1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope( 57 CodeGenFunction &CGF, const OMPExecutableDirective &S, 58 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 59 const bool EmitPreInitStmt = true) 60 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 61 InlinedShareds(CGF) { 62 if (EmitPreInitStmt) 63 emitPreInitStmt(CGF, S); 64 if (!CapturedRegion.hasValue()) 65 return; 66 assert(S.hasAssociatedStmt() && 67 "Expected associated statement for inlined directive."); 68 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 69 for (auto &C : CS->captures()) { 70 if (C.capturesVariable() || C.capturesVariableByCopy()) { 71 auto *VD = C.getCapturedVar(); 72 assert(VD == VD->getCanonicalDecl() && 73 "Canonical decl must be captured."); 74 DeclRefExpr DRE( 75 const_cast<VarDecl *>(VD), 76 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 77 InlinedShareds.isGlobalVarCaptured(VD)), 78 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 79 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 80 return CGF.EmitLValue(&DRE).getAddress(); 81 }); 82 } 83 } 84 (void)InlinedShareds.Privatize(); 85 } 86 }; 87 88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 89 /// for captured expressions. 90 class OMPParallelScope final : public OMPLexicalScope { 91 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 92 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 93 return !(isOpenMPTargetExecutionDirective(Kind) || 94 isOpenMPLoopBoundSharingDirective(Kind)) