1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false, bool EmitPreInitStmt = true) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 if (EmitPreInitStmt) 61 emitPreInitStmt(CGF, S); 62 if (AsInlined) { 63 if (S.hasAssociatedStmt()) { 64 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 65 for (auto &C : CS->captures()) { 66 if (C.capturesVariable() || C.capturesVariableByCopy()) { 67 auto *VD = C.getCapturedVar(); 68 assert(VD == VD->getCanonicalDecl() && 69 "Canonical decl must be captured."); 70 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 71 isCapturedVar(CGF, VD) || 72 (CGF.CapturedStmtInfo && 73 InlinedShareds.isGlobalVarCaptured(VD)), 74 VD->getType().getNonReferenceType(), VK_LValue, 75 SourceLocation()); 76 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 77 return CGF.EmitLValue(&DRE).getAddress(); 78 }); 79 } 80 } 81 (void)InlinedShareds.Privatize(); 82 } 83 } 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, 100 /*AsInlined=*/false, 101 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, 116 /*AsInlined=*/false, 117 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 118 }; 119 120 /// Private scope for OpenMP loop-based directives, that supports capturing 121 /// of used expression from loop statement. 122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 123 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 124 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 125 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 126 for (const auto *I : PreInits->decls()) 127 CGF.EmitVarDecl(cast<VarDecl>(*I)); 128 } 129 } 130 } 131 132 public: 133 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 134 : CodeGenFunction::RunCleanupsScope(CGF) { 135 emitPreInitStmt(CGF, S); 136 } 137 }; 138 139 } // namespace 140 141 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 142 const OMPExecutableDirective &S, 143 const RegionCodeGenTy &CodeGen); 144 145 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 146 if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 147 if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 148 OrigVD = OrigVD->getCanonicalDecl(); 149 bool IsCaptured = 150 LambdaCaptureFields.lookup(OrigVD) || 151 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 152 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 153 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 154 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 155 return EmitLValue(&DRE); 156 } 157 } 158 return EmitLValue(E); 159 } 160 161 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 162 auto &C = getContext(); 163 llvm::Value *Size = nullptr; 164 auto SizeInChars = C.getTypeSizeInChars(Ty); 165 if (SizeInChars.isZero()) { 166 // getTypeSizeInChars() returns 0 for a VLA. 167 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 168 llvm::Value *ArraySize; 169 std::tie(ArraySize, Ty) = getVLASize(VAT); 170 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 171 } 172 SizeInChars = C.getTypeSizeInChars(Ty); 173 if (SizeInChars.isZero()) 174 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 175 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 176 } else 177 Size = CGM.getSize(SizeInChars); 178 return Size; 179 } 180 181 void CodeGenFunction::GenerateOpenMPCapturedVars( 182 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 183 const RecordDecl *RD = S.getCapturedRecordDecl(); 184 auto CurField = RD->field_begin(); 185 auto CurCap = S.captures().begin(); 186 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 187 E = S.capture_init_end(); 188 I != E; ++I, ++CurField, ++CurCap) { 189 if (CurField->hasCapturedVLAType()) { 190 auto VAT = CurField->getCapturedVLAType(); 191 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 192 CapturedVars.push_back(Val); 193 } else if (CurCap->capturesThis()) 194 CapturedVars.push_back(CXXThisValue); 195 else if (CurCap->capturesVariableByCopy()) { 196 llvm::Value *CV = 197 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 198 199 // If the field is not a pointer, we need to save the actual value 200 // and load it as a void pointer. 201 if (!CurField->getType()->isAnyPointerType()) { 202 auto &Ctx = getContext(); 203 auto DstAddr = CreateMemTemp( 204 Ctx.getUIntPtrType(), 205 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 206 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 207 208 auto *SrcAddrVal = EmitScalarConversion( 209 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 210 Ctx.getPointerType(CurField->getType()), SourceLocation()); 211 LValue SrcLV = 212 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 213 214 // Store the value using the source type pointer. 215 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 216 217 // Load the value using the destination type pointer. 218 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 219 } 220 CapturedVars.push_back(CV); 221 } else { 222 assert(CurCap->capturesVariable() && "Expected capture by reference."); 223 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 224 } 225 } 226 } 227 228 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 229 StringRef Name, LValue AddrLV, 230 bool isReferenceType = false) { 231 ASTContext &Ctx = CGF.getContext(); 232 233 auto *CastedPtr = CGF.EmitScalarConversion( 234 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 235 Ctx.getPointerType(DstType), SourceLocation()); 236 auto TmpAddr = 237 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 238 .getAddress(); 239 240 // If we are dealing with references we need to return the address of the 241 // reference instead of the reference of the value. 242 if (isReferenceType) { 243 QualType RefType = Ctx.getLValueReferenceType(DstType); 244 auto *RefVal = TmpAddr.getPointer(); 245 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 246 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 247 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 248 } 249 250 return TmpAddr; 251 } 252 253 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 254 if (T->isLValueReferenceType()) { 255 return C.getLValueReferenceType( 256 getCanonicalParamType(C, T.getNonReferenceType()), 257 /*SpelledAsLValue=*/false); 258 } 259 if (T->isPointerType()) 260 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 261 if (auto *A = T->getAsArrayTypeUnsafe()) { 262 if (auto *VLA = dyn_cast<VariableArrayType>(A)) 263 return getCanonicalParamType(C, VLA->getElementType()); 264 else if (!A->isVariablyModifiedType()) 265 return C.getCanonicalType(T); 266 } 267 return C.getCanonicalParamType(T); 268 } 269 270 namespace { 271 /// Contains required data for proper outlined function codegen. 272 struct FunctionOptions { 273 /// Captured statement for which the function is generated. 274 const CapturedStmt *S = nullptr; 275 /// true if cast to/from UIntPtr is required for variables captured by 276 /// value. 277 const bool UIntPtrCastRequired = true; 278 /// true if only casted arguments must be registered as local args or VLA 279 /// sizes. 280 const bool RegisterCastedArgsOnly = false; 281 /// Name of the generated function. 282 const StringRef FunctionName; 283 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 284 bool RegisterCastedArgsOnly, 285 StringRef FunctionName) 286 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 287 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 288 FunctionName(FunctionName) {} 289 }; 290 } 291 292 static llvm::Function *emitOutlinedFunctionPrologue( 293 CodeGenFunction &CGF, FunctionArgList &Args, 294 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 295 &LocalAddrs, 296 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 297 &VLASizes, 298 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 299 const CapturedDecl *CD = FO.S->getCapturedDecl(); 300 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 301 assert(CD->hasBody() && "missing CapturedDecl body"); 302 303 CXXThisValue = nullptr; 304 // Build the argument list. 305 CodeGenModule &CGM = CGF.CGM; 306 ASTContext &Ctx = CGM.getContext(); 307 FunctionArgList TargetArgs; 308 Args.append(CD->param_begin(), 309 std::next(CD->param_begin(), CD->getContextParamPosition())); 310 TargetArgs.append( 311 CD->param_begin(), 312 std::next(CD->param_begin(), CD->getContextParamPosition())); 313 auto I = FO.S->captures().begin(); 314 FunctionDecl *DebugFunctionDecl = nullptr; 315 if (!FO.UIntPtrCastRequired) { 316 FunctionProtoType::ExtProtoInfo EPI; 317 DebugFunctionDecl = FunctionDecl::Create( 318 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(), 319 SourceLocation(), DeclarationName(), Ctx.VoidTy, 320 Ctx.getTrivialTypeSourceInfo( 321 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 322 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 323 } 324 for (auto *FD : RD->fields()) { 325 QualType ArgType = FD->getType(); 326 IdentifierInfo *II = nullptr; 327 VarDecl *CapVar = nullptr; 328 329 // If this is a capture by copy and the type is not a pointer, the outlined 330 // function argument type should be uintptr and the value properly casted to 331 // uintptr. This is necessary given that the runtime library is only able to 332 // deal with pointers. We can pass in the same way the VLA type sizes to the 333 // outlined function. 334 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 335 I->capturesVariableArrayType()) { 336 if (FO.UIntPtrCastRequired) 337 ArgType = Ctx.getUIntPtrType(); 338 } 339 340 if (I->capturesVariable() || I->capturesVariableByCopy()) { 341 CapVar = I->getCapturedVar(); 342 II = CapVar->getIdentifier(); 343 } else if (I->capturesThis()) 344 II = &Ctx.Idents.get("this"); 345 else { 346 assert(I->capturesVariableArrayType()); 347 II = &Ctx.Idents.get("vla"); 348 } 349 if (ArgType->isVariablyModifiedType()) 350 ArgType = getCanonicalParamType(Ctx, ArgType); 351 VarDecl *Arg; 352 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 353 Arg = ParmVarDecl::Create( 354 Ctx, DebugFunctionDecl, 355 CapVar ? CapVar->getLocStart() : FD->getLocStart(), 356 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 357 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 358 } else { 359 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 360 II, ArgType, ImplicitParamDecl::Other); 361 } 362 Args.emplace_back(Arg); 363 // Do not cast arguments if we emit function with non-original types. 364 TargetArgs.emplace_back( 365 FO.UIntPtrCastRequired 366 ? Arg 367 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 368 ++I; 369 } 370 Args.append( 371 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 372 CD->param_end()); 373 TargetArgs.append( 374 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 375 CD->param_end()); 376 377 // Create the function declaration. 378 const CGFunctionInfo &FuncInfo = 379 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 380 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 381 382 llvm::Function *F = 383 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 384 FO.FunctionName, &CGM.getModule()); 385 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 386 if (CD->isNothrow()) 387 F->setDoesNotThrow(); 388 389 // Generate the function. 390 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 391 FO.S->getLocStart(), CD->getBody()->getLocStart()); 392 unsigned Cnt = CD->getContextParamPosition(); 393 I = FO.S->captures().begin(); 394 for (auto *FD : RD->fields()) { 395 // Do not map arguments if we emit function with non-original types. 396 Address LocalAddr(Address::invalid()); 397 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 398 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 399 TargetArgs[Cnt]); 400 } else { 401 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 402 } 403 // If we are capturing a pointer by copy we don't need to do anything, just 404 // use the value that we get from the arguments. 405 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 406 const VarDecl *CurVD = I->getCapturedVar(); 407 // If the variable is a reference we need to materialize it here. 408 if (CurVD->getType()->isReferenceType()) { 409 Address RefAddr = CGF.CreateMemTemp( 410 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 411 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 412 /*Volatile=*/false, CurVD->getType()); 413 LocalAddr = RefAddr; 414 } 415 if (!FO.RegisterCastedArgsOnly) 416 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 417 ++Cnt; 418 ++I; 419 continue; 420 } 421 422 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 423 AlignmentSource::Decl); 424 if (FD->hasCapturedVLAType()) { 425 if (FO.UIntPtrCastRequired) { 426 ArgLVal = CGF.MakeAddrLValue(castValueFromUintptr(CGF, FD->getType(), 427 Args[Cnt]->getName(), 428 ArgLVal), 429 FD->getType(), AlignmentSource::Decl); 430 } 431 auto *ExprArg = 432 CGF.EmitLoadOfLValue(ArgLVal, SourceLocation()).getScalarVal(); 433 auto VAT = FD->getCapturedVLAType(); 434 VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}}); 435 } else if (I->capturesVariable()) { 436 auto *Var = I->getCapturedVar(); 437 QualType VarTy = Var->getType(); 438 Address ArgAddr = ArgLVal.getAddress(); 439 if (!VarTy->isReferenceType()) { 440 if (ArgLVal.getType()->isLValueReferenceType()) { 441 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 442 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 443 assert(ArgLVal.getType()->isPointerType()); 444 ArgAddr = CGF.EmitLoadOfPointer( 445 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 446 } 447 } 448 if (!FO.RegisterCastedArgsOnly) { 449 LocalAddrs.insert( 450 {Args[Cnt], 451 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 452 } 453 } else if (I->capturesVariableByCopy()) { 454 assert(!FD->getType()->isAnyPointerType() && 455 "Not expecting a captured pointer."); 456 auto *Var = I->getCapturedVar(); 457 QualType VarTy = Var->getType(); 458 LocalAddrs.insert( 459 {Args[Cnt], 460 {Var, 461 FO.UIntPtrCastRequired 462 ? castValueFromUintptr(CGF, FD->getType(), Args[Cnt]->getName(), 463 ArgLVal, VarTy->isReferenceType()) 464 : ArgLVal.getAddress()}}); 465 } else { 466 // If 'this' is captured, load it into CXXThisValue. 467 assert(I->capturesThis()); 468 CXXThisValue = CGF.EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()) 469 .getScalarVal(); 470 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 471 } 472 ++Cnt; 473 ++I; 474 } 475 476 return F; 477 } 478 479 llvm::Function * 480 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 481 assert( 482 CapturedStmtInfo && 483 "CapturedStmtInfo should be set when generating the captured function"); 484 const CapturedDecl *CD = S.getCapturedDecl(); 485 // Build the argument list. 486 bool NeedWrapperFunction = 487 getDebugInfo() && 488 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 489 FunctionArgList Args; 490 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 491 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 492 SmallString<256> Buffer; 493 llvm::raw_svector_ostream Out(Buffer); 494 Out << CapturedStmtInfo->getHelperName(); 495 if (NeedWrapperFunction) 496 Out << "_debug__"; 497 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 498 Out.str()); 499 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 500 VLASizes, CXXThisValue, FO); 501 for (const auto &LocalAddrPair : LocalAddrs) { 502 if (LocalAddrPair.second.first) { 503 setAddrOfLocalVar(LocalAddrPair.second.first, 504 LocalAddrPair.second.second); 505 } 506 } 507 for (const auto &VLASizePair : VLASizes) 508 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 509 PGO.assignRegionCounters(GlobalDecl(CD), F); 510 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 511 FinishFunction(CD->getBodyRBrace()); 512 if (!NeedWrapperFunction) 513 return F; 514 515 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 516 /*RegisterCastedArgsOnly=*/true, 517 CapturedStmtInfo->getHelperName()); 518 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 519 Args.clear(); 520 LocalAddrs.clear(); 521 VLASizes.clear(); 522 llvm::Function *WrapperF = 523 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 524 WrapperCGF.CXXThisValue, WrapperFO); 525 llvm::SmallVector<llvm::Value *, 4> CallArgs; 526 for (const auto *Arg : Args) { 527 llvm::Value *CallArg; 528 auto I = LocalAddrs.find(Arg); 529 if (I != LocalAddrs.end()) { 530 LValue LV = WrapperCGF.MakeAddrLValue( 531 I->second.second, 532 I->second.first ? I->second.first->getType() : Arg->getType(), 533 AlignmentSource::Decl); 534 CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation()); 535 } else { 536 auto EI = VLASizes.find(Arg); 537 if (EI != VLASizes.end()) 538 CallArg = EI->second.second; 539 else { 540 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 541 Arg->getType(), 542 AlignmentSource::Decl); 543 CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation()); 544 } 545 } 546 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 547 } 548 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(), 549 F, CallArgs); 550 WrapperCGF.FinishFunction(); 551 return WrapperF; 552 } 553 554 //===----------------------------------------------------------------------===// 555 // OpenMP Directive Emission 556 //===----------------------------------------------------------------------===// 557 void CodeGenFunction::EmitOMPAggregateAssign( 558 Address DestAddr, Address SrcAddr, QualType OriginalType, 559 const llvm::function_ref<void(Address, Address)> &CopyGen) { 560 // Perform element-by-element initialization. 561 QualType ElementTy; 562 563 // Drill down to the base element type on both arrays. 564 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 565 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 566 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 567 568 auto SrcBegin = SrcAddr.getPointer(); 569 auto DestBegin = DestAddr.getPointer(); 570 // Cast from pointer to array type to pointer to single element. 571 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 572 // The basic structure here is a while-do loop. 573 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 574 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 575 auto IsEmpty = 576 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 577 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 578 579 // Enter the loop body, making that address the current address. 580 auto EntryBB = Builder.GetInsertBlock(); 581 EmitBlock(BodyBB); 582 583 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 584 585 llvm::PHINode *SrcElementPHI = 586 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 587 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 588 Address SrcElementCurrent = 589 Address(SrcElementPHI, 590 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 591 592 llvm::PHINode *DestElementPHI = 593 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 594 DestElementPHI->addIncoming(DestBegin, EntryBB); 595 Address DestElementCurrent = 596 Address(DestElementPHI, 597 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 598 599 // Emit copy. 600 CopyGen(DestElementCurrent, SrcElementCurrent); 601 602 // Shift the address forward by one element. 603 auto DestElementNext = Builder.CreateConstGEP1_32( 604 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 605 auto SrcElementNext = Builder.CreateConstGEP1_32( 606 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 607 // Check whether we've reached the end. 608 auto Done = 609 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 610 Builder.CreateCondBr(Done, DoneBB, BodyBB); 611 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 612 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 613 614 // Done. 615 EmitBlock(DoneBB, /*IsFinished=*/true); 616 } 617 618 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 619 Address SrcAddr, const VarDecl *DestVD, 620 const VarDecl *SrcVD, const Expr *Copy) { 621 if (OriginalType->isArrayType()) { 622 auto *BO = dyn_cast<BinaryOperator>(Copy); 623 if (BO && BO->getOpcode() == BO_Assign) { 624 // Perform simple memcpy for simple copying. 625 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 626 } else { 627 // For arrays with complex element types perform element by element 628 // copying. 629 EmitOMPAggregateAssign( 630 DestAddr, SrcAddr, OriginalType, 631 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 632 // Working with the single array element, so have to remap 633 // destination and source variables to corresponding array 634 // elements. 635 CodeGenFunction::OMPPrivateScope Remap(*this); 636 Remap.addPrivate(DestVD, [DestElement]() -> Address { 637 return DestElement; 638 }); 639 Remap.addPrivate( 640 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 641 (void)Remap.Privatize(); 642 EmitIgnoredExpr(Copy); 643 }); 644 } 645 } else { 646 // Remap pseudo source variable to private copy. 647 CodeGenFunction::OMPPrivateScope Remap(*this); 648 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 649 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 650 (void)Remap.Privatize(); 651 // Emit copying of the whole variable. 