1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false, bool EmitPreInitStmt = true) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 if (EmitPreInitStmt) 61 emitPreInitStmt(CGF, S); 62 if (AsInlined) { 63 if (S.hasAssociatedStmt()) { 64 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 65 for (auto &C : CS->captures()) { 66 if (C.capturesVariable() || C.capturesVariableByCopy()) { 67 auto *VD = C.getCapturedVar(); 68 assert(VD == VD->getCanonicalDecl() && 69 "Canonical decl must be captured."); 70 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 71 isCapturedVar(CGF, VD) || 72 (CGF.CapturedStmtInfo && 73 InlinedShareds.isGlobalVarCaptured(VD)), 74 VD->getType().getNonReferenceType(), VK_LValue, 75 SourceLocation()); 76 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 77 return CGF.EmitLValue(&DRE).getAddress(); 78 }); 79 } 80 } 81 (void)InlinedShareds.Privatize(); 82 } 83 } 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, 100 /*AsInlined=*/false, 101 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, 116 /*AsInlined=*/false, 117 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 118 }; 119 120 /// Private scope for OpenMP loop-based directives, that supports capturing 121 /// of used expression from loop statement. 122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 123 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 124 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 125 for (auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 (void)PreCondScope.addPrivate(VD, [&CGF, VD]() { 128 return CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 129 }); 130 } 131 (void)PreCondScope.Privatize(); 132 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 133 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 134 for (const auto *I : PreInits->decls()) 135 CGF.EmitVarDecl(cast<VarDecl>(*I)); 136 } 137 } 138 } 139 140 public: 141 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 142 : CodeGenFunction::RunCleanupsScope(CGF) { 143 emitPreInitStmt(CGF, S); 144 } 145 }; 146 147 } // namespace 148 149 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 150 const OMPExecutableDirective &S, 151 const RegionCodeGenTy &CodeGen); 152 153 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 154 if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 155 if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 156 OrigVD = OrigVD->getCanonicalDecl(); 157 bool IsCaptured = 158 LambdaCaptureFields.lookup(OrigVD) || 159 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 160 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 161 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 162 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 163 return EmitLValue(&DRE); 164 } 165 } 166 return EmitLValue(E); 167 } 168 169 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 170 auto &C = getContext(); 171 llvm::Value *Size = nullptr; 172 auto SizeInChars = C.getTypeSizeInChars(Ty); 173 if (SizeInChars.isZero()) { 174 // getTypeSizeInChars() returns 0 for a VLA. 175 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 176 llvm::Value *ArraySize; 177 std::tie(ArraySize, Ty) = getVLASize(VAT); 178 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 179 } 180 SizeInChars = C.getTypeSizeInChars(Ty); 181 if (SizeInChars.isZero()) 182 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 183 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 184 } else 185 Size = CGM.getSize(SizeInChars); 186 return Size; 187 } 188 189 void CodeGenFunction::GenerateOpenMPCapturedVars( 190 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 191 const RecordDecl *RD = S.getCapturedRecordDecl(); 192 auto CurField = RD->field_begin(); 193 auto CurCap = S.captures().begin(); 194 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 195 E = S.capture_init_end(); 196 I != E; ++I, ++CurField, ++CurCap) { 197 if (CurField->hasCapturedVLAType()) { 198 auto VAT = CurField->getCapturedVLAType(); 199 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 200 CapturedVars.push_back(Val); 201 } else if (CurCap->capturesThis()) 202 CapturedVars.push_back(CXXThisValue); 203 else if (CurCap->capturesVariableByCopy()) { 204 llvm::Value *CV = 205 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 206 207 // If the field is not a pointer, we need to save the actual value 208 // and load it as a void pointer. 209 if (!CurField->getType()->isAnyPointerType()) { 210 auto &Ctx = getContext(); 211 auto DstAddr = CreateMemTemp( 212 Ctx.getUIntPtrType(), 213 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 214 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 215 216 auto *SrcAddrVal = EmitScalarConversion( 217 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 218 Ctx.getPointerType(CurField->getType()), SourceLocation()); 219 LValue SrcLV = 220 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 221 222 // Store the value using the source type pointer. 223 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 224 225 // Load the value using the destination type pointer. 226 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 227 } 228 CapturedVars.push_back(CV); 229 } else { 230 assert(CurCap->capturesVariable() && "Expected capture by reference."); 231 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 232 } 233 } 234 } 235 236 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 237 StringRef Name, LValue AddrLV, 238 bool isReferenceType = false) { 239 ASTContext &Ctx = CGF.getContext(); 240 241 auto *CastedPtr = CGF.EmitScalarConversion( 242 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 243 Ctx.getPointerType(DstType), SourceLocation()); 244 auto TmpAddr = 245 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 246 .getAddress(); 247 248 // If we are dealing with references we need to return the address of the 249 // reference instead of the reference of the value. 250 if (isReferenceType) { 251 QualType RefType = Ctx.getLValueReferenceType(DstType); 252 auto *RefVal = TmpAddr.getPointer(); 253 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 254 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 255 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 256 } 257 258 return TmpAddr; 259 } 260 261 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 262 if (T->isLValueReferenceType()) { 263 return C.getLValueReferenceType( 264 getCanonicalParamType(C, T.getNonReferenceType()), 265 /*SpelledAsLValue=*/false); 266 } 267 if (T->isPointerType()) 268 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 269 if (auto *A = T->getAsArrayTypeUnsafe()) { 270 if (auto *VLA = dyn_cast<VariableArrayType>(A)) 271 return getCanonicalParamType(C, VLA->getElementType()); 272 else if (!A->isVariablyModifiedType()) 273 return C.getCanonicalType(T); 274 } 275 return C.getCanonicalParamType(T); 276 } 277 278 namespace { 279 /// Contains required data for proper outlined function codegen. 280 struct FunctionOptions { 281 /// Captured statement for which the function is generated. 282 const CapturedStmt *S = nullptr; 283 /// true if cast to/from UIntPtr is required for variables captured by 284 /// value. 285 const bool UIntPtrCastRequired = true; 286 /// true if only casted arguments must be registered as local args or VLA 287 /// sizes. 288 const bool RegisterCastedArgsOnly = false; 289 /// Name of the generated function. 290 const StringRef FunctionName; 291 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 292 bool RegisterCastedArgsOnly, 293 StringRef FunctionName) 294 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 295 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 296 FunctionName(FunctionName) {} 297 }; 298 } 299 300 static llvm::Function *emitOutlinedFunctionPrologue( 301 CodeGenFunction &CGF, FunctionArgList &Args, 302 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 303 &LocalAddrs, 304 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 305 &VLASizes, 306 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 307 const CapturedDecl *CD = FO.S->getCapturedDecl(); 308 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 309 assert(CD->hasBody() && "missing CapturedDecl body"); 310 311 CXXThisValue = nullptr; 312 // Build the argument list. 313 CodeGenModule &CGM = CGF.CGM; 314 ASTContext &Ctx = CGM.getContext(); 315 FunctionArgList TargetArgs; 316 Args.append(CD->param_begin(), 317 std::next(CD->param_begin(), CD->getContextParamPosition())); 318 TargetArgs.append( 319 CD->param_begin(), 320 std::next(CD->param_begin(), CD->getContextParamPosition())); 321 auto I = FO.S->captures().begin(); 322 FunctionDecl *DebugFunctionDecl = nullptr; 323 if (!FO.UIntPtrCastRequired) { 324 FunctionProtoType::ExtProtoInfo EPI; 325 DebugFunctionDecl = FunctionDecl::Create( 326 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(), 327 SourceLocation(), DeclarationName(), Ctx.VoidTy, 328 Ctx.getTrivialTypeSourceInfo( 329 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 330 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 331 } 332 for (auto *FD : RD->fields()) { 333 QualType ArgType = FD->getType(); 334 IdentifierInfo *II = nullptr; 335 VarDecl *CapVar = nullptr; 336 337 // If this is a capture by copy and the type is not a pointer, the outlined 338 // function argument type should be uintptr and the value properly casted to 339 // uintptr. This is necessary given that the runtime library is only able to 340 // deal with pointers. We can pass in the same way the VLA type sizes to the 341 // outlined function. 342 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 343 I->capturesVariableArrayType()) { 344 if (FO.UIntPtrCastRequired) 345 ArgType = Ctx.getUIntPtrType(); 346 } 347 348 if (I->capturesVariable() || I->capturesVariableByCopy()) { 349 CapVar = I->getCapturedVar(); 350 II = CapVar->getIdentifier(); 351 } else if (I->capturesThis()) 352 II = &Ctx.Idents.get("this"); 353 else { 354 assert(I->capturesVariableArrayType()); 355 II = &Ctx.Idents.get("vla"); 356 } 357 if (ArgType->isVariablyModifiedType()) 358 ArgType = getCanonicalParamType(Ctx, ArgType); 359 VarDecl *Arg; 360 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 361 Arg = ParmVarDecl::Create( 362 Ctx, DebugFunctionDecl, 363 CapVar ? CapVar->getLocStart() : FD->getLocStart(), 364 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 365 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 366 } else { 367 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 368 II, ArgType, ImplicitParamDecl::Other); 369 } 370 Args.emplace_back(Arg); 371 // Do not cast arguments if we emit function with non-original types. 372 TargetArgs.emplace_back( 373 FO.UIntPtrCastRequired 374 ? Arg 375 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 376 ++I; 377 } 378 Args.append( 379 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 380 CD->param_end()); 381 TargetArgs.append( 382 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 383 CD->param_end()); 384 385 // Create the function declaration. 386 const CGFunctionInfo &FuncInfo = 387 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 388 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 389 390 llvm::Function *F = 391 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 392 FO.FunctionName, &CGM.getModule()); 393 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 394 if (CD->isNothrow()) 395 F->setDoesNotThrow(); 396 397 // Generate the function. 398 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 399 FO.S->getLocStart(), CD->getBody()->getLocStart()); 400 unsigned Cnt = CD->getContextParamPosition(); 401 I = FO.S->captures().begin(); 402 for (auto *FD : RD->fields()) { 403 // Do not map arguments if we emit function with non-original types. 404 Address LocalAddr(Address::invalid()); 405 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 406 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 407 TargetArgs[Cnt]); 408 } else { 409 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 410 } 411 // If we are capturing a pointer by copy we don't need to do anything, just 412 // use the value that we get from the arguments. 413 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 414 const VarDecl *CurVD = I->getCapturedVar(); 415 // If the variable is a reference we need to materialize it here. 416 if (CurVD->getType()->isReferenceType()) { 417 Address RefAddr = CGF.CreateMemTemp( 418 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 419 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 420 /*Volatile=*/false, CurVD->getType()); 421 LocalAddr = RefAddr; 422 } 423 if (!FO.RegisterCastedArgsOnly) 424 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 425 ++Cnt; 426 ++I; 427 continue; 428 } 429 430 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 431 AlignmentSource::Decl); 432 if (FD->hasCapturedVLAType()) { 433 if (FO.UIntPtrCastRequired) { 434 ArgLVal = CGF.MakeAddrLValue(castValueFromUintptr(CGF, FD->getType(), 435 Args[Cnt]->getName(), 436 ArgLVal), 437 FD->getType(), AlignmentSource::Decl); 438 } 439 auto *ExprArg = 440 CGF.EmitLoadOfLValue(ArgLVal, SourceLocation()).getScalarVal(); 441 auto VAT = FD->getCapturedVLAType(); 442 VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}}); 443 } else if (I->capturesVariable()) { 444 auto *Var = I->getCapturedVar(); 445 QualType VarTy = Var->getType(); 446 Address ArgAddr = ArgLVal.getAddress(); 447 if (!VarTy->isReferenceType()) { 448 if (ArgLVal.getType()->isLValueReferenceType()) { 449 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 450 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 451 assert(ArgLVal.getType()->isPointerType()); 452 ArgAddr = CGF.EmitLoadOfPointer( 453 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 454 } 455 } 456 if (!FO.RegisterCastedArgsOnly) { 457 LocalAddrs.insert( 458 {Args[Cnt], 459 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 460 } 461 } else if (I->capturesVariableByCopy()) { 462 assert(!FD->getType()->isAnyPointerType() && 463 "Not expecting a captured pointer."); 464 auto *Var = I->getCapturedVar(); 465 QualType VarTy = Var->getType(); 466 LocalAddrs.insert( 467 {Args[Cnt], 468 {Var, 469 FO.UIntPtrCastRequired 470 ? castValueFromUintptr(CGF, FD->getType(), Args[Cnt]->getName(), 471 ArgLVal, VarTy->isReferenceType()) 472 : ArgLVal.getAddress()}}); 473 } else { 474 // If 'this' is captured, load it into CXXThisValue. 475 assert(I->capturesThis()); 476 CXXThisValue = CGF.EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()) 477 .getScalarVal(); 478 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 479 } 480 ++Cnt; 481 ++I; 482 } 483 484 return F; 485 } 486 487 llvm::Function * 488 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 489 assert( 490 CapturedStmtInfo && 491 "CapturedStmtInfo should be set when generating the captured function"); 492 const CapturedDecl *CD = S.getCapturedDecl(); 493 // Build the argument list. 494 bool NeedWrapperFunction = 495 getDebugInfo() && 496 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 497 FunctionArgList Args; 498 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 499 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 500 SmallString<256> Buffer; 501 llvm::raw_svector_ostream Out(Buffer); 502 Out << CapturedStmtInfo->getHelperName(); 503 if (NeedWrapperFunction) 504 Out << "_debug__"; 505 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 506 Out.str()); 507 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 508 VLASizes, CXXThisValue, FO); 509 for (const auto &LocalAddrPair : LocalAddrs) { 510 if (LocalAddrPair.second.first) { 511 setAddrOfLocalVar(LocalAddrPair.second.first, 512 LocalAddrPair.second.second); 513 } 514 } 515 for (const auto &VLASizePair : VLASizes) 516 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 517 PGO.assignRegionCounters(GlobalDecl(CD), F); 518 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 519 FinishFunction(CD->getBodyRBrace()); 520 if (!NeedWrapperFunction) 521 return F; 522 523 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 524 /*RegisterCastedArgsOnly=*/true, 525 CapturedStmtInfo->getHelperName()); 526 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 527 Args.clear(); 528 LocalAddrs.clear(); 529 VLASizes.clear(); 530 llvm::Function *WrapperF = 531 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 532 WrapperCGF.CXXThisValue, WrapperFO); 533 llvm::SmallVector<llvm::Value *, 4> CallArgs; 534 for (const auto *Arg : Args) { 535 llvm::Value *CallArg; 536 auto I = LocalAddrs.find(Arg); 537 if (I != LocalAddrs.end()) { 538 LValue LV = WrapperCGF.MakeAddrLValue( 539 I->second.second, 540 I->second.first ? I->second.first->getType() : Arg->getType(), 541 AlignmentSource::Decl); 542 CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation()); 543 } else { 544 auto EI = VLASizes.find(Arg); 545 if (EI != VLASizes.end()) 546 CallArg = EI->second.second; 547 else { 548 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 549 Arg->getType(), 550 AlignmentSource::Decl); 551 CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation()); 552 } 553 } 554 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 555 } 556 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(), 557 F, CallArgs); 558 WrapperCGF.FinishFunction(); 559 return WrapperF; 560 } 561 562 //===----------------------------------------------------------------------===// 563 // OpenMP Directive Emission 564 //===----------------------------------------------------------------------===// 565 void CodeGenFunction::EmitOMPAggregateAssign( 566 Address DestAddr, Address SrcAddr, QualType OriginalType, 567 const llvm::function_ref<void(Address, Address)> &CopyGen) { 568 // Perform element-by-element initialization. 569 QualType ElementTy; 570 571 // Drill down to the base element type on both arrays. 572 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 573 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 574 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 575 576 auto SrcBegin = SrcAddr.getPointer(); 577 auto DestBegin = DestAddr.getPointer(); 578 // Cast from pointer to array type to pointer to single element. 579 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 580 // The basic structure here is a while-do loop. 581 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 582 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 583 auto IsEmpty = 584 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 585 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 586 587 // Enter the loop body, making that address the current address. 588 auto EntryBB = Builder.GetInsertBlock(); 589 EmitBlock(BodyBB); 590 591 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 592 593 llvm::PHINode *SrcElementPHI = 594 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 595 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 596 Address SrcElementCurrent = 597 Address(SrcElementPHI, 598 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 599 600 llvm::PHINode *DestElementPHI = 601 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 602 DestElementPHI->addIncoming(DestBegin, EntryBB); 603 Address DestElementCurrent = 604 Address(DestElementPHI, 605 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 606 607 // Emit copy. 608 CopyGen(DestElementCurrent, SrcElementCurrent); 609 610 // Shift the address forward by one element. 611 auto DestElementNext = Builder.CreateConstGEP1_32( 612 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 613 auto SrcElementNext = Builder.CreateConstGEP1_32( 614 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 615 // Check whether we've reached the end. 616 auto Done = 617 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 618 Builder.CreateCondBr(Done, DoneBB, BodyBB); 619 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 620 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 621 622 // Done. 623 EmitBlock(DoneBB, /*IsFinished=*/true); 624 } 625 626 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 627 Address SrcAddr, const VarDecl *DestVD, 628 const VarDecl *SrcVD, const Expr *Copy) { 629 if (OriginalType->isArrayType()) { 630 auto *BO = dyn_cast<BinaryOperator>(Copy); 631 if (BO && BO->getOpcode() == BO_Assign) { 632 // Perform simple memcpy for simple copying. 633 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 634 } else { 635 // For arrays with complex element types perform element by element 636 // copying. 637 EmitOMPAggregateAssign( 638 DestAddr, SrcAddr, OriginalType, 639 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 640 // Working with the single array element, so have to remap 641 // destination and source variables to corresponding array 642 // elements. 643 CodeGenFunction::OMPPrivateScope Remap(*this); 644 Remap.addPrivate(DestVD, [DestElement]() -> Address { 645 return DestElement; 646 }); 647 Remap.addPrivate( 648 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 649 (void)Remap.Privatize(); 650 EmitIgnoredExpr(Copy); 651 }); 652 } 653 } else { 654 // Remap pseudo source variable to private copy. 655 CodeGenFunction::OMPPrivateScope Remap(*this); 656 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 657 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 658 (void)Remap.Privatize(); 659 // Emit copying of the whole variable. 