1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     emitPreInitStmt(CGF, S);
61     if (AsInlined) {
62       if (S.hasAssociatedStmt()) {
63         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
64         for (auto &C : CS->captures()) {
65           if (C.capturesVariable() || C.capturesVariableByCopy()) {
66             auto *VD = C.getCapturedVar();
67             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
68                             isCapturedVar(CGF, VD) ||
69                                 (CGF.CapturedStmtInfo &&
70                                  InlinedShareds.isGlobalVarCaptured(VD)),
71                             VD->getType().getNonReferenceType(), VK_LValue,
72                             SourceLocation());
73             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
74               return CGF.EmitLValue(&DRE).getAddress();
75             });
76           }
77         }
78         (void)InlinedShareds.Privatize();
79       }
80     }
81   }
82 };
83 
84 /// Private scope for OpenMP loop-based directives, that supports capturing
85 /// of used expression from loop statement.
86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
87   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
88     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
89       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
90         for (const auto *I : PreInits->decls())
91           CGF.EmitVarDecl(cast<VarDecl>(*I));
92       }
93     }
94   }
95 
96 public:
97   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
98       : CodeGenFunction::RunCleanupsScope(CGF) {
99     emitPreInitStmt(CGF, S);
100   }
101 };
102 
103 } // namespace
104 
105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
106   auto &C = getContext();
107   llvm::Value *Size = nullptr;
108   auto SizeInChars = C.getTypeSizeInChars(Ty);
109   if (SizeInChars.isZero()) {
110     // getTypeSizeInChars() returns 0 for a VLA.
111     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
112       llvm::Value *ArraySize;
113       std::tie(ArraySize, Ty) = getVLASize(VAT);
114       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
115     }
116     SizeInChars = C.getTypeSizeInChars(Ty);
117     if (SizeInChars.isZero())
118       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
119     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
120   } else
121     Size = CGM.getSize(SizeInChars);
122   return Size;
123 }
124 
125 void CodeGenFunction::GenerateOpenMPCapturedVars(
126     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
127   const RecordDecl *RD = S.getCapturedRecordDecl();
128   auto CurField = RD->field_begin();
129   auto CurCap = S.captures().begin();
130   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
131                                                  E = S.capture_init_end();
132        I != E; ++I, ++CurField, ++CurCap) {
133     if (CurField->hasCapturedVLAType()) {
134       auto VAT = CurField->getCapturedVLAType();
135       auto *Val = VLASizeMap[VAT->getSizeExpr()];
136       CapturedVars.push_back(Val);
137     } else if (CurCap->capturesThis())
138       CapturedVars.push_back(CXXThisValue);
139     else if (CurCap->capturesVariableByCopy()) {
140       llvm::Value *CV =
141           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
142 
143       // If the field is not a pointer, we need to save the actual value
144       // and load it as a void pointer.
145       if (!CurField->getType()->isAnyPointerType()) {
146         auto &Ctx = getContext();
147         auto DstAddr = CreateMemTemp(
148             Ctx.getUIntPtrType(),
149             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
150         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
151 
152         auto *SrcAddrVal = EmitScalarConversion(
153             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
154             Ctx.getPointerType(CurField->getType()), SourceLocation());
155         LValue SrcLV =
156             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
157 
158         // Store the value using the source type pointer.
159         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
160 
161         // Load the value using the destination type pointer.
162         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
163       }
164       CapturedVars.push_back(CV);
165     } else {
166       assert(CurCap->capturesVariable() && "Expected capture by reference.");
167       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
168     }
169   }
170 }
171 
172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
173                                     StringRef Name, LValue AddrLV,
174                                     bool isReferenceType = false) {
175   ASTContext &Ctx = CGF.getContext();
176 
177   auto *CastedPtr = CGF.EmitScalarConversion(
178       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
179       Ctx.getPointerType(DstType), SourceLocation());
180   auto TmpAddr =
181       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
182           .getAddress();
183 
184   // If we are dealing with references we need to return the address of the
185   // reference instead of the reference of the value.
186   if (isReferenceType) {
187     QualType RefType = Ctx.getLValueReferenceType(DstType);
188     auto *RefVal = TmpAddr.getPointer();
189     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
190     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
191     CGF.EmitScalarInit(RefVal, TmpLVal);
192   }
193 
194   return TmpAddr;
195 }
196 
197 llvm::Function *
198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
199   assert(
200       CapturedStmtInfo &&
201       "CapturedStmtInfo should be set when generating the captured function");
202   const CapturedDecl *CD = S.getCapturedDecl();
203   const RecordDecl *RD = S.getCapturedRecordDecl();
204   assert(CD->hasBody() && "missing CapturedDecl body");
205 
206   // Build the argument list.
207   ASTContext &Ctx = CGM.getContext();
208   FunctionArgList Args;
209   Args.append(CD->param_begin(),
210               std::next(CD->param_begin(), CD->getContextParamPosition()));
211   auto I = S.captures().begin();
212   for (auto *FD : RD->fields()) {
213     QualType ArgType = FD->getType();
214     IdentifierInfo *II = nullptr;
215     VarDecl *CapVar = nullptr;
216 
217     // If this is a capture by copy and the type is not a pointer, the outlined
218     // function argument type should be uintptr and the value properly casted to
219     // uintptr. This is necessary given that the runtime library is only able to
220     // deal with pointers. We can pass in the same way the VLA type sizes to the
221     // outlined function.
222     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
223         I->capturesVariableArrayType())
224       ArgType = Ctx.getUIntPtrType();
225 
226     if (I->capturesVariable() || I->capturesVariableByCopy()) {
227       CapVar = I->getCapturedVar();
228       II = CapVar->getIdentifier();
229     } else if (I->capturesThis())
230       II = &getContext().Idents.get("this");
231     else {
232       assert(I->capturesVariableArrayType());
233       II = &getContext().Idents.get("vla");
234     }
235     if (ArgType->isVariablyModifiedType())
236       ArgType = getContext().getVariableArrayDecayedType(ArgType);
237     Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
238                                              FD->getLocation(), II, ArgType));
239     ++I;
240   }
241   Args.append(
242       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
243       CD->param_end());
244 
245   // Create the function declaration.
246   FunctionType::ExtInfo ExtInfo;
247   const CGFunctionInfo &FuncInfo =
248       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
249   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
250 
251   llvm::Function *F = llvm::Function::Create(
252       FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
253       CapturedStmtInfo->getHelperName(), &CGM.getModule());
254   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
255   if (CD->isNothrow())
256     F->addFnAttr(llvm::Attribute::NoUnwind);
257 
258   // Generate the function.
259   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
260                 CD->getBody()->getLocStart());
261   unsigned Cnt = CD->getContextParamPosition();
262   I = S.captures().begin();
263   for (auto *FD : RD->fields()) {
264     // If we are capturing a pointer by copy we don't need to do anything, just
265     // use the value that we get from the arguments.
266     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
267       setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt]));
268       ++Cnt;
269       ++I;
270       continue;
271     }
272 
273     LValue ArgLVal =
274         MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
275                        AlignmentSource::Decl);
276     if (FD->hasCapturedVLAType()) {
277       LValue CastedArgLVal =
278           MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
279                                               Args[Cnt]->getName(), ArgLVal),
280                          FD->getType(), AlignmentSource::Decl);
281       auto *ExprArg =
282           EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
283       auto VAT = FD->getCapturedVLAType();
284       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
285     } else if (I->capturesVariable()) {
286       auto *Var = I->getCapturedVar();
287       QualType VarTy = Var->getType();
288       Address ArgAddr = ArgLVal.getAddress();
289       if (!VarTy->isReferenceType()) {
290         ArgAddr = EmitLoadOfReference(
291             ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
292       }
293       setAddrOfLocalVar(
294           Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
295     } else if (I->capturesVariableByCopy()) {
296       assert(!FD->getType()->isAnyPointerType() &&
297              "Not expecting a captured pointer.");
298       auto *Var = I->getCapturedVar();
299       QualType VarTy = Var->getType();
300       setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(),
301                                                   Args[Cnt]->getName(), ArgLVal,
302                                                   VarTy->isReferenceType()));
303     } else {
304       // If 'this' is captured, load it into CXXThisValue.
305       assert(I->capturesThis());
306       CXXThisValue =
307           EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
308     }
309     ++Cnt;
310     ++I;
311   }
312 
313   PGO.assignRegionCounters(GlobalDecl(CD), F);
314   CapturedStmtInfo->EmitBody(*this, CD->getBody());
315   FinishFunction(CD->getBodyRBrace());
316 
317   return F;
318 }
319 
320 //===----------------------------------------------------------------------===//
321 //                              OpenMP Directive Emission
322 //===----------------------------------------------------------------------===//
323 void CodeGenFunction::EmitOMPAggregateAssign(
324     Address DestAddr, Address SrcAddr, QualType OriginalType,
325     const llvm::function_ref<void(Address, Address)> &CopyGen) {
326   // Perform element-by-element initialization.
327   QualType ElementTy;
328 
329   // Drill down to the base element type on both arrays.
330   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
331   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
332   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
333 
334   auto SrcBegin = SrcAddr.getPointer();
335   auto DestBegin = DestAddr.getPointer();
336   // Cast from pointer to array type to pointer to single element.
337   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
338   // The basic structure here is a while-do loop.
339   auto BodyBB = createBasicBlock("omp.arraycpy.body");
340   auto DoneBB = createBasicBlock("omp.arraycpy.done");
341   auto IsEmpty =
342       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
343   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
344 
345   // Enter the loop body, making that address the current address.
346   auto EntryBB = Builder.GetInsertBlock();
347   EmitBlock(BodyBB);
348 
349   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
350 
351   llvm::PHINode *SrcElementPHI =
352     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
353   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
354   Address SrcElementCurrent =
355       Address(SrcElementPHI,
356               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
357 
358   llvm::PHINode *DestElementPHI =
359     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
360   DestElementPHI->addIncoming(DestBegin, EntryBB);
361   Address DestElementCurrent =
362     Address(DestElementPHI,
363             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
364 
365   // Emit copy.
366   CopyGen(DestElementCurrent, SrcElementCurrent);
367 
368   // Shift the address forward by one element.
369   auto DestElementNext = Builder.CreateConstGEP1_32(
370       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
371   auto SrcElementNext = Builder.CreateConstGEP1_32(
372       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
373   // Check whether we've reached the end.
374   auto Done =
375       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
376   Builder.CreateCondBr(Done, DoneBB, BodyBB);
377   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
378   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
379 
380   // Done.
381   EmitBlock(DoneBB, /*IsFinished=*/true);
382 }
383 
384 /// Check if the combiner is a call to UDR combiner and if it is so return the
385 /// UDR decl used for reduction.
386 static const OMPDeclareReductionDecl *
387 getReductionInit(const Expr *ReductionOp) {
388   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
389     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
390       if (auto *DRE =
391               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
392         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
393           return DRD;
394   return nullptr;
395 }
396 
397 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
398                                              const OMPDeclareReductionDecl *DRD,
399                                              const Expr *InitOp,
400                                              Address Private, Address Original,
401                                              QualType Ty) {
402   if (DRD->getInitializer()) {
403     std::pair<llvm::Function *, llvm::Function *> Reduction =
404         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
405     auto *CE = cast<CallExpr>(InitOp);
406     auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
407     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
408     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
409     auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
410     auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
411     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
412     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
413                             [=]() -> Address { return Private; });
414     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
415                             [=]() -> Address { return Original; });
416     (void)PrivateScope.Privatize();
417     RValue Func = RValue::get(Reduction.second);
418     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
419     CGF.EmitIgnoredExpr(InitOp);
420   } else {
421     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
422     auto *GV = new llvm::GlobalVariable(
423         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
424         llvm::GlobalValue::PrivateLinkage, Init, ".init");
425     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
426     RValue InitRVal;
427     switch (CGF.getEvaluationKind(Ty)) {
428     case TEK_Scalar:
429       InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation());
430       break;
431     case TEK_Complex:
432       InitRVal =
433           RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation()));
434       break;
435     case TEK_Aggregate:
436       InitRVal = RValue::getAggregate(LV.getAddress());
437       break;
438     }
439     OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue);
440     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
441     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
442                          /*IsInitializer=*/false);
443   }
444 }
445 
446 /// \brief Emit initialization of arrays of complex types.
447 /// \param DestAddr Address of the array.
448 /// \param Type Type of array.
449 /// \param Init Initial expression of array.
450 /// \param SrcAddr Address of the original array.
451 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
452                                  QualType Type, const Expr *Init,
453                                  Address SrcAddr = Address::invalid()) {
454   auto *DRD = getReductionInit(Init);
455   // Perform element-by-element initialization.
456   QualType ElementTy;
457 
458   // Drill down to the base element type on both arrays.
459   auto ArrayTy = Type->getAsArrayTypeUnsafe();
460   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
461   DestAddr =
462       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
463   if (DRD)
464     SrcAddr =
465         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
466 
467   llvm::Value *SrcBegin = nullptr;
468   if (DRD)
469     SrcBegin = SrcAddr.getPointer();
470   auto DestBegin = DestAddr.getPointer();
471   // Cast from pointer to array type to pointer to single element.
472   auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
473   // The basic structure here is a while-do loop.
474   auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
475   auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
476   auto IsEmpty =
477       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
478   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
479 
480   // Enter the loop body, making that address the current address.
481   auto EntryBB = CGF.Builder.GetInsertBlock();
482   CGF.EmitBlock(BodyBB);
483 
484   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
485 
486   llvm::PHINode *SrcElementPHI = nullptr;
487   Address SrcElementCurrent = Address::invalid();
488   if (DRD) {
489     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
490                                           "omp.arraycpy.srcElementPast");
491     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
492     SrcElementCurrent =
493         Address(SrcElementPHI,
494                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
495   }
496   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
497       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
498   DestElementPHI->addIncoming(DestBegin, EntryBB);
499   Address DestElementCurrent =
500       Address(DestElementPHI,
501               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
502 
503   // Emit copy.
