1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (const auto *PreInit =
34                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
35           for (const auto *I : PreInit->decls()) {
36             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
37               CGF.EmitVarDecl(cast<VarDecl>(*I));
38             } else {
39               CodeGenFunction::AutoVarEmission Emission =
40                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
41               CGF.EmitAutoVarCleanups(Emission);
42             }
43           }
44         }
45       }
46     }
47   }
48   CodeGenFunction::OMPPrivateScope InlinedShareds;
49 
50   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
51     return CGF.LambdaCaptureFields.lookup(VD) ||
52            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
53            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
54   }
55 
56 public:
57   OMPLexicalScope(
58       CodeGenFunction &CGF, const OMPExecutableDirective &S,
59       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
60       const bool EmitPreInitStmt = true)
61       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
62         InlinedShareds(CGF) {
63     if (EmitPreInitStmt)
64       emitPreInitStmt(CGF, S);
65     if (!CapturedRegion.hasValue())
66       return;
67     assert(S.hasAssociatedStmt() &&
68            "Expected associated statement for inlined directive.");
69     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
70     for (const auto &C : CS->captures()) {
71       if (C.capturesVariable() || C.capturesVariableByCopy()) {
72         auto *VD = C.getCapturedVar();
73         assert(VD == VD->getCanonicalDecl() &&
74                "Canonical decl must be captured.");
75         DeclRefExpr DRE(
76             CGF.getContext(), const_cast<VarDecl *>(VD),
77             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
78                                        InlinedShareds.isGlobalVarCaptured(VD)),
79             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
80         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
81           return CGF.EmitLValue(&DRE).getAddress();
82         });
83       }
84     }
85     (void)InlinedShareds.Privatize();
86   }
87 };
88 
89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
90 /// for captured expressions.
91 class OMPParallelScope final : public OMPLexicalScope {
92   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
93     OpenMPDirectiveKind Kind = S.getDirectiveKind();
94     return !(isOpenMPTargetExecutionDirective(Kind) ||
95              isOpenMPLoopBoundSharingDirective(Kind)) &&
96            isOpenMPParallelDirective(Kind);
97   }
98 
99 public:
100   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
101       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
102                         EmitPreInitStmt(S)) {}
103 };
104 
105 /// Lexical scope for OpenMP teams construct, that handles correct codegen
106 /// for captured expressions.
107 class OMPTeamsScope final : public OMPLexicalScope {
108   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
109     OpenMPDirectiveKind Kind = S.getDirectiveKind();
110     return !isOpenMPTargetExecutionDirective(Kind) &&
111            isOpenMPTeamsDirective(Kind);
112   }
113 
114 public:
115   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
116       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
117                         EmitPreInitStmt(S)) {}
118 };
119 
120 /// Private scope for OpenMP loop-based directives, that supports capturing
121 /// of used expression from loop statement.
122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
123   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
124     CodeGenFunction::OMPMapVars PreCondVars;
125     for (const auto *E : S.counters()) {
126       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
127       (void)PreCondVars.setVarAddr(
128           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
129     }
130     (void)PreCondVars.apply(CGF);
131     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
132       for (const auto *I : PreInits->decls())
133         CGF.EmitVarDecl(cast<VarDecl>(*I));
134     }
135     PreCondVars.restore(CGF);
136   }
137 
138 public:
139   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
140       : CodeGenFunction::RunCleanupsScope(CGF) {
141     emitPreInitStmt(CGF, S);
142   }
143 };
144 
145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
146   CodeGenFunction::OMPPrivateScope InlinedShareds;
147 
148   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
149     return CGF.LambdaCaptureFields.lookup(VD) ||
150            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
151            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
152             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
153   }
154 
155 public:
156   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
157       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
158         InlinedShareds(CGF) {
159     for (const auto *C : S.clauses()) {
160       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
161         if (const auto *PreInit =
162                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
163           for (const auto *I : PreInit->decls()) {
164             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
165               CGF.EmitVarDecl(cast<VarDecl>(*I));
166             } else {
167               CodeGenFunction::AutoVarEmission Emission =
168                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
169               CGF.EmitAutoVarCleanups(Emission);
170             }
171           }
172         }
173       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
174         for (const Expr *E : UDP->varlists()) {
175           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
176           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
177             CGF.EmitVarDecl(*OED);
178         }
179       }
180     }
181     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
182       CGF.EmitOMPPrivateClause(S, InlinedShareds);
183     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
184       if (const Expr *E = TG->getReductionRef())
185         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
186     }
187     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
188     while (CS) {
189       for (auto &C : CS->captures()) {
190         if (C.capturesVariable() || C.capturesVariableByCopy()) {
191           auto *VD = C.getCapturedVar();
192           assert(VD == VD->getCanonicalDecl() &&
193                  "Canonical decl must be captured.");
194           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
195                           isCapturedVar(CGF, VD) ||
196                               (CGF.CapturedStmtInfo &&
197                                InlinedShareds.isGlobalVarCaptured(VD)),
198                           VD->getType().getNonReferenceType(), VK_LValue,
199                           C.getLocation());
200           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
201             return CGF.EmitLValue(&DRE).getAddress();
202           });
203         }
204       }
205       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
206     }
207     (void)InlinedShareds.Privatize();
208   }
209 };
210 
211 } // namespace
212 
213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
214                                          const OMPExecutableDirective &S,
215                                          const RegionCodeGenTy &CodeGen);
216 
217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
218   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
219     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
220       OrigVD = OrigVD->getCanonicalDecl();
221       bool IsCaptured =
222           LambdaCaptureFields.lookup(OrigVD) ||
223           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
224           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
225       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
226                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
227       return EmitLValue(&DRE);
228     }
229   }
230   return EmitLValue(E);
231 }
232 
233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
234   ASTContext &C = getContext();
235   llvm::Value *Size = nullptr;
236   auto SizeInChars = C.getTypeSizeInChars(Ty);
237   if (SizeInChars.isZero()) {
238     // getTypeSizeInChars() returns 0 for a VLA.
239     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
240       VlaSizePair VlaSize = getVLASize(VAT);
241       Ty = VlaSize.Type;
242       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
243                   : VlaSize.NumElts;
244     }
245     SizeInChars = C.getTypeSizeInChars(Ty);
246     if (SizeInChars.isZero())
247       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
248     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
249   }
250   return CGM.getSize(SizeInChars);
251 }
252 
253 void CodeGenFunction::GenerateOpenMPCapturedVars(
254     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
255   const RecordDecl *RD = S.getCapturedRecordDecl();
256   auto CurField = RD->field_begin();
257   auto CurCap = S.captures().begin();
258   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
259                                                  E = S.capture_init_end();
260        I != E; ++I, ++CurField, ++CurCap) {
261     if (CurField->hasCapturedVLAType()) {
262       const VariableArrayType *VAT = CurField->getCapturedVLAType();
263       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
264       CapturedVars.push_back(Val);
265     } else if (CurCap->capturesThis()) {
266       CapturedVars.push_back(CXXThisValue);
267     } else if (CurCap->capturesVariableByCopy()) {
268       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
269 
270       // If the field is not a pointer, we need to save the actual value
271       // and load it as a void pointer.
272       if (!CurField->getType()->isAnyPointerType()) {
273         ASTContext &Ctx = getContext();
274         Address DstAddr = CreateMemTemp(
275             Ctx.getUIntPtrType(),
276             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
277         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
278 
279         llvm::Value *SrcAddrVal = EmitScalarConversion(
280             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
281             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
282         LValue SrcLV =
283             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
284 
285         // Store the value using the source type pointer.
286         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
287 
288         // Load the value using the destination type pointer.
289         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
290       }
291       CapturedVars.push_back(CV);
292     } else {
293       assert(CurCap->capturesVariable() && "Expected capture by reference.");
294       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
295     }
296   }
297 }
298 
299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
300                                     QualType DstType, StringRef Name,
301                                     LValue AddrLV,
302                                     bool isReferenceType = false) {
303   ASTContext &Ctx = CGF.getContext();
304 
305   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
306       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
307       Ctx.getPointerType(DstType), Loc);
308   Address TmpAddr =
309       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
310           .getAddress();
311 
312   // If we are dealing with references we need to return the address of the
313   // reference instead of the reference of the value.
314   if (isReferenceType) {
315     QualType RefType = Ctx.getLValueReferenceType(DstType);
316     llvm::Value *RefVal = TmpAddr.getPointer();
317     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref"));
318     LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
319     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true);
320   }
321 
322   return TmpAddr;
323 }
324 
325 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
326   if (T->isLValueReferenceType())
327     return C.getLValueReferenceType(
328         getCanonicalParamType(C, T.getNonReferenceType()),
329         /*SpelledAsLValue=*/false);
330   if (T->isPointerType())
331     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
332   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
333     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
334       return getCanonicalParamType(C, VLA->getElementType());
335     if (!A->isVariablyModifiedType())
336       return C.getCanonicalType(T);
337   }
338   return C.getCanonicalParamType(T);
339 }
340 
341 namespace {
342   /// Contains required data for proper outlined function codegen.
343   struct FunctionOptions {
344     /// Captured statement for which the function is generated.
345     const CapturedStmt *S = nullptr;
346     /// true if cast to/from  UIntPtr is required for variables captured by
347     /// value.
348     const bool UIntPtrCastRequired = true;
349     /// true if only casted arguments must be registered as local args or VLA
350     /// sizes.
351     const bool RegisterCastedArgsOnly = false;
352     /// Name of the generated function.
353     const StringRef FunctionName;
354     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
355                              bool RegisterCastedArgsOnly,
356                              StringRef FunctionName)
357         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
358           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
359           FunctionName(FunctionName) {}
360   };
361 }
362 
363 static llvm::Function *emitOutlinedFunctionPrologue(
364     CodeGenFunction &CGF, FunctionArgList &Args,
365     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
366         &LocalAddrs,
367     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
368         &VLASizes,
369     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
370   const CapturedDecl *CD = FO.S->getCapturedDecl();
371   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
372   assert(CD->hasBody() && "missing CapturedDecl body");
373 
374   CXXThisValue = nullptr;
375   // Build the argument list.
376   CodeGenModule &CGM = CGF.CGM;
377   ASTContext &Ctx = CGM.getContext();
378   FunctionArgList TargetArgs;
379   Args.append(CD->param_begin(),
380               std::next(CD->param_begin(), CD->getContextParamPosition()));
381   TargetArgs.append(
382       CD->param_begin(),
383       std::next(CD->param_begin(), CD->getContextParamPosition()));
384   auto I = FO.S->captures().begin();
385   FunctionDecl *DebugFunctionDecl = nullptr;
386   if (!FO.UIntPtrCastRequired) {
387     FunctionProtoType::ExtProtoInfo EPI;
388     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
389     DebugFunctionDecl = FunctionDecl::Create(
390         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
391         SourceLocation(), DeclarationName(), FunctionTy,
392         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
393         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
394   }
395   for (const FieldDecl *FD : RD->fields()) {
396     QualType ArgType = FD->getType();
397     IdentifierInfo *II = nullptr;
398     VarDecl *CapVar = nullptr;
399 
400     // If this is a capture by copy and the type is not a pointer, the outlined
401     // function argument type should be uintptr and the value properly casted to
402     // uintptr. This is necessary given that the runtime library is only able to
403     // deal with pointers. We can pass in the same way the VLA type sizes to the
404     // outlined function.
405     if (FO.UIntPtrCastRequired &&
406         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
407          I->capturesVariableArrayType()))
408       ArgType = Ctx.getUIntPtrType();
409 
410     if (I->capturesVariable() || I->capturesVariableByCopy()) {
411       CapVar = I->getCapturedVar();
412       II = CapVar->getIdentifier();
413     } else if (I->capturesThis()) {
414       II = &Ctx.Idents.get("this");
415     } else {
416       assert(I->capturesVariableArrayType());
417       II = &Ctx.Idents.get("vla");
418     }
419     if (ArgType->isVariablyModifiedType())
420       ArgType = getCanonicalParamType(Ctx, ArgType);
421     VarDecl *Arg;
422     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
423       Arg = ParmVarDecl::Create(
424           Ctx, DebugFunctionDecl,
425           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
426           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
427           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
428     } else {
429       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
430                                       II, ArgType, ImplicitParamDecl::Other);
431     }
432     Args.emplace_back(Arg);
433     // Do not cast arguments if we emit function with non-original types.
434     TargetArgs.emplace_back(
435         FO.UIntPtrCastRequired
436             ? Arg
437             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
438     ++I;
439   }
440   Args.append(
441       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
442       CD->param_end());
443   TargetArgs.append(
444       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
445       CD->param_end());
446 
447   // Create the function declaration.
448   const CGFunctionInfo &FuncInfo =
449       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
450   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
451 
452   auto *F =
453       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
454                              FO.FunctionName, &CGM.getModule());
455   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
456   if (CD->isNothrow())
457     F->setDoesNotThrow();
458   F->setDoesNotRecurse();
459 
460   // Generate the function.
461   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
462                     FO.S->getBeginLoc(), CD->getBody()->getBeginLoc());
463   unsigned Cnt = CD->getContextParamPosition();
464   I = FO.S->captures().begin();
465   for (const FieldDecl *FD : RD->fields()) {
466     // Do not map arguments if we emit function with non-original types.
467     Address LocalAddr(Address::invalid());
468     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
469       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
470                                                              TargetArgs[Cnt]);
471     } else {
472       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
473     }
474     // If we are capturing a pointer by copy we don't need to do anything, just
475     // use the value that we get from the arguments.
476     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
477       const VarDecl *CurVD = I->getCapturedVar();
478       // If the variable is a reference we need to materialize it here.
479       if (CurVD->getType()->isReferenceType()) {
480         Address RefAddr = CGF.CreateMemTemp(
481             CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref");
482         CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr,
483                               /*Volatile=*/false, CurVD->getType());
484         LocalAddr = RefAddr;
485       }
486       if (!FO.RegisterCastedArgsOnly)
487         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
488       ++Cnt;
489       ++I;
490       continue;
491     }
492 
493     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
494                                         AlignmentSource::Decl);
495     if (FD->hasCapturedVLAType()) {
496       if (FO.UIntPtrCastRequired) {
497         ArgLVal = CGF.MakeAddrLValue(
498             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
499                                  Args[Cnt]->getName(), ArgLVal),
500             FD->getType(), AlignmentSource::Decl);
501       }
502       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
503       const VariableArrayType *VAT = FD->getCapturedVLAType();
504       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
505     } else if (I->capturesVariable()) {
506       const VarDecl *Var = I->getCapturedVar();
507       QualType VarTy = Var->getType();
508       Address ArgAddr = ArgLVal.getAddress();
509       if (!VarTy->isReferenceType()) {
510         if (ArgLVal.getType()->isLValueReferenceType()) {
511           ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
512         } else if (!VarTy->isVariablyModifiedType() ||
513                    !VarTy->isPointerType()) {
514           assert(ArgLVal.getType()->isPointerType());
515           ArgAddr = CGF.EmitLoadOfPointer(
516               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
517         }
518       }
519       if (!FO.RegisterCastedArgsOnly) {
520         LocalAddrs.insert(
521             {Args[Cnt],
522              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
523       }
524     } else if (I->capturesVariableByCopy()) {
525       assert(!FD->getType()->isAnyPointerType() &&
526              "Not expecting a captured pointer.");
527       const VarDecl *Var = I->getCapturedVar();
528       QualType VarTy = Var->getType();
529       LocalAddrs.insert(
530           {Args[Cnt],
531            {Var, FO.UIntPtrCastRequired
532                      ? castValueFromUintptr(CGF, I->getLocation(),
533                                             FD->getType(), Args[Cnt]->getName(),
534                                             ArgLVal, VarTy->isReferenceType())
535                      : ArgLVal.getAddress()}});
536     } else {
537       // If 'this' is captured, load it into CXXThisValue.
538       assert(I->capturesThis());
539       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
540       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
541     }
542     ++Cnt;
543     ++I;
544   }
545 
546   return F;
547 }
548 
549 llvm::Function *
550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
551   assert(
552       CapturedStmtInfo &&
553       "CapturedStmtInfo should be set when generating the captured function");
554   const CapturedDecl *CD = S.getCapturedDecl();
555   // Build the argument list.
556   bool NeedWrapperFunction =
557       getDebugInfo() &&
558       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
559   FunctionArgList Args;
560   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
561   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
562   SmallString<256> Buffer;
563   llvm::raw_svector_ostream Out(Buffer);
564   Out << CapturedStmtInfo->getHelperName();
565   if (NeedWrapperFunction)
566     Out << "_debug__";
567   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
568                      Out.str());
569   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
570                                                    VLASizes, CXXThisValue, FO);
571   for (const auto &LocalAddrPair : LocalAddrs) {
572     if (LocalAddrPair.second.first) {
573       setAddrOfLocalVar(LocalAddrPair.second.first,
574                         LocalAddrPair.second.second);
575     }
576   }
577   for (const auto &VLASizePair : VLASizes)
578     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
579   PGO.assignRegionCounters(GlobalDecl(CD), F);
580   CapturedStmtInfo->EmitBody(*this, CD->getBody());
581   FinishFunction(CD->getBodyRBrace());
582   if (!NeedWrapperFunction)
583     return F;
584 
585   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
586                             /*RegisterCastedArgsOnly=*/true,
587                             CapturedStmtInfo->getHelperName());
588   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
589   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
590   Args.clear();
591   LocalAddrs.clear();
592   VLASizes.clear();
593   llvm::Function *WrapperF =
594       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
595                                    WrapperCGF.CXXThisValue, WrapperFO);
596   llvm::SmallVector<llvm::Value *, 4> CallArgs;
597   for (const auto *Arg : Args) {
598     llvm::Value *CallArg;
599     auto I = LocalAddrs.find(Arg);
600     if (I != LocalAddrs.end()) {
601       LValue LV = WrapperCGF.MakeAddrLValue(
602           I->second.second,
603           I->second.first ? I->second.first->getType() : Arg->getType(),
604           AlignmentSource::Decl);
605       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
606     } else {
607       auto EI = VLASizes.find(Arg);
608       if (EI != VLASizes.end()) {
609         CallArg = EI->second.second;
610       } else {
611         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
612                                               Arg->getType(),
613                                               AlignmentSource::Decl);
614         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
615       }
616     }
617     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
618   }
619   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(),
620                                                   F, CallArgs);
621   WrapperCGF.FinishFunction();
622   return WrapperF;
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                              OpenMP Directive Emission
627 //===----------------------------------------------------------------------===//
628 void CodeGenFunction::EmitOMPAggregateAssign(
629     Address DestAddr, Address SrcAddr, QualType OriginalType,
630     const llvm::function_ref<void(Address, Address)> CopyGen) {
631   // Perform element-by-element initialization.
632   QualType ElementTy;
633 
634   // Drill down to the base element type on both arrays.
635   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
636   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
637   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
638 
639   llvm::Value *SrcBegin = SrcAddr.getPointer();
640   llvm::Value *DestBegin = DestAddr.getPointer();
641   // Cast from pointer to array type to pointer to single element.
642   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
643   // The basic structure here is a while-do loop.
644   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
645   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
646   llvm::Value *IsEmpty =
647       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
648   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
649 
650   // Enter the loop body, making that address the current address.
651   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
652   EmitBlock(BodyBB);
653 
654   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
655 
656   llvm::PHINode *SrcElementPHI =
657     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
658   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
659   Address SrcElementCurrent =
660       Address(SrcElementPHI,
661               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
662 
663   llvm::PHINode *DestElementPHI =
664     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
665   DestElementPHI->addIncoming(DestBegin, EntryBB);
666   Address DestElementCurrent =
667     Address(DestElementPHI,
668             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
669 
670   // Emit copy.
