 OMPPrivateScope PrivateScope(CGF); 4174 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4175 CGF.EmitOMPPrivateClause(S, PrivateScope); 4176 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4177 (void)PrivateScope.Privatize(); 4178 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4179 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4180 }; 4181 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4182 emitPostUpdateForReductionClause(*this, S, 4183 [](CodeGenFunction &) { return nullptr; }); 4184 } 4185 4186 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4187 const OMPTargetTeamsDirective &S) { 4188 auto *CS = S.getCapturedStmt(OMPD_teams); 4189 Action.Enter(CGF); 4190 // Emit teams region as a standalone region. 4191 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4192 Action.Enter(CGF); 4193 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4194 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4195 CGF.EmitOMPPrivateClause(S, PrivateScope); 4196 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4197 (void)PrivateScope.Privatize(); 4198 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4199 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4200 CGF.EmitStmt(CS->getCapturedStmt()); 4201 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4202 }; 4203 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4204 emitPostUpdateForReductionClause(CGF, S, 4205 [](CodeGenFunction &) { return nullptr; }); 4206 } 4207 4208 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4209 CodeGenModule &CGM, StringRef ParentName, 4210 const OMPTargetTeamsDirective &S) { 4211 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4212 emitTargetTeamsRegion(CGF, Action, S); 4213 }; 4214 llvm::Function *Fn; 4215 llvm::Constant *Addr; 4216 // Emit target region as a standalone region. 4217 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4218 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4219 assert(Fn && Addr && "Target device function emission failed."); 4220 } 4221 4222 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4223 const OMPTargetTeamsDirective &S) { 4224 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4225 emitTargetTeamsRegion(CGF, Action, S); 4226 }; 4227 emitCommonOMPTargetDirective(*this, S, CodeGen); 4228 } 4229 4230 static void 4231 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4232 const OMPTargetTeamsDistributeDirective &S) { 4233 Action.Enter(CGF); 4234 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4235 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4236 }; 4237 4238 // Emit teams region as a standalone region. 4239 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4240 PrePostActionTy &Action) { 4241 Action.Enter(CGF); 4242 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4243 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4244 (void)PrivateScope.Privatize(); 4245 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4246 CodeGenDistribute); 4247 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4248 }; 4249 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4250 emitPostUpdateForReductionClause(CGF, S, 4251 [](CodeGenFunction &) { return nullptr; }); 4252 } 4253 4254 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4255 CodeGenModule &CGM, StringRef ParentName, 4256 const OMPTargetTeamsDistributeDirective &S) { 4257 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4258 emitTargetTeamsDistributeRegion(CGF, Action, S); 4259 }; 4260 llvm::Function *Fn; 4261 llvm::Constant *Addr; 4262 // Emit target region as a standalone region. 4263 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4264 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4265 assert(Fn && Addr && "Target device function emission failed."); 4266 } 4267 4268 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4269 const OMPTargetTeamsDistributeDirective &S) { 4270 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4271 emitTargetTeamsDistributeRegion(CGF, Action, S); 4272 }; 4273 emitCommonOMPTargetDirective(*this, S, CodeGen); 4274 } 4275 4276 static void emitTargetTeamsDistributeSimdRegion( 4277 CodeGenFunction &CGF, PrePostActionTy &Action, 4278 const OMPTargetTeamsDistributeSimdDirective &S) { 4279 Action.Enter(CGF); 4280 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4281 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4282 }; 4283 4284 // Emit teams region as a standalone region. 4285 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4286 PrePostActionTy &Action) { 4287 Action.Enter(CGF); 4288 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4289 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4290 (void)PrivateScope.Privatize(); 4291 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4292 CodeGenDistribute); 4293 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4294 }; 4295 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4296 emitPostUpdateForReductionClause(CGF, S, 4297 [](CodeGenFunction &) { return nullptr; }); 4298 } 4299 4300 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4301 CodeGenModule &CGM, StringRef ParentName, 4302 const OMPTargetTeamsDistributeSimdDirective &S) { 4303 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4304 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4305 }; 4306 llvm::Function *Fn; 4307 llvm::Constant *Addr; 4308 // Emit target region as a standalone region. 