504   {
505     CodeGenFunction::RunCleanupsScope InitScope(CGF);
506     if (DRD && (DRD->getInitializer() || !Init)) {
507       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
508                                        SrcElementCurrent, ElementTy);
509     } else
510       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
511                            /*IsInitializer=*/false);
512   }
513 
514   if (DRD) {
515     // Shift the address forward by one element.
516     auto SrcElementNext = CGF.Builder.CreateConstGEP1_32(
517         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
518     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
519   }
520 
521   // Shift the address forward by one element.
522   auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
523       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
524   // Check whether we've reached the end.
525   auto Done =
526       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
527   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
528   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
529 
530   // Done.
531   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
532 }
533 
534 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
535                                   Address SrcAddr, const VarDecl *DestVD,
536                                   const VarDecl *SrcVD, const Expr *Copy) {
537   if (OriginalType->isArrayType()) {
538     auto *BO = dyn_cast<BinaryOperator>(Copy);
539     if (BO && BO->getOpcode() == BO_Assign) {
540       // Perform simple memcpy for simple copying.
541       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
542     } else {
543       // For arrays with complex element types perform element by element
544       // copying.
545       EmitOMPAggregateAssign(
546           DestAddr, SrcAddr, OriginalType,
547           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
548             // Working with the single array element, so have to remap
549             // destination and source variables to corresponding array
550             // elements.
551             CodeGenFunction::OMPPrivateScope Remap(*this);
552             Remap.addPrivate(DestVD, [DestElement]() -> Address {
553               return DestElement;
554             });
555             Remap.addPrivate(
556                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
557             (void)Remap.Privatize();
558             EmitIgnoredExpr(Copy);
559           });
560     }
561   } else {
562     // Remap pseudo source variable to private copy.
563     CodeGenFunction::OMPPrivateScope Remap(*this);
564     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
565     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
566     (void)Remap.Privatize();
567     // Emit copying of the whole variable.
568     EmitIgnoredExpr(Copy);
569   }
570 }
571 
572 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
573                                                 OMPPrivateScope &PrivateScope) {
574   if (!HaveInsertPoint())
575     return false;
576   bool FirstprivateIsLastprivate = false;
577   llvm::DenseSet<const VarDecl *> Lastprivates;
578   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
579     for (const auto *D : C->varlists())
580       Lastprivates.insert(
581           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
582   }
583   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
584   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
585   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
586     auto IRef = C->varlist_begin();
587     auto InitsRef = C->inits().begin();
588     for (auto IInit : C->private_copies()) {
589       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
590       bool ThisFirstprivateIsLastprivate =
591           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
592       auto *CapFD = CapturesInfo.lookup(OrigVD);
593       auto *FD = CapturedStmtInfo->lookup(OrigVD);
594       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
595           !FD->getType()->isReferenceType()) {
596         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
597         ++IRef;
598         ++InitsRef;
599         continue;
600       }
601       FirstprivateIsLastprivate =
602           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
603       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
604         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
605         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
606         bool IsRegistered;
607         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
608                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
609                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
610         Address OriginalAddr = EmitLValue(&DRE).getAddress();
611         QualType Type = VD->getType();
612         if (Type->isArrayType()) {
613           // Emit VarDecl with copy init for arrays.
614           // Get the address of the original variable captured in current
615           // captured region.
616           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
617             auto Emission = EmitAutoVarAlloca(*VD);
618             auto *Init = VD->getInit();
619             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
620               // Perform simple memcpy.
621               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
622                                   Type);
623             } else {
624               EmitOMPAggregateAssign(
625                   Emission.getAllocatedAddress(), OriginalAddr, Type,
626                   [this, VDInit, Init](Address DestElement,
627                                        Address SrcElement) {
628                     // Clean up any temporaries needed by the initialization.
629                     RunCleanupsScope InitScope(*this);
630                     // Emit initialization for single element.
631                     setAddrOfLocalVar(VDInit, SrcElement);
632                     EmitAnyExprToMem(Init, DestElement,
633                                      Init->getType().getQualifiers(),
634                                      /*IsInitializer*/ false);
635                     LocalDeclMap.erase(VDInit);
636                   });
637             }
638             EmitAutoVarCleanups(Emission);
639             return Emission.getAllocatedAddress();
640           });
641         } else {
642           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
643             // Emit private VarDecl with copy init.
644             // Remap temp VDInit variable to the address of the original
645             // variable
646             // (for proper handling of captured global variables).
647             setAddrOfLocalVar(VDInit, OriginalAddr);
648             EmitDecl(*VD);
649             LocalDeclMap.erase(VDInit);
650             return GetAddrOfLocalVar(VD);
651           });
652         }
653         assert(IsRegistered &&
654                "firstprivate var already registered as private");
655         // Silence the warning about unused variable.
656         (void)IsRegistered;
657       }
658       ++IRef;
659       ++InitsRef;
660     }
661   }
662   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
663 }
664 
665 void CodeGenFunction::EmitOMPPrivateClause(
666     const OMPExecutableDirective &D,
667     CodeGenFunction::OMPPrivateScope &PrivateScope) {
668   if (!HaveInsertPoint())
669     return;
670   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
671   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
672     auto IRef = C->varlist_begin();
673     for (auto IInit : C->private_copies()) {
674       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
675       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
676         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
677         bool IsRegistered =
678             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
679               // Emit private VarDecl with copy init.
680               EmitDecl(*VD);
681               return GetAddrOfLocalVar(VD);
682             });
683         assert(IsRegistered && "private var already registered as private");
684         // Silence the warning about unused variable.
685         (void)IsRegistered;
686       }
687       ++IRef;
688     }
689   }
690 }
691 
692 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
693   if (!HaveInsertPoint())
694     return false;
695   // threadprivate_var1 = master_threadprivate_var1;
696   // operator=(threadprivate_var2, master_threadprivate_var2);
697   // ...
698   // __kmpc_barrier(&loc, global_tid);
699   llvm::DenseSet<const VarDecl *> CopiedVars;
700   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
701   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
702     auto IRef = C->varlist_begin();
703     auto ISrcRef = C->source_exprs().begin();
704     auto IDestRef = C->destination_exprs().begin();
705     for (auto *AssignOp : C->assignment_ops()) {
706       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
707       QualType Type = VD->getType();
708       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
709         // Get the address of the master variable. If we are emitting code with
710         // TLS support, the address is passed from the master as field in the
711         // captured declaration.
712         Address MasterAddr = Address::invalid();
713         if (getLangOpts().OpenMPUseTLS &&
714             getContext().getTargetInfo().isTLSSupported()) {
715           assert(CapturedStmtInfo->lookup(VD) &&
716                  "Copyin threadprivates should have been captured!");
717           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
718                           VK_LValue, (*IRef)->getExprLoc());
719           MasterAddr = EmitLValue(&DRE).getAddress();
720           LocalDeclMap.erase(VD);
721         } else {
722           MasterAddr =
723             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
724                                         : CGM.GetAddrOfGlobal(VD),
725                     getContext().getDeclAlign(VD));
726         }
727         // Get the address of the threadprivate variable.
728         Address PrivateAddr = EmitLValue(*IRef).getAddress();
729         if (CopiedVars.size() == 1) {
730           // At first check if current thread is a master thread. If it is, no
731           // need to copy data.
732           CopyBegin = createBasicBlock("copyin.not.master");
733           CopyEnd = createBasicBlock("copyin.not.master.end");
734           Builder.CreateCondBr(
735               Builder.CreateICmpNE(
736                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
737                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
738               CopyBegin, CopyEnd);
739           EmitBlock(CopyBegin);
740         }
741         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
742         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
743         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
744       }
745       ++IRef;
746       ++ISrcRef;
747       ++IDestRef;
748     }
749   }
750   if (CopyEnd) {
751     // Exit out of copying procedure for non-master thread.
752     EmitBlock(CopyEnd, /*IsFinished=*/true);
753     return true;
754   }
755   return false;
756 }
757 
758 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
759     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
760   if (!HaveInsertPoint())
761     return false;
762   bool HasAtLeastOneLastprivate = false;
763   llvm::DenseSet<const VarDecl *> SIMDLCVs;
764   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
765     auto *LoopDirective = cast<OMPLoopDirective>(&D);
766     for (auto *C : LoopDirective->counters()) {
767       SIMDLCVs.insert(
768           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
769     }
770   }
771   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
772   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
773     HasAtLeastOneLastprivate = true;
774     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
775       break;
776     auto IRef = C->varlist_begin();
777     auto IDestRef = C->destination_exprs().begin();
778     for (auto *IInit : C->private_copies()) {
779       // Keep the address of the original variable for future update at the end
780       // of the loop.
781       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
782       // Taskloops do not require additional initialization, it is done in
783       // runtime support library.
784       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
785         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
786         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
787           DeclRefExpr DRE(
788               const_cast<VarDecl *>(OrigVD),
789               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
790                   OrigVD) != nullptr,
791               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
792           return EmitLValue(&DRE).getAddress();
793         });
794         // Check if the variable is also a firstprivate: in this case IInit is
795         // not generated. Initialization of this variable will happen in codegen
796         // for 'firstprivate' clause.
797         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
798           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
799           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
800             // Emit private VarDecl with copy init.
801             EmitDecl(*VD);
802             return GetAddrOfLocalVar(VD);
803           });
804           assert(IsRegistered &&
805                  "lastprivate var already registered as private");
806           (void)IsRegistered;
807         }
808       }
809       ++IRef;
810       ++IDestRef;
811     }
812   }
813   return HasAtLeastOneLastprivate;
814 }
815 
816 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
817     const OMPExecutableDirective &D, bool NoFinals,
818     llvm::Value *IsLastIterCond) {
819   if (!HaveInsertPoint())
820     return;
821   // Emit following code:
822   // if (<IsLastIterCond>) {
823   //   orig_var1 = private_orig_var1;
824   //   ...
825   //   orig_varn = private_orig_varn;
826   // }
827   llvm::BasicBlock *ThenBB = nullptr;
828   llvm::BasicBlock *DoneBB = nullptr;
829   if (IsLastIterCond) {
830     ThenBB = createBasicBlock(".omp.lastprivate.then");
831     DoneBB = createBasicBlock(".omp.lastprivate.done");
832     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
833     EmitBlock(ThenBB);
834   }
835   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
836   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
837   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
838     auto IC = LoopDirective->counters().begin();
839     for (auto F : LoopDirective->finals()) {
840       auto *D =
841           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
842       if (NoFinals)
843         AlreadyEmittedVars.insert(D);
844       else
845         LoopCountersAndUpdates[D] = F;
846       ++IC;
847     }
848   }
849   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
850     auto IRef = C->varlist_begin();
851     auto ISrcRef = C->source_exprs().begin();
852     auto IDestRef = C->destination_exprs().begin();
853     for (auto *AssignOp : C->assignment_ops()) {
854       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
855       QualType Type = PrivateVD->getType();
856       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
857       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
858         // If lastprivate variable is a loop control variable for loop-based
859         // directive, update its value before copyin back to original
860         // variable.
861         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
862           EmitIgnoredExpr(FinalExpr);
863         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
864         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
865         // Get the address of the original variable.
866         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
867         // Get the address of the private variable.
868         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
869         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
870           PrivateAddr =
871               Address(Builder.CreateLoad(PrivateAddr),
872                       getNaturalTypeAlignment(RefTy->getPointeeType()));
873         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
874       }
875       ++IRef;
876       ++ISrcRef;
877       ++IDestRef;
878     }
879     if (auto *PostUpdate = C->getPostUpdateExpr())
880       EmitIgnoredExpr(PostUpdate);
881   }
882   if (IsLastIterCond)
883     EmitBlock(DoneBB, /*IsFinished=*/true);
884 }
885 
886 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
887                           LValue BaseLV, llvm::Value *Addr) {
888   Address Tmp = Address::invalid();
889   Address TopTmp = Address::invalid();
890   Address MostTopTmp = Address::invalid();
891   BaseTy = BaseTy.getNonReferenceType();
892   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
893          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
894     Tmp = CGF.CreateMemTemp(BaseTy);
895     if (TopTmp.isValid())
896       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
897     else
898       MostTopTmp = Tmp;
899     TopTmp = Tmp;
900     BaseTy = BaseTy->getPointeeType();
901   }
902   llvm::Type *Ty = BaseLV.getPointer()->getType();
903   if (Tmp.isValid())
904     Ty = Tmp.getElementType();
905   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
906   if (Tmp.isValid()) {
907     CGF.Builder.CreateStore(Addr, Tmp);
908     return MostTopTmp;
909   }
910   return Address(Addr, BaseLV.getAlignment());
911 }
912 
913 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
914                           LValue BaseLV) {
915   BaseTy = BaseTy.getNonReferenceType();
916   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
917          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
918     if (auto *PtrTy = BaseTy->getAs<PointerType>())
919       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
920     else {
921       BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
922                                              BaseTy->castAs<ReferenceType>());
923     }
924     BaseTy = BaseTy->getPointeeType();
925   }
926   return CGF.MakeAddrLValue(
927       Address(
928           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
929               BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
930           BaseLV.getAlignment()),
931       BaseLV.getType(), BaseLV.getAlignmentSource());
932 }
933 
934 void CodeGenFunction::EmitOMPReductionClauseInit(
935     const OMPExecutableDirective &D,
936     CodeGenFunction::OMPPrivateScope &PrivateScope) {
937   if (!HaveInsertPoint())
938     return;
939   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
940     auto ILHS = C->lhs_exprs().begin();
941     auto IRHS = C->rhs_exprs().begin();
942     auto IPriv = C->privates().begin();
943     auto IRed = C->reduction_ops().begin();
944     for (auto IRef : C->varlists()) {
945       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
946       auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
947       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
948       auto *DRD = getReductionInit(*IRed);
949       if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
950         auto *Base = OASE->getBase()->IgnoreParenImpCasts();
951         while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
952           Base = TempOASE->getBase()->IgnoreParenImpCasts();
953         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
954           Base = TempASE->getBase()->IgnoreParenImpCasts();
955         auto *DE = cast<DeclRefExpr>(Base);
956         auto *OrigVD = cast<VarDecl>(DE->getDecl());
957         auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
958         auto OASELValueUB =
959             EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
960         auto OriginalBaseLValue = EmitLValue(DE);
961         LValue BaseLValue =
962             loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
963                         OriginalBaseLValue);
964         // Store the address of the original variable associated with the LHS
965         // implicit variable.
