1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 using namespace clang; 21 using namespace CodeGen; 22 23 //===----------------------------------------------------------------------===// 24 // OpenMP Directive Emission 25 //===----------------------------------------------------------------------===// 26 void CodeGenFunction::EmitOMPAggregateAssign( 27 llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType, 28 const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) { 29 // Perform element-by-element initialization. 30 QualType ElementTy; 31 auto SrcBegin = SrcAddr; 32 auto DestBegin = DestAddr; 33 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 34 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin); 35 // Cast from pointer to array type to pointer to single element. 36 SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin, 37 DestBegin->getType()); 38 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 39 // The basic structure here is a while-do loop. 40 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 41 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 42 auto IsEmpty = 43 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 44 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 45 46 // Enter the loop body, making that address the current address. 47 auto EntryBB = Builder.GetInsertBlock(); 48 EmitBlock(BodyBB); 49 auto SrcElementCurrent = 50 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 51 SrcElementCurrent->addIncoming(SrcBegin, EntryBB); 52 auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2, 53 "omp.arraycpy.destElementPast"); 54 DestElementCurrent->addIncoming(DestBegin, EntryBB); 55 56 // Emit copy. 57 CopyGen(DestElementCurrent, SrcElementCurrent); 58 59 // Shift the address forward by one element. 60 auto DestElementNext = Builder.CreateConstGEP1_32( 61 DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element"); 62 auto SrcElementNext = Builder.CreateConstGEP1_32( 63 SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element"); 64 // Check whether we've reached the end. 65 auto Done = 66 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 67 Builder.CreateCondBr(Done, DoneBB, BodyBB); 68 DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock()); 69 SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 70 71 // Done. 72 EmitBlock(DoneBB, /*IsFinished=*/true); 73 } 74 75 void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF, 76 QualType OriginalType, llvm::Value *DestAddr, 77 llvm::Value *SrcAddr, const VarDecl *DestVD, 78 const VarDecl *SrcVD, const Expr *Copy) { 79 if (OriginalType->isArrayType()) { 80 auto *BO = dyn_cast<BinaryOperator>(Copy); 81 if (BO && BO->getOpcode() == BO_Assign) { 82 // Perform simple memcpy for simple copying. 83 CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 84 } else { 85 // For arrays with complex element types perform element by element 86 // copying. 87 CGF.EmitOMPAggregateAssign( 88 DestAddr, SrcAddr, OriginalType, 89 [&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement, 90 llvm::Value *SrcElement) { 91 // Working with the single array element, so have to remap 92 // destination and source variables to corresponding array 93 // elements. 94 CodeGenFunction::OMPPrivateScope Remap(CGF); 95 Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{ 96 return DestElement; 97 }); 98 Remap.addPrivate( 99 SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; }); 100 (void)Remap.Privatize(); 101 CGF.EmitIgnoredExpr(Copy); 102 }); 103 } 104 } else { 105 // Remap pseudo source variable to private copy. 106 CodeGenFunction::OMPPrivateScope Remap(CGF); 107 Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; }); 108 Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; }); 109 (void)Remap.Privatize(); 110 // Emit copying of the whole variable. 111 CGF.EmitIgnoredExpr(Copy); 112 } 113 } 114 115 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 116 OMPPrivateScope &PrivateScope) { 117 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 118 for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) { 119 auto *C = cast<OMPFirstprivateClause>(*I); 120 auto IRef = C->varlist_begin(); 121 auto InitsRef = C->inits().begin(); 122 for (auto IInit : C->private_copies()) { 123 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 124 if (EmittedAsFirstprivate.count(OrigVD) == 0) { 125 EmittedAsFirstprivate.insert(OrigVD); 126 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 127 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 128 bool IsRegistered; 129 DeclRefExpr DRE( 130 const_cast<VarDecl *>(OrigVD), 131 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 132 OrigVD) != nullptr, 133 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 134 auto *OriginalAddr = EmitLValue(&DRE).getAddress(); 135 QualType Type = OrigVD->getType(); 136 if (Type->isArrayType()) { 137 // Emit VarDecl with copy init for arrays. 138 // Get the address of the original variable captured in current 139 // captured region. 140 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 141 auto Emission = EmitAutoVarAlloca(*VD); 142 auto *Init = VD->getInit(); 143 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 144 // Perform simple memcpy. 145 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 146 Type); 147 } else { 148 EmitOMPAggregateAssign( 149 Emission.getAllocatedAddress(), OriginalAddr, Type, 150 [this, VDInit, Init](llvm::Value *DestElement, 151 llvm::Value *SrcElement) { 152 // Clean up any temporaries needed by the initialization. 153 RunCleanupsScope InitScope(*this); 154 // Emit initialization for single element. 155 LocalDeclMap[VDInit] = SrcElement; 156 EmitAnyExprToMem(Init, DestElement, 157 Init->getType().getQualifiers(), 158 /*IsInitializer*/ false); 159 LocalDeclMap.erase(VDInit); 160 }); 161 } 162 EmitAutoVarCleanups(Emission); 163 return Emission.getAllocatedAddress(); 164 }); 165 } else { 166 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 167 // Emit private VarDecl with copy init. 168 // Remap temp VDInit variable to the address of the original 169 // variable 170 // (for proper handling of captured global variables). 171 LocalDeclMap[VDInit] = OriginalAddr; 172 EmitDecl(*VD); 173 LocalDeclMap.erase(VDInit); 174 return GetAddrOfLocalVar(VD); 175 }); 176 } 177 assert(IsRegistered && 178 "firstprivate var already registered as private"); 179 // Silence the warning about unused variable. 180 (void)IsRegistered; 181 } 182 ++IRef, ++InitsRef; 183 } 184 } 185 return !EmittedAsFirstprivate.empty(); 186 } 187 188 void CodeGenFunction::EmitOMPPrivateClause( 189 const OMPExecutableDirective &D, 190 CodeGenFunction::OMPPrivateScope &PrivateScope) { 191 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 192 for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) { 193 auto *C = cast<OMPPrivateClause>(*I); 194 auto IRef = C->varlist_begin(); 195 for (auto IInit : C->private_copies()) { 196 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 197 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 198 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 199 bool IsRegistered = 200 PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 201 // Emit private VarDecl with copy init. 202 EmitDecl(*VD); 203 return GetAddrOfLocalVar(VD); 204 }); 205 assert(IsRegistered && "private var already registered as private"); 206 // Silence the warning about unused variable. 207 (void)IsRegistered; 208 } 209 ++IRef; 210 } 211 } 212 } 213 214 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 215 // threadprivate_var1 = master_threadprivate_var1; 216 // operator=(threadprivate_var2, master_threadprivate_var2); 217 // ... 218 // __kmpc_barrier(&loc, global_tid); 219 llvm::DenseSet<const VarDecl *> CopiedVars; 220 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 221 for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) { 222 auto *C = cast<OMPCopyinClause>(*I); 223 auto IRef = C->varlist_begin(); 224 auto ISrcRef = C->source_exprs().begin(); 225 auto IDestRef = C->destination_exprs().begin(); 226 for (auto *AssignOp : C->assignment_ops()) { 227 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 228 QualType Type = VD->getType(); 229 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 230 // Get the address of the master variable. 231 auto *MasterAddr = VD->isStaticLocal() 232 ? CGM.getStaticLocalDeclAddress(VD) 233 : CGM.GetAddrOfGlobal(VD); 234 // Get the address of the threadprivate variable. 235 auto *PrivateAddr = EmitLValue(*IRef).getAddress(); 236 if (CopiedVars.size() == 1) { 237 // At first check if current thread is a master thread. If it is, no 238 // need to copy data. 239 CopyBegin = createBasicBlock("copyin.not.master"); 240 CopyEnd = createBasicBlock("copyin.not.master.end"); 241 Builder.CreateCondBr( 242 Builder.CreateICmpNE( 243 Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy), 244 Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)), 245 CopyBegin, CopyEnd); 246 EmitBlock(CopyBegin); 247 } 248 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 249 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 250 EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD, 251 AssignOp); 252 } 253 ++IRef; 254 ++ISrcRef; 255 ++IDestRef; 256 } 257 } 258 if (CopyEnd) { 259 // Exit out of copying procedure for non-master thread. 260 EmitBlock(CopyEnd, /*IsFinished=*/true); 261 return true; 262 } 263 return false; 264 } 265 266 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 267 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 268 bool HasAtLeastOneLastprivate = false; 269 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 270 for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) { 271 HasAtLeastOneLastprivate = true; 272 auto *C = cast<OMPLastprivateClause>(*I); 273 auto IRef = C->varlist_begin(); 274 auto IDestRef = C->destination_exprs().begin(); 275 for (auto *IInit : C->private_copies()) { 276 // Keep the address of the original variable for future update at the end 277 // of the loop. 278 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 279 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 280 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 281 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{ 282 DeclRefExpr DRE( 283 const_cast<VarDecl *>(OrigVD), 284 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 285 OrigVD) != nullptr, 286 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 287 return EmitLValue(&DRE).getAddress(); 288 }); 289 // Check if the variable is also a firstprivate: in this case IInit is 290 // not generated. Initialization of this variable will happen in codegen 291 // for 'firstprivate' clause. 