652 EmitIgnoredExpr(Copy); 653 } 654 } 655 656 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 657 OMPPrivateScope &PrivateScope) { 658 if (!HaveInsertPoint()) 659 return false; 660 bool FirstprivateIsLastprivate = false; 661 llvm::DenseSet<const VarDecl *> Lastprivates; 662 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 663 for (const auto *D : C->varlists()) 664 Lastprivates.insert( 665 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 666 } 667 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 668 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 669 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 670 auto IRef = C->varlist_begin(); 671 auto InitsRef = C->inits().begin(); 672 for (auto IInit : C->private_copies()) { 673 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 674 bool ThisFirstprivateIsLastprivate = 675 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 676 auto *CapFD = CapturesInfo.lookup(OrigVD); 677 auto *FD = CapturedStmtInfo->lookup(OrigVD); 678 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 679 !FD->getType()->isReferenceType()) { 680 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 681 ++IRef; 682 ++InitsRef; 683 continue; 684 } 685 FirstprivateIsLastprivate = 686 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 687 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 688 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 689 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 690 bool IsRegistered; 691 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 692 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 693 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 694 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 695 QualType Type = VD->getType(); 696 if (Type->isArrayType()) { 697 // Emit VarDecl with copy init for arrays. 698 // Get the address of the original variable captured in current 699 // captured region. 700 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 701 auto Emission = EmitAutoVarAlloca(*VD); 702 auto *Init = VD->getInit(); 703 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 704 // Perform simple memcpy. 705 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 706 Type); 707 } else { 708 EmitOMPAggregateAssign( 709 Emission.getAllocatedAddress(), OriginalAddr, Type, 710 [this, VDInit, Init](Address DestElement, 711 Address SrcElement) { 712 // Clean up any temporaries needed by the initialization. 713 RunCleanupsScope InitScope(*this); 714 // Emit initialization for single element. 715 setAddrOfLocalVar(VDInit, SrcElement); 716 EmitAnyExprToMem(Init, DestElement, 717 Init->getType().getQualifiers(), 718 /*IsInitializer*/ false); 719 LocalDeclMap.erase(VDInit); 720 }); 721 } 722 EmitAutoVarCleanups(Emission); 723 return Emission.getAllocatedAddress(); 724 }); 725 } else { 726 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 727 // Emit private VarDecl with copy init. 728 // Remap temp VDInit variable to the address of the original 729 // variable 730 // (for proper handling of captured global variables). 731 setAddrOfLocalVar(VDInit, OriginalAddr); 732 EmitDecl(*VD); 733 LocalDeclMap.erase(VDInit); 734 return GetAddrOfLocalVar(VD); 735 }); 736 } 737 assert(IsRegistered && 738 "firstprivate var already registered as private"); 739 // Silence the warning about unused variable. 740 (void)IsRegistered; 741 } 742 ++IRef; 743 ++InitsRef; 744 } 745 } 746 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 747 } 748 749 void CodeGenFunction::EmitOMPPrivateClause( 750 const OMPExecutableDirective &D, 751 CodeGenFunction::OMPPrivateScope &PrivateScope) { 752 if (!HaveInsertPoint()) 753 return; 754 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 755 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 756 auto IRef = C->varlist_begin(); 757 for (auto IInit : C->private_copies()) { 758 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 759 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 760 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 761 bool IsRegistered = 762 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 763 // Emit private VarDecl with copy init. 764 EmitDecl(*VD); 765 return GetAddrOfLocalVar(VD); 766 }); 767 assert(IsRegistered && "private var already registered as private"); 768 // Silence the warning about unused variable. 769 (void)IsRegistered; 770 } 771 ++IRef; 772 } 773 } 774 } 775 776 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 777 if (!HaveInsertPoint()) 778 return false; 779 // threadprivate_var1 = master_threadprivate_var1; 780 // operator=(threadprivate_var2, master_threadprivate_var2); 781 // ... 782 // __kmpc_barrier(&loc, global_tid); 783 llvm::DenseSet<const VarDecl *> CopiedVars; 784 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 785 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 786 auto IRef = C->varlist_begin(); 787 auto ISrcRef = C->source_exprs().begin(); 788 auto IDestRef = C->destination_exprs().begin(); 789 for (auto *AssignOp : C->assignment_ops()) { 790 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 791 QualType Type = VD->getType(); 792 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 793 // Get the address of the master variable. If we are emitting code with 794 // TLS support, the address is passed from the master as field in the 795 // captured declaration. 796 Address MasterAddr = Address::invalid(); 797 if (getLangOpts().OpenMPUseTLS && 798 getContext().getTargetInfo().isTLSSupported()) { 799 assert(CapturedStmtInfo->lookup(VD) && 800 "Copyin threadprivates should have been captured!"); 801 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 802 VK_LValue, (*IRef)->getExprLoc()); 803 MasterAddr = EmitLValue(&DRE).getAddress(); 804 LocalDeclMap.erase(VD); 805 } else { 806 MasterAddr = 807 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 808 : CGM.GetAddrOfGlobal(VD), 809 getContext().getDeclAlign(VD)); 810 } 811 // Get the address of the threadprivate variable. 812 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 813 if (CopiedVars.size() == 1) { 814 // At first check if current thread is a master thread. If it is, no 815 // need to copy data. 816 CopyBegin = createBasicBlock("copyin.not.master"); 817 CopyEnd = createBasicBlock("copyin.not.master.end"); 818 Builder.CreateCondBr( 819 Builder.CreateICmpNE( 820 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 821 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 822 CopyBegin, CopyEnd); 823 EmitBlock(CopyBegin); 824 } 825 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 826 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 827 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 828 } 829 ++IRef; 830 ++ISrcRef; 831 ++IDestRef; 832 } 833 } 834 if (CopyEnd) { 835 // Exit out of copying procedure for non-master thread. 836 EmitBlock(CopyEnd, /*IsFinished=*/true); 837 return true; 838 } 839 return false; 840 } 841 842 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 843 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 844 if (!HaveInsertPoint()) 845 return false; 846 bool HasAtLeastOneLastprivate = false; 847 llvm::DenseSet<const VarDecl *> SIMDLCVs; 848 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 849 auto *LoopDirective = cast<OMPLoopDirective>(&D); 850 for (auto *C : LoopDirective->counters()) { 851 SIMDLCVs.insert( 852 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 853 } 854 } 855 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 856 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 857 HasAtLeastOneLastprivate = true; 858 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 859 break; 860 auto IRef = C->varlist_begin(); 861 auto IDestRef = C->destination_exprs().begin(); 862 for (auto *IInit : C->private_copies()) { 863 // Keep the address of the original variable for future update at the end 864 // of the loop. 865 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 866 // Taskloops do not require additional initialization, it is done in 867 // runtime support library. 868 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 869 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 870 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 871 DeclRefExpr DRE( 872 const_cast<VarDecl *>(OrigVD), 873 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 874 OrigVD) != nullptr, 875 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 876 return EmitLValue(&DRE).getAddress(); 877 }); 878 // Check if the variable is also a firstprivate: in this case IInit is 879 // not generated. Initialization of this variable will happen in codegen 880 // for 'firstprivate' clause. 881 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 882 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 883 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 884 // Emit private VarDecl with copy init. 885 EmitDecl(*VD); 886 return GetAddrOfLocalVar(VD); 887 }); 888 assert(IsRegistered && 889 "lastprivate var already registered as private"); 890 (void)IsRegistered; 891 } 892 } 893 ++IRef; 894 ++IDestRef; 895 } 896 } 897 return HasAtLeastOneLastprivate; 898 } 899 900 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 901 const OMPExecutableDirective &D, bool NoFinals, 902 llvm::Value *IsLastIterCond) { 903 if (!HaveInsertPoint()) 904 return; 905 // Emit following code: 906 // if (<IsLastIterCond>) { 907 // orig_var1 = private_orig_var1; 908 // ... 909 // orig_varn = private_orig_varn; 910 // } 911 llvm::BasicBlock *ThenBB = nullptr; 912 llvm::BasicBlock *DoneBB = nullptr; 913 if (IsLastIterCond) { 914 ThenBB = createBasicBlock(".omp.lastprivate.then"); 915 DoneBB = createBasicBlock(".omp.lastprivate.done"); 916 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 917 EmitBlock(ThenBB); 918 } 919 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 920 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 921 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 922 auto IC = LoopDirective->counters().begin(); 923 for (auto F : LoopDirective->finals()) { 924 auto *D = 925 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 926 if (NoFinals) 927 AlreadyEmittedVars.insert(D); 928 else 929 LoopCountersAndUpdates[D] = F; 930 ++IC; 931 } 932 } 933 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 934 auto IRef = C->varlist_begin(); 935 auto ISrcRef = C->source_exprs().begin(); 936 auto IDestRef = C->destination_exprs().begin(); 937 for (auto *AssignOp : C->assignment_ops()) { 938 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 939 QualType Type = PrivateVD->getType(); 940 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 941 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 942 // If lastprivate variable is a loop control variable for loop-based 943 // directive, update its value before copyin back to original 944 // variable. 945 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 946 EmitIgnoredExpr(FinalExpr); 947 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 948 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 949 // Get the address of the original variable. 950 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 951 // Get the address of the private variable. 952 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 953 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 954 PrivateAddr = 955 Address(Builder.CreateLoad(PrivateAddr), 956 getNaturalTypeAlignment(RefTy->getPointeeType())); 957 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 958 } 959 ++IRef; 960 ++ISrcRef; 961 ++IDestRef; 962 } 963 if (auto *PostUpdate = C->getPostUpdateExpr()) 964 EmitIgnoredExpr(PostUpdate); 965 } 966 if (IsLastIterCond) 967 EmitBlock(DoneBB, /*IsFinished=*/true); 968 } 969 970 void CodeGenFunction::EmitOMPReductionClauseInit( 971 const OMPExecutableDirective &D, 972 CodeGenFunction::OMPPrivateScope &PrivateScope) { 973 if (!HaveInsertPoint()) 974 return; 975 SmallVector<const Expr *, 4> Shareds; 976 SmallVector<const Expr *, 4> Privates; 977 SmallVector<const Expr *, 4> ReductionOps; 978 SmallVector<const Expr *, 4> LHSs; 979 SmallVector<const Expr *, 4> RHSs; 980 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 981 auto IPriv = C->privates().begin(); 982 auto IRed = C->reduction_ops().begin(); 983 auto ILHS = C->lhs_exprs().begin(); 984 auto IRHS = C->rhs_exprs().begin(); 985 for (const auto *Ref : C->varlists()) { 986 Shareds.emplace_back(Ref); 987 Privates.emplace_back(*IPriv); 988 ReductionOps.emplace_back(*IRed); 989 LHSs.emplace_back(*ILHS); 990 RHSs.emplace_back(*IRHS); 991 std::advance(IPriv, 1); 992 std::advance(IRed, 1); 993 std::advance(ILHS, 1); 994 std::advance(IRHS, 1); 995 } 996 } 997 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 998 unsigned Count = 0; 999 auto ILHS = LHSs.begin(); 1000 auto IRHS = RHSs.begin(); 1001 auto IPriv = Privates.begin(); 1002 for (const auto *IRef : Shareds) { 1003 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1004 // Emit private VarDecl with reduction init. 1005 RedCG.emitSharedLValue(*this, Count); 1006 RedCG.emitAggregateType(*this, Count); 1007 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1008 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1009 RedCG.getSharedLValue(Count), 1010 [&Emission](CodeGenFunction &CGF) { 1011 CGF.EmitAutoVarInit(Emission); 1012 return true; 1013 }); 1014 EmitAutoVarCleanups(Emission); 1015 Address BaseAddr = RedCG.adjustPrivateAddress( 1016 *this, Count, Emission.getAllocatedAddress()); 1017 bool IsRegistered = PrivateScope.addPrivate( 1018 RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; }); 1019 assert(IsRegistered && "private var already registered as private"); 1020 // Silence the warning about unused variable. 1021 (void)IsRegistered; 1022 1023 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1024 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1025 QualType Type = PrivateVD->getType(); 1026 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1027 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1028 // Store the address of the original variable associated with the LHS 1029 // implicit variable. 1030 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1031 return RedCG.getSharedLValue(Count).getAddress(); 1032 }); 1033 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1034 return GetAddrOfLocalVar(PrivateVD); 1035 }); 1036 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1037 isa<ArraySubscriptExpr>(IRef)) { 1038 // Store the address of the original variable associated with the LHS 1039 // implicit variable. 1040 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1041 return RedCG.getSharedLValue(Count).getAddress(); 1042 }); 1043 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1044 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1045 ConvertTypeForMem(RHSVD->getType()), 1046 "rhs.begin"); 1047 }); 1048 } else { 1049 QualType Type = PrivateVD->getType(); 1050 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1051 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1052 // Store the address of the original variable associated with the LHS 1053 // implicit variable. 1054 if (IsArray) { 1055 OriginalAddr = Builder.CreateElementBitCast( 1056 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1057 } 1058 PrivateScope.addPrivate( 1059 LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; }); 1060 PrivateScope.addPrivate( 1061 RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address { 1062 return IsArray 1063 ? Builder.CreateElementBitCast( 1064 GetAddrOfLocalVar(PrivateVD), 1065 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1066 : GetAddrOfLocalVar(PrivateVD); 1067 }); 1068 } 1069 ++ILHS; 1070 ++IRHS; 1071 ++IPriv; 1072 ++Count; 1073 } 1074 } 1075 1076 void CodeGenFunction::EmitOMPReductionClauseFinal( 1077 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1078 if (!HaveInsertPoint()) 1079 return; 1080 llvm::SmallVector<const Expr *, 8> Privates; 1081 llvm::SmallVector<const Expr *, 8> LHSExprs; 1082 llvm::SmallVector<const Expr *, 8> RHSExprs; 1083 llvm::SmallVector<const Expr *, 8> ReductionOps; 1084 bool HasAtLeastOneReduction = false; 1085 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1086 HasAtLeastOneReduction = true; 1087 Privates.append(C->privates().begin(), C->privates().end()); 1088 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1089 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1090 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1091 } 1092 if (HasAtLeastOneReduction) { 1093 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1094 isOpenMPParallelDirective(D.getDirectiveKind()) || 1095 D.getDirectiveKind() == OMPD_simd; 1096 bool SimpleReduction = D.getDirectiveKind() == OMPD_simd; 1097 // Emit nowait reduction if nowait clause is present or directive is a 1098 // parallel directive (it always has implicit barrier). 1099 CGM.getOpenMPRuntime().emitReduction( 1100 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1101 {WithNowait, SimpleReduction, ReductionKind}); 1102 } 1103 } 1104 1105 static void emitPostUpdateForReductionClause( 1106 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1107 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1108 if (!CGF.HaveInsertPoint()) 1109 return; 1110 llvm::BasicBlock *DoneBB = nullptr; 1111 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1112 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1113 if (!DoneBB) { 1114 if (auto *Cond = CondGen(CGF)) { 1115 // If the first post-update expression is found, emit conditional 1116 // block if it was requested. 1117 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1118 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1119 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1120 CGF.EmitBlock(ThenBB); 1121 } 1122 } 1123 CGF.EmitIgnoredExpr(PostUpdate); 1124 } 1125 } 1126 if (DoneBB) 1127 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1128 } 1129 1130 namespace { 1131 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1132 /// parallel function. This is necessary for combined constructs such as 1133 /// 'distribute parallel for' 1134 typedef llvm::function_ref<void(CodeGenFunction &, 1135 const OMPExecutableDirective &, 1136 llvm::SmallVectorImpl<llvm::Value *> &)> 1137 CodeGenBoundParametersTy; 1138 } // anonymous namespace 1139 1140 static void emitCommonOMPParallelDirective( 1141 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1142 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1143 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1144 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1145 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1146 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1147 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1148 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1149 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1150 /*IgnoreResultAssign*/ true); 1151 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1152 CGF, NumThreads, NumThreadsClause->getLocStart()); 1153 } 1154 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1155 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1156 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1157 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1158 } 1159 const Expr *IfCond = nullptr; 1160 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1161 if (C->getNameModifier() == OMPD_unknown || 1162 C->getNameModifier() == OMPD_parallel) { 1163 IfCond = C->getCondition(); 1164 break; 1165 } 1166 } 1167 1168 OMPParallelScope Scope(CGF, S); 1169 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1170 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1171 // lower and upper bounds with the pragma 'for' chunking mechanism. 1172 // The following lambda takes care of appending the lower and upper bound 1173 // parameters when necessary 1174 CodeGenBoundParameters(CGF, S, CapturedVars); 1175 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1176 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1177 CapturedVars, IfCond); 1178 } 1179 1180 static void emitEmptyBoundParameters(CodeGenFunction &, 1181 const OMPExecutableDirective &, 1182 llvm::SmallVectorImpl<llvm::Value *> &) {} 1183 1184 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1185 // Emit parallel region as a standalone region. 1186 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1187 OMPPrivateScope PrivateScope(CGF); 1188 bool Copyins = CGF.EmitOMPCopyinClause(S); 1189 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1190 if (Copyins) { 1191 // Emit implicit barrier to synchronize threads and avoid data races on 1192 // propagation master's thread values of threadprivate variables to local 1193 // instances of that variables of all other implicit threads. 