966         PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
967           return OASELValueLB.getAddress();
968         });
969         // Emit reduction copy.
970         bool IsRegistered = PrivateScope.addPrivate(
971             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
972                      OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address {
973               // Emit VarDecl with copy init for arrays.
974               // Get the address of the original variable captured in current
975               // captured region.
976               auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
977                                                  OASELValueLB.getPointer());
978               Size = Builder.CreateNUWAdd(
979                   Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
980               CodeGenFunction::OpaqueValueMapping OpaqueMap(
981                   *this, cast<OpaqueValueExpr>(
982                              getContext()
983                                  .getAsVariableArrayType(PrivateVD->getType())
984                                  ->getSizeExpr()),
985                   RValue::get(Size));
986               EmitVariablyModifiedType(PrivateVD->getType());
987               auto Emission = EmitAutoVarAlloca(*PrivateVD);
988               auto Addr = Emission.getAllocatedAddress();
989               auto *Init = PrivateVD->getInit();
990               EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
991                                    DRD ? *IRed : Init,
992                                    OASELValueLB.getAddress());
993               EmitAutoVarCleanups(Emission);
994               // Emit private VarDecl with reduction init.
995               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
996                                                    OASELValueLB.getPointer());
997               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
998               return castToBase(*this, OrigVD->getType(),
999                                 OASELValueLB.getType(), OriginalBaseLValue,
1000                                 Ptr);
1001             });
1002         assert(IsRegistered && "private var already registered as private");
1003         // Silence the warning about unused variable.
1004         (void)IsRegistered;
1005         PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1006           return GetAddrOfLocalVar(PrivateVD);
1007         });
1008       } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
1009         auto *Base = ASE->getBase()->IgnoreParenImpCasts();
1010         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1011           Base = TempASE->getBase()->IgnoreParenImpCasts();
1012         auto *DE = cast<DeclRefExpr>(Base);
1013         auto *OrigVD = cast<VarDecl>(DE->getDecl());
1014         auto ASELValue = EmitLValue(ASE);
1015         auto OriginalBaseLValue = EmitLValue(DE);
1016         LValue BaseLValue = loadToBegin(
1017             *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
1018         // Store the address of the original variable associated with the LHS
1019         // implicit variable.
1020         PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
1021           return ASELValue.getAddress();
1022         });
1023         // Emit reduction copy.
1024         bool IsRegistered = PrivateScope.addPrivate(
1025             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
1026                      OriginalBaseLValue, DRD, IRed]() -> Address {
1027               // Emit private VarDecl with reduction init.
1028               AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1029               auto Addr = Emission.getAllocatedAddress();
1030               if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1031                 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1032                                                  ASELValue.getAddress(),
1033                                                  ASELValue.getType());
1034               } else
1035                 EmitAutoVarInit(Emission);
1036               EmitAutoVarCleanups(Emission);
1037               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1038                                                    ASELValue.getPointer());
1039               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1040               return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
1041                                 OriginalBaseLValue, Ptr);
1042             });
1043         assert(IsRegistered && "private var already registered as private");
1044         // Silence the warning about unused variable.
1045         (void)IsRegistered;
1046         PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1047           return Builder.CreateElementBitCast(
1048               GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
1049               "rhs.begin");
1050         });
1051       } else {
1052         auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
1053         QualType Type = PrivateVD->getType();
1054         if (getContext().getAsArrayType(Type)) {
1055           // Store the address of the original variable associated with the LHS
1056           // implicit variable.
1057           DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1058                           CapturedStmtInfo->lookup(OrigVD) != nullptr,
1059                           IRef->getType(), VK_LValue, IRef->getExprLoc());
1060           Address OriginalAddr = EmitLValue(&DRE).getAddress();
1061           PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr,
1062                                           LHSVD]() -> Address {
1063             OriginalAddr = Builder.CreateElementBitCast(
1064                 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1065             return OriginalAddr;
1066           });
1067           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
1068             if (Type->isVariablyModifiedType()) {
1069               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1070                   *this, cast<OpaqueValueExpr>(
1071                              getContext()
1072                                  .getAsVariableArrayType(PrivateVD->getType())
1073                                  ->getSizeExpr()),
1074                   RValue::get(
1075                       getTypeSize(OrigVD->getType().getNonReferenceType())));
1076               EmitVariablyModifiedType(Type);
1077             }
1078             auto Emission = EmitAutoVarAlloca(*PrivateVD);
1079             auto Addr = Emission.getAllocatedAddress();
1080             auto *Init = PrivateVD->getInit();
1081             EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1082                                  DRD ? *IRed : Init, OriginalAddr);
1083             EmitAutoVarCleanups(Emission);
1084             return Emission.getAllocatedAddress();
1085           });
1086           assert(IsRegistered && "private var already registered as private");
1087           // Silence the warning about unused variable.
1088           (void)IsRegistered;
1089           PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1090             return Builder.CreateElementBitCast(
1091                 GetAddrOfLocalVar(PrivateVD),
1092                 ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
1093           });
1094         } else {
1095           // Store the address of the original variable associated with the LHS
1096           // implicit variable.
1097           Address OriginalAddr = Address::invalid();
1098           PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef,
1099                                           &OriginalAddr]() -> Address {
1100             DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1101                             CapturedStmtInfo->lookup(OrigVD) != nullptr,
1102                             IRef->getType(), VK_LValue, IRef->getExprLoc());
1103             OriginalAddr = EmitLValue(&DRE).getAddress();
1104             return OriginalAddr;
1105           });
1106           // Emit reduction copy.
1107           bool IsRegistered = PrivateScope.addPrivate(
1108               OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address {
1109                 // Emit private VarDecl with reduction init.
1110                 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1111                 auto Addr = Emission.getAllocatedAddress();
1112                 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1113                   emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1114                                                    OriginalAddr,
1115                                                    PrivateVD->getType());
1116                 } else
1117                   EmitAutoVarInit(Emission);
1118                 EmitAutoVarCleanups(Emission);
1119                 return Addr;
1120               });
1121           assert(IsRegistered && "private var already registered as private");
1122           // Silence the warning about unused variable.
1123           (void)IsRegistered;
1124           PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1125             return GetAddrOfLocalVar(PrivateVD);
1126           });
1127         }
1128       }
1129       ++ILHS;
1130       ++IRHS;
1131       ++IPriv;
1132       ++IRed;
1133     }
1134   }
1135 }
1136 
1137 void CodeGenFunction::EmitOMPReductionClauseFinal(
1138     const OMPExecutableDirective &D) {
1139   if (!HaveInsertPoint())
1140     return;
1141   llvm::SmallVector<const Expr *, 8> Privates;
1142   llvm::SmallVector<const Expr *, 8> LHSExprs;
1143   llvm::SmallVector<const Expr *, 8> RHSExprs;
1144   llvm::SmallVector<const Expr *, 8> ReductionOps;
1145   bool HasAtLeastOneReduction = false;
1146   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1147     HasAtLeastOneReduction = true;
1148     Privates.append(C->privates().begin(), C->privates().end());
1149     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1150     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1151     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1152   }
1153   if (HasAtLeastOneReduction) {
1154     // Emit nowait reduction if nowait clause is present or directive is a
1155     // parallel directive (it always has implicit barrier).
1156     CGM.getOpenMPRuntime().emitReduction(
1157         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1158         D.getSingleClause<OMPNowaitClause>() ||
1159             isOpenMPParallelDirective(D.getDirectiveKind()) ||
1160             D.getDirectiveKind() == OMPD_simd,
1161         D.getDirectiveKind() == OMPD_simd);
1162   }
1163 }
1164 
1165 static void emitPostUpdateForReductionClause(
1166     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1167     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1168   if (!CGF.HaveInsertPoint())
1169     return;
1170   llvm::BasicBlock *DoneBB = nullptr;
1171   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1172     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1173       if (!DoneBB) {
1174         if (auto *Cond = CondGen(CGF)) {
1175           // If the first post-update expression is found, emit conditional
1176           // block if it was requested.
1177           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1178           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1179           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1180           CGF.EmitBlock(ThenBB);
1181         }
1182       }
1183       CGF.EmitIgnoredExpr(PostUpdate);
1184     }
1185   }
1186   if (DoneBB)
1187     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1188 }
1189 
1190 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
1191                                            const OMPExecutableDirective &S,
1192                                            OpenMPDirectiveKind InnermostKind,
1193                                            const RegionCodeGenTy &CodeGen) {
1194   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1195   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
1196       emitParallelOrTeamsOutlinedFunction(S,
1197           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1198   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1199     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1200     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1201                                          /*IgnoreResultAssign*/ true);
1202     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1203         CGF, NumThreads, NumThreadsClause->getLocStart());
1204   }
1205   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1206     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1207     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1208         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1209   }
1210   const Expr *IfCond = nullptr;
1211   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1212     if (C->getNameModifier() == OMPD_unknown ||
1213         C->getNameModifier() == OMPD_parallel) {
1214       IfCond = C->getCondition();
1215       break;
1216     }
1217   }
1218 
1219   OMPLexicalScope Scope(CGF, S);
1220   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1221   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1222   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1223                                               CapturedVars, IfCond);
1224 }
1225 
1226 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1227   // Emit parallel region as a standalone region.
1228   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1229     OMPPrivateScope PrivateScope(CGF);
1230     bool Copyins = CGF.EmitOMPCopyinClause(S);
1231     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1232     if (Copyins) {
1233       // Emit implicit barrier to synchronize threads and avoid data races on
1234       // propagation master's thread values of threadprivate variables to local
1235       // instances of that variables of all other implicit threads.
1236       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1237           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1238           /*ForceSimpleCall=*/true);
1239     }
1240     CGF.EmitOMPPrivateClause(S, PrivateScope);
1241     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1242     (void)PrivateScope.Privatize();
1243     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1244     CGF.EmitOMPReductionClauseFinal(S);
1245   };
1246   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
1247   emitPostUpdateForReductionClause(
1248       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1249 }
1250 
1251 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1252                                       JumpDest LoopExit) {
1253   RunCleanupsScope BodyScope(*this);
1254   // Update counters values on current iteration.
1255   for (auto I : D.updates()) {
1256     EmitIgnoredExpr(I);
1257   }
1258   // Update the linear variables.
1259   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1260     for (auto *U : C->updates())
1261       EmitIgnoredExpr(U);
1262   }
1263 
1264   // On a continue in the body, jump to the end.
1265   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1266   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1267   // Emit loop body.
1268   EmitStmt(D.getBody());
1269   // The end (updates/cleanups).
1270   EmitBlock(Continue.getBlock());
1271   BreakContinueStack.pop_back();
1272 }
1273 
1274 void CodeGenFunction::EmitOMPInnerLoop(
1275     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1276     const Expr *IncExpr,
1277     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1278     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1279   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1280 
1281   // Start the loop with a block that tests the condition.
1282   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1283   EmitBlock(CondBlock);
1284   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1285 
1286   // If there are any cleanups between here and the loop-exit scope,
1287   // create a block to stage a loop exit along.
1288   auto ExitBlock = LoopExit.getBlock();
1289   if (RequiresCleanup)
1290     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1291 
1292   auto LoopBody = createBasicBlock("omp.inner.for.body");
1293 
1294   // Emit condition.
1295   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1296   if (ExitBlock != LoopExit.getBlock()) {
1297     EmitBlock(ExitBlock);
1298     EmitBranchThroughCleanup(LoopExit);
1299   }
1300 
1301   EmitBlock(LoopBody);
1302   incrementProfileCounter(&S);
1303 
1304   // Create a block for the increment.
1305   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1306   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1307 
1308   BodyGen(*this);
1309 
1310   // Emit "IV = IV + 1" and a back-edge to the condition block.
1311   EmitBlock(Continue.getBlock());
1312   EmitIgnoredExpr(IncExpr);
1313   PostIncGen(*this);
1314   BreakContinueStack.pop_back();
1315   EmitBranch(CondBlock);
1316   LoopStack.pop();
1317   // Emit the fall-through block.
1318   EmitBlock(LoopExit.getBlock());
1319 }
1320 
1321 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1322   if (!HaveInsertPoint())
1323     return;
1324   // Emit inits for the linear variables.
1325   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1326     for (auto *Init : C->inits()) {
1327       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1328       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1329         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1330         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1331         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1332                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1333                         VD->getInit()->getType(), VK_LValue,
1334                         VD->getInit()->getExprLoc());
1335         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1336                                                 VD->getType()),
1337                        /*capturedByInit=*/false);
1338         EmitAutoVarCleanups(Emission);
1339       } else
1340         EmitVarDecl(*VD);
1341     }
1342     // Emit the linear steps for the linear clauses.
1343     // If a step is not constant, it is pre-calculated before the loop.
1344     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1345       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1346         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1347         // Emit calculation of the linear step.
1348         EmitIgnoredExpr(CS);
1349       }
1350   }
1351 }
1352 
1353 void CodeGenFunction::EmitOMPLinearClauseFinal(
1354     const OMPLoopDirective &D,
1355     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1356   if (!HaveInsertPoint())
1357     return;
1358   llvm::BasicBlock *DoneBB = nullptr;
1359   // Emit the final values of the linear variables.
1360   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1361     auto IC = C->varlist_begin();
1362     for (auto *F : C->finals()) {
1363       if (!DoneBB) {
1364         if (auto *Cond = CondGen(*this)) {
1365           // If the first post-update expression is found, emit conditional
1366           // block if it was requested.