671   CopyGen(DestElementCurrent, SrcElementCurrent);
672 
673   // Shift the address forward by one element.
674   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
675       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
676   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
677       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
678   // Check whether we've reached the end.
679   llvm::Value *Done =
680       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
681   Builder.CreateCondBr(Done, DoneBB, BodyBB);
682   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
683   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
684 
685   // Done.
686   EmitBlock(DoneBB, /*IsFinished=*/true);
687 }
688 
689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
690                                   Address SrcAddr, const VarDecl *DestVD,
691                                   const VarDecl *SrcVD, const Expr *Copy) {
692   if (OriginalType->isArrayType()) {
693     const auto *BO = dyn_cast<BinaryOperator>(Copy);
694     if (BO && BO->getOpcode() == BO_Assign) {
695       // Perform simple memcpy for simple copying.
696       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
697       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
698       EmitAggregateAssign(Dest, Src, OriginalType);
699     } else {
700       // For arrays with complex element types perform element by element
701       // copying.
702       EmitOMPAggregateAssign(
703           DestAddr, SrcAddr, OriginalType,
704           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
705             // Working with the single array element, so have to remap
706             // destination and source variables to corresponding array
707             // elements.
708             CodeGenFunction::OMPPrivateScope Remap(*this);
709             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
710             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
711             (void)Remap.Privatize();
712             EmitIgnoredExpr(Copy);
713           });
714     }
715   } else {
716     // Remap pseudo source variable to private copy.
717     CodeGenFunction::OMPPrivateScope Remap(*this);
718     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
719     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
720     (void)Remap.Privatize();
721     // Emit copying of the whole variable.
722     EmitIgnoredExpr(Copy);
723   }
724 }
725 
726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
727                                                 OMPPrivateScope &PrivateScope) {
728   if (!HaveInsertPoint())
729     return false;
730   bool FirstprivateIsLastprivate = false;
731   llvm::DenseSet<const VarDecl *> Lastprivates;
732   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
733     for (const auto *D : C->varlists())
734       Lastprivates.insert(
735           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
736   }
737   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
738   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
739   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
740   // Force emission of the firstprivate copy if the directive does not emit
741   // outlined function, like omp for, omp simd, omp distribute etc.
742   bool MustEmitFirstprivateCopy =
743       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
744   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
745     auto IRef = C->varlist_begin();
746     auto InitsRef = C->inits().begin();
747     for (const Expr *IInit : C->private_copies()) {
748       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
749       bool ThisFirstprivateIsLastprivate =
750           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
751       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
752       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
753           !FD->getType()->isReferenceType()) {
754         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
755         ++IRef;
756         ++InitsRef;
757         continue;
758       }
759       FirstprivateIsLastprivate =
760           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
761       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
762         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
763         const auto *VDInit =
764             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
765         bool IsRegistered;
766         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
767                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
768                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
769         LValue OriginalLVal = EmitLValue(&DRE);
770         QualType Type = VD->getType();
771         if (Type->isArrayType()) {
772           // Emit VarDecl with copy init for arrays.
773           // Get the address of the original variable captured in current
774           // captured region.
775           IsRegistered = PrivateScope.addPrivate(
776               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
777                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
778                 const Expr *Init = VD->getInit();
779                 if (!isa<CXXConstructExpr>(Init) ||
780                     isTrivialInitializer(Init)) {
781                   // Perform simple memcpy.
782                   LValue Dest =
783                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
784                   EmitAggregateAssign(Dest, OriginalLVal, Type);
785                 } else {
786                   EmitOMPAggregateAssign(
787                       Emission.getAllocatedAddress(), OriginalLVal.getAddress(),
788                       Type,
789                       [this, VDInit, Init](Address DestElement,
790                                            Address SrcElement) {
791                         // Clean up any temporaries needed by the
792                         // initialization.
793                         RunCleanupsScope InitScope(*this);
794                         // Emit initialization for single element.
795                         setAddrOfLocalVar(VDInit, SrcElement);
796                         EmitAnyExprToMem(Init, DestElement,
797                                          Init->getType().getQualifiers(),
798                                          /*IsInitializer*/ false);
799                         LocalDeclMap.erase(VDInit);
800                       });
801                 }
802                 EmitAutoVarCleanups(Emission);
803                 return Emission.getAllocatedAddress();
804               });
805         } else {
806           Address OriginalAddr = OriginalLVal.getAddress();
807           IsRegistered = PrivateScope.addPrivate(
808               OrigVD, [this, VDInit, OriginalAddr, VD]() {
809                 // Emit private VarDecl with copy init.
810                 // Remap temp VDInit variable to the address of the original
811                 // variable (for proper handling of captured global variables).
812                 setAddrOfLocalVar(VDInit, OriginalAddr);
813                 EmitDecl(*VD);
814                 LocalDeclMap.erase(VDInit);
815                 return GetAddrOfLocalVar(VD);
816               });
817         }
818         assert(IsRegistered &&
819                "firstprivate var already registered as private");
820         // Silence the warning about unused variable.
821         (void)IsRegistered;
822       }
823       ++IRef;
824       ++InitsRef;
825     }
826   }
827   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
828 }
829 
830 void CodeGenFunction::EmitOMPPrivateClause(
831     const OMPExecutableDirective &D,
832     CodeGenFunction::OMPPrivateScope &PrivateScope) {
833   if (!HaveInsertPoint())
834     return;
835   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
836   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
837     auto IRef = C->varlist_begin();
838     for (const Expr *IInit : C->private_copies()) {
839       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
840       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
841         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
842         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
843           // Emit private VarDecl with copy init.
844           EmitDecl(*VD);
845           return GetAddrOfLocalVar(VD);
846         });
847         assert(IsRegistered && "private var already registered as private");
848         // Silence the warning about unused variable.
849         (void)IsRegistered;
850       }
851       ++IRef;
852     }
853   }
854 }
855 
856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
857   if (!HaveInsertPoint())
858     return false;
859   // threadprivate_var1 = master_threadprivate_var1;
860   // operator=(threadprivate_var2, master_threadprivate_var2);
861   // ...
862   // __kmpc_barrier(&loc, global_tid);
863   llvm::DenseSet<const VarDecl *> CopiedVars;
864   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
865   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
866     auto IRef = C->varlist_begin();
867     auto ISrcRef = C->source_exprs().begin();
868     auto IDestRef = C->destination_exprs().begin();
869     for (const Expr *AssignOp : C->assignment_ops()) {
870       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
871       QualType Type = VD->getType();
872       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
873         // Get the address of the master variable. If we are emitting code with
874         // TLS support, the address is passed from the master as field in the
875         // captured declaration.
876         Address MasterAddr = Address::invalid();
877         if (getLangOpts().OpenMPUseTLS &&
878             getContext().getTargetInfo().isTLSSupported()) {
879           assert(CapturedStmtInfo->lookup(VD) &&
880                  "Copyin threadprivates should have been captured!");
881           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
882                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
883           MasterAddr = EmitLValue(&DRE).getAddress();
884           LocalDeclMap.erase(VD);
885         } else {
886           MasterAddr =
887             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
888                                         : CGM.GetAddrOfGlobal(VD),
889                     getContext().getDeclAlign(VD));
890         }
891         // Get the address of the threadprivate variable.
892         Address PrivateAddr = EmitLValue(*IRef).getAddress();
893         if (CopiedVars.size() == 1) {
894           // At first check if current thread is a master thread. If it is, no
895           // need to copy data.
896           CopyBegin = createBasicBlock("copyin.not.master");
897           CopyEnd = createBasicBlock("copyin.not.master.end");
898           Builder.CreateCondBr(
899               Builder.CreateICmpNE(
900                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
901                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
902                                          CGM.IntPtrTy)),
903               CopyBegin, CopyEnd);
904           EmitBlock(CopyBegin);
905         }
906         const auto *SrcVD =
907             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
908         const auto *DestVD =
909             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
910         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
911       }
912       ++IRef;
913       ++ISrcRef;
914       ++IDestRef;
915     }
916   }
917   if (CopyEnd) {
918     // Exit out of copying procedure for non-master thread.
919     EmitBlock(CopyEnd, /*IsFinished=*/true);
920     return true;
921   }
922   return false;
923 }
924 
925 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
926     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
927   if (!HaveInsertPoint())
928     return false;
929   bool HasAtLeastOneLastprivate = false;
930   llvm::DenseSet<const VarDecl *> SIMDLCVs;
931   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
932     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
933     for (const Expr *C : LoopDirective->counters()) {
934       SIMDLCVs.insert(
935           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
936     }
937   }
938   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
939   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
940     HasAtLeastOneLastprivate = true;
941     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
942         !getLangOpts().OpenMPSimd)
943       break;
944     auto IRef = C->varlist_begin();
945     auto IDestRef = C->destination_exprs().begin();
946     for (const Expr *IInit : C->private_copies()) {
947       // Keep the address of the original variable for future update at the end
948       // of the loop.
949       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
950       // Taskloops do not require additional initialization, it is done in
951       // runtime support library.
952       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
953         const auto *DestVD =
954             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
955         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
956           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
957                           /*RefersToEnclosingVariableOrCapture=*/
958                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
959                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
960           return EmitLValue(&DRE).getAddress();
961         });
962         // Check if the variable is also a firstprivate: in this case IInit is
963         // not generated. Initialization of this variable will happen in codegen
964         // for 'firstprivate' clause.
965         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
966           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
967           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
968             // Emit private VarDecl with copy init.
969             EmitDecl(*VD);
970             return GetAddrOfLocalVar(VD);
971           });
972           assert(IsRegistered &&
973                  "lastprivate var already registered as private");
974           (void)IsRegistered;
975         }
976       }
977       ++IRef;
978       ++IDestRef;
979     }
980   }
981   return HasAtLeastOneLastprivate;
982 }
983 
984 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
985     const OMPExecutableDirective &D, bool NoFinals,
986     llvm::Value *IsLastIterCond) {
987   if (!HaveInsertPoint())
988     return;
989   // Emit following code:
990   // if (<IsLastIterCond>) {
991   //   orig_var1 = private_orig_var1;
992   //   ...
993   //   orig_varn = private_orig_varn;
994   // }
995   llvm::BasicBlock *ThenBB = nullptr;
996   llvm::BasicBlock *DoneBB = nullptr;
997   if (IsLastIterCond) {
998     ThenBB = createBasicBlock(".omp.lastprivate.then");
999     DoneBB = createBasicBlock(".omp.lastprivate.done");
1000     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1001     EmitBlock(ThenBB);
1002   }
1003   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1004   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1005   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1006     auto IC = LoopDirective->counters().begin();
1007     for (const Expr *F : LoopDirective->finals()) {
1008       const auto *D =
1009           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1010       if (NoFinals)
1011         AlreadyEmittedVars.insert(D);
1012       else
1013         LoopCountersAndUpdates[D] = F;
1014       ++IC;
1015     }
1016   }
1017   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1018     auto IRef = C->varlist_begin();
1019     auto ISrcRef = C->source_exprs().begin();
1020     auto IDestRef = C->destination_exprs().begin();
1021     for (const Expr *AssignOp : C->assignment_ops()) {
1022       const auto *PrivateVD =
1023           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1024       QualType Type = PrivateVD->getType();
1025       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1026       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1027         // If lastprivate variable is a loop control variable for loop-based
1028         // directive, update its value before copyin back to original
1029         // variable.
1030         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1031           EmitIgnoredExpr(FinalExpr);
1032         const auto *SrcVD =
1033             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1034         const auto *DestVD =
1035             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1036         // Get the address of the original variable.
1037         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1038         // Get the address of the private variable.
1039         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1040         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1041           PrivateAddr =
1042               Address(Builder.CreateLoad(PrivateAddr),
1043                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1044         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1045       }
1046       ++IRef;
1047       ++ISrcRef;
1048       ++IDestRef;
1049     }
1050     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1051       EmitIgnoredExpr(PostUpdate);
1052   }
1053   if (IsLastIterCond)
1054     EmitBlock(DoneBB, /*IsFinished=*/true);
1055 }
1056 
1057 void CodeGenFunction::EmitOMPReductionClauseInit(
1058     const OMPExecutableDirective &D,
1059     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1060   if (!HaveInsertPoint())
1061     return;
1062   SmallVector<const Expr *, 4> Shareds;
1063   SmallVector<const Expr *, 4> Privates;
1064   SmallVector<const Expr *, 4> ReductionOps;
1065   SmallVector<const Expr *, 4> LHSs;
1066   SmallVector<const Expr *, 4> RHSs;
1067   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1068     auto IPriv = C->privates().begin();
1069     auto IRed = C->reduction_ops().begin();
1070     auto ILHS = C->lhs_exprs().begin();
1071     auto IRHS = C->rhs_exprs().begin();
1072     for (const Expr *Ref : C->varlists()) {
1073       Shareds.emplace_back(Ref);
1074       Privates.emplace_back(*IPriv);
1075       ReductionOps.emplace_back(*IRed);
1076       LHSs.emplace_back(*ILHS);
1077       RHSs.emplace_back(*IRHS);
1078       std::advance(IPriv, 1);
1079       std::advance(IRed, 1);
1080       std::advance(ILHS, 1);
1081       std::advance(IRHS, 1);
1082     }
1083   }
1084   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1085   unsigned Count = 0;
1086   auto ILHS = LHSs.begin();
1087   auto IRHS = RHSs.begin();
1088   auto IPriv = Privates.begin();
1089   for (const Expr *IRef : Shareds) {
1090     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1091     // Emit private VarDecl with reduction init.
1092     RedCG.emitSharedLValue(*this, Count);
1093     RedCG.emitAggregateType(*this, Count);
1094     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1095     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1096                              RedCG.getSharedLValue(Count),
1097                              [&Emission](CodeGenFunction &CGF) {
1098                                CGF.EmitAutoVarInit(Emission);
1099                                return true;
1100                              });
1101     EmitAutoVarCleanups(Emission);
1102     Address BaseAddr = RedCG.adjustPrivateAddress(
1103         *this, Count, Emission.getAllocatedAddress());
1104     bool IsRegistered = PrivateScope.addPrivate(
1105         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1106     assert(IsRegistered && "private var already registered as private");
1107     // Silence the warning about unused variable.
1108     (void)IsRegistered;
1109 
1110     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1111     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1112     QualType Type = PrivateVD->getType();
1113     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1114     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1115       // Store the address of the original variable associated with the LHS
1116       // implicit variable.
1117       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1118         return RedCG.getSharedLValue(Count).getAddress();
1119       });
1120       PrivateScope.addPrivate(
1121           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1122     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1123                isa<ArraySubscriptExpr>(IRef)) {
1124       // Store the address of the original variable associated with the LHS
1125       // implicit variable.
1126       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1127         return RedCG.getSharedLValue(Count).getAddress();
1128       });
1129       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1130         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1131                                             ConvertTypeForMem(RHSVD->getType()),
1132                                             "rhs.begin");
1133       });
1134     } else {
1135       QualType Type = PrivateVD->getType();
1136       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1137       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1138       // Store the address of the original variable associated with the LHS
1139       // implicit variable.
1140       if (IsArray) {
1141         OriginalAddr = Builder.CreateElementBitCast(
1142             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1143       }
1144       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1145       PrivateScope.addPrivate(
1146           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1147             return IsArray
1148                        ? Builder.CreateElementBitCast(
1149                              GetAddrOfLocalVar(PrivateVD),
1150                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1151                        : GetAddrOfLocalVar(PrivateVD);
1152           });
1153     }
1154     ++ILHS;
1155     ++IRHS;
1156     ++IPriv;
1157     ++Count;
1158   }
1159 }
1160 
1161 void CodeGenFunction::EmitOMPReductionClauseFinal(
1162     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1163   if (!HaveInsertPoint())
1164     return;
1165   llvm::SmallVector<const Expr *, 8> Privates;
1166   llvm::SmallVector<const Expr *, 8> LHSExprs;
1167   llvm::SmallVector<const Expr *, 8> RHSExprs;
1168   llvm::SmallVector<const Expr *, 8> ReductionOps;
1169   bool HasAtLeastOneReduction = false;
1170   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1171     HasAtLeastOneReduction = true;
1172     Privates.append(C->privates().begin(), C->privates().end());
1173     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1174     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1175     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1176   }
1177   if (HasAtLeastOneReduction) {
1178     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1179                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1180                       ReductionKind == OMPD_simd;
1181     bool SimpleReduction = ReductionKind == OMPD_simd;
1182     // Emit nowait reduction if nowait clause is present or directive is a
1183     // parallel directive (it always has implicit barrier).
1184     CGM.getOpenMPRuntime().emitReduction(
1185         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1186         {WithNowait, SimpleReduction, ReductionKind});
1187   }
1188 }
1189 
1190 static void emitPostUpdateForReductionClause(
1191     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1192     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1193   if (!CGF.HaveInsertPoint())
1194     return;
1195   llvm::BasicBlock *DoneBB = nullptr;
1196   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1197     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1198       if (!DoneBB) {
1199         if (llvm::Value *Cond = CondGen(CGF)) {
1200           // If the first post-update expression is found, emit conditional
1201           // block if it was requested.
1202           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1203           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1204           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1205           CGF.EmitBlock(ThenBB);
1206         }
1207       }
1208       CGF.EmitIgnoredExpr(PostUpdate);
1209     }
1210   }
1211   if (DoneBB)
1212     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1213 }
1214 
1215 namespace {
1216 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1217 /// parallel function. This is necessary for combined constructs such as
1218 /// 'distribute parallel for'
1219 typedef llvm::function_ref<void(CodeGenFunction &,
1220                                 const OMPExecutableDirective &,
1221                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1222     CodeGenBoundParametersTy;
1223 } // anonymous namespace
1224 
1225 static void emitCommonOMPParallelDirective(
1226     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1227     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1228     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1229   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1230   llvm::Value *OutlinedFn =
1231       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1232           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1233   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1234     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1235     llvm::Value *NumThreads =
1236         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1237                            /*IgnoreResultAssign=*/true);
1238     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1239         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1240   }
1241   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1242     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1243     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1244         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1245   }
1246   const Expr *IfCond = nullptr;
1247   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1248     if (C->getNameModifier() == OMPD_unknown ||
1249         C->getNameModifier() == OMPD_parallel) {
1250       IfCond = C->getCondition();
1251       break;
1252     }
1253   }
1254 
1255   OMPParallelScope Scope(CGF, S);
1256   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1257   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1258   // lower and upper bounds with the pragma 'for' chunking mechanism.
1259   // The following lambda takes care of appending the lower and upper bound
1260   // parameters when necessary
1261   CodeGenBoundParameters(CGF, S, CapturedVars);
1262   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1263   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1264                                               CapturedVars, IfCond);
1265 }
1266 
1267 static void emitEmptyBoundParameters(CodeGenFunction &,
1268                                      const OMPExecutableDirective &,
1269                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1270 
1271 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1272   // Emit parallel region as a standalone region.
1273   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1274     Action.Enter(CGF);
1275     OMPPrivateScope PrivateScope(CGF);
1276     bool Copyins = CGF.EmitOMPCopyinClause(S);
1277     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1278     if (Copyins) {
1279       // Emit implicit barrier to synchronize threads and avoid data races on
1280       // propagation master's thread values of threadprivate variables to local
1281       // instances of that variables of all other implicit threads.