4309 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4310 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4311 assert(Fn && Addr && "Target device function emission failed."); 4312 } 4313 4314 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4315 const OMPTargetTeamsDistributeSimdDirective &S) { 4316 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4317 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4318 }; 4319 emitCommonOMPTargetDirective(*this, S, CodeGen); 4320 } 4321 4322 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4323 const OMPTeamsDistributeDirective &S) { 4324 4325 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4326 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4327 }; 4328 4329 // Emit teams region as a standalone region. 4330 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4331 PrePostActionTy &Action) { 4332 Action.Enter(CGF); 4333 OMPPrivateScope PrivateScope(CGF); 4334 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4335 (void)PrivateScope.Privatize(); 4336 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4337 CodeGenDistribute); 4338 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4339 }; 4340 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4341 emitPostUpdateForReductionClause(*this, S, 4342 [](CodeGenFunction &) { return nullptr; }); 4343 } 4344 4345 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4346 const OMPTeamsDistributeSimdDirective &S) { 4347 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4348 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4349 }; 4350 4351 // Emit teams region as a standalone region. 4352 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4353 PrePostActionTy &Action) { 4354 Action.Enter(CGF); 4355 OMPPrivateScope PrivateScope(CGF); 4356 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4357 (void)PrivateScope.Privatize(); 4358 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4359 CodeGenDistribute); 4360 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4361 }; 4362 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4363 emitPostUpdateForReductionClause(*this, S, 4364 [](CodeGenFunction &) { return nullptr; }); 4365 } 4366 4367 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4368 const OMPTeamsDistributeParallelForDirective &S) { 4369 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4370 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4371 S.getDistInc()); 4372 }; 4373 4374 // Emit teams region as a standalone region. 4375 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4376 PrePostActionTy &Action) { 4377 Action.Enter(CGF); 4378 OMPPrivateScope PrivateScope(CGF); 4379 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4380 (void)PrivateScope.Privatize(); 4381 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4382 CodeGenDistribute); 4383 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4384 }; 4385 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4386 emitPostUpdateForReductionClause(*this, S, 4387 [](CodeGenFunction &) { return nullptr; }); 4388 } 4389 4390 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4391 const OMPTeamsDistributeParallelForSimdDirective &S) { 4392 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4393 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4394 S.getDistInc()); 4395 }; 4396 4397 // Emit teams region as a standalone region. 4398 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4399 PrePostActionTy &Action) { 4400 Action.Enter(CGF); 4401 OMPPrivateScope PrivateScope(CGF); 4402 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4403 (void)PrivateScope.Privatize(); 4404 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4405 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4406 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4407 }; 4408 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4409 emitPostUpdateForReductionClause(*this, S, 4410 [](CodeGenFunction &) { return nullptr; }); 4411 } 4412 4413 static void emitTargetTeamsDistributeParallelForRegion( 4414 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4415 PrePostActionTy &Action) { 4416 Action.Enter(CGF); 4417 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4418 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4419 S.getDistInc()); 4420 }; 4421 4422 // Emit teams region as a standalone region. 