1367           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1368           DoneBB = createBasicBlock(".omp.linear.pu.done");
1369           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1370           EmitBlock(ThenBB);
1371         }
1372       }
1373       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1374       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1375                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1376                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1377       Address OrigAddr = EmitLValue(&DRE).getAddress();
1378       CodeGenFunction::OMPPrivateScope VarScope(*this);
1379       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1380       (void)VarScope.Privatize();
1381       EmitIgnoredExpr(F);
1382       ++IC;
1383     }
1384     if (auto *PostUpdate = C->getPostUpdateExpr())
1385       EmitIgnoredExpr(PostUpdate);
1386   }
1387   if (DoneBB)
1388     EmitBlock(DoneBB, /*IsFinished=*/true);
1389 }
1390 
1391 static void emitAlignedClause(CodeGenFunction &CGF,
1392                               const OMPExecutableDirective &D) {
1393   if (!CGF.HaveInsertPoint())
1394     return;
1395   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1396     unsigned ClauseAlignment = 0;
1397     if (auto AlignmentExpr = Clause->getAlignment()) {
1398       auto AlignmentCI =
1399           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1400       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1401     }
1402     for (auto E : Clause->varlists()) {
1403       unsigned Alignment = ClauseAlignment;
1404       if (Alignment == 0) {
1405         // OpenMP [2.8.1, Description]
1406         // If no optional parameter is specified, implementation-defined default
1407         // alignments for SIMD instructions on the target platforms are assumed.
1408         Alignment =
1409             CGF.getContext()
1410                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1411                     E->getType()->getPointeeType()))
1412                 .getQuantity();
1413       }
1414       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1415              "alignment is not power of 2");
1416       if (Alignment != 0) {
1417         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1418         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1419       }
1420     }
1421   }
1422 }
1423 
1424 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1425     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1426   if (!HaveInsertPoint())
1427     return;
1428   auto I = S.private_counters().begin();
1429   for (auto *E : S.counters()) {
1430     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1431     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1432     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1433       // Emit var without initialization.
1434       if (!LocalDeclMap.count(PrivateVD)) {
1435         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1436         EmitAutoVarCleanups(VarEmission);
1437       }
1438       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1439                       /*RefersToEnclosingVariableOrCapture=*/false,
1440                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1441       return EmitLValue(&DRE).getAddress();
1442     });
1443     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1444         VD->hasGlobalStorage()) {
1445       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1446         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1447                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1448                         E->getType(), VK_LValue, E->getExprLoc());
1449         return EmitLValue(&DRE).getAddress();
1450       });
1451     }
1452     ++I;
1453   }
1454 }
1455 
1456 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1457                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1458                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1459   if (!CGF.HaveInsertPoint())
1460     return;
1461   {
1462     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1463     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1464     (void)PreCondScope.Privatize();
1465     // Get initial values of real counters.
1466     for (auto I : S.inits()) {
1467       CGF.EmitIgnoredExpr(I);
1468     }
1469   }
1470   // Check that loop is executed at least one time.
1471   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1472 }
1473 
1474 void CodeGenFunction::EmitOMPLinearClause(
1475     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1476   if (!HaveInsertPoint())
1477     return;
1478   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1479   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1480     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1481     for (auto *C : LoopDirective->counters()) {
1482       SIMDLCVs.insert(
1483           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1484     }
1485   }
1486   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1487     auto CurPrivate = C->privates().begin();
1488     for (auto *E : C->varlists()) {
1489       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1490       auto *PrivateVD =
1491           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1492       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1493         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1494           // Emit private VarDecl with copy init.
1495           EmitVarDecl(*PrivateVD);
1496           return GetAddrOfLocalVar(PrivateVD);
1497         });
1498         assert(IsRegistered && "linear var already registered as private");
1499         // Silence the warning about unused variable.
1500         (void)IsRegistered;
1501       } else
1502         EmitVarDecl(*PrivateVD);
1503       ++CurPrivate;
1504     }
1505   }
1506 }
1507 
1508 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1509                                      const OMPExecutableDirective &D,
1510                                      bool IsMonotonic) {
1511   if (!CGF.HaveInsertPoint())
1512     return;
1513   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1514     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1515                                  /*ignoreResult=*/true);
1516     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1517     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1518     // In presence of finite 'safelen', it may be unsafe to mark all
1519     // the memory instructions parallel, because loop-carried
1520     // dependences of 'safelen' iterations are possible.
1521     if (!IsMonotonic)
1522       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1523   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1524     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1525                                  /*ignoreResult=*/true);
1526     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1527     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1528     // In presence of finite 'safelen', it may be unsafe to mark all
1529     // the memory instructions parallel, because loop-carried
1530     // dependences of 'safelen' iterations are possible.
1531     CGF.LoopStack.setParallel(false);
1532   }
1533 }
1534 
1535 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1536                                       bool IsMonotonic) {
1537   // Walk clauses and process safelen/lastprivate.
1538   LoopStack.setParallel(!IsMonotonic);
1539   LoopStack.setVectorizeEnable(true);
1540   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1541 }
1542 
1543 void CodeGenFunction::EmitOMPSimdFinal(
1544     const OMPLoopDirective &D,
1545     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1546   if (!HaveInsertPoint())
1547     return;
1548   llvm::BasicBlock *DoneBB = nullptr;
1549   auto IC = D.counters().begin();
1550   auto IPC = D.private_counters().begin();
1551   for (auto F : D.finals()) {
1552     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1553     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1554     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1555     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1556         OrigVD->hasGlobalStorage() || CED) {
1557       if (!DoneBB) {
1558         if (auto *Cond = CondGen(*this)) {
1559           // If the first post-update expression is found, emit conditional
1560           // block if it was requested.
1561           auto *ThenBB = createBasicBlock(".omp.final.then");
1562           DoneBB = createBasicBlock(".omp.final.done");
1563           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1564           EmitBlock(ThenBB);
1565         }
1566       }
1567       Address OrigAddr = Address::invalid();
1568       if (CED)
1569         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1570       else {
1571         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1572                         /*RefersToEnclosingVariableOrCapture=*/false,
1573                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1574         OrigAddr = EmitLValue(&DRE).getAddress();
1575       }
1576       OMPPrivateScope VarScope(*this);
1577       VarScope.addPrivate(OrigVD,
1578                           [OrigAddr]() -> Address { return OrigAddr; });
1579       (void)VarScope.Privatize();
1580       EmitIgnoredExpr(F);
1581     }
1582     ++IC;
1583     ++IPC;
1584   }
1585   if (DoneBB)
1586     EmitBlock(DoneBB, /*IsFinished=*/true);
1587 }
1588 
1589 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1590   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1591     OMPLoopScope PreInitScope(CGF, S);
1592     // if (PreCond) {
1593     //   for (IV in 0..LastIteration) BODY;
1594     //   <Final counter/linear vars updates>;
1595     // }
1596     //
1597 
1598     // Emit: if (PreCond) - begin.
1599     // If the condition constant folds and can be elided, avoid emitting the
1600     // whole loop.
1601     bool CondConstant;
1602     llvm::BasicBlock *ContBlock = nullptr;
1603     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1604       if (!CondConstant)
1605         return;
1606     } else {
1607       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1608       ContBlock = CGF.createBasicBlock("simd.if.end");
1609       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1610                   CGF.getProfileCount(&S));
1611       CGF.EmitBlock(ThenBlock);
1612       CGF.incrementProfileCounter(&S);
1613     }
1614 
1615     // Emit the loop iteration variable.
1616     const Expr *IVExpr = S.getIterationVariable();
1617     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1618     CGF.EmitVarDecl(*IVDecl);
1619     CGF.EmitIgnoredExpr(S.getInit());
1620 
1621     // Emit the iterations count variable.
1622     // If it is not a variable, Sema decided to calculate iterations count on
1623     // each iteration (e.g., it is foldable into a constant).
1624     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1625       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1626       // Emit calculation of the iterations count.
1627       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1628     }
1629 
1630     CGF.EmitOMPSimdInit(S);
1631 
1632     emitAlignedClause(CGF, S);
1633     CGF.EmitOMPLinearClauseInit(S);
1634     {
1635       OMPPrivateScope LoopScope(CGF);
1636       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1637       CGF.EmitOMPLinearClause(S, LoopScope);
1638       CGF.EmitOMPPrivateClause(S, LoopScope);
1639       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1640       bool HasLastprivateClause =
1641           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1642       (void)LoopScope.Privatize();
1643       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1644                            S.getInc(),
1645                            [&S](CodeGenFunction &CGF) {
1646                              CGF.EmitOMPLoopBody(S, JumpDest());
1647                              CGF.EmitStopPoint(&S);
1648                            },
1649                            [](CodeGenFunction &) {});
1650       CGF.EmitOMPSimdFinal(
1651           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1652       // Emit final copy of the lastprivate variables at the end of loops.
1653       if (HasLastprivateClause)
1654         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1655       CGF.EmitOMPReductionClauseFinal(S);
1656       emitPostUpdateForReductionClause(
1657           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1658     }
1659     CGF.EmitOMPLinearClauseFinal(
1660         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1661     // Emit: if (PreCond) - end.
1662     if (ContBlock) {
1663       CGF.EmitBranch(ContBlock);
1664       CGF.EmitBlock(ContBlock, true);
1665     }
1666   };
1667   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1668   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1669 }
1670 
1671 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
1672     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1673     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1674   auto &RT = CGM.getOpenMPRuntime();
1675 
1676   const Expr *IVExpr = S.getIterationVariable();
1677   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1678   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1679 
1680   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1681 
1682   // Start the loop with a block that tests the condition.
1683   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1684   EmitBlock(CondBlock);
1685   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1686 
1687   llvm::Value *BoolCondVal = nullptr;
1688   if (!DynamicOrOrdered) {
1689     // UB = min(UB, GlobalUB)
1690     EmitIgnoredExpr(S.getEnsureUpperBound());
1691     // IV = LB
1692     EmitIgnoredExpr(S.getInit());
1693     // IV < UB
1694     BoolCondVal = EvaluateExprAsBool(S.getCond());
1695   } else {
1696     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL,
1697                                  LB, UB, ST);
1698   }
1699 
1700   // If there are any cleanups between here and the loop-exit scope,
1701   // create a block to stage a loop exit along.
1702   auto ExitBlock = LoopExit.getBlock();
1703   if (LoopScope.requiresCleanups())
1704     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1705 
1706   auto LoopBody = createBasicBlock("omp.dispatch.body");
1707   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1708   if (ExitBlock != LoopExit.getBlock()) {
1709     EmitBlock(ExitBlock);
1710     EmitBranchThroughCleanup(LoopExit);
1711   }
1712   EmitBlock(LoopBody);
1713 
1714   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1715   // LB for loop condition and emitted it above).
1716   if (DynamicOrOrdered)
1717     EmitIgnoredExpr(S.getInit());
1718 
1719   // Create a block for the increment.
1720   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1721   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1722 
1723   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1724   // with dynamic/guided scheduling and without ordered clause.
1725   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1726     LoopStack.setParallel(!IsMonotonic);
1727   else
1728     EmitOMPSimdInit(S, IsMonotonic);
1729 
1730   SourceLocation Loc = S.getLocStart();
1731   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1732                    [&S, LoopExit](CodeGenFunction &CGF) {
1733                      CGF.EmitOMPLoopBody(S, LoopExit);
1734                      CGF.EmitStopPoint(&S);
1735                    },
1736                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1737                      if (Ordered) {
1738                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1739                            CGF, Loc, IVSize, IVSigned);
1740                      }
1741                    });
1742 
1743   EmitBlock(Continue.getBlock());
1744   BreakContinueStack.pop_back();
1745   if (!DynamicOrOrdered) {
1746     // Emit "LB = LB + Stride", "UB = UB + Stride".
1747     EmitIgnoredExpr(S.getNextLowerBound());
1748     EmitIgnoredExpr(S.getNextUpperBound());
1749   }
1750 
1751   EmitBranch(CondBlock);
1752   LoopStack.pop();
1753   // Emit the fall-through block.
1754   EmitBlock(LoopExit.getBlock());
1755 
1756   // Tell the runtime we are done.
1757   if (!DynamicOrOrdered)
1758     RT.emitForStaticFinish(*this, S.getLocEnd());
1759 
1760 }
1761 
1762 void CodeGenFunction::EmitOMPForOuterLoop(
1763     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1764     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1765     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1766   auto &RT = CGM.getOpenMPRuntime();
1767 
1768   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1769   const bool DynamicOrOrdered =
1770       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1771 
1772   assert((Ordered ||
1773           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1774                                  /*Chunked=*/Chunk != nullptr)) &&
1775          "static non-chunked schedule does not need outer loop");
1776 
1777   // Emit outer loop.
1778   //
1779   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1780   // When schedule(dynamic,chunk_size) is specified, the iterations are
1781   // distributed to threads in the team in chunks as the threads request them.
1782   // Each thread executes a chunk of iterations, then requests another chunk,
1783   // until no chunks remain to be distributed. Each chunk contains chunk_size
1784   // iterations, except for the last chunk to be distributed, which may have
1785   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1786   //
1787   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1788   // to threads in the team in chunks as the executing threads request them.
1789   // Each thread executes a chunk of iterations, then requests another chunk,
1790   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1791   // each chunk is proportional to the number of unassigned iterations divided
1792   // by the number of threads in the team, decreasing to 1. For a chunk_size
1793   // with value k (greater than 1), the size of each chunk is determined in the
1794   // same way, with the restriction that the chunks do not contain fewer than k
1795   // iterations (except for the last chunk to be assigned, which may have fewer
1796   // than k iterations).
1797   //
1798   // When schedule(auto) is specified, the decision regarding scheduling is
1799   // delegated to the compiler and/or runtime system. The programmer gives the
1800   // implementation the freedom to choose any possible mapping of iterations to
1801   // threads in the team.
1802   //
1803   // When schedule(runtime) is specified, the decision regarding scheduling is
1804   // deferred until run time, and the schedule and chunk size are taken from the
1805   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1806   // implementation defined
1807   //
1808   // while(__kmpc_dispatch_next(&LB, &UB)) {
1809   //   idx = LB;
1810   //   while (idx <= UB) { BODY; ++idx;
1811   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1812   //   } // inner loop
1813   // }
1814   //
1815   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1816   // When schedule(static, chunk_size) is specified, iterations are divided into
1817   // chunks of size chunk_size, and the chunks are assigned to the threads in
1818   // the team in a round-robin fashion in the order of the thread number.