1282       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1283           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1284           /*ForceSimpleCall=*/true);
1285     }
1286     CGF.EmitOMPPrivateClause(S, PrivateScope);
1287     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1288     (void)PrivateScope.Privatize();
1289     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1290     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1291   };
1292   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1293                                  emitEmptyBoundParameters);
1294   emitPostUpdateForReductionClause(*this, S,
1295                                    [](CodeGenFunction &) { return nullptr; });
1296 }
1297 
1298 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1299                                       JumpDest LoopExit) {
1300   RunCleanupsScope BodyScope(*this);
1301   // Update counters values on current iteration.
1302   for (const Expr *UE : D.updates())
1303     EmitIgnoredExpr(UE);
1304   // Update the linear variables.
1305   // In distribute directives only loop counters may be marked as linear, no
1306   // need to generate the code for them.
1307   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1308     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1309       for (const Expr *UE : C->updates())
1310         EmitIgnoredExpr(UE);
1311     }
1312   }
1313 
1314   // On a continue in the body, jump to the end.
1315   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1316   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1317   // Emit loop body.
1318   EmitStmt(D.getBody());
1319   // The end (updates/cleanups).
1320   EmitBlock(Continue.getBlock());
1321   BreakContinueStack.pop_back();
1322 }
1323 
1324 void CodeGenFunction::EmitOMPInnerLoop(
1325     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1326     const Expr *IncExpr,
1327     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1328     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1329   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1330 
1331   // Start the loop with a block that tests the condition.
1332   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1333   EmitBlock(CondBlock);
1334   const SourceRange R = S.getSourceRange();
1335   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1336                  SourceLocToDebugLoc(R.getEnd()));
1337 
1338   // If there are any cleanups between here and the loop-exit scope,
1339   // create a block to stage a loop exit along.
1340   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1341   if (RequiresCleanup)
1342     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1343 
1344   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1345 
1346   // Emit condition.
1347   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1348   if (ExitBlock != LoopExit.getBlock()) {
1349     EmitBlock(ExitBlock);
1350     EmitBranchThroughCleanup(LoopExit);
1351   }
1352 
1353   EmitBlock(LoopBody);
1354   incrementProfileCounter(&S);
1355 
1356   // Create a block for the increment.
1357   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1358   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1359 
1360   BodyGen(*this);
1361 
1362   // Emit "IV = IV + 1" and a back-edge to the condition block.
1363   EmitBlock(Continue.getBlock());
1364   EmitIgnoredExpr(IncExpr);
1365   PostIncGen(*this);
1366   BreakContinueStack.pop_back();
1367   EmitBranch(CondBlock);
1368   LoopStack.pop();
1369   // Emit the fall-through block.
1370   EmitBlock(LoopExit.getBlock());
1371 }
1372 
1373 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1374   if (!HaveInsertPoint())
1375     return false;
1376   // Emit inits for the linear variables.
1377   bool HasLinears = false;
1378   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1379     for (const Expr *Init : C->inits()) {
1380       HasLinears = true;
1381       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1382       if (const auto *Ref =
1383               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1384         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1385         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1386         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1387                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1388                         VD->getInit()->getType(), VK_LValue,
1389                         VD->getInit()->getExprLoc());
1390         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1391                                                 VD->getType()),
1392                        /*capturedByInit=*/false);
1393         EmitAutoVarCleanups(Emission);
1394       } else {
1395         EmitVarDecl(*VD);
1396       }
1397     }
1398     // Emit the linear steps for the linear clauses.
1399     // If a step is not constant, it is pre-calculated before the loop.
1400     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1401       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1402         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1403         // Emit calculation of the linear step.
1404         EmitIgnoredExpr(CS);
1405       }
1406   }
1407   return HasLinears;
1408 }
1409 
1410 void CodeGenFunction::EmitOMPLinearClauseFinal(
1411     const OMPLoopDirective &D,
1412     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1413   if (!HaveInsertPoint())
1414     return;
1415   llvm::BasicBlock *DoneBB = nullptr;
1416   // Emit the final values of the linear variables.
1417   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1418     auto IC = C->varlist_begin();
1419     for (const Expr *F : C->finals()) {
1420       if (!DoneBB) {
1421         if (llvm::Value *Cond = CondGen(*this)) {
1422           // If the first post-update expression is found, emit conditional
1423           // block if it was requested.
1424           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1425           DoneBB = createBasicBlock(".omp.linear.pu.done");
1426           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1427           EmitBlock(ThenBB);
1428         }
1429       }
1430       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1431       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1432                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1433                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1434       Address OrigAddr = EmitLValue(&DRE).getAddress();
1435       CodeGenFunction::OMPPrivateScope VarScope(*this);
1436       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1437       (void)VarScope.Privatize();
1438       EmitIgnoredExpr(F);
1439       ++IC;
1440     }
1441     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1442       EmitIgnoredExpr(PostUpdate);
1443   }
1444   if (DoneBB)
1445     EmitBlock(DoneBB, /*IsFinished=*/true);
1446 }
1447 
1448 static void emitAlignedClause(CodeGenFunction &CGF,
1449                               const OMPExecutableDirective &D) {
1450   if (!CGF.HaveInsertPoint())
1451     return;
1452   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1453     unsigned ClauseAlignment = 0;
1454     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1455       auto *AlignmentCI =
1456           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1457       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1458     }
1459     for (const Expr *E : Clause->varlists()) {
1460       unsigned Alignment = ClauseAlignment;
1461       if (Alignment == 0) {
1462         // OpenMP [2.8.1, Description]
1463         // If no optional parameter is specified, implementation-defined default
1464         // alignments for SIMD instructions on the target platforms are assumed.
1465         Alignment =
1466             CGF.getContext()
1467                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1468                     E->getType()->getPointeeType()))
1469                 .getQuantity();
1470       }
1471       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1472              "alignment is not power of 2");
1473       if (Alignment != 0) {
1474         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1475         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1476       }
1477     }
1478   }
1479 }
1480 
1481 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1482     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1483   if (!HaveInsertPoint())
1484     return;
1485   auto I = S.private_counters().begin();
1486   for (const Expr *E : S.counters()) {
1487     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1488     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1489     // Emit var without initialization.
1490     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1491     EmitAutoVarCleanups(VarEmission);
1492     LocalDeclMap.erase(PrivateVD);
1493     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1494       return VarEmission.getAllocatedAddress();
1495     });
1496     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1497         VD->hasGlobalStorage()) {
1498       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1499         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
1500                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1501                         E->getType(), VK_LValue, E->getExprLoc());
1502         return EmitLValue(&DRE).getAddress();
1503       });
1504     } else {
1505       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1506         return VarEmission.getAllocatedAddress();
1507       });
1508     }
1509     ++I;
1510   }
1511   // Privatize extra loop counters used in loops for ordered(n) clauses.
1512   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
1513     if (!C->getNumForLoops())
1514       continue;
1515     for (unsigned I = S.getCollapsedNumber(),
1516                   E = C->getLoopNumIterations().size();
1517          I < E; ++I) {
1518       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
1519       const auto *VD = cast<VarDecl>(DRE->getDecl());
1520       // Override only those variables that are really emitted already.
1521       if (LocalDeclMap.count(VD)) {
1522         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
1523           return CreateMemTemp(DRE->getType(), VD->getName());
1524         });
1525       }
1526     }
1527   }
1528 }
1529 
1530 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1531                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1532                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1533   if (!CGF.HaveInsertPoint())
1534     return;
1535   {
1536     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1537     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1538     (void)PreCondScope.Privatize();
1539     // Get initial values of real counters.
1540     for (const Expr *I : S.inits()) {
1541       CGF.EmitIgnoredExpr(I);
1542     }
1543   }
1544   // Check that loop is executed at least one time.
1545   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1546 }
1547 
1548 void CodeGenFunction::EmitOMPLinearClause(
1549     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1550   if (!HaveInsertPoint())
1551     return;
1552   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1553   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1554     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1555     for (const Expr *C : LoopDirective->counters()) {
1556       SIMDLCVs.insert(
1557           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1558     }
1559   }
1560   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1561     auto CurPrivate = C->privates().begin();
1562     for (const Expr *E : C->varlists()) {
1563       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1564       const auto *PrivateVD =
1565           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1566       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1567         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1568           // Emit private VarDecl with copy init.
1569           EmitVarDecl(*PrivateVD);
1570           return GetAddrOfLocalVar(PrivateVD);
1571         });
1572         assert(IsRegistered && "linear var already registered as private");
1573         // Silence the warning about unused variable.
1574         (void)IsRegistered;
1575       } else {
1576         EmitVarDecl(*PrivateVD);
1577       }
1578       ++CurPrivate;
1579     }
1580   }
1581 }
1582 
1583 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1584                                      const OMPExecutableDirective &D,
1585                                      bool IsMonotonic) {
1586   if (!CGF.HaveInsertPoint())
1587     return;
1588   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1589     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1590                                  /*ignoreResult=*/true);
1591     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1592     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1593     // In presence of finite 'safelen', it may be unsafe to mark all
1594     // the memory instructions parallel, because loop-carried
1595     // dependences of 'safelen' iterations are possible.
1596     if (!IsMonotonic)
1597       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1598   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1599     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1600                                  /*ignoreResult=*/true);
1601     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1602     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1603     // In presence of finite 'safelen', it may be unsafe to mark all
1604     // the memory instructions parallel, because loop-carried
1605     // dependences of 'safelen' iterations are possible.
1606     CGF.LoopStack.setParallel(/*Enable=*/false);
1607   }
1608 }
1609 
1610 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1611                                       bool IsMonotonic) {
1612   // Walk clauses and process safelen/lastprivate.
1613   LoopStack.setParallel(!IsMonotonic);
1614   LoopStack.setVectorizeEnable();
1615   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1616 }
1617 
1618 void CodeGenFunction::EmitOMPSimdFinal(
1619     const OMPLoopDirective &D,
1620     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1621   if (!HaveInsertPoint())
1622     return;
1623   llvm::BasicBlock *DoneBB = nullptr;
1624   auto IC = D.counters().begin();
1625   auto IPC = D.private_counters().begin();
1626   for (const Expr *F : D.finals()) {
1627     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1628     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1629     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1630     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1631         OrigVD->hasGlobalStorage() || CED) {
1632       if (!DoneBB) {
1633         if (llvm::Value *Cond = CondGen(*this)) {
1634           // If the first post-update expression is found, emit conditional
1635           // block if it was requested.
1636           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1637           DoneBB = createBasicBlock(".omp.final.done");
1638           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1639           EmitBlock(ThenBB);
1640         }
1641       }
1642       Address OrigAddr = Address::invalid();
1643       if (CED) {
1644         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1645       } else {
1646         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
1647                         /*RefersToEnclosingVariableOrCapture=*/false,
1648                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1649         OrigAddr = EmitLValue(&DRE).getAddress();
1650       }
1651       OMPPrivateScope VarScope(*this);
1652       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1653       (void)VarScope.Privatize();
1654       EmitIgnoredExpr(F);
1655     }
1656     ++IC;
1657     ++IPC;
1658   }
1659   if (DoneBB)
1660     EmitBlock(DoneBB, /*IsFinished=*/true);
1661 }
1662 
1663 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1664                                          const OMPLoopDirective &S,
1665                                          CodeGenFunction::JumpDest LoopExit) {
1666   CGF.EmitOMPLoopBody(S, LoopExit);
1667   CGF.EmitStopPoint(&S);
1668 }
1669 
1670 /// Emit a helper variable and return corresponding lvalue.
1671 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1672                                const DeclRefExpr *Helper) {
1673   auto VDecl = cast<VarDecl>(Helper->getDecl());
1674   CGF.EmitVarDecl(*VDecl);
1675   return CGF.EmitLValue(Helper);
1676 }
1677 
1678 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
1679                               PrePostActionTy &Action) {
1680   Action.Enter(CGF);
1681   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
1682          "Expected simd directive");
1683   OMPLoopScope PreInitScope(CGF, S);
1684   // if (PreCond) {
1685   //   for (IV in 0..LastIteration) BODY;
1686   //   <Final counter/linear vars updates>;
1687   // }
1688   //
1689   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
1690       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
1691       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
1692     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1693     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1694   }
1695 
1696   // Emit: if (PreCond) - begin.
1697   // If the condition constant folds and can be elided, avoid emitting the
1698   // whole loop.
1699   bool CondConstant;
1700   llvm::BasicBlock *ContBlock = nullptr;
1701   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1702     if (!CondConstant)
1703       return;
1704   } else {
1705     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
1706     ContBlock = CGF.createBasicBlock("simd.if.end");
1707     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1708                 CGF.getProfileCount(&S));
1709     CGF.EmitBlock(ThenBlock);
1710     CGF.incrementProfileCounter(&S);
1711   }
1712 
1713   // Emit the loop iteration variable.
1714   const Expr *IVExpr = S.getIterationVariable();
1715   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1716   CGF.EmitVarDecl(*IVDecl);
1717   CGF.EmitIgnoredExpr(S.getInit());
1718 
1719   // Emit the iterations count variable.
1720   // If it is not a variable, Sema decided to calculate iterations count on
1721   // each iteration (e.g., it is foldable into a constant).
1722   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1723     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1724     // Emit calculation of the iterations count.
1725     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1726   }
1727 
1728   CGF.EmitOMPSimdInit(S);
1729 
1730   emitAlignedClause(CGF, S);
1731   (void)CGF.EmitOMPLinearClauseInit(S);
1732   {
1733     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1734     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1735     CGF.EmitOMPLinearClause(S, LoopScope);
1736     CGF.EmitOMPPrivateClause(S, LoopScope);
1737     CGF.EmitOMPReductionClauseInit(S, LoopScope);
1738     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1739     (void)LoopScope.Privatize();
1740     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
1741       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
1742     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1743                          S.getInc(),
1744                          [&S](CodeGenFunction &CGF) {
1745                            CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
1746                            CGF.EmitStopPoint(&S);
1747                          },
1748                          [](CodeGenFunction &) {});
1749     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
1750     // Emit final copy of the lastprivate variables at the end of loops.
1751     if (HasLastprivateClause)
1752       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1753     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1754     emitPostUpdateForReductionClause(CGF, S,
1755                                      [](CodeGenFunction &) { return nullptr; });
1756   }
1757   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
1758   // Emit: if (PreCond) - end.
1759   if (ContBlock) {
1760     CGF.EmitBranch(ContBlock);
1761     CGF.EmitBlock(ContBlock, true);
1762   }
1763 }
1764 
1765 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1766   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1767     emitOMPSimdRegion(CGF, S, Action);
1768   };
1769   OMPLexicalScope Scope(*this, S, OMPD_unknown);
1770   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1771 }
1772 
1773 void CodeGenFunction::EmitOMPOuterLoop(
1774     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1775     CodeGenFunction::OMPPrivateScope &LoopScope,
1776     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1777     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1778     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1779   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1780 
1781   const Expr *IVExpr = S.getIterationVariable();
1782   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1783   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1784 
1785   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1786 
1787   // Start the loop with a block that tests the condition.
1788   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
1789   EmitBlock(CondBlock);
1790   const SourceRange R = S.getSourceRange();
1791   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1792                  SourceLocToDebugLoc(R.getEnd()));
1793 
1794   llvm::Value *BoolCondVal = nullptr;
1795   if (!DynamicOrOrdered) {
1796     // UB = min(UB, GlobalUB) or
1797     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1798     // 'distribute parallel for')
1799     EmitIgnoredExpr(LoopArgs.EUB);
1800     // IV = LB
1801     EmitIgnoredExpr(LoopArgs.Init);
1802     // IV < UB
1803     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1804   } else {
1805     BoolCondVal =
1806         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
1807                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1808   }
1809 
1810   // If there are any cleanups between here and the loop-exit scope,
1811   // create a block to stage a loop exit along.
1812   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1813   if (LoopScope.requiresCleanups())
1814     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1815 
1816   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
1817   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1818   if (ExitBlock != LoopExit.getBlock()) {
1819     EmitBlock(ExitBlock);
1820     EmitBranchThroughCleanup(LoopExit);
1821   }
1822   EmitBlock(LoopBody);
1823 
1824   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1825   // LB for loop condition and emitted it above).
1826   if (DynamicOrOrdered)
1827     EmitIgnoredExpr(LoopArgs.Init);
1828 
1829   // Create a block for the increment.
1830   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1831   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1832 
1833   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1834   // with dynamic/guided scheduling and without ordered clause.
1835   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1836     LoopStack.setParallel(!IsMonotonic);
1837   else
1838     EmitOMPSimdInit(S, IsMonotonic);
1839 
1840   SourceLocation Loc = S.getBeginLoc();
1841 
1842   // when 'distribute' is not combined with a 'for':
1843   // while (idx <= UB) { BODY; ++idx; }
1844   // when 'distribute' is combined with a 'for'
1845   // (e.g. 'distribute parallel for')
1846   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1847   EmitOMPInnerLoop(
1848       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1849       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1850         CodeGenLoop(CGF, S, LoopExit);
1851       },
1852       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1853         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1854       });
1855 
1856   EmitBlock(Continue.getBlock());
1857   BreakContinueStack.pop_back();
1858   if (!DynamicOrOrdered) {
1859     // Emit "LB = LB + Stride", "UB = UB + Stride".
1860     EmitIgnoredExpr(LoopArgs.NextLB);
1861     EmitIgnoredExpr(LoopArgs.NextUB);
1862   }
1863 
1864   EmitBranch(CondBlock);
1865   LoopStack.pop();
1866   // Emit the fall-through block.
1867   EmitBlock(LoopExit.getBlock());
1868 
1869   // Tell the runtime we are done.
1870   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1871     if (!DynamicOrOrdered)
1872       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
1873                                                      S.getDirectiveKind());
1874   };
1875   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1876 }
1877 
1878 void CodeGenFunction::EmitOMPForOuterLoop(
1879     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1880     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1881     const OMPLoopArguments &LoopArgs,
1882     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1883   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1884 
1885   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1886   const bool DynamicOrOrdered =
1887       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1888 
1889   assert((Ordered ||
1890           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1891                                  LoopArgs.Chunk != nullptr)) &&
1892          "static non-chunked schedule does not need outer loop");
1893 
1894   // Emit outer loop.
1895   //
1896   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1897   // When schedule(dynamic,chunk_size) is specified, the iterations are
1898   // distributed to threads in the team in chunks as the threads request them.
1899   // Each thread executes a chunk of iterations, then requests another chunk,
1900   // until no chunks remain to be distributed. Each chunk contains chunk_size
1901   // iterations, except for the last chunk to be distributed, which may have
1902   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1903   //
1904   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1905   // to threads in the team in chunks as the executing threads request them.
1906   // Each thread executes a chunk of iterations, then requests another chunk,
1907   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1908   // each chunk is proportional to the number of unassigned iterations divided
1909   // by the number of threads in the team, decreasing to 1. For a chunk_size
1910   // with value k (greater than 1), the size of each chunk is determined in the
1911   // same way, with the restriction that the chunks do not contain fewer than k
1912   // iterations (except for the last chunk to be assigned, which may have fewer
1913   // than k iterations).
1914   //
1915   // When schedule(auto) is specified, the decision regarding scheduling is
1916   // delegated to the compiler and/or runtime system. The programmer gives the
1917   // implementation the freedom to choose any possible mapping of iterations to
1918   // threads in the team.
1919   //
1920   // When schedule(runtime) is specified, the decision regarding scheduling is
1921   // deferred until run time, and the schedule and chunk size are taken from the
1922   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1923   // implementation defined
1924   //
1925   // while(__kmpc_dispatch_next(&LB, &UB)) {
1926   //   idx = LB;
1927   //   while (idx <= UB) { BODY; ++idx;
1928   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1929   //   } // inner loop
1930   // }
1931   //
1932   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1933   // When schedule(static, chunk_size) is specified, iterations are divided into
1934   // chunks of size chunk_size, and the chunks are assigned to the threads in
1935   // the team in a round-robin fashion in the order of the thread number.