660 EmitIgnoredExpr(Copy); 661 } 662 } 663 664 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 665 OMPPrivateScope &PrivateScope) { 666 if (!HaveInsertPoint()) 667 return false; 668 bool FirstprivateIsLastprivate = false; 669 llvm::DenseSet<const VarDecl *> Lastprivates; 670 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 671 for (const auto *D : C->varlists()) 672 Lastprivates.insert( 673 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 674 } 675 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 676 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 677 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 678 auto IRef = C->varlist_begin(); 679 auto InitsRef = C->inits().begin(); 680 for (auto IInit : C->private_copies()) { 681 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 682 bool ThisFirstprivateIsLastprivate = 683 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 684 auto *CapFD = CapturesInfo.lookup(OrigVD); 685 auto *FD = CapturedStmtInfo->lookup(OrigVD); 686 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 687 !FD->getType()->isReferenceType()) { 688 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 689 ++IRef; 690 ++InitsRef; 691 continue; 692 } 693 FirstprivateIsLastprivate = 694 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 695 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 696 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 697 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 698 bool IsRegistered; 699 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 700 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 701 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 702 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 703 QualType Type = VD->getType(); 704 if (Type->isArrayType()) { 705 // Emit VarDecl with copy init for arrays. 706 // Get the address of the original variable captured in current 707 // captured region. 708 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 709 auto Emission = EmitAutoVarAlloca(*VD); 710 auto *Init = VD->getInit(); 711 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 712 // Perform simple memcpy. 713 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 714 Type); 715 } else { 716 EmitOMPAggregateAssign( 717 Emission.getAllocatedAddress(), OriginalAddr, Type, 718 [this, VDInit, Init](Address DestElement, 719 Address SrcElement) { 720 // Clean up any temporaries needed by the initialization. 721 RunCleanupsScope InitScope(*this); 722 // Emit initialization for single element. 723 setAddrOfLocalVar(VDInit, SrcElement); 724 EmitAnyExprToMem(Init, DestElement, 725 Init->getType().getQualifiers(), 726 /*IsInitializer*/ false); 727 LocalDeclMap.erase(VDInit); 728 }); 729 } 730 EmitAutoVarCleanups(Emission); 731 return Emission.getAllocatedAddress(); 732 }); 733 } else { 734 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 735 // Emit private VarDecl with copy init. 736 // Remap temp VDInit variable to the address of the original 737 // variable 738 // (for proper handling of captured global variables). 739 setAddrOfLocalVar(VDInit, OriginalAddr); 740 EmitDecl(*VD); 741 LocalDeclMap.erase(VDInit); 742 return GetAddrOfLocalVar(VD); 743 }); 744 } 745 assert(IsRegistered && 746 "firstprivate var already registered as private"); 747 // Silence the warning about unused variable. 748 (void)IsRegistered; 749 } 750 ++IRef; 751 ++InitsRef; 752 } 753 } 754 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 755 } 756 757 void CodeGenFunction::EmitOMPPrivateClause( 758 const OMPExecutableDirective &D, 759 CodeGenFunction::OMPPrivateScope &PrivateScope) { 760 if (!HaveInsertPoint()) 761 return; 762 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 763 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 764 auto IRef = C->varlist_begin(); 765 for (auto IInit : C->private_copies()) { 766 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 767 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 768 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 769 bool IsRegistered = 770 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 771 // Emit private VarDecl with copy init. 772 EmitDecl(*VD); 773 return GetAddrOfLocalVar(VD); 774 }); 775 assert(IsRegistered && "private var already registered as private"); 776 // Silence the warning about unused variable. 777 (void)IsRegistered; 778 } 779 ++IRef; 780 } 781 } 782 } 783 784 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 785 if (!HaveInsertPoint()) 786 return false; 787 // threadprivate_var1 = master_threadprivate_var1; 788 // operator=(threadprivate_var2, master_threadprivate_var2); 789 // ... 790 // __kmpc_barrier(&loc, global_tid); 791 llvm::DenseSet<const VarDecl *> CopiedVars; 792 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 793 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 794 auto IRef = C->varlist_begin(); 795 auto ISrcRef = C->source_exprs().begin(); 796 auto IDestRef = C->destination_exprs().begin(); 797 for (auto *AssignOp : C->assignment_ops()) { 798 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 799 QualType Type = VD->getType(); 800 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 801 // Get the address of the master variable. If we are emitting code with 802 // TLS support, the address is passed from the master as field in the 803 // captured declaration. 804 Address MasterAddr = Address::invalid(); 805 if (getLangOpts().OpenMPUseTLS && 806 getContext().getTargetInfo().isTLSSupported()) { 807 assert(CapturedStmtInfo->lookup(VD) && 808 "Copyin threadprivates should have been captured!"); 809 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 810 VK_LValue, (*IRef)->getExprLoc()); 811 MasterAddr = EmitLValue(&DRE).getAddress(); 812 LocalDeclMap.erase(VD); 813 } else { 814 MasterAddr = 815 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 816 : CGM.GetAddrOfGlobal(VD), 817 getContext().getDeclAlign(VD)); 818 } 819 // Get the address of the threadprivate variable. 820 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 821 if (CopiedVars.size() == 1) { 822 // At first check if current thread is a master thread. If it is, no 823 // need to copy data. 824 CopyBegin = createBasicBlock("copyin.not.master"); 825 CopyEnd = createBasicBlock("copyin.not.master.end"); 826 Builder.CreateCondBr( 827 Builder.CreateICmpNE( 828 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 829 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 830 CopyBegin, CopyEnd); 831 EmitBlock(CopyBegin); 832 } 833 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 834 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 835 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 836 } 837 ++IRef; 838 ++ISrcRef; 839 ++IDestRef; 840 } 841 } 842 if (CopyEnd) { 843 // Exit out of copying procedure for non-master thread. 844 EmitBlock(CopyEnd, /*IsFinished=*/true); 845 return true; 846 } 847 return false; 848 } 849 850 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 851 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 852 if (!HaveInsertPoint()) 853 return false; 854 bool HasAtLeastOneLastprivate = false; 855 llvm::DenseSet<const VarDecl *> SIMDLCVs; 856 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 857 auto *LoopDirective = cast<OMPLoopDirective>(&D); 858 for (auto *C : LoopDirective->counters()) { 859 SIMDLCVs.insert( 860 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 861 } 862 } 863 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 864 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 865 HasAtLeastOneLastprivate = true; 866 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 867 break; 868 auto IRef = C->varlist_begin(); 869 auto IDestRef = C->destination_exprs().begin(); 870 for (auto *IInit : C->private_copies()) { 871 // Keep the address of the original variable for future update at the end 872 // of the loop. 873 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 874 // Taskloops do not require additional initialization, it is done in 875 // runtime support library. 876 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 877 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 878 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 879 DeclRefExpr DRE( 880 const_cast<VarDecl *>(OrigVD), 881 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 882 OrigVD) != nullptr, 883 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 884 return EmitLValue(&DRE).getAddress(); 885 }); 886 // Check if the variable is also a firstprivate: in this case IInit is 887 // not generated. Initialization of this variable will happen in codegen 888 // for 'firstprivate' clause. 889 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 890 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 891 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 892 // Emit private VarDecl with copy init. 893 EmitDecl(*VD); 894 return GetAddrOfLocalVar(VD); 895 }); 896 assert(IsRegistered && 897 "lastprivate var already registered as private"); 898 (void)IsRegistered; 899 } 900 } 901 ++IRef; 902 ++IDestRef; 903 } 904 } 905 return HasAtLeastOneLastprivate; 906 } 907 908 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 909 const OMPExecutableDirective &D, bool NoFinals, 910 llvm::Value *IsLastIterCond) { 911 if (!HaveInsertPoint()) 912 return; 913 // Emit following code: 914 // if (<IsLastIterCond>) { 915 // orig_var1 = private_orig_var1; 916 // ... 917 // orig_varn = private_orig_varn; 918 // } 919 llvm::BasicBlock *ThenBB = nullptr; 920 llvm::BasicBlock *DoneBB = nullptr; 921 if (IsLastIterCond) { 922 ThenBB = createBasicBlock(".omp.lastprivate.then"); 923 DoneBB = createBasicBlock(".omp.lastprivate.done"); 924 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 925 EmitBlock(ThenBB); 926 } 927 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 928 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 929 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 930 auto IC = LoopDirective->counters().begin(); 931 for (auto F : LoopDirective->finals()) { 932 auto *D = 933 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 934 if (NoFinals) 935 AlreadyEmittedVars.insert(D); 936 else 937 LoopCountersAndUpdates[D] = F; 938 ++IC; 939 } 940 } 941 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 942 auto IRef = C->varlist_begin(); 943 auto ISrcRef = C->source_exprs().begin(); 944 auto IDestRef = C->destination_exprs().begin(); 945 for (auto *AssignOp : C->assignment_ops()) { 946 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 947 QualType Type = PrivateVD->getType(); 948 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 949 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 950 // If lastprivate variable is a loop control variable for loop-based 951 // directive, update its value before copyin back to original 952 // variable. 953 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 954 EmitIgnoredExpr(FinalExpr); 955 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 956 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 957 // Get the address of the original variable. 958 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 959 // Get the address of the private variable. 960 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 961 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 962 PrivateAddr = 963 Address(Builder.CreateLoad(PrivateAddr), 964 getNaturalTypeAlignment(RefTy->getPointeeType())); 965 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 966 } 967 ++IRef; 968 ++ISrcRef; 969 ++IDestRef; 970 } 971 if (auto *PostUpdate = C->getPostUpdateExpr()) 972 EmitIgnoredExpr(PostUpdate); 973 } 974 if (IsLastIterCond) 975 EmitBlock(DoneBB, /*IsFinished=*/true); 976 } 977 978 void CodeGenFunction::EmitOMPReductionClauseInit( 979 const OMPExecutableDirective &D, 980 CodeGenFunction::OMPPrivateScope &PrivateScope) { 981 if (!HaveInsertPoint()) 982 return; 983 SmallVector<const Expr *, 4> Shareds; 984 SmallVector<const Expr *, 4> Privates; 985 SmallVector<const Expr *, 4> ReductionOps; 986 SmallVector<const Expr *, 4> LHSs; 987 SmallVector<const Expr *, 4> RHSs; 988 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 989 auto IPriv = C->privates().begin(); 990 auto IRed = C->reduction_ops().begin(); 991 auto ILHS = C->lhs_exprs().begin(); 992 auto IRHS = C->rhs_exprs().begin(); 993 for (const auto *Ref : C->varlists()) { 994 Shareds.emplace_back(Ref); 995 Privates.emplace_back(*IPriv); 996 ReductionOps.emplace_back(*IRed); 997 LHSs.emplace_back(*ILHS); 998 RHSs.emplace_back(*IRHS); 999 std::advance(IPriv, 1); 1000 std::advance(IRed, 1); 1001 std::advance(ILHS, 1); 1002 std::advance(IRHS, 1); 1003 } 1004 } 1005 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1006 unsigned Count = 0; 1007 auto ILHS = LHSs.begin(); 1008 auto IRHS = RHSs.begin(); 1009 auto IPriv = Privates.begin(); 1010 for (const auto *IRef : Shareds) { 1011 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1012 // Emit private VarDecl with reduction init. 1013 RedCG.emitSharedLValue(*this, Count); 1014 RedCG.emitAggregateType(*this, Count); 1015 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1016 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1017 RedCG.getSharedLValue(Count), 1018 [&Emission](CodeGenFunction &CGF) { 1019 CGF.EmitAutoVarInit(Emission); 1020 return true; 1021 }); 1022 EmitAutoVarCleanups(Emission); 1023 Address BaseAddr = RedCG.adjustPrivateAddress( 1024 *this, Count, Emission.getAllocatedAddress()); 1025 bool IsRegistered = PrivateScope.addPrivate( 1026 RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; }); 1027 assert(IsRegistered && "private var already registered as private"); 1028 // Silence the warning about unused variable. 1029 (void)IsRegistered; 1030 1031 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1032 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1033 QualType Type = PrivateVD->getType(); 1034 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1035 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1036 // Store the address of the original variable associated with the LHS 1037 // implicit variable. 1038 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1039 return RedCG.getSharedLValue(Count).getAddress(); 1040 }); 1041 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1042 return GetAddrOfLocalVar(PrivateVD); 1043 }); 1044 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1045 isa<ArraySubscriptExpr>(IRef)) { 1046 // Store the address of the original variable associated with the LHS 1047 // implicit variable. 1048 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1049 return RedCG.getSharedLValue(Count).getAddress(); 1050 }); 1051 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1052 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1053 ConvertTypeForMem(RHSVD->getType()), 1054 "rhs.begin"); 1055 }); 1056 } else { 1057 QualType Type = PrivateVD->getType(); 1058 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1059 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1060 // Store the address of the original variable associated with the LHS 1061 // implicit variable. 1062 if (IsArray) { 1063 OriginalAddr = Builder.CreateElementBitCast( 1064 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1065 } 1066 PrivateScope.addPrivate( 1067 LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; }); 1068 PrivateScope.addPrivate( 1069 RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address { 1070 return IsArray 1071 ? Builder.CreateElementBitCast( 1072 GetAddrOfLocalVar(PrivateVD), 1073 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1074 : GetAddrOfLocalVar(PrivateVD); 1075 }); 1076 } 1077 ++ILHS; 1078 ++IRHS; 1079 ++IPriv; 1080 ++Count; 1081 } 1082 } 1083 1084 void CodeGenFunction::EmitOMPReductionClauseFinal( 1085 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1086 if (!HaveInsertPoint()) 1087 return; 1088 llvm::SmallVector<const Expr *, 8> Privates; 1089 llvm::SmallVector<const Expr *, 8> LHSExprs; 1090 llvm::SmallVector<const Expr *, 8> RHSExprs; 1091 llvm::SmallVector<const Expr *, 8> ReductionOps; 1092 bool HasAtLeastOneReduction = false; 1093 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1094 HasAtLeastOneReduction = true; 1095 Privates.append(C->privates().begin(), C->privates().end()); 1096 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1097 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1098 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1099 } 1100 if (HasAtLeastOneReduction) { 1101 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1102 isOpenMPParallelDirective(D.getDirectiveKind()) || 1103 D.getDirectiveKind() == OMPD_simd; 1104 bool SimpleReduction = D.getDirectiveKind() == OMPD_simd || 1105 D.getDirectiveKind() == OMPD_distribute_simd; 1106 // Emit nowait reduction if nowait clause is present or directive is a 1107 // parallel directive (it always has implicit barrier). 1108 CGM.getOpenMPRuntime().emitReduction( 1109 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1110 {WithNowait, SimpleReduction, ReductionKind}); 1111 } 1112 } 1113 1114 static void emitPostUpdateForReductionClause( 1115 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1116 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1117 if (!CGF.HaveInsertPoint()) 1118 return; 1119 llvm::BasicBlock *DoneBB = nullptr; 1120 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1121 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1122 if (!DoneBB) { 1123 if (auto *Cond = CondGen(CGF)) { 1124 // If the first post-update expression is found, emit conditional 1125 // block if it was requested. 1126 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1127 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1128 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1129 CGF.EmitBlock(ThenBB); 1130 } 1131 } 1132 CGF.EmitIgnoredExpr(PostUpdate); 1133 } 1134 } 1135 if (DoneBB) 1136 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1137 } 1138 1139 namespace { 1140 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1141 /// parallel function. This is necessary for combined constructs such as 1142 /// 'distribute parallel for' 1143 typedef llvm::function_ref<void(CodeGenFunction &, 1144 const OMPExecutableDirective &, 1145 llvm::SmallVectorImpl<llvm::Value *> &)> 1146 CodeGenBoundParametersTy; 1147 } // anonymous namespace 1148 1149 static void emitCommonOMPParallelDirective( 1150 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1151 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1152 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1153 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1154 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1155 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1156 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1157 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1158 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1159 /*IgnoreResultAssign*/ true); 1160 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1161 CGF, NumThreads, NumThreadsClause->getLocStart()); 1162 } 1163 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1164 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1165 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1166 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1167 } 1168 const Expr *IfCond = nullptr; 1169 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1170 if (C->getNameModifier() == OMPD_unknown || 1171 C->getNameModifier() == OMPD_parallel) { 1172 IfCond = C->getCondition(); 1173 break; 1174 } 1175 } 1176 1177 OMPParallelScope Scope(CGF, S); 1178 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1179 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1180 // lower and upper bounds with the pragma 'for' chunking mechanism. 1181 // The following lambda takes care of appending the lower and upper bound 1182 // parameters when necessary 1183 CodeGenBoundParameters(CGF, S, CapturedVars); 1184 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1185 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1186 CapturedVars, IfCond); 1187 } 1188 1189 static void emitEmptyBoundParameters(CodeGenFunction &, 1190 const OMPExecutableDirective &, 1191 llvm::SmallVectorImpl<llvm::Value *> &) {} 1192 1193 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1194 // Emit parallel region as a standalone region. 1195 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1196 OMPPrivateScope PrivateScope(CGF); 1197 bool Copyins = CGF.EmitOMPCopyinClause(S); 1198 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1199 if (Copyins) { 1200 // Emit implicit barrier to synchronize threads and avoid data races on 1201 // propagation master's thread values of threadprivate variables to local 1202 // instances of that variables of all other implicit threads. 1203 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1204 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1205 /*ForceSimpleCall=*/true); 1206 } 1207 CGF.EmitOMPPrivateClause(S, PrivateScope); 1208 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1209 (void)PrivateScope.Privatize(); 1210 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1211 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1212 }; 1213 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1214 emitEmptyBoundParameters); 1215 emitPostUpdateForReductionClause( 1216 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1217 } 1218 1219 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1220 JumpDest LoopExit) { 1221 RunCleanupsScope BodyScope(*this); 1222 // Update counters values on current iteration. 