292 if (IInit) { 293 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 294 bool IsRegistered = 295 PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 296 // Emit private VarDecl with copy init. 297 EmitDecl(*VD); 298 return GetAddrOfLocalVar(VD); 299 }); 300 assert(IsRegistered && 301 "lastprivate var already registered as private"); 302 (void)IsRegistered; 303 } 304 } 305 ++IRef, ++IDestRef; 306 } 307 } 308 return HasAtLeastOneLastprivate; 309 } 310 311 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 312 const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) { 313 // Emit following code: 314 // if (<IsLastIterCond>) { 315 // orig_var1 = private_orig_var1; 316 // ... 317 // orig_varn = private_orig_varn; 318 // } 319 llvm::BasicBlock *ThenBB = nullptr; 320 llvm::BasicBlock *DoneBB = nullptr; 321 if (IsLastIterCond) { 322 ThenBB = createBasicBlock(".omp.lastprivate.then"); 323 DoneBB = createBasicBlock(".omp.lastprivate.done"); 324 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 325 EmitBlock(ThenBB); 326 } 327 llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates; 328 const Expr *LastIterVal = nullptr; 329 const Expr *IVExpr = nullptr; 330 const Expr *IncExpr = nullptr; 331 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 332 if (isOpenMPWorksharingDirective(D.getDirectiveKind())) { 333 LastIterVal = cast<VarDecl>(cast<DeclRefExpr>( 334 LoopDirective->getUpperBoundVariable()) 335 ->getDecl()) 336 ->getAnyInitializer(); 337 IVExpr = LoopDirective->getIterationVariable(); 338 IncExpr = LoopDirective->getInc(); 339 auto IUpdate = LoopDirective->updates().begin(); 340 for (auto *E : LoopDirective->counters()) { 341 auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 342 LoopCountersAndUpdates[D] = *IUpdate; 343 ++IUpdate; 344 } 345 } 346 } 347 { 348 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 349 bool FirstLCV = true; 350 for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) { 351 auto *C = cast<OMPLastprivateClause>(*I); 352 auto IRef = C->varlist_begin(); 353 auto ISrcRef = C->source_exprs().begin(); 354 auto IDestRef = C->destination_exprs().begin(); 355 for (auto *AssignOp : C->assignment_ops()) { 356 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 357 QualType Type = PrivateVD->getType(); 358 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 359 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 360 // If lastprivate variable is a loop control variable for loop-based 361 // directive, update its value before copyin back to original 362 // variable. 363 if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) { 364 if (FirstLCV && LastIterVal) { 365 EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(), 366 IVExpr->getType().getQualifiers(), 367 /*IsInitializer=*/false); 368 EmitIgnoredExpr(IncExpr); 369 FirstLCV = false; 370 } 371 EmitIgnoredExpr(UpExpr); 372 } 373 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 374 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 375 // Get the address of the original variable. 376 auto *OriginalAddr = GetAddrOfLocalVar(DestVD); 377 // Get the address of the private variable. 378 auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD); 379 EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, 380 AssignOp); 381 } 382 ++IRef; 383 ++ISrcRef; 384 ++IDestRef; 385 } 386 } 387 } 388 if (IsLastIterCond) { 389 EmitBlock(DoneBB, /*IsFinished=*/true); 390 } 391 } 392 393 void CodeGenFunction::EmitOMPReductionClauseInit( 394 const OMPExecutableDirective &D, 395 CodeGenFunction::OMPPrivateScope &PrivateScope) { 396 for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) { 397 auto *C = cast<OMPReductionClause>(*I); 398 auto ILHS = C->lhs_exprs().begin(); 399 auto IRHS = C->rhs_exprs().begin(); 400 for (auto IRef : C->varlists()) { 401 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 402 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 403 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 404 // Store the address of the original variable associated with the LHS 405 // implicit variable. 406 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{ 407 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 408 CapturedStmtInfo->lookup(OrigVD) != nullptr, 409 IRef->getType(), VK_LValue, IRef->getExprLoc()); 410 return EmitLValue(&DRE).getAddress(); 411 }); 412 // Emit reduction copy. 413 bool IsRegistered = 414 PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{ 415 // Emit private VarDecl with reduction init. 416 EmitDecl(*PrivateVD); 417 return GetAddrOfLocalVar(PrivateVD); 418 }); 419 assert(IsRegistered && "private var already registered as private"); 420 // Silence the warning about unused variable. 421 (void)IsRegistered; 422 ++ILHS, ++IRHS; 423 } 424 } 425 } 426 427 void CodeGenFunction::EmitOMPReductionClauseFinal( 428 const OMPExecutableDirective &D) { 429 llvm::SmallVector<const Expr *, 8> LHSExprs; 430 llvm::SmallVector<const Expr *, 8> RHSExprs; 431 llvm::SmallVector<const Expr *, 8> ReductionOps; 432 bool HasAtLeastOneReduction = false; 433 for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) { 434 HasAtLeastOneReduction = true; 435 auto *C = cast<OMPReductionClause>(*I); 436 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 437 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 438 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 439 } 440 if (HasAtLeastOneReduction) { 441 // Emit nowait reduction if nowait clause is present or directive is a 442 // parallel directive (it always has implicit barrier). 443 CGM.getOpenMPRuntime().emitReduction( 444 *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps, 445 D.getSingleClause(OMPC_nowait) || 446 isOpenMPParallelDirective(D.getDirectiveKind()) || 447 D.getDirectiveKind() == OMPD_simd, 448 D.getDirectiveKind() == OMPD_simd); 449 } 450 } 451 452 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 453 const OMPExecutableDirective &S, 454 OpenMPDirectiveKind InnermostKind, 455 const RegionCodeGenTy &CodeGen) { 456 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 457 auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS); 458 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 459 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 460 if (auto C = S.getSingleClause(OMPC_num_threads)) { 461 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 462 auto NumThreadsClause = cast<OMPNumThreadsClause>(C); 463 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 464 /*IgnoreResultAssign*/ true); 465 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 466 CGF, NumThreads, NumThreadsClause->getLocStart()); 467 } 468 if (auto *C = S.getSingleClause(OMPC_proc_bind)) { 469 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 470 auto *ProcBindClause = cast<OMPProcBindClause>(C); 471 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 472 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 473 } 474 const Expr *IfCond = nullptr; 475 if (auto C = S.getSingleClause(OMPC_if)) { 476 IfCond = cast<OMPIfClause>(C)->getCondition(); 477 } 478 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 479 CapturedStruct, IfCond); 480 } 481 482 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 483 LexicalScope Scope(*this, S.getSourceRange()); 484 // Emit parallel region as a standalone region. 485 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 486 OMPPrivateScope PrivateScope(CGF); 487 bool Copyins = CGF.EmitOMPCopyinClause(S); 488 bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope); 489 if (Copyins || Firstprivates) { 490 // Emit implicit barrier to synchronize threads and avoid data races on 491 // initialization of firstprivate variables or propagation master's thread 492 // values of threadprivate variables to local instances of that variables 493 // of all other implicit threads. 494 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 495 OMPD_unknown); 496 } 497 CGF.EmitOMPPrivateClause(S, PrivateScope); 498 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 499 (void)PrivateScope.Privatize(); 500 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 501 CGF.EmitOMPReductionClauseFinal(S); 502 // Emit implicit barrier at the end of the 'parallel' directive. 503 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 504 OMPD_unknown); 505 }; 506 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 507 } 508 509 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 510 JumpDest LoopExit) { 511 RunCleanupsScope BodyScope(*this); 512 // Update counters values on current iteration. 513 for (auto I : D.updates()) { 514 EmitIgnoredExpr(I); 515 } 516 // Update the linear variables. 517 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 518 auto *C = cast<OMPLinearClause>(*I); 519 for (auto U : C->updates()) { 520 EmitIgnoredExpr(U); 521 } 522 } 523 524 // On a continue in the body, jump to the end. 525 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 526 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 527 // Emit loop body. 528 EmitStmt(D.getBody()); 529 // The end (updates/cleanups). 530 EmitBlock(Continue.getBlock()); 531 BreakContinueStack.pop_back(); 532 // TODO: Update lastprivates if the SeparateIter flag is true. 533 // This will be implemented in a follow-up OMPLastprivateClause patch, but 534 // result should be still correct without it, as we do not make these 535 // variables private yet. 536 } 537 538 void CodeGenFunction::EmitOMPInnerLoop( 539 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 540 const Expr *IncExpr, 541 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 542 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 543 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 544 545 // Start the loop with a block that tests the condition. 