1936   //
1937   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1938   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1939   //   LB = LB + ST;
1940   //   UB = UB + ST;
1941   // }
1942   //
1943 
1944   const Expr *IVExpr = S.getIterationVariable();
1945   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1946   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1947 
1948   if (DynamicOrOrdered) {
1949     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
1950         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
1951     llvm::Value *LBVal = DispatchBounds.first;
1952     llvm::Value *UBVal = DispatchBounds.second;
1953     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
1954                                                              LoopArgs.Chunk};
1955     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
1956                            IVSigned, Ordered, DipatchRTInputValues);
1957   } else {
1958     CGOpenMPRuntime::StaticRTInput StaticInit(
1959         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
1960         LoopArgs.ST, LoopArgs.Chunk);
1961     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
1962                          ScheduleKind, StaticInit);
1963   }
1964 
1965   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
1966                                     const unsigned IVSize,
1967                                     const bool IVSigned) {
1968     if (Ordered) {
1969       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
1970                                                             IVSigned);
1971     }
1972   };
1973 
1974   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
1975                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
1976   OuterLoopArgs.IncExpr = S.getInc();
1977   OuterLoopArgs.Init = S.getInit();
1978   OuterLoopArgs.Cond = S.getCond();
1979   OuterLoopArgs.NextLB = S.getNextLowerBound();
1980   OuterLoopArgs.NextUB = S.getNextUpperBound();
1981   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
1982                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
1983 }
1984 
1985 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
1986                              const unsigned IVSize, const bool IVSigned) {}
1987 
1988 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1989     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
1990     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
1991     const CodeGenLoopTy &CodeGenLoopContent) {
1992 
1993   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1994 
1995   // Emit outer loop.
1996   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1997   // dynamic
1998   //
1999 
2000   const Expr *IVExpr = S.getIterationVariable();
2001   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2002   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2003 
2004   CGOpenMPRuntime::StaticRTInput StaticInit(
2005       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2006       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2007   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2008 
2009   // for combined 'distribute' and 'for' the increment expression of distribute
2010   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2011   Expr *IncExpr;
2012   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2013     IncExpr = S.getDistInc();
2014   else
2015     IncExpr = S.getInc();
2016 
2017   // this routine is shared by 'omp distribute parallel for' and
2018   // 'omp distribute': select the right EUB expression depending on the
2019   // directive
2020   OMPLoopArguments OuterLoopArgs;
2021   OuterLoopArgs.LB = LoopArgs.LB;
2022   OuterLoopArgs.UB = LoopArgs.UB;
2023   OuterLoopArgs.ST = LoopArgs.ST;
2024   OuterLoopArgs.IL = LoopArgs.IL;
2025   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2026   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2027                           ? S.getCombinedEnsureUpperBound()
2028                           : S.getEnsureUpperBound();
2029   OuterLoopArgs.IncExpr = IncExpr;
2030   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2031                            ? S.getCombinedInit()
2032                            : S.getInit();
2033   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2034                            ? S.getCombinedCond()
2035                            : S.getCond();
2036   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2037                              ? S.getCombinedNextLowerBound()
2038                              : S.getNextLowerBound();
2039   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2040                              ? S.getCombinedNextUpperBound()
2041                              : S.getNextUpperBound();
2042 
2043   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2044                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2045                    emitEmptyOrdered);
2046 }
2047 
2048 static std::pair<LValue, LValue>
2049 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2050                                      const OMPExecutableDirective &S) {
2051   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2052   LValue LB =
2053       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2054   LValue UB =
2055       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2056 
2057   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2058   // parallel for') we need to use the 'distribute'
2059   // chunk lower and upper bounds rather than the whole loop iteration
2060   // space. These are parameters to the outlined function for 'parallel'
2061   // and we copy the bounds of the previous schedule into the
2062   // the current ones.
2063   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2064   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2065   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2066       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2067   PrevLBVal = CGF.EmitScalarConversion(
2068       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2069       LS.getIterationVariable()->getType(),
2070       LS.getPrevLowerBoundVariable()->getExprLoc());
2071   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2072       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2073   PrevUBVal = CGF.EmitScalarConversion(
2074       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2075       LS.getIterationVariable()->getType(),
2076       LS.getPrevUpperBoundVariable()->getExprLoc());
2077 
2078   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2079   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2080 
2081   return {LB, UB};
2082 }
2083 
2084 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2085 /// we need to use the LB and UB expressions generated by the worksharing
2086 /// code generation support, whereas in non combined situations we would
2087 /// just emit 0 and the LastIteration expression
2088 /// This function is necessary due to the difference of the LB and UB
2089 /// types for the RT emission routines for 'for_static_init' and
2090 /// 'for_dispatch_init'
2091 static std::pair<llvm::Value *, llvm::Value *>
2092 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2093                                         const OMPExecutableDirective &S,
2094                                         Address LB, Address UB) {
2095   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2096   const Expr *IVExpr = LS.getIterationVariable();
2097   // when implementing a dynamic schedule for a 'for' combined with a
2098   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2099   // is not normalized as each team only executes its own assigned
2100   // distribute chunk
2101   QualType IteratorTy = IVExpr->getType();
2102   llvm::Value *LBVal =
2103       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2104   llvm::Value *UBVal =
2105       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2106   return {LBVal, UBVal};
2107 }
2108 
2109 static void emitDistributeParallelForDistributeInnerBoundParams(
2110     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2111     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2112   const auto &Dir = cast<OMPLoopDirective>(S);
2113   LValue LB =
2114       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2115   llvm::Value *LBCast = CGF.Builder.CreateIntCast(
2116       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2117   CapturedVars.push_back(LBCast);
2118   LValue UB =
2119       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2120 
2121   llvm::Value *UBCast = CGF.Builder.CreateIntCast(
2122       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2123   CapturedVars.push_back(UBCast);
2124 }
2125 
2126 static void
2127 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2128                                  const OMPLoopDirective &S,
2129                                  CodeGenFunction::JumpDest LoopExit) {
2130   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2131                                          PrePostActionTy &Action) {
2132     Action.Enter(CGF);
2133     bool HasCancel = false;
2134     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2135       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2136         HasCancel = D->hasCancel();
2137       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2138         HasCancel = D->hasCancel();
2139       else if (const auto *D =
2140                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2141         HasCancel = D->hasCancel();
2142     }
2143     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2144                                                      HasCancel);
2145     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2146                                emitDistributeParallelForInnerBounds,
2147                                emitDistributeParallelForDispatchBounds);
2148   };
2149 
2150   emitCommonOMPParallelDirective(
2151       CGF, S,
2152       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2153       CGInlinedWorksharingLoop,
2154       emitDistributeParallelForDistributeInnerBoundParams);
2155 }
2156 
2157 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2158     const OMPDistributeParallelForDirective &S) {
2159   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2160     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2161                               S.getDistInc());
2162   };
2163   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2164   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2165 }
2166 
2167 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2168     const OMPDistributeParallelForSimdDirective &S) {
2169   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2170     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2171                               S.getDistInc());
2172   };
2173   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2174   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2175 }
2176 
2177 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2178     const OMPDistributeSimdDirective &S) {
2179   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2180     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2181   };
2182   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2183   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2184 }
2185 
2186 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2187     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2188   // Emit SPMD target parallel for region as a standalone region.
2189   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2190     emitOMPSimdRegion(CGF, S, Action);
2191   };
2192   llvm::Function *Fn;
2193   llvm::Constant *Addr;
2194   // Emit target region as a standalone region.
2195   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2196       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2197   assert(Fn && Addr && "Target device function emission failed.");
2198 }
2199 
2200 void CodeGenFunction::EmitOMPTargetSimdDirective(
2201     const OMPTargetSimdDirective &S) {
2202   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2203     emitOMPSimdRegion(CGF, S, Action);
2204   };
2205   emitCommonOMPTargetDirective(*this, S, CodeGen);
2206 }
2207 
2208 namespace {
2209   struct ScheduleKindModifiersTy {
2210     OpenMPScheduleClauseKind Kind;
2211     OpenMPScheduleClauseModifier M1;
2212     OpenMPScheduleClauseModifier M2;
2213     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2214                             OpenMPScheduleClauseModifier M1,
2215                             OpenMPScheduleClauseModifier M2)
2216         : Kind(Kind), M1(M1), M2(M2) {}
2217   };
2218 } // namespace
2219 
2220 bool CodeGenFunction::EmitOMPWorksharingLoop(
2221     const OMPLoopDirective &S, Expr *EUB,
2222     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2223     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2224   // Emit the loop iteration variable.
2225   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2226   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2227   EmitVarDecl(*IVDecl);
2228 
2229   // Emit the iterations count variable.
2230   // If it is not a variable, Sema decided to calculate iterations count on each
2231   // iteration (e.g., it is foldable into a constant).
2232   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2233     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2234     // Emit calculation of the iterations count.
2235     EmitIgnoredExpr(S.getCalcLastIteration());
2236   }
2237 
2238   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2239 
2240   bool HasLastprivateClause;
2241   // Check pre-condition.
2242   {
2243     OMPLoopScope PreInitScope(*this, S);
2244     // Skip the entire loop if we don't meet the precondition.
2245     // If the condition constant folds and can be elided, avoid emitting the
2246     // whole loop.
2247     bool CondConstant;
2248     llvm::BasicBlock *ContBlock = nullptr;
2249     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2250       if (!CondConstant)
2251         return false;
2252     } else {
2253       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2254       ContBlock = createBasicBlock("omp.precond.end");
2255       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2256                   getProfileCount(&S));
2257       EmitBlock(ThenBlock);
2258       incrementProfileCounter(&S);
2259     }
2260 
2261     RunCleanupsScope DoacrossCleanupScope(*this);
2262     bool Ordered = false;
2263     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2264       if (OrderedClause->getNumForLoops())
2265         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
2266       else
2267         Ordered = true;
2268     }
2269 
2270     llvm::DenseSet<const Expr *> EmittedFinals;
2271     emitAlignedClause(*this, S);
2272     bool HasLinears = EmitOMPLinearClauseInit(S);
2273     // Emit helper vars inits.
2274 
2275     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2276     LValue LB = Bounds.first;
2277     LValue UB = Bounds.second;
2278     LValue ST =
2279         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2280     LValue IL =
2281         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2282 
2283     // Emit 'then' code.
2284     {
2285       OMPPrivateScope LoopScope(*this);
2286       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2287         // Emit implicit barrier to synchronize threads and avoid data races on
2288         // initialization of firstprivate variables and post-update of
2289         // lastprivate variables.
2290         CGM.getOpenMPRuntime().emitBarrierCall(
2291             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2292             /*ForceSimpleCall=*/true);
2293       }
2294       EmitOMPPrivateClause(S, LoopScope);
2295       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2296       EmitOMPReductionClauseInit(S, LoopScope);
2297       EmitOMPPrivateLoopCounters(S, LoopScope);
2298       EmitOMPLinearClause(S, LoopScope);
2299       (void)LoopScope.Privatize();
2300       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2301         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
2302 
2303       // Detect the loop schedule kind and chunk.
2304       const Expr *ChunkExpr = nullptr;
2305       OpenMPScheduleTy ScheduleKind;
2306       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2307         ScheduleKind.Schedule = C->getScheduleKind();
2308         ScheduleKind.M1 = C->getFirstScheduleModifier();
2309         ScheduleKind.M2 = C->getSecondScheduleModifier();
2310         ChunkExpr = C->getChunkSize();
2311       } else {
2312         // Default behaviour for schedule clause.
2313         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
2314             *this, S, ScheduleKind.Schedule, ChunkExpr);
2315       }
2316       bool HasChunkSizeOne = false;
2317       llvm::Value *Chunk = nullptr;
2318       if (ChunkExpr) {
2319         Chunk = EmitScalarExpr(ChunkExpr);
2320         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
2321                                      S.getIterationVariable()->getType(),
2322                                      S.getBeginLoc());
2323         Expr::EvalResult Result;
2324         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
2325           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
2326           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
2327         }
2328       }
2329       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2330       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2331       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2332       // If the static schedule kind is specified or if the ordered clause is
2333       // specified, and if no monotonic modifier is specified, the effect will
2334       // be as if the monotonic modifier was specified.
2335       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
2336           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
2337           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
2338       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
2339                                  /* Chunked */ Chunk != nullptr) ||
2340            StaticChunkedOne) &&
2341           !Ordered) {
2342         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2343           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2344         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2345         // When no chunk_size is specified, the iteration space is divided into
2346         // chunks that are approximately equal in size, and at most one chunk is
2347         // distributed to each thread. Note that the size of the chunks is
2348         // unspecified in this case.
2349         CGOpenMPRuntime::StaticRTInput StaticInit(
2350             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2351             UB.getAddress(), ST.getAddress(),
2352             StaticChunkedOne ? Chunk : nullptr);
2353         RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2354                              ScheduleKind, StaticInit);
2355         JumpDest LoopExit =
2356             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2357         // UB = min(UB, GlobalUB);
2358         if (!StaticChunkedOne)
2359           EmitIgnoredExpr(S.getEnsureUpperBound());
2360         // IV = LB;
2361         EmitIgnoredExpr(S.getInit());
2362         // For unchunked static schedule generate:
2363         //
2364         // while (idx <= UB) {
2365         //   BODY;
2366         //   ++idx;
2367         // }
2368         //
2369         // For static schedule with chunk one:
2370         //
2371         // while (IV <= PrevUB) {
2372         //   BODY;
2373         //   IV += ST;
2374         // }
2375         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
2376             StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(),
2377             StaticChunkedOne ? S.getDistInc() : S.getInc(),
2378             [&S, LoopExit](CodeGenFunction &CGF) {
2379              CGF.EmitOMPLoopBody(S, LoopExit);
2380              CGF.EmitStopPoint(&S);
2381             },
2382             [](CodeGenFunction &) {});
2383         EmitBlock(LoopExit.getBlock());
2384         // Tell the runtime we are done.
2385         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2386           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2387                                                          S.getDirectiveKind());
2388         };
2389         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2390       } else {
2391         const bool IsMonotonic =
2392             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2393             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2394             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2395             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2396         // Emit the outer loop, which requests its work chunk [LB..UB] from
2397         // runtime and runs the inner loop to process it.
2398         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2399                                              ST.getAddress(), IL.getAddress(),
2400                                              Chunk, EUB);
2401         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2402                             LoopArguments, CGDispatchBounds);
2403       }
2404       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2405         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
2406           return CGF.Builder.CreateIsNotNull(
2407               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2408         });
2409       }
2410       EmitOMPReductionClauseFinal(
2411           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2412                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2413                  : /*Parallel only*/ OMPD_parallel);
2414       // Emit post-update of the reduction variables if IsLastIter != 0.
2415       emitPostUpdateForReductionClause(
2416           *this, S, [IL, &S](CodeGenFunction &CGF) {
2417             return CGF.Builder.CreateIsNotNull(
2418                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2419           });
2420       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2421       if (HasLastprivateClause)
2422         EmitOMPLastprivateClauseFinal(
2423             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2424             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
2425     }
2426     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2427       return CGF.Builder.CreateIsNotNull(
2428           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2429     });
2430     DoacrossCleanupScope.ForceCleanup();
2431     // We're now done with the loop, so jump to the continuation block.
2432     if (ContBlock) {
2433       EmitBranch(ContBlock);
2434       EmitBlock(ContBlock, /*IsFinished=*/true);
2435     }
2436   }
2437   return HasLastprivateClause;
2438 }
2439 
2440 /// The following two functions generate expressions for the loop lower
2441 /// and upper bounds in case of static and dynamic (dispatch) schedule
2442 /// of the associated 'for' or 'distribute' loop.
2443 static std::pair<LValue, LValue>
2444 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2445   const auto &LS = cast<OMPLoopDirective>(S);
2446   LValue LB =
2447       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2448   LValue UB =
2449       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2450   return {LB, UB};
2451 }
2452 
2453 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2454 /// consider the lower and upper bound expressions generated by the
2455 /// worksharing loop support, but we use 0 and the iteration space size as
2456 /// constants
2457 static std::pair<llvm::Value *, llvm::Value *>
2458 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2459                           Address LB, Address UB) {
2460   const auto &LS = cast<OMPLoopDirective>(S);
2461   const Expr *IVExpr = LS.getIterationVariable();
2462   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2463   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2464   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2465   return {LBVal, UBVal};
2466 }
2467 
2468 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2469   bool HasLastprivates = false;
2470   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2471                                           PrePostActionTy &) {
2472     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2473     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2474                                                  emitForLoopBounds,
2475                                                  emitDispatchForLoopBounds);
2476   };
2477   {
2478     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2479     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2480                                                 S.hasCancel());
2481   }
2482 
2483   // Emit an implicit barrier at the end.
2484   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2485     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2486 }
2487 
2488 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2489   bool HasLastprivates = false;
2490   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2491                                           PrePostActionTy &) {
2492     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2493                                                  emitForLoopBounds,
2494                                                  emitDispatchForLoopBounds);
2495   };
2496   {
2497     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2498     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2499   }
2500 
2501   // Emit an implicit barrier at the end.
2502   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2503     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2504 }
2505 
2506 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2507                                 const Twine &Name,
2508                                 llvm::Value *Init = nullptr) {
2509   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2510   if (Init)
2511     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2512   return LVal;
2513 }
2514 
2515 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2516   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2517   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2518   bool HasLastprivates = false;
2519   auto &&CodeGen = [&S, CapturedStmt, CS,
2520                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2521     ASTContext &C = CGF.getContext();
2522     QualType KmpInt32Ty =
2523         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2524     // Emit helper vars inits.
2525     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2526                                   CGF.Builder.getInt32(0));
2527     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2528                                          ? CGF.Builder.getInt32(CS->size() - 1)
2529                                          : CGF.Builder.getInt32(0);
2530     LValue UB =
2531         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2532     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2533                                   CGF.Builder.getInt32(1));
2534     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2535                                   CGF.Builder.getInt32(0));
2536     // Loop counter.
2537     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2538     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2539     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2540     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2541     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2542     // Generate condition for loop.
2543     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2544                         OK_Ordinary, S.getBeginLoc(), FPOptions());
2545     // Increment for loop counter.
2546     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2547                       S.getBeginLoc(), true);
2548     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2549       // Iterate through all sections and emit a switch construct:
2550       // switch (IV) {
2551       //   case 0:
2552       //     <SectionStmt[0]>;
2553       //     break;
2554       // ...
2555       //   case <NumSection> - 1:
2556       //     <SectionStmt[<NumSection> - 1]>;
2557       //     break;
2558       // }
2559       // .omp.sections.exit:
2560       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2561       llvm::SwitchInst *SwitchStmt =
2562           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
2563                                    ExitBB, CS == nullptr ? 1 : CS->size());
2564       if (CS) {
2565         unsigned CaseNumber = 0;
2566         for (const Stmt *SubStmt : CS->children()) {
2567           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2568           CGF.EmitBlock(CaseBB);
2569           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2570           CGF.EmitStmt(SubStmt);
2571           CGF.EmitBranch(ExitBB);
2572           ++CaseNumber;
2573         }
2574       } else {
2575         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2576         CGF.EmitBlock(CaseBB);
2577         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2578         CGF.EmitStmt(CapturedStmt);
2579         CGF.EmitBranch(ExitBB);
2580       }
2581       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2582     };
2583 
2584     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2585     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2586       // Emit implicit barrier to synchronize threads and avoid data races on
2587       // initialization of firstprivate variables and post-update of lastprivate
2588       // variables.