1223 for (auto I : D.updates()) { 1224 EmitIgnoredExpr(I); 1225 } 1226 // Update the linear variables. 1227 // In distribute directives only loop counters may be marked as linear, no 1228 // need to generate the code for them. 1229 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1230 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1231 for (auto *U : C->updates()) 1232 EmitIgnoredExpr(U); 1233 } 1234 } 1235 1236 // On a continue in the body, jump to the end. 1237 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1238 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1239 // Emit loop body. 1240 EmitStmt(D.getBody()); 1241 // The end (updates/cleanups). 1242 EmitBlock(Continue.getBlock()); 1243 BreakContinueStack.pop_back(); 1244 } 1245 1246 void CodeGenFunction::EmitOMPInnerLoop( 1247 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1248 const Expr *IncExpr, 1249 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1250 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1251 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1252 1253 // Start the loop with a block that tests the condition. 1254 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1255 EmitBlock(CondBlock); 1256 const SourceRange &R = S.getSourceRange(); 1257 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1258 SourceLocToDebugLoc(R.getEnd())); 1259 1260 // If there are any cleanups between here and the loop-exit scope, 1261 // create a block to stage a loop exit along. 1262 auto ExitBlock = LoopExit.getBlock(); 1263 if (RequiresCleanup) 1264 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1265 1266 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1267 1268 // Emit condition. 1269 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1270 if (ExitBlock != LoopExit.getBlock()) { 1271 EmitBlock(ExitBlock); 1272 EmitBranchThroughCleanup(LoopExit); 1273 } 1274 1275 EmitBlock(LoopBody); 1276 incrementProfileCounter(&S); 1277 1278 // Create a block for the increment. 1279 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1280 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1281 1282 BodyGen(*this); 1283 1284 // Emit "IV = IV + 1" and a back-edge to the condition block. 1285 EmitBlock(Continue.getBlock()); 1286 EmitIgnoredExpr(IncExpr); 1287 PostIncGen(*this); 1288 BreakContinueStack.pop_back(); 1289 EmitBranch(CondBlock); 1290 LoopStack.pop(); 1291 // Emit the fall-through block. 1292 EmitBlock(LoopExit.getBlock()); 1293 } 1294 1295 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1296 if (!HaveInsertPoint()) 1297 return false; 1298 // Emit inits for the linear variables. 1299 bool HasLinears = false; 1300 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1301 for (auto *Init : C->inits()) { 1302 HasLinears = true; 1303 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1304 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1305 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1306 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1307 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1308 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1309 VD->getInit()->getType(), VK_LValue, 1310 VD->getInit()->getExprLoc()); 1311 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1312 VD->getType()), 1313 /*capturedByInit=*/false); 1314 EmitAutoVarCleanups(Emission); 1315 } else 1316 EmitVarDecl(*VD); 1317 } 1318 // Emit the linear steps for the linear clauses. 1319 // If a step is not constant, it is pre-calculated before the loop. 1320 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1321 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1322 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1323 // Emit calculation of the linear step. 1324 EmitIgnoredExpr(CS); 1325 } 1326 } 1327 return HasLinears; 1328 } 1329 1330 void CodeGenFunction::EmitOMPLinearClauseFinal( 1331 const OMPLoopDirective &D, 1332 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1333 if (!HaveInsertPoint()) 1334 return; 1335 llvm::BasicBlock *DoneBB = nullptr; 1336 // Emit the final values of the linear variables. 1337 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1338 auto IC = C->varlist_begin(); 1339 for (auto *F : C->finals()) { 1340 if (!DoneBB) { 1341 if (auto *Cond = CondGen(*this)) { 1342 // If the first post-update expression is found, emit conditional 1343 // block if it was requested. 1344 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1345 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1346 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1347 EmitBlock(ThenBB); 1348 } 1349 } 1350 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1351 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1352 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1353 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1354 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1355 CodeGenFunction::OMPPrivateScope VarScope(*this); 1356 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1357 (void)VarScope.Privatize(); 1358 EmitIgnoredExpr(F); 1359 ++IC; 1360 } 1361 if (auto *PostUpdate = C->getPostUpdateExpr()) 1362 EmitIgnoredExpr(PostUpdate); 1363 } 1364 if (DoneBB) 1365 EmitBlock(DoneBB, /*IsFinished=*/true); 1366 } 1367 1368 static void emitAlignedClause(CodeGenFunction &CGF, 1369 const OMPExecutableDirective &D) { 1370 if (!CGF.HaveInsertPoint()) 1371 return; 1372 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1373 unsigned ClauseAlignment = 0; 1374 if (auto AlignmentExpr = Clause->getAlignment()) { 1375 auto AlignmentCI = 1376 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1377 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1378 } 1379 for (auto E : Clause->varlists()) { 1380 unsigned Alignment = ClauseAlignment; 1381 if (Alignment == 0) { 1382 // OpenMP [2.8.1, Description] 1383 // If no optional parameter is specified, implementation-defined default 1384 // alignments for SIMD instructions on the target platforms are assumed. 1385 Alignment = 1386 CGF.getContext() 1387 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1388 E->getType()->getPointeeType())) 1389 .getQuantity(); 1390 } 1391 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1392 "alignment is not power of 2"); 1393 if (Alignment != 0) { 1394 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1395 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1396 } 1397 } 1398 } 1399 } 1400 1401 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1402 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1403 if (!HaveInsertPoint()) 1404 return; 1405 auto I = S.private_counters().begin(); 1406 for (auto *E : S.counters()) { 1407 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1408 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1409 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1410 // Emit var without initialization. 1411 if (!LocalDeclMap.count(PrivateVD)) { 1412 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1413 EmitAutoVarCleanups(VarEmission); 1414 } 1415 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1416 /*RefersToEnclosingVariableOrCapture=*/false, 1417 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1418 return EmitLValue(&DRE).getAddress(); 1419 }); 1420 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1421 VD->hasGlobalStorage()) { 1422 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1423 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1424 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1425 E->getType(), VK_LValue, E->getExprLoc()); 1426 return EmitLValue(&DRE).getAddress(); 1427 }); 1428 } 1429 ++I; 1430 } 1431 } 1432 1433 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1434 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1435 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1436 if (!CGF.HaveInsertPoint()) 1437 return; 1438 { 1439 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1440 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1441 (void)PreCondScope.Privatize(); 1442 // Get initial values of real counters. 1443 for (auto I : S.inits()) { 1444 CGF.EmitIgnoredExpr(I); 1445 } 1446 } 1447 // Check that loop is executed at least one time. 1448 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1449 } 1450 1451 void CodeGenFunction::EmitOMPLinearClause( 1452 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1453 if (!HaveInsertPoint()) 1454 return; 1455 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1456 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1457 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1458 for (auto *C : LoopDirective->counters()) { 1459 SIMDLCVs.insert( 1460 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1461 } 1462 } 1463 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1464 auto CurPrivate = C->privates().begin(); 1465 for (auto *E : C->varlists()) { 1466 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1467 auto *PrivateVD = 1468 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1469 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1470 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1471 // Emit private VarDecl with copy init. 1472 EmitVarDecl(*PrivateVD); 1473 return GetAddrOfLocalVar(PrivateVD); 1474 }); 1475 assert(IsRegistered && "linear var already registered as private"); 1476 // Silence the warning about unused variable. 1477 (void)IsRegistered; 1478 } else 1479 EmitVarDecl(*PrivateVD); 1480 ++CurPrivate; 1481 } 1482 } 1483 } 1484 1485 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1486 const OMPExecutableDirective &D, 1487 bool IsMonotonic) { 1488 if (!CGF.HaveInsertPoint()) 1489 return; 1490 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1491 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1492 /*ignoreResult=*/true); 1493 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1494 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1495 // In presence of finite 'safelen', it may be unsafe to mark all 1496 // the memory instructions parallel, because loop-carried 1497 // dependences of 'safelen' iterations are possible. 1498 if (!IsMonotonic) 1499 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1500 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1501 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1502 /*ignoreResult=*/true); 1503 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1504 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1505 // In presence of finite 'safelen', it may be unsafe to mark all 1506 // the memory instructions parallel, because loop-carried 1507 // dependences of 'safelen' iterations are possible. 1508 CGF.LoopStack.setParallel(false); 1509 } 1510 } 1511 1512 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1513 bool IsMonotonic) { 1514 // Walk clauses and process safelen/lastprivate. 1515 LoopStack.setParallel(!IsMonotonic); 1516 LoopStack.setVectorizeEnable(true); 1517 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1518 } 1519 1520 void CodeGenFunction::EmitOMPSimdFinal( 1521 const OMPLoopDirective &D, 1522 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1523 if (!HaveInsertPoint()) 1524 return; 1525 llvm::BasicBlock *DoneBB = nullptr; 1526 auto IC = D.counters().begin(); 1527 auto IPC = D.private_counters().begin(); 1528 for (auto F : D.finals()) { 1529 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1530 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1531 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1532 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1533 OrigVD->hasGlobalStorage() || CED) { 1534 if (!DoneBB) { 1535 if (auto *Cond = CondGen(*this)) { 1536 // If the first post-update expression is found, emit conditional 1537 // block if it was requested. 1538 auto *ThenBB = createBasicBlock(".omp.final.then"); 1539 DoneBB = createBasicBlock(".omp.final.done"); 1540 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1541 EmitBlock(ThenBB); 1542 } 1543 } 1544 Address OrigAddr = Address::invalid(); 1545 if (CED) 1546 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1547 else { 1548 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1549 /*RefersToEnclosingVariableOrCapture=*/false, 1550 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1551 OrigAddr = EmitLValue(&DRE).getAddress(); 1552 } 1553 OMPPrivateScope VarScope(*this); 1554 VarScope.addPrivate(OrigVD, 1555 [OrigAddr]() -> Address { return OrigAddr; }); 1556 (void)VarScope.Privatize(); 1557 EmitIgnoredExpr(F); 1558 } 1559 ++IC; 1560 ++IPC; 1561 } 1562 if (DoneBB) 1563 EmitBlock(DoneBB, /*IsFinished=*/true); 1564 } 1565 1566 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1567 const OMPLoopDirective &S, 1568 CodeGenFunction::JumpDest LoopExit) { 1569 CGF.EmitOMPLoopBody(S, LoopExit); 1570 CGF.EmitStopPoint(&S); 1571 } 1572 1573 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1574 PrePostActionTy &Action) { 1575 Action.Enter(CGF); 1576 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1577 "Expected simd directive"); 1578 OMPLoopScope PreInitScope(CGF, S); 1579 // if (PreCond) { 1580 // for (IV in 0..LastIteration) BODY; 1581 // <Final counter/linear vars updates>; 1582 // } 1583 // 1584 1585 // Emit: if (PreCond) - begin. 1586 // If the condition constant folds and can be elided, avoid emitting the 1587 // whole loop. 1588 bool CondConstant; 1589 llvm::BasicBlock *ContBlock = nullptr; 1590 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1591 if (!CondConstant) 1592 return; 1593 } else { 1594 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1595 ContBlock = CGF.createBasicBlock("simd.if.end"); 1596 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1597 CGF.getProfileCount(&S)); 1598 CGF.EmitBlock(ThenBlock); 1599 CGF.incrementProfileCounter(&S); 1600 } 1601 1602 // Emit the loop iteration variable. 1603 const Expr *IVExpr = S.getIterationVariable(); 1604 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1605 CGF.EmitVarDecl(*IVDecl); 1606 CGF.EmitIgnoredExpr(S.getInit()); 1607 1608 // Emit the iterations count variable. 1609 // If it is not a variable, Sema decided to calculate iterations count on 1610 // each iteration (e.g., it is foldable into a constant). 1611 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1612 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1613 // Emit calculation of the iterations count. 1614 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1615 } 1616 1617 CGF.EmitOMPSimdInit(S); 1618 1619 emitAlignedClause(CGF, S); 1620 (void)CGF.EmitOMPLinearClauseInit(S); 1621 { 1622 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1623 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1624 CGF.EmitOMPLinearClause(S, LoopScope); 1625 CGF.EmitOMPPrivateClause(S, LoopScope); 1626 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1627 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1628 (void)LoopScope.Privatize(); 1629 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1630 S.getInc(), 1631 [&S](CodeGenFunction &CGF) { 1632 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1633 CGF.EmitStopPoint(&S); 1634 }, 1635 [](CodeGenFunction &) {}); 1636 CGF.EmitOMPSimdFinal( 1637 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1638 // Emit final copy of the lastprivate variables at the end of loops. 1639 if (HasLastprivateClause) 1640 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1641 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1642 emitPostUpdateForReductionClause( 1643 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1644 } 1645 CGF.EmitOMPLinearClauseFinal( 1646 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1647 // Emit: if (PreCond) - end. 1648 if (ContBlock) { 1649 CGF.EmitBranch(ContBlock); 1650 CGF.EmitBlock(ContBlock, true); 1651 } 1652 } 1653 1654 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1655 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1656 emitOMPSimdRegion(CGF, S, Action); 1657 }; 1658 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1659 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1660 } 1661 1662 void CodeGenFunction::EmitOMPOuterLoop( 1663 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1664 CodeGenFunction::OMPPrivateScope &LoopScope, 1665 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1666 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1667 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1668 auto &RT = CGM.getOpenMPRuntime(); 1669 1670 const Expr *IVExpr = S.getIterationVariable(); 1671 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1672 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1673 1674 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1675 1676 // Start the loop with a block that tests the condition. 1677 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1678 EmitBlock(CondBlock); 1679 const SourceRange &R = S.getSourceRange(); 1680 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1681 SourceLocToDebugLoc(R.getEnd())); 1682 1683 llvm::Value *BoolCondVal = nullptr; 1684 if (!DynamicOrOrdered) { 1685 // UB = min(UB, GlobalUB) or 1686 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1687 // 'distribute parallel for') 1688 EmitIgnoredExpr(LoopArgs.EUB); 1689 // IV = LB 1690 EmitIgnoredExpr(LoopArgs.Init); 1691 // IV < UB 1692 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1693 } else { 1694 BoolCondVal = 1695 RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL, 1696 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1697 } 1698 1699 // If there are any cleanups between here and the loop-exit scope, 1700 // create a block to stage a loop exit along. 1701 auto ExitBlock = LoopExit.getBlock(); 1702 if (LoopScope.requiresCleanups()) 1703 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1704 1705 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1706 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1707 if (ExitBlock != LoopExit.getBlock()) { 1708 EmitBlock(ExitBlock); 1709 EmitBranchThroughCleanup(LoopExit); 1710 } 1711 EmitBlock(LoopBody); 1712 1713 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1714 // LB for loop condition and emitted it above). 1715 if (DynamicOrOrdered) 1716 EmitIgnoredExpr(LoopArgs.Init); 1717 1718 // Create a block for the increment. 1719 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1720 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1721 1722 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1723 // with dynamic/guided scheduling and without ordered clause. 1724 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1725 LoopStack.setParallel(!IsMonotonic); 1726 else 1727 EmitOMPSimdInit(S, IsMonotonic); 1728 1729 SourceLocation Loc = S.getLocStart(); 1730 1731 // when 'distribute' is not combined with a 'for': 1732 // while (idx <= UB) { BODY; ++idx; } 1733 // when 'distribute' is combined with a 'for' 1734 // (e.g. 'distribute parallel for') 1735 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1736 EmitOMPInnerLoop( 1737 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1738 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1739 CodeGenLoop(CGF, S, LoopExit); 1740 }, 1741 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1742 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1743 }); 1744 1745 EmitBlock(Continue.getBlock()); 1746 BreakContinueStack.pop_back(); 1747 if (!DynamicOrOrdered) { 1748 // Emit "LB = LB + Stride", "UB = UB + Stride". 1749 EmitIgnoredExpr(LoopArgs.NextLB); 1750 EmitIgnoredExpr(LoopArgs.NextUB); 1751 } 1752 1753 EmitBranch(CondBlock); 1754 LoopStack.pop(); 1755 // Emit the fall-through block. 1756 EmitBlock(LoopExit.getBlock()); 1757 1758 // Tell the runtime we are done. 1759 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1760 if (!DynamicOrOrdered) 1761 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 1762 S.getDirectiveKind()); 1763 }; 1764 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1765 } 1766 1767 void CodeGenFunction::EmitOMPForOuterLoop( 1768 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1769 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1770 const OMPLoopArguments &LoopArgs, 1771 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1772 auto &RT = CGM.getOpenMPRuntime(); 1773 1774 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1775 const bool DynamicOrOrdered = 1776 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1777 1778 assert((Ordered || 1779 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1780 LoopArgs.Chunk != nullptr)) && 1781 "static non-chunked schedule does not need outer loop"); 1782 1783 // Emit outer loop. 1784 // 1785 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1786 // When schedule(dynamic,chunk_size) is specified, the iterations are 1787 // distributed to threads in the team in chunks as the threads request them. 1788 // Each thread executes a chunk of iterations, then requests another chunk, 1789 // until no chunks remain to be distributed. Each chunk contains chunk_size 1790 // iterations, except for the last chunk to be distributed, which may have 1791 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1792 // 1793 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1794 // to threads in the team in chunks as the executing threads request them. 1795 // Each thread executes a chunk of iterations, then requests another chunk, 1796 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1797 // each chunk is proportional to the number of unassigned iterations divided 1798 // by the number of threads in the team, decreasing to 1. For a chunk_size 1799 // with value k (greater than 1), the size of each chunk is determined in the 1800 // same way, with the restriction that the chunks do not contain fewer than k 1801 // iterations (except for the last chunk to be assigned, which may have fewer 1802 // than k iterations). 