546 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 547 EmitBlock(CondBlock); 548 LoopStack.push(CondBlock); 549 550 // If there are any cleanups between here and the loop-exit scope, 551 // create a block to stage a loop exit along. 552 auto ExitBlock = LoopExit.getBlock(); 553 if (RequiresCleanup) 554 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 555 556 auto LoopBody = createBasicBlock("omp.inner.for.body"); 557 558 // Emit condition. 559 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 560 if (ExitBlock != LoopExit.getBlock()) { 561 EmitBlock(ExitBlock); 562 EmitBranchThroughCleanup(LoopExit); 563 } 564 565 EmitBlock(LoopBody); 566 incrementProfileCounter(&S); 567 568 // Create a block for the increment. 569 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 570 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 571 572 BodyGen(*this); 573 574 // Emit "IV = IV + 1" and a back-edge to the condition block. 575 EmitBlock(Continue.getBlock()); 576 EmitIgnoredExpr(IncExpr); 577 PostIncGen(*this); 578 BreakContinueStack.pop_back(); 579 EmitBranch(CondBlock); 580 LoopStack.pop(); 581 // Emit the fall-through block. 582 EmitBlock(LoopExit.getBlock()); 583 } 584 585 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 586 // Emit inits for the linear variables. 587 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 588 auto *C = cast<OMPLinearClause>(*I); 589 for (auto Init : C->inits()) { 590 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 591 auto *OrigVD = cast<VarDecl>( 592 cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl()); 593 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 594 CapturedStmtInfo->lookup(OrigVD) != nullptr, 595 VD->getInit()->getType(), VK_LValue, 596 VD->getInit()->getExprLoc()); 597 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 598 EmitExprAsInit(&DRE, VD, 599 MakeAddrLValue(Emission.getAllocatedAddress(), 600 VD->getType(), Emission.Alignment), 601 /*capturedByInit=*/false); 602 EmitAutoVarCleanups(Emission); 603 } 604 // Emit the linear steps for the linear clauses. 605 // If a step is not constant, it is pre-calculated before the loop. 606 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 607 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 608 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 609 // Emit calculation of the linear step. 610 EmitIgnoredExpr(CS); 611 } 612 } 613 } 614 615 static void emitLinearClauseFinal(CodeGenFunction &CGF, 616 const OMPLoopDirective &D) { 617 // Emit the final values of the linear variables. 618 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 619 auto *C = cast<OMPLinearClause>(*I); 620 auto IC = C->varlist_begin(); 621 for (auto F : C->finals()) { 622 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 623 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 624 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 625 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 626 auto *OrigAddr = CGF.EmitLValue(&DRE).getAddress(); 627 CodeGenFunction::OMPPrivateScope VarScope(CGF); 628 VarScope.addPrivate(OrigVD, 629 [OrigAddr]() -> llvm::Value *{ return OrigAddr; }); 630 (void)VarScope.Privatize(); 631 CGF.EmitIgnoredExpr(F); 632 ++IC; 633 } 634 } 635 } 636 637 static void emitAlignedClause(CodeGenFunction &CGF, 638 const OMPExecutableDirective &D) { 639 for (auto &&I = D.getClausesOfKind(OMPC_aligned); I; ++I) { 640 auto *Clause = cast<OMPAlignedClause>(*I); 641 unsigned ClauseAlignment = 0; 642 if (auto AlignmentExpr = Clause->getAlignment()) { 643 auto AlignmentCI = 644 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 645 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 646 } 647 for (auto E : Clause->varlists()) { 648 unsigned Alignment = ClauseAlignment; 649 if (Alignment == 0) { 650 // OpenMP [2.8.1, Description] 651 // If no optional parameter is specified, implementation-defined default 652 // alignments for SIMD instructions on the target platforms are assumed. 653 Alignment = 654 CGF.getContext() 655 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 656 E->getType()->getPointeeType())) 657 .getQuantity(); 658 } 659 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 660 "alignment is not power of 2"); 661 if (Alignment != 0) { 662 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 663 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 664 } 665 } 666 } 667 } 668 669 static void emitPrivateLoopCounters(CodeGenFunction &CGF, 670 CodeGenFunction::OMPPrivateScope &LoopScope, 671 ArrayRef<Expr *> Counters) { 672 for (auto *E : Counters) { 673 auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 674 (void)LoopScope.addPrivate(VD, [&]() -> llvm::Value *{ 675 // Emit var without initialization. 676 auto VarEmission = CGF.EmitAutoVarAlloca(*VD); 677 CGF.EmitAutoVarCleanups(VarEmission); 678 return VarEmission.getAllocatedAddress(); 679 }); 680 } 681 } 682 683 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 684 const Expr *Cond, llvm::BasicBlock *TrueBlock, 685 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 686 { 687 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 688 emitPrivateLoopCounters(CGF, PreCondScope, S.counters()); 689 const VarDecl *IVDecl = 690 cast<VarDecl>(cast<DeclRefExpr>(S.getIterationVariable())->getDecl()); 691 bool IsRegistered = PreCondScope.addPrivate(IVDecl, [&]() -> llvm::Value *{ 692 // Emit var without initialization. 693 auto VarEmission = CGF.EmitAutoVarAlloca(*IVDecl); 694 CGF.EmitAutoVarCleanups(VarEmission); 695 return VarEmission.getAllocatedAddress(); 696 }); 697 assert(IsRegistered && "counter already registered as private"); 698 // Silence the warning about unused variable. 699 (void)IsRegistered; 700 (void)PreCondScope.Privatize(); 701 // Initialize internal counter to 0 to calculate initial values of real 702 // counters. 703 LValue IV = CGF.EmitLValue(S.getIterationVariable()); 704 CGF.EmitStoreOfScalar( 705 llvm::ConstantInt::getNullValue( 706 IV.getAddress()->getType()->getPointerElementType()), 707 CGF.EmitLValue(S.getIterationVariable()), /*isInit=*/true); 708 // Get initial values of real counters. 709 for (auto I : S.updates()) { 710 CGF.EmitIgnoredExpr(I); 711 } 712 } 713 // Check that loop is executed at least one time. 714 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 715 } 716 717 static void 718 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D, 719 CodeGenFunction::OMPPrivateScope &PrivateScope) { 720 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 721 auto *C = cast<OMPLinearClause>(*I); 722 for (auto *E : C->varlists()) { 723 auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 724 bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * { 725 // Emit var without initialization. 726 auto VarEmission = CGF.EmitAutoVarAlloca(*VD); 727 CGF.EmitAutoVarCleanups(VarEmission); 728 return VarEmission.getAllocatedAddress(); 729 }); 730 assert(IsRegistered && "linear var already registered as private"); 731 // Silence the warning about unused variable. 732 (void)IsRegistered; 733 } 734 } 735 } 736 737 static void emitSafelenClause(CodeGenFunction &CGF, 738 const OMPExecutableDirective &D) { 739 if (auto *C = 740 cast_or_null<OMPSafelenClause>(D.getSingleClause(OMPC_safelen))) { 741 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 742 /*ignoreResult=*/true); 743 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 744 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 745 // In presence of finite 'safelen', it may be unsafe to mark all 746 // the memory instructions parallel, because loop-carried 747 // dependences of 'safelen' iterations are possible. 748 CGF.LoopStack.setParallel(false); 749 } 750 } 751 752 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 753 // Walk clauses and process safelen/lastprivate. 754 LoopStack.setParallel(); 755 LoopStack.setVectorizeEnable(true); 756 emitSafelenClause(*this, D); 757 } 758 759 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) { 760 auto IC = D.counters().begin(); 761 for (auto F : D.finals()) { 762 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 763 if (LocalDeclMap.lookup(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) { 764 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 765 CapturedStmtInfo->lookup(OrigVD) != nullptr, 766 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 767 auto *OrigAddr = EmitLValue(&DRE).getAddress(); 768 OMPPrivateScope VarScope(*this); 769 VarScope.addPrivate(OrigVD, 770 [OrigAddr]() -> llvm::Value *{ return OrigAddr; }); 771 (void)VarScope.Privatize(); 772 EmitIgnoredExpr(F); 773 } 774 ++IC; 775 } 776 emitLinearClauseFinal(*this, D); 777 } 778 779 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 780 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 781 // if (PreCond) { 782 // for (IV in 0..LastIteration) BODY; 783 // <Final counter/linear vars updates>; 784 // } 785 // 786 787 // Emit: if (PreCond) - begin. 788 // If the condition constant folds and can be elided, avoid emitting the 789 // whole loop. 790 bool CondConstant; 791 llvm::BasicBlock *ContBlock = nullptr; 792 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 793 if (!CondConstant) 794 return; 795 } else { 796 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 797 ContBlock = CGF.createBasicBlock("simd.if.end"); 798 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 799 CGF.getProfileCount(&S)); 800 CGF.EmitBlock(ThenBlock); 801 CGF.incrementProfileCounter(&S); 802 } 803 804 // Emit the loop iteration variable. 805 const Expr *IVExpr = S.getIterationVariable(); 806 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 807 CGF.EmitVarDecl(*IVDecl); 808 CGF.EmitIgnoredExpr(S.getInit()); 809 810 // Emit the iterations count variable. 811 // If it is not a variable, Sema decided to calculate iterations count on 812 // each iteration (e.g., it is foldable into a constant). 