2589       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2590           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2591           /*ForceSimpleCall=*/true);
2592     }
2593     CGF.EmitOMPPrivateClause(S, LoopScope);
2594     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2595     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2596     (void)LoopScope.Privatize();
2597     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2598       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2599 
2600     // Emit static non-chunked loop.
2601     OpenMPScheduleTy ScheduleKind;
2602     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2603     CGOpenMPRuntime::StaticRTInput StaticInit(
2604         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2605         LB.getAddress(), UB.getAddress(), ST.getAddress());
2606     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2607         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2608     // UB = min(UB, GlobalUB);
2609     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
2610     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
2611         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2612     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2613     // IV = LB;
2614     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
2615     // while (idx <= UB) { BODY; ++idx; }
2616     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2617                          [](CodeGenFunction &) {});
2618     // Tell the runtime we are done.
2619     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2620       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2621                                                      S.getDirectiveKind());
2622     };
2623     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2624     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2625     // Emit post-update of the reduction variables if IsLastIter != 0.
2626     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
2627       return CGF.Builder.CreateIsNotNull(
2628           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2629     });
2630 
2631     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2632     if (HasLastprivates)
2633       CGF.EmitOMPLastprivateClauseFinal(
2634           S, /*NoFinals=*/false,
2635           CGF.Builder.CreateIsNotNull(
2636               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
2637   };
2638 
2639   bool HasCancel = false;
2640   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2641     HasCancel = OSD->hasCancel();
2642   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2643     HasCancel = OPSD->hasCancel();
2644   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2645   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2646                                               HasCancel);
2647   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2648   // clause. Otherwise the barrier will be generated by the codegen for the
2649   // directive.
2650   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2651     // Emit implicit barrier to synchronize threads and avoid data races on
2652     // initialization of firstprivate variables.
2653     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2654                                            OMPD_unknown);
2655   }
2656 }
2657 
2658 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2659   {
2660     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2661     EmitSections(S);
2662   }
2663   // Emit an implicit barrier at the end.
2664   if (!S.getSingleClause<OMPNowaitClause>()) {
2665     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2666                                            OMPD_sections);
2667   }
2668 }
2669 
2670 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2671   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2672     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2673   };
2674   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2675   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2676                                               S.hasCancel());
2677 }
2678 
2679 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2680   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2681   llvm::SmallVector<const Expr *, 8> DestExprs;
2682   llvm::SmallVector<const Expr *, 8> SrcExprs;
2683   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2684   // Check if there are any 'copyprivate' clauses associated with this
2685   // 'single' construct.
2686   // Build a list of copyprivate variables along with helper expressions
2687   // (<source>, <destination>, <destination>=<source> expressions)
2688   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2689     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2690     DestExprs.append(C->destination_exprs().begin(),
2691                      C->destination_exprs().end());
2692     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2693     AssignmentOps.append(C->assignment_ops().begin(),
2694                          C->assignment_ops().end());
2695   }
2696   // Emit code for 'single' region along with 'copyprivate' clauses
2697   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2698     Action.Enter(CGF);
2699     OMPPrivateScope SingleScope(CGF);
2700     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2701     CGF.EmitOMPPrivateClause(S, SingleScope);
2702     (void)SingleScope.Privatize();
2703     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2704   };
2705   {
2706     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2707     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
2708                                             CopyprivateVars, DestExprs,
2709                                             SrcExprs, AssignmentOps);
2710   }
2711   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2712   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2713   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2714     CGM.getOpenMPRuntime().emitBarrierCall(
2715         *this, S.getBeginLoc(),
2716         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2717   }
2718 }
2719 
2720 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2721   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2722     Action.Enter(CGF);
2723     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2724   };
2725   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2726   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
2727 }
2728 
2729 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2730   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2731     Action.Enter(CGF);
2732     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2733   };
2734   const Expr *Hint = nullptr;
2735   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
2736     Hint = HintClause->getHint();
2737   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2738   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2739                                             S.getDirectiveName().getAsString(),
2740                                             CodeGen, S.getBeginLoc(), Hint);
2741 }
2742 
2743 void CodeGenFunction::EmitOMPParallelForDirective(
2744     const OMPParallelForDirective &S) {
2745   // Emit directive as a combined directive that consists of two implicit
2746   // directives: 'parallel' with 'for' directive.
2747   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2748     Action.Enter(CGF);
2749     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2750     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2751                                emitDispatchForLoopBounds);
2752   };
2753   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2754                                  emitEmptyBoundParameters);
2755 }
2756 
2757 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2758     const OMPParallelForSimdDirective &S) {
2759   // Emit directive as a combined directive that consists of two implicit
2760   // directives: 'parallel' with 'for' directive.
2761   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2762     Action.Enter(CGF);
2763     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2764                                emitDispatchForLoopBounds);
2765   };
2766   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2767                                  emitEmptyBoundParameters);
2768 }
2769 
2770 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2771     const OMPParallelSectionsDirective &S) {
2772   // Emit directive as a combined directive that consists of two implicit
2773   // directives: 'parallel' with 'sections' directive.
2774   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2775     Action.Enter(CGF);
2776     CGF.EmitSections(S);
2777   };
2778   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2779                                  emitEmptyBoundParameters);
2780 }
2781 
2782 void CodeGenFunction::EmitOMPTaskBasedDirective(
2783     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
2784     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
2785     OMPTaskDataTy &Data) {
2786   // Emit outlined function for task construct.
2787   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
2788   auto I = CS->getCapturedDecl()->param_begin();
2789   auto PartId = std::next(I);
2790   auto TaskT = std::next(I, 4);
2791   // Check if the task is final
2792   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2793     // If the condition constant folds and can be elided, try to avoid emitting
2794     // the condition and the dead arm of the if/else.
2795     const Expr *Cond = Clause->getCondition();
2796     bool CondConstant;
2797     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2798       Data.Final.setInt(CondConstant);
2799     else
2800       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2801   } else {
2802     // By default the task is not final.
2803     Data.Final.setInt(/*IntVal=*/false);
2804   }
2805   // Check if the task has 'priority' clause.
2806   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2807     const Expr *Prio = Clause->getPriority();
2808     Data.Priority.setInt(/*IntVal=*/true);
2809     Data.Priority.setPointer(EmitScalarConversion(
2810         EmitScalarExpr(Prio), Prio->getType(),
2811         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2812         Prio->getExprLoc()));
2813   }
2814   // The first function argument for tasks is a thread id, the second one is a
2815   // part id (0 for tied tasks, >=0 for untied task).
2816   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2817   // Get list of private variables.
2818   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2819     auto IRef = C->varlist_begin();
2820     for (const Expr *IInit : C->private_copies()) {
2821       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2822       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2823         Data.PrivateVars.push_back(*IRef);
2824         Data.PrivateCopies.push_back(IInit);
2825       }
2826       ++IRef;
2827     }
2828   }
2829   EmittedAsPrivate.clear();
2830   // Get list of firstprivate variables.
2831   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2832     auto IRef = C->varlist_begin();
2833     auto IElemInitRef = C->inits().begin();
2834     for (const Expr *IInit : C->private_copies()) {
2835       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2836       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2837         Data.FirstprivateVars.push_back(*IRef);
2838         Data.FirstprivateCopies.push_back(IInit);
2839         Data.FirstprivateInits.push_back(*IElemInitRef);
2840       }
2841       ++IRef;
2842       ++IElemInitRef;
2843     }
2844   }
2845   // Get list of lastprivate variables (for taskloops).
2846   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2847   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2848     auto IRef = C->varlist_begin();
2849     auto ID = C->destination_exprs().begin();
2850     for (const Expr *IInit : C->private_copies()) {
2851       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2852       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2853         Data.LastprivateVars.push_back(*IRef);
2854         Data.LastprivateCopies.push_back(IInit);
2855       }
2856       LastprivateDstsOrigs.insert(
2857           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2858            cast<DeclRefExpr>(*IRef)});
2859       ++IRef;
2860       ++ID;
2861     }
2862   }
2863   SmallVector<const Expr *, 4> LHSs;
2864   SmallVector<const Expr *, 4> RHSs;
2865   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2866     auto IPriv = C->privates().begin();
2867     auto IRed = C->reduction_ops().begin();
2868     auto ILHS = C->lhs_exprs().begin();
2869     auto IRHS = C->rhs_exprs().begin();
2870     for (const Expr *Ref : C->varlists()) {
2871       Data.ReductionVars.emplace_back(Ref);
2872       Data.ReductionCopies.emplace_back(*IPriv);
2873       Data.ReductionOps.emplace_back(*IRed);
2874       LHSs.emplace_back(*ILHS);
2875       RHSs.emplace_back(*IRHS);
2876       std::advance(IPriv, 1);
2877       std::advance(IRed, 1);
2878       std::advance(ILHS, 1);
2879       std::advance(IRHS, 1);
2880     }
2881   }
2882   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2883       *this, S.getBeginLoc(), LHSs, RHSs, Data);
2884   // Build list of dependences.
2885   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2886     for (const Expr *IRef : C->varlists())
2887       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
2888   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
2889                     CapturedRegion](CodeGenFunction &CGF,
2890                                     PrePostActionTy &Action) {
2891     // Set proper addresses for generated private copies.
2892     OMPPrivateScope Scope(CGF);
2893     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2894         !Data.LastprivateVars.empty()) {
2895       enum { PrivatesParam = 2, CopyFnParam = 3 };
2896       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
2897           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
2898       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
2899           CS->getCapturedDecl()->getParam(PrivatesParam)));
2900       // Map privates.
2901       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2902       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2903       CallArgs.push_back(PrivatesPtr);
2904       for (const Expr *E : Data.PrivateVars) {
2905         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2906         Address PrivatePtr = CGF.CreateMemTemp(
2907             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2908         PrivatePtrs.emplace_back(VD, PrivatePtr);
2909         CallArgs.push_back(PrivatePtr.getPointer());
2910       }
2911       for (const Expr *E : Data.FirstprivateVars) {
2912         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2913         Address PrivatePtr =
2914             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2915                               ".firstpriv.ptr.addr");
2916         PrivatePtrs.emplace_back(VD, PrivatePtr);
2917         CallArgs.push_back(PrivatePtr.getPointer());
2918       }
2919       for (const Expr *E : Data.LastprivateVars) {
2920         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2921         Address PrivatePtr =
2922             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2923                               ".lastpriv.ptr.addr");
2924         PrivatePtrs.emplace_back(VD, PrivatePtr);
2925         CallArgs.push_back(PrivatePtr.getPointer());
2926       }
2927       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
2928                                                           CopyFn, CallArgs);
2929       for (const auto &Pair : LastprivateDstsOrigs) {
2930         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2931         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
2932                         /*RefersToEnclosingVariableOrCapture=*/
2933                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
2934                         Pair.second->getType(), VK_LValue,
2935                         Pair.second->getExprLoc());
2936         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2937           return CGF.EmitLValue(&DRE).getAddress();
2938         });
2939       }
2940       for (const auto &Pair : PrivatePtrs) {
2941         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2942                             CGF.getContext().getDeclAlign(Pair.first));
2943         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2944       }
2945     }
2946     if (Data.Reductions) {
2947       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
2948       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
2949                              Data.ReductionOps);
2950       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
2951           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
2952       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
2953         RedCG.emitSharedLValue(CGF, Cnt);
2954         RedCG.emitAggregateType(CGF, Cnt);
2955         // FIXME: This must removed once the runtime library is fixed.
2956         // Emit required threadprivate variables for
2957         // initializer/combiner/finalizer.
2958         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
2959                                                            RedCG, Cnt);
2960         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2961             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2962         Replacement =
2963             Address(CGF.EmitScalarConversion(
2964                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2965                         CGF.getContext().getPointerType(
2966                             Data.ReductionCopies[Cnt]->getType()),
2967                         Data.ReductionCopies[Cnt]->getExprLoc()),
2968                     Replacement.getAlignment());
2969         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2970         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
2971                          [Replacement]() { return Replacement; });
2972       }
2973     }
2974     // Privatize all private variables except for in_reduction items.
2975     (void)Scope.Privatize();
2976     SmallVector<const Expr *, 4> InRedVars;
2977     SmallVector<const Expr *, 4> InRedPrivs;
2978     SmallVector<const Expr *, 4> InRedOps;
2979     SmallVector<const Expr *, 4> TaskgroupDescriptors;
2980     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
2981       auto IPriv = C->privates().begin();
2982       auto IRed = C->reduction_ops().begin();
2983       auto ITD = C->taskgroup_descriptors().begin();
2984       for (const Expr *Ref : C->varlists()) {
2985         InRedVars.emplace_back(Ref);
2986         InRedPrivs.emplace_back(*IPriv);
2987         InRedOps.emplace_back(*IRed);
2988         TaskgroupDescriptors.emplace_back(*ITD);
2989         std::advance(IPriv, 1);
2990         std::advance(IRed, 1);
2991         std::advance(ITD, 1);
2992       }
2993     }
2994     // Privatize in_reduction items here, because taskgroup descriptors must be
2995     // privatized earlier.
2996     OMPPrivateScope InRedScope(CGF);
2997     if (!InRedVars.empty()) {
2998       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
2999       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
3000         RedCG.emitSharedLValue(CGF, Cnt);
3001         RedCG.emitAggregateType(CGF, Cnt);
3002         // The taskgroup descriptor variable is always implicit firstprivate and
3003         // privatized already during processing of the firstprivates.
3004         // FIXME: This must removed once the runtime library is fixed.
3005         // Emit required threadprivate variables for
3006         // initializer/combiner/finalizer.
3007         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3008                                                            RedCG, Cnt);
3009         llvm::Value *ReductionsPtr =
3010             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
3011                                  TaskgroupDescriptors[Cnt]->getExprLoc());
3012         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3013             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3014         Replacement = Address(
3015             CGF.EmitScalarConversion(
3016                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3017                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
3018                 InRedPrivs[Cnt]->getExprLoc()),
3019             Replacement.getAlignment());
3020         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3021         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
3022                               [Replacement]() { return Replacement; });
3023       }
3024     }
3025     (void)InRedScope.Privatize();
3026 
3027     Action.Enter(CGF);
3028     BodyGen(CGF);
3029   };
3030   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3031       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
3032       Data.NumberOfParts);
3033   OMPLexicalScope Scope(*this, S);
3034   TaskGen(*this, OutlinedFn, Data);
3035 }
3036 
3037 static ImplicitParamDecl *
3038 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
3039                                   QualType Ty, CapturedDecl *CD,
3040                                   SourceLocation Loc) {
3041   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3042                                            ImplicitParamDecl::Other);
3043   auto *OrigRef = DeclRefExpr::Create(
3044       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
3045       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3046   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3047                                               ImplicitParamDecl::Other);
3048   auto *PrivateRef = DeclRefExpr::Create(
3049       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
3050       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3051   QualType ElemType = C.getBaseElementType(Ty);
3052   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3053                                            ImplicitParamDecl::Other);
3054   auto *InitRef = DeclRefExpr::Create(
3055       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3056       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3057   PrivateVD->setInitStyle(VarDecl::CInit);
3058   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3059                                               InitRef, /*BasePath=*/nullptr,
3060                                               VK_RValue));
3061   Data.FirstprivateVars.emplace_back(OrigRef);
3062   Data.FirstprivateCopies.emplace_back(PrivateRef);
3063   Data.FirstprivateInits.emplace_back(InitRef);
3064   return OrigVD;
3065 }
3066 
3067 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3068     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3069     OMPTargetDataInfo &InputInfo) {
3070   // Emit outlined function for task construct.
3071   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3072   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3073   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3074   auto I = CS->getCapturedDecl()->param_begin();
3075   auto PartId = std::next(I);
3076   auto TaskT = std::next(I, 4);
3077   OMPTaskDataTy Data;
3078   // The task is not final.
3079   Data.Final.setInt(/*IntVal=*/false);
3080   // Get list of firstprivate variables.
3081   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3082     auto IRef = C->varlist_begin();
3083     auto IElemInitRef = C->inits().begin();
3084     for (auto *IInit : C->private_copies()) {
3085       Data.FirstprivateVars.push_back(*IRef);
3086       Data.FirstprivateCopies.push_back(IInit);
3087       Data.FirstprivateInits.push_back(*IElemInitRef);
3088       ++IRef;
3089       ++IElemInitRef;
3090     }
3091   }
3092   OMPPrivateScope TargetScope(*this);
3093   VarDecl *BPVD = nullptr;
3094   VarDecl *PVD = nullptr;
3095   VarDecl *SVD = nullptr;
3096   if (InputInfo.NumberOfTargetItems > 0) {
3097     auto *CD = CapturedDecl::Create(
3098         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3099     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3100     QualType BaseAndPointersType = getContext().getConstantArrayType(
3101         getContext().VoidPtrTy, ArrSize, ArrayType::Normal,
3102         /*IndexTypeQuals=*/0);
3103     BPVD = createImplicitFirstprivateForType(
3104         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3105     PVD = createImplicitFirstprivateForType(
3106         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3107     QualType SizesType = getContext().getConstantArrayType(
3108         getContext().getSizeType(), ArrSize, ArrayType::Normal,
3109         /*IndexTypeQuals=*/0);
3110     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3111                                             S.getBeginLoc());
3112     TargetScope.addPrivate(
3113         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3114     TargetScope.addPrivate(PVD,
3115                            [&InputInfo]() { return InputInfo.PointersArray; });
3116     TargetScope.addPrivate(SVD,
3117                            [&InputInfo]() { return InputInfo.SizesArray; });
3118   }
3119   (void)TargetScope.Privatize();
3120   // Build list of dependences.
3121   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3122     for (const Expr *IRef : C->varlists())
3123       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3124   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3125                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3126     // Set proper addresses for generated private copies.
3127     OMPPrivateScope Scope(CGF);
3128     if (!Data.FirstprivateVars.empty()) {
3129       enum { PrivatesParam = 2, CopyFnParam = 3 };
3130       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3131           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3132       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3133           CS->getCapturedDecl()->getParam(PrivatesParam)));
3134       // Map privates.
3135       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3136       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3137       CallArgs.push_back(PrivatesPtr);
3138       for (const Expr *E : Data.FirstprivateVars) {
3139         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3140         Address PrivatePtr =
3141             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3142                               ".firstpriv.ptr.addr");
3143         PrivatePtrs.emplace_back(VD, PrivatePtr);
3144         CallArgs.push_back(PrivatePtr.getPointer());
3145       }
3146       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3147                                                           CopyFn, CallArgs);
3148       for (const auto &Pair : PrivatePtrs) {
3149         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3150                             CGF.getContext().getDeclAlign(Pair.first));
3151         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3152       }
3153     }
3154     // Privatize all private variables except for in_reduction items.
3155     (void)Scope.Privatize();
3156     if (InputInfo.NumberOfTargetItems > 0) {
3157       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3158           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize());
3159       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3160           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize());
3161       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3162           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize());
3163     }
3164 
3165     Action.Enter(CGF);
3166     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3167     BodyGen(CGF);
3168   };
3169   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3170       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3171       Data.NumberOfParts);
3172   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3173   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3174                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3175                         SourceLocation());
3176 
3177   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
3178                                       SharedsTy, CapturedStruct, &IfCond, Data);
3179 }
3180 
3181 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3182   // Emit outlined function for task construct.
3183   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3184   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3185   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3186   const Expr *IfCond = nullptr;
3187   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3188     if (C->getNameModifier() == OMPD_unknown ||
3189         C->getNameModifier() == OMPD_task) {
3190       IfCond = C->getCondition();
3191       break;
3192     }
3193   }
3194 
3195   OMPTaskDataTy Data;
3196   // Check if we should emit tied or untied task.