4423 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4424 PrePostActionTy &Action) { 4425 Action.Enter(CGF); 4426 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4427 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4428 (void)PrivateScope.Privatize(); 4429 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4430 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4431 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4432 }; 4433 4434 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4435 CodeGenTeams); 4436 emitPostUpdateForReductionClause(CGF, S, 4437 [](CodeGenFunction &) { return nullptr; }); 4438 } 4439 4440 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4441 CodeGenModule &CGM, StringRef ParentName, 4442 const OMPTargetTeamsDistributeParallelForDirective &S) { 4443 // Emit SPMD target teams distribute parallel for region as a standalone 4444 // region. 4445 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4446 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4447 }; 4448 llvm::Function *Fn; 4449 llvm::Constant *Addr; 4450 // Emit target region as a standalone region. 4451 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4452 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4453 assert(Fn && Addr && "Target device function emission failed."); 4454 } 4455 4456 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4457 const OMPTargetTeamsDistributeParallelForDirective &S) { 4458 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4459 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4460 }; 4461 emitCommonOMPTargetDirective(*this, S, CodeGen); 4462 } 4463 4464 static void emitTargetTeamsDistributeParallelForSimdRegion( 4465 CodeGenFunction &CGF, 4466 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4467 PrePostActionTy &Action) { 4468 Action.Enter(CGF); 4469 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4470 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4471 S.getDistInc()); 4472 }; 4473 4474 // Emit teams region as a standalone region. 4475 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4476 PrePostActionTy &Action) { 4477 Action.Enter(CGF); 4478 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4479 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4480 (void)PrivateScope.Privatize(); 4481 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4482 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4483 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4484 }; 4485 4486 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4487 CodeGenTeams); 4488 emitPostUpdateForReductionClause(CGF, S, 4489 [](CodeGenFunction &) { return nullptr; }); 4490 } 4491 4492 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4493 CodeGenModule &CGM, StringRef ParentName, 4494 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4495 // Emit SPMD target teams distribute parallel for simd region as a standalone 4496 // region. 4497 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4498 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4499 }; 4500 llvm::Function *Fn; 4501 llvm::Constant *Addr; 4502 // Emit target region as a standalone region. 4503 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4504 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4505 assert(Fn && Addr && "Target device function emission failed."); 4506 } 4507 4508 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4509 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4510 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4511 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4512 }; 4513 emitCommonOMPTargetDirective(*this, S, CodeGen); 4514 } 4515 4516 void CodeGenFunction::EmitOMPCancellationPointDirective( 4517 const OMPCancellationPointDirective &S) { 4518 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4519 S.getCancelRegion()); 4520 } 4521 4522 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4523 const Expr *IfCond = nullptr; 4524 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4525 if (C->getNameModifier() == OMPD_unknown || 4526 C->getNameModifier() == OMPD_cancel) { 4527 IfCond = C->getCondition(); 4528 break; 4529 } 4530 } 4531 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4532 S.getCancelRegion()); 4533 } 4534 4535 CodeGenFunction::JumpDest 4536 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4537 if (Kind == OMPD_parallel || Kind == OMPD_task || 4538 Kind == OMPD_target_parallel) 4539 return ReturnBlock; 4540 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4541 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4542 Kind == OMPD_distribute_parallel_for || 4543 Kind == OMPD_target_parallel_for || 4544 Kind == OMPD_teams_distribute_parallel_for || 4545 Kind == OMPD_target_teams_distribute_parallel_for); 4546 return OMPCancelStack.getExitBlock(); 4547 } 4548 4549 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4550 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4551 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4552 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4553 auto OrigVarIt = C.varlist_begin(); 4554 auto InitIt = C.inits().begin(); 4555 for (const Expr *PvtVarIt : C.private_copies()) { 4556 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4557 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4558 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4559 4560 // In order to identify the right initializer we need to match the 4561 // declaration used by the mapping logic. In some cases we may get 4562 // OMPCapturedExprDecl that refers to the original declaration. 