813 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 814 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 815 // Emit calculation of the iterations count. 816 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 817 } 818 819 CGF.EmitOMPSimdInit(S); 820 821 emitAlignedClause(CGF, S); 822 CGF.EmitOMPLinearClauseInit(S); 823 bool HasLastprivateClause; 824 { 825 OMPPrivateScope LoopScope(CGF); 826 emitPrivateLoopCounters(CGF, LoopScope, S.counters()); 827 emitPrivateLinearVars(CGF, S, LoopScope); 828 CGF.EmitOMPPrivateClause(S, LoopScope); 829 CGF.EmitOMPReductionClauseInit(S, LoopScope); 830 HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 831 (void)LoopScope.Privatize(); 832 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 833 S.getInc(), 834 [&S](CodeGenFunction &CGF) { 835 CGF.EmitOMPLoopBody(S, JumpDest()); 836 CGF.EmitStopPoint(&S); 837 }, 838 [](CodeGenFunction &) {}); 839 // Emit final copy of the lastprivate variables at the end of loops. 840 if (HasLastprivateClause) { 841 CGF.EmitOMPLastprivateClauseFinal(S); 842 } 843 CGF.EmitOMPReductionClauseFinal(S); 844 } 845 CGF.EmitOMPSimdFinal(S); 846 // Emit: if (PreCond) - end. 847 if (ContBlock) { 848 CGF.EmitBranch(ContBlock); 849 CGF.EmitBlock(ContBlock, true); 850 } 851 }; 852 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 853 } 854 855 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 856 const OMPLoopDirective &S, 857 OMPPrivateScope &LoopScope, 858 bool Ordered, llvm::Value *LB, 859 llvm::Value *UB, llvm::Value *ST, 860 llvm::Value *IL, llvm::Value *Chunk) { 861 auto &RT = CGM.getOpenMPRuntime(); 862 863 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 864 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind); 865 866 assert((Ordered || 867 !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) && 868 "static non-chunked schedule does not need outer loop"); 869 870 // Emit outer loop. 871 // 872 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 873 // When schedule(dynamic,chunk_size) is specified, the iterations are 874 // distributed to threads in the team in chunks as the threads request them. 875 // Each thread executes a chunk of iterations, then requests another chunk, 876 // until no chunks remain to be distributed. Each chunk contains chunk_size 877 // iterations, except for the last chunk to be distributed, which may have 878 // fewer iterations. When no chunk_size is specified, it defaults to 1. 879 // 880 // When schedule(guided,chunk_size) is specified, the iterations are assigned 881 // to threads in the team in chunks as the executing threads request them. 882 // Each thread executes a chunk of iterations, then requests another chunk, 883 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 884 // each chunk is proportional to the number of unassigned iterations divided 885 // by the number of threads in the team, decreasing to 1. For a chunk_size 886 // with value k (greater than 1), the size of each chunk is determined in the 887 // same way, with the restriction that the chunks do not contain fewer than k 888 // iterations (except for the last chunk to be assigned, which may have fewer 889 // than k iterations). 890 // 891 // When schedule(auto) is specified, the decision regarding scheduling is 892 // delegated to the compiler and/or runtime system. The programmer gives the 893 // implementation the freedom to choose any possible mapping of iterations to 894 // threads in the team. 895 // 896 // When schedule(runtime) is specified, the decision regarding scheduling is 897 // deferred until run time, and the schedule and chunk size are taken from the 898 // run-sched-var ICV. If the ICV is set to auto, the schedule is 899 // implementation defined 900 // 901 // while(__kmpc_dispatch_next(&LB, &UB)) { 902 // idx = LB; 903 // while (idx <= UB) { BODY; ++idx; 904 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 905 // } // inner loop 906 // } 907 // 908 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 909 // When schedule(static, chunk_size) is specified, iterations are divided into 910 // chunks of size chunk_size, and the chunks are assigned to the threads in 911 // the team in a round-robin fashion in the order of the thread number. 912 // 913 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 914 // while (idx <= UB) { BODY; ++idx; } // inner loop 915 // LB = LB + ST; 916 // UB = UB + ST; 917 // } 918 // 919 920 const Expr *IVExpr = S.getIterationVariable(); 921 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 922 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 923 924 RT.emitForInit( 925 *this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB, 926 (DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal() 927 : UB), 928 ST, Chunk); 929 930 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 931 932 // Start the loop with a block that tests the condition. 933 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 934 EmitBlock(CondBlock); 935 LoopStack.push(CondBlock); 936 937 llvm::Value *BoolCondVal = nullptr; 938 if (!DynamicOrOrdered) { 939 // UB = min(UB, GlobalUB) 940 EmitIgnoredExpr(S.getEnsureUpperBound()); 941 // IV = LB 942 EmitIgnoredExpr(S.getInit()); 943 // IV < UB 944 BoolCondVal = EvaluateExprAsBool(S.getCond()); 945 } else { 946 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, 947 IL, LB, UB, ST); 948 } 949 950 // If there are any cleanups between here and the loop-exit scope, 951 // create a block to stage a loop exit along. 952 auto ExitBlock = LoopExit.getBlock(); 953 if (LoopScope.requiresCleanups()) 954 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 955 956 auto LoopBody = createBasicBlock("omp.dispatch.body"); 957 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 958 if (ExitBlock != LoopExit.getBlock()) { 959 EmitBlock(ExitBlock); 960 EmitBranchThroughCleanup(LoopExit); 961 } 962 EmitBlock(LoopBody); 963 964 // Emit "IV = LB" (in case of static schedule, we have already calculated new 965 // LB for loop condition and emitted it above). 966 if (DynamicOrOrdered) 967 EmitIgnoredExpr(S.getInit()); 968 969 // Create a block for the increment. 970 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 971 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 972 973 // Generate !llvm.loop.parallel metadata for loads and stores for loops 974 // with dynamic/guided scheduling and without ordered clause. 975 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 976 LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic || 977 ScheduleKind == OMPC_SCHEDULE_guided) && 978 !Ordered); 979 } else { 980 EmitOMPSimdInit(S); 981 } 982 983 SourceLocation Loc = S.getLocStart(); 984 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 985 [&S, LoopExit](CodeGenFunction &CGF) { 986 CGF.EmitOMPLoopBody(S, LoopExit); 987 CGF.EmitStopPoint(&S); 988 }, 989 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 990 if (Ordered) { 991 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 992 CGF, Loc, IVSize, IVSigned); 993 } 994 }); 995 996 EmitBlock(Continue.getBlock()); 997 BreakContinueStack.pop_back(); 998 if (!DynamicOrOrdered) { 999 // Emit "LB = LB + Stride", "UB = UB + Stride". 1000 EmitIgnoredExpr(S.getNextLowerBound()); 1001 EmitIgnoredExpr(S.getNextUpperBound()); 1002 } 1003 1004 EmitBranch(CondBlock); 1005 LoopStack.pop(); 1006 // Emit the fall-through block. 1007 EmitBlock(LoopExit.getBlock()); 1008 1009 // Tell the runtime we are done. 1010 if (!DynamicOrOrdered) 1011 RT.emitForStaticFinish(*this, S.getLocEnd()); 1012 } 1013 1014 /// \brief Emit a helper variable and return corresponding lvalue. 1015 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1016 const DeclRefExpr *Helper) { 1017 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1018 CGF.EmitVarDecl(*VDecl); 1019 return CGF.EmitLValue(Helper); 1020 } 1021 1022 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind> 1023 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S, 1024 bool OuterRegion) { 1025 // Detect the loop schedule kind and chunk. 1026 auto ScheduleKind = OMPC_SCHEDULE_unknown; 1027 llvm::Value *Chunk = nullptr; 1028 if (auto *C = 1029 cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) { 1030 ScheduleKind = C->getScheduleKind(); 1031 if (const auto *Ch = C->getChunkSize()) { 1032 if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) { 1033 if (OuterRegion) { 1034 const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl()); 1035 CGF.EmitVarDecl(*ImpVar); 1036 CGF.EmitStoreThroughLValue( 1037 CGF.EmitAnyExpr(Ch), 1038 CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar), 1039 ImpVar->getType())); 1040 } else { 1041 Ch = ImpRef; 1042 } 1043 } 1044 if (!C->getHelperChunkSize() || !OuterRegion) { 1045 Chunk = CGF.EmitScalarExpr(Ch); 1046 Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(), 1047 S.getIterationVariable()->getType()); 1048 } 1049 } 1050 } 1051 return std::make_pair(Chunk, ScheduleKind); 1052 } 1053 1054 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1055 // Emit the loop iteration variable. 1056 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1057 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1058 EmitVarDecl(*IVDecl); 1059 1060 // Emit the iterations count variable. 1061 // If it is not a variable, Sema decided to calculate iterations count on each 1062 // iteration (e.g., it is foldable into a constant). 1063 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1064 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1065 // Emit calculation of the iterations count. 1066 EmitIgnoredExpr(S.getCalcLastIteration()); 1067 } 1068 1069 auto &RT = CGM.getOpenMPRuntime(); 1070 1071 bool HasLastprivateClause; 1072 // Check pre-condition. 1073 { 1074 // Skip the entire loop if we don't meet the precondition. 1075 // If the condition constant folds and can be elided, avoid emitting the 1076 // whole loop. 1077 bool CondConstant; 1078 llvm::BasicBlock *ContBlock = nullptr; 1079 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1080 if (!CondConstant) 1081 return false; 1082 } else { 1083 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1084 ContBlock = createBasicBlock("omp.precond.end"); 1085 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1086 getProfileCount(&S)); 1087 EmitBlock(ThenBlock); 1088 incrementProfileCounter(&S); 1089 } 1090 1091 emitAlignedClause(*this, S); 1092 EmitOMPLinearClauseInit(S); 1093 // Emit 'then' code. 1094 { 1095 // Emit helper vars inits. 