1803 // 1804 // When schedule(auto) is specified, the decision regarding scheduling is 1805 // delegated to the compiler and/or runtime system. The programmer gives the 1806 // implementation the freedom to choose any possible mapping of iterations to 1807 // threads in the team. 1808 // 1809 // When schedule(runtime) is specified, the decision regarding scheduling is 1810 // deferred until run time, and the schedule and chunk size are taken from the 1811 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1812 // implementation defined 1813 // 1814 // while(__kmpc_dispatch_next(&LB, &UB)) { 1815 // idx = LB; 1816 // while (idx <= UB) { BODY; ++idx; 1817 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1818 // } // inner loop 1819 // } 1820 // 1821 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1822 // When schedule(static, chunk_size) is specified, iterations are divided into 1823 // chunks of size chunk_size, and the chunks are assigned to the threads in 1824 // the team in a round-robin fashion in the order of the thread number. 1825 // 1826 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1827 // while (idx <= UB) { BODY; ++idx; } // inner loop 1828 // LB = LB + ST; 1829 // UB = UB + ST; 1830 // } 1831 // 1832 1833 const Expr *IVExpr = S.getIterationVariable(); 1834 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1835 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1836 1837 if (DynamicOrOrdered) { 1838 auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1839 llvm::Value *LBVal = DispatchBounds.first; 1840 llvm::Value *UBVal = DispatchBounds.second; 1841 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1842 LoopArgs.Chunk}; 1843 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1844 IVSigned, Ordered, DipatchRTInputValues); 1845 } else { 1846 CGOpenMPRuntime::StaticRTInput StaticInit( 1847 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1848 LoopArgs.ST, LoopArgs.Chunk); 1849 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 1850 ScheduleKind, StaticInit); 1851 } 1852 1853 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1854 const unsigned IVSize, 1855 const bool IVSigned) { 1856 if (Ordered) { 1857 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1858 IVSigned); 1859 } 1860 }; 1861 1862 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1863 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1864 OuterLoopArgs.IncExpr = S.getInc(); 1865 OuterLoopArgs.Init = S.getInit(); 1866 OuterLoopArgs.Cond = S.getCond(); 1867 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1868 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1869 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1870 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1871 } 1872 1873 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1874 const unsigned IVSize, const bool IVSigned) {} 1875 1876 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1877 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1878 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1879 const CodeGenLoopTy &CodeGenLoopContent) { 1880 1881 auto &RT = CGM.getOpenMPRuntime(); 1882 1883 // Emit outer loop. 1884 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1885 // dynamic 1886 // 1887 1888 const Expr *IVExpr = S.getIterationVariable(); 1889 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1890 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1891 1892 CGOpenMPRuntime::StaticRTInput StaticInit( 1893 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 1894 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 1895 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit); 1896 1897 // for combined 'distribute' and 'for' the increment expression of distribute 1898 // is store in DistInc. For 'distribute' alone, it is in Inc. 1899 Expr *IncExpr; 1900 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 1901 IncExpr = S.getDistInc(); 1902 else 1903 IncExpr = S.getInc(); 1904 1905 // this routine is shared by 'omp distribute parallel for' and 1906 // 'omp distribute': select the right EUB expression depending on the 1907 // directive 1908 OMPLoopArguments OuterLoopArgs; 1909 OuterLoopArgs.LB = LoopArgs.LB; 1910 OuterLoopArgs.UB = LoopArgs.UB; 1911 OuterLoopArgs.ST = LoopArgs.ST; 1912 OuterLoopArgs.IL = LoopArgs.IL; 1913 OuterLoopArgs.Chunk = LoopArgs.Chunk; 1914 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1915 ? S.getCombinedEnsureUpperBound() 1916 : S.getEnsureUpperBound(); 1917 OuterLoopArgs.IncExpr = IncExpr; 1918 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1919 ? S.getCombinedInit() 1920 : S.getInit(); 1921 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1922 ? S.getCombinedCond() 1923 : S.getCond(); 1924 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1925 ? S.getCombinedNextLowerBound() 1926 : S.getNextLowerBound(); 1927 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1928 ? S.getCombinedNextUpperBound() 1929 : S.getNextUpperBound(); 1930 1931 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 1932 LoopScope, OuterLoopArgs, CodeGenLoopContent, 1933 emitEmptyOrdered); 1934 } 1935 1936 /// Emit a helper variable and return corresponding lvalue. 1937 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1938 const DeclRefExpr *Helper) { 1939 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1940 CGF.EmitVarDecl(*VDecl); 1941 return CGF.EmitLValue(Helper); 1942 } 1943 1944 static std::pair<LValue, LValue> 1945 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 1946 const OMPExecutableDirective &S) { 1947 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 1948 LValue LB = 1949 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 1950 LValue UB = 1951 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 1952 1953 // When composing 'distribute' with 'for' (e.g. as in 'distribute 1954 // parallel for') we need to use the 'distribute' 1955 // chunk lower and upper bounds rather than the whole loop iteration 1956 // space. These are parameters to the outlined function for 'parallel' 1957 // and we copy the bounds of the previous schedule into the 1958 // the current ones. 1959 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 1960 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 1961 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(PrevLB, SourceLocation()); 1962 PrevLBVal = CGF.EmitScalarConversion( 1963 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 1964 LS.getIterationVariable()->getType(), SourceLocation()); 1965 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(PrevUB, SourceLocation()); 1966 PrevUBVal = CGF.EmitScalarConversion( 1967 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 1968 LS.getIterationVariable()->getType(), SourceLocation()); 1969 1970 CGF.EmitStoreOfScalar(PrevLBVal, LB); 1971 CGF.EmitStoreOfScalar(PrevUBVal, UB); 1972 1973 return {LB, UB}; 1974 } 1975 1976 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 1977 /// we need to use the LB and UB expressions generated by the worksharing 1978 /// code generation support, whereas in non combined situations we would 1979 /// just emit 0 and the LastIteration expression 1980 /// This function is necessary due to the difference of the LB and UB 1981 /// types for the RT emission routines for 'for_static_init' and 1982 /// 'for_dispatch_init' 1983 static std::pair<llvm::Value *, llvm::Value *> 1984 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 1985 const OMPExecutableDirective &S, 1986 Address LB, Address UB) { 1987 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 1988 const Expr *IVExpr = LS.getIterationVariable(); 1989 // when implementing a dynamic schedule for a 'for' combined with a 1990 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 1991 // is not normalized as each team only executes its own assigned 1992 // distribute chunk 1993 QualType IteratorTy = IVExpr->getType(); 1994 llvm::Value *LBVal = CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, 1995 SourceLocation()); 1996 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, 1997 SourceLocation()); 1998 return {LBVal, UBVal}; 1999 } 2000 2001 static void emitDistributeParallelForDistributeInnerBoundParams( 2002 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2003 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2004 const auto &Dir = cast<OMPLoopDirective>(S); 2005 LValue LB = 2006 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2007 auto LBCast = CGF.Builder.CreateIntCast( 2008 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2009 CapturedVars.push_back(LBCast); 2010 LValue UB = 2011 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2012 2013 auto UBCast = CGF.Builder.CreateIntCast( 2014 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2015 CapturedVars.push_back(UBCast); 2016 } 2017 2018 static void 2019 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2020 const OMPLoopDirective &S, 2021 CodeGenFunction::JumpDest LoopExit) { 2022 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2023 PrePostActionTy &) { 2024 bool HasCancel = false; 2025 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2026 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2027 HasCancel = D->hasCancel(); 2028 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2029 HasCancel = D->hasCancel(); 2030 else if (const auto *D = 2031 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2032 HasCancel = D->hasCancel(); 2033 } 2034 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2035 HasCancel); 2036 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2037 emitDistributeParallelForInnerBounds, 2038 emitDistributeParallelForDispatchBounds); 2039 }; 2040 2041 emitCommonOMPParallelDirective( 2042 CGF, S, 2043 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2044 CGInlinedWorksharingLoop, 2045 emitDistributeParallelForDistributeInnerBoundParams); 2046 } 2047 2048 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2049 const OMPDistributeParallelForDirective &S) { 2050 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2051 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2052 S.getDistInc()); 2053 }; 2054 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2055 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2056 } 2057 2058 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2059 const OMPDistributeParallelForSimdDirective &S) { 2060 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2061 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2062 S.getDistInc()); 2063 }; 2064 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2065 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2066 } 2067 2068 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2069 const OMPDistributeSimdDirective &S) { 2070 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2071 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2072 }; 2073 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2074 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2075 } 2076 2077 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2078 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2079 // Emit SPMD target parallel for region as a standalone region. 2080 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2081 emitOMPSimdRegion(CGF, S, Action); 2082 }; 2083 llvm::Function *Fn; 2084 llvm::Constant *Addr; 2085 // Emit target region as a standalone region. 2086 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2087 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2088 assert(Fn && Addr && "Target device function emission failed."); 2089 } 2090 2091 void CodeGenFunction::EmitOMPTargetSimdDirective( 2092 const OMPTargetSimdDirective &S) { 2093 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2094 emitOMPSimdRegion(CGF, S, Action); 2095 }; 2096 emitCommonOMPTargetDirective(*this, S, CodeGen); 2097 } 2098 2099 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 2100 const OMPTargetTeamsDistributeParallelForDirective &S) { 2101 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2102 CGM.getOpenMPRuntime().emitInlinedDirective( 2103 *this, OMPD_target_teams_distribute_parallel_for, 2104 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2105 CGF.EmitStmt( 2106 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2107 }); 2108 } 2109 2110 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2111 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 2112 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2113 CGM.getOpenMPRuntime().emitInlinedDirective( 2114 *this, OMPD_target_teams_distribute_parallel_for_simd, 2115 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2116 CGF.EmitStmt( 2117 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2118 }); 2119 } 2120 2121 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 2122 const OMPTargetTeamsDistributeSimdDirective &S) { 2123 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2124 CGM.getOpenMPRuntime().emitInlinedDirective( 2125 *this, OMPD_target_teams_distribute_simd, 2126 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2127 CGF.EmitStmt( 2128 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2129 }); 2130 } 2131 2132 namespace { 2133 struct ScheduleKindModifiersTy { 2134 OpenMPScheduleClauseKind Kind; 2135 OpenMPScheduleClauseModifier M1; 2136 OpenMPScheduleClauseModifier M2; 2137 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2138 OpenMPScheduleClauseModifier M1, 2139 OpenMPScheduleClauseModifier M2) 2140 : Kind(Kind), M1(M1), M2(M2) {} 2141 }; 2142 } // namespace 2143 2144 bool CodeGenFunction::EmitOMPWorksharingLoop( 2145 const OMPLoopDirective &S, Expr *EUB, 2146 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2147 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2148 // Emit the loop iteration variable. 2149 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2150 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2151 EmitVarDecl(*IVDecl); 2152 2153 // Emit the iterations count variable. 2154 // If it is not a variable, Sema decided to calculate iterations count on each 2155 // iteration (e.g., it is foldable into a constant). 2156 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2157 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2158 // Emit calculation of the iterations count. 2159 EmitIgnoredExpr(S.getCalcLastIteration()); 2160 } 2161 2162 auto &RT = CGM.getOpenMPRuntime(); 2163 2164 bool HasLastprivateClause; 2165 // Check pre-condition. 2166 { 2167 OMPLoopScope PreInitScope(*this, S); 2168 // Skip the entire loop if we don't meet the precondition. 2169 // If the condition constant folds and can be elided, avoid emitting the 2170 // whole loop. 2171 bool CondConstant; 2172 llvm::BasicBlock *ContBlock = nullptr; 2173 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2174 if (!CondConstant) 2175 return false; 2176 } else { 2177 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2178 ContBlock = createBasicBlock("omp.precond.end"); 2179 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2180 getProfileCount(&S)); 2181 EmitBlock(ThenBlock); 2182 incrementProfileCounter(&S); 2183 } 2184 2185 bool Ordered = false; 2186 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2187 if (OrderedClause->getNumForLoops()) 2188 RT.emitDoacrossInit(*this, S); 2189 else 2190 Ordered = true; 2191 } 2192 2193 llvm::DenseSet<const Expr *> EmittedFinals; 2194 emitAlignedClause(*this, S); 2195 bool HasLinears = EmitOMPLinearClauseInit(S); 2196 // Emit helper vars inits. 2197 2198 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2199 LValue LB = Bounds.first; 2200 LValue UB = Bounds.second; 2201 LValue ST = 2202 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2203 LValue IL = 2204 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2205 2206 // Emit 'then' code. 2207 { 2208 OMPPrivateScope LoopScope(*this); 2209 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2210 // Emit implicit barrier to synchronize threads and avoid data races on 2211 // initialization of firstprivate variables and post-update of 2212 // lastprivate variables. 2213 CGM.getOpenMPRuntime().emitBarrierCall( 2214 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2215 /*ForceSimpleCall=*/true); 2216 } 2217 EmitOMPPrivateClause(S, LoopScope); 2218 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2219 EmitOMPReductionClauseInit(S, LoopScope); 2220 EmitOMPPrivateLoopCounters(S, LoopScope); 2221 EmitOMPLinearClause(S, LoopScope); 2222 (void)LoopScope.Privatize(); 2223 2224 // Detect the loop schedule kind and chunk. 2225 llvm::Value *Chunk = nullptr; 2226 OpenMPScheduleTy ScheduleKind; 2227 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2228 ScheduleKind.Schedule = C->getScheduleKind(); 2229 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2230 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2231 if (const auto *Ch = C->getChunkSize()) { 2232 Chunk = EmitScalarExpr(Ch); 2233 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2234 S.getIterationVariable()->getType(), 2235 S.getLocStart()); 2236 } 2237 } 2238 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2239 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2240 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2241 // If the static schedule kind is specified or if the ordered clause is 2242 // specified, and if no monotonic modifier is specified, the effect will 2243 // be as if the monotonic modifier was specified. 2244 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2245 /* Chunked */ Chunk != nullptr) && 2246 !Ordered) { 2247 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2248 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2249 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2250 // When no chunk_size is specified, the iteration space is divided into 2251 // chunks that are approximately equal in size, and at most one chunk is 2252 // distributed to each thread. Note that the size of the chunks is 2253 // unspecified in this case. 2254 CGOpenMPRuntime::StaticRTInput StaticInit( 2255 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2256 UB.getAddress(), ST.getAddress()); 2257 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 2258 ScheduleKind, StaticInit); 2259 auto LoopExit = 2260 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2261 // UB = min(UB, GlobalUB); 2262 EmitIgnoredExpr(S.getEnsureUpperBound()); 2263 // IV = LB; 2264 EmitIgnoredExpr(S.getInit()); 2265 // while (idx <= UB) { BODY; ++idx; } 2266 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2267 S.getInc(), 2268 [&S, LoopExit](CodeGenFunction &CGF) { 2269 CGF.EmitOMPLoopBody(S, LoopExit); 2270 CGF.EmitStopPoint(&S); 2271 }, 2272 [](CodeGenFunction &) {}); 2273 EmitBlock(LoopExit.getBlock()); 2274 // Tell the runtime we are done. 2275 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2276 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2277 S.getDirectiveKind()); 2278 }; 2279 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2280 } else { 2281 const bool IsMonotonic = 2282 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2283 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2284 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2285 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2286 // Emit the outer loop, which requests its work chunk [LB..UB] from 2287 // runtime and runs the inner loop to process it. 2288 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2289 ST.getAddress(), IL.getAddress(), 2290 Chunk, EUB); 2291 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2292 LoopArguments, CGDispatchBounds); 2293 } 2294 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2295 EmitOMPSimdFinal(S, 2296 [&](CodeGenFunction &CGF) -> llvm::Value * { 2297 return CGF.Builder.CreateIsNotNull( 2298 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2299 }); 2300 } 2301 EmitOMPReductionClauseFinal( 2302 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2303 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2304 : /*Parallel only*/ OMPD_parallel); 2305 // Emit post-update of the reduction variables if IsLastIter != 0. 2306 emitPostUpdateForReductionClause( 2307 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2308 return CGF.Builder.CreateIsNotNull( 2309 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2310 }); 2311 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2312 if (HasLastprivateClause) 2313 EmitOMPLastprivateClauseFinal( 2314 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2315 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2316 } 2317 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2318 return CGF.Builder.CreateIsNotNull( 2319 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2320 }); 2321 // We're now done with the loop, so jump to the continuation block. 