4563 const ValueDecl *MatchingVD = OrigVD; 4564 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4565 // OMPCapturedExprDecl are used to privative fields of the current 4566 // structure. 4567 const auto *ME = cast<MemberExpr>(OED->getInit()); 4568 assert(isa<CXXThisExpr>(ME->getBase()) && 4569 "Base should be the current struct!"); 4570 MatchingVD = ME->getMemberDecl(); 4571 } 4572 4573 // If we don't have information about the current list item, move on to 4574 // the next one. 4575 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4576 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4577 continue; 4578 4579 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4580 InitAddrIt, InitVD, 4581 PvtVD]() { 4582 // Initialize the temporary initialization variable with the address we 4583 // get from the runtime library. We have to cast the source address 4584 // because it is always a void *. References are materialized in the 4585 // privatization scope, so the initialization here disregards the fact 4586 // the original variable is a reference. 4587 QualType AddrQTy = 4588 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4589 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4590 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4591 setAddrOfLocalVar(InitVD, InitAddr); 4592 4593 // Emit private declaration, it will be initialized by the value we 4594 // declaration we just added to the local declarations map. 4595 EmitDecl(*PvtVD); 4596 4597 // The initialization variables reached its purpose in the emission 4598 // of the previous declaration, so we don't need it anymore. 4599 LocalDeclMap.erase(InitVD); 4600 4601 // Return the address of the private variable. 4602 return GetAddrOfLocalVar(PvtVD); 4603 }); 4604 assert(IsRegistered && "firstprivate var already registered as private"); 4605 // Silence the warning about unused variable. 4606 (void)IsRegistered; 4607 4608 ++OrigVarIt; 4609 ++InitIt; 4610 } 4611 } 4612 4613 // Generate the instructions for '#pragma omp target data' directive. 4614 void CodeGenFunction::EmitOMPTargetDataDirective( 4615 const OMPTargetDataDirective &S) { 4616 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4617 4618 // Create a pre/post action to signal the privatization of the device pointer. 4619 // This action can be replaced by the OpenMP runtime code generation to 4620 // deactivate privatization. 4621 bool PrivatizeDevicePointers = false; 4622 class DevicePointerPrivActionTy : public PrePostActionTy { 4623 bool &PrivatizeDevicePointers; 4624 4625 public: 4626 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4627 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4628 void Enter(CodeGenFunction &CGF) override { 4629 PrivatizeDevicePointers = true; 4630 } 4631 }; 4632 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4633 4634 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4635 CodeGenFunction &CGF, PrePostActionTy &Action) { 4636 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4637 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4638 }; 4639 4640 // Codegen that selects whether to generate the privatization code or not. 4641 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4642 &InnermostCodeGen](CodeGenFunction &CGF, 4643 PrePostActionTy &Action) { 4644 RegionCodeGenTy RCG(InnermostCodeGen); 4645 PrivatizeDevicePointers = false; 4646 4647 // Call the pre-action to change the status of PrivatizeDevicePointers if 4648 // needed. 4649 Action.Enter(CGF); 4650 4651 if (PrivatizeDevicePointers) { 4652 OMPPrivateScope PrivateScope(CGF); 4653 // Emit all instances of the use_device_ptr clause. 4654 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4655 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4656 Info.CaptureDeviceAddrMap); 4657 (void)PrivateScope.Privatize(); 4658 RCG(CGF); 4659 } else { 4660 RCG(CGF); 4661 } 4662 }; 4663 4664 // Forward the provided action to the privatization codegen. 4665 RegionCodeGenTy PrivRCG(PrivCodeGen); 4666 PrivRCG.setAction(Action); 4667 4668 // Notwithstanding the body of the region is emitted as inlined directive, 4669 // we don't use an inline scope as changes in the references inside the 4670 // region are expected to be visible outside, so we do not privative them. 4671 OMPLexicalScope Scope(CGF, S); 4672 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4673 PrivRCG); 4674 }; 4675 4676 RegionCodeGenTy RCG(CodeGen); 4677 4678 // If we don't have target devices, don't bother emitting the data mapping 4679 // code. 4680 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4681 RCG(*this); 4682 return; 4683 } 4684 4685 // Check if we have any if clause associated with the directive. 4686 const Expr *IfCond = nullptr; 4687 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4688 IfCond = C->getCondition(); 4689 4690 // Check if we have any device clause associated with the directive. 4691 const Expr *Device = nullptr; 4692 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4693 Device = C->getDevice(); 4694 4695 // Set the action to signal privatization of device pointers. 