1194 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1195 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1196 /*ForceSimpleCall=*/true); 1197 } 1198 CGF.EmitOMPPrivateClause(S, PrivateScope); 1199 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1200 (void)PrivateScope.Privatize(); 1201 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1202 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1203 }; 1204 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1205 emitEmptyBoundParameters); 1206 emitPostUpdateForReductionClause( 1207 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1208 } 1209 1210 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1211 JumpDest LoopExit) { 1212 RunCleanupsScope BodyScope(*this); 1213 // Update counters values on current iteration. 1214 for (auto I : D.updates()) { 1215 EmitIgnoredExpr(I); 1216 } 1217 // Update the linear variables. 1218 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1219 for (auto *U : C->updates()) 1220 EmitIgnoredExpr(U); 1221 } 1222 1223 // On a continue in the body, jump to the end. 1224 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1225 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1226 // Emit loop body. 1227 EmitStmt(D.getBody()); 1228 // The end (updates/cleanups). 1229 EmitBlock(Continue.getBlock()); 1230 BreakContinueStack.pop_back(); 1231 } 1232 1233 void CodeGenFunction::EmitOMPInnerLoop( 1234 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1235 const Expr *IncExpr, 1236 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1237 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1238 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1239 1240 // Start the loop with a block that tests the condition. 1241 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1242 EmitBlock(CondBlock); 1243 const SourceRange &R = S.getSourceRange(); 1244 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1245 SourceLocToDebugLoc(R.getEnd())); 1246 1247 // If there are any cleanups between here and the loop-exit scope, 1248 // create a block to stage a loop exit along. 1249 auto ExitBlock = LoopExit.getBlock(); 1250 if (RequiresCleanup) 1251 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1252 1253 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1254 1255 // Emit condition. 1256 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1257 if (ExitBlock != LoopExit.getBlock()) { 1258 EmitBlock(ExitBlock); 1259 EmitBranchThroughCleanup(LoopExit); 1260 } 1261 1262 EmitBlock(LoopBody); 1263 incrementProfileCounter(&S); 1264 1265 // Create a block for the increment. 1266 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1267 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1268 1269 BodyGen(*this); 1270 1271 // Emit "IV = IV + 1" and a back-edge to the condition block. 1272 EmitBlock(Continue.getBlock()); 1273 EmitIgnoredExpr(IncExpr); 1274 PostIncGen(*this); 1275 BreakContinueStack.pop_back(); 1276 EmitBranch(CondBlock); 1277 LoopStack.pop(); 1278 // Emit the fall-through block. 1279 EmitBlock(LoopExit.getBlock()); 1280 } 1281 1282 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1283 if (!HaveInsertPoint()) 1284 return false; 1285 // Emit inits for the linear variables. 1286 bool HasLinears = false; 1287 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1288 for (auto *Init : C->inits()) { 1289 HasLinears = true; 1290 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1291 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1292 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1293 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1294 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1295 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1296 VD->getInit()->getType(), VK_LValue, 1297 VD->getInit()->getExprLoc()); 1298 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1299 VD->getType()), 1300 /*capturedByInit=*/false); 1301 EmitAutoVarCleanups(Emission); 1302 } else 1303 EmitVarDecl(*VD); 1304 } 1305 // Emit the linear steps for the linear clauses. 1306 // If a step is not constant, it is pre-calculated before the loop. 1307 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1308 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1309 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1310 // Emit calculation of the linear step. 1311 EmitIgnoredExpr(CS); 1312 } 1313 } 1314 return HasLinears; 1315 } 1316 1317 void CodeGenFunction::EmitOMPLinearClauseFinal( 1318 const OMPLoopDirective &D, 1319 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1320 if (!HaveInsertPoint()) 1321 return; 1322 llvm::BasicBlock *DoneBB = nullptr; 1323 // Emit the final values of the linear variables. 1324 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1325 auto IC = C->varlist_begin(); 1326 for (auto *F : C->finals()) { 1327 if (!DoneBB) { 1328 if (auto *Cond = CondGen(*this)) { 1329 // If the first post-update expression is found, emit conditional 1330 // block if it was requested. 1331 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1332 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1333 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1334 EmitBlock(ThenBB); 1335 } 1336 } 1337 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1338 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1339 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1340 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1341 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1342 CodeGenFunction::OMPPrivateScope VarScope(*this); 1343 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1344 (void)VarScope.Privatize(); 1345 EmitIgnoredExpr(F); 1346 ++IC; 1347 } 1348 if (auto *PostUpdate = C->getPostUpdateExpr()) 1349 EmitIgnoredExpr(PostUpdate); 1350 } 1351 if (DoneBB) 1352 EmitBlock(DoneBB, /*IsFinished=*/true); 1353 } 1354 1355 static void emitAlignedClause(CodeGenFunction &CGF, 1356 const OMPExecutableDirective &D) { 1357 if (!CGF.HaveInsertPoint()) 1358 return; 1359 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1360 unsigned ClauseAlignment = 0; 1361 if (auto AlignmentExpr = Clause->getAlignment()) { 1362 auto AlignmentCI = 1363 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1364 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1365 } 1366 for (auto E : Clause->varlists()) { 1367 unsigned Alignment = ClauseAlignment; 1368 if (Alignment == 0) { 1369 // OpenMP [2.8.1, Description] 1370 // If no optional parameter is specified, implementation-defined default 1371 // alignments for SIMD instructions on the target platforms are assumed. 1372 Alignment = 1373 CGF.getContext() 1374 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1375 E->getType()->getPointeeType())) 1376 .getQuantity(); 1377 } 1378 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1379 "alignment is not power of 2"); 1380 if (Alignment != 0) { 1381 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1382 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1383 } 1384 } 1385 } 1386 } 1387 1388 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1389 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1390 if (!HaveInsertPoint()) 1391 return; 1392 auto I = S.private_counters().begin(); 1393 for (auto *E : S.counters()) { 1394 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1395 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1396 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1397 // Emit var without initialization. 1398 if (!LocalDeclMap.count(PrivateVD)) { 1399 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1400 EmitAutoVarCleanups(VarEmission); 1401 } 1402 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1403 /*RefersToEnclosingVariableOrCapture=*/false, 1404 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1405 return EmitLValue(&DRE).getAddress(); 1406 }); 1407 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1408 VD->hasGlobalStorage()) { 1409 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1410 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1411 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1412 E->getType(), VK_LValue, E->getExprLoc()); 1413 return EmitLValue(&DRE).getAddress(); 1414 }); 1415 } 1416 ++I; 1417 } 1418 } 1419 1420 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1421 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1422 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1423 if (!CGF.HaveInsertPoint()) 1424 return; 1425 { 1426 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1427 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1428 (void)PreCondScope.Privatize(); 1429 // Get initial values of real counters. 1430 for (auto I : S.inits()) { 1431 CGF.EmitIgnoredExpr(I); 1432 } 1433 } 1434 // Check that loop is executed at least one time. 1435 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1436 } 1437 1438 void CodeGenFunction::EmitOMPLinearClause( 1439 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1440 if (!HaveInsertPoint()) 1441 return; 1442 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1443 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1444 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1445 for (auto *C : LoopDirective->counters()) { 1446 SIMDLCVs.insert( 1447 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1448 } 1449 } 1450 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1451 auto CurPrivate = C->privates().begin(); 1452 for (auto *E : C->varlists()) { 1453 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1454 auto *PrivateVD = 1455 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1456 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1457 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1458 // Emit private VarDecl with copy init. 1459 EmitVarDecl(*PrivateVD); 1460 return GetAddrOfLocalVar(PrivateVD); 1461 }); 1462 assert(IsRegistered && "linear var already registered as private"); 1463 // Silence the warning about unused variable. 1464 (void)IsRegistered; 1465 } else 1466 EmitVarDecl(*PrivateVD); 1467 ++CurPrivate; 1468 } 1469 } 1470 } 1471 1472 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1473 const OMPExecutableDirective &D, 1474 bool IsMonotonic) { 1475 if (!CGF.HaveInsertPoint()) 1476 return; 1477 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1478 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1479 /*ignoreResult=*/true); 1480 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1481 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1482 // In presence of finite 'safelen', it may be unsafe to mark all 1483 // the memory instructions parallel, because loop-carried 1484 // dependences of 'safelen' iterations are possible. 1485 if (!IsMonotonic) 1486 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1487 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1488 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1489 /*ignoreResult=*/true); 1490 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1491 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1492 // In presence of finite 'safelen', it may be unsafe to mark all 1493 // the memory instructions parallel, because loop-carried 1494 // dependences of 'safelen' iterations are possible. 1495 CGF.LoopStack.setParallel(false); 1496 } 1497 } 1498 1499 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1500 bool IsMonotonic) { 1501 // Walk clauses and process safelen/lastprivate. 1502 LoopStack.setParallel(!IsMonotonic); 1503 LoopStack.setVectorizeEnable(true); 1504 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1505 } 1506 1507 void CodeGenFunction::EmitOMPSimdFinal( 1508 const OMPLoopDirective &D, 1509 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1510 if (!HaveInsertPoint()) 1511 return; 1512 llvm::BasicBlock *DoneBB = nullptr; 1513 auto IC = D.counters().begin(); 1514 auto IPC = D.private_counters().begin(); 1515 for (auto F : D.finals()) { 1516 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1517 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1518 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1519 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1520 OrigVD->hasGlobalStorage() || CED) { 1521 if (!DoneBB) { 1522 if (auto *Cond = CondGen(*this)) { 1523 // If the first post-update expression is found, emit conditional 1524 // block if it was requested. 1525 auto *ThenBB = createBasicBlock(".omp.final.then"); 1526 DoneBB = createBasicBlock(".omp.final.done"); 1527 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1528 EmitBlock(ThenBB); 1529 } 1530 } 1531 Address OrigAddr = Address::invalid(); 1532 if (CED) 1533 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1534 else { 1535 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1536 /*RefersToEnclosingVariableOrCapture=*/false, 1537 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1538 OrigAddr = EmitLValue(&DRE).getAddress(); 1539 } 1540 OMPPrivateScope VarScope(*this); 1541 VarScope.addPrivate(OrigVD, 1542 [OrigAddr]() -> Address { return OrigAddr; }); 1543 (void)VarScope.Privatize(); 1544 EmitIgnoredExpr(F); 1545 } 1546 ++IC; 1547 ++IPC; 1548 } 1549 if (DoneBB) 1550 EmitBlock(DoneBB, /*IsFinished=*/true); 1551 } 1552 1553 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1554 const OMPLoopDirective &S, 1555 CodeGenFunction::JumpDest LoopExit) { 1556 CGF.EmitOMPLoopBody(S, LoopExit); 1557 CGF.EmitStopPoint(&S); 1558 } 1559 1560 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1561 PrePostActionTy &Action) { 1562 Action.Enter(CGF); 1563 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1564 "Expected simd directive"); 1565 OMPLoopScope PreInitScope(CGF, S); 1566 // if (PreCond) { 1567 // for (IV in 0..LastIteration) BODY; 1568 // <Final counter/linear vars updates>; 1569 // } 1570 // 1571 1572 // Emit: if (PreCond) - begin. 1573 // If the condition constant folds and can be elided, avoid emitting the 1574 // whole loop. 1575 bool CondConstant; 1576 llvm::BasicBlock *ContBlock = nullptr; 1577 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1578 if (!CondConstant) 1579 return; 1580 } else { 1581 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1582 ContBlock = CGF.createBasicBlock("simd.if.end"); 1583 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1584 CGF.getProfileCount(&S)); 1585 CGF.EmitBlock(ThenBlock); 1586 CGF.incrementProfileCounter(&S); 1587 } 1588 1589 // Emit the loop iteration variable. 1590 const Expr *IVExpr = S.getIterationVariable(); 1591 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1592 CGF.EmitVarDecl(*IVDecl); 1593 CGF.EmitIgnoredExpr(S.getInit()); 1594 1595 // Emit the iterations count variable. 1596 // If it is not a variable, Sema decided to calculate iterations count on 1597 // each iteration (e.g., it is foldable into a constant). 1598 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1599 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1600 // Emit calculation of the iterations count. 1601 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1602 } 1603 1604 CGF.EmitOMPSimdInit(S); 1605 1606 emitAlignedClause(CGF, S); 1607 (void)CGF.EmitOMPLinearClauseInit(S); 1608 { 1609 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1610 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1611 CGF.EmitOMPLinearClause(S, LoopScope); 1612 CGF.EmitOMPPrivateClause(S, LoopScope); 1613 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1614 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1615 (void)LoopScope.Privatize(); 1616 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1617 S.getInc(), 1618 [&S](CodeGenFunction &CGF) { 1619 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1620 CGF.EmitStopPoint(&S); 1621 }, 1622 [](CodeGenFunction &) {}); 1623 CGF.EmitOMPSimdFinal( 1624 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1625 // Emit final copy of the lastprivate variables at the end of loops. 1626 if (HasLastprivateClause) 1627 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1628 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1629 emitPostUpdateForReductionClause( 1630 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1631 } 1632 CGF.EmitOMPLinearClauseFinal( 1633 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1634 // Emit: if (PreCond) - end. 1635 if (ContBlock) { 1636 CGF.EmitBranch(ContBlock); 1637 CGF.EmitBlock(ContBlock, true); 1638 } 1639 } 1640 1641 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1642 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1643 emitOMPSimdRegion(CGF, S, Action); 1644 }; 1645 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1646 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1647 } 1648 1649 void CodeGenFunction::EmitOMPOuterLoop( 1650 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1651 CodeGenFunction::OMPPrivateScope &LoopScope, 1652 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1653 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1654 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1655 auto &RT = CGM.getOpenMPRuntime(); 1656 1657 const Expr *IVExpr = S.getIterationVariable(); 1658 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1659 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1660 1661 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1662 1663 // Start the loop with a block that tests the condition. 1664 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1665 EmitBlock(CondBlock); 1666 const SourceRange &R = S.getSourceRange(); 1667 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1668 SourceLocToDebugLoc(R.getEnd())); 1669 1670 llvm::Value *BoolCondVal = nullptr; 1671 if (!DynamicOrOrdered) { 1672 // UB = min(UB, GlobalUB) or 1673 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1674 // 'distribute parallel for') 1675 EmitIgnoredExpr(LoopArgs.EUB); 1676 // IV = LB 1677 EmitIgnoredExpr(LoopArgs.Init); 1678 // IV < UB 1679 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1680 } else { 1681 BoolCondVal = 1682 RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL, 1683 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1684 } 1685 1686 // If there are any cleanups between here and the loop-exit scope, 1687 // create a block to stage a loop exit along. 1688 auto ExitBlock = LoopExit.getBlock(); 1689 if (LoopScope.requiresCleanups()) 1690 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1691 1692 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1693 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1694 if (ExitBlock != LoopExit.getBlock()) { 1695 EmitBlock(ExitBlock); 1696 EmitBranchThroughCleanup(LoopExit); 1697 } 1698 EmitBlock(LoopBody); 1699 1700 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1701 // LB for loop condition and emitted it above). 1702 if (DynamicOrOrdered) 1703 EmitIgnoredExpr(LoopArgs.Init); 1704 1705 // Create a block for the increment. 1706 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1707 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1708 1709 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1710 // with dynamic/guided scheduling and without ordered clause. 1711 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1712 LoopStack.setParallel(!IsMonotonic); 1713 else 1714 EmitOMPSimdInit(S, IsMonotonic); 1715 1716 SourceLocation Loc = S.getLocStart(); 1717 1718 // when 'distribute' is not combined with a 'for': 1719 // while (idx <= UB) { BODY; ++idx; } 1720 // when 'distribute' is combined with a 'for' 1721 // (e.g. 'distribute parallel for') 1722 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1723 EmitOMPInnerLoop( 1724 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1725 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1726 CodeGenLoop(CGF, S, LoopExit); 1727 }, 1728 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1729 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1730 }); 1731 1732 EmitBlock(Continue.getBlock()); 1733 BreakContinueStack.pop_back(); 1734 if (!DynamicOrOrdered) { 1735 // Emit "LB = LB + Stride", "UB = UB + Stride". 1736 EmitIgnoredExpr(LoopArgs.NextLB); 1737 EmitIgnoredExpr(LoopArgs.NextUB); 1738 } 1739 1740 EmitBranch(CondBlock); 1741 LoopStack.pop(); 1742 // Emit the fall-through block. 