1096 LValue LB = 1097 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1098 LValue UB = 1099 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1100 LValue ST = 1101 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1102 LValue IL = 1103 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1104 1105 OMPPrivateScope LoopScope(*this); 1106 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1107 // Emit implicit barrier to synchronize threads and avoid data races on 1108 // initialization of firstprivate variables. 1109 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1110 OMPD_unknown); 1111 } 1112 EmitOMPPrivateClause(S, LoopScope); 1113 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 1114 EmitOMPReductionClauseInit(S, LoopScope); 1115 emitPrivateLoopCounters(*this, LoopScope, S.counters()); 1116 emitPrivateLinearVars(*this, S, LoopScope); 1117 (void)LoopScope.Privatize(); 1118 1119 // Detect the loop schedule kind and chunk. 1120 llvm::Value *Chunk; 1121 OpenMPScheduleClauseKind ScheduleKind; 1122 auto ScheduleInfo = 1123 emitScheduleClause(*this, S, /*OuterRegion=*/false); 1124 Chunk = ScheduleInfo.first; 1125 ScheduleKind = ScheduleInfo.second; 1126 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1127 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1128 const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr; 1129 if (RT.isStaticNonchunked(ScheduleKind, 1130 /* Chunked */ Chunk != nullptr) && 1131 !Ordered) { 1132 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1133 EmitOMPSimdInit(S); 1134 } 1135 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1136 // When no chunk_size is specified, the iteration space is divided into 1137 // chunks that are approximately equal in size, and at most one chunk is 1138 // distributed to each thread. Note that the size of the chunks is 1139 // unspecified in this case. 1140 RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1141 Ordered, IL.getAddress(), LB.getAddress(), 1142 UB.getAddress(), ST.getAddress()); 1143 auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 1144 // UB = min(UB, GlobalUB); 1145 EmitIgnoredExpr(S.getEnsureUpperBound()); 1146 // IV = LB; 1147 EmitIgnoredExpr(S.getInit()); 1148 // while (idx <= UB) { BODY; ++idx; } 1149 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1150 S.getInc(), 1151 [&S, LoopExit](CodeGenFunction &CGF) { 1152 CGF.EmitOMPLoopBody(S, LoopExit); 1153 CGF.EmitStopPoint(&S); 1154 }, 1155 [](CodeGenFunction &) {}); 1156 EmitBlock(LoopExit.getBlock()); 1157 // Tell the runtime we are done. 1158 RT.emitForStaticFinish(*this, S.getLocStart()); 1159 } else { 1160 // Emit the outer loop, which requests its work chunk [LB..UB] from 1161 // runtime and runs the inner loop to process it. 1162 EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered, 1163 LB.getAddress(), UB.getAddress(), ST.getAddress(), 1164 IL.getAddress(), Chunk); 1165 } 1166 EmitOMPReductionClauseFinal(S); 1167 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1168 if (HasLastprivateClause) 1169 EmitOMPLastprivateClauseFinal( 1170 S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 1171 } 1172 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1173 EmitOMPSimdFinal(S); 1174 } 1175 // We're now done with the loop, so jump to the continuation block. 1176 if (ContBlock) { 1177 EmitBranch(ContBlock); 1178 EmitBlock(ContBlock, true); 1179 } 1180 } 1181 return HasLastprivateClause; 1182 } 1183 1184 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 1185 LexicalScope Scope(*this, S.getSourceRange()); 1186 bool HasLastprivates = false; 1187 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1188 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1189 }; 1190 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen); 1191 1192 // Emit an implicit barrier at the end. 1193 if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) { 1194 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1195 } 1196 } 1197 1198 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 1199 LexicalScope Scope(*this, S.getSourceRange()); 1200 bool HasLastprivates = false; 1201 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1202 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1203 }; 1204 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1205 1206 // Emit an implicit barrier at the end. 1207 if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) { 1208 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1209 } 1210 } 1211 1212 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 1213 const Twine &Name, 1214 llvm::Value *Init = nullptr) { 1215 auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 1216 if (Init) 1217 CGF.EmitScalarInit(Init, LVal); 1218 return LVal; 1219 } 1220 1221 OpenMPDirectiveKind 1222 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 1223 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 1224 auto *CS = dyn_cast<CompoundStmt>(Stmt); 1225 if (CS && CS->size() > 1) { 1226 bool HasLastprivates = false; 1227 auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) { 1228 auto &C = CGF.CGM.getContext(); 1229 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 1230 // Emit helper vars inits. 1231 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 1232 CGF.Builder.getInt32(0)); 1233 auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1); 1234 LValue UB = 1235 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 1236 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 1237 CGF.Builder.getInt32(1)); 1238 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 1239 CGF.Builder.getInt32(0)); 1240 // Loop counter. 1241 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 1242 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1243 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 1244 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1245 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 1246 // Generate condition for loop. 1247 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 1248 OK_Ordinary, S.getLocStart(), 1249 /*fpContractable=*/false); 1250 // Increment for loop counter. 1251 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, 1252 OK_Ordinary, S.getLocStart()); 1253 auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) { 1254 // Iterate through all sections and emit a switch construct: 1255 // switch (IV) { 1256 // case 0: 1257 // <SectionStmt[0]>; 1258 // break; 1259 // ... 1260 // case <NumSection> - 1: 1261 // <SectionStmt[<NumSection> - 1]>; 1262 // break; 1263 // } 1264 // .omp.sections.exit: 1265 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 1266 auto *SwitchStmt = CGF.Builder.CreateSwitch( 1267 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 1268 CS->size()); 1269 unsigned CaseNumber = 0; 1270 for (auto *SubStmt : CS->children()) { 1271 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 1272 CGF.EmitBlock(CaseBB); 1273 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 1274 CGF.EmitStmt(SubStmt); 1275 CGF.EmitBranch(ExitBB); 1276 ++CaseNumber; 1277 } 1278 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1279 }; 1280 1281 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1282 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 1283 // Emit implicit barrier to synchronize threads and avoid data races on 1284 // initialization of firstprivate variables. 1285 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1286 OMPD_unknown); 1287 } 1288 CGF.EmitOMPPrivateClause(S, LoopScope); 1289 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1290 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1291 (void)LoopScope.Privatize(); 1292 1293 // Emit static non-chunked loop. 1294 CGF.CGM.getOpenMPRuntime().emitForInit( 1295 CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32, 1296 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 1297 LB.getAddress(), UB.getAddress(), ST.getAddress()); 1298 // UB = min(UB, GlobalUB); 1299 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 1300 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 1301 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 1302 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 1303 // IV = LB; 1304 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 1305 // while (idx <= UB) { BODY; ++idx; } 1306 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 1307 [](CodeGenFunction &) {}); 1308 // Tell the runtime we are done. 1309 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 1310 CGF.EmitOMPReductionClauseFinal(S); 1311 1312 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1313 if (HasLastprivates) 1314 CGF.EmitOMPLastprivateClauseFinal( 1315 S, CGF.Builder.CreateIsNotNull( 1316 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 1317 }; 1318 1319 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen); 1320 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 1321 // clause. Otherwise the barrier will be generated by the codegen for the 1322 // directive. 1323 if (HasLastprivates && S.getSingleClause(OMPC_nowait)) { 1324 // Emit implicit barrier to synchronize threads and avoid data races on 1325 // initialization of firstprivate variables. 1326 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1327 OMPD_unknown); 1328 } 1329 return OMPD_sections; 1330 } 1331 // If only one section is found - no need to generate loop, emit as a single 1332 // region. 1333 bool HasFirstprivates; 1334 // No need to generate reductions for sections with single section region, we 1335 // can use original shared variables for all operations. 1336 bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty(); 1337 // No need to generate lastprivates for sections with single section region, 1338 // we can use original shared variable for all calculations with barrier at 1339 // the end of the sections. 