4696 RCG.setAction(PrivAction); 4697 4698 // Emit region code. 4699 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4700 Info); 4701 } 4702 4703 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4704 const OMPTargetEnterDataDirective &S) { 4705 // If we don't have target devices, don't bother emitting the data mapping 4706 // code. 4707 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4708 return; 4709 4710 // Check if we have any if clause associated with the directive. 4711 const Expr *IfCond = nullptr; 4712 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4713 IfCond = C->getCondition(); 4714 4715 // Check if we have any device clause associated with the directive. 4716 const Expr *Device = nullptr; 4717 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4718 Device = C->getDevice(); 4719 4720 OMPLexicalScope Scope(*this, S, OMPD_task); 4721 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4722 } 4723 4724 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4725 const OMPTargetExitDataDirective &S) { 4726 // If we don't have target devices, don't bother emitting the data mapping 4727 // code. 4728 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4729 return; 4730 4731 // Check if we have any if clause associated with the directive. 4732 const Expr *IfCond = nullptr; 4733 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4734 IfCond = C->getCondition(); 4735 4736 // Check if we have any device clause associated with the directive. 4737 const Expr *Device = nullptr; 4738 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4739 Device = C->getDevice(); 4740 4741 OMPLexicalScope Scope(*this, S, OMPD_task); 4742 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4743 } 4744 4745 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4746 const OMPTargetParallelDirective &S, 4747 PrePostActionTy &Action) { 4748 // Get the captured statement associated with the 'parallel' region. 4749 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4750 Action.Enter(CGF); 4751 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4752 Action.Enter(CGF); 4753 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4754 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4755 CGF.EmitOMPPrivateClause(S, PrivateScope); 4756 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4757 (void)PrivateScope.Privatize(); 4758 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4759 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4760 // TODO: Add support for clauses. 4761 CGF.EmitStmt(CS->getCapturedStmt()); 4762 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4763 }; 4764 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4765 emitEmptyBoundParameters); 4766 emitPostUpdateForReductionClause(CGF, S, 4767 [](CodeGenFunction &) { return nullptr; }); 4768 } 4769 4770 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4771 CodeGenModule &CGM, StringRef ParentName, 4772 const OMPTargetParallelDirective &S) { 4773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4774 emitTargetParallelRegion(CGF, S, Action); 4775 }; 4776 llvm::Function *Fn; 4777 llvm::Constant *Addr; 4778 // Emit target region as a standalone region. 4779 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4780 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4781 assert(Fn && Addr && "Target device function emission failed."); 4782 } 4783 4784 void CodeGenFunction::EmitOMPTargetParallelDirective( 4785 const OMPTargetParallelDirective &S) { 4786 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4787 emitTargetParallelRegion(CGF, S, Action); 4788 }; 4789 emitCommonOMPTargetDirective(*this, S, CodeGen); 4790 } 4791 4792 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4793 const OMPTargetParallelForDirective &S, 4794 PrePostActionTy &Action) { 4795 Action.Enter(CGF); 4796 // Emit directive as a combined directive that consists of two implicit 4797 // directives: 'parallel' with 'for' directive. 4798 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4799 Action.Enter(CGF); 4800 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4801 CGF, OMPD_target_parallel_for, S.hasCancel()); 4802 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4803 emitDispatchForLoopBounds); 4804 }; 4805 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4806 emitEmptyBoundParameters); 4807 } 4808 4809 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4810 CodeGenModule &CGM, StringRef ParentName, 4811 const OMPTargetParallelForDirective &S) { 4812 // Emit SPMD target parallel for region as a standalone region. 4813 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4814 emitTargetParallelForRegion(CGF, S, Action); 4815 }; 4816 llvm::Function *Fn; 4817 llvm::Constant *Addr; 4818 // Emit target region as a standalone region. 