1743 EmitBlock(LoopExit.getBlock()); 1744 1745 // Tell the runtime we are done. 1746 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1747 if (!DynamicOrOrdered) 1748 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 1749 S.getDirectiveKind()); 1750 }; 1751 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1752 } 1753 1754 void CodeGenFunction::EmitOMPForOuterLoop( 1755 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1756 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1757 const OMPLoopArguments &LoopArgs, 1758 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1759 auto &RT = CGM.getOpenMPRuntime(); 1760 1761 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1762 const bool DynamicOrOrdered = 1763 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1764 1765 assert((Ordered || 1766 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1767 LoopArgs.Chunk != nullptr)) && 1768 "static non-chunked schedule does not need outer loop"); 1769 1770 // Emit outer loop. 1771 // 1772 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1773 // When schedule(dynamic,chunk_size) is specified, the iterations are 1774 // distributed to threads in the team in chunks as the threads request them. 1775 // Each thread executes a chunk of iterations, then requests another chunk, 1776 // until no chunks remain to be distributed. Each chunk contains chunk_size 1777 // iterations, except for the last chunk to be distributed, which may have 1778 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1779 // 1780 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1781 // to threads in the team in chunks as the executing threads request them. 1782 // Each thread executes a chunk of iterations, then requests another chunk, 1783 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1784 // each chunk is proportional to the number of unassigned iterations divided 1785 // by the number of threads in the team, decreasing to 1. For a chunk_size 1786 // with value k (greater than 1), the size of each chunk is determined in the 1787 // same way, with the restriction that the chunks do not contain fewer than k 1788 // iterations (except for the last chunk to be assigned, which may have fewer 1789 // than k iterations). 1790 // 1791 // When schedule(auto) is specified, the decision regarding scheduling is 1792 // delegated to the compiler and/or runtime system. The programmer gives the 1793 // implementation the freedom to choose any possible mapping of iterations to 1794 // threads in the team. 1795 // 1796 // When schedule(runtime) is specified, the decision regarding scheduling is 1797 // deferred until run time, and the schedule and chunk size are taken from the 1798 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1799 // implementation defined 1800 // 1801 // while(__kmpc_dispatch_next(&LB, &UB)) { 1802 // idx = LB; 1803 // while (idx <= UB) { BODY; ++idx; 1804 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1805 // } // inner loop 1806 // } 1807 // 1808 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1809 // When schedule(static, chunk_size) is specified, iterations are divided into 1810 // chunks of size chunk_size, and the chunks are assigned to the threads in 1811 // the team in a round-robin fashion in the order of the thread number. 1812 // 1813 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1814 // while (idx <= UB) { BODY; ++idx; } // inner loop 1815 // LB = LB + ST; 1816 // UB = UB + ST; 1817 // } 1818 // 1819 1820 const Expr *IVExpr = S.getIterationVariable(); 1821 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1822 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1823 1824 if (DynamicOrOrdered) { 1825 auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1826 llvm::Value *LBVal = DispatchBounds.first; 1827 llvm::Value *UBVal = DispatchBounds.second; 1828 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1829 LoopArgs.Chunk}; 1830 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1831 IVSigned, Ordered, DipatchRTInputValues); 1832 } else { 1833 CGOpenMPRuntime::StaticRTInput StaticInit( 1834 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1835 LoopArgs.ST, LoopArgs.Chunk); 1836 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 1837 ScheduleKind, StaticInit); 1838 } 1839 1840 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1841 const unsigned IVSize, 1842 const bool IVSigned) { 1843 if (Ordered) { 1844 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1845 IVSigned); 1846 } 1847 }; 1848 1849 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1850 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1851 OuterLoopArgs.IncExpr = S.getInc(); 1852 OuterLoopArgs.Init = S.getInit(); 1853 OuterLoopArgs.Cond = S.getCond(); 1854 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1855 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1856 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1857 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1858 } 1859 1860 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1861 const unsigned IVSize, const bool IVSigned) {} 1862 1863 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1864 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1865 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1866 const CodeGenLoopTy &CodeGenLoopContent) { 1867 1868 auto &RT = CGM.getOpenMPRuntime(); 1869 1870 // Emit outer loop. 1871 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1872 // dynamic 1873 // 1874 1875 const Expr *IVExpr = S.getIterationVariable(); 1876 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1877 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1878 1879 CGOpenMPRuntime::StaticRTInput StaticInit( 1880 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 1881 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 1882 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit); 1883 1884 // for combined 'distribute' and 'for' the increment expression of distribute 1885 // is store in DistInc. For 'distribute' alone, it is in Inc. 1886 Expr *IncExpr; 1887 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 1888 IncExpr = S.getDistInc(); 1889 else 1890 IncExpr = S.getInc(); 1891 1892 // this routine is shared by 'omp distribute parallel for' and 1893 // 'omp distribute': select the right EUB expression depending on the 1894 // directive 1895 OMPLoopArguments OuterLoopArgs; 1896 OuterLoopArgs.LB = LoopArgs.LB; 1897 OuterLoopArgs.UB = LoopArgs.UB; 1898 OuterLoopArgs.ST = LoopArgs.ST; 1899 OuterLoopArgs.IL = LoopArgs.IL; 1900 OuterLoopArgs.Chunk = LoopArgs.Chunk; 1901 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1902 ? S.getCombinedEnsureUpperBound() 1903 : S.getEnsureUpperBound(); 1904 OuterLoopArgs.IncExpr = IncExpr; 1905 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1906 ? S.getCombinedInit() 1907 : S.getInit(); 1908 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1909 ? S.getCombinedCond() 1910 : S.getCond(); 1911 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1912 ? S.getCombinedNextLowerBound() 1913 : S.getNextLowerBound(); 1914 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1915 ? S.getCombinedNextUpperBound() 1916 : S.getNextUpperBound(); 1917 1918 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 1919 LoopScope, OuterLoopArgs, CodeGenLoopContent, 1920 emitEmptyOrdered); 1921 } 1922 1923 /// Emit a helper variable and return corresponding lvalue. 1924 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1925 const DeclRefExpr *Helper) { 1926 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1927 CGF.EmitVarDecl(*VDecl); 1928 return CGF.EmitLValue(Helper); 1929 } 1930 1931 static std::pair<LValue, LValue> 1932 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 1933 const OMPExecutableDirective &S) { 1934 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 1935 LValue LB = 1936 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 1937 LValue UB = 1938 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 1939 1940 // When composing 'distribute' with 'for' (e.g. as in 'distribute 1941 // parallel for') we need to use the 'distribute' 1942 // chunk lower and upper bounds rather than the whole loop iteration 1943 // space. These are parameters to the outlined function for 'parallel' 1944 // and we copy the bounds of the previous schedule into the 1945 // the current ones. 1946 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 1947 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 1948 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(PrevLB, SourceLocation()); 1949 PrevLBVal = CGF.EmitScalarConversion( 1950 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 1951 LS.getIterationVariable()->getType(), SourceLocation()); 1952 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(PrevUB, SourceLocation()); 1953 PrevUBVal = CGF.EmitScalarConversion( 1954 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 1955 LS.getIterationVariable()->getType(), SourceLocation()); 1956 1957 CGF.EmitStoreOfScalar(PrevLBVal, LB); 1958 CGF.EmitStoreOfScalar(PrevUBVal, UB); 1959 1960 return {LB, UB}; 1961 } 1962 1963 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 1964 /// we need to use the LB and UB expressions generated by the worksharing 1965 /// code generation support, whereas in non combined situations we would 1966 /// just emit 0 and the LastIteration expression 1967 /// This function is necessary due to the difference of the LB and UB 1968 /// types for the RT emission routines for 'for_static_init' and 1969 /// 'for_dispatch_init' 1970 static std::pair<llvm::Value *, llvm::Value *> 1971 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 1972 const OMPExecutableDirective &S, 1973 Address LB, Address UB) { 1974 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 1975 const Expr *IVExpr = LS.getIterationVariable(); 1976 // when implementing a dynamic schedule for a 'for' combined with a 1977 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 1978 // is not normalized as each team only executes its own assigned 1979 // distribute chunk 1980 QualType IteratorTy = IVExpr->getType(); 1981 llvm::Value *LBVal = CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, 1982 SourceLocation()); 1983 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, 1984 SourceLocation()); 1985 return {LBVal, UBVal}; 1986 } 1987 1988 static void emitDistributeParallelForDistributeInnerBoundParams( 1989 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1990 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 1991 const auto &Dir = cast<OMPLoopDirective>(S); 1992 LValue LB = 1993 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 1994 auto LBCast = CGF.Builder.CreateIntCast( 1995 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 1996 CapturedVars.push_back(LBCast); 1997 LValue UB = 1998 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 1999 2000 auto UBCast = CGF.Builder.CreateIntCast( 2001 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2002 CapturedVars.push_back(UBCast); 2003 } 2004 2005 static void 2006 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2007 const OMPLoopDirective &S, 2008 CodeGenFunction::JumpDest LoopExit) { 2009 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2010 PrePostActionTy &) { 2011 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2012 emitDistributeParallelForInnerBounds, 2013 emitDistributeParallelForDispatchBounds); 2014 }; 2015 2016 emitCommonOMPParallelDirective( 2017 CGF, S, OMPD_for, CGInlinedWorksharingLoop, 2018 emitDistributeParallelForDistributeInnerBoundParams); 2019 } 2020 2021 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2022 const OMPDistributeParallelForDirective &S) { 2023 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2024 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2025 S.getDistInc()); 2026 }; 2027 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2028 OMPCancelStackRAII CancelRegion(*this, OMPD_distribute_parallel_for, 2029 /*HasCancel=*/false); 2030 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2031 /*HasCancel=*/false); 2032 } 2033 2034 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2035 const OMPDistributeParallelForSimdDirective &S) { 2036 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2037 CGM.getOpenMPRuntime().emitInlinedDirective( 2038 *this, OMPD_distribute_parallel_for_simd, 2039 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2040 OMPLoopScope PreInitScope(CGF, S); 2041 CGF.EmitStmt( 2042 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2043 }); 2044 } 2045 2046 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2047 const OMPDistributeSimdDirective &S) { 2048 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2049 CGM.getOpenMPRuntime().emitInlinedDirective( 2050 *this, OMPD_distribute_simd, 2051 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2052 OMPLoopScope PreInitScope(CGF, S); 2053 CGF.EmitStmt( 2054 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2055 }); 2056 } 2057 2058 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2059 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2060 // Emit SPMD target parallel for region as a standalone region. 2061 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2062 emitOMPSimdRegion(CGF, S, Action); 2063 }; 2064 llvm::Function *Fn; 2065 llvm::Constant *Addr; 2066 // Emit target region as a standalone region. 2067 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2068 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2069 assert(Fn && Addr && "Target device function emission failed."); 2070 } 2071 2072 void CodeGenFunction::EmitOMPTargetSimdDirective( 2073 const OMPTargetSimdDirective &S) { 2074 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2075 emitOMPSimdRegion(CGF, S, Action); 2076 }; 2077 emitCommonOMPTargetDirective(*this, S, CodeGen); 2078 } 2079 2080 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 2081 const OMPTeamsDistributeSimdDirective &S) { 2082 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2083 CGM.getOpenMPRuntime().emitInlinedDirective( 2084 *this, OMPD_teams_distribute_simd, 2085 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2086 OMPLoopScope PreInitScope(CGF, S); 2087 CGF.EmitStmt( 2088 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2089 }); 2090 } 2091 2092 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 2093 const OMPTeamsDistributeParallelForSimdDirective &S) { 2094 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2095 CGM.getOpenMPRuntime().emitInlinedDirective( 2096 *this, OMPD_teams_distribute_parallel_for_simd, 2097 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2098 OMPLoopScope PreInitScope(CGF, S); 2099 CGF.EmitStmt( 2100 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2101 }); 2102 } 2103 2104 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 2105 const OMPTargetTeamsDistributeDirective &S) { 2106 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2107 CGM.getOpenMPRuntime().emitInlinedDirective( 2108 *this, OMPD_target_teams_distribute, 2109 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2110 CGF.EmitStmt( 2111 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2112 }); 2113 } 2114 2115 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 2116 const OMPTargetTeamsDistributeParallelForDirective &S) { 2117 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2118 CGM.getOpenMPRuntime().emitInlinedDirective( 2119 *this, OMPD_target_teams_distribute_parallel_for, 2120 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2121 CGF.EmitStmt( 2122 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2123 }); 2124 } 2125 2126 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2127 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 2128 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2129 CGM.getOpenMPRuntime().emitInlinedDirective( 2130 *this, OMPD_target_teams_distribute_parallel_for_simd, 2131 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2132 CGF.EmitStmt( 2133 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2134 }); 2135 } 2136 2137 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 2138 const OMPTargetTeamsDistributeSimdDirective &S) { 2139 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2140 CGM.getOpenMPRuntime().emitInlinedDirective( 2141 *this, OMPD_target_teams_distribute_simd, 2142 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2143 CGF.EmitStmt( 2144 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2145 }); 2146 } 2147 2148 namespace { 2149 struct ScheduleKindModifiersTy { 2150 OpenMPScheduleClauseKind Kind; 2151 OpenMPScheduleClauseModifier M1; 2152 OpenMPScheduleClauseModifier M2; 2153 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2154 OpenMPScheduleClauseModifier M1, 2155 OpenMPScheduleClauseModifier M2) 2156 : Kind(Kind), M1(M1), M2(M2) {} 2157 }; 2158 } // namespace 2159 2160 bool CodeGenFunction::EmitOMPWorksharingLoop( 2161 const OMPLoopDirective &S, Expr *EUB, 2162 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2163 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2164 // Emit the loop iteration variable. 2165 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2166 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2167 EmitVarDecl(*IVDecl); 2168 2169 // Emit the iterations count variable. 2170 // If it is not a variable, Sema decided to calculate iterations count on each 2171 // iteration (e.g., it is foldable into a constant). 2172 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2173 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2174 // Emit calculation of the iterations count. 2175 EmitIgnoredExpr(S.getCalcLastIteration()); 2176 } 2177 2178 auto &RT = CGM.getOpenMPRuntime(); 2179 2180 bool HasLastprivateClause; 2181 // Check pre-condition. 2182 { 2183 OMPLoopScope PreInitScope(*this, S); 2184 // Skip the entire loop if we don't meet the precondition. 2185 // If the condition constant folds and can be elided, avoid emitting the 2186 // whole loop. 2187 bool CondConstant; 2188 llvm::BasicBlock *ContBlock = nullptr; 2189 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2190 if (!CondConstant) 2191 return false; 2192 } else { 2193 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2194 ContBlock = createBasicBlock("omp.precond.end"); 2195 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2196 getProfileCount(&S)); 2197 EmitBlock(ThenBlock); 2198 incrementProfileCounter(&S); 2199 } 2200 2201 bool Ordered = false; 2202 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2203 if (OrderedClause->getNumForLoops()) 2204 RT.emitDoacrossInit(*this, S); 2205 else 2206 Ordered = true; 2207 } 2208 2209 llvm::DenseSet<const Expr *> EmittedFinals; 2210 emitAlignedClause(*this, S); 2211 bool HasLinears = EmitOMPLinearClauseInit(S); 2212 // Emit helper vars inits. 2213 2214 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2215 LValue LB = Bounds.first; 2216 LValue UB = Bounds.second; 2217 LValue ST = 2218 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2219 LValue IL = 2220 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2221 2222 // Emit 'then' code. 2223 { 2224 OMPPrivateScope LoopScope(*this); 2225 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2226 // Emit implicit barrier to synchronize threads and avoid data races on 2227 // initialization of firstprivate variables and post-update of 2228 // lastprivate variables. 2229 CGM.getOpenMPRuntime().emitBarrierCall( 2230 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2231 /*ForceSimpleCall=*/true); 2232 } 2233 EmitOMPPrivateClause(S, LoopScope); 2234 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2235 EmitOMPReductionClauseInit(S, LoopScope); 2236 EmitOMPPrivateLoopCounters(S, LoopScope); 2237 EmitOMPLinearClause(S, LoopScope); 2238 (void)LoopScope.Privatize(); 2239 2240 // Detect the loop schedule kind and chunk. 2241 llvm::Value *Chunk = nullptr; 2242 OpenMPScheduleTy ScheduleKind; 2243 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2244 ScheduleKind.Schedule = C->getScheduleKind(); 2245 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2246 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2247 if (const auto *Ch = C->getChunkSize()) { 2248 Chunk = EmitScalarExpr(Ch); 2249 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2250 S.getIterationVariable()->getType(), 2251 S.getLocStart()); 2252 } 2253 } 2254 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2255 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2256 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2257 // If the static schedule kind is specified or if the ordered clause is 2258 // specified, and if no monotonic modifier is specified, the effect will 2259 // be as if the monotonic modifier was specified. 