3197   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3198   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3199     CGF.EmitStmt(CS->getCapturedStmt());
3200   };
3201   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3202                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3203                             const OMPTaskDataTy &Data) {
3204     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
3205                                             SharedsTy, CapturedStruct, IfCond,
3206                                             Data);
3207   };
3208   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3209 }
3210 
3211 void CodeGenFunction::EmitOMPTaskyieldDirective(
3212     const OMPTaskyieldDirective &S) {
3213   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
3214 }
3215 
3216 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3217   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
3218 }
3219 
3220 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3221   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
3222 }
3223 
3224 void CodeGenFunction::EmitOMPTaskgroupDirective(
3225     const OMPTaskgroupDirective &S) {
3226   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3227     Action.Enter(CGF);
3228     if (const Expr *E = S.getReductionRef()) {
3229       SmallVector<const Expr *, 4> LHSs;
3230       SmallVector<const Expr *, 4> RHSs;
3231       OMPTaskDataTy Data;
3232       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3233         auto IPriv = C->privates().begin();
3234         auto IRed = C->reduction_ops().begin();
3235         auto ILHS = C->lhs_exprs().begin();
3236         auto IRHS = C->rhs_exprs().begin();
3237         for (const Expr *Ref : C->varlists()) {
3238           Data.ReductionVars.emplace_back(Ref);
3239           Data.ReductionCopies.emplace_back(*IPriv);
3240           Data.ReductionOps.emplace_back(*IRed);
3241           LHSs.emplace_back(*ILHS);
3242           RHSs.emplace_back(*IRHS);
3243           std::advance(IPriv, 1);
3244           std::advance(IRed, 1);
3245           std::advance(ILHS, 1);
3246           std::advance(IRHS, 1);
3247         }
3248       }
3249       llvm::Value *ReductionDesc =
3250           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
3251                                                            LHSs, RHSs, Data);
3252       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3253       CGF.EmitVarDecl(*VD);
3254       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3255                             /*Volatile=*/false, E->getType());
3256     }
3257     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3258   };
3259   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3260   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
3261 }
3262 
3263 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3264   CGM.getOpenMPRuntime().emitFlush(
3265       *this,
3266       [&S]() -> ArrayRef<const Expr *> {
3267         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3268           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3269                                     FlushClause->varlist_end());
3270         return llvm::None;
3271       }(),
3272       S.getBeginLoc());
3273 }
3274 
3275 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3276                                             const CodeGenLoopTy &CodeGenLoop,
3277                                             Expr *IncExpr) {
3278   // Emit the loop iteration variable.
3279   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3280   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3281   EmitVarDecl(*IVDecl);
3282 
3283   // Emit the iterations count variable.
3284   // If it is not a variable, Sema decided to calculate iterations count on each
3285   // iteration (e.g., it is foldable into a constant).
3286   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3287     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3288     // Emit calculation of the iterations count.
3289     EmitIgnoredExpr(S.getCalcLastIteration());
3290   }
3291 
3292   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3293 
3294   bool HasLastprivateClause = false;
3295   // Check pre-condition.
3296   {
3297     OMPLoopScope PreInitScope(*this, S);
3298     // Skip the entire loop if we don't meet the precondition.
3299     // If the condition constant folds and can be elided, avoid emitting the
3300     // whole loop.
3301     bool CondConstant;
3302     llvm::BasicBlock *ContBlock = nullptr;
3303     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3304       if (!CondConstant)
3305         return;
3306     } else {
3307       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3308       ContBlock = createBasicBlock("omp.precond.end");
3309       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3310                   getProfileCount(&S));
3311       EmitBlock(ThenBlock);
3312       incrementProfileCounter(&S);
3313     }
3314 
3315     emitAlignedClause(*this, S);
3316     // Emit 'then' code.
3317     {
3318       // Emit helper vars inits.
3319 
3320       LValue LB = EmitOMPHelperVar(
3321           *this, cast<DeclRefExpr>(
3322                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3323                           ? S.getCombinedLowerBoundVariable()
3324                           : S.getLowerBoundVariable())));
3325       LValue UB = EmitOMPHelperVar(
3326           *this, cast<DeclRefExpr>(
3327                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3328                           ? S.getCombinedUpperBoundVariable()
3329                           : S.getUpperBoundVariable())));
3330       LValue ST =
3331           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3332       LValue IL =
3333           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3334 
3335       OMPPrivateScope LoopScope(*this);
3336       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3337         // Emit implicit barrier to synchronize threads and avoid data races
3338         // on initialization of firstprivate variables and post-update of
3339         // lastprivate variables.
3340         CGM.getOpenMPRuntime().emitBarrierCall(
3341             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3342             /*ForceSimpleCall=*/true);
3343       }
3344       EmitOMPPrivateClause(S, LoopScope);
3345       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3346           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3347           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3348         EmitOMPReductionClauseInit(S, LoopScope);
3349       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3350       EmitOMPPrivateLoopCounters(S, LoopScope);
3351       (void)LoopScope.Privatize();
3352       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3353         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3354 
3355       // Detect the distribute schedule kind and chunk.
3356       llvm::Value *Chunk = nullptr;
3357       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3358       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3359         ScheduleKind = C->getDistScheduleKind();
3360         if (const Expr *Ch = C->getChunkSize()) {
3361           Chunk = EmitScalarExpr(Ch);
3362           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3363                                        S.getIterationVariable()->getType(),
3364                                        S.getBeginLoc());
3365         }
3366       } else {
3367         // Default behaviour for dist_schedule clause.
3368         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
3369             *this, S, ScheduleKind, Chunk);
3370       }
3371       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3372       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3373 
3374       // OpenMP [2.10.8, distribute Construct, Description]
3375       // If dist_schedule is specified, kind must be static. If specified,
3376       // iterations are divided into chunks of size chunk_size, chunks are
3377       // assigned to the teams of the league in a round-robin fashion in the
3378       // order of the team number. When no chunk_size is specified, the
3379       // iteration space is divided into chunks that are approximately equal
3380       // in size, and at most one chunk is distributed to each team of the
3381       // league. The size of the chunks is unspecified in this case.
3382       bool StaticChunked = RT.isStaticChunked(
3383           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
3384           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3385       if (RT.isStaticNonchunked(ScheduleKind,
3386                                 /* Chunked */ Chunk != nullptr) ||
3387           StaticChunked) {
3388         if (isOpenMPSimdDirective(S.getDirectiveKind()))
3389           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3390         CGOpenMPRuntime::StaticRTInput StaticInit(
3391             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3392             LB.getAddress(), UB.getAddress(), ST.getAddress(),
3393             StaticChunked ? Chunk : nullptr);
3394         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
3395                                     StaticInit);
3396         JumpDest LoopExit =
3397             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3398         // UB = min(UB, GlobalUB);
3399         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3400                             ? S.getCombinedEnsureUpperBound()
3401                             : S.getEnsureUpperBound());
3402         // IV = LB;
3403         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3404                             ? S.getCombinedInit()
3405                             : S.getInit());
3406 
3407         const Expr *Cond =
3408             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3409                 ? S.getCombinedCond()
3410                 : S.getCond();
3411 
3412         if (StaticChunked)
3413           Cond = S.getCombinedDistCond();
3414 
3415         // For static unchunked schedules generate:
3416         //
3417         //  1. For distribute alone, codegen
3418         //    while (idx <= UB) {
3419         //      BODY;
3420         //      ++idx;
3421         //    }
3422         //
3423         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
3424         //    while (idx <= UB) {
3425         //      <CodeGen rest of pragma>(LB, UB);
3426         //      idx += ST;
3427         //    }
3428         //
3429         // For static chunk one schedule generate:
3430         //
3431         // while (IV <= GlobalUB) {
3432         //   <CodeGen rest of pragma>(LB, UB);
3433         //   LB += ST;
3434         //   UB += ST;
3435         //   UB = min(UB, GlobalUB);
3436         //   IV = LB;
3437         // }
3438         //
3439         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3440                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3441                            CodeGenLoop(CGF, S, LoopExit);
3442                          },
3443                          [&S, StaticChunked](CodeGenFunction &CGF) {
3444                            if (StaticChunked) {
3445                              CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
3446                              CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
3447                              CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
3448                              CGF.EmitIgnoredExpr(S.getCombinedInit());
3449                            }
3450                          });
3451         EmitBlock(LoopExit.getBlock());
3452         // Tell the runtime we are done.
3453         RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind());
3454       } else {
3455         // Emit the outer loop, which requests its work chunk [LB..UB] from
3456         // runtime and runs the inner loop to process it.
3457         const OMPLoopArguments LoopArguments = {
3458             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3459             Chunk};
3460         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3461                                    CodeGenLoop);
3462       }
3463       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3464         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3465           return CGF.Builder.CreateIsNotNull(
3466               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3467         });
3468       }
3469       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3470           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3471           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3472         EmitOMPReductionClauseFinal(S, OMPD_simd);
3473         // Emit post-update of the reduction variables if IsLastIter != 0.
3474         emitPostUpdateForReductionClause(
3475             *this, S, [IL, &S](CodeGenFunction &CGF) {
3476               return CGF.Builder.CreateIsNotNull(
3477                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3478             });
3479       }
3480       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3481       if (HasLastprivateClause) {
3482         EmitOMPLastprivateClauseFinal(
3483             S, /*NoFinals=*/false,
3484             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3485       }
3486     }
3487 
3488     // We're now done with the loop, so jump to the continuation block.
3489     if (ContBlock) {
3490       EmitBranch(ContBlock);
3491       EmitBlock(ContBlock, true);
3492     }
3493   }
3494 }
3495 
3496 void CodeGenFunction::EmitOMPDistributeDirective(
3497     const OMPDistributeDirective &S) {
3498   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3499     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3500   };
3501   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3502   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3503 }
3504 
3505 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3506                                                    const CapturedStmt *S) {
3507   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3508   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3509   CGF.CapturedStmtInfo = &CapStmtInfo;
3510   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3511   Fn->setDoesNotRecurse();
3512   return Fn;
3513 }
3514 
3515 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3516   if (S.hasClausesOfKind<OMPDependClause>()) {
3517     assert(!S.getAssociatedStmt() &&
3518            "No associated statement must be in ordered depend construct.");
3519     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3520       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3521     return;
3522   }
3523   const auto *C = S.getSingleClause<OMPSIMDClause>();
3524   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3525                                  PrePostActionTy &Action) {
3526     const CapturedStmt *CS = S.getInnermostCapturedStmt();
3527     if (C) {
3528       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3529       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3530       llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3531       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3532                                                       OutlinedFn, CapturedVars);
3533     } else {
3534       Action.Enter(CGF);
3535       CGF.EmitStmt(CS->getCapturedStmt());
3536     }
3537   };
3538   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3539   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
3540 }
3541 
3542 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3543                                          QualType SrcType, QualType DestType,
3544                                          SourceLocation Loc) {
3545   assert(CGF.hasScalarEvaluationKind(DestType) &&
3546          "DestType must have scalar evaluation kind.");
3547   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3548   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3549                                                    DestType, Loc)
3550                         : CGF.EmitComplexToScalarConversion(
3551                               Val.getComplexVal(), SrcType, DestType, Loc);
3552 }
3553 
3554 static CodeGenFunction::ComplexPairTy
3555 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3556                       QualType DestType, SourceLocation Loc) {
3557   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3558          "DestType must have complex evaluation kind.");
3559   CodeGenFunction::ComplexPairTy ComplexVal;
3560   if (Val.isScalar()) {
3561     // Convert the input element to the element type of the complex.
3562     QualType DestElementType =
3563         DestType->castAs<ComplexType>()->getElementType();
3564     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
3565         Val.getScalarVal(), SrcType, DestElementType, Loc);
3566     ComplexVal = CodeGenFunction::ComplexPairTy(
3567         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3568   } else {
3569     assert(Val.isComplex() && "Must be a scalar or complex.");
3570     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3571     QualType DestElementType =
3572         DestType->castAs<ComplexType>()->getElementType();
3573     ComplexVal.first = CGF.EmitScalarConversion(
3574         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3575     ComplexVal.second = CGF.EmitScalarConversion(
3576         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3577   }
3578   return ComplexVal;
3579 }
3580 
3581 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3582                                   LValue LVal, RValue RVal) {
3583   if (LVal.isGlobalReg()) {
3584     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3585   } else {
3586     CGF.EmitAtomicStore(RVal, LVal,
3587                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3588                                  : llvm::AtomicOrdering::Monotonic,
3589                         LVal.isVolatile(), /*IsInit=*/false);
3590   }
3591 }
3592 
3593 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3594                                          QualType RValTy, SourceLocation Loc) {
3595   switch (getEvaluationKind(LVal.getType())) {
3596   case TEK_Scalar:
3597     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3598                                *this, RVal, RValTy, LVal.getType(), Loc)),
3599                            LVal);
3600     break;
3601   case TEK_Complex:
3602     EmitStoreOfComplex(
3603         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3604         /*isInit=*/false);
3605     break;
3606   case TEK_Aggregate:
3607     llvm_unreachable("Must be a scalar or complex.");
3608   }
3609 }
3610 
3611 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3612                                   const Expr *X, const Expr *V,
3613                                   SourceLocation Loc) {
3614   // v = x;
3615   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3616   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3617   LValue XLValue = CGF.EmitLValue(X);
3618   LValue VLValue = CGF.EmitLValue(V);
3619   RValue Res = XLValue.isGlobalReg()
3620                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3621                    : CGF.EmitAtomicLoad(
3622                          XLValue, Loc,
3623                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3624                                   : llvm::AtomicOrdering::Monotonic,
3625                          XLValue.isVolatile());
3626   // OpenMP, 2.12.6, atomic Construct
3627   // Any atomic construct with a seq_cst clause forces the atomically
3628   // performed operation to include an implicit flush operation without a
3629   // list.
3630   if (IsSeqCst)
3631     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3632   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3633 }
3634 
3635 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3636                                    const Expr *X, const Expr *E,
3637                                    SourceLocation Loc) {
3638   // x = expr;
3639   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3640   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3641   // OpenMP, 2.12.6, atomic Construct
3642   // Any atomic construct with a seq_cst clause forces the atomically
3643   // performed operation to include an implicit flush operation without a
3644   // list.
3645   if (IsSeqCst)
3646     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3647 }
3648 
3649 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3650                                                 RValue Update,
3651                                                 BinaryOperatorKind BO,
3652                                                 llvm::AtomicOrdering AO,
3653                                                 bool IsXLHSInRHSPart) {
3654   ASTContext &Context = CGF.getContext();
3655   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3656   // expression is simple and atomic is allowed for the given type for the
3657   // target platform.
3658   if (BO == BO_Comma || !Update.isScalar() ||
3659       !Update.getScalarVal()->getType()->isIntegerTy() ||
3660       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3661                         (Update.getScalarVal()->getType() !=
3662                          X.getAddress().getElementType())) ||
3663       !X.getAddress().getElementType()->isIntegerTy() ||
3664       !Context.getTargetInfo().hasBuiltinAtomic(
3665           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3666     return std::make_pair(false, RValue::get(nullptr));
3667 
3668   llvm::AtomicRMWInst::BinOp RMWOp;
3669   switch (BO) {
3670   case BO_Add:
3671     RMWOp = llvm::AtomicRMWInst::Add;
3672     break;
3673   case BO_Sub:
3674     if (!IsXLHSInRHSPart)
3675       return std::make_pair(false, RValue::get(nullptr));
3676     RMWOp = llvm::AtomicRMWInst::Sub;
3677     break;
3678   case BO_And:
3679     RMWOp = llvm::AtomicRMWInst::And;
3680     break;
3681   case BO_Or:
3682     RMWOp = llvm::AtomicRMWInst::Or;
3683     break;
3684   case BO_Xor:
3685     RMWOp = llvm::AtomicRMWInst::Xor;
3686     break;
3687   case BO_LT:
3688     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3689                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3690                                    : llvm::AtomicRMWInst::Max)
3691                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3692                                    : llvm::AtomicRMWInst::UMax);
3693     break;
3694   case BO_GT:
3695     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3696                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3697                                    : llvm::AtomicRMWInst::Min)
3698                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3699                                    : llvm::AtomicRMWInst::UMin);
3700     break;
3701   case BO_Assign:
3702     RMWOp = llvm::AtomicRMWInst::Xchg;
3703     break;
3704   case BO_Mul:
3705   case BO_Div:
3706   case BO_Rem:
3707   case BO_Shl:
3708   case BO_Shr:
3709   case BO_LAnd:
3710   case BO_LOr:
3711     return std::make_pair(false, RValue::get(nullptr));
3712   case BO_PtrMemD:
3713   case BO_PtrMemI:
3714   case BO_LE:
3715   case BO_GE:
3716   case BO_EQ:
3717   case BO_NE:
3718   case BO_Cmp:
3719   case BO_AddAssign:
3720   case BO_SubAssign:
3721   case BO_AndAssign:
3722   case BO_OrAssign:
3723   case BO_XorAssign:
3724   case BO_MulAssign:
3725   case BO_DivAssign:
3726   case BO_RemAssign:
3727   case BO_ShlAssign:
3728   case BO_ShrAssign:
3729   case BO_Comma:
3730     llvm_unreachable("Unsupported atomic update operation");
3731   }
3732   llvm::Value *UpdateVal = Update.getScalarVal();
3733   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3734     UpdateVal = CGF.Builder.CreateIntCast(
3735         IC, X.getAddress().getElementType(),
3736         X.getType()->hasSignedIntegerRepresentation());
3737   }
3738   llvm::Value *Res =
3739       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3740   return std::make_pair(true, RValue::get(Res));
3741 }
3742 
3743 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3744     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3745     llvm::AtomicOrdering AO, SourceLocation Loc,
3746     const llvm::function_ref<RValue(RValue)> CommonGen) {
3747   // Update expressions are allowed to have the following forms:
3748   // x binop= expr; -> xrval + expr;
3749   // x++, ++x -> xrval + 1;
3750   // x--, --x -> xrval - 1;
3751   // x = x binop expr; -> xrval binop expr
3752   // x = expr Op x; - > expr binop xrval;
3753   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3754   if (!Res.first) {
3755     if (X.isGlobalReg()) {
3756       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3757       // 'xrval'.
3758       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3759     } else {
3760       // Perform compare-and-swap procedure.
3761       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3762     }
3763   }
3764   return Res;
3765 }
3766 
3767 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3768                                     const Expr *X, const Expr *E,
3769                                     const Expr *UE, bool IsXLHSInRHSPart,
3770                                     SourceLocation Loc) {
3771   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3772          "Update expr in 'atomic update' must be a binary operator.");
3773   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3774   // Update expressions are allowed to have the following forms:
3775   // x binop= expr; -> xrval + expr;
3776   // x++, ++x -> xrval + 1;
3777   // x--, --x -> xrval - 1;
3778   // x = x binop expr; -> xrval binop expr
3779   // x = expr Op x; - > expr binop xrval;
3780   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3781   LValue XLValue = CGF.EmitLValue(X);
3782   RValue ExprRValue = CGF.EmitAnyExpr(E);
3783   llvm::AtomicOrdering AO = IsSeqCst
3784                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3785                                 : llvm::AtomicOrdering::Monotonic;
3786   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3787   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3788   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3789   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3790   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
3791     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3792     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3793     return CGF.EmitAnyExpr(UE);
3794   };
3795   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3796       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3797   // OpenMP, 2.12.6, atomic Construct
3798   // Any atomic construct with a seq_cst clause forces the atomically
3799   // performed operation to include an implicit flush operation without a
3800   // list.