4819 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4820 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4821 assert(Fn && Addr && "Target device function emission failed."); 4822 } 4823 4824 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4825 const OMPTargetParallelForDirective &S) { 4826 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4827 emitTargetParallelForRegion(CGF, S, Action); 4828 }; 4829 emitCommonOMPTargetDirective(*this, S, CodeGen); 4830 } 4831 4832 static void 4833 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4834 const OMPTargetParallelForSimdDirective &S, 4835 PrePostActionTy &Action) { 4836 Action.Enter(CGF); 4837 // Emit directive as a combined directive that consists of two implicit 4838 // directives: 'parallel' with 'for' directive. 4839 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4840 Action.Enter(CGF); 4841 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4842 emitDispatchForLoopBounds); 4843 }; 4844 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4845 emitEmptyBoundParameters); 4846 } 4847 4848 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4849 CodeGenModule &CGM, StringRef ParentName, 4850 const OMPTargetParallelForSimdDirective &S) { 4851 // Emit SPMD target parallel for region as a standalone region. 4852 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4853 emitTargetParallelForSimdRegion(CGF, S, Action); 4854 }; 4855 llvm::Function *Fn; 4856 llvm::Constant *Addr; 4857 // Emit target region as a standalone region. 4858 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4859 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4860 assert(Fn && Addr && "Target device function emission failed."); 4861 } 4862 4863 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4864 const OMPTargetParallelForSimdDirective &S) { 4865 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4866 emitTargetParallelForSimdRegion(CGF, S, Action); 4867 }; 4868 emitCommonOMPTargetDirective(*this, S, CodeGen); 4869 } 4870 4871 /// Emit a helper variable and return corresponding lvalue. 4872 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4873 const ImplicitParamDecl *PVD, 4874 CodeGenFunction::OMPPrivateScope &Privates) { 4875 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4876 Privates.addPrivate(VDecl, 4877 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4878 } 4879 4880 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4881 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4882 // Emit outlined function for task construct. 4883 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4884 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4885 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4886 const Expr *IfCond = nullptr; 4887 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4888 if (C->getNameModifier() == OMPD_unknown || 4889 C->getNameModifier() == OMPD_taskloop) { 4890 IfCond = C->getCondition(); 4891 break; 4892 } 4893 } 4894 4895 OMPTaskDataTy Data; 4896 // Check if taskloop must be emitted without taskgroup. 4897 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4898 // TODO: Check if we should emit tied or untied task. 4899 Data.Tied = true; 4900 // Set scheduling for taskloop 4901 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4902 // grainsize clause 4903 Data.Schedule.setInt(/*IntVal=*/false); 4904 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4905 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4906 // num_tasks clause 4907 Data.Schedule.setInt(/*IntVal=*/true); 4908 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4909 } 4910 4911 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4912 // if (PreCond) { 4913 // for (IV in 0..LastIteration) BODY; 4914 // <Final counter/linear vars updates>; 4915 // } 4916 // 4917 4918 // Emit: if (PreCond) - begin. 4919 // If the condition constant folds and can be elided, avoid emitting the 4920 // whole loop. 4921 bool CondConstant; 4922 llvm::BasicBlock *ContBlock = nullptr; 4923 OMPLoopScope PreInitScope(CGF, S); 4924 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4925 if (!CondConstant) 4926 return; 4927 } else { 4928 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4929 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4930 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4931 CGF.getProfileCount(&S)); 4932 CGF.EmitBlock(ThenBlock); 4933 CGF.incrementProfileCounter(&S); 4934 } 4935 4936 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4937 CGF.EmitOMPSimdInit(S); 4938 4939 OMPPrivateScope LoopScope(CGF); 4940 // Emit helper vars inits. 4941 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4942 auto *I = CS->getCapturedDecl()->param_begin(); 4943 auto *LBP = std::next(I, LowerBound); 4944 auto *UBP = std::next(I, UpperBound); 4945 auto *STP = std::next(I, Stride); 4946 auto *LIP = std::next(I, LastIter); 4947 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4948 LoopScope); 4949 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4950 LoopScope); 4951 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4952 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4953 LoopScope); 4954 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4955 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4956 (void)LoopScope.Privatize(); 4957 // Emit the loop iteration variable. 