1340 bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty(); 1341 auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) { 1342 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1343 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1344 CGF.EmitOMPPrivateClause(S, SingleScope); 1345 (void)SingleScope.Privatize(); 1346 1347 CGF.EmitStmt(Stmt); 1348 }; 1349 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1350 llvm::None, llvm::None, llvm::None, 1351 llvm::None); 1352 // Emit barrier for firstprivates, lastprivates or reductions only if 1353 // 'sections' directive has 'nowait' clause. Otherwise the barrier will be 1354 // generated by the codegen for the directive. 1355 if ((HasFirstprivates || HasLastprivates || HasReductions) && 1356 S.getSingleClause(OMPC_nowait)) { 1357 // Emit implicit barrier to synchronize threads and avoid data races on 1358 // initialization of firstprivate variables. 1359 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown); 1360 } 1361 return OMPD_single; 1362 } 1363 1364 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 1365 LexicalScope Scope(*this, S.getSourceRange()); 1366 OpenMPDirectiveKind EmittedAs = EmitSections(S); 1367 // Emit an implicit barrier at the end. 1368 if (!S.getSingleClause(OMPC_nowait)) { 1369 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs); 1370 } 1371 } 1372 1373 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 1374 LexicalScope Scope(*this, S.getSourceRange()); 1375 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1376 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1377 CGF.EnsureInsertPoint(); 1378 }; 1379 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen); 1380 } 1381 1382 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 1383 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 1384 llvm::SmallVector<const Expr *, 8> DestExprs; 1385 llvm::SmallVector<const Expr *, 8> SrcExprs; 1386 llvm::SmallVector<const Expr *, 8> AssignmentOps; 1387 // Check if there are any 'copyprivate' clauses associated with this 1388 // 'single' 1389 // construct. 1390 // Build a list of copyprivate variables along with helper expressions 1391 // (<source>, <destination>, <destination>=<source> expressions) 1392 for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) { 1393 auto *C = cast<OMPCopyprivateClause>(*I); 1394 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 1395 DestExprs.append(C->destination_exprs().begin(), 1396 C->destination_exprs().end()); 1397 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 1398 AssignmentOps.append(C->assignment_ops().begin(), 1399 C->assignment_ops().end()); 1400 } 1401 LexicalScope Scope(*this, S.getSourceRange()); 1402 // Emit code for 'single' region along with 'copyprivate' clauses 1403 bool HasFirstprivates; 1404 auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) { 1405 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1406 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1407 CGF.EmitOMPPrivateClause(S, SingleScope); 1408 (void)SingleScope.Privatize(); 1409 1410 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1411 CGF.EnsureInsertPoint(); 1412 }; 1413 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1414 CopyprivateVars, DestExprs, SrcExprs, 1415 AssignmentOps); 1416 // Emit an implicit barrier at the end (to avoid data race on firstprivate 1417 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 1418 if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) && 1419 CopyprivateVars.empty()) { 1420 CGM.getOpenMPRuntime().emitBarrierCall( 1421 *this, S.getLocStart(), 1422 S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single); 1423 } 1424 } 1425 1426 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 1427 LexicalScope Scope(*this, S.getSourceRange()); 1428 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1429 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1430 CGF.EnsureInsertPoint(); 1431 }; 1432 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 1433 } 1434 1435 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 1436 LexicalScope Scope(*this, S.getSourceRange()); 1437 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1438 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1439 CGF.EnsureInsertPoint(); 1440 }; 1441 CGM.getOpenMPRuntime().emitCriticalRegion( 1442 *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart()); 1443 } 1444 1445 void CodeGenFunction::EmitOMPParallelForDirective( 1446 const OMPParallelForDirective &S) { 1447 // Emit directive as a combined directive that consists of two implicit 1448 // directives: 'parallel' with 'for' directive. 1449 LexicalScope Scope(*this, S.getSourceRange()); 1450 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1451 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1452 CGF.EmitOMPWorksharingLoop(S); 1453 // Emit implicit barrier at the end of parallel region, but this barrier 1454 // is at the end of 'for' directive, so emit it as the implicit barrier for 1455 // this 'for' directive. 1456 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1457 OMPD_parallel); 1458 }; 1459 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 1460 } 1461 1462 void CodeGenFunction::EmitOMPParallelForSimdDirective( 1463 const OMPParallelForSimdDirective &S) { 1464 // Emit directive as a combined directive that consists of two implicit 1465 // directives: 'parallel' with 'for' directive. 1466 LexicalScope Scope(*this, S.getSourceRange()); 1467 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1468 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1469 CGF.EmitOMPWorksharingLoop(S); 1470 // Emit implicit barrier at the end of parallel region, but this barrier 1471 // is at the end of 'for' directive, so emit it as the implicit barrier for 1472 // this 'for' directive. 1473 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1474 OMPD_parallel); 1475 }; 1476 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 1477 } 1478 1479 void CodeGenFunction::EmitOMPParallelSectionsDirective( 1480 const OMPParallelSectionsDirective &S) { 1481 // Emit directive as a combined directive that consists of two implicit 1482 // directives: 'parallel' with 'sections' directive. 1483 LexicalScope Scope(*this, S.getSourceRange()); 1484 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1485 (void)CGF.EmitSections(S); 1486 // Emit implicit barrier at the end of parallel region. 1487 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1488 OMPD_parallel); 1489 }; 1490 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 1491 } 1492 1493 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 1494 // Emit outlined function for task construct. 1495 LexicalScope Scope(*this, S.getSourceRange()); 1496 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1497 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 1498 auto *I = CS->getCapturedDecl()->param_begin(); 1499 auto *PartId = std::next(I); 1500 // The first function argument for tasks is a thread id, the second one is a 1501 // part id (0 for tied tasks, >=0 for untied task). 1502 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 1503 // Get list of private variables. 1504 llvm::SmallVector<const Expr *, 8> PrivateVars; 1505 llvm::SmallVector<const Expr *, 8> PrivateCopies; 1506 for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) { 1507 auto *C = cast<OMPPrivateClause>(*I); 1508 auto IRef = C->varlist_begin(); 1509 for (auto *IInit : C->private_copies()) { 1510 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1511 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1512 PrivateVars.push_back(*IRef); 1513 PrivateCopies.push_back(IInit); 1514 } 1515 ++IRef; 1516 } 1517 } 1518 EmittedAsPrivate.clear(); 1519 // Get list of firstprivate variables. 1520 llvm::SmallVector<const Expr *, 8> FirstprivateVars; 1521 llvm::SmallVector<const Expr *, 8> FirstprivateCopies; 1522 llvm::SmallVector<const Expr *, 8> FirstprivateInits; 1523 for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) { 1524 auto *C = cast<OMPFirstprivateClause>(*I); 1525 auto IRef = C->varlist_begin(); 1526 auto IElemInitRef = C->inits().begin(); 1527 for (auto *IInit : C->private_copies()) { 1528 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1529 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1530 FirstprivateVars.push_back(*IRef); 1531 FirstprivateCopies.push_back(IInit); 1532 FirstprivateInits.push_back(*IElemInitRef); 1533 } 1534 ++IRef, ++IElemInitRef; 1535 } 1536 } 1537 // Build list of dependences. 1538 llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8> 1539 Dependences; 1540 for (auto &&I = S.getClausesOfKind(OMPC_depend); I; ++I) { 1541 auto *C = cast<OMPDependClause>(*I); 1542 for (auto *IRef : C->varlists()) { 1543 Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 1544 } 1545 } 1546 auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars]( 1547 CodeGenFunction &CGF) { 1548 // Set proper addresses for generated private copies. 1549 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1550 OMPPrivateScope Scope(CGF); 1551 if (!PrivateVars.empty() || !FirstprivateVars.empty()) { 1552 auto *CopyFn = CGF.Builder.CreateAlignedLoad( 1553 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)), 1554 CGF.PointerAlignInBytes); 1555 auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad( 1556 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)), 1557 CGF.PointerAlignInBytes); 1558 // Map privates. 1559 llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16> 1560 PrivatePtrs; 1561 llvm::SmallVector<llvm::Value *, 16> CallArgs; 1562 CallArgs.push_back(PrivatesPtr); 1563 for (auto *E : PrivateVars) { 1564 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1565 auto *PrivatePtr = 1566 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1567 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1568 CallArgs.push_back(PrivatePtr); 1569 } 1570 for (auto *E : FirstprivateVars) { 1571 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1572 auto *PrivatePtr = 1573 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1574 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1575 CallArgs.push_back(PrivatePtr); 1576 } 1577 CGF.EmitRuntimeCall(CopyFn, CallArgs); 1578 for (auto &&Pair : PrivatePtrs) { 1579 auto *Replacement = 1580 CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes); 1581 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 1582 } 1583 } 1584 (void)Scope.Privatize(); 1585 if (*PartId) { 1586 // TODO: emit code for untied tasks. 