3801   if (IsSeqCst)
3802     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3803 }
3804 
3805 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3806                             QualType SourceType, QualType ResType,
3807                             SourceLocation Loc) {
3808   switch (CGF.getEvaluationKind(ResType)) {
3809   case TEK_Scalar:
3810     return RValue::get(
3811         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3812   case TEK_Complex: {
3813     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3814     return RValue::getComplex(Res.first, Res.second);
3815   }
3816   case TEK_Aggregate:
3817     break;
3818   }
3819   llvm_unreachable("Must be a scalar or complex.");
3820 }
3821 
3822 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3823                                      bool IsPostfixUpdate, const Expr *V,
3824                                      const Expr *X, const Expr *E,
3825                                      const Expr *UE, bool IsXLHSInRHSPart,
3826                                      SourceLocation Loc) {
3827   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3828   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3829   RValue NewVVal;
3830   LValue VLValue = CGF.EmitLValue(V);
3831   LValue XLValue = CGF.EmitLValue(X);
3832   RValue ExprRValue = CGF.EmitAnyExpr(E);
3833   llvm::AtomicOrdering AO = IsSeqCst
3834                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3835                                 : llvm::AtomicOrdering::Monotonic;
3836   QualType NewVValType;
3837   if (UE) {
3838     // 'x' is updated with some additional value.
3839     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3840            "Update expr in 'atomic capture' must be a binary operator.");
3841     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3842     // Update expressions are allowed to have the following forms:
3843     // x binop= expr; -> xrval + expr;
3844     // x++, ++x -> xrval + 1;
3845     // x--, --x -> xrval - 1;
3846     // x = x binop expr; -> xrval binop expr
3847     // x = expr Op x; - > expr binop xrval;
3848     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3849     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3850     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3851     NewVValType = XRValExpr->getType();
3852     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3853     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3854                   IsPostfixUpdate](RValue XRValue) {
3855       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3856       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3857       RValue Res = CGF.EmitAnyExpr(UE);
3858       NewVVal = IsPostfixUpdate ? XRValue : Res;
3859       return Res;
3860     };
3861     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3862         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3863     if (Res.first) {
3864       // 'atomicrmw' instruction was generated.
3865       if (IsPostfixUpdate) {
3866         // Use old value from 'atomicrmw'.
3867         NewVVal = Res.second;
3868       } else {
3869         // 'atomicrmw' does not provide new value, so evaluate it using old
3870         // value of 'x'.
3871         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3872         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3873         NewVVal = CGF.EmitAnyExpr(UE);
3874       }
3875     }
3876   } else {
3877     // 'x' is simply rewritten with some 'expr'.
3878     NewVValType = X->getType().getNonReferenceType();
3879     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3880                                X->getType().getNonReferenceType(), Loc);
3881     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
3882       NewVVal = XRValue;
3883       return ExprRValue;
3884     };
3885     // Try to perform atomicrmw xchg, otherwise simple exchange.
3886     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3887         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3888         Loc, Gen);
3889     if (Res.first) {
3890       // 'atomicrmw' instruction was generated.
3891       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3892     }
3893   }
3894   // Emit post-update store to 'v' of old/new 'x' value.
3895   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3896   // OpenMP, 2.12.6, atomic Construct
3897   // Any atomic construct with a seq_cst clause forces the atomically
3898   // performed operation to include an implicit flush operation without a
3899   // list.
3900   if (IsSeqCst)
3901     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3902 }
3903 
3904 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3905                               bool IsSeqCst, bool IsPostfixUpdate,
3906                               const Expr *X, const Expr *V, const Expr *E,
3907                               const Expr *UE, bool IsXLHSInRHSPart,
3908                               SourceLocation Loc) {
3909   switch (Kind) {
3910   case OMPC_read:
3911     emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3912     break;
3913   case OMPC_write:
3914     emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3915     break;
3916   case OMPC_unknown:
3917   case OMPC_update:
3918     emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3919     break;
3920   case OMPC_capture:
3921     emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3922                              IsXLHSInRHSPart, Loc);
3923     break;
3924   case OMPC_if:
3925   case OMPC_final:
3926   case OMPC_num_threads:
3927   case OMPC_private:
3928   case OMPC_firstprivate:
3929   case OMPC_lastprivate:
3930   case OMPC_reduction:
3931   case OMPC_task_reduction:
3932   case OMPC_in_reduction:
3933   case OMPC_safelen:
3934   case OMPC_simdlen:
3935   case OMPC_collapse:
3936   case OMPC_default:
3937   case OMPC_seq_cst:
3938   case OMPC_shared:
3939   case OMPC_linear:
3940   case OMPC_aligned:
3941   case OMPC_copyin:
3942   case OMPC_copyprivate:
3943   case OMPC_flush:
3944   case OMPC_proc_bind:
3945   case OMPC_schedule:
3946   case OMPC_ordered:
3947   case OMPC_nowait:
3948   case OMPC_untied:
3949   case OMPC_threadprivate:
3950   case OMPC_depend:
3951   case OMPC_mergeable:
3952   case OMPC_device:
3953   case OMPC_threads:
3954   case OMPC_simd:
3955   case OMPC_map:
3956   case OMPC_num_teams:
3957   case OMPC_thread_limit:
3958   case OMPC_priority:
3959   case OMPC_grainsize:
3960   case OMPC_nogroup:
3961   case OMPC_num_tasks:
3962   case OMPC_hint:
3963   case OMPC_dist_schedule:
3964   case OMPC_defaultmap:
3965   case OMPC_uniform:
3966   case OMPC_to:
3967   case OMPC_from:
3968   case OMPC_use_device_ptr:
3969   case OMPC_is_device_ptr:
3970   case OMPC_unified_address:
3971   case OMPC_unified_shared_memory:
3972   case OMPC_reverse_offload:
3973   case OMPC_dynamic_allocators:
3974   case OMPC_atomic_default_mem_order:
3975     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3976   }
3977 }
3978 
3979 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3980   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3981   OpenMPClauseKind Kind = OMPC_unknown;
3982   for (const OMPClause *C : S.clauses()) {
3983     // Find first clause (skip seq_cst clause, if it is first).
3984     if (C->getClauseKind() != OMPC_seq_cst) {
3985       Kind = C->getClauseKind();
3986       break;
3987     }
3988   }
3989 
3990   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
3991   if (const auto *FE = dyn_cast<FullExpr>(CS))
3992     enterFullExpression(FE);
3993   // Processing for statements under 'atomic capture'.
3994   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3995     for (const Stmt *C : Compound->body()) {
3996       if (const auto *FE = dyn_cast<FullExpr>(C))
3997         enterFullExpression(FE);
3998     }
3999   }
4000 
4001   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
4002                                             PrePostActionTy &) {
4003     CGF.EmitStopPoint(CS);
4004     emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
4005                       S.getV(), S.getExpr(), S.getUpdateExpr(),
4006                       S.isXLHSInRHSPart(), S.getBeginLoc());
4007   };
4008   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4009   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
4010 }
4011 
4012 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
4013                                          const OMPExecutableDirective &S,
4014                                          const RegionCodeGenTy &CodeGen) {
4015   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
4016   CodeGenModule &CGM = CGF.CGM;
4017 
4018   // On device emit this construct as inlined code.
4019   if (CGM.getLangOpts().OpenMPIsDevice) {
4020     OMPLexicalScope Scope(CGF, S, OMPD_target);
4021     CGM.getOpenMPRuntime().emitInlinedDirective(
4022         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4023           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4024         });
4025     return;
4026   }
4027 
4028   llvm::Function *Fn = nullptr;
4029   llvm::Constant *FnID = nullptr;
4030 
4031   const Expr *IfCond = nullptr;
4032   // Check for the at most one if clause associated with the target region.
4033   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4034     if (C->getNameModifier() == OMPD_unknown ||
4035         C->getNameModifier() == OMPD_target) {
4036       IfCond = C->getCondition();
4037       break;
4038     }
4039   }
4040 
4041   // Check if we have any device clause associated with the directive.
4042   const Expr *Device = nullptr;
4043   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4044     Device = C->getDevice();
4045 
4046   // Check if we have an if clause whose conditional always evaluates to false
4047   // or if we do not have any targets specified. If so the target region is not
4048   // an offload entry point.
4049   bool IsOffloadEntry = true;
4050   if (IfCond) {
4051     bool Val;
4052     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
4053       IsOffloadEntry = false;
4054   }
4055   if (CGM.getLangOpts().OMPTargetTriples.empty())
4056     IsOffloadEntry = false;
4057 
4058   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
4059   StringRef ParentName;
4060   // In case we have Ctors/Dtors we use the complete type variant to produce
4061   // the mangling of the device outlined kernel.
4062   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
4063     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
4064   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
4065     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
4066   else
4067     ParentName =
4068         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
4069 
4070   // Emit target region as a standalone region.
4071   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
4072                                                     IsOffloadEntry, CodeGen);
4073   OMPLexicalScope Scope(CGF, S, OMPD_task);
4074   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device);
4075 }
4076 
4077 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
4078                              PrePostActionTy &Action) {
4079   Action.Enter(CGF);
4080   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4081   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4082   CGF.EmitOMPPrivateClause(S, PrivateScope);
4083   (void)PrivateScope.Privatize();
4084   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4085     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4086 
4087   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4088 }
4089 
4090 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4091                                                   StringRef ParentName,
4092                                                   const OMPTargetDirective &S) {
4093   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4094     emitTargetRegion(CGF, S, Action);
4095   };
4096   llvm::Function *Fn;
4097   llvm::Constant *Addr;
4098   // Emit target region as a standalone region.
4099   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4100       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4101   assert(Fn && Addr && "Target device function emission failed.");
4102 }
4103 
4104 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4105   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4106     emitTargetRegion(CGF, S, Action);
4107   };
4108   emitCommonOMPTargetDirective(*this, S, CodeGen);
4109 }
4110 
4111 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4112                                         const OMPExecutableDirective &S,
4113                                         OpenMPDirectiveKind InnermostKind,
4114                                         const RegionCodeGenTy &CodeGen) {
4115   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4116   llvm::Value *OutlinedFn =
4117       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4118           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4119 
4120   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4121   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4122   if (NT || TL) {
4123     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4124     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4125 
4126     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4127                                                   S.getBeginLoc());
4128   }
4129 
4130   OMPTeamsScope Scope(CGF, S);
4131   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4132   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4133   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
4134                                            CapturedVars);
4135 }
4136 
4137 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4138   // Emit teams region as a standalone region.
4139   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4140     Action.Enter(CGF);
4141     OMPPrivateScope PrivateScope(CGF);
4142     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4143     CGF.EmitOMPPrivateClause(S, PrivateScope);
4144     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4145     (void)PrivateScope.Privatize();
4146     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4147     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4148   };
4149   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4150   emitPostUpdateForReductionClause(*this, S,
4151                                    [](CodeGenFunction &) { return nullptr; });
4152 }
4153 
4154 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4155                                   const OMPTargetTeamsDirective &S) {
4156   auto *CS = S.getCapturedStmt(OMPD_teams);
4157   Action.Enter(CGF);
4158   // Emit teams region as a standalone region.
4159   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4160     Action.Enter(CGF);
4161     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4162     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4163     CGF.EmitOMPPrivateClause(S, PrivateScope);
4164     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4165     (void)PrivateScope.Privatize();
4166     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4167       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4168     CGF.EmitStmt(CS->getCapturedStmt());
4169     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4170   };
4171   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4172   emitPostUpdateForReductionClause(CGF, S,
4173                                    [](CodeGenFunction &) { return nullptr; });
4174 }
4175 
4176 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4177     CodeGenModule &CGM, StringRef ParentName,
4178     const OMPTargetTeamsDirective &S) {
4179   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4180     emitTargetTeamsRegion(CGF, Action, S);
4181   };
4182   llvm::Function *Fn;
4183   llvm::Constant *Addr;
4184   // Emit target region as a standalone region.
4185   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4186       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4187   assert(Fn && Addr && "Target device function emission failed.");
4188 }
4189 
4190 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4191     const OMPTargetTeamsDirective &S) {
4192   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4193     emitTargetTeamsRegion(CGF, Action, S);
4194   };
4195   emitCommonOMPTargetDirective(*this, S, CodeGen);
4196 }
4197 
4198 static void
4199 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4200                                 const OMPTargetTeamsDistributeDirective &S) {
4201   Action.Enter(CGF);
4202   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4203     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4204   };
4205 
4206   // Emit teams region as a standalone region.
4207   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4208                                             PrePostActionTy &Action) {
4209     Action.Enter(CGF);
4210     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4211     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4212     (void)PrivateScope.Privatize();
4213     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4214                                                     CodeGenDistribute);
4215     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4216   };
4217   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4218   emitPostUpdateForReductionClause(CGF, S,
4219                                    [](CodeGenFunction &) { return nullptr; });
4220 }
4221 
4222 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4223     CodeGenModule &CGM, StringRef ParentName,
4224     const OMPTargetTeamsDistributeDirective &S) {
4225   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4226     emitTargetTeamsDistributeRegion(CGF, Action, S);
4227   };
4228   llvm::Function *Fn;
4229   llvm::Constant *Addr;
4230   // Emit target region as a standalone region.
4231   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4232       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4233   assert(Fn && Addr && "Target device function emission failed.");
4234 }
4235 
4236 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4237     const OMPTargetTeamsDistributeDirective &S) {
4238   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4239     emitTargetTeamsDistributeRegion(CGF, Action, S);
4240   };
4241   emitCommonOMPTargetDirective(*this, S, CodeGen);
4242 }
4243 
4244 static void emitTargetTeamsDistributeSimdRegion(
4245     CodeGenFunction &CGF, PrePostActionTy &Action,
4246     const OMPTargetTeamsDistributeSimdDirective &S) {
4247   Action.Enter(CGF);
4248   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4249     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4250   };
4251 
4252   // Emit teams region as a standalone region.
4253   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4254                                             PrePostActionTy &Action) {
4255     Action.Enter(CGF);
4256     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4257     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4258     (void)PrivateScope.Privatize();
4259     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4260                                                     CodeGenDistribute);
4261     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4262   };
4263   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4264   emitPostUpdateForReductionClause(CGF, S,
4265                                    [](CodeGenFunction &) { return nullptr; });
4266 }
4267 
4268 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4269     CodeGenModule &CGM, StringRef ParentName,
4270     const OMPTargetTeamsDistributeSimdDirective &S) {
4271   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4272     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4273   };
4274   llvm::Function *Fn;
4275   llvm::Constant *Addr;
4276   // Emit target region as a standalone region.
4277   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4278       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4279   assert(Fn && Addr && "Target device function emission failed.");
4280 }
4281 
4282 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4283     const OMPTargetTeamsDistributeSimdDirective &S) {
4284   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4285     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4286   };
4287   emitCommonOMPTargetDirective(*this, S, CodeGen);
4288 }
4289 
4290 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4291     const OMPTeamsDistributeDirective &S) {
4292 
4293   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4294     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4295   };
4296 
4297   // Emit teams region as a standalone region.
4298   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4299                                             PrePostActionTy &Action) {
4300     Action.Enter(CGF);
4301     OMPPrivateScope PrivateScope(CGF);
4302     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4303     (void)PrivateScope.Privatize();
4304     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4305                                                     CodeGenDistribute);
4306     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4307   };
4308   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4309   emitPostUpdateForReductionClause(*this, S,
4310                                    [](CodeGenFunction &) { return nullptr; });
4311 }
4312 
4313 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4314     const OMPTeamsDistributeSimdDirective &S) {
4315   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4316     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4317   };
4318 
4319   // Emit teams region as a standalone region.
4320   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4321                                             PrePostActionTy &Action) {
4322     Action.Enter(CGF);
4323     OMPPrivateScope PrivateScope(CGF);
4324     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4325     (void)PrivateScope.Privatize();
4326     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4327                                                     CodeGenDistribute);
4328     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4329   };
4330   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4331   emitPostUpdateForReductionClause(*this, S,
4332                                    [](CodeGenFunction &) { return nullptr; });
4333 }
4334 
4335 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4336     const OMPTeamsDistributeParallelForDirective &S) {
4337   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4338     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4339                               S.getDistInc());
4340   };
4341 
4342   // Emit teams region as a standalone region.
4343   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4344                                             PrePostActionTy &Action) {
4345     Action.Enter(CGF);
4346     OMPPrivateScope PrivateScope(CGF);
4347     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4348     (void)PrivateScope.Privatize();
4349     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4350                                                     CodeGenDistribute);
4351     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4352   };
4353   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4354   emitPostUpdateForReductionClause(*this, S,
4355                                    [](CodeGenFunction &) { return nullptr; });
4356 }
4357 
4358 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4359     const OMPTeamsDistributeParallelForSimdDirective &S) {
4360   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4361     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4362                               S.getDistInc());
4363   };
4364 
4365   // Emit teams region as a standalone region.
4366   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4367                                             PrePostActionTy &Action) {
4368     Action.Enter(CGF);
4369     OMPPrivateScope PrivateScope(CGF);
4370     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4371     (void)PrivateScope.Privatize();
4372     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4373         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4374     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4375   };
4376   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4377   emitPostUpdateForReductionClause(*this, S,
4378                                    [](CodeGenFunction &) { return nullptr; });
4379 }
4380 
4381 static void emitTargetTeamsDistributeParallelForRegion(
4382     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
4383     PrePostActionTy &Action) {
4384   Action.Enter(CGF);
4385   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4386     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4387                               S.getDistInc());
4388   };
4389 
4390   // Emit teams region as a standalone region.
4391   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4392                                                  PrePostActionTy &Action) {
4393     Action.Enter(CGF);
4394     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4395     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4396     (void)PrivateScope.Privatize();
4397     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4398         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4399     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4400   };
4401 
4402   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
4403                               CodeGenTeams);
4404   emitPostUpdateForReductionClause(CGF, S,
4405                                    [](CodeGenFunction &) { return nullptr; });
4406 }
4407 
4408 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
4409     CodeGenModule &CGM, StringRef ParentName,
4410     const OMPTargetTeamsDistributeParallelForDirective &S) {
4411   // Emit SPMD target teams distribute parallel for region as a standalone
4412   // region.
4413   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4414     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4415   };
4416   llvm::Function *Fn;
4417   llvm::Constant *Addr;
4418   // Emit target region as a standalone region.
4419   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4420       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4421   assert(Fn && Addr && "Target device function emission failed.");
4422 }
4423 
4424 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
4425     const OMPTargetTeamsDistributeParallelForDirective &S) {
4426   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4427     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4428   };
4429   emitCommonOMPTargetDirective(*this, S, CodeGen);
4430 }
4431 
4432 static void emitTargetTeamsDistributeParallelForSimdRegion(
4433     CodeGenFunction &CGF,
4434     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
4435     PrePostActionTy &Action) {
4436   Action.Enter(CGF);
4437   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4438     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4439                               S.getDistInc());
4440   };
4441 
4442   // Emit teams region as a standalone region.
4443   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4444                                                  PrePostActionTy &Action) {
4445     Action.Enter(CGF);
4446     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4447     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4448     (void)PrivateScope.Privatize();
4449     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4450         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4451     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4452   };
4453 
4454   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
4455                               CodeGenTeams);
4456   emitPostUpdateForReductionClause(CGF, S,
4457                                    [](CodeGenFunction &) { return nullptr; });
4458 }
4459 
4460 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
4461     CodeGenModule &CGM, StringRef ParentName,
4462     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4463   // Emit SPMD target teams distribute parallel for simd region as a standalone
4464   // region.
4465   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4466     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4467   };
4468   llvm::Function *Fn;
4469   llvm::Constant *Addr;
4470   // Emit target region as a standalone region.