4958 const Expr *IVExpr = S.getIterationVariable(); 4959 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4960 CGF.EmitVarDecl(*IVDecl); 4961 CGF.EmitIgnoredExpr(S.getInit()); 4962 4963 // Emit the iterations count variable. 4964 // If it is not a variable, Sema decided to calculate iterations count on 4965 // each iteration (e.g., it is foldable into a constant). 4966 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4967 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4968 // Emit calculation of the iterations count. 4969 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4970 } 4971 4972 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4973 S.getInc(), 4974 [&S](CodeGenFunction &CGF) { 4975 CGF.EmitOMPLoopBody(S, JumpDest()); 4976 CGF.EmitStopPoint(&S); 4977 }, 4978 [](CodeGenFunction &) {}); 4979 // Emit: if (PreCond) - end. 4980 if (ContBlock) { 4981 CGF.EmitBranch(ContBlock); 4982 CGF.EmitBlock(ContBlock, true); 4983 } 4984 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4985 if (HasLastprivateClause) { 4986 CGF.EmitOMPLastprivateClauseFinal( 4987 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4988 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4989 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4990 (*LIP)->getType(), S.getBeginLoc()))); 4991 } 4992 }; 4993 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4994 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4995 const OMPTaskDataTy &Data) { 4996 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4997 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4998 OMPLoopScope PreInitScope(CGF, S); 4999 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5000 OutlinedFn, SharedsTy, 5001 CapturedStruct, IfCond, Data); 5002 }; 5003 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5004 CodeGen); 5005 }; 5006 if (Data.Nogroup) { 5007 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5008 } else { 5009 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5010 *this, 5011 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5012 PrePostActionTy &Action) { 5013 Action.Enter(CGF); 5014 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5015 Data); 5016 }, 5017 S.getBeginLoc()); 5018 } 5019 } 5020 5021 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5022 EmitOMPTaskLoopBasedDirective(S); 5023 } 5024 5025 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5026 const OMPTaskLoopSimdDirective &S) { 5027 EmitOMPTaskLoopBasedDirective(S); 5028 } 5029 5030 // Generate the instructions for '#pragma omp target update' directive. 5031 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5032 const OMPTargetUpdateDirective &S) { 5033 // If we don't have target devices, don't bother emitting the data mapping 5034 // code. 5035 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5036 return; 5037 5038 // Check if we have any if clause associated with the directive. 5039 const Expr *IfCond = nullptr; 5040 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5041 IfCond = C->getCondition(); 5042 5043 // Check if we have any device clause associated with the directive. 5044 const Expr *Device = nullptr; 5045 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5046 Device = C->getDevice(); 5047 5048 OMPLexicalScope Scope(*this, S, OMPD_task); 5049 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5050 } 5051 5052 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5053 const OMPExecutableDirective &D) { 5054 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5055 return; 5056 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5057 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5058 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5059 } else { 5060 OMPPrivateScope LoopGlobals(CGF); 5061 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5062 for (const Expr *E : LD->counters()) { 5063 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5064 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5065 LValue GlobLVal = CGF.EmitLValue(E); 5066 LoopGlobals.addPrivate( 5067 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5068 } 5069 if (isa<OMPCapturedExprDecl>(VD)) { 5070 // Emit only those that were not explicitly referenced in clauses. 5071 if (!CGF.LocalDeclMap.count(VD)) 5072 CGF.EmitVarDecl(*VD); 5073 } 5074 } 5075 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5076 if (!C->getNumForLoops()) 5077 continue; 5078 for (unsigned I = LD->getCollapsedNumber(), 5079 E = C->getLoopNumIterations().size(); 5080 I < E; ++I) { 5081 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5082 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5083 // Emit only those that were not explicitly referenced in clauses. 5084 if (!CGF.LocalDeclMap.count(VD)) 5085 CGF.EmitVarDecl(*VD); 5086 } 5087 } 5088 } 5089 } 5090 LoopGlobals.Privatize(); 5091 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5092 } 5093 }; 5094 OMPSimdLexicalScope Scope(*this, D); 5095 CGM.getOpenMPRuntime().emitInlinedDirective( 5096 *this, 5097 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5098 : D.getDirectiveKind(), 5099 CodeGen); 5100 } 5101