1819   //
1820   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1821   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1822   //   LB = LB + ST;
1823   //   UB = UB + ST;
1824   // }
1825   //
1826 
1827   const Expr *IVExpr = S.getIterationVariable();
1828   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1829   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1830 
1831   if (DynamicOrOrdered) {
1832     llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
1833     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1834                            IVSigned, Ordered, UBVal, Chunk);
1835   } else {
1836     RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1837                          Ordered, IL, LB, UB, ST, Chunk);
1838   }
1839 
1840   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB,
1841                    ST, IL, Chunk);
1842 }
1843 
1844 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1845     OpenMPDistScheduleClauseKind ScheduleKind,
1846     const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
1847     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1848 
1849   auto &RT = CGM.getOpenMPRuntime();
1850 
1851   // Emit outer loop.
1852   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1853   // dynamic
1854   //
1855 
1856   const Expr *IVExpr = S.getIterationVariable();
1857   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1858   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1859 
1860   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
1861                               IVSize, IVSigned, /* Ordered = */ false,
1862                               IL, LB, UB, ST, Chunk);
1863 
1864   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false,
1865                    S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk);
1866 }
1867 
1868 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1869     const OMPDistributeParallelForDirective &S) {
1870   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1871   CGM.getOpenMPRuntime().emitInlinedDirective(
1872       *this, OMPD_distribute_parallel_for,
1873       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1874         OMPLoopScope PreInitScope(CGF, S);
1875         CGF.EmitStmt(
1876             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1877       });
1878 }
1879 
1880 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1881     const OMPDistributeParallelForSimdDirective &S) {
1882   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1883   CGM.getOpenMPRuntime().emitInlinedDirective(
1884       *this, OMPD_distribute_parallel_for_simd,
1885       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1886         OMPLoopScope PreInitScope(CGF, S);
1887         CGF.EmitStmt(
1888             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1889       });
1890 }
1891 
1892 void CodeGenFunction::EmitOMPDistributeSimdDirective(
1893     const OMPDistributeSimdDirective &S) {
1894   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1895   CGM.getOpenMPRuntime().emitInlinedDirective(
1896       *this, OMPD_distribute_simd,
1897       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1898         OMPLoopScope PreInitScope(CGF, S);
1899         CGF.EmitStmt(
1900             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1901       });
1902 }
1903 
1904 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
1905     const OMPTargetParallelForSimdDirective &S) {
1906   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1907   CGM.getOpenMPRuntime().emitInlinedDirective(
1908       *this, OMPD_target_parallel_for_simd,
1909       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1910         OMPLoopScope PreInitScope(CGF, S);
1911         CGF.EmitStmt(
1912             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1913       });
1914 }
1915 
1916 void CodeGenFunction::EmitOMPTargetSimdDirective(
1917     const OMPTargetSimdDirective &S) {
1918   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1919   CGM.getOpenMPRuntime().emitInlinedDirective(
1920       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1921         OMPLoopScope PreInitScope(CGF, S);
1922         CGF.EmitStmt(
1923             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1924       });
1925 }
1926 
1927 /// \brief Emit a helper variable and return corresponding lvalue.
1928 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1929                                const DeclRefExpr *Helper) {
1930   auto VDecl = cast<VarDecl>(Helper->getDecl());
1931   CGF.EmitVarDecl(*VDecl);
1932   return CGF.EmitLValue(Helper);
1933 }
1934 
1935 namespace {
1936   struct ScheduleKindModifiersTy {
1937     OpenMPScheduleClauseKind Kind;
1938     OpenMPScheduleClauseModifier M1;
1939     OpenMPScheduleClauseModifier M2;
1940     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
1941                             OpenMPScheduleClauseModifier M1,
1942                             OpenMPScheduleClauseModifier M2)
1943         : Kind(Kind), M1(M1), M2(M2) {}
1944   };
1945 } // namespace
1946 
1947 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1948   // Emit the loop iteration variable.
1949   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1950   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1951   EmitVarDecl(*IVDecl);
1952 
1953   // Emit the iterations count variable.
1954   // If it is not a variable, Sema decided to calculate iterations count on each
1955   // iteration (e.g., it is foldable into a constant).
1956   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1957     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1958     // Emit calculation of the iterations count.
1959     EmitIgnoredExpr(S.getCalcLastIteration());
1960   }
1961 
1962   auto &RT = CGM.getOpenMPRuntime();
1963 
1964   bool HasLastprivateClause;
1965   // Check pre-condition.
1966   {
1967     OMPLoopScope PreInitScope(*this, S);
1968     // Skip the entire loop if we don't meet the precondition.
1969     // If the condition constant folds and can be elided, avoid emitting the
1970     // whole loop.
1971     bool CondConstant;
1972     llvm::BasicBlock *ContBlock = nullptr;
1973     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1974       if (!CondConstant)
1975         return false;
1976     } else {
1977       auto *ThenBlock = createBasicBlock("omp.precond.then");
1978       ContBlock = createBasicBlock("omp.precond.end");
1979       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
1980                   getProfileCount(&S));
1981       EmitBlock(ThenBlock);
1982       incrementProfileCounter(&S);
1983     }
1984 
1985     bool Ordered = false;
1986     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
1987       if (OrderedClause->getNumForLoops())
1988         RT.emitDoacrossInit(*this, S);
1989       else
1990         Ordered = true;
1991     }
1992 
1993     llvm::DenseSet<const Expr *> EmittedFinals;
1994     emitAlignedClause(*this, S);
1995     EmitOMPLinearClauseInit(S);
1996     // Emit helper vars inits.
1997     LValue LB =
1998         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1999     LValue UB =
2000         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2001     LValue ST =
2002         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2003     LValue IL =
2004         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2005 
2006     // Emit 'then' code.
2007     {
2008       OMPPrivateScope LoopScope(*this);
2009       if (EmitOMPFirstprivateClause(S, LoopScope)) {
2010         // Emit implicit barrier to synchronize threads and avoid data races on
2011         // initialization of firstprivate variables and post-update of
2012         // lastprivate variables.
2013         CGM.getOpenMPRuntime().emitBarrierCall(
2014             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2015             /*ForceSimpleCall=*/true);
2016       }
2017       EmitOMPPrivateClause(S, LoopScope);
2018       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2019       EmitOMPReductionClauseInit(S, LoopScope);
2020       EmitOMPPrivateLoopCounters(S, LoopScope);
2021       EmitOMPLinearClause(S, LoopScope);
2022       (void)LoopScope.Privatize();
2023 
2024       // Detect the loop schedule kind and chunk.
2025       llvm::Value *Chunk = nullptr;
2026       OpenMPScheduleTy ScheduleKind;
2027       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2028         ScheduleKind.Schedule = C->getScheduleKind();
2029         ScheduleKind.M1 = C->getFirstScheduleModifier();
2030         ScheduleKind.M2 = C->getSecondScheduleModifier();
2031         if (const auto *Ch = C->getChunkSize()) {
2032           Chunk = EmitScalarExpr(Ch);
2033           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2034                                        S.getIterationVariable()->getType(),
2035                                        S.getLocStart());
2036         }
2037       }
2038       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2039       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2040       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2041       // If the static schedule kind is specified or if the ordered clause is
2042       // specified, and if no monotonic modifier is specified, the effect will
2043       // be as if the monotonic modifier was specified.
2044       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2045                                 /* Chunked */ Chunk != nullptr) &&
2046           !Ordered) {
2047         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2048           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2049         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2050         // When no chunk_size is specified, the iteration space is divided into
2051         // chunks that are approximately equal in size, and at most one chunk is
2052         // distributed to each thread. Note that the size of the chunks is
2053         // unspecified in this case.
2054         RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
2055                              IVSize, IVSigned, Ordered,
2056                              IL.getAddress(), LB.getAddress(),
2057                              UB.getAddress(), ST.getAddress());
2058         auto LoopExit =
2059             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2060         // UB = min(UB, GlobalUB);
2061         EmitIgnoredExpr(S.getEnsureUpperBound());
2062         // IV = LB;
2063         EmitIgnoredExpr(S.getInit());
2064         // while (idx <= UB) { BODY; ++idx; }
2065         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2066                          S.getInc(),
2067                          [&S, LoopExit](CodeGenFunction &CGF) {
2068                            CGF.EmitOMPLoopBody(S, LoopExit);
2069                            CGF.EmitStopPoint(&S);
2070                          },
2071                          [](CodeGenFunction &) {});
2072         EmitBlock(LoopExit.getBlock());
2073         // Tell the runtime we are done.
2074         RT.emitForStaticFinish(*this, S.getLocStart());
2075       } else {
2076         const bool IsMonotonic =
2077             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2078             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2079             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2080             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2081         // Emit the outer loop, which requests its work chunk [LB..UB] from
2082         // runtime and runs the inner loop to process it.
2083         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2084                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2085                             IL.getAddress(), Chunk);
2086       }
2087       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2088         EmitOMPSimdFinal(S,
2089                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2090                            return CGF.Builder.CreateIsNotNull(
2091                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2092                          });
2093       }
2094       EmitOMPReductionClauseFinal(S);
2095       // Emit post-update of the reduction variables if IsLastIter != 0.
2096       emitPostUpdateForReductionClause(
2097           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2098             return CGF.Builder.CreateIsNotNull(
2099                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2100           });
2101       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2102       if (HasLastprivateClause)
2103         EmitOMPLastprivateClauseFinal(
2104             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2105             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2106     }
2107     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2108       return CGF.Builder.CreateIsNotNull(
2109           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2110     });
2111     // We're now done with the loop, so jump to the continuation block.
2112     if (ContBlock) {
2113       EmitBranch(ContBlock);
2114       EmitBlock(ContBlock, true);
2115     }
2116   }
2117   return HasLastprivateClause;
2118 }
2119 
2120 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2121   bool HasLastprivates = false;
2122   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2123                                           PrePostActionTy &) {
2124     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2125   };
2126   {
2127     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2128     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2129                                                 S.hasCancel());
2130   }
2131 
2132   // Emit an implicit barrier at the end.
2133   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2134     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2135   }
2136 }
2137 
2138 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2139   bool HasLastprivates = false;
2140   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2141                                           PrePostActionTy &) {
2142     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2143   };
2144   {
2145     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2146     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2147   }
2148 
2149   // Emit an implicit barrier at the end.
2150   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2151     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2152   }
2153 }
2154 
2155 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2156                                 const Twine &Name,
2157                                 llvm::Value *Init = nullptr) {
2158   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2159   if (Init)
2160     CGF.EmitScalarInit(Init, LVal);
2161   return LVal;
2162 }
2163 
2164 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2165   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2166   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2167   bool HasLastprivates = false;
2168   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2169                                                     PrePostActionTy &) {
2170     auto &C = CGF.CGM.getContext();
2171     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2172     // Emit helper vars inits.
2173     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2174                                   CGF.Builder.getInt32(0));
2175     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2176                                       : CGF.Builder.getInt32(0);
2177     LValue UB =
2178         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2179     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2180                                   CGF.Builder.getInt32(1));
2181     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2182                                   CGF.Builder.getInt32(0));
2183     // Loop counter.
2184     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2185     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2186     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2187     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2188     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2189     // Generate condition for loop.
2190     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2191                         OK_Ordinary, S.getLocStart(),
2192                         /*fpContractable=*/false);
2193     // Increment for loop counter.
2194     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2195                       S.getLocStart());
2196     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2197       // Iterate through all sections and emit a switch construct:
2198       // switch (IV) {
2199       //   case 0:
2200       //     <SectionStmt[0]>;
2201       //     break;
2202       // ...
2203       //   case <NumSection> - 1:
2204       //     <SectionStmt[<NumSection> - 1]>;
2205       //     break;
2206       // }
2207       // .omp.sections.exit:
2208       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2209       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2210           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2211           CS == nullptr ? 1 : CS->size());
2212       if (CS) {
2213         unsigned CaseNumber = 0;
2214         for (auto *SubStmt : CS->children()) {
2215           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2216           CGF.EmitBlock(CaseBB);
2217           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2218           CGF.EmitStmt(SubStmt);
2219           CGF.EmitBranch(ExitBB);
2220           ++CaseNumber;
2221         }
2222       } else {
2223         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2224         CGF.EmitBlock(CaseBB);
2225         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2226         CGF.EmitStmt(Stmt);
2227         CGF.EmitBranch(ExitBB);
2228       }
2229       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2230     };
2231 
2232     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2233     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2234       // Emit implicit barrier to synchronize threads and avoid data races on
2235       // initialization of firstprivate variables and post-update of lastprivate
2236       // variables.
2237       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2238           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2239           /*ForceSimpleCall=*/true);
2240     }
2241     CGF.EmitOMPPrivateClause(S, LoopScope);
2242     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2243     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2244     (void)LoopScope.Privatize();
2245 
2246     // Emit static non-chunked loop.
2247     OpenMPScheduleTy ScheduleKind;
2248     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2249     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2250         CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32,
2251         /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
2252         UB.getAddress(), ST.getAddress());
2253     // UB = min(UB, GlobalUB);
2254     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2255     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2256         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2257     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2258     // IV = LB;
2259     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2260     // while (idx <= UB) { BODY; ++idx; }
2261     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2262                          [](CodeGenFunction &) {});
2263     // Tell the runtime we are done.
2264     CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
2265     CGF.EmitOMPReductionClauseFinal(S);
2266     // Emit post-update of the reduction variables if IsLastIter != 0.
2267     emitPostUpdateForReductionClause(
2268         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2269           return CGF.Builder.CreateIsNotNull(
2270               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2271         });
2272 
2273     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2274     if (HasLastprivates)
2275       CGF.EmitOMPLastprivateClauseFinal(
2276           S, /*NoFinals=*/false,
2277           CGF.Builder.CreateIsNotNull(
2278               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2279   };
2280 
2281   bool HasCancel = false;
2282   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2283     HasCancel = OSD->hasCancel();
2284   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2285     HasCancel = OPSD->hasCancel();
2286   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2287                                               HasCancel);
2288   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2289   // clause. Otherwise the barrier will be generated by the codegen for the
2290   // directive.