2260 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2261 /* Chunked */ Chunk != nullptr) && 2262 !Ordered) { 2263 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2264 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2265 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2266 // When no chunk_size is specified, the iteration space is divided into 2267 // chunks that are approximately equal in size, and at most one chunk is 2268 // distributed to each thread. Note that the size of the chunks is 2269 // unspecified in this case. 2270 CGOpenMPRuntime::StaticRTInput StaticInit( 2271 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2272 UB.getAddress(), ST.getAddress()); 2273 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 2274 ScheduleKind, StaticInit); 2275 auto LoopExit = 2276 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2277 // UB = min(UB, GlobalUB); 2278 EmitIgnoredExpr(S.getEnsureUpperBound()); 2279 // IV = LB; 2280 EmitIgnoredExpr(S.getInit()); 2281 // while (idx <= UB) { BODY; ++idx; } 2282 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2283 S.getInc(), 2284 [&S, LoopExit](CodeGenFunction &CGF) { 2285 CGF.EmitOMPLoopBody(S, LoopExit); 2286 CGF.EmitStopPoint(&S); 2287 }, 2288 [](CodeGenFunction &) {}); 2289 EmitBlock(LoopExit.getBlock()); 2290 // Tell the runtime we are done. 2291 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2292 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2293 S.getDirectiveKind()); 2294 }; 2295 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2296 } else { 2297 const bool IsMonotonic = 2298 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2299 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2300 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2301 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2302 // Emit the outer loop, which requests its work chunk [LB..UB] from 2303 // runtime and runs the inner loop to process it. 2304 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2305 ST.getAddress(), IL.getAddress(), 2306 Chunk, EUB); 2307 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2308 LoopArguments, CGDispatchBounds); 2309 } 2310 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2311 EmitOMPSimdFinal(S, 2312 [&](CodeGenFunction &CGF) -> llvm::Value * { 2313 return CGF.Builder.CreateIsNotNull( 2314 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2315 }); 2316 } 2317 EmitOMPReductionClauseFinal( 2318 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2319 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2320 : /*Parallel only*/ OMPD_parallel); 2321 // Emit post-update of the reduction variables if IsLastIter != 0. 2322 emitPostUpdateForReductionClause( 2323 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2324 return CGF.Builder.CreateIsNotNull( 2325 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2326 }); 2327 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2328 if (HasLastprivateClause) 2329 EmitOMPLastprivateClauseFinal( 2330 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2331 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2332 } 2333 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2334 return CGF.Builder.CreateIsNotNull( 2335 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2336 }); 2337 // We're now done with the loop, so jump to the continuation block. 2338 if (ContBlock) { 2339 EmitBranch(ContBlock); 2340 EmitBlock(ContBlock, true); 2341 } 2342 } 2343 return HasLastprivateClause; 2344 } 2345 2346 /// The following two functions generate expressions for the loop lower 2347 /// and upper bounds in case of static and dynamic (dispatch) schedule 2348 /// of the associated 'for' or 'distribute' loop. 2349 static std::pair<LValue, LValue> 2350 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2351 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2352 LValue LB = 2353 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2354 LValue UB = 2355 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2356 return {LB, UB}; 2357 } 2358 2359 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2360 /// consider the lower and upper bound expressions generated by the 2361 /// worksharing loop support, but we use 0 and the iteration space size as 2362 /// constants 2363 static std::pair<llvm::Value *, llvm::Value *> 2364 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2365 Address LB, Address UB) { 2366 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2367 const Expr *IVExpr = LS.getIterationVariable(); 2368 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2369 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2370 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2371 return {LBVal, UBVal}; 2372 } 2373 2374 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2375 bool HasLastprivates = false; 2376 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2377 PrePostActionTy &) { 2378 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2379 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2380 emitForLoopBounds, 2381 emitDispatchForLoopBounds); 2382 }; 2383 { 2384 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2385 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2386 S.hasCancel()); 2387 } 2388 2389 // Emit an implicit barrier at the end. 2390 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2391 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2392 } 2393 } 2394 2395 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2396 bool HasLastprivates = false; 2397 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2398 PrePostActionTy &) { 2399 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2400 emitForLoopBounds, 2401 emitDispatchForLoopBounds); 2402 }; 2403 { 2404 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2405 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2406 } 2407 2408 // Emit an implicit barrier at the end. 2409 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2410 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2411 } 2412 } 2413 2414 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2415 const Twine &Name, 2416 llvm::Value *Init = nullptr) { 2417 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2418 if (Init) 2419 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2420 return LVal; 2421 } 2422 2423 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2424 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2425 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2426 bool HasLastprivates = false; 2427 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2428 PrePostActionTy &) { 2429 auto &C = CGF.CGM.getContext(); 2430 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2431 // Emit helper vars inits. 2432 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2433 CGF.Builder.getInt32(0)); 2434 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2435 : CGF.Builder.getInt32(0); 2436 LValue UB = 2437 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2438 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2439 CGF.Builder.getInt32(1)); 2440 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2441 CGF.Builder.getInt32(0)); 2442 // Loop counter. 2443 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2444 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2445 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2446 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2447 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2448 // Generate condition for loop. 2449 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2450 OK_Ordinary, S.getLocStart(), FPOptions()); 2451 // Increment for loop counter. 2452 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2453 S.getLocStart()); 2454 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2455 // Iterate through all sections and emit a switch construct: 2456 // switch (IV) { 2457 // case 0: 2458 // <SectionStmt[0]>; 2459 // break; 2460 // ... 2461 // case <NumSection> - 1: 2462 // <SectionStmt[<NumSection> - 1]>; 2463 // break; 2464 // } 2465 // .omp.sections.exit: 2466 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2467 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2468 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2469 CS == nullptr ? 1 : CS->size()); 2470 if (CS) { 2471 unsigned CaseNumber = 0; 2472 for (auto *SubStmt : CS->children()) { 2473 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2474 CGF.EmitBlock(CaseBB); 2475 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2476 CGF.EmitStmt(SubStmt); 2477 CGF.EmitBranch(ExitBB); 2478 ++CaseNumber; 2479 } 2480 } else { 2481 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2482 CGF.EmitBlock(CaseBB); 2483 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2484 CGF.EmitStmt(Stmt); 2485 CGF.EmitBranch(ExitBB); 2486 } 2487 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2488 }; 2489 2490 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2491 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2492 // Emit implicit barrier to synchronize threads and avoid data races on 2493 // initialization of firstprivate variables and post-update of lastprivate 2494 // variables. 2495 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2496 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2497 /*ForceSimpleCall=*/true); 2498 } 2499 CGF.EmitOMPPrivateClause(S, LoopScope); 2500 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2501 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2502 (void)LoopScope.Privatize(); 2503 2504 // Emit static non-chunked loop. 2505 OpenMPScheduleTy ScheduleKind; 2506 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2507 CGOpenMPRuntime::StaticRTInput StaticInit( 2508 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2509 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2510 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2511 CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2512 // UB = min(UB, GlobalUB); 2513 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2514 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2515 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2516 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2517 // IV = LB; 2518 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2519 // while (idx <= UB) { BODY; ++idx; } 2520 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2521 [](CodeGenFunction &) {}); 2522 // Tell the runtime we are done. 2523 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2524 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2525 S.getDirectiveKind()); 2526 }; 2527 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2528 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2529 // Emit post-update of the reduction variables if IsLastIter != 0. 2530 emitPostUpdateForReductionClause( 2531 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2532 return CGF.Builder.CreateIsNotNull( 2533 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2534 }); 2535 2536 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2537 if (HasLastprivates) 2538 CGF.EmitOMPLastprivateClauseFinal( 2539 S, /*NoFinals=*/false, 2540 CGF.Builder.CreateIsNotNull( 2541 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2542 }; 2543 2544 bool HasCancel = false; 2545 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2546 HasCancel = OSD->hasCancel(); 2547 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2548 HasCancel = OPSD->hasCancel(); 2549 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2550 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2551 HasCancel); 2552 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2553 // clause. Otherwise the barrier will be generated by the codegen for the 2554 // directive. 2555 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2556 // Emit implicit barrier to synchronize threads and avoid data races on 2557 // initialization of firstprivate variables. 2558 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2559 OMPD_unknown); 2560 } 2561 } 2562 2563 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2564 { 2565 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2566 EmitSections(S); 2567 } 2568 // Emit an implicit barrier at the end. 2569 if (!S.getSingleClause<OMPNowaitClause>()) { 2570 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2571 OMPD_sections); 2572 } 2573 } 2574 2575 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2576 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2577 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2578 }; 2579 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2580 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2581 S.hasCancel()); 2582 } 2583 2584 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2585 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2586 llvm::SmallVector<const Expr *, 8> DestExprs; 2587 llvm::SmallVector<const Expr *, 8> SrcExprs; 2588 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2589 // Check if there are any 'copyprivate' clauses associated with this 2590 // 'single' construct. 2591 // Build a list of copyprivate variables along with helper expressions 2592 // (<source>, <destination>, <destination>=<source> expressions) 2593 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2594 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2595 DestExprs.append(C->destination_exprs().begin(), 2596 C->destination_exprs().end()); 2597 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2598 AssignmentOps.append(C->assignment_ops().begin(), 2599 C->assignment_ops().end()); 2600 } 2601 // Emit code for 'single' region along with 'copyprivate' clauses 2602 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2603 Action.Enter(CGF); 2604 OMPPrivateScope SingleScope(CGF); 2605 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2606 CGF.EmitOMPPrivateClause(S, SingleScope); 2607 (void)SingleScope.Privatize(); 2608 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2609 }; 2610 { 2611 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2612 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2613 CopyprivateVars, DestExprs, 2614 SrcExprs, AssignmentOps); 2615 } 2616 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2617 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2618 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2619 CGM.getOpenMPRuntime().emitBarrierCall( 2620 *this, S.getLocStart(), 2621 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2622 } 2623 } 2624 2625 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2626 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2627 Action.Enter(CGF); 2628 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2629 }; 2630 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2631 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2632 } 2633 2634 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2635 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2636 Action.Enter(CGF); 2637 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2638 }; 2639 Expr *Hint = nullptr; 2640 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2641 Hint = HintClause->getHint(); 2642 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2643 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2644 S.getDirectiveName().getAsString(), 2645 CodeGen, S.getLocStart(), Hint); 2646 } 2647 2648 void CodeGenFunction::EmitOMPParallelForDirective( 2649 const OMPParallelForDirective &S) { 2650 // Emit directive as a combined directive that consists of two implicit 2651 // directives: 'parallel' with 'for' directive. 2652 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2653 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2654 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2655 emitDispatchForLoopBounds); 2656 }; 2657 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2658 emitEmptyBoundParameters); 2659 } 2660 2661 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2662 const OMPParallelForSimdDirective &S) { 2663 // Emit directive as a combined directive that consists of two implicit 2664 // directives: 'parallel' with 'for' directive. 2665 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2666 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2667 emitDispatchForLoopBounds); 2668 }; 2669 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2670 emitEmptyBoundParameters); 2671 } 2672 2673 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2674 const OMPParallelSectionsDirective &S) { 2675 // Emit directive as a combined directive that consists of two implicit 2676 // directives: 'parallel' with 'sections' directive. 2677 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2678 CGF.EmitSections(S); 2679 }; 2680 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2681 emitEmptyBoundParameters); 2682 } 2683 2684 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2685 const RegionCodeGenTy &BodyGen, 2686 const TaskGenTy &TaskGen, 2687 OMPTaskDataTy &Data) { 2688 // Emit outlined function for task construct. 2689 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2690 auto *I = CS->getCapturedDecl()->param_begin(); 2691 auto *PartId = std::next(I); 2692 auto *TaskT = std::next(I, 4); 2693 // Check if the task is final 2694 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2695 // If the condition constant folds and can be elided, try to avoid emitting 2696 // the condition and the dead arm of the if/else. 2697 auto *Cond = Clause->getCondition(); 2698 bool CondConstant; 2699 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2700 Data.Final.setInt(CondConstant); 2701 else 2702 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2703 } else { 2704 // By default the task is not final. 2705 Data.Final.setInt(/*IntVal=*/false); 2706 } 2707 // Check if the task has 'priority' clause. 2708 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2709 auto *Prio = Clause->getPriority(); 2710 Data.Priority.setInt(/*IntVal=*/true); 2711 Data.Priority.setPointer(EmitScalarConversion( 2712 EmitScalarExpr(Prio), Prio->getType(), 2713 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2714 Prio->getExprLoc())); 2715 } 2716 // The first function argument for tasks is a thread id, the second one is a 2717 // part id (0 for tied tasks, >=0 for untied task). 2718 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2719 // Get list of private variables. 2720 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2721 auto IRef = C->varlist_begin(); 2722 for (auto *IInit : C->private_copies()) { 2723 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2724 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2725 Data.PrivateVars.push_back(*IRef); 2726 Data.PrivateCopies.push_back(IInit); 2727 } 2728 ++IRef; 2729 } 2730 } 2731 EmittedAsPrivate.clear(); 2732 // Get list of firstprivate variables. 2733 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2734 auto IRef = C->varlist_begin(); 2735 auto IElemInitRef = C->inits().begin(); 2736 for (auto *IInit : C->private_copies()) { 2737 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2738 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2739 Data.FirstprivateVars.push_back(*IRef); 2740 Data.FirstprivateCopies.push_back(IInit); 2741 Data.FirstprivateInits.push_back(*IElemInitRef); 2742 } 2743 ++IRef; 2744 ++IElemInitRef; 2745 } 2746 } 2747 // Get list of lastprivate variables (for taskloops). 2748 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2749 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2750 auto IRef = C->varlist_begin(); 2751 auto ID = C->destination_exprs().begin(); 2752 for (auto *IInit : C->private_copies()) { 2753 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2754 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2755 Data.LastprivateVars.push_back(*IRef); 2756 Data.LastprivateCopies.push_back(IInit); 2757 } 2758 LastprivateDstsOrigs.insert( 2759 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2760 cast<DeclRefExpr>(*IRef)}); 2761 ++IRef; 2762 ++ID; 2763 } 2764 } 2765 SmallVector<const Expr *, 4> LHSs; 2766 SmallVector<const Expr *, 4> RHSs; 2767 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2768 auto IPriv = C->privates().begin(); 2769 auto IRed = C->reduction_ops().begin(); 2770 auto ILHS = C->lhs_exprs().begin(); 2771 auto IRHS = C->rhs_exprs().begin(); 2772 for (const auto *Ref : C->varlists()) { 2773 Data.ReductionVars.emplace_back(Ref); 2774 Data.ReductionCopies.emplace_back(*IPriv); 2775 Data.ReductionOps.emplace_back(*IRed); 2776 LHSs.emplace_back(*ILHS); 2777 RHSs.emplace_back(*IRHS); 2778 std::advance(IPriv, 1); 2779 std::advance(IRed, 1); 2780 std::advance(ILHS, 1); 2781 std::advance(IRHS, 1); 2782 } 2783 } 2784 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2785 *this, S.getLocStart(), LHSs, RHSs, Data); 2786 // Build list of dependences. 2787 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2788 for (auto *IRef : C->varlists()) 2789 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2790 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs]( 2791 CodeGenFunction &CGF, PrePostActionTy &Action) { 2792 // Set proper addresses for generated private copies. 