1587 } 1588 CGF.EmitStmt(CS->getCapturedStmt()); 1589 }; 1590 auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 1591 S, *I, OMPD_task, CodeGen); 1592 // Check if we should emit tied or untied task. 1593 bool Tied = !S.getSingleClause(OMPC_untied); 1594 // Check if the task is final 1595 llvm::PointerIntPair<llvm::Value *, 1, bool> Final; 1596 if (auto *Clause = S.getSingleClause(OMPC_final)) { 1597 // If the condition constant folds and can be elided, try to avoid emitting 1598 // the condition and the dead arm of the if/else. 1599 auto *Cond = cast<OMPFinalClause>(Clause)->getCondition(); 1600 bool CondConstant; 1601 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 1602 Final.setInt(CondConstant); 1603 else 1604 Final.setPointer(EvaluateExprAsBool(Cond)); 1605 } else { 1606 // By default the task is not final. 1607 Final.setInt(/*IntVal=*/false); 1608 } 1609 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 1610 const Expr *IfCond = nullptr; 1611 if (auto C = S.getSingleClause(OMPC_if)) { 1612 IfCond = cast<OMPIfClause>(C)->getCondition(); 1613 } 1614 CGM.getOpenMPRuntime().emitTaskCall( 1615 *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy, 1616 CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars, 1617 FirstprivateCopies, FirstprivateInits, Dependences); 1618 } 1619 1620 void CodeGenFunction::EmitOMPTaskyieldDirective( 1621 const OMPTaskyieldDirective &S) { 1622 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 1623 } 1624 1625 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 1626 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 1627 } 1628 1629 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 1630 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 1631 } 1632 1633 void CodeGenFunction::EmitOMPTaskgroupDirective( 1634 const OMPTaskgroupDirective &S) { 1635 LexicalScope Scope(*this, S.getSourceRange()); 1636 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1637 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1638 CGF.EnsureInsertPoint(); 1639 }; 1640 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 1641 } 1642 1643 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 1644 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 1645 if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) { 1646 auto FlushClause = cast<OMPFlushClause>(C); 1647 return llvm::makeArrayRef(FlushClause->varlist_begin(), 1648 FlushClause->varlist_end()); 1649 } 1650 return llvm::None; 1651 }(), S.getLocStart()); 1652 } 1653 1654 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 1655 LexicalScope Scope(*this, S.getSourceRange()); 1656 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1657 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1658 CGF.EnsureInsertPoint(); 1659 }; 1660 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart()); 1661 } 1662 1663 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 1664 QualType SrcType, QualType DestType) { 1665 assert(CGF.hasScalarEvaluationKind(DestType) && 1666 "DestType must have scalar evaluation kind."); 1667 assert(!Val.isAggregate() && "Must be a scalar or complex."); 1668 return Val.isScalar() 1669 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType) 1670 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 1671 DestType); 1672 } 1673 1674 static CodeGenFunction::ComplexPairTy 1675 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 1676 QualType DestType) { 1677 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 1678 "DestType must have complex evaluation kind."); 1679 CodeGenFunction::ComplexPairTy ComplexVal; 1680 if (Val.isScalar()) { 1681 // Convert the input element to the element type of the complex. 1682 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 1683 auto ScalarVal = 1684 CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType); 1685 ComplexVal = CodeGenFunction::ComplexPairTy( 1686 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 1687 } else { 1688 assert(Val.isComplex() && "Must be a scalar or complex."); 1689 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 1690 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 1691 ComplexVal.first = CGF.EmitScalarConversion( 1692 Val.getComplexVal().first, SrcElementType, DestElementType); 1693 ComplexVal.second = CGF.EmitScalarConversion( 1694 Val.getComplexVal().second, SrcElementType, DestElementType); 1695 } 1696 return ComplexVal; 1697 } 1698 1699 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 1700 LValue LVal, RValue RVal) { 1701 if (LVal.isGlobalReg()) { 1702 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 1703 } else { 1704 CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent 1705 : llvm::Monotonic, 1706 LVal.isVolatile(), /*IsInit=*/false); 1707 } 1708 } 1709 1710 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal, 1711 QualType RValTy) { 1712 switch (CGF.getEvaluationKind(LVal.getType())) { 1713 case TEK_Scalar: 1714 CGF.EmitStoreThroughLValue( 1715 RValue::get(convertToScalarValue(CGF, RVal, RValTy, LVal.getType())), 1716 LVal); 1717 break; 1718 case TEK_Complex: 1719 CGF.EmitStoreOfComplex( 1720 convertToComplexValue(CGF, RVal, RValTy, LVal.getType()), LVal, 1721 /*isInit=*/false); 1722 break; 1723 case TEK_Aggregate: 1724 llvm_unreachable("Must be a scalar or complex."); 1725 } 1726 } 1727 1728 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 1729 const Expr *X, const Expr *V, 1730 SourceLocation Loc) { 1731 // v = x; 1732 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 1733 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 1734 LValue XLValue = CGF.EmitLValue(X); 1735 LValue VLValue = CGF.EmitLValue(V); 1736 RValue Res = XLValue.isGlobalReg() 1737 ? CGF.EmitLoadOfLValue(XLValue, Loc) 1738 : CGF.EmitAtomicLoad(XLValue, Loc, 1739 IsSeqCst ? llvm::SequentiallyConsistent 1740 : llvm::Monotonic, 1741 XLValue.isVolatile()); 1742 // OpenMP, 2.12.6, atomic Construct 1743 // Any atomic construct with a seq_cst clause forces the atomically 1744 // performed operation to include an implicit flush operation without a 1745 // list. 1746 if (IsSeqCst) 1747 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1748 emitSimpleStore(CGF,VLValue, Res, X->getType().getNonReferenceType()); 1749 } 1750 1751 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 1752 const Expr *X, const Expr *E, 1753 SourceLocation Loc) { 1754 // x = expr; 1755 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 1756 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 1757 // OpenMP, 2.12.6, atomic Construct 1758 // Any atomic construct with a seq_cst clause forces the atomically 1759 // performed operation to include an implicit flush operation without a 1760 // list. 1761 if (IsSeqCst) 1762 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1763 } 1764 1765 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 1766 RValue Update, 1767 BinaryOperatorKind BO, 1768 llvm::AtomicOrdering AO, 1769 bool IsXLHSInRHSPart) { 1770 auto &Context = CGF.CGM.getContext(); 1771 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 1772 // expression is simple and atomic is allowed for the given type for the 1773 // target platform. 1774 if (BO == BO_Comma || !Update.isScalar() || 1775 !Update.getScalarVal()->getType()->isIntegerTy() || 1776 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 1777 (Update.getScalarVal()->getType() != 1778 X.getAddress()->getType()->getPointerElementType())) || 1779 !X.getAddress()->getType()->getPointerElementType()->isIntegerTy() || 1780 !Context.getTargetInfo().hasBuiltinAtomic( 1781 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 1782 return std::make_pair(false, RValue::get(nullptr)); 1783 1784 llvm::AtomicRMWInst::BinOp RMWOp; 1785 switch (BO) { 1786 case BO_Add: 1787 RMWOp = llvm::AtomicRMWInst::Add; 1788 break; 1789 case BO_Sub: 1790 if (!IsXLHSInRHSPart) 1791 return std::make_pair(false, RValue::get(nullptr)); 1792 RMWOp = llvm::AtomicRMWInst::Sub; 1793 break; 1794 case BO_And: 1795 RMWOp = llvm::AtomicRMWInst::And; 1796 break; 1797 case BO_Or: 1798 RMWOp = llvm::AtomicRMWInst::Or; 1799 break; 1800 case BO_Xor: 1801 RMWOp = llvm::AtomicRMWInst::Xor; 1802 break; 1803 case BO_LT: 1804 RMWOp = X.getType()->hasSignedIntegerRepresentation() 1805 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 1806 : llvm::AtomicRMWInst::Max) 1807 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 1808 : llvm::AtomicRMWInst::UMax); 1809 break; 1810 case BO_GT: 1811 RMWOp = X.getType()->hasSignedIntegerRepresentation() 1812 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 1813 : llvm::AtomicRMWInst::Min) 1814 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 1815 : llvm::AtomicRMWInst::UMin); 1816 break; 1817 case BO_Assign: 1818 RMWOp = llvm::AtomicRMWInst::Xchg; 1819 break; 1820 case BO_Mul: 1821 case BO_Div: 1822 case BO_Rem: 1823 case BO_Shl: 1824 case BO_Shr: 1825 case BO_LAnd: 1826 case BO_LOr: 1827 return std::make_pair(false, RValue::get(nullptr)); 1828 case BO_PtrMemD: 1829 case BO_PtrMemI: 1830 case BO_LE: 1831 case BO_GE: 1832 case BO_EQ: 1833 case BO_NE: 1834 case BO_AddAssign: 1835 case BO_SubAssign: 1836 case BO_AndAssign: 1837 case BO_OrAssign: 1838 case BO_XorAssign: 1839 case BO_MulAssign: 1840 case BO_DivAssign: 1841 case BO_RemAssign: 1842 case BO_ShlAssign: 1843 case BO_ShrAssign: 1844 case BO_Comma: 1845 llvm_unreachable("Unsupported atomic update operation"); 1846 } 1847 auto *UpdateVal = Update.getScalarVal(); 1848 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 1849 UpdateVal = CGF.Builder.CreateIntCast( 1850 IC, X.getAddress()->getType()->getPointerElementType(), 1851 X.getType()->hasSignedIntegerRepresentation()); 1852 } 1853 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO); 1854 return std::make_pair(true, RValue::get(Res)); 1855 } 1856 1857 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 1858 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 1859 llvm::AtomicOrdering AO, SourceLocation Loc, 1860 const llvm::function_ref<RValue(RValue)> &CommonGen) { 1861 // Update expressions are allowed to have the following forms: 1862 // x binop= expr; -> xrval + expr; 1863 // x++, ++x -> xrval + 1; 1864 // x--, --x -> xrval - 1; 1865 // x = x binop expr; -> xrval binop expr 1866 // x = expr Op x; - > expr binop xrval; 1867 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 1868 if (!Res.first) { 1869 if (X.isGlobalReg()) { 1870 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 1871 // 'xrval'. 