2322 if (ContBlock) { 2323 EmitBranch(ContBlock); 2324 EmitBlock(ContBlock, true); 2325 } 2326 } 2327 return HasLastprivateClause; 2328 } 2329 2330 /// The following two functions generate expressions for the loop lower 2331 /// and upper bounds in case of static and dynamic (dispatch) schedule 2332 /// of the associated 'for' or 'distribute' loop. 2333 static std::pair<LValue, LValue> 2334 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2335 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2336 LValue LB = 2337 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2338 LValue UB = 2339 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2340 return {LB, UB}; 2341 } 2342 2343 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2344 /// consider the lower and upper bound expressions generated by the 2345 /// worksharing loop support, but we use 0 and the iteration space size as 2346 /// constants 2347 static std::pair<llvm::Value *, llvm::Value *> 2348 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2349 Address LB, Address UB) { 2350 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2351 const Expr *IVExpr = LS.getIterationVariable(); 2352 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2353 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2354 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2355 return {LBVal, UBVal}; 2356 } 2357 2358 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2359 bool HasLastprivates = false; 2360 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2361 PrePostActionTy &) { 2362 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2363 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2364 emitForLoopBounds, 2365 emitDispatchForLoopBounds); 2366 }; 2367 { 2368 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2369 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2370 S.hasCancel()); 2371 } 2372 2373 // Emit an implicit barrier at the end. 2374 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2375 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2376 } 2377 } 2378 2379 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2380 bool HasLastprivates = false; 2381 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2382 PrePostActionTy &) { 2383 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2384 emitForLoopBounds, 2385 emitDispatchForLoopBounds); 2386 }; 2387 { 2388 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2389 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2390 } 2391 2392 // Emit an implicit barrier at the end. 2393 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2394 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2395 } 2396 } 2397 2398 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2399 const Twine &Name, 2400 llvm::Value *Init = nullptr) { 2401 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2402 if (Init) 2403 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2404 return LVal; 2405 } 2406 2407 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2408 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2409 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2410 bool HasLastprivates = false; 2411 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2412 PrePostActionTy &) { 2413 auto &C = CGF.CGM.getContext(); 2414 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2415 // Emit helper vars inits. 2416 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2417 CGF.Builder.getInt32(0)); 2418 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2419 : CGF.Builder.getInt32(0); 2420 LValue UB = 2421 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2422 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2423 CGF.Builder.getInt32(1)); 2424 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2425 CGF.Builder.getInt32(0)); 2426 // Loop counter. 2427 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2428 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2429 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2430 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2431 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2432 // Generate condition for loop. 2433 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2434 OK_Ordinary, S.getLocStart(), FPOptions()); 2435 // Increment for loop counter. 2436 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2437 S.getLocStart()); 2438 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2439 // Iterate through all sections and emit a switch construct: 2440 // switch (IV) { 2441 // case 0: 2442 // <SectionStmt[0]>; 2443 // break; 2444 // ... 2445 // case <NumSection> - 1: 2446 // <SectionStmt[<NumSection> - 1]>; 2447 // break; 2448 // } 2449 // .omp.sections.exit: 2450 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2451 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2452 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2453 CS == nullptr ? 1 : CS->size()); 2454 if (CS) { 2455 unsigned CaseNumber = 0; 2456 for (auto *SubStmt : CS->children()) { 2457 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2458 CGF.EmitBlock(CaseBB); 2459 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2460 CGF.EmitStmt(SubStmt); 2461 CGF.EmitBranch(ExitBB); 2462 ++CaseNumber; 2463 } 2464 } else { 2465 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2466 CGF.EmitBlock(CaseBB); 2467 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2468 CGF.EmitStmt(Stmt); 2469 CGF.EmitBranch(ExitBB); 2470 } 2471 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2472 }; 2473 2474 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2475 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2476 // Emit implicit barrier to synchronize threads and avoid data races on 2477 // initialization of firstprivate variables and post-update of lastprivate 2478 // variables. 2479 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2480 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2481 /*ForceSimpleCall=*/true); 2482 } 2483 CGF.EmitOMPPrivateClause(S, LoopScope); 2484 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2485 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2486 (void)LoopScope.Privatize(); 2487 2488 // Emit static non-chunked loop. 2489 OpenMPScheduleTy ScheduleKind; 2490 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2491 CGOpenMPRuntime::StaticRTInput StaticInit( 2492 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2493 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2494 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2495 CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2496 // UB = min(UB, GlobalUB); 2497 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2498 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2499 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2500 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2501 // IV = LB; 2502 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2503 // while (idx <= UB) { BODY; ++idx; } 2504 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2505 [](CodeGenFunction &) {}); 2506 // Tell the runtime we are done. 2507 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2508 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2509 S.getDirectiveKind()); 2510 }; 2511 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2512 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2513 // Emit post-update of the reduction variables if IsLastIter != 0. 2514 emitPostUpdateForReductionClause( 2515 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2516 return CGF.Builder.CreateIsNotNull( 2517 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2518 }); 2519 2520 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2521 if (HasLastprivates) 2522 CGF.EmitOMPLastprivateClauseFinal( 2523 S, /*NoFinals=*/false, 2524 CGF.Builder.CreateIsNotNull( 2525 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2526 }; 2527 2528 bool HasCancel = false; 2529 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2530 HasCancel = OSD->hasCancel(); 2531 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2532 HasCancel = OPSD->hasCancel(); 2533 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2534 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2535 HasCancel); 2536 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2537 // clause. Otherwise the barrier will be generated by the codegen for the 2538 // directive. 2539 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2540 // Emit implicit barrier to synchronize threads and avoid data races on 2541 // initialization of firstprivate variables. 2542 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2543 OMPD_unknown); 2544 } 2545 } 2546 2547 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2548 { 2549 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2550 EmitSections(S); 2551 } 2552 // Emit an implicit barrier at the end. 2553 if (!S.getSingleClause<OMPNowaitClause>()) { 2554 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2555 OMPD_sections); 2556 } 2557 } 2558 2559 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2560 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2561 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2562 }; 2563 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2564 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2565 S.hasCancel()); 2566 } 2567 2568 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2569 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2570 llvm::SmallVector<const Expr *, 8> DestExprs; 2571 llvm::SmallVector<const Expr *, 8> SrcExprs; 2572 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2573 // Check if there are any 'copyprivate' clauses associated with this 2574 // 'single' construct. 2575 // Build a list of copyprivate variables along with helper expressions 2576 // (<source>, <destination>, <destination>=<source> expressions) 2577 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2578 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2579 DestExprs.append(C->destination_exprs().begin(), 2580 C->destination_exprs().end()); 2581 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2582 AssignmentOps.append(C->assignment_ops().begin(), 2583 C->assignment_ops().end()); 2584 } 2585 // Emit code for 'single' region along with 'copyprivate' clauses 2586 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2587 Action.Enter(CGF); 2588 OMPPrivateScope SingleScope(CGF); 2589 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2590 CGF.EmitOMPPrivateClause(S, SingleScope); 2591 (void)SingleScope.Privatize(); 2592 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2593 }; 2594 { 2595 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2596 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2597 CopyprivateVars, DestExprs, 2598 SrcExprs, AssignmentOps); 2599 } 2600 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2601 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2602 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2603 CGM.getOpenMPRuntime().emitBarrierCall( 2604 *this, S.getLocStart(), 2605 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2606 } 2607 } 2608 2609 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2610 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2611 Action.Enter(CGF); 2612 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2613 }; 2614 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2615 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2616 } 2617 2618 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2619 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2620 Action.Enter(CGF); 2621 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2622 }; 2623 Expr *Hint = nullptr; 2624 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2625 Hint = HintClause->getHint(); 2626 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2627 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2628 S.getDirectiveName().getAsString(), 2629 CodeGen, S.getLocStart(), Hint); 2630 } 2631 2632 void CodeGenFunction::EmitOMPParallelForDirective( 2633 const OMPParallelForDirective &S) { 2634 // Emit directive as a combined directive that consists of two implicit 2635 // directives: 'parallel' with 'for' directive. 2636 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2637 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2638 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2639 emitDispatchForLoopBounds); 2640 }; 2641 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2642 emitEmptyBoundParameters); 2643 } 2644 2645 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2646 const OMPParallelForSimdDirective &S) { 2647 // Emit directive as a combined directive that consists of two implicit 2648 // directives: 'parallel' with 'for' directive. 2649 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2650 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2651 emitDispatchForLoopBounds); 2652 }; 2653 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2654 emitEmptyBoundParameters); 2655 } 2656 2657 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2658 const OMPParallelSectionsDirective &S) { 2659 // Emit directive as a combined directive that consists of two implicit 2660 // directives: 'parallel' with 'sections' directive. 2661 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2662 CGF.EmitSections(S); 2663 }; 2664 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2665 emitEmptyBoundParameters); 2666 } 2667 2668 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2669 const RegionCodeGenTy &BodyGen, 2670 const TaskGenTy &TaskGen, 2671 OMPTaskDataTy &Data) { 2672 // Emit outlined function for task construct. 2673 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2674 auto *I = CS->getCapturedDecl()->param_begin(); 2675 auto *PartId = std::next(I); 2676 auto *TaskT = std::next(I, 4); 2677 // Check if the task is final 2678 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2679 // If the condition constant folds and can be elided, try to avoid emitting 2680 // the condition and the dead arm of the if/else. 2681 auto *Cond = Clause->getCondition(); 2682 bool CondConstant; 2683 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2684 Data.Final.setInt(CondConstant); 2685 else 2686 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2687 } else { 2688 // By default the task is not final. 2689 Data.Final.setInt(/*IntVal=*/false); 2690 } 2691 // Check if the task has 'priority' clause. 2692 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2693 auto *Prio = Clause->getPriority(); 2694 Data.Priority.setInt(/*IntVal=*/true); 2695 Data.Priority.setPointer(EmitScalarConversion( 2696 EmitScalarExpr(Prio), Prio->getType(), 2697 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2698 Prio->getExprLoc())); 2699 } 2700 // The first function argument for tasks is a thread id, the second one is a 2701 // part id (0 for tied tasks, >=0 for untied task). 2702 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2703 // Get list of private variables. 2704 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2705 auto IRef = C->varlist_begin(); 2706 for (auto *IInit : C->private_copies()) { 2707 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2708 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2709 Data.PrivateVars.push_back(*IRef); 2710 Data.PrivateCopies.push_back(IInit); 2711 } 2712 ++IRef; 2713 } 2714 } 2715 EmittedAsPrivate.clear(); 2716 // Get list of firstprivate variables. 2717 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2718 auto IRef = C->varlist_begin(); 2719 auto IElemInitRef = C->inits().begin(); 2720 for (auto *IInit : C->private_copies()) { 2721 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2722 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2723 Data.FirstprivateVars.push_back(*IRef); 2724 Data.FirstprivateCopies.push_back(IInit); 2725 Data.FirstprivateInits.push_back(*IElemInitRef); 2726 } 2727 ++IRef; 2728 ++IElemInitRef; 2729 } 2730 } 2731 // Get list of lastprivate variables (for taskloops). 2732 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2733 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2734 auto IRef = C->varlist_begin(); 2735 auto ID = C->destination_exprs().begin(); 2736 for (auto *IInit : C->private_copies()) { 2737 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2738 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2739 Data.LastprivateVars.push_back(*IRef); 2740 Data.LastprivateCopies.push_back(IInit); 2741 } 2742 LastprivateDstsOrigs.insert( 2743 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2744 cast<DeclRefExpr>(*IRef)}); 2745 ++IRef; 2746 ++ID; 2747 } 2748 } 2749 SmallVector<const Expr *, 4> LHSs; 2750 SmallVector<const Expr *, 4> RHSs; 2751 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2752 auto IPriv = C->privates().begin(); 2753 auto IRed = C->reduction_ops().begin(); 2754 auto ILHS = C->lhs_exprs().begin(); 2755 auto IRHS = C->rhs_exprs().begin(); 2756 for (const auto *Ref : C->varlists()) { 2757 Data.ReductionVars.emplace_back(Ref); 2758 Data.ReductionCopies.emplace_back(*IPriv); 2759 Data.ReductionOps.emplace_back(*IRed); 2760 LHSs.emplace_back(*ILHS); 2761 RHSs.emplace_back(*IRHS); 2762 std::advance(IPriv, 1); 2763 std::advance(IRed, 1); 2764 std::advance(ILHS, 1); 2765 std::advance(IRHS, 1); 2766 } 2767 } 2768 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2769 *this, S.getLocStart(), LHSs, RHSs, Data); 2770 // Build list of dependences. 2771 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2772 for (auto *IRef : C->varlists()) 2773 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2774 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs]( 2775 CodeGenFunction &CGF, PrePostActionTy &Action) { 2776 // Set proper addresses for generated private copies. 2777 OMPPrivateScope Scope(CGF); 2778 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2779 !Data.LastprivateVars.empty()) { 2780 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2781 auto *CopyFn = CGF.Builder.CreateLoad( 2782 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2783 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2784 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2785 // Map privates. 2786 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2787 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2788 CallArgs.push_back(PrivatesPtr); 2789 for (auto *E : Data.PrivateVars) { 2790 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2791 Address PrivatePtr = CGF.CreateMemTemp( 2792 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2793 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2794 CallArgs.push_back(PrivatePtr.getPointer()); 2795 } 2796 for (auto *E : Data.FirstprivateVars) { 2797 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2798 Address PrivatePtr = 2799 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2800 ".firstpriv.ptr.addr"); 2801 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2802 CallArgs.push_back(PrivatePtr.getPointer()); 2803 } 2804 for (auto *E : Data.LastprivateVars) { 2805 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2806 Address PrivatePtr = 2807 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2808 ".lastpriv.ptr.addr"); 2809 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2810 CallArgs.push_back(PrivatePtr.getPointer()); 2811 } 2812 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 2813 CopyFn, CallArgs); 2814 for (auto &&Pair : LastprivateDstsOrigs) { 2815 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2816 DeclRefExpr DRE( 2817 const_cast<VarDecl *>(OrigVD), 2818 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2819 OrigVD) != nullptr, 2820 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2821 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2822 return CGF.EmitLValue(&DRE).getAddress(); 2823 }); 2824 } 2825 for (auto &&Pair : PrivatePtrs) { 2826 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2827 CGF.getContext().getDeclAlign(Pair.first)); 2828 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2829 } 2830 } 2831 if (Data.Reductions) { 2832 OMPLexicalScope LexScope(CGF, S, /*AsInlined=*/true); 2833 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2834 Data.ReductionOps); 2835 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2836 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2837 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2838 RedCG.emitSharedLValue(CGF, Cnt); 2839 RedCG.emitAggregateType(CGF, Cnt); 2840 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2841 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2842 Replacement = 2843 Address(CGF.EmitScalarConversion( 2844 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2845 CGF.getContext().getPointerType( 2846 Data.ReductionCopies[Cnt]->getType()), 2847 SourceLocation()), 2848 Replacement.getAlignment()); 2849 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2850 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2851 [Replacement]() { return Replacement; }); 2852 // FIXME: This must removed once the runtime library is fixed. 2853 // Emit required threadprivate variables for 2854 // initilizer/combiner/finalizer. 2855 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2856 RedCG, Cnt); 2857 } 2858 } 2859 // Privatize all private variables except for in_reduction items. 