2793 OMPPrivateScope Scope(CGF); 2794 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2795 !Data.LastprivateVars.empty()) { 2796 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2797 auto *CopyFn = CGF.Builder.CreateLoad( 2798 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2799 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2800 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2801 // Map privates. 2802 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2803 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2804 CallArgs.push_back(PrivatesPtr); 2805 for (auto *E : Data.PrivateVars) { 2806 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2807 Address PrivatePtr = CGF.CreateMemTemp( 2808 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2809 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2810 CallArgs.push_back(PrivatePtr.getPointer()); 2811 } 2812 for (auto *E : Data.FirstprivateVars) { 2813 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2814 Address PrivatePtr = 2815 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2816 ".firstpriv.ptr.addr"); 2817 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2818 CallArgs.push_back(PrivatePtr.getPointer()); 2819 } 2820 for (auto *E : Data.LastprivateVars) { 2821 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2822 Address PrivatePtr = 2823 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2824 ".lastpriv.ptr.addr"); 2825 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2826 CallArgs.push_back(PrivatePtr.getPointer()); 2827 } 2828 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 2829 CopyFn, CallArgs); 2830 for (auto &&Pair : LastprivateDstsOrigs) { 2831 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2832 DeclRefExpr DRE( 2833 const_cast<VarDecl *>(OrigVD), 2834 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2835 OrigVD) != nullptr, 2836 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2837 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2838 return CGF.EmitLValue(&DRE).getAddress(); 2839 }); 2840 } 2841 for (auto &&Pair : PrivatePtrs) { 2842 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2843 CGF.getContext().getDeclAlign(Pair.first)); 2844 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2845 } 2846 } 2847 if (Data.Reductions) { 2848 OMPLexicalScope LexScope(CGF, S, /*AsInlined=*/true); 2849 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2850 Data.ReductionOps); 2851 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2852 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2853 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2854 RedCG.emitSharedLValue(CGF, Cnt); 2855 RedCG.emitAggregateType(CGF, Cnt); 2856 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2857 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2858 Replacement = 2859 Address(CGF.EmitScalarConversion( 2860 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2861 CGF.getContext().getPointerType( 2862 Data.ReductionCopies[Cnt]->getType()), 2863 SourceLocation()), 2864 Replacement.getAlignment()); 2865 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2866 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2867 [Replacement]() { return Replacement; }); 2868 // FIXME: This must removed once the runtime library is fixed. 2869 // Emit required threadprivate variables for 2870 // initilizer/combiner/finalizer. 2871 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2872 RedCG, Cnt); 2873 } 2874 } 2875 // Privatize all private variables except for in_reduction items. 2876 (void)Scope.Privatize(); 2877 SmallVector<const Expr *, 4> InRedVars; 2878 SmallVector<const Expr *, 4> InRedPrivs; 2879 SmallVector<const Expr *, 4> InRedOps; 2880 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2881 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2882 auto IPriv = C->privates().begin(); 2883 auto IRed = C->reduction_ops().begin(); 2884 auto ITD = C->taskgroup_descriptors().begin(); 2885 for (const auto *Ref : C->varlists()) { 2886 InRedVars.emplace_back(Ref); 2887 InRedPrivs.emplace_back(*IPriv); 2888 InRedOps.emplace_back(*IRed); 2889 TaskgroupDescriptors.emplace_back(*ITD); 2890 std::advance(IPriv, 1); 2891 std::advance(IRed, 1); 2892 std::advance(ITD, 1); 2893 } 2894 } 2895 // Privatize in_reduction items here, because taskgroup descriptors must be 2896 // privatized earlier. 2897 OMPPrivateScope InRedScope(CGF); 2898 if (!InRedVars.empty()) { 2899 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2900 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2901 RedCG.emitSharedLValue(CGF, Cnt); 2902 RedCG.emitAggregateType(CGF, Cnt); 2903 // The taskgroup descriptor variable is always implicit firstprivate and 2904 // privatized already during procoessing of the firstprivates. 2905 llvm::Value *ReductionsPtr = CGF.EmitLoadOfScalar( 2906 CGF.EmitLValue(TaskgroupDescriptors[Cnt]), SourceLocation()); 2907 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2908 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2909 Replacement = Address( 2910 CGF.EmitScalarConversion( 2911 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2912 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2913 SourceLocation()), 2914 Replacement.getAlignment()); 2915 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2916 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2917 [Replacement]() { return Replacement; }); 2918 // FIXME: This must removed once the runtime library is fixed. 2919 // Emit required threadprivate variables for 2920 // initilizer/combiner/finalizer. 2921 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2922 RedCG, Cnt); 2923 } 2924 } 2925 (void)InRedScope.Privatize(); 2926 2927 Action.Enter(CGF); 2928 BodyGen(CGF); 2929 }; 2930 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2931 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2932 Data.NumberOfParts); 2933 OMPLexicalScope Scope(*this, S); 2934 TaskGen(*this, OutlinedFn, Data); 2935 } 2936 2937 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2938 // Emit outlined function for task construct. 2939 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2940 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2941 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2942 const Expr *IfCond = nullptr; 2943 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2944 if (C->getNameModifier() == OMPD_unknown || 2945 C->getNameModifier() == OMPD_task) { 2946 IfCond = C->getCondition(); 2947 break; 2948 } 2949 } 2950 2951 OMPTaskDataTy Data; 2952 // Check if we should emit tied or untied task. 2953 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2954 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2955 CGF.EmitStmt(CS->getCapturedStmt()); 2956 }; 2957 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2958 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2959 const OMPTaskDataTy &Data) { 2960 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2961 SharedsTy, CapturedStruct, IfCond, 2962 Data); 2963 }; 2964 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2965 } 2966 2967 void CodeGenFunction::EmitOMPTaskyieldDirective( 2968 const OMPTaskyieldDirective &S) { 2969 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2970 } 2971 2972 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2973 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2974 } 2975 2976 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2977 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2978 } 2979 2980 void CodeGenFunction::EmitOMPTaskgroupDirective( 2981 const OMPTaskgroupDirective &S) { 2982 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2983 Action.Enter(CGF); 2984 if (const Expr *E = S.getReductionRef()) { 2985 SmallVector<const Expr *, 4> LHSs; 2986 SmallVector<const Expr *, 4> RHSs; 2987 OMPTaskDataTy Data; 2988 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 2989 auto IPriv = C->privates().begin(); 2990 auto IRed = C->reduction_ops().begin(); 2991 auto ILHS = C->lhs_exprs().begin(); 2992 auto IRHS = C->rhs_exprs().begin(); 2993 for (const auto *Ref : C->varlists()) { 2994 Data.ReductionVars.emplace_back(Ref); 2995 Data.ReductionCopies.emplace_back(*IPriv); 2996 Data.ReductionOps.emplace_back(*IRed); 2997 LHSs.emplace_back(*ILHS); 2998 RHSs.emplace_back(*IRHS); 2999 std::advance(IPriv, 1); 3000 std::advance(IRed, 1); 3001 std::advance(ILHS, 1); 3002 std::advance(IRHS, 1); 3003 } 3004 } 3005 llvm::Value *ReductionDesc = 3006 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(), 3007 LHSs, RHSs, Data); 3008 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3009 CGF.EmitVarDecl(*VD); 3010 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3011 /*Volatile=*/false, E->getType()); 3012 } 3013 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3014 }; 3015 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3016 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 3017 } 3018 3019 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3020 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 3021 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 3022 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3023 FlushClause->varlist_end()); 3024 } 3025 return llvm::None; 3026 }(), S.getLocStart()); 3027 } 3028 3029 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3030 const CodeGenLoopTy &CodeGenLoop, 3031 Expr *IncExpr) { 3032 // Emit the loop iteration variable. 3033 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3034 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3035 EmitVarDecl(*IVDecl); 3036 3037 // Emit the iterations count variable. 3038 // If it is not a variable, Sema decided to calculate iterations count on each 3039 // iteration (e.g., it is foldable into a constant). 3040 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3041 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3042 // Emit calculation of the iterations count. 3043 EmitIgnoredExpr(S.getCalcLastIteration()); 3044 } 3045 3046 auto &RT = CGM.getOpenMPRuntime(); 3047 3048 bool HasLastprivateClause = false; 3049 // Check pre-condition. 3050 { 3051 OMPLoopScope PreInitScope(*this, S); 3052 // Skip the entire loop if we don't meet the precondition. 3053 // If the condition constant folds and can be elided, avoid emitting the 3054 // whole loop. 3055 bool CondConstant; 3056 llvm::BasicBlock *ContBlock = nullptr; 3057 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3058 if (!CondConstant) 3059 return; 3060 } else { 3061 auto *ThenBlock = createBasicBlock("omp.precond.then"); 3062 ContBlock = createBasicBlock("omp.precond.end"); 3063 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3064 getProfileCount(&S)); 3065 EmitBlock(ThenBlock); 3066 incrementProfileCounter(&S); 3067 } 3068 3069 // Emit 'then' code. 3070 { 3071 // Emit helper vars inits. 3072 3073 LValue LB = EmitOMPHelperVar( 3074 *this, cast<DeclRefExpr>( 3075 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3076 ? S.getCombinedLowerBoundVariable() 3077 : S.getLowerBoundVariable()))); 3078 LValue UB = EmitOMPHelperVar( 3079 *this, cast<DeclRefExpr>( 3080 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3081 ? S.getCombinedUpperBoundVariable() 3082 : S.getUpperBoundVariable()))); 3083 LValue ST = 3084 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3085 LValue IL = 3086 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3087 3088 OMPPrivateScope LoopScope(*this); 3089 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3090 // Emit implicit barrier to synchronize threads and avoid data races on 3091 // initialization of firstprivate variables and post-update of 3092 // lastprivate variables. 3093 CGM.getOpenMPRuntime().emitBarrierCall( 3094 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 3095 /*ForceSimpleCall=*/true); 3096 } 3097 EmitOMPPrivateClause(S, LoopScope); 3098 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3099 EmitOMPPrivateLoopCounters(S, LoopScope); 3100 (void)LoopScope.Privatize(); 3101 3102 // Detect the distribute schedule kind and chunk. 3103 llvm::Value *Chunk = nullptr; 3104 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3105 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3106 ScheduleKind = C->getDistScheduleKind(); 3107 if (const auto *Ch = C->getChunkSize()) { 3108 Chunk = EmitScalarExpr(Ch); 3109 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3110 S.getIterationVariable()->getType(), 3111 S.getLocStart()); 3112 } 3113 } 3114 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3115 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3116 3117 // OpenMP [2.10.8, distribute Construct, Description] 3118 // If dist_schedule is specified, kind must be static. If specified, 3119 // iterations are divided into chunks of size chunk_size, chunks are 3120 // assigned to the teams of the league in a round-robin fashion in the 3121 // order of the team number. When no chunk_size is specified, the 3122 // iteration space is divided into chunks that are approximately equal 3123 // in size, and at most one chunk is distributed to each team of the 3124 // league. The size of the chunks is unspecified in this case. 3125 if (RT.isStaticNonchunked(ScheduleKind, 3126 /* Chunked */ Chunk != nullptr)) { 3127 CGOpenMPRuntime::StaticRTInput StaticInit( 3128 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3129 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3130 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 3131 StaticInit); 3132 auto LoopExit = 3133 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3134 // UB = min(UB, GlobalUB); 3135 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3136 ? S.getCombinedEnsureUpperBound() 3137 : S.getEnsureUpperBound()); 3138 // IV = LB; 3139 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3140 ? S.getCombinedInit() 3141 : S.getInit()); 3142 3143 Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3144 ? S.getCombinedCond() 3145 : S.getCond(); 3146 3147 // for distribute alone, codegen 3148 // while (idx <= UB) { BODY; ++idx; } 3149 // when combined with 'for' (e.g. as in 'distribute parallel for') 3150 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3151 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3152 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3153 CodeGenLoop(CGF, S, LoopExit); 3154 }, 3155 [](CodeGenFunction &) {}); 3156 EmitBlock(LoopExit.getBlock()); 3157 // Tell the runtime we are done. 3158 RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind()); 3159 } else { 3160 // Emit the outer loop, which requests its work chunk [LB..UB] from 3161 // runtime and runs the inner loop to process it. 3162 const OMPLoopArguments LoopArguments = { 3163 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3164 Chunk}; 3165 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3166 CodeGenLoop); 3167 } 3168 3169 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3170 if (HasLastprivateClause) 3171 EmitOMPLastprivateClauseFinal( 3172 S, /*NoFinals=*/false, 3173 Builder.CreateIsNotNull( 3174 EmitLoadOfScalar(IL, S.getLocStart()))); 3175 } 3176 3177 // We're now done with the loop, so jump to the continuation block. 3178 if (ContBlock) { 3179 EmitBranch(ContBlock); 3180 EmitBlock(ContBlock, true); 3181 } 3182 } 3183 } 3184 3185 void CodeGenFunction::EmitOMPDistributeDirective( 3186 const OMPDistributeDirective &S) { 3187 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3188 3189 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3190 }; 3191 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3192 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 3193 false); 3194 } 3195 3196 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3197 const CapturedStmt *S) { 3198 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3199 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3200 CGF.CapturedStmtInfo = &CapStmtInfo; 3201 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3202 Fn->addFnAttr(llvm::Attribute::NoInline); 3203 return Fn; 3204 } 3205 3206 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3207 if (!S.getAssociatedStmt()) { 3208 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3209 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3210 return; 3211 } 3212 auto *C = S.getSingleClause<OMPSIMDClause>(); 3213 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3214 PrePostActionTy &Action) { 3215 if (C) { 3216 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3217 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3218 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3219 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3220 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3221 OutlinedFn, CapturedVars); 3222 } else { 3223 Action.Enter(CGF); 3224 CGF.EmitStmt( 3225 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3226 } 3227 }; 3228 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3229 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 3230 } 3231 3232 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3233 QualType SrcType, QualType DestType, 3234 SourceLocation Loc) { 3235 assert(CGF.hasScalarEvaluationKind(DestType) && 3236 "DestType must have scalar evaluation kind."); 3237 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3238 return Val.isScalar() 3239 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 3240 Loc) 3241 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 3242 DestType, Loc); 3243 } 3244 3245 static CodeGenFunction::ComplexPairTy 3246 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3247 QualType DestType, SourceLocation Loc) { 3248 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3249 "DestType must have complex evaluation kind."); 3250 CodeGenFunction::ComplexPairTy ComplexVal; 3251 if (Val.isScalar()) { 3252 // Convert the input element to the element type of the complex. 3253 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3254 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3255 DestElementType, Loc); 3256 ComplexVal = CodeGenFunction::ComplexPairTy( 3257 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3258 } else { 3259 assert(Val.isComplex() && "Must be a scalar or complex."); 3260 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3261 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3262 ComplexVal.first = CGF.EmitScalarConversion( 3263 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3264 ComplexVal.second = CGF.EmitScalarConversion( 3265 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3266 } 3267 return ComplexVal; 3268 } 3269 3270 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3271 LValue LVal, RValue RVal) { 3272 if (LVal.isGlobalReg()) { 3273 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3274 } else { 3275 CGF.EmitAtomicStore(RVal, LVal, 3276 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3277 : llvm::AtomicOrdering::Monotonic, 3278 LVal.isVolatile(), /*IsInit=*/false); 3279 } 3280 } 3281 3282 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3283 QualType RValTy, SourceLocation Loc) { 3284 switch (getEvaluationKind(LVal.getType())) { 3285 case TEK_Scalar: 3286 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3287 *this, RVal, RValTy, LVal.getType(), Loc)), 3288 LVal); 3289 break; 3290 case TEK_Complex: 3291 EmitStoreOfComplex( 3292 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3293 /*isInit=*/false); 3294 break; 3295 case TEK_Aggregate: 3296 llvm_unreachable("Must be a scalar or complex."); 3297 } 3298 } 3299 3300 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3301 const Expr *X, const Expr *V, 3302 SourceLocation Loc) { 3303 // v = x; 3304 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3305 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3306 LValue XLValue = CGF.EmitLValue(X); 3307 LValue VLValue = CGF.EmitLValue(V); 3308 RValue Res = XLValue.isGlobalReg() 3309 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3310 : CGF.EmitAtomicLoad( 3311 XLValue, Loc, 3312 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3313 : llvm::AtomicOrdering::Monotonic, 3314 XLValue.isVolatile()); 3315 // OpenMP, 2.12.6, atomic Construct 3316 // Any atomic construct with a seq_cst clause forces the atomically 3317 // performed operation to include an implicit flush operation without a 3318 // list. 3319 if (IsSeqCst) 3320 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3321 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3322 } 3323 3324 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3325 const Expr *X, const Expr *E, 3326 SourceLocation Loc) { 3327 // x = expr; 3328 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3329 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3330 // OpenMP, 2.12.6, atomic Construct 3331 // Any atomic construct with a seq_cst clause forces the atomically 3332 // performed operation to include an implicit flush operation without a 3333 // list. 3334 if (IsSeqCst) 3335 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3336 } 3337 3338 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3339 RValue Update, 3340 BinaryOperatorKind BO, 3341 llvm::AtomicOrdering AO, 3342 bool IsXLHSInRHSPart) { 3343 auto &Context = CGF.CGM.getContext(); 3344 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3345 // expression is simple and atomic is allowed for the given type for the 3346 // target platform. 