4471   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4472       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4473   assert(Fn && Addr && "Target device function emission failed.");
4474 }
4475 
4476 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
4477     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4478   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4479     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4480   };
4481   emitCommonOMPTargetDirective(*this, S, CodeGen);
4482 }
4483 
4484 void CodeGenFunction::EmitOMPCancellationPointDirective(
4485     const OMPCancellationPointDirective &S) {
4486   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
4487                                                    S.getCancelRegion());
4488 }
4489 
4490 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
4491   const Expr *IfCond = nullptr;
4492   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4493     if (C->getNameModifier() == OMPD_unknown ||
4494         C->getNameModifier() == OMPD_cancel) {
4495       IfCond = C->getCondition();
4496       break;
4497     }
4498   }
4499   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
4500                                         S.getCancelRegion());
4501 }
4502 
4503 CodeGenFunction::JumpDest
4504 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
4505   if (Kind == OMPD_parallel || Kind == OMPD_task ||
4506       Kind == OMPD_target_parallel)
4507     return ReturnBlock;
4508   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
4509          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
4510          Kind == OMPD_distribute_parallel_for ||
4511          Kind == OMPD_target_parallel_for ||
4512          Kind == OMPD_teams_distribute_parallel_for ||
4513          Kind == OMPD_target_teams_distribute_parallel_for);
4514   return OMPCancelStack.getExitBlock();
4515 }
4516 
4517 void CodeGenFunction::EmitOMPUseDevicePtrClause(
4518     const OMPClause &NC, OMPPrivateScope &PrivateScope,
4519     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
4520   const auto &C = cast<OMPUseDevicePtrClause>(NC);
4521   auto OrigVarIt = C.varlist_begin();
4522   auto InitIt = C.inits().begin();
4523   for (const Expr *PvtVarIt : C.private_copies()) {
4524     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
4525     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
4526     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
4527 
4528     // In order to identify the right initializer we need to match the
4529     // declaration used by the mapping logic. In some cases we may get
4530     // OMPCapturedExprDecl that refers to the original declaration.
4531     const ValueDecl *MatchingVD = OrigVD;
4532     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
4533       // OMPCapturedExprDecl are used to privative fields of the current
4534       // structure.
4535       const auto *ME = cast<MemberExpr>(OED->getInit());
4536       assert(isa<CXXThisExpr>(ME->getBase()) &&
4537              "Base should be the current struct!");
4538       MatchingVD = ME->getMemberDecl();
4539     }
4540 
4541     // If we don't have information about the current list item, move on to
4542     // the next one.
4543     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
4544     if (InitAddrIt == CaptureDeviceAddrMap.end())
4545       continue;
4546 
4547     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
4548                                                          InitAddrIt, InitVD,
4549                                                          PvtVD]() {
4550       // Initialize the temporary initialization variable with the address we
4551       // get from the runtime library. We have to cast the source address
4552       // because it is always a void *. References are materialized in the
4553       // privatization scope, so the initialization here disregards the fact
4554       // the original variable is a reference.
4555       QualType AddrQTy =
4556           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
4557       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
4558       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
4559       setAddrOfLocalVar(InitVD, InitAddr);
4560 
4561       // Emit private declaration, it will be initialized by the value we
4562       // declaration we just added to the local declarations map.
4563       EmitDecl(*PvtVD);
4564 
4565       // The initialization variables reached its purpose in the emission
4566       // of the previous declaration, so we don't need it anymore.
4567       LocalDeclMap.erase(InitVD);
4568 
4569       // Return the address of the private variable.
4570       return GetAddrOfLocalVar(PvtVD);
4571     });
4572     assert(IsRegistered && "firstprivate var already registered as private");
4573     // Silence the warning about unused variable.
4574     (void)IsRegistered;
4575 
4576     ++OrigVarIt;
4577     ++InitIt;
4578   }
4579 }
4580 
4581 // Generate the instructions for '#pragma omp target data' directive.
4582 void CodeGenFunction::EmitOMPTargetDataDirective(
4583     const OMPTargetDataDirective &S) {
4584   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
4585 
4586   // Create a pre/post action to signal the privatization of the device pointer.
4587   // This action can be replaced by the OpenMP runtime code generation to
4588   // deactivate privatization.
4589   bool PrivatizeDevicePointers = false;
4590   class DevicePointerPrivActionTy : public PrePostActionTy {
4591     bool &PrivatizeDevicePointers;
4592 
4593   public:
4594     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
4595         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
4596     void Enter(CodeGenFunction &CGF) override {
4597       PrivatizeDevicePointers = true;
4598     }
4599   };
4600   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
4601 
4602   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
4603                        CodeGenFunction &CGF, PrePostActionTy &Action) {
4604     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4605       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4606     };
4607 
4608     // Codegen that selects whether to generate the privatization code or not.
4609     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
4610                           &InnermostCodeGen](CodeGenFunction &CGF,
4611                                              PrePostActionTy &Action) {
4612       RegionCodeGenTy RCG(InnermostCodeGen);
4613       PrivatizeDevicePointers = false;
4614 
4615       // Call the pre-action to change the status of PrivatizeDevicePointers if
4616       // needed.
4617       Action.Enter(CGF);
4618 
4619       if (PrivatizeDevicePointers) {
4620         OMPPrivateScope PrivateScope(CGF);
4621         // Emit all instances of the use_device_ptr clause.
4622         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
4623           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
4624                                         Info.CaptureDeviceAddrMap);
4625         (void)PrivateScope.Privatize();
4626         RCG(CGF);
4627       } else {
4628         RCG(CGF);
4629       }
4630     };
4631 
4632     // Forward the provided action to the privatization codegen.
4633     RegionCodeGenTy PrivRCG(PrivCodeGen);
4634     PrivRCG.setAction(Action);
4635 
4636     // Notwithstanding the body of the region is emitted as inlined directive,
4637     // we don't use an inline scope as changes in the references inside the
4638     // region are expected to be visible outside, so we do not privative them.
4639     OMPLexicalScope Scope(CGF, S);
4640     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4641                                                     PrivRCG);
4642   };
4643 
4644   RegionCodeGenTy RCG(CodeGen);
4645 
4646   // If we don't have target devices, don't bother emitting the data mapping
4647   // code.
4648   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4649     RCG(*this);
4650     return;
4651   }
4652 
4653   // Check if we have any if clause associated with the directive.
4654   const Expr *IfCond = nullptr;
4655   if (const auto *C = S.getSingleClause<OMPIfClause>())
4656     IfCond = C->getCondition();
4657 
4658   // Check if we have any device clause associated with the directive.
4659   const Expr *Device = nullptr;
4660   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4661     Device = C->getDevice();
4662 
4663   // Set the action to signal privatization of device pointers.
4664   RCG.setAction(PrivAction);
4665 
4666   // Emit region code.
4667   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4668                                              Info);
4669 }
4670 
4671 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4672     const OMPTargetEnterDataDirective &S) {
4673   // If we don't have target devices, don't bother emitting the data mapping
4674   // code.
4675   if (CGM.getLangOpts().OMPTargetTriples.empty())
4676     return;
4677 
4678   // Check if we have any if clause associated with the directive.
4679   const Expr *IfCond = nullptr;
4680   if (const auto *C = S.getSingleClause<OMPIfClause>())
4681     IfCond = C->getCondition();
4682 
4683   // Check if we have any device clause associated with the directive.
4684   const Expr *Device = nullptr;
4685   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4686     Device = C->getDevice();
4687 
4688   OMPLexicalScope Scope(*this, S, OMPD_task);
4689   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4690 }
4691 
4692 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4693     const OMPTargetExitDataDirective &S) {
4694   // If we don't have target devices, don't bother emitting the data mapping
4695   // code.
4696   if (CGM.getLangOpts().OMPTargetTriples.empty())
4697     return;
4698 
4699   // Check if we have any if clause associated with the directive.
4700   const Expr *IfCond = nullptr;
4701   if (const auto *C = S.getSingleClause<OMPIfClause>())
4702     IfCond = C->getCondition();
4703 
4704   // Check if we have any device clause associated with the directive.
4705   const Expr *Device = nullptr;
4706   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4707     Device = C->getDevice();
4708 
4709   OMPLexicalScope Scope(*this, S, OMPD_task);
4710   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4711 }
4712 
4713 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4714                                      const OMPTargetParallelDirective &S,
4715                                      PrePostActionTy &Action) {
4716   // Get the captured statement associated with the 'parallel' region.
4717   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
4718   Action.Enter(CGF);
4719   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4720     Action.Enter(CGF);
4721     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4722     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4723     CGF.EmitOMPPrivateClause(S, PrivateScope);
4724     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4725     (void)PrivateScope.Privatize();
4726     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4727       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4728     // TODO: Add support for clauses.
4729     CGF.EmitStmt(CS->getCapturedStmt());
4730     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4731   };
4732   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4733                                  emitEmptyBoundParameters);
4734   emitPostUpdateForReductionClause(CGF, S,
4735                                    [](CodeGenFunction &) { return nullptr; });
4736 }
4737 
4738 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4739     CodeGenModule &CGM, StringRef ParentName,
4740     const OMPTargetParallelDirective &S) {
4741   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4742     emitTargetParallelRegion(CGF, S, Action);
4743   };
4744   llvm::Function *Fn;
4745   llvm::Constant *Addr;
4746   // Emit target region as a standalone region.
4747   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4748       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4749   assert(Fn && Addr && "Target device function emission failed.");
4750 }
4751 
4752 void CodeGenFunction::EmitOMPTargetParallelDirective(
4753     const OMPTargetParallelDirective &S) {
4754   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4755     emitTargetParallelRegion(CGF, S, Action);
4756   };
4757   emitCommonOMPTargetDirective(*this, S, CodeGen);
4758 }
4759 
4760 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
4761                                         const OMPTargetParallelForDirective &S,
4762                                         PrePostActionTy &Action) {
4763   Action.Enter(CGF);
4764   // Emit directive as a combined directive that consists of two implicit
4765   // directives: 'parallel' with 'for' directive.
4766   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4767     Action.Enter(CGF);
4768     CodeGenFunction::OMPCancelStackRAII CancelRegion(
4769         CGF, OMPD_target_parallel_for, S.hasCancel());
4770     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4771                                emitDispatchForLoopBounds);
4772   };
4773   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
4774                                  emitEmptyBoundParameters);
4775 }
4776 
4777 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
4778     CodeGenModule &CGM, StringRef ParentName,
4779     const OMPTargetParallelForDirective &S) {
4780   // Emit SPMD target parallel for region as a standalone region.
4781   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4782     emitTargetParallelForRegion(CGF, S, Action);
4783   };
4784   llvm::Function *Fn;
4785   llvm::Constant *Addr;
4786   // Emit target region as a standalone region.
4787   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4788       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4789   assert(Fn && Addr && "Target device function emission failed.");
4790 }
4791 
4792 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4793     const OMPTargetParallelForDirective &S) {
4794   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4795     emitTargetParallelForRegion(CGF, S, Action);
4796   };
4797   emitCommonOMPTargetDirective(*this, S, CodeGen);
4798 }
4799 
4800 static void
4801 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
4802                                 const OMPTargetParallelForSimdDirective &S,
4803                                 PrePostActionTy &Action) {
4804   Action.Enter(CGF);
4805   // Emit directive as a combined directive that consists of two implicit
4806   // directives: 'parallel' with 'for' directive.
4807   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4808     Action.Enter(CGF);
4809     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4810                                emitDispatchForLoopBounds);
4811   };
4812   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
4813                                  emitEmptyBoundParameters);
4814 }
4815 
4816 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
4817     CodeGenModule &CGM, StringRef ParentName,
4818     const OMPTargetParallelForSimdDirective &S) {
4819   // Emit SPMD target parallel for region as a standalone region.
4820   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4821     emitTargetParallelForSimdRegion(CGF, S, Action);
4822   };
4823   llvm::Function *Fn;
4824   llvm::Constant *Addr;
4825   // Emit target region as a standalone region.
4826   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4827       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4828   assert(Fn && Addr && "Target device function emission failed.");
4829 }
4830 
4831 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
4832     const OMPTargetParallelForSimdDirective &S) {
4833   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4834     emitTargetParallelForSimdRegion(CGF, S, Action);
4835   };
4836   emitCommonOMPTargetDirective(*this, S, CodeGen);
4837 }
4838 
4839 /// Emit a helper variable and return corresponding lvalue.
4840 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4841                      const ImplicitParamDecl *PVD,
4842                      CodeGenFunction::OMPPrivateScope &Privates) {
4843   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
4844   Privates.addPrivate(VDecl,
4845                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
4846 }
4847 
4848 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4849   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4850   // Emit outlined function for task construct.
4851   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
4852   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4853   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4854   const Expr *IfCond = nullptr;
4855   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4856     if (C->getNameModifier() == OMPD_unknown ||
4857         C->getNameModifier() == OMPD_taskloop) {
4858       IfCond = C->getCondition();
4859       break;
4860     }
4861   }
4862 
4863   OMPTaskDataTy Data;
4864   // Check if taskloop must be emitted without taskgroup.
4865   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4866   // TODO: Check if we should emit tied or untied task.
4867   Data.Tied = true;
4868   // Set scheduling for taskloop
4869   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4870     // grainsize clause
4871     Data.Schedule.setInt(/*IntVal=*/false);
4872     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4873   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4874     // num_tasks clause
4875     Data.Schedule.setInt(/*IntVal=*/true);
4876     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4877   }
4878 
4879   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4880     // if (PreCond) {
4881     //   for (IV in 0..LastIteration) BODY;
4882     //   <Final counter/linear vars updates>;
4883     // }
4884     //
4885 
4886     // Emit: if (PreCond) - begin.
4887     // If the condition constant folds and can be elided, avoid emitting the
4888     // whole loop.
4889     bool CondConstant;
4890     llvm::BasicBlock *ContBlock = nullptr;
4891     OMPLoopScope PreInitScope(CGF, S);
4892     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4893       if (!CondConstant)
4894         return;
4895     } else {
4896       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
4897       ContBlock = CGF.createBasicBlock("taskloop.if.end");
4898       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
4899                   CGF.getProfileCount(&S));
4900       CGF.EmitBlock(ThenBlock);
4901       CGF.incrementProfileCounter(&S);
4902     }
4903 
4904     if (isOpenMPSimdDirective(S.getDirectiveKind()))
4905       CGF.EmitOMPSimdInit(S);
4906 
4907     OMPPrivateScope LoopScope(CGF);
4908     // Emit helper vars inits.
4909     enum { LowerBound = 5, UpperBound, Stride, LastIter };
4910     auto *I = CS->getCapturedDecl()->param_begin();
4911     auto *LBP = std::next(I, LowerBound);
4912     auto *UBP = std::next(I, UpperBound);
4913     auto *STP = std::next(I, Stride);
4914     auto *LIP = std::next(I, LastIter);
4915     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
4916              LoopScope);
4917     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
4918              LoopScope);
4919     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
4920     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
4921              LoopScope);
4922     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
4923     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
4924     (void)LoopScope.Privatize();
4925     // Emit the loop iteration variable.
4926     const Expr *IVExpr = S.getIterationVariable();
4927     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
4928     CGF.EmitVarDecl(*IVDecl);
4929     CGF.EmitIgnoredExpr(S.getInit());
4930 
4931     // Emit the iterations count variable.
4932     // If it is not a variable, Sema decided to calculate iterations count on
4933     // each iteration (e.g., it is foldable into a constant).
4934     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4935       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4936       // Emit calculation of the iterations count.
4937       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
4938     }
4939 
4940     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
4941                          S.getInc(),
4942                          [&S](CodeGenFunction &CGF) {
4943                            CGF.EmitOMPLoopBody(S, JumpDest());
4944                            CGF.EmitStopPoint(&S);
4945                          },
4946                          [](CodeGenFunction &) {});
4947     // Emit: if (PreCond) - end.
4948     if (ContBlock) {
4949       CGF.EmitBranch(ContBlock);
4950       CGF.EmitBlock(ContBlock, true);
4951     }
4952     // Emit final copy of the lastprivate variables if IsLastIter != 0.
4953     if (HasLastprivateClause) {
4954       CGF.EmitOMPLastprivateClauseFinal(
4955           S, isOpenMPSimdDirective(S.getDirectiveKind()),
4956           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
4957               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
4958               (*LIP)->getType(), S.getBeginLoc())));
4959     }
4960   };
4961   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4962                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
4963                             const OMPTaskDataTy &Data) {
4964     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
4965                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
4966       OMPLoopScope PreInitScope(CGF, S);
4967       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
4968                                                   OutlinedFn, SharedsTy,
4969                                                   CapturedStruct, IfCond, Data);
4970     };
4971     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
4972                                                     CodeGen);
4973   };
4974   if (Data.Nogroup) {
4975     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
4976   } else {
4977     CGM.getOpenMPRuntime().emitTaskgroupRegion(
4978         *this,
4979         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
4980                                         PrePostActionTy &Action) {
4981           Action.Enter(CGF);
4982           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
4983                                         Data);
4984         },
4985         S.getBeginLoc());
4986   }
4987 }
4988 
4989 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
4990   EmitOMPTaskLoopBasedDirective(S);
4991 }
4992 
4993 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
4994     const OMPTaskLoopSimdDirective &S) {
4995   EmitOMPTaskLoopBasedDirective(S);
4996 }
4997 
4998 // Generate the instructions for '#pragma omp target update' directive.
4999 void CodeGenFunction::EmitOMPTargetUpdateDirective(
5000     const OMPTargetUpdateDirective &S) {
5001   // If we don't have target devices, don't bother emitting the data mapping
5002   // code.
5003   if (CGM.getLangOpts().OMPTargetTriples.empty())
5004     return;
5005 
5006   // Check if we have any if clause associated with the directive.
5007   const Expr *IfCond = nullptr;
5008   if (const auto *C = S.getSingleClause<OMPIfClause>())
5009     IfCond = C->getCondition();
5010 
5011   // Check if we have any device clause associated with the directive.
5012   const Expr *Device = nullptr;
5013   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5014     Device = C->getDevice();
5015 
5016   OMPLexicalScope Scope(*this, S, OMPD_task);
5017   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5018 }
5019 
5020 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
5021     const OMPExecutableDirective &D) {
5022   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
5023     return;
5024   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
5025     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
5026       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
5027     } else {
5028       OMPPrivateScope LoopGlobals(CGF);
5029       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
5030         for (const Expr *E : LD->counters()) {
5031           const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5032           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
5033             LValue GlobLVal = CGF.EmitLValue(E);
5034             LoopGlobals.addPrivate(
5035                 VD, [&GlobLVal]() { return GlobLVal.getAddress(); });
5036           }
5037           if (isa<OMPCapturedExprDecl>(VD)) {
5038             // Emit only those that were not explicitly referenced in clauses.
5039             if (!CGF.LocalDeclMap.count(VD))
5040               CGF.EmitVarDecl(*VD);
5041           }
5042         }
5043         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
5044           if (!C->getNumForLoops())
5045             continue;
5046           for (unsigned I = LD->getCollapsedNumber(),
5047                         E = C->getLoopNumIterations().size();
5048                I < E; ++I) {
5049             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
5050                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
5051               // Emit only those that were not explicitly referenced in clauses.
5052               if (!CGF.LocalDeclMap.count(VD))
5053                 CGF.EmitVarDecl(*VD);
5054             }
5055           }
5056         }
5057       }
5058       LoopGlobals.Privatize();
5059       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
5060     }
5061   };
5062   OMPSimdLexicalScope Scope(*this, D);
5063   CGM.getOpenMPRuntime().emitInlinedDirective(
5064       *this,
5065       isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
5066                                                   : D.getDirectiveKind(),
5067       CodeGen);
5068 }
5069 
5070