2860 (void)Scope.Privatize(); 2861 SmallVector<const Expr *, 4> InRedVars; 2862 SmallVector<const Expr *, 4> InRedPrivs; 2863 SmallVector<const Expr *, 4> InRedOps; 2864 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2865 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2866 auto IPriv = C->privates().begin(); 2867 auto IRed = C->reduction_ops().begin(); 2868 auto ITD = C->taskgroup_descriptors().begin(); 2869 for (const auto *Ref : C->varlists()) { 2870 InRedVars.emplace_back(Ref); 2871 InRedPrivs.emplace_back(*IPriv); 2872 InRedOps.emplace_back(*IRed); 2873 TaskgroupDescriptors.emplace_back(*ITD); 2874 std::advance(IPriv, 1); 2875 std::advance(IRed, 1); 2876 std::advance(ITD, 1); 2877 } 2878 } 2879 // Privatize in_reduction items here, because taskgroup descriptors must be 2880 // privatized earlier. 2881 OMPPrivateScope InRedScope(CGF); 2882 if (!InRedVars.empty()) { 2883 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2884 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2885 RedCG.emitSharedLValue(CGF, Cnt); 2886 RedCG.emitAggregateType(CGF, Cnt); 2887 // The taskgroup descriptor variable is always implicit firstprivate and 2888 // privatized already during procoessing of the firstprivates. 2889 llvm::Value *ReductionsPtr = CGF.EmitLoadOfScalar( 2890 CGF.EmitLValue(TaskgroupDescriptors[Cnt]), SourceLocation()); 2891 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2892 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2893 Replacement = Address( 2894 CGF.EmitScalarConversion( 2895 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2896 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2897 SourceLocation()), 2898 Replacement.getAlignment()); 2899 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2900 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2901 [Replacement]() { return Replacement; }); 2902 // FIXME: This must removed once the runtime library is fixed. 2903 // Emit required threadprivate variables for 2904 // initilizer/combiner/finalizer. 2905 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2906 RedCG, Cnt); 2907 } 2908 } 2909 (void)InRedScope.Privatize(); 2910 2911 Action.Enter(CGF); 2912 BodyGen(CGF); 2913 }; 2914 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2915 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2916 Data.NumberOfParts); 2917 OMPLexicalScope Scope(*this, S); 2918 TaskGen(*this, OutlinedFn, Data); 2919 } 2920 2921 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2922 // Emit outlined function for task construct. 2923 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2924 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2925 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2926 const Expr *IfCond = nullptr; 2927 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2928 if (C->getNameModifier() == OMPD_unknown || 2929 C->getNameModifier() == OMPD_task) { 2930 IfCond = C->getCondition(); 2931 break; 2932 } 2933 } 2934 2935 OMPTaskDataTy Data; 2936 // Check if we should emit tied or untied task. 2937 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2938 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2939 CGF.EmitStmt(CS->getCapturedStmt()); 2940 }; 2941 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2942 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2943 const OMPTaskDataTy &Data) { 2944 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2945 SharedsTy, CapturedStruct, IfCond, 2946 Data); 2947 }; 2948 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2949 } 2950 2951 void CodeGenFunction::EmitOMPTaskyieldDirective( 2952 const OMPTaskyieldDirective &S) { 2953 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2954 } 2955 2956 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2957 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2958 } 2959 2960 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2961 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2962 } 2963 2964 void CodeGenFunction::EmitOMPTaskgroupDirective( 2965 const OMPTaskgroupDirective &S) { 2966 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2967 Action.Enter(CGF); 2968 if (const Expr *E = S.getReductionRef()) { 2969 SmallVector<const Expr *, 4> LHSs; 2970 SmallVector<const Expr *, 4> RHSs; 2971 OMPTaskDataTy Data; 2972 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 2973 auto IPriv = C->privates().begin(); 2974 auto IRed = C->reduction_ops().begin(); 2975 auto ILHS = C->lhs_exprs().begin(); 2976 auto IRHS = C->rhs_exprs().begin(); 2977 for (const auto *Ref : C->varlists()) { 2978 Data.ReductionVars.emplace_back(Ref); 2979 Data.ReductionCopies.emplace_back(*IPriv); 2980 Data.ReductionOps.emplace_back(*IRed); 2981 LHSs.emplace_back(*ILHS); 2982 RHSs.emplace_back(*IRHS); 2983 std::advance(IPriv, 1); 2984 std::advance(IRed, 1); 2985 std::advance(ILHS, 1); 2986 std::advance(IRHS, 1); 2987 } 2988 } 2989 llvm::Value *ReductionDesc = 2990 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(), 2991 LHSs, RHSs, Data); 2992 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2993 CGF.EmitVarDecl(*VD); 2994 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 2995 /*Volatile=*/false, E->getType()); 2996 } 2997 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2998 }; 2999 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3000 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 3001 } 3002 3003 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3004 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 3005 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 3006 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3007 FlushClause->varlist_end()); 3008 } 3009 return llvm::None; 3010 }(), S.getLocStart()); 3011 } 3012 3013 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3014 const CodeGenLoopTy &CodeGenLoop, 3015 Expr *IncExpr) { 3016 // Emit the loop iteration variable. 3017 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3018 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3019 EmitVarDecl(*IVDecl); 3020 3021 // Emit the iterations count variable. 3022 // If it is not a variable, Sema decided to calculate iterations count on each 3023 // iteration (e.g., it is foldable into a constant). 3024 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3025 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3026 // Emit calculation of the iterations count. 3027 EmitIgnoredExpr(S.getCalcLastIteration()); 3028 } 3029 3030 auto &RT = CGM.getOpenMPRuntime(); 3031 3032 bool HasLastprivateClause = false; 3033 // Check pre-condition. 3034 { 3035 OMPLoopScope PreInitScope(*this, S); 3036 // Skip the entire loop if we don't meet the precondition. 3037 // If the condition constant folds and can be elided, avoid emitting the 3038 // whole loop. 3039 bool CondConstant; 3040 llvm::BasicBlock *ContBlock = nullptr; 3041 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3042 if (!CondConstant) 3043 return; 3044 } else { 3045 auto *ThenBlock = createBasicBlock("omp.precond.then"); 3046 ContBlock = createBasicBlock("omp.precond.end"); 3047 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3048 getProfileCount(&S)); 3049 EmitBlock(ThenBlock); 3050 incrementProfileCounter(&S); 3051 } 3052 3053 emitAlignedClause(*this, S); 3054 // Emit 'then' code. 3055 { 3056 // Emit helper vars inits. 3057 3058 LValue LB = EmitOMPHelperVar( 3059 *this, cast<DeclRefExpr>( 3060 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3061 ? S.getCombinedLowerBoundVariable() 3062 : S.getLowerBoundVariable()))); 3063 LValue UB = EmitOMPHelperVar( 3064 *this, cast<DeclRefExpr>( 3065 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3066 ? S.getCombinedUpperBoundVariable() 3067 : S.getUpperBoundVariable()))); 3068 LValue ST = 3069 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3070 LValue IL = 3071 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3072 3073 OMPPrivateScope LoopScope(*this); 3074 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3075 // Emit implicit barrier to synchronize threads and avoid data races 3076 // on initialization of firstprivate variables and post-update of 3077 // lastprivate variables. 3078 CGM.getOpenMPRuntime().emitBarrierCall( 3079 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 3080 /*ForceSimpleCall=*/true); 3081 } 3082 EmitOMPPrivateClause(S, LoopScope); 3083 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3084 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3085 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3086 EmitOMPReductionClauseInit(S, LoopScope); 3087 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3088 EmitOMPPrivateLoopCounters(S, LoopScope); 3089 (void)LoopScope.Privatize(); 3090 3091 // Detect the distribute schedule kind and chunk. 3092 llvm::Value *Chunk = nullptr; 3093 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3094 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3095 ScheduleKind = C->getDistScheduleKind(); 3096 if (const auto *Ch = C->getChunkSize()) { 3097 Chunk = EmitScalarExpr(Ch); 3098 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3099 S.getIterationVariable()->getType(), 3100 S.getLocStart()); 3101 } 3102 } 3103 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3104 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3105 3106 // OpenMP [2.10.8, distribute Construct, Description] 3107 // If dist_schedule is specified, kind must be static. If specified, 3108 // iterations are divided into chunks of size chunk_size, chunks are 3109 // assigned to the teams of the league in a round-robin fashion in the 3110 // order of the team number. When no chunk_size is specified, the 3111 // iteration space is divided into chunks that are approximately equal 3112 // in size, and at most one chunk is distributed to each team of the 3113 // league. The size of the chunks is unspecified in this case. 3114 if (RT.isStaticNonchunked(ScheduleKind, 3115 /* Chunked */ Chunk != nullptr)) { 3116 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3117 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3118 CGOpenMPRuntime::StaticRTInput StaticInit( 3119 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3120 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3121 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 3122 StaticInit); 3123 auto LoopExit = 3124 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3125 // UB = min(UB, GlobalUB); 3126 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3127 ? S.getCombinedEnsureUpperBound() 3128 : S.getEnsureUpperBound()); 3129 // IV = LB; 3130 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3131 ? S.getCombinedInit() 3132 : S.getInit()); 3133 3134 Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3135 ? S.getCombinedCond() 3136 : S.getCond(); 3137 3138 // for distribute alone, codegen 3139 // while (idx <= UB) { BODY; ++idx; } 3140 // when combined with 'for' (e.g. as in 'distribute parallel for') 3141 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3142 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3143 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3144 CodeGenLoop(CGF, S, LoopExit); 3145 }, 3146 [](CodeGenFunction &) {}); 3147 EmitBlock(LoopExit.getBlock()); 3148 // Tell the runtime we are done. 3149 RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind()); 3150 } else { 3151 // Emit the outer loop, which requests its work chunk [LB..UB] from 3152 // runtime and runs the inner loop to process it. 3153 const OMPLoopArguments LoopArguments = { 3154 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3155 Chunk}; 3156 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3157 CodeGenLoop); 3158 } 3159 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3160 EmitOMPSimdFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3161 return CGF.Builder.CreateIsNotNull( 3162 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3163 }); 3164 } 3165 OpenMPDirectiveKind ReductionKind = OMPD_unknown; 3166 if (isOpenMPParallelDirective(S.getDirectiveKind()) && 3167 isOpenMPSimdDirective(S.getDirectiveKind())) { 3168 ReductionKind = OMPD_parallel_for_simd; 3169 } else if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3170 ReductionKind = OMPD_parallel_for; 3171 } else if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3172 ReductionKind = OMPD_simd; 3173 } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) && 3174 S.hasClausesOfKind<OMPReductionClause>()) { 3175 llvm_unreachable( 3176 "No reduction clauses is allowed in distribute directive."); 3177 } 3178 EmitOMPReductionClauseFinal(S, ReductionKind); 3179 // Emit post-update of the reduction variables if IsLastIter != 0. 3180 emitPostUpdateForReductionClause( 3181 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3182 return CGF.Builder.CreateIsNotNull( 3183 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3184 }); 3185 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3186 if (HasLastprivateClause) { 3187 EmitOMPLastprivateClauseFinal( 3188 S, /*NoFinals=*/false, 3189 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 3190 } 3191 } 3192 3193 // We're now done with the loop, so jump to the continuation block. 3194 if (ContBlock) { 3195 EmitBranch(ContBlock); 3196 EmitBlock(ContBlock, true); 3197 } 3198 } 3199 } 3200 3201 void CodeGenFunction::EmitOMPDistributeDirective( 3202 const OMPDistributeDirective &S) { 3203 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3204 3205 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3206 }; 3207 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3208 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3209 } 3210 3211 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3212 const CapturedStmt *S) { 3213 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3214 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3215 CGF.CapturedStmtInfo = &CapStmtInfo; 3216 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3217 Fn->addFnAttr(llvm::Attribute::NoInline); 3218 return Fn; 3219 } 3220 3221 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3222 if (!S.getAssociatedStmt()) { 3223 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3224 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3225 return; 3226 } 3227 auto *C = S.getSingleClause<OMPSIMDClause>(); 3228 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3229 PrePostActionTy &Action) { 3230 if (C) { 3231 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3232 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3233 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3234 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3235 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3236 OutlinedFn, CapturedVars); 3237 } else { 3238 Action.Enter(CGF); 3239 CGF.EmitStmt( 3240 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3241 } 3242 }; 3243 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3244 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 3245 } 3246 3247 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3248 QualType SrcType, QualType DestType, 3249 SourceLocation Loc) { 3250 assert(CGF.hasScalarEvaluationKind(DestType) && 3251 "DestType must have scalar evaluation kind."); 3252 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3253 return Val.isScalar() 3254 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 3255 Loc) 3256 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 3257 DestType, Loc); 3258 } 3259 3260 static CodeGenFunction::ComplexPairTy 3261 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3262 QualType DestType, SourceLocation Loc) { 3263 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3264 "DestType must have complex evaluation kind."); 3265 CodeGenFunction::ComplexPairTy ComplexVal; 3266 if (Val.isScalar()) { 3267 // Convert the input element to the element type of the complex. 3268 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3269 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3270 DestElementType, Loc); 3271 ComplexVal = CodeGenFunction::ComplexPairTy( 3272 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3273 } else { 3274 assert(Val.isComplex() && "Must be a scalar or complex."); 3275 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3276 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3277 ComplexVal.first = CGF.EmitScalarConversion( 3278 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3279 ComplexVal.second = CGF.EmitScalarConversion( 3280 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3281 } 3282 return ComplexVal; 3283 } 3284 3285 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3286 LValue LVal, RValue RVal) { 3287 if (LVal.isGlobalReg()) { 3288 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3289 } else { 3290 CGF.EmitAtomicStore(RVal, LVal, 3291 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3292 : llvm::AtomicOrdering::Monotonic, 3293 LVal.isVolatile(), /*IsInit=*/false); 3294 } 3295 } 3296 3297 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3298 QualType RValTy, SourceLocation Loc) { 3299 switch (getEvaluationKind(LVal.getType())) { 3300 case TEK_Scalar: 3301 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3302 *this, RVal, RValTy, LVal.getType(), Loc)), 3303 LVal); 3304 break; 3305 case TEK_Complex: 3306 EmitStoreOfComplex( 3307 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3308 /*isInit=*/false); 3309 break; 3310 case TEK_Aggregate: 3311 llvm_unreachable("Must be a scalar or complex."); 3312 } 3313 } 3314 3315 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3316 const Expr *X, const Expr *V, 3317 SourceLocation Loc) { 3318 // v = x; 3319 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3320 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3321 LValue XLValue = CGF.EmitLValue(X); 3322 LValue VLValue = CGF.EmitLValue(V); 3323 RValue Res = XLValue.isGlobalReg() 3324 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3325 : CGF.EmitAtomicLoad( 3326 XLValue, Loc, 3327 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3328 : llvm::AtomicOrdering::Monotonic, 3329 XLValue.isVolatile()); 3330 // OpenMP, 2.12.6, atomic Construct 3331 // Any atomic construct with a seq_cst clause forces the atomically 3332 // performed operation to include an implicit flush operation without a 3333 // list. 3334 if (IsSeqCst) 3335 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3336 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3337 } 3338 3339 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3340 const Expr *X, const Expr *E, 3341 SourceLocation Loc) { 3342 // x = expr; 3343 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3344 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3345 // OpenMP, 2.12.6, atomic Construct 3346 // Any atomic construct with a seq_cst clause forces the atomically 3347 // performed operation to include an implicit flush operation without a 3348 // list. 3349 if (IsSeqCst) 3350 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3351 } 3352 3353 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3354 RValue Update, 3355 BinaryOperatorKind BO, 3356 llvm::AtomicOrdering AO, 3357 bool IsXLHSInRHSPart) { 3358 auto &Context = CGF.CGM.getContext(); 3359 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3360 // expression is simple and atomic is allowed for the given type for the 3361 // target platform. 3362 if (BO == BO_Comma || !Update.isScalar() || 3363 !Update.getScalarVal()->getType()->isIntegerTy() || 3364 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3365 (Update.getScalarVal()->getType() != 3366 X.getAddress().getElementType())) || 3367 !X.getAddress().getElementType()->isIntegerTy() || 3368 !Context.getTargetInfo().hasBuiltinAtomic( 3369 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3370 return std::make_pair(false, RValue::get(nullptr)); 3371 3372 llvm::AtomicRMWInst::BinOp RMWOp; 3373 switch (BO) { 3374 case BO_Add: 3375 RMWOp = llvm::AtomicRMWInst::Add; 3376 break; 3377 case BO_Sub: 3378 if (!IsXLHSInRHSPart) 3379 return std::make_pair(false, RValue::get(nullptr)); 3380 RMWOp = llvm::AtomicRMWInst::Sub; 3381 break; 3382 case BO_And: 3383 RMWOp = llvm::AtomicRMWInst::And; 3384 break; 3385 case BO_Or: 3386 RMWOp = llvm::AtomicRMWInst::Or; 3387 break; 3388 case BO_Xor: 3389 RMWOp = llvm::AtomicRMWInst::Xor; 3390 break; 3391 case BO_LT: 3392 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3393 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3394 : llvm::AtomicRMWInst::Max) 3395 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3396 : llvm::AtomicRMWInst::UMax); 3397 break; 3398 case BO_GT: 3399 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3400 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3401 : llvm::AtomicRMWInst::Min) 3402 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3403 : llvm::AtomicRMWInst::UMin); 3404 break; 3405 case BO_Assign: 3406 RMWOp = llvm::AtomicRMWInst::Xchg; 3407 break; 3408 case BO_Mul: 3409 case BO_Div: 3410 case BO_Rem: 3411 case BO_Shl: 3412 case BO_Shr: 3413 case BO_LAnd: 3414 case BO_LOr: 3415 return std::make_pair(false, RValue::get(nullptr)); 3416 case BO_PtrMemD: 3417 case BO_PtrMemI: 3418 case BO_LE: 3419 case BO_GE: 3420 case BO_EQ: 3421 case BO_NE: 3422 case BO_AddAssign: 3423 case BO_SubAssign: 3424 case BO_AndAssign: 3425 case BO_OrAssign: 3426 case BO_XorAssign: 3427 case BO_MulAssign: 3428 case BO_DivAssign: 3429 case BO_RemAssign: 3430 case BO_ShlAssign: 3431 case BO_ShrAssign: 3432 case BO_Comma: 3433 llvm_unreachable("Unsupported atomic update operation"); 3434 } 3435 auto *UpdateVal = Update.getScalarVal(); 3436 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3437 UpdateVal = CGF.Builder.CreateIntCast( 3438 IC, X.getAddress().getElementType(), 3439 X.getType()->hasSignedIntegerRepresentation()); 3440 } 3441 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3442 return std::make_pair(true, RValue::get(Res)); 3443 } 3444 3445 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3446 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3447 llvm::AtomicOrdering AO, SourceLocation Loc, 3448 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3449 // Update expressions are allowed to have the following forms: 3450 // x binop= expr; -> xrval + expr; 3451 // x++, ++x -> xrval + 1; 3452 // x--, --x -> xrval - 1; 3453 // x = x binop expr; -> xrval binop expr 3454 // x = expr Op x; - > expr binop xrval; 3455 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3456 if (!Res.first) { 3457 if (X.isGlobalReg()) { 3458 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3459 // 'xrval'. 