3347 if (BO == BO_Comma || !Update.isScalar() || 3348 !Update.getScalarVal()->getType()->isIntegerTy() || 3349 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3350 (Update.getScalarVal()->getType() != 3351 X.getAddress().getElementType())) || 3352 !X.getAddress().getElementType()->isIntegerTy() || 3353 !Context.getTargetInfo().hasBuiltinAtomic( 3354 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3355 return std::make_pair(false, RValue::get(nullptr)); 3356 3357 llvm::AtomicRMWInst::BinOp RMWOp; 3358 switch (BO) { 3359 case BO_Add: 3360 RMWOp = llvm::AtomicRMWInst::Add; 3361 break; 3362 case BO_Sub: 3363 if (!IsXLHSInRHSPart) 3364 return std::make_pair(false, RValue::get(nullptr)); 3365 RMWOp = llvm::AtomicRMWInst::Sub; 3366 break; 3367 case BO_And: 3368 RMWOp = llvm::AtomicRMWInst::And; 3369 break; 3370 case BO_Or: 3371 RMWOp = llvm::AtomicRMWInst::Or; 3372 break; 3373 case BO_Xor: 3374 RMWOp = llvm::AtomicRMWInst::Xor; 3375 break; 3376 case BO_LT: 3377 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3378 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3379 : llvm::AtomicRMWInst::Max) 3380 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3381 : llvm::AtomicRMWInst::UMax); 3382 break; 3383 case BO_GT: 3384 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3385 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3386 : llvm::AtomicRMWInst::Min) 3387 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3388 : llvm::AtomicRMWInst::UMin); 3389 break; 3390 case BO_Assign: 3391 RMWOp = llvm::AtomicRMWInst::Xchg; 3392 break; 3393 case BO_Mul: 3394 case BO_Div: 3395 case BO_Rem: 3396 case BO_Shl: 3397 case BO_Shr: 3398 case BO_LAnd: 3399 case BO_LOr: 3400 return std::make_pair(false, RValue::get(nullptr)); 3401 case BO_PtrMemD: 3402 case BO_PtrMemI: 3403 case BO_LE: 3404 case BO_GE: 3405 case BO_EQ: 3406 case BO_NE: 3407 case BO_AddAssign: 3408 case BO_SubAssign: 3409 case BO_AndAssign: 3410 case BO_OrAssign: 3411 case BO_XorAssign: 3412 case BO_MulAssign: 3413 case BO_DivAssign: 3414 case BO_RemAssign: 3415 case BO_ShlAssign: 3416 case BO_ShrAssign: 3417 case BO_Comma: 3418 llvm_unreachable("Unsupported atomic update operation"); 3419 } 3420 auto *UpdateVal = Update.getScalarVal(); 3421 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3422 UpdateVal = CGF.Builder.CreateIntCast( 3423 IC, X.getAddress().getElementType(), 3424 X.getType()->hasSignedIntegerRepresentation()); 3425 } 3426 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3427 return std::make_pair(true, RValue::get(Res)); 3428 } 3429 3430 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3431 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3432 llvm::AtomicOrdering AO, SourceLocation Loc, 3433 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3434 // Update expressions are allowed to have the following forms: 3435 // x binop= expr; -> xrval + expr; 3436 // x++, ++x -> xrval + 1; 3437 // x--, --x -> xrval - 1; 3438 // x = x binop expr; -> xrval binop expr 3439 // x = expr Op x; - > expr binop xrval; 3440 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3441 if (!Res.first) { 3442 if (X.isGlobalReg()) { 3443 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3444 // 'xrval'. 3445 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3446 } else { 3447 // Perform compare-and-swap procedure. 3448 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3449 } 3450 } 3451 return Res; 3452 } 3453 3454 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3455 const Expr *X, const Expr *E, 3456 const Expr *UE, bool IsXLHSInRHSPart, 3457 SourceLocation Loc) { 3458 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3459 "Update expr in 'atomic update' must be a binary operator."); 3460 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3461 // Update expressions are allowed to have the following forms: 3462 // x binop= expr; -> xrval + expr; 3463 // x++, ++x -> xrval + 1; 3464 // x--, --x -> xrval - 1; 3465 // x = x binop expr; -> xrval binop expr 3466 // x = expr Op x; - > expr binop xrval; 3467 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3468 LValue XLValue = CGF.EmitLValue(X); 3469 RValue ExprRValue = CGF.EmitAnyExpr(E); 3470 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3471 : llvm::AtomicOrdering::Monotonic; 3472 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3473 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3474 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3475 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3476 auto Gen = 3477 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3478 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3479 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3480 return CGF.EmitAnyExpr(UE); 3481 }; 3482 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3483 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3484 // OpenMP, 2.12.6, atomic Construct 3485 // Any atomic construct with a seq_cst clause forces the atomically 3486 // performed operation to include an implicit flush operation without a 3487 // list. 3488 if (IsSeqCst) 3489 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3490 } 3491 3492 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3493 QualType SourceType, QualType ResType, 3494 SourceLocation Loc) { 3495 switch (CGF.getEvaluationKind(ResType)) { 3496 case TEK_Scalar: 3497 return RValue::get( 3498 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3499 case TEK_Complex: { 3500 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3501 return RValue::getComplex(Res.first, Res.second); 3502 } 3503 case TEK_Aggregate: 3504 break; 3505 } 3506 llvm_unreachable("Must be a scalar or complex."); 3507 } 3508 3509 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3510 bool IsPostfixUpdate, const Expr *V, 3511 const Expr *X, const Expr *E, 3512 const Expr *UE, bool IsXLHSInRHSPart, 3513 SourceLocation Loc) { 3514 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3515 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3516 RValue NewVVal; 3517 LValue VLValue = CGF.EmitLValue(V); 3518 LValue XLValue = CGF.EmitLValue(X); 3519 RValue ExprRValue = CGF.EmitAnyExpr(E); 3520 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3521 : llvm::AtomicOrdering::Monotonic; 3522 QualType NewVValType; 3523 if (UE) { 3524 // 'x' is updated with some additional value. 3525 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3526 "Update expr in 'atomic capture' must be a binary operator."); 3527 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3528 // Update expressions are allowed to have the following forms: 3529 // x binop= expr; -> xrval + expr; 3530 // x++, ++x -> xrval + 1; 3531 // x--, --x -> xrval - 1; 3532 // x = x binop expr; -> xrval binop expr 3533 // x = expr Op x; - > expr binop xrval; 3534 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3535 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3536 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3537 NewVValType = XRValExpr->getType(); 3538 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3539 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3540 IsPostfixUpdate](RValue XRValue) -> RValue { 3541 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3542 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3543 RValue Res = CGF.EmitAnyExpr(UE); 3544 NewVVal = IsPostfixUpdate ? XRValue : Res; 3545 return Res; 3546 }; 3547 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3548 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3549 if (Res.first) { 3550 // 'atomicrmw' instruction was generated. 3551 if (IsPostfixUpdate) { 3552 // Use old value from 'atomicrmw'. 3553 NewVVal = Res.second; 3554 } else { 3555 // 'atomicrmw' does not provide new value, so evaluate it using old 3556 // value of 'x'. 3557 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3558 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3559 NewVVal = CGF.EmitAnyExpr(UE); 3560 } 3561 } 3562 } else { 3563 // 'x' is simply rewritten with some 'expr'. 3564 NewVValType = X->getType().getNonReferenceType(); 3565 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3566 X->getType().getNonReferenceType(), Loc); 3567 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3568 NewVVal = XRValue; 3569 return ExprRValue; 3570 }; 3571 // Try to perform atomicrmw xchg, otherwise simple exchange. 3572 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3573 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3574 Loc, Gen); 3575 if (Res.first) { 3576 // 'atomicrmw' instruction was generated. 3577 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3578 } 3579 } 3580 // Emit post-update store to 'v' of old/new 'x' value. 3581 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3582 // OpenMP, 2.12.6, atomic Construct 3583 // Any atomic construct with a seq_cst clause forces the atomically 3584 // performed operation to include an implicit flush operation without a 3585 // list. 3586 if (IsSeqCst) 3587 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3588 } 3589 3590 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3591 bool IsSeqCst, bool IsPostfixUpdate, 3592 const Expr *X, const Expr *V, const Expr *E, 3593 const Expr *UE, bool IsXLHSInRHSPart, 3594 SourceLocation Loc) { 3595 switch (Kind) { 3596 case OMPC_read: 3597 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3598 break; 3599 case OMPC_write: 3600 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3601 break; 3602 case OMPC_unknown: 3603 case OMPC_update: 3604 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3605 break; 3606 case OMPC_capture: 3607 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3608 IsXLHSInRHSPart, Loc); 3609 break; 3610 case OMPC_if: 3611 case OMPC_final: 3612 case OMPC_num_threads: 3613 case OMPC_private: 3614 case OMPC_firstprivate: 3615 case OMPC_lastprivate: 3616 case OMPC_reduction: 3617 case OMPC_task_reduction: 3618 case OMPC_in_reduction: 3619 case OMPC_safelen: 3620 case OMPC_simdlen: 3621 case OMPC_collapse: 3622 case OMPC_default: 3623 case OMPC_seq_cst: 3624 case OMPC_shared: 3625 case OMPC_linear: 3626 case OMPC_aligned: 3627 case OMPC_copyin: 3628 case OMPC_copyprivate: 3629 case OMPC_flush: 3630 case OMPC_proc_bind: 3631 case OMPC_schedule: 3632 case OMPC_ordered: 3633 case OMPC_nowait: 3634 case OMPC_untied: 3635 case OMPC_threadprivate: 3636 case OMPC_depend: 3637 case OMPC_mergeable: 3638 case OMPC_device: 3639 case OMPC_threads: 3640 case OMPC_simd: 3641 case OMPC_map: 3642 case OMPC_num_teams: 3643 case OMPC_thread_limit: 3644 case OMPC_priority: 3645 case OMPC_grainsize: 3646 case OMPC_nogroup: 3647 case OMPC_num_tasks: 3648 case OMPC_hint: 3649 case OMPC_dist_schedule: 3650 case OMPC_defaultmap: 3651 case OMPC_uniform: 3652 case OMPC_to: 3653 case OMPC_from: 3654 case OMPC_use_device_ptr: 3655 case OMPC_is_device_ptr: 3656 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3657 } 3658 } 3659 3660 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3661 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3662 OpenMPClauseKind Kind = OMPC_unknown; 3663 for (auto *C : S.clauses()) { 3664 // Find first clause (skip seq_cst clause, if it is first). 3665 if (C->getClauseKind() != OMPC_seq_cst) { 3666 Kind = C->getClauseKind(); 3667 break; 3668 } 3669 } 3670 3671 const auto *CS = 3672 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3673 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3674 enterFullExpression(EWC); 3675 } 3676 // Processing for statements under 'atomic capture'. 3677 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3678 for (const auto *C : Compound->body()) { 3679 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3680 enterFullExpression(EWC); 3681 } 3682 } 3683 } 3684 3685 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3686 PrePostActionTy &) { 3687 CGF.EmitStopPoint(CS); 3688 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3689 S.getV(), S.getExpr(), S.getUpdateExpr(), 3690 S.isXLHSInRHSPart(), S.getLocStart()); 3691 }; 3692 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3693 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3694 } 3695 3696 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3697 const OMPExecutableDirective &S, 3698 const RegionCodeGenTy &CodeGen) { 3699 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3700 CodeGenModule &CGM = CGF.CGM; 3701 const CapturedStmt &CS = *S.getCapturedStmt(OMPD_target); 3702 3703 llvm::Function *Fn = nullptr; 3704 llvm::Constant *FnID = nullptr; 3705 3706 const Expr *IfCond = nullptr; 3707 // Check for the at most one if clause associated with the target region. 3708 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3709 if (C->getNameModifier() == OMPD_unknown || 3710 C->getNameModifier() == OMPD_target) { 3711 IfCond = C->getCondition(); 3712 break; 3713 } 3714 } 3715 3716 // Check if we have any device clause associated with the directive. 3717 const Expr *Device = nullptr; 3718 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3719 Device = C->getDevice(); 3720 } 3721 3722 // Check if we have an if clause whose conditional always evaluates to false 3723 // or if we do not have any targets specified. If so the target region is not 3724 // an offload entry point. 3725 bool IsOffloadEntry = true; 3726 if (IfCond) { 3727 bool Val; 3728 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3729 IsOffloadEntry = false; 3730 } 3731 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3732 IsOffloadEntry = false; 3733 3734 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3735 StringRef ParentName; 3736 // In case we have Ctors/Dtors we use the complete type variant to produce 3737 // the mangling of the device outlined kernel. 3738 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3739 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3740 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3741 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3742 else 3743 ParentName = 3744 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3745 3746 // Emit target region as a standalone region. 3747 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3748 IsOffloadEntry, CodeGen); 3749 OMPLexicalScope Scope(CGF, S); 3750 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3751 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); 3752 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 3753 CapturedVars); 3754 } 3755 3756 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3757 PrePostActionTy &Action) { 3758 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3759 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3760 CGF.EmitOMPPrivateClause(S, PrivateScope); 3761 (void)PrivateScope.Privatize(); 3762 3763 Action.Enter(CGF); 3764 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3765 } 3766 3767 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3768 StringRef ParentName, 3769 const OMPTargetDirective &S) { 3770 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3771 emitTargetRegion(CGF, S, Action); 3772 }; 3773 llvm::Function *Fn; 3774 llvm::Constant *Addr; 3775 // Emit target region as a standalone region. 3776 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3777 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3778 assert(Fn && Addr && "Target device function emission failed."); 3779 } 3780 3781 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3782 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3783 emitTargetRegion(CGF, S, Action); 3784 }; 3785 emitCommonOMPTargetDirective(*this, S, CodeGen); 3786 } 3787 3788 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3789 const OMPExecutableDirective &S, 3790 OpenMPDirectiveKind InnermostKind, 3791 const RegionCodeGenTy &CodeGen) { 3792 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 3793 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 3794 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3795 3796 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 3797 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 3798 if (NT || TL) { 3799 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3800 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3801 3802 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3803 S.getLocStart()); 3804 } 3805 3806 OMPTeamsScope Scope(CGF, S); 3807 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3808 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3809 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3810 CapturedVars); 3811 } 3812 3813 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3814 // Emit teams region as a standalone region. 3815 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3816 OMPPrivateScope PrivateScope(CGF); 3817 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3818 CGF.EmitOMPPrivateClause(S, PrivateScope); 3819 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3820 (void)PrivateScope.Privatize(); 3821 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3822 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3823 }; 3824 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 3825 emitPostUpdateForReductionClause( 3826 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 3827 } 3828 3829 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 3830 const OMPTargetTeamsDirective &S) { 3831 auto *CS = S.getCapturedStmt(OMPD_teams); 3832 Action.Enter(CGF); 3833 // Emit teams region as a standalone region. 3834 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 3835 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3836 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3837 CGF.EmitOMPPrivateClause(S, PrivateScope); 3838 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3839 (void)PrivateScope.Privatize(); 3840 Action.Enter(CGF); 3841 CGF.EmitStmt(CS->getCapturedStmt()); 3842 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3843 }; 3844 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 3845 emitPostUpdateForReductionClause( 3846 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 3847 } 3848 3849 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 3850 CodeGenModule &CGM, StringRef ParentName, 3851 const OMPTargetTeamsDirective &S) { 3852 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3853 emitTargetTeamsRegion(CGF, Action, S); 3854 }; 3855 llvm::Function *Fn; 3856 llvm::Constant *Addr; 3857 // Emit target region as a standalone region. 3858 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3859 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3860 assert(Fn && Addr && "Target device function emission failed."); 3861 } 3862 3863 void CodeGenFunction::EmitOMPTargetTeamsDirective( 3864 const OMPTargetTeamsDirective &S) { 3865 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3866 emitTargetTeamsRegion(CGF, Action, S); 3867 }; 3868 emitCommonOMPTargetDirective(*this, S, CodeGen); 3869 } 3870 3871 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 3872 const OMPTeamsDistributeDirective &S) { 3873 3874 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3875 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3876 }; 3877 3878 // Emit teams region as a standalone region. 3879 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 3880 PrePostActionTy &) { 3881 OMPPrivateScope PrivateScope(CGF); 3882 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3883 (void)PrivateScope.Privatize(); 3884 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 3885 CodeGenDistribute); 3886 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3887 }; 3888 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3889 emitPostUpdateForReductionClause(*this, S, 3890 [](CodeGenFunction &) { return nullptr; }); 3891 } 3892 3893 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 3894 const OMPTeamsDistributeParallelForDirective &S) { 3895 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3896 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3897 S.getDistInc()); 3898 }; 3899 3900 // Emit teams region as a standalone region. 