1872 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 1873 } else { 1874 // Perform compare-and-swap procedure. 1875 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 1876 } 1877 } 1878 return Res; 1879 } 1880 1881 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 1882 const Expr *X, const Expr *E, 1883 const Expr *UE, bool IsXLHSInRHSPart, 1884 SourceLocation Loc) { 1885 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 1886 "Update expr in 'atomic update' must be a binary operator."); 1887 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 1888 // Update expressions are allowed to have the following forms: 1889 // x binop= expr; -> xrval + expr; 1890 // x++, ++x -> xrval + 1; 1891 // x--, --x -> xrval - 1; 1892 // x = x binop expr; -> xrval binop expr 1893 // x = expr Op x; - > expr binop xrval; 1894 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 1895 LValue XLValue = CGF.EmitLValue(X); 1896 RValue ExprRValue = CGF.EmitAnyExpr(E); 1897 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 1898 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 1899 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 1900 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 1901 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 1902 auto Gen = 1903 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 1904 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 1905 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 1906 return CGF.EmitAnyExpr(UE); 1907 }; 1908 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 1909 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 1910 // OpenMP, 2.12.6, atomic Construct 1911 // Any atomic construct with a seq_cst clause forces the atomically 1912 // performed operation to include an implicit flush operation without a 1913 // list. 1914 if (IsSeqCst) 1915 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1916 } 1917 1918 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 1919 QualType SourceType, QualType ResType) { 1920 switch (CGF.getEvaluationKind(ResType)) { 1921 case TEK_Scalar: 1922 return RValue::get(convertToScalarValue(CGF, Value, SourceType, ResType)); 1923 case TEK_Complex: { 1924 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType); 1925 return RValue::getComplex(Res.first, Res.second); 1926 } 1927 case TEK_Aggregate: 1928 break; 1929 } 1930 llvm_unreachable("Must be a scalar or complex."); 1931 } 1932 1933 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 1934 bool IsPostfixUpdate, const Expr *V, 1935 const Expr *X, const Expr *E, 1936 const Expr *UE, bool IsXLHSInRHSPart, 1937 SourceLocation Loc) { 1938 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 1939 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 1940 RValue NewVVal; 1941 LValue VLValue = CGF.EmitLValue(V); 1942 LValue XLValue = CGF.EmitLValue(X); 1943 RValue ExprRValue = CGF.EmitAnyExpr(E); 1944 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 1945 QualType NewVValType; 1946 if (UE) { 1947 // 'x' is updated with some additional value. 1948 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 1949 "Update expr in 'atomic capture' must be a binary operator."); 1950 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 1951 // Update expressions are allowed to have the following forms: 1952 // x binop= expr; -> xrval + expr; 1953 // x++, ++x -> xrval + 1; 1954 // x--, --x -> xrval - 1; 1955 // x = x binop expr; -> xrval binop expr 1956 // x = expr Op x; - > expr binop xrval; 1957 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 1958 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 1959 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 1960 NewVValType = XRValExpr->getType(); 1961 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 1962 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 1963 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 1964 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 1965 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 1966 RValue Res = CGF.EmitAnyExpr(UE); 1967 NewVVal = IsPostfixUpdate ? XRValue : Res; 1968 return Res; 1969 }; 1970 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 1971 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 1972 if (Res.first) { 1973 // 'atomicrmw' instruction was generated. 1974 if (IsPostfixUpdate) { 1975 // Use old value from 'atomicrmw'. 1976 NewVVal = Res.second; 1977 } else { 1978 // 'atomicrmw' does not provide new value, so evaluate it using old 1979 // value of 'x'. 1980 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 1981 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 1982 NewVVal = CGF.EmitAnyExpr(UE); 1983 } 1984 } 1985 } else { 1986 // 'x' is simply rewritten with some 'expr'. 1987 NewVValType = X->getType().getNonReferenceType(); 1988 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 1989 X->getType().getNonReferenceType()); 1990 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 1991 NewVVal = XRValue; 1992 return ExprRValue; 1993 }; 1994 // Try to perform atomicrmw xchg, otherwise simple exchange. 1995 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 1996 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 1997 Loc, Gen); 1998 if (Res.first) { 1999 // 'atomicrmw' instruction was generated. 2000 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 2001 } 2002 } 2003 // Emit post-update store to 'v' of old/new 'x' value. 2004 emitSimpleStore(CGF, VLValue, NewVVal, NewVValType); 2005 // OpenMP, 2.12.6, atomic Construct 2006 // Any atomic construct with a seq_cst clause forces the atomically 2007 // performed operation to include an implicit flush operation without a 2008 // list. 2009 if (IsSeqCst) 2010 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2011 } 2012 2013 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 2014 bool IsSeqCst, bool IsPostfixUpdate, 2015 const Expr *X, const Expr *V, const Expr *E, 2016 const Expr *UE, bool IsXLHSInRHSPart, 2017 SourceLocation Loc) { 2018 switch (Kind) { 2019 case OMPC_read: 2020 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 2021 break; 2022 case OMPC_write: 2023 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 2024 break; 2025 case OMPC_unknown: 2026 case OMPC_update: 2027 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 2028 break; 2029 case OMPC_capture: 2030 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 2031 IsXLHSInRHSPart, Loc); 2032 break; 2033 case OMPC_if: 2034 case OMPC_final: 2035 case OMPC_num_threads: 2036 case OMPC_private: 2037 case OMPC_firstprivate: 2038 case OMPC_lastprivate: 2039 case OMPC_reduction: 2040 case OMPC_safelen: 2041 case OMPC_collapse: 2042 case OMPC_default: 2043 case OMPC_seq_cst: 2044 case OMPC_shared: 2045 case OMPC_linear: 2046 case OMPC_aligned: 2047 case OMPC_copyin: 2048 case OMPC_copyprivate: 2049 case OMPC_flush: 2050 case OMPC_proc_bind: 2051 case OMPC_schedule: 2052 case OMPC_ordered: 2053 case OMPC_nowait: 2054 case OMPC_untied: 2055 case OMPC_threadprivate: 2056 case OMPC_depend: 2057 case OMPC_mergeable: 2058 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 2059 } 2060 } 2061 2062 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 2063 bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst); 2064 OpenMPClauseKind Kind = OMPC_unknown; 2065 for (auto *C : S.clauses()) { 2066 // Find first clause (skip seq_cst clause, if it is first). 2067 if (C->getClauseKind() != OMPC_seq_cst) { 2068 Kind = C->getClauseKind(); 2069 break; 2070 } 2071 } 2072 2073 const auto *CS = 2074 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 2075 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 2076 enterFullExpression(EWC); 2077 } 2078 // Processing for statements under 'atomic capture'. 2079 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 2080 for (const auto *C : Compound->body()) { 2081 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 2082 enterFullExpression(EWC); 2083 } 2084 } 2085 } 2086 2087 LexicalScope Scope(*this, S.getSourceRange()); 2088 auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) { 2089 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 2090 S.getV(), S.getExpr(), S.getUpdateExpr(), 2091 S.isXLHSInRHSPart(), S.getLocStart()); 2092 }; 2093 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 2094 } 2095 2096 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) { 2097 llvm_unreachable("CodeGen for 'omp target' is not supported yet."); 2098 } 2099 2100 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) { 2101 llvm_unreachable("CodeGen for 'omp teams' is not supported yet."); 2102 } 2103 2104 void CodeGenFunction::EmitOMPCancellationPointDirective( 2105 const OMPCancellationPointDirective &S) { 2106 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 2107 S.getCancelRegion()); 2108 } 2109 2110 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 2111 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), 2112 S.getCancelRegion()); 2113 } 2114 2115 CodeGenFunction::JumpDest 2116 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 2117 if (Kind == OMPD_parallel || Kind == OMPD_task) 2118 return ReturnBlock; 2119 else if (Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections) 2120 return BreakContinueStack.empty() ? JumpDest() 2121 : BreakContinueStack.back().BreakBlock; 2122 return JumpDest(); 2123 } 2124