3460 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3461 } else { 3462 // Perform compare-and-swap procedure. 3463 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3464 } 3465 } 3466 return Res; 3467 } 3468 3469 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3470 const Expr *X, const Expr *E, 3471 const Expr *UE, bool IsXLHSInRHSPart, 3472 SourceLocation Loc) { 3473 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3474 "Update expr in 'atomic update' must be a binary operator."); 3475 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3476 // Update expressions are allowed to have the following forms: 3477 // x binop= expr; -> xrval + expr; 3478 // x++, ++x -> xrval + 1; 3479 // x--, --x -> xrval - 1; 3480 // x = x binop expr; -> xrval binop expr 3481 // x = expr Op x; - > expr binop xrval; 3482 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3483 LValue XLValue = CGF.EmitLValue(X); 3484 RValue ExprRValue = CGF.EmitAnyExpr(E); 3485 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3486 : llvm::AtomicOrdering::Monotonic; 3487 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3488 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3489 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3490 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3491 auto Gen = 3492 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3493 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3494 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3495 return CGF.EmitAnyExpr(UE); 3496 }; 3497 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3498 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3499 // OpenMP, 2.12.6, atomic Construct 3500 // Any atomic construct with a seq_cst clause forces the atomically 3501 // performed operation to include an implicit flush operation without a 3502 // list. 3503 if (IsSeqCst) 3504 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3505 } 3506 3507 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3508 QualType SourceType, QualType ResType, 3509 SourceLocation Loc) { 3510 switch (CGF.getEvaluationKind(ResType)) { 3511 case TEK_Scalar: 3512 return RValue::get( 3513 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3514 case TEK_Complex: { 3515 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3516 return RValue::getComplex(Res.first, Res.second); 3517 } 3518 case TEK_Aggregate: 3519 break; 3520 } 3521 llvm_unreachable("Must be a scalar or complex."); 3522 } 3523 3524 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3525 bool IsPostfixUpdate, const Expr *V, 3526 const Expr *X, const Expr *E, 3527 const Expr *UE, bool IsXLHSInRHSPart, 3528 SourceLocation Loc) { 3529 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3530 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3531 RValue NewVVal; 3532 LValue VLValue = CGF.EmitLValue(V); 3533 LValue XLValue = CGF.EmitLValue(X); 3534 RValue ExprRValue = CGF.EmitAnyExpr(E); 3535 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3536 : llvm::AtomicOrdering::Monotonic; 3537 QualType NewVValType; 3538 if (UE) { 3539 // 'x' is updated with some additional value. 3540 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3541 "Update expr in 'atomic capture' must be a binary operator."); 3542 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3543 // Update expressions are allowed to have the following forms: 3544 // x binop= expr; -> xrval + expr; 3545 // x++, ++x -> xrval + 1; 3546 // x--, --x -> xrval - 1; 3547 // x = x binop expr; -> xrval binop expr 3548 // x = expr Op x; - > expr binop xrval; 3549 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3550 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3551 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3552 NewVValType = XRValExpr->getType(); 3553 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3554 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3555 IsPostfixUpdate](RValue XRValue) -> RValue { 3556 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3557 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3558 RValue Res = CGF.EmitAnyExpr(UE); 3559 NewVVal = IsPostfixUpdate ? XRValue : Res; 3560 return Res; 3561 }; 3562 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3563 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3564 if (Res.first) { 3565 // 'atomicrmw' instruction was generated. 3566 if (IsPostfixUpdate) { 3567 // Use old value from 'atomicrmw'. 3568 NewVVal = Res.second; 3569 } else { 3570 // 'atomicrmw' does not provide new value, so evaluate it using old 3571 // value of 'x'. 3572 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3573 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3574 NewVVal = CGF.EmitAnyExpr(UE); 3575 } 3576 } 3577 } else { 3578 // 'x' is simply rewritten with some 'expr'. 3579 NewVValType = X->getType().getNonReferenceType(); 3580 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3581 X->getType().getNonReferenceType(), Loc); 3582 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3583 NewVVal = XRValue; 3584 return ExprRValue; 3585 }; 3586 // Try to perform atomicrmw xchg, otherwise simple exchange. 3587 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3588 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3589 Loc, Gen); 3590 if (Res.first) { 3591 // 'atomicrmw' instruction was generated. 3592 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3593 } 3594 } 3595 // Emit post-update store to 'v' of old/new 'x' value. 3596 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3597 // OpenMP, 2.12.6, atomic Construct 3598 // Any atomic construct with a seq_cst clause forces the atomically 3599 // performed operation to include an implicit flush operation without a 3600 // list. 3601 if (IsSeqCst) 3602 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3603 } 3604 3605 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3606 bool IsSeqCst, bool IsPostfixUpdate, 3607 const Expr *X, const Expr *V, const Expr *E, 3608 const Expr *UE, bool IsXLHSInRHSPart, 3609 SourceLocation Loc) { 3610 switch (Kind) { 3611 case OMPC_read: 3612 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3613 break; 3614 case OMPC_write: 3615 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3616 break; 3617 case OMPC_unknown: 3618 case OMPC_update: 3619 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3620 break; 3621 case OMPC_capture: 3622 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3623 IsXLHSInRHSPart, Loc); 3624 break; 3625 case OMPC_if: 3626 case OMPC_final: 3627 case OMPC_num_threads: 3628 case OMPC_private: 3629 case OMPC_firstprivate: 3630 case OMPC_lastprivate: 3631 case OMPC_reduction: 3632 case OMPC_task_reduction: 3633 case OMPC_in_reduction: 3634 case OMPC_safelen: 3635 case OMPC_simdlen: 3636 case OMPC_collapse: 3637 case OMPC_default: 3638 case OMPC_seq_cst: 3639 case OMPC_shared: 3640 case OMPC_linear: 3641 case OMPC_aligned: 3642 case OMPC_copyin: 3643 case OMPC_copyprivate: 3644 case OMPC_flush: 3645 case OMPC_proc_bind: 3646 case OMPC_schedule: 3647 case OMPC_ordered: 3648 case OMPC_nowait: 3649 case OMPC_untied: 3650 case OMPC_threadprivate: 3651 case OMPC_depend: 3652 case OMPC_mergeable: 3653 case OMPC_device: 3654 case OMPC_threads: 3655 case OMPC_simd: 3656 case OMPC_map: 3657 case OMPC_num_teams: 3658 case OMPC_thread_limit: 3659 case OMPC_priority: 3660 case OMPC_grainsize: 3661 case OMPC_nogroup: 3662 case OMPC_num_tasks: 3663 case OMPC_hint: 3664 case OMPC_dist_schedule: 3665 case OMPC_defaultmap: 3666 case OMPC_uniform: 3667 case OMPC_to: 3668 case OMPC_from: 3669 case OMPC_use_device_ptr: 3670 case OMPC_is_device_ptr: 3671 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3672 } 3673 } 3674 3675 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3676 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3677 OpenMPClauseKind Kind = OMPC_unknown; 3678 for (auto *C : S.clauses()) { 3679 // Find first clause (skip seq_cst clause, if it is first). 3680 if (C->getClauseKind() != OMPC_seq_cst) { 3681 Kind = C->getClauseKind(); 3682 break; 3683 } 3684 } 3685 3686 const auto *CS = 3687 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3688 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3689 enterFullExpression(EWC); 3690 } 3691 // Processing for statements under 'atomic capture'. 3692 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3693 for (const auto *C : Compound->body()) { 3694 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3695 enterFullExpression(EWC); 3696 } 3697 } 3698 } 3699 3700 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3701 PrePostActionTy &) { 3702 CGF.EmitStopPoint(CS); 3703 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3704 S.getV(), S.getExpr(), S.getUpdateExpr(), 3705 S.isXLHSInRHSPart(), S.getLocStart()); 3706 }; 3707 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3708 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3709 } 3710 3711 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3712 const OMPExecutableDirective &S, 3713 const RegionCodeGenTy &CodeGen) { 3714 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3715 CodeGenModule &CGM = CGF.CGM; 3716 const CapturedStmt &CS = *S.getCapturedStmt(OMPD_target); 3717 3718 llvm::Function *Fn = nullptr; 3719 llvm::Constant *FnID = nullptr; 3720 3721 const Expr *IfCond = nullptr; 3722 // Check for the at most one if clause associated with the target region. 3723 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3724 if (C->getNameModifier() == OMPD_unknown || 3725 C->getNameModifier() == OMPD_target) { 3726 IfCond = C->getCondition(); 3727 break; 3728 } 3729 } 3730 3731 // Check if we have any device clause associated with the directive. 3732 const Expr *Device = nullptr; 3733 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3734 Device = C->getDevice(); 3735 } 3736 3737 // Check if we have an if clause whose conditional always evaluates to false 3738 // or if we do not have any targets specified. If so the target region is not 3739 // an offload entry point. 3740 bool IsOffloadEntry = true; 3741 if (IfCond) { 3742 bool Val; 3743 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3744 IsOffloadEntry = false; 3745 } 3746 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3747 IsOffloadEntry = false; 3748 3749 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3750 StringRef ParentName; 3751 // In case we have Ctors/Dtors we use the complete type variant to produce 3752 // the mangling of the device outlined kernel. 3753 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3754 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3755 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3756 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3757 else 3758 ParentName = 3759 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3760 3761 // Emit target region as a standalone region. 3762 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3763 IsOffloadEntry, CodeGen); 3764 OMPLexicalScope Scope(CGF, S); 3765 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3766 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); 3767 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 3768 CapturedVars); 3769 } 3770 3771 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3772 PrePostActionTy &Action) { 3773 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3774 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3775 CGF.EmitOMPPrivateClause(S, PrivateScope); 3776 (void)PrivateScope.Privatize(); 3777 3778 Action.Enter(CGF); 3779 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3780 } 3781 3782 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3783 StringRef ParentName, 3784 const OMPTargetDirective &S) { 3785 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3786 emitTargetRegion(CGF, S, Action); 3787 }; 3788 llvm::Function *Fn; 3789 llvm::Constant *Addr; 3790 // Emit target region as a standalone region. 3791 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3792 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3793 assert(Fn && Addr && "Target device function emission failed."); 3794 } 3795 3796 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3797 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3798 emitTargetRegion(CGF, S, Action); 3799 }; 3800 emitCommonOMPTargetDirective(*this, S, CodeGen); 3801 } 3802 3803 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3804 const OMPExecutableDirective &S, 3805 OpenMPDirectiveKind InnermostKind, 3806 const RegionCodeGenTy &CodeGen) { 3807 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 3808 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 3809 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3810 3811 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 3812 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 3813 if (NT || TL) { 3814 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3815 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3816 3817 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3818 S.getLocStart()); 3819 } 3820 3821 OMPTeamsScope Scope(CGF, S); 3822 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3823 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3824 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3825 CapturedVars); 3826 } 3827 3828 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3829 // Emit teams region as a standalone region. 3830 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3831 OMPPrivateScope PrivateScope(CGF); 3832 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3833 CGF.EmitOMPPrivateClause(S, PrivateScope); 3834 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3835 (void)PrivateScope.Privatize(); 3836 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3837 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3838 }; 3839 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 3840 emitPostUpdateForReductionClause( 3841 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 3842 } 3843 3844 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 3845 const OMPTargetTeamsDirective &S) { 3846 auto *CS = S.getCapturedStmt(OMPD_teams); 3847 Action.Enter(CGF); 3848 // Emit teams region as a standalone region. 3849 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 3850 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3851 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3852 CGF.EmitOMPPrivateClause(S, PrivateScope); 3853 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3854 (void)PrivateScope.Privatize(); 3855 Action.Enter(CGF); 3856 CGF.EmitStmt(CS->getCapturedStmt()); 3857 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3858 }; 3859 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 3860 emitPostUpdateForReductionClause( 3861 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 3862 } 3863 3864 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 3865 CodeGenModule &CGM, StringRef ParentName, 3866 const OMPTargetTeamsDirective &S) { 3867 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3868 emitTargetTeamsRegion(CGF, Action, S); 3869 }; 3870 llvm::Function *Fn; 3871 llvm::Constant *Addr; 3872 // Emit target region as a standalone region. 3873 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3874 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3875 assert(Fn && Addr && "Target device function emission failed."); 3876 } 3877 3878 void CodeGenFunction::EmitOMPTargetTeamsDirective( 3879 const OMPTargetTeamsDirective &S) { 3880 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3881 emitTargetTeamsRegion(CGF, Action, S); 3882 }; 3883 emitCommonOMPTargetDirective(*this, S, CodeGen); 3884 } 3885 3886 static void 3887 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 3888 const OMPTargetTeamsDistributeDirective &S) { 3889 Action.Enter(CGF); 3890 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3891 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3892 }; 3893 3894 // Emit teams region as a standalone region. 3895 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 3896 PrePostActionTy &) { 3897 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3898 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3899 (void)PrivateScope.Privatize(); 3900 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 3901 CodeGenDistribute); 3902 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3903 }; 3904 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 3905 emitPostUpdateForReductionClause(CGF, S, 3906 [](CodeGenFunction &) { return nullptr; }); 3907 } 3908 3909 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 3910 CodeGenModule &CGM, StringRef ParentName, 3911 const OMPTargetTeamsDistributeDirective &S) { 3912 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3913 emitTargetTeamsDistributeRegion(CGF, Action, S); 3914 }; 3915 llvm::Function *Fn; 3916 llvm::Constant *Addr; 3917 // Emit target region as a standalone region. 3918 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3919 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3920 assert(Fn && Addr && "Target device function emission failed."); 3921 } 3922 3923 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 3924 const OMPTargetTeamsDistributeDirective &S) { 3925 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3926 emitTargetTeamsDistributeRegion(CGF, Action, S); 3927 }; 3928 emitCommonOMPTargetDirective(*this, S, CodeGen); 3929 } 3930 3931 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 3932 const OMPTeamsDistributeDirective &S) { 3933 3934 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3935 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3936 }; 3937 3938 // Emit teams region as a standalone region. 3939 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 3940 PrePostActionTy &) { 3941 OMPPrivateScope PrivateScope(CGF); 3942 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3943 (void)PrivateScope.Privatize(); 3944 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 3945 CodeGenDistribute); 3946 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3947 }; 3948 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 3949 emitPostUpdateForReductionClause(*this, S, 3950 [](CodeGenFunction &) { return nullptr; }); 3951 } 3952 3953 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 3954 const OMPTeamsDistributeSimdDirective &S) { 3955 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3956 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3957 }; 3958 3959 // Emit teams region as a standalone region. 3960 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 3961 PrePostActionTy &) { 3962 OMPPrivateScope PrivateScope(CGF); 3963 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3964 (void)PrivateScope.Privatize(); 3965 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 3966 CodeGenDistribute); 3967 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3968 }; 3969 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 3970 emitPostUpdateForReductionClause(*this, S, 3971 [](CodeGenFunction &) { return nullptr; }); 3972 } 3973 3974 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 3975 const OMPTeamsDistributeParallelForDirective &S) { 3976 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3977 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3978 S.getDistInc()); 3979 }; 3980 3981 // Emit teams region as a standalone region. 3982 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 3983 PrePostActionTy &) { 3984 OMPPrivateScope PrivateScope(CGF); 3985 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3986 (void)PrivateScope.Privatize(); 3987 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 3988 CodeGenDistribute); 3989 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3990 }; 3991 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 3992 emitPostUpdateForReductionClause(*this, S, 3993 [](CodeGenFunction &) { return nullptr; }); 3994 } 3995 3996 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 3997 const OMPTeamsDistributeParallelForSimdDirective &S) { 3998 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3999 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4000 S.getDistInc()); 4001 }; 4002 4003 // Emit teams region as a standalone region. 