3901 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 3902 PrePostActionTy &) { 3903 OMPPrivateScope PrivateScope(CGF); 3904 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3905 (void)PrivateScope.Privatize(); 3906 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 3907 CodeGenDistribute); 3908 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 3909 }; 3910 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 3911 emitPostUpdateForReductionClause(*this, S, 3912 [](CodeGenFunction &) { return nullptr; }); 3913 } 3914 3915 void CodeGenFunction::EmitOMPCancellationPointDirective( 3916 const OMPCancellationPointDirective &S) { 3917 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3918 S.getCancelRegion()); 3919 } 3920 3921 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3922 const Expr *IfCond = nullptr; 3923 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3924 if (C->getNameModifier() == OMPD_unknown || 3925 C->getNameModifier() == OMPD_cancel) { 3926 IfCond = C->getCondition(); 3927 break; 3928 } 3929 } 3930 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3931 S.getCancelRegion()); 3932 } 3933 3934 CodeGenFunction::JumpDest 3935 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3936 if (Kind == OMPD_parallel || Kind == OMPD_task || 3937 Kind == OMPD_target_parallel) 3938 return ReturnBlock; 3939 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3940 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 3941 Kind == OMPD_distribute_parallel_for || 3942 Kind == OMPD_target_parallel_for); 3943 return OMPCancelStack.getExitBlock(); 3944 } 3945 3946 void CodeGenFunction::EmitOMPUseDevicePtrClause( 3947 const OMPClause &NC, OMPPrivateScope &PrivateScope, 3948 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 3949 const auto &C = cast<OMPUseDevicePtrClause>(NC); 3950 auto OrigVarIt = C.varlist_begin(); 3951 auto InitIt = C.inits().begin(); 3952 for (auto PvtVarIt : C.private_copies()) { 3953 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 3954 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 3955 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 3956 3957 // In order to identify the right initializer we need to match the 3958 // declaration used by the mapping logic. In some cases we may get 3959 // OMPCapturedExprDecl that refers to the original declaration. 3960 const ValueDecl *MatchingVD = OrigVD; 3961 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 3962 // OMPCapturedExprDecl are used to privative fields of the current 3963 // structure. 3964 auto *ME = cast<MemberExpr>(OED->getInit()); 3965 assert(isa<CXXThisExpr>(ME->getBase()) && 3966 "Base should be the current struct!"); 3967 MatchingVD = ME->getMemberDecl(); 3968 } 3969 3970 // If we don't have information about the current list item, move on to 3971 // the next one. 3972 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 3973 if (InitAddrIt == CaptureDeviceAddrMap.end()) 3974 continue; 3975 3976 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 3977 // Initialize the temporary initialization variable with the address we 3978 // get from the runtime library. We have to cast the source address 3979 // because it is always a void *. References are materialized in the 3980 // privatization scope, so the initialization here disregards the fact 3981 // the original variable is a reference. 3982 QualType AddrQTy = 3983 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 3984 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 3985 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 3986 setAddrOfLocalVar(InitVD, InitAddr); 3987 3988 // Emit private declaration, it will be initialized by the value we 3989 // declaration we just added to the local declarations map. 3990 EmitDecl(*PvtVD); 3991 3992 // The initialization variables reached its purpose in the emission 3993 // ofthe previous declaration, so we don't need it anymore. 3994 LocalDeclMap.erase(InitVD); 3995 3996 // Return the address of the private variable. 3997 return GetAddrOfLocalVar(PvtVD); 3998 }); 3999 assert(IsRegistered && "firstprivate var already registered as private"); 4000 // Silence the warning about unused variable. 4001 (void)IsRegistered; 4002 4003 ++OrigVarIt; 4004 ++InitIt; 4005 } 4006 } 4007 4008 // Generate the instructions for '#pragma omp target data' directive. 4009 void CodeGenFunction::EmitOMPTargetDataDirective( 4010 const OMPTargetDataDirective &S) { 4011 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4012 4013 // Create a pre/post action to signal the privatization of the device pointer. 4014 // This action can be replaced by the OpenMP runtime code generation to 4015 // deactivate privatization. 4016 bool PrivatizeDevicePointers = false; 4017 class DevicePointerPrivActionTy : public PrePostActionTy { 4018 bool &PrivatizeDevicePointers; 4019 4020 public: 4021 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4022 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4023 void Enter(CodeGenFunction &CGF) override { 4024 PrivatizeDevicePointers = true; 4025 } 4026 }; 4027 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4028 4029 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4030 CodeGenFunction &CGF, PrePostActionTy &Action) { 4031 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4032 CGF.EmitStmt( 4033 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 4034 }; 4035 4036 // Codegen that selects wheather to generate the privatization code or not. 4037 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4038 &InnermostCodeGen](CodeGenFunction &CGF, 4039 PrePostActionTy &Action) { 4040 RegionCodeGenTy RCG(InnermostCodeGen); 4041 PrivatizeDevicePointers = false; 4042 4043 // Call the pre-action to change the status of PrivatizeDevicePointers if 4044 // needed. 4045 Action.Enter(CGF); 4046 4047 if (PrivatizeDevicePointers) { 4048 OMPPrivateScope PrivateScope(CGF); 4049 // Emit all instances of the use_device_ptr clause. 4050 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4051 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4052 Info.CaptureDeviceAddrMap); 4053 (void)PrivateScope.Privatize(); 4054 RCG(CGF); 4055 } else 4056 RCG(CGF); 4057 }; 4058 4059 // Forward the provided action to the privatization codegen. 4060 RegionCodeGenTy PrivRCG(PrivCodeGen); 4061 PrivRCG.setAction(Action); 4062 4063 // Notwithstanding the body of the region is emitted as inlined directive, 4064 // we don't use an inline scope as changes in the references inside the 4065 // region are expected to be visible outside, so we do not privative them. 4066 OMPLexicalScope Scope(CGF, S); 4067 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4068 PrivRCG); 4069 }; 4070 4071 RegionCodeGenTy RCG(CodeGen); 4072 4073 // If we don't have target devices, don't bother emitting the data mapping 4074 // code. 4075 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4076 RCG(*this); 4077 return; 4078 } 4079 4080 // Check if we have any if clause associated with the directive. 4081 const Expr *IfCond = nullptr; 4082 if (auto *C = S.getSingleClause<OMPIfClause>()) 4083 IfCond = C->getCondition(); 4084 4085 // Check if we have any device clause associated with the directive. 4086 const Expr *Device = nullptr; 4087 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4088 Device = C->getDevice(); 4089 4090 // Set the action to signal privatization of device pointers. 4091 RCG.setAction(PrivAction); 4092 4093 // Emit region code. 4094 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4095 Info); 4096 } 4097 4098 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4099 const OMPTargetEnterDataDirective &S) { 4100 // If we don't have target devices, don't bother emitting the data mapping 4101 // code. 4102 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4103 return; 4104 4105 // Check if we have any if clause associated with the directive. 4106 const Expr *IfCond = nullptr; 4107 if (auto *C = S.getSingleClause<OMPIfClause>()) 4108 IfCond = C->getCondition(); 4109 4110 // Check if we have any device clause associated with the directive. 4111 const Expr *Device = nullptr; 4112 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4113 Device = C->getDevice(); 4114 4115 auto &&CodeGen = [&S, IfCond, Device](CodeGenFunction &CGF, 4116 PrePostActionTy &) { 4117 CGF.CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(CGF, S, IfCond, 4118 Device); 4119 }; 4120 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4121 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_enter_data, 4122 CodeGen); 4123 } 4124 4125 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4126 const OMPTargetExitDataDirective &S) { 4127 // If we don't have target devices, don't bother emitting the data mapping 4128 // code. 4129 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4130 return; 4131 4132 // Check if we have any if clause associated with the directive. 4133 const Expr *IfCond = nullptr; 4134 if (auto *C = S.getSingleClause<OMPIfClause>()) 4135 IfCond = C->getCondition(); 4136 4137 // Check if we have any device clause associated with the directive. 4138 const Expr *Device = nullptr; 4139 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4140 Device = C->getDevice(); 4141 4142 auto &&CodeGen = [&S, IfCond, Device](CodeGenFunction &CGF, 4143 PrePostActionTy &) { 4144 CGF.CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(CGF, S, IfCond, 4145 Device); 4146 }; 4147 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4148 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_exit_data, 4149 CodeGen); 4150 } 4151 4152 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4153 const OMPTargetParallelDirective &S, 4154 PrePostActionTy &Action) { 4155 // Get the captured statement associated with the 'parallel' region. 4156 auto *CS = S.getCapturedStmt(OMPD_parallel); 4157 Action.Enter(CGF); 4158 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) { 4159 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4160 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4161 CGF.EmitOMPPrivateClause(S, PrivateScope); 4162 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4163 (void)PrivateScope.Privatize(); 4164 // TODO: Add support for clauses. 4165 CGF.EmitStmt(CS->getCapturedStmt()); 4166 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4167 }; 4168 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4169 emitEmptyBoundParameters); 4170 emitPostUpdateForReductionClause( 4171 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4172 } 4173 4174 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4175 CodeGenModule &CGM, StringRef ParentName, 4176 const OMPTargetParallelDirective &S) { 4177 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4178 emitTargetParallelRegion(CGF, S, Action); 4179 }; 4180 llvm::Function *Fn; 4181 llvm::Constant *Addr; 4182 // Emit target region as a standalone region. 4183 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4184 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4185 assert(Fn && Addr && "Target device function emission failed."); 4186 } 4187 4188 void CodeGenFunction::EmitOMPTargetParallelDirective( 4189 const OMPTargetParallelDirective &S) { 4190 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4191 emitTargetParallelRegion(CGF, S, Action); 4192 }; 4193 emitCommonOMPTargetDirective(*this, S, CodeGen); 4194 } 4195 4196 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4197 const OMPTargetParallelForDirective &S, 4198 PrePostActionTy &Action) { 4199 Action.Enter(CGF); 4200 // Emit directive as a combined directive that consists of two implicit 4201 // directives: 'parallel' with 'for' directive. 4202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4203 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4204 CGF, OMPD_target_parallel_for, S.hasCancel()); 4205 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4206 emitDispatchForLoopBounds); 4207 }; 4208 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4209 emitEmptyBoundParameters); 4210 } 4211 4212 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4213 CodeGenModule &CGM, StringRef ParentName, 4214 const OMPTargetParallelForDirective &S) { 4215 // Emit SPMD target parallel for region as a standalone region. 4216 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4217 emitTargetParallelForRegion(CGF, S, Action); 4218 }; 4219 llvm::Function *Fn; 4220 llvm::Constant *Addr; 4221 // Emit target region as a standalone region. 4222 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4223 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4224 assert(Fn && Addr && "Target device function emission failed."); 4225 } 4226 4227 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4228 const OMPTargetParallelForDirective &S) { 4229 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4230 emitTargetParallelForRegion(CGF, S, Action); 4231 }; 4232 emitCommonOMPTargetDirective(*this, S, CodeGen); 4233 } 4234 4235 static void 4236 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4237 const OMPTargetParallelForSimdDirective &S, 4238 PrePostActionTy &Action) { 4239 Action.Enter(CGF); 4240 // Emit directive as a combined directive that consists of two implicit 4241 // directives: 'parallel' with 'for' directive. 4242 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4243 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4244 emitDispatchForLoopBounds); 4245 }; 4246 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4247 emitEmptyBoundParameters); 4248 } 4249 4250 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4251 CodeGenModule &CGM, StringRef ParentName, 4252 const OMPTargetParallelForSimdDirective &S) { 4253 // Emit SPMD target parallel for region as a standalone region. 4254 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4255 emitTargetParallelForSimdRegion(CGF, S, Action); 4256 }; 4257 llvm::Function *Fn; 4258 llvm::Constant *Addr; 4259 // Emit target region as a standalone region. 4260 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4261 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4262 assert(Fn && Addr && "Target device function emission failed."); 4263 } 4264 4265 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4266 const OMPTargetParallelForSimdDirective &S) { 4267 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4268 emitTargetParallelForSimdRegion(CGF, S, Action); 4269 }; 4270 emitCommonOMPTargetDirective(*this, S, CodeGen); 4271 } 4272 4273 /// Emit a helper variable and return corresponding lvalue. 4274 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4275 const ImplicitParamDecl *PVD, 4276 CodeGenFunction::OMPPrivateScope &Privates) { 4277 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4278 Privates.addPrivate( 4279 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 4280 } 4281 4282 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4283 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4284 // Emit outlined function for task construct. 4285 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 4286 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 4287 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4288 const Expr *IfCond = nullptr; 4289 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4290 if (C->getNameModifier() == OMPD_unknown || 4291 C->getNameModifier() == OMPD_taskloop) { 4292 IfCond = C->getCondition(); 4293 break; 4294 } 4295 } 4296 4297 OMPTaskDataTy Data; 4298 // Check if taskloop must be emitted without taskgroup. 4299 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4300 // TODO: Check if we should emit tied or untied task. 4301 Data.Tied = true; 4302 // Set scheduling for taskloop 4303 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4304 // grainsize clause 4305 Data.Schedule.setInt(/*IntVal=*/false); 4306 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4307 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4308 // num_tasks clause 4309 Data.Schedule.setInt(/*IntVal=*/true); 4310 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4311 } 4312 4313 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4314 // if (PreCond) { 4315 // for (IV in 0..LastIteration) BODY; 4316 // <Final counter/linear vars updates>; 4317 // } 4318 // 4319 4320 // Emit: if (PreCond) - begin. 4321 // If the condition constant folds and can be elided, avoid emitting the 4322 // whole loop. 4323 bool CondConstant; 4324 llvm::BasicBlock *ContBlock = nullptr; 4325 OMPLoopScope PreInitScope(CGF, S); 4326 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4327 if (!CondConstant) 4328 return; 4329 } else { 4330 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4331 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4332 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4333 CGF.getProfileCount(&S)); 4334 CGF.EmitBlock(ThenBlock); 4335 CGF.incrementProfileCounter(&S); 4336 } 4337 4338 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4339 CGF.EmitOMPSimdInit(S); 4340 4341 OMPPrivateScope LoopScope(CGF); 4342 // Emit helper vars inits. 4343 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4344 auto *I = CS->getCapturedDecl()->param_begin(); 4345 auto *LBP = std::next(I, LowerBound); 4346 auto *UBP = std::next(I, UpperBound); 4347 auto *STP = std::next(I, Stride); 4348 auto *LIP = std::next(I, LastIter); 4349 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4350 LoopScope); 4351 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4352 LoopScope); 4353 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4354 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4355 LoopScope); 4356 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4357 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4358 (void)LoopScope.Privatize(); 4359 // Emit the loop iteration variable. 4360 const Expr *IVExpr = S.getIterationVariable(); 4361 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4362 CGF.EmitVarDecl(*IVDecl); 4363 CGF.EmitIgnoredExpr(S.getInit()); 4364 4365 // Emit the iterations count variable. 4366 // If it is not a variable, Sema decided to calculate iterations count on 4367 // each iteration (e.g., it is foldable into a constant). 4368 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4369 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4370 // Emit calculation of the iterations count. 4371 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4372 } 4373 4374 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4375 S.getInc(), 4376 [&S](CodeGenFunction &CGF) { 4377 CGF.EmitOMPLoopBody(S, JumpDest()); 4378 CGF.EmitStopPoint(&S); 4379 }, 4380 [](CodeGenFunction &) {}); 4381 // Emit: if (PreCond) - end. 4382 if (ContBlock) { 4383 CGF.EmitBranch(ContBlock); 4384 CGF.EmitBlock(ContBlock, true); 4385 } 4386 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4387 if (HasLastprivateClause) { 4388 CGF.EmitOMPLastprivateClauseFinal( 4389 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4390 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4391 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4392 (*LIP)->getType(), S.getLocStart()))); 4393 } 4394 }; 4395 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4396 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4397 const OMPTaskDataTy &Data) { 4398 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4399 OMPLoopScope PreInitScope(CGF, S); 4400 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4401 OutlinedFn, SharedsTy, 4402 CapturedStruct, IfCond, Data); 4403 }; 4404 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4405 CodeGen); 4406 }; 4407 if (Data.Nogroup) 4408 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4409 else { 4410 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4411 *this, 4412 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4413 PrePostActionTy &Action) { 4414 Action.Enter(CGF); 4415 CGF.EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4416 }, 4417 S.getLocStart()); 4418 } 4419 } 4420 4421 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4422 EmitOMPTaskLoopBasedDirective(S); 4423 } 4424 4425 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4426 const OMPTaskLoopSimdDirective &S) { 4427 EmitOMPTaskLoopBasedDirective(S); 4428 } 4429 4430 // Generate the instructions for '#pragma omp target update' directive. 4431 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4432 const OMPTargetUpdateDirective &S) { 4433 // If we don't have target devices, don't bother emitting the data mapping 4434 // code. 4435 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4436 return; 4437 4438 // Check if we have any if clause associated with the directive. 4439 const Expr *IfCond = nullptr; 4440 if (auto *C = S.getSingleClause<OMPIfClause>()) 4441 IfCond = C->getCondition(); 4442 4443 // Check if we have any device clause associated with the directive. 4444 const Expr *Device = nullptr; 4445 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4446 Device = C->getDevice(); 4447 4448 auto &&CodeGen = [&S, IfCond, Device](CodeGenFunction &CGF, 4449 PrePostActionTy &) { 4450 CGF.CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(CGF, S, IfCond, 4451 Device); 4452 }; 4453 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4454 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_update, 4455 CodeGen); 4456 } 4457