2291   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2292     // Emit implicit barrier to synchronize threads and avoid data races on
2293     // initialization of firstprivate variables.
2294     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2295                                            OMPD_unknown);
2296   }
2297 }
2298 
2299 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2300   {
2301     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2302     EmitSections(S);
2303   }
2304   // Emit an implicit barrier at the end.
2305   if (!S.getSingleClause<OMPNowaitClause>()) {
2306     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2307                                            OMPD_sections);
2308   }
2309 }
2310 
2311 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2312   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2313     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2314   };
2315   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2316   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2317                                               S.hasCancel());
2318 }
2319 
2320 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2321   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2322   llvm::SmallVector<const Expr *, 8> DestExprs;
2323   llvm::SmallVector<const Expr *, 8> SrcExprs;
2324   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2325   // Check if there are any 'copyprivate' clauses associated with this
2326   // 'single' construct.
2327   // Build a list of copyprivate variables along with helper expressions
2328   // (<source>, <destination>, <destination>=<source> expressions)
2329   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2330     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2331     DestExprs.append(C->destination_exprs().begin(),
2332                      C->destination_exprs().end());
2333     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2334     AssignmentOps.append(C->assignment_ops().begin(),
2335                          C->assignment_ops().end());
2336   }
2337   // Emit code for 'single' region along with 'copyprivate' clauses
2338   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2339     Action.Enter(CGF);
2340     OMPPrivateScope SingleScope(CGF);
2341     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2342     CGF.EmitOMPPrivateClause(S, SingleScope);
2343     (void)SingleScope.Privatize();
2344     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2345   };
2346   {
2347     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2348     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2349                                             CopyprivateVars, DestExprs,
2350                                             SrcExprs, AssignmentOps);
2351   }
2352   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2353   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2354   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2355     CGM.getOpenMPRuntime().emitBarrierCall(
2356         *this, S.getLocStart(),
2357         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2358   }
2359 }
2360 
2361 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2362   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2363     Action.Enter(CGF);
2364     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2365   };
2366   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2367   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2368 }
2369 
2370 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2371   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2372     Action.Enter(CGF);
2373     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2374   };
2375   Expr *Hint = nullptr;
2376   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2377     Hint = HintClause->getHint();
2378   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2379   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2380                                             S.getDirectiveName().getAsString(),
2381                                             CodeGen, S.getLocStart(), Hint);
2382 }
2383 
2384 void CodeGenFunction::EmitOMPParallelForDirective(
2385     const OMPParallelForDirective &S) {
2386   // Emit directive as a combined directive that consists of two implicit
2387   // directives: 'parallel' with 'for' directive.
2388   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2389     CGF.EmitOMPWorksharingLoop(S);
2390   };
2391   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
2392 }
2393 
2394 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2395     const OMPParallelForSimdDirective &S) {
2396   // Emit directive as a combined directive that consists of two implicit
2397   // directives: 'parallel' with 'for' directive.
2398   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2399     CGF.EmitOMPWorksharingLoop(S);
2400   };
2401   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
2402 }
2403 
2404 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2405     const OMPParallelSectionsDirective &S) {
2406   // Emit directive as a combined directive that consists of two implicit
2407   // directives: 'parallel' with 'sections' directive.
2408   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2409     CGF.EmitSections(S);
2410   };
2411   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
2412 }
2413 
2414 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2415                                                 const RegionCodeGenTy &BodyGen,
2416                                                 const TaskGenTy &TaskGen,
2417                                                 OMPTaskDataTy &Data) {
2418   // Emit outlined function for task construct.
2419   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2420   auto *I = CS->getCapturedDecl()->param_begin();
2421   auto *PartId = std::next(I);
2422   auto *TaskT = std::next(I, 4);
2423   // Check if the task is final
2424   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2425     // If the condition constant folds and can be elided, try to avoid emitting
2426     // the condition and the dead arm of the if/else.
2427     auto *Cond = Clause->getCondition();
2428     bool CondConstant;
2429     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2430       Data.Final.setInt(CondConstant);
2431     else
2432       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2433   } else {
2434     // By default the task is not final.
2435     Data.Final.setInt(/*IntVal=*/false);
2436   }
2437   // Check if the task has 'priority' clause.
2438   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2439     auto *Prio = Clause->getPriority();
2440     Data.Priority.setInt(/*IntVal=*/true);
2441     Data.Priority.setPointer(EmitScalarConversion(
2442         EmitScalarExpr(Prio), Prio->getType(),
2443         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2444         Prio->getExprLoc()));
2445   }
2446   // The first function argument for tasks is a thread id, the second one is a
2447   // part id (0 for tied tasks, >=0 for untied task).
2448   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2449   // Get list of private variables.
2450   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2451     auto IRef = C->varlist_begin();
2452     for (auto *IInit : C->private_copies()) {
2453       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2454       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2455         Data.PrivateVars.push_back(*IRef);
2456         Data.PrivateCopies.push_back(IInit);
2457       }
2458       ++IRef;
2459     }
2460   }
2461   EmittedAsPrivate.clear();
2462   // Get list of firstprivate variables.
2463   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2464     auto IRef = C->varlist_begin();
2465     auto IElemInitRef = C->inits().begin();
2466     for (auto *IInit : C->private_copies()) {
2467       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2468       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2469         Data.FirstprivateVars.push_back(*IRef);
2470         Data.FirstprivateCopies.push_back(IInit);
2471         Data.FirstprivateInits.push_back(*IElemInitRef);
2472       }
2473       ++IRef;
2474       ++IElemInitRef;
2475     }
2476   }
2477   // Get list of lastprivate variables (for taskloops).
2478   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2479   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2480     auto IRef = C->varlist_begin();
2481     auto ID = C->destination_exprs().begin();
2482     for (auto *IInit : C->private_copies()) {
2483       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2484       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2485         Data.LastprivateVars.push_back(*IRef);
2486         Data.LastprivateCopies.push_back(IInit);
2487       }
2488       LastprivateDstsOrigs.insert(
2489           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2490            cast<DeclRefExpr>(*IRef)});
2491       ++IRef;
2492       ++ID;
2493     }
2494   }
2495   // Build list of dependences.
2496   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2497     for (auto *IRef : C->varlists())
2498       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2499   auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs](
2500       CodeGenFunction &CGF, PrePostActionTy &Action) {
2501     // Set proper addresses for generated private copies.
2502     OMPPrivateScope Scope(CGF);
2503     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2504         !Data.LastprivateVars.empty()) {
2505       auto *CopyFn = CGF.Builder.CreateLoad(
2506           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2507       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2508           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2509       // Map privates.
2510       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2511       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2512       CallArgs.push_back(PrivatesPtr);
2513       for (auto *E : Data.PrivateVars) {
2514         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2515         Address PrivatePtr = CGF.CreateMemTemp(
2516             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2517         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2518         CallArgs.push_back(PrivatePtr.getPointer());
2519       }
2520       for (auto *E : Data.FirstprivateVars) {
2521         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2522         Address PrivatePtr =
2523             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2524                               ".firstpriv.ptr.addr");
2525         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2526         CallArgs.push_back(PrivatePtr.getPointer());
2527       }
2528       for (auto *E : Data.LastprivateVars) {
2529         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2530         Address PrivatePtr =
2531             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2532                               ".lastpriv.ptr.addr");
2533         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2534         CallArgs.push_back(PrivatePtr.getPointer());
2535       }
2536       CGF.EmitRuntimeCall(CopyFn, CallArgs);
2537       for (auto &&Pair : LastprivateDstsOrigs) {
2538         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2539         DeclRefExpr DRE(
2540             const_cast<VarDecl *>(OrigVD),
2541             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2542                 OrigVD) != nullptr,
2543             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2544         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2545           return CGF.EmitLValue(&DRE).getAddress();
2546         });
2547       }
2548       for (auto &&Pair : PrivatePtrs) {
2549         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2550                             CGF.getContext().getDeclAlign(Pair.first));
2551         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2552       }
2553     }
2554     (void)Scope.Privatize();
2555 
2556     Action.Enter(CGF);
2557     BodyGen(CGF);
2558   };
2559   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2560       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2561       Data.NumberOfParts);
2562   OMPLexicalScope Scope(*this, S);
2563   TaskGen(*this, OutlinedFn, Data);
2564 }
2565 
2566 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2567   // Emit outlined function for task construct.
2568   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2569   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2570   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2571   const Expr *IfCond = nullptr;
2572   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2573     if (C->getNameModifier() == OMPD_unknown ||
2574         C->getNameModifier() == OMPD_task) {
2575       IfCond = C->getCondition();
2576       break;
2577     }
2578   }
2579 
2580   OMPTaskDataTy Data;
2581   // Check if we should emit tied or untied task.
2582   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2583   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2584     CGF.EmitStmt(CS->getCapturedStmt());
2585   };
2586   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2587                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2588                             const OMPTaskDataTy &Data) {
2589     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2590                                             SharedsTy, CapturedStruct, IfCond,
2591                                             Data);
2592   };
2593   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2594 }
2595 
2596 void CodeGenFunction::EmitOMPTaskyieldDirective(
2597     const OMPTaskyieldDirective &S) {
2598   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2599 }
2600 
2601 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2602   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2603 }
2604 
2605 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2606   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2607 }
2608 
2609 void CodeGenFunction::EmitOMPTaskgroupDirective(
2610     const OMPTaskgroupDirective &S) {
2611   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2612     Action.Enter(CGF);
2613     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2614   };
2615   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2616   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
2617 }
2618 
2619 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
2620   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
2621     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
2622       return llvm::makeArrayRef(FlushClause->varlist_begin(),
2623                                 FlushClause->varlist_end());
2624     }
2625     return llvm::None;
2626   }(), S.getLocStart());
2627 }
2628 
2629 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) {
2630   // Emit the loop iteration variable.
2631   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2632   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2633   EmitVarDecl(*IVDecl);
2634 
2635   // Emit the iterations count variable.
2636   // If it is not a variable, Sema decided to calculate iterations count on each
2637   // iteration (e.g., it is foldable into a constant).
2638   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2639     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2640     // Emit calculation of the iterations count.
2641     EmitIgnoredExpr(S.getCalcLastIteration());
2642   }
2643 
2644   auto &RT = CGM.getOpenMPRuntime();
2645 
2646   // Check pre-condition.
2647   {
2648     OMPLoopScope PreInitScope(*this, S);
2649     // Skip the entire loop if we don't meet the precondition.
2650     // If the condition constant folds and can be elided, avoid emitting the
2651     // whole loop.
2652     bool CondConstant;
2653     llvm::BasicBlock *ContBlock = nullptr;
2654     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2655       if (!CondConstant)
2656         return;
2657     } else {
2658       auto *ThenBlock = createBasicBlock("omp.precond.then");
2659       ContBlock = createBasicBlock("omp.precond.end");
2660       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2661                   getProfileCount(&S));
2662       EmitBlock(ThenBlock);
2663       incrementProfileCounter(&S);
2664     }
2665 
2666     // Emit 'then' code.
2667     {
2668       // Emit helper vars inits.
2669       LValue LB =
2670           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2671       LValue UB =
2672           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2673       LValue ST =
2674           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2675       LValue IL =
2676           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2677 
2678       OMPPrivateScope LoopScope(*this);
2679       EmitOMPPrivateLoopCounters(S, LoopScope);
2680       (void)LoopScope.Privatize();
2681 
2682       // Detect the distribute schedule kind and chunk.
2683       llvm::Value *Chunk = nullptr;
2684       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
2685       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
2686         ScheduleKind = C->getDistScheduleKind();
2687         if (const auto *Ch = C->getChunkSize()) {
2688           Chunk = EmitScalarExpr(Ch);
2689           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2690           S.getIterationVariable()->getType(),
2691           S.getLocStart());
2692         }
2693       }
2694       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2695       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2696 
2697       // OpenMP [2.10.8, distribute Construct, Description]
2698       // If dist_schedule is specified, kind must be static. If specified,
2699       // iterations are divided into chunks of size chunk_size, chunks are
2700       // assigned to the teams of the league in a round-robin fashion in the
2701       // order of the team number. When no chunk_size is specified, the
2702       // iteration space is divided into chunks that are approximately equal
2703       // in size, and at most one chunk is distributed to each team of the
2704       // league. The size of the chunks is unspecified in this case.
2705       if (RT.isStaticNonchunked(ScheduleKind,
2706                                 /* Chunked */ Chunk != nullptr)) {
2707         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
2708                              IVSize, IVSigned, /* Ordered = */ false,
2709                              IL.getAddress(), LB.getAddress(),
2710                              UB.getAddress(), ST.getAddress());
2711         auto LoopExit =
2712             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2713         // UB = min(UB, GlobalUB);
2714         EmitIgnoredExpr(S.getEnsureUpperBound());
2715         // IV = LB;
2716         EmitIgnoredExpr(S.getInit());
2717         // while (idx <= UB) { BODY; ++idx; }
2718         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2719                          S.getInc(),
2720                          [&S, LoopExit](CodeGenFunction &CGF) {
2721                            CGF.EmitOMPLoopBody(S, LoopExit);
2722                            CGF.EmitStopPoint(&S);
2723                          },
2724                          [](CodeGenFunction &) {});
2725         EmitBlock(LoopExit.getBlock());
2726         // Tell the runtime we are done.
2727         RT.emitForStaticFinish(*this, S.getLocStart());
2728       } else {
2729         // Emit the outer loop, which requests its work chunk [LB..UB] from
2730         // runtime and runs the inner loop to process it.
2731         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope,
2732                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2733                             IL.getAddress(), Chunk);
2734       }
2735     }
2736 
2737     // We're now done with the loop, so jump to the continuation block.