4004 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4005 PrePostActionTy &) { 4006 OMPPrivateScope PrivateScope(CGF); 4007 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4008 (void)PrivateScope.Privatize(); 4009 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4010 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4011 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4012 }; 4013 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4014 emitPostUpdateForReductionClause(*this, S, 4015 [](CodeGenFunction &) { return nullptr; }); 4016 } 4017 4018 void CodeGenFunction::EmitOMPCancellationPointDirective( 4019 const OMPCancellationPointDirective &S) { 4020 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 4021 S.getCancelRegion()); 4022 } 4023 4024 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4025 const Expr *IfCond = nullptr; 4026 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4027 if (C->getNameModifier() == OMPD_unknown || 4028 C->getNameModifier() == OMPD_cancel) { 4029 IfCond = C->getCondition(); 4030 break; 4031 } 4032 } 4033 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 4034 S.getCancelRegion()); 4035 } 4036 4037 CodeGenFunction::JumpDest 4038 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4039 if (Kind == OMPD_parallel || Kind == OMPD_task || 4040 Kind == OMPD_target_parallel) 4041 return ReturnBlock; 4042 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4043 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4044 Kind == OMPD_distribute_parallel_for || 4045 Kind == OMPD_target_parallel_for || 4046 Kind == OMPD_teams_distribute_parallel_for || 4047 Kind == OMPD_target_teams_distribute_parallel_for); 4048 return OMPCancelStack.getExitBlock(); 4049 } 4050 4051 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4052 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4053 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4054 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4055 auto OrigVarIt = C.varlist_begin(); 4056 auto InitIt = C.inits().begin(); 4057 for (auto PvtVarIt : C.private_copies()) { 4058 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4059 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4060 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4061 4062 // In order to identify the right initializer we need to match the 4063 // declaration used by the mapping logic. In some cases we may get 4064 // OMPCapturedExprDecl that refers to the original declaration. 4065 const ValueDecl *MatchingVD = OrigVD; 4066 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4067 // OMPCapturedExprDecl are used to privative fields of the current 4068 // structure. 4069 auto *ME = cast<MemberExpr>(OED->getInit()); 4070 assert(isa<CXXThisExpr>(ME->getBase()) && 4071 "Base should be the current struct!"); 4072 MatchingVD = ME->getMemberDecl(); 4073 } 4074 4075 // If we don't have information about the current list item, move on to 4076 // the next one. 4077 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4078 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4079 continue; 4080 4081 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 4082 // Initialize the temporary initialization variable with the address we 4083 // get from the runtime library. We have to cast the source address 4084 // because it is always a void *. References are materialized in the 4085 // privatization scope, so the initialization here disregards the fact 4086 // the original variable is a reference. 4087 QualType AddrQTy = 4088 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4089 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4090 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4091 setAddrOfLocalVar(InitVD, InitAddr); 4092 4093 // Emit private declaration, it will be initialized by the value we 4094 // declaration we just added to the local declarations map. 4095 EmitDecl(*PvtVD); 4096 4097 // The initialization variables reached its purpose in the emission 4098 // ofthe previous declaration, so we don't need it anymore. 4099 LocalDeclMap.erase(InitVD); 4100 4101 // Return the address of the private variable. 4102 return GetAddrOfLocalVar(PvtVD); 4103 }); 4104 assert(IsRegistered && "firstprivate var already registered as private"); 4105 // Silence the warning about unused variable. 4106 (void)IsRegistered; 4107 4108 ++OrigVarIt; 4109 ++InitIt; 4110 } 4111 } 4112 4113 // Generate the instructions for '#pragma omp target data' directive. 4114 void CodeGenFunction::EmitOMPTargetDataDirective( 4115 const OMPTargetDataDirective &S) { 4116 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4117 4118 // Create a pre/post action to signal the privatization of the device pointer. 4119 // This action can be replaced by the OpenMP runtime code generation to 4120 // deactivate privatization. 4121 bool PrivatizeDevicePointers = false; 4122 class DevicePointerPrivActionTy : public PrePostActionTy { 4123 bool &PrivatizeDevicePointers; 4124 4125 public: 4126 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4127 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4128 void Enter(CodeGenFunction &CGF) override { 4129 PrivatizeDevicePointers = true; 4130 } 4131 }; 4132 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4133 4134 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4135 CodeGenFunction &CGF, PrePostActionTy &Action) { 4136 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4137 CGF.EmitStmt( 4138 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 4139 }; 4140 4141 // Codegen that selects wheather to generate the privatization code or not. 4142 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4143 &InnermostCodeGen](CodeGenFunction &CGF, 4144 PrePostActionTy &Action) { 4145 RegionCodeGenTy RCG(InnermostCodeGen); 4146 PrivatizeDevicePointers = false; 4147 4148 // Call the pre-action to change the status of PrivatizeDevicePointers if 4149 // needed. 4150 Action.Enter(CGF); 4151 4152 if (PrivatizeDevicePointers) { 4153 OMPPrivateScope PrivateScope(CGF); 4154 // Emit all instances of the use_device_ptr clause. 4155 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4156 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4157 Info.CaptureDeviceAddrMap); 4158 (void)PrivateScope.Privatize(); 4159 RCG(CGF); 4160 } else 4161 RCG(CGF); 4162 }; 4163 4164 // Forward the provided action to the privatization codegen. 4165 RegionCodeGenTy PrivRCG(PrivCodeGen); 4166 PrivRCG.setAction(Action); 4167 4168 // Notwithstanding the body of the region is emitted as inlined directive, 4169 // we don't use an inline scope as changes in the references inside the 4170 // region are expected to be visible outside, so we do not privative them. 4171 OMPLexicalScope Scope(CGF, S); 4172 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4173 PrivRCG); 4174 }; 4175 4176 RegionCodeGenTy RCG(CodeGen); 4177 4178 // If we don't have target devices, don't bother emitting the data mapping 4179 // code. 4180 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4181 RCG(*this); 4182 return; 4183 } 4184 4185 // Check if we have any if clause associated with the directive. 4186 const Expr *IfCond = nullptr; 4187 if (auto *C = S.getSingleClause<OMPIfClause>()) 4188 IfCond = C->getCondition(); 4189 4190 // Check if we have any device clause associated with the directive. 4191 const Expr *Device = nullptr; 4192 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4193 Device = C->getDevice(); 4194 4195 // Set the action to signal privatization of device pointers. 4196 RCG.setAction(PrivAction); 4197 4198 // Emit region code. 4199 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4200 Info); 4201 } 4202 4203 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4204 const OMPTargetEnterDataDirective &S) { 4205 // If we don't have target devices, don't bother emitting the data mapping 4206 // code. 4207 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4208 return; 4209 4210 // Check if we have any if clause associated with the directive. 4211 const Expr *IfCond = nullptr; 4212 if (auto *C = S.getSingleClause<OMPIfClause>()) 4213 IfCond = C->getCondition(); 4214 4215 // Check if we have any device clause associated with the directive. 4216 const Expr *Device = nullptr; 4217 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4218 Device = C->getDevice(); 4219 4220 auto &&CodeGen = [&S, IfCond, Device](CodeGenFunction &CGF, 4221 PrePostActionTy &) { 4222 CGF.CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(CGF, S, IfCond, 4223 Device); 4224 }; 4225 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4226 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_enter_data, 4227 CodeGen); 4228 } 4229 4230 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4231 const OMPTargetExitDataDirective &S) { 4232 // If we don't have target devices, don't bother emitting the data mapping 4233 // code. 4234 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4235 return; 4236 4237 // Check if we have any if clause associated with the directive. 4238 const Expr *IfCond = nullptr; 4239 if (auto *C = S.getSingleClause<OMPIfClause>()) 4240 IfCond = C->getCondition(); 4241 4242 // Check if we have any device clause associated with the directive. 4243 const Expr *Device = nullptr; 4244 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4245 Device = C->getDevice(); 4246 4247 auto &&CodeGen = [&S, IfCond, Device](CodeGenFunction &CGF, 4248 PrePostActionTy &) { 4249 CGF.CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(CGF, S, IfCond, 4250 Device); 4251 }; 4252 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4253 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_exit_data, 4254 CodeGen); 4255 } 4256 4257 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4258 const OMPTargetParallelDirective &S, 4259 PrePostActionTy &Action) { 4260 // Get the captured statement associated with the 'parallel' region. 4261 auto *CS = S.getCapturedStmt(OMPD_parallel); 4262 Action.Enter(CGF); 4263 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) { 4264 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4265 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4266 CGF.EmitOMPPrivateClause(S, PrivateScope); 4267 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4268 (void)PrivateScope.Privatize(); 4269 // TODO: Add support for clauses. 4270 CGF.EmitStmt(CS->getCapturedStmt()); 4271 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4272 }; 4273 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4274 emitEmptyBoundParameters); 4275 emitPostUpdateForReductionClause( 4276 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4277 } 4278 4279 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4280 CodeGenModule &CGM, StringRef ParentName, 4281 const OMPTargetParallelDirective &S) { 4282 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4283 emitTargetParallelRegion(CGF, S, Action); 4284 }; 4285 llvm::Function *Fn; 4286 llvm::Constant *Addr; 4287 // Emit target region as a standalone region. 4288 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4289 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4290 assert(Fn && Addr && "Target device function emission failed."); 4291 } 4292 4293 void CodeGenFunction::EmitOMPTargetParallelDirective( 4294 const OMPTargetParallelDirective &S) { 4295 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4296 emitTargetParallelRegion(CGF, S, Action); 4297 }; 4298 emitCommonOMPTargetDirective(*this, S, CodeGen); 4299 } 4300 4301 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4302 const OMPTargetParallelForDirective &S, 4303 PrePostActionTy &Action) { 4304 Action.Enter(CGF); 4305 // Emit directive as a combined directive that consists of two implicit 4306 // directives: 'parallel' with 'for' directive. 4307 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4308 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4309 CGF, OMPD_target_parallel_for, S.hasCancel()); 4310 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4311 emitDispatchForLoopBounds); 4312 }; 4313 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4314 emitEmptyBoundParameters); 4315 } 4316 4317 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4318 CodeGenModule &CGM, StringRef ParentName, 4319 const OMPTargetParallelForDirective &S) { 4320 // Emit SPMD target parallel for region as a standalone region. 4321 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4322 emitTargetParallelForRegion(CGF, S, Action); 4323 }; 4324 llvm::Function *Fn; 4325 llvm::Constant *Addr; 4326 // Emit target region as a standalone region. 4327 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4328 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4329 assert(Fn && Addr && "Target device function emission failed."); 4330 } 4331 4332 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4333 const OMPTargetParallelForDirective &S) { 4334 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4335 emitTargetParallelForRegion(CGF, S, Action); 4336 }; 4337 emitCommonOMPTargetDirective(*this, S, CodeGen); 4338 } 4339 4340 static void 4341 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4342 const OMPTargetParallelForSimdDirective &S, 4343 PrePostActionTy &Action) { 4344 Action.Enter(CGF); 4345 // Emit directive as a combined directive that consists of two implicit 4346 // directives: 'parallel' with 'for' directive. 4347 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4348 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4349 emitDispatchForLoopBounds); 4350 }; 4351 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4352 emitEmptyBoundParameters); 4353 } 4354 4355 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4356 CodeGenModule &CGM, StringRef ParentName, 4357 const OMPTargetParallelForSimdDirective &S) { 4358 // Emit SPMD target parallel for region as a standalone region. 4359 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4360 emitTargetParallelForSimdRegion(CGF, S, Action); 4361 }; 4362 llvm::Function *Fn; 4363 llvm::Constant *Addr; 4364 // Emit target region as a standalone region. 4365 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4366 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4367 assert(Fn && Addr && "Target device function emission failed."); 4368 } 4369 4370 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4371 const OMPTargetParallelForSimdDirective &S) { 4372 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4373 emitTargetParallelForSimdRegion(CGF, S, Action); 4374 }; 4375 emitCommonOMPTargetDirective(*this, S, CodeGen); 4376 } 4377 4378 /// Emit a helper variable and return corresponding lvalue. 4379 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4380 const ImplicitParamDecl *PVD, 4381 CodeGenFunction::OMPPrivateScope &Privates) { 4382 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4383 Privates.addPrivate( 4384 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 4385 } 4386 4387 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4388 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4389 // Emit outlined function for task construct. 4390 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 4391 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 4392 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4393 const Expr *IfCond = nullptr; 4394 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4395 if (C->getNameModifier() == OMPD_unknown || 4396 C->getNameModifier() == OMPD_taskloop) { 4397 IfCond = C->getCondition(); 4398 break; 4399 } 4400 } 4401 4402 OMPTaskDataTy Data; 4403 // Check if taskloop must be emitted without taskgroup. 4404 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4405 // TODO: Check if we should emit tied or untied task. 4406 Data.Tied = true; 4407 // Set scheduling for taskloop 4408 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4409 // grainsize clause 4410 Data.Schedule.setInt(/*IntVal=*/false); 4411 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4412 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4413 // num_tasks clause 4414 Data.Schedule.setInt(/*IntVal=*/true); 4415 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4416 } 4417 4418 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4419 // if (PreCond) { 4420 // for (IV in 0..LastIteration) BODY; 4421 // <Final counter/linear vars updates>; 4422 // } 4423 // 4424 4425 // Emit: if (PreCond) - begin. 4426 // If the condition constant folds and can be elided, avoid emitting the 4427 // whole loop. 4428 bool CondConstant; 4429 llvm::BasicBlock *ContBlock = nullptr; 4430 OMPLoopScope PreInitScope(CGF, S); 4431 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4432 if (!CondConstant) 4433 return; 4434 } else { 4435 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4436 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4437 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4438 CGF.getProfileCount(&S)); 4439 CGF.EmitBlock(ThenBlock); 4440 CGF.incrementProfileCounter(&S); 4441 } 4442 4443 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4444 CGF.EmitOMPSimdInit(S); 4445 4446 OMPPrivateScope LoopScope(CGF); 4447 // Emit helper vars inits. 4448 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4449 auto *I = CS->getCapturedDecl()->param_begin(); 4450 auto *LBP = std::next(I, LowerBound); 4451 auto *UBP = std::next(I, UpperBound); 4452 auto *STP = std::next(I, Stride); 4453 auto *LIP = std::next(I, LastIter); 4454 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4455 LoopScope); 4456 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4457 LoopScope); 4458 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4459 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4460 LoopScope); 4461 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4462 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4463 (void)LoopScope.Privatize(); 4464 // Emit the loop iteration variable. 4465 const Expr *IVExpr = S.getIterationVariable(); 4466 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4467 CGF.EmitVarDecl(*IVDecl); 4468 CGF.EmitIgnoredExpr(S.getInit()); 4469 4470 // Emit the iterations count variable. 4471 // If it is not a variable, Sema decided to calculate iterations count on 4472 // each iteration (e.g., it is foldable into a constant). 4473 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4474 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4475 // Emit calculation of the iterations count. 4476 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4477 } 4478 4479 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4480 S.getInc(), 4481 [&S](CodeGenFunction &CGF) { 4482 CGF.EmitOMPLoopBody(S, JumpDest()); 4483 CGF.EmitStopPoint(&S); 4484 }, 4485 [](CodeGenFunction &) {}); 4486 // Emit: if (PreCond) - end. 4487 if (ContBlock) { 4488 CGF.EmitBranch(ContBlock); 4489 CGF.EmitBlock(ContBlock, true); 4490 } 4491 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4492 if (HasLastprivateClause) { 4493 CGF.EmitOMPLastprivateClauseFinal( 4494 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4495 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4496 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4497 (*LIP)->getType(), S.getLocStart()))); 4498 } 4499 }; 4500 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4501 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4502 const OMPTaskDataTy &Data) { 4503 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4504 OMPLoopScope PreInitScope(CGF, S); 4505 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4506 OutlinedFn, SharedsTy, 4507 CapturedStruct, IfCond, Data); 4508 }; 4509 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4510 CodeGen); 4511 }; 4512 if (Data.Nogroup) 4513 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4514 else { 4515 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4516 *this, 4517 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4518 PrePostActionTy &Action) { 4519 Action.Enter(CGF); 4520 CGF.EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4521 }, 4522 S.getLocStart()); 4523 } 4524 } 4525 4526 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4527 EmitOMPTaskLoopBasedDirective(S); 4528 } 4529 4530 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4531 const OMPTaskLoopSimdDirective &S) { 4532 EmitOMPTaskLoopBasedDirective(S); 4533 } 4534 4535 // Generate the instructions for '#pragma omp target update' directive. 4536 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4537 const OMPTargetUpdateDirective &S) { 4538 // If we don't have target devices, don't bother emitting the data mapping 4539 // code. 4540 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4541 return; 4542 4543 // Check if we have any if clause associated with the directive. 4544 const Expr *IfCond = nullptr; 4545 if (auto *C = S.getSingleClause<OMPIfClause>()) 4546 IfCond = C->getCondition(); 4547 4548 // Check if we have any device clause associated with the directive. 4549 const Expr *Device = nullptr; 4550 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4551 Device = C->getDevice(); 4552 4553 auto &&CodeGen = [&S, IfCond, Device](CodeGenFunction &CGF, 4554 PrePostActionTy &) { 4555 CGF.CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(CGF, S, IfCond, 4556 Device); 4557 }; 4558 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4559 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_update, 4560 CodeGen); 4561 } 4562