2738     if (ContBlock) {
2739       EmitBranch(ContBlock);
2740       EmitBlock(ContBlock, true);
2741     }
2742   }
2743 }
2744 
2745 void CodeGenFunction::EmitOMPDistributeDirective(
2746     const OMPDistributeDirective &S) {
2747   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2748     CGF.EmitOMPDistributeLoop(S);
2749   };
2750   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2751   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
2752                                               false);
2753 }
2754 
2755 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
2756                                                    const CapturedStmt *S) {
2757   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
2758   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
2759   CGF.CapturedStmtInfo = &CapStmtInfo;
2760   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
2761   Fn->addFnAttr(llvm::Attribute::NoInline);
2762   return Fn;
2763 }
2764 
2765 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
2766   if (!S.getAssociatedStmt()) {
2767     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
2768       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
2769     return;
2770   }
2771   auto *C = S.getSingleClause<OMPSIMDClause>();
2772   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
2773                                  PrePostActionTy &Action) {
2774     if (C) {
2775       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2776       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
2777       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
2778       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
2779       CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
2780     } else {
2781       Action.Enter(CGF);
2782       CGF.EmitStmt(
2783           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2784     }
2785   };
2786   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2787   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
2788 }
2789 
2790 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
2791                                          QualType SrcType, QualType DestType,
2792                                          SourceLocation Loc) {
2793   assert(CGF.hasScalarEvaluationKind(DestType) &&
2794          "DestType must have scalar evaluation kind.");
2795   assert(!Val.isAggregate() && "Must be a scalar or complex.");
2796   return Val.isScalar()
2797              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
2798                                         Loc)
2799              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
2800                                                  DestType, Loc);
2801 }
2802 
2803 static CodeGenFunction::ComplexPairTy
2804 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
2805                       QualType DestType, SourceLocation Loc) {
2806   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
2807          "DestType must have complex evaluation kind.");
2808   CodeGenFunction::ComplexPairTy ComplexVal;
2809   if (Val.isScalar()) {
2810     // Convert the input element to the element type of the complex.
2811     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2812     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
2813                                               DestElementType, Loc);
2814     ComplexVal = CodeGenFunction::ComplexPairTy(
2815         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
2816   } else {
2817     assert(Val.isComplex() && "Must be a scalar or complex.");
2818     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
2819     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2820     ComplexVal.first = CGF.EmitScalarConversion(
2821         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
2822     ComplexVal.second = CGF.EmitScalarConversion(
2823         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
2824   }
2825   return ComplexVal;
2826 }
2827 
2828 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
2829                                   LValue LVal, RValue RVal) {
2830   if (LVal.isGlobalReg()) {
2831     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
2832   } else {
2833     CGF.EmitAtomicStore(RVal, LVal,
2834                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2835                                  : llvm::AtomicOrdering::Monotonic,
2836                         LVal.isVolatile(), /*IsInit=*/false);
2837   }
2838 }
2839 
2840 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
2841                                          QualType RValTy, SourceLocation Loc) {
2842   switch (getEvaluationKind(LVal.getType())) {
2843   case TEK_Scalar:
2844     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
2845                                *this, RVal, RValTy, LVal.getType(), Loc)),
2846                            LVal);
2847     break;
2848   case TEK_Complex:
2849     EmitStoreOfComplex(
2850         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
2851         /*isInit=*/false);
2852     break;
2853   case TEK_Aggregate:
2854     llvm_unreachable("Must be a scalar or complex.");
2855   }
2856 }
2857 
2858 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
2859                                   const Expr *X, const Expr *V,
2860                                   SourceLocation Loc) {
2861   // v = x;
2862   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
2863   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
2864   LValue XLValue = CGF.EmitLValue(X);
2865   LValue VLValue = CGF.EmitLValue(V);
2866   RValue Res = XLValue.isGlobalReg()
2867                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
2868                    : CGF.EmitAtomicLoad(
2869                          XLValue, Loc,
2870                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2871                                   : llvm::AtomicOrdering::Monotonic,
2872                          XLValue.isVolatile());
2873   // OpenMP, 2.12.6, atomic Construct
2874   // Any atomic construct with a seq_cst clause forces the atomically
2875   // performed operation to include an implicit flush operation without a
2876   // list.
2877   if (IsSeqCst)
2878     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2879   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
2880 }
2881 
2882 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
2883                                    const Expr *X, const Expr *E,
2884                                    SourceLocation Loc) {
2885   // x = expr;
2886   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
2887   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
2888   // OpenMP, 2.12.6, atomic Construct
2889   // Any atomic construct with a seq_cst clause forces the atomically
2890   // performed operation to include an implicit flush operation without a
2891   // list.
2892   if (IsSeqCst)
2893     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2894 }
2895 
2896 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
2897                                                 RValue Update,
2898                                                 BinaryOperatorKind BO,
2899                                                 llvm::AtomicOrdering AO,
2900                                                 bool IsXLHSInRHSPart) {
2901   auto &Context = CGF.CGM.getContext();
2902   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
2903   // expression is simple and atomic is allowed for the given type for the
2904   // target platform.
2905   if (BO == BO_Comma || !Update.isScalar() ||
2906       !Update.getScalarVal()->getType()->isIntegerTy() ||
2907       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
2908                         (Update.getScalarVal()->getType() !=
2909                          X.getAddress().getElementType())) ||
2910       !X.getAddress().getElementType()->isIntegerTy() ||
2911       !Context.getTargetInfo().hasBuiltinAtomic(
2912           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
2913     return std::make_pair(false, RValue::get(nullptr));
2914 
2915   llvm::AtomicRMWInst::BinOp RMWOp;
2916   switch (BO) {
2917   case BO_Add:
2918     RMWOp = llvm::AtomicRMWInst::Add;
2919     break;
2920   case BO_Sub:
2921     if (!IsXLHSInRHSPart)
2922       return std::make_pair(false, RValue::get(nullptr));
2923     RMWOp = llvm::AtomicRMWInst::Sub;
2924     break;
2925   case BO_And:
2926     RMWOp = llvm::AtomicRMWInst::And;
2927     break;
2928   case BO_Or:
2929     RMWOp = llvm::AtomicRMWInst::Or;
2930     break;
2931   case BO_Xor:
2932     RMWOp = llvm::AtomicRMWInst::Xor;
2933     break;
2934   case BO_LT:
2935     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2936                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
2937                                    : llvm::AtomicRMWInst::Max)
2938                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
2939                                    : llvm::AtomicRMWInst::UMax);
2940     break;
2941   case BO_GT:
2942     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2943                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
2944                                    : llvm::AtomicRMWInst::Min)
2945                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
2946                                    : llvm::AtomicRMWInst::UMin);
2947     break;
2948   case BO_Assign:
2949     RMWOp = llvm::AtomicRMWInst::Xchg;
2950     break;
2951   case BO_Mul:
2952   case BO_Div:
2953   case BO_Rem:
2954   case BO_Shl:
2955   case BO_Shr:
2956   case BO_LAnd:
2957   case BO_LOr:
2958     return std::make_pair(false, RValue::get(nullptr));
2959   case BO_PtrMemD:
2960   case BO_PtrMemI:
2961   case BO_LE:
2962   case BO_GE:
2963   case BO_EQ:
2964   case BO_NE:
2965   case BO_AddAssign:
2966   case BO_SubAssign:
2967   case BO_AndAssign:
2968   case BO_OrAssign:
2969   case BO_XorAssign:
2970   case BO_MulAssign:
2971   case BO_DivAssign:
2972   case BO_RemAssign:
2973   case BO_ShlAssign:
2974   case BO_ShrAssign:
2975   case BO_Comma:
2976     llvm_unreachable("Unsupported atomic update operation");
2977   }
2978   auto *UpdateVal = Update.getScalarVal();
2979   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
2980     UpdateVal = CGF.Builder.CreateIntCast(
2981         IC, X.getAddress().getElementType(),
2982         X.getType()->hasSignedIntegerRepresentation());
2983   }
2984   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
2985   return std::make_pair(true, RValue::get(Res));
2986 }
2987 
2988 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
2989     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2990     llvm::AtomicOrdering AO, SourceLocation Loc,
2991     const llvm::function_ref<RValue(RValue)> &CommonGen) {
2992   // Update expressions are allowed to have the following forms:
2993   // x binop= expr; -> xrval + expr;
2994   // x++, ++x -> xrval + 1;
2995   // x--, --x -> xrval - 1;
2996   // x = x binop expr; -> xrval binop expr
2997   // x = expr Op x; - > expr binop xrval;
2998   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
2999   if (!Res.first) {
3000     if (X.isGlobalReg()) {
3001       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3002       // 'xrval'.
3003       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3004     } else {
3005       // Perform compare-and-swap procedure.
3006       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3007     }
3008   }
3009   return Res;
3010 }
3011 
3012 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3013                                     const Expr *X, const Expr *E,
3014                                     const Expr *UE, bool IsXLHSInRHSPart,
3015                                     SourceLocation Loc) {
3016   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3017          "Update expr in 'atomic update' must be a binary operator.");
3018   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3019   // Update expressions are allowed to have the following forms:
3020   // x binop= expr; -> xrval + expr;
3021   // x++, ++x -> xrval + 1;
3022   // x--, --x -> xrval - 1;
3023   // x = x binop expr; -> xrval binop expr
3024   // x = expr Op x; - > expr binop xrval;
3025   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3026   LValue XLValue = CGF.EmitLValue(X);
3027   RValue ExprRValue = CGF.EmitAnyExpr(E);
3028   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3029                      : llvm::AtomicOrdering::Monotonic;
3030   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3031   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3032   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3033   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3034   auto Gen =
3035       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3036         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3037         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3038         return CGF.EmitAnyExpr(UE);
3039       };
3040   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3041       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3042   // OpenMP, 2.12.6, atomic Construct
3043   // Any atomic construct with a seq_cst clause forces the atomically
3044   // performed operation to include an implicit flush operation without a
3045   // list.
3046   if (IsSeqCst)
3047     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3048 }
3049 
3050 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3051                             QualType SourceType, QualType ResType,
3052                             SourceLocation Loc) {
3053   switch (CGF.getEvaluationKind(ResType)) {
3054   case TEK_Scalar:
3055     return RValue::get(
3056         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3057   case TEK_Complex: {
3058     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3059     return RValue::getComplex(Res.first, Res.second);
3060   }
3061   case TEK_Aggregate:
3062     break;
3063   }
3064   llvm_unreachable("Must be a scalar or complex.");
3065 }
3066 
3067 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3068                                      bool IsPostfixUpdate, const Expr *V,
3069                                      const Expr *X, const Expr *E,
3070                                      const Expr *UE, bool IsXLHSInRHSPart,
3071                                      SourceLocation Loc) {
3072   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3073   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3074   RValue NewVVal;
3075   LValue VLValue = CGF.EmitLValue(V);
3076   LValue XLValue = CGF.EmitLValue(X);
3077   RValue ExprRValue = CGF.EmitAnyExpr(E);
3078   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3079                      : llvm::AtomicOrdering::Monotonic;
3080   QualType NewVValType;
3081   if (UE) {
3082     // 'x' is updated with some additional value.
3083     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3084            "Update expr in 'atomic capture' must be a binary operator.");
3085     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3086     // Update expressions are allowed to have the following forms:
3087     // x binop= expr; -> xrval + expr;
3088     // x++, ++x -> xrval + 1;
3089     // x--, --x -> xrval - 1;
3090     // x = x binop expr; -> xrval binop expr
3091     // x = expr Op x; - > expr binop xrval;
3092     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3093     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3094     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3095     NewVValType = XRValExpr->getType();
3096     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3097     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3098                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
3099       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3100       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3101       RValue Res = CGF.EmitAnyExpr(UE);
3102       NewVVal = IsPostfixUpdate ? XRValue : Res;
3103       return Res;
3104     };
3105     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3106         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3107     if (Res.first) {
3108       // 'atomicrmw' instruction was generated.
3109       if (IsPostfixUpdate) {
3110         // Use old value from 'atomicrmw'.
3111         NewVVal = Res.second;
3112       } else {
3113         // 'atomicrmw' does not provide new value, so evaluate it using old
3114         // value of 'x'.
3115         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3116         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3117         NewVVal = CGF.EmitAnyExpr(UE);
3118       }
3119     }
3120   } else {
3121     // 'x' is simply rewritten with some 'expr'.
3122     NewVValType = X->getType().getNonReferenceType();
3123     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3124                                X->getType().getNonReferenceType(), Loc);
3125     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
3126       NewVVal = XRValue;
3127       return ExprRValue;
3128     };
3129     // Try to perform atomicrmw xchg, otherwise simple exchange.
3130     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3131         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3132         Loc, Gen);
3133     if (Res.first) {
3134       // 'atomicrmw' instruction was generated.
3135       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3136     }
3137   }
3138   // Emit post-update store to 'v' of old/new 'x' value.
3139   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3140   // OpenMP, 2.12.6, atomic Construct
3141   // Any atomic construct with a seq_cst clause forces the atomically
3142   // performed operation to include an implicit flush operation without a
3143   // list.
3144   if (IsSeqCst)
3145     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3146 }
3147 
3148 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3149                               bool IsSeqCst, bool IsPostfixUpdate,
3150                               const Expr *X, const Expr *V, const Expr *E,
3151                               const Expr *UE, bool IsXLHSInRHSPart,
3152                               SourceLocation Loc) {
3153   switch (Kind) {
3154   case OMPC_read:
3155     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3156     break;
3157   case OMPC_write:
3158     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3159     break;
3160   case OMPC_unknown:
3161   case OMPC_update:
3162     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3163     break;
3164   case OMPC_capture:
3165     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3166                              IsXLHSInRHSPart, Loc);
3167     break;
3168   case OMPC_if:
3169   case OMPC_final:
3170   case OMPC_num_threads:
3171   case OMPC_private:
3172   case OMPC_firstprivate:
3173   case OMPC_lastprivate:
3174   case OMPC_reduction:
3175   case OMPC_safelen:
3176   case OMPC_simdlen:
3177   case OMPC_collapse:
3178   case OMPC_default:
3179   case OMPC_seq_cst:
3180   case OMPC_shared:
3181   case OMPC_linear:
3182   case OMPC_aligned:
3183   case OMPC_copyin:
3184   case OMPC_copyprivate:
3185   case OMPC_flush:
3186   case OMPC_proc_bind:
3187   case OMPC_schedule:
3188   case OMPC_ordered:
3189   case OMPC_nowait:
3190   case OMPC_untied:
3191   case OMPC_threadprivate:
3192   case OMPC_depend:
3193   case OMPC_mergeable:
3194   case OMPC_device:
3195   case OMPC_threads:
3196   case OMPC_simd:
3197   case OMPC_map:
3198   case OMPC_num_teams:
3199   case OMPC_thread_limit:
3200   case OMPC_priority:
3201   case OMPC_grainsize:
3202   case OMPC_nogroup:
3203   case OMPC_num_tasks:
3204   case OMPC_hint:
3205   case OMPC_dist_schedule:
3206   case OMPC_defaultmap:
3207   case OMPC_uniform:
3208   case OMPC_to:
3209   case OMPC_from:
3210   case OMPC_use_device_ptr:
3211   case OMPC_is_device_ptr:
3212     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3213   }
3214 }
3215 
3216 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3217   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3218   OpenMPClauseKind Kind = OMPC_unknown;
3219   for (auto *C : S.clauses()) {
3220     // Find first clause (skip seq_cst clause, if it is first).
3221     if (C->getClauseKind() != OMPC_seq_cst) {
3222       Kind = C->getClauseKind();
3223       break;
3224     }
3225   }
3226 
3227   const auto *CS =
3228       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3229   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3230     enterFullExpression(EWC);
3231   }
3232   // Processing for statements under 'atomic capture'.
3233   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3234     for (const auto *C : Compound->body()) {
3235       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3236         enterFullExpression(EWC);
3237       }
3238     }
3239   }
3240 
3241   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3242                                             PrePostActionTy &) {
3243     CGF.EmitStopPoint(CS);
3244     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3245                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3246                       S.isXLHSInRHSPart(), S.getLocStart());
3247   };
3248   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3249   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3250 }
3251 
3252 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/>
3253 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
3254     CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName,
3255     bool IsOffloadEntry) {
3256   llvm::Function *OutlinedFn = nullptr;
3257   llvm::Constant *OutlinedFnID = nullptr;
3258   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3259     OMPPrivateScope PrivateScope(CGF);
3260     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3261     CGF.EmitOMPPrivateClause(S, PrivateScope);
3262     (void)PrivateScope.Privatize();
3263 
3264     Action.Enter(CGF);
3265     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3266   };
3267   // Emit target region as a standalone region.
3268   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3269       S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen);
3270   return std::make_pair(OutlinedFn, OutlinedFnID);
3271 }
3272 
3273 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3274   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3275 
3276   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3277   GenerateOpenMPCapturedVars(CS, CapturedVars);
3278 
3279   llvm::Function *Fn = nullptr;
3280   llvm::Constant *FnID = nullptr;
3281 
3282   // Check if we have any if clause associated with the directive.
3283   const Expr *IfCond = nullptr;
3284 
3285   if (auto *C = S.getSingleClause<OMPIfClause>()) {
3286     IfCond = C->getCondition();
3287   }
3288 
3289   // Check if we have any device clause associated with the directive.
3290   const Expr *Device = nullptr;
3291   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3292     Device = C->getDevice();
3293   }
3294 
3295   // Check if we have an if clause whose conditional always evaluates to false
3296   // or if we do not have any targets specified. If so the target region is not
3297   // an offload entry point.
3298   bool IsOffloadEntry = true;
3299   if (IfCond) {
3300     bool Val;
3301     if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3302       IsOffloadEntry = false;
3303   }
3304   if (CGM.getLangOpts().OMPTargetTriples.empty())
3305     IsOffloadEntry = false;
3306 
3307   assert(CurFuncDecl && "No parent declaration for target region!");
3308   StringRef ParentName;
3309   // In case we have Ctors/Dtors we use the complete type variant to produce
3310   // the mangling of the device outlined kernel.
3311   if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
3312     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3313   else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
3314     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3315   else
3316     ParentName =
3317         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
3318 
3319   std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction(
3320       CGM, S, ParentName, IsOffloadEntry);
3321   OMPLexicalScope Scope(*this, S);
3322   CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
3323                                         CapturedVars);
3324 }
3325 
3326 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3327                                         const OMPExecutableDirective &S,
3328                                         OpenMPDirectiveKind InnermostKind,
3329                                         const RegionCodeGenTy &CodeGen) {
3330   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3331   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
3332       emitParallelOrTeamsOutlinedFunction(S,
3333           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3334 
3335   const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S);
3336   const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>();
3337   const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>();
3338   if (NT || TL) {
3339     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3340     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3341 
3342     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3343                                                   S.getLocStart());
3344   }
3345 
3346   OMPLexicalScope Scope(CGF, S);
3347   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3348   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3349   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3350                                            CapturedVars);
3351 }
3352 
3353 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3354   // Emit parallel region as a standalone region.
3355   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3356     OMPPrivateScope PrivateScope(CGF);
3357     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3358     CGF.EmitOMPPrivateClause(S, PrivateScope);
3359     (void)PrivateScope.Privatize();
3360     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3361   };
3362   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3363 }
3364 
3365 void CodeGenFunction::EmitOMPCancellationPointDirective(
3366     const OMPCancellationPointDirective &S) {
3367   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3368                                                    S.getCancelRegion());
3369 }
3370 
3371 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3372   const Expr *IfCond = nullptr;
3373   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3374     if (C->getNameModifier() == OMPD_unknown ||
3375         C->getNameModifier() == OMPD_cancel) {
3376       IfCond = C->getCondition();
3377       break;
3378     }
3379   }
3380   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3381                                         S.getCancelRegion());
3382 }
3383 
3384 CodeGenFunction::JumpDest
3385 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3386   if (Kind == OMPD_parallel || Kind == OMPD_task)
3387     return ReturnBlock;
3388   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3389          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
3390   return BreakContinueStack.back().BreakBlock;
3391 }
3392 
3393 // Generate the instructions for '#pragma omp target data' directive.
3394 void CodeGenFunction::EmitOMPTargetDataDirective(
3395     const OMPTargetDataDirective &S) {
3396   // The target data enclosed region is implemented just by emitting the
3397   // statement.
3398   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3399     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3400   };
3401 
3402   // If we don't have target devices, don't bother emitting the data mapping
3403   // code.
3404   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
3405     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3406 
3407     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_data,
3408                                                 CodeGen);
3409     return;
3410   }
3411 
3412   // Check if we have any if clause associated with the directive.
3413   const Expr *IfCond = nullptr;
3414   if (auto *C = S.getSingleClause<OMPIfClause>())
3415     IfCond = C->getCondition();
3416 
3417   // Check if we have any device clause associated with the directive.
3418   const Expr *Device = nullptr;
3419   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3420     Device = C->getDevice();
3421 
3422   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, CodeGen);
3423 }
3424 
3425 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
3426     const OMPTargetEnterDataDirective &S) {
3427   // If we don't have target devices, don't bother emitting the data mapping
3428   // code.
3429   if (CGM.getLangOpts().OMPTargetTriples.empty())
3430     return;
3431 
3432   // Check if we have any if clause associated with the directive.
3433   const Expr *IfCond = nullptr;
3434   if (auto *C = S.getSingleClause<OMPIfClause>())
3435     IfCond = C->getCondition();
3436 
3437   // Check if we have any device clause associated with the directive.
3438   const Expr *Device = nullptr;
3439   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3440     Device = C->getDevice();
3441 
3442   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3443 }
3444 
3445 void CodeGenFunction::EmitOMPTargetExitDataDirective(
3446     const OMPTargetExitDataDirective &S) {
3447   // If we don't have target devices, don't bother emitting the data mapping
3448   // code.
3449   if (CGM.getLangOpts().OMPTargetTriples.empty())
3450     return;
3451 
3452   // Check if we have any if clause associated with the directive.
3453   const Expr *IfCond = nullptr;
3454   if (auto *C = S.getSingleClause<OMPIfClause>())
3455     IfCond = C->getCondition();
3456 
3457   // Check if we have any device clause associated with the directive.
3458   const Expr *Device = nullptr;
3459   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3460     Device = C->getDevice();
3461 
3462   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3463 }
3464 
3465 void CodeGenFunction::EmitOMPTargetParallelDirective(
3466     const OMPTargetParallelDirective &S) {
3467   // TODO: codegen for target parallel.
3468 }
3469 
3470 void CodeGenFunction::EmitOMPTargetParallelForDirective(
3471     const OMPTargetParallelForDirective &S) {
3472   // TODO: codegen for target parallel for.
3473 }
3474 
3475 /// Emit a helper variable and return corresponding lvalue.
3476 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
3477                      const ImplicitParamDecl *PVD,
3478                      CodeGenFunction::OMPPrivateScope &Privates) {
3479   auto *VDecl = cast<VarDecl>(Helper->getDecl());
3480   Privates.addPrivate(
3481       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
3482 }
3483 
3484 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
3485   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
3486   // Emit outlined function for task construct.
3487   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3488   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
3489   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3490   const Expr *IfCond = nullptr;
3491   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3492     if (C->getNameModifier() == OMPD_unknown ||
3493         C->getNameModifier() == OMPD_taskloop) {
3494       IfCond = C->getCondition();
3495       break;
3496     }
3497   }
3498 
3499   OMPTaskDataTy Data;
3500   // Check if taskloop must be emitted without taskgroup.
3501   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
3502   // TODO: Check if we should emit tied or untied task.
3503   Data.Tied = true;
3504   // Set scheduling for taskloop
3505   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
3506     // grainsize clause
3507     Data.Schedule.setInt(/*IntVal=*/false);
3508     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
3509   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
3510     // num_tasks clause
3511     Data.Schedule.setInt(/*IntVal=*/true);
3512     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
3513   }
3514 
3515   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
3516     // if (PreCond) {
3517     //   for (IV in 0..LastIteration) BODY;
3518     //   <Final counter/linear vars updates>;
3519     // }
3520     //
3521 
3522     // Emit: if (PreCond) - begin.
3523     // If the condition constant folds and can be elided, avoid emitting the
3524     // whole loop.
3525     bool CondConstant;
3526     llvm::BasicBlock *ContBlock = nullptr;
3527     OMPLoopScope PreInitScope(CGF, S);
3528     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3529       if (!CondConstant)
3530         return;
3531     } else {
3532       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
3533       ContBlock = CGF.createBasicBlock("taskloop.if.end");
3534       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
3535                   CGF.getProfileCount(&S));
3536       CGF.EmitBlock(ThenBlock);
3537       CGF.incrementProfileCounter(&S);
3538     }
3539 
3540     if (isOpenMPSimdDirective(S.getDirectiveKind()))
3541       CGF.EmitOMPSimdInit(S);
3542 
3543     OMPPrivateScope LoopScope(CGF);
3544     // Emit helper vars inits.
3545     enum { LowerBound = 5, UpperBound, Stride, LastIter };
3546     auto *I = CS->getCapturedDecl()->param_begin();
3547     auto *LBP = std::next(I, LowerBound);
3548     auto *UBP = std::next(I, UpperBound);
3549     auto *STP = std::next(I, Stride);
3550     auto *LIP = std::next(I, LastIter);
3551     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
3552              LoopScope);
3553     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
3554              LoopScope);
3555     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
3556     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
3557              LoopScope);
3558     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
3559     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3560     (void)LoopScope.Privatize();
3561     // Emit the loop iteration variable.
3562     const Expr *IVExpr = S.getIterationVariable();
3563     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
3564     CGF.EmitVarDecl(*IVDecl);
3565     CGF.EmitIgnoredExpr(S.getInit());
3566 
3567     // Emit the iterations count variable.
3568     // If it is not a variable, Sema decided to calculate iterations count on
3569     // each iteration (e.g., it is foldable into a constant).
3570     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3571       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3572       // Emit calculation of the iterations count.
3573       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
3574     }
3575 
3576     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
3577                          S.getInc(),
3578                          [&S](CodeGenFunction &CGF) {
3579                            CGF.EmitOMPLoopBody(S, JumpDest());
3580                            CGF.EmitStopPoint(&S);
3581                          },
3582                          [](CodeGenFunction &) {});
3583     // Emit: if (PreCond) - end.
3584     if (ContBlock) {
3585       CGF.EmitBranch(ContBlock);
3586       CGF.EmitBlock(ContBlock, true);
3587     }
3588     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3589     if (HasLastprivateClause) {
3590       CGF.EmitOMPLastprivateClauseFinal(
3591           S, isOpenMPSimdDirective(S.getDirectiveKind()),
3592           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
3593               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
3594               (*LIP)->getType(), S.getLocStart())));
3595     }
3596   };
3597   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3598                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3599                             const OMPTaskDataTy &Data) {
3600     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
3601       OMPLoopScope PreInitScope(CGF, S);
3602       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
3603                                                   OutlinedFn, SharedsTy,
3604                                                   CapturedStruct, IfCond, Data);
3605     };
3606     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
3607                                                     CodeGen);
3608   };
3609   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
3610 }
3611 
3612 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
3613   EmitOMPTaskLoopBasedDirective(S);
3614 }
3615 
3616 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
3617     const OMPTaskLoopSimdDirective &S) {
3618   EmitOMPTaskLoopBasedDirective(S);
3619 }
3620 
3621 // Generate the instructions for '#pragma omp target update' directive.
3622 void CodeGenFunction::EmitOMPTargetUpdateDirective(
3623     const OMPTargetUpdateDirective &S) {
3624   // If we don't have target devices, don't bother emitting the data mapping
3625   // code.
3626   if (CGM.getLangOpts().OMPTargetTriples.empty())
3627     return;
3628 
3629   // Check if we have any if clause associated with the directive.
3630   const Expr *IfCond = nullptr;
3631   if (auto *C = S.getSingleClause<OMPIfClause>())
3632     IfCond = C->getCondition();
3633 
3634   // Check if we have any device clause associated with the directive.
3635   const Expr *Device = nullptr;
3636   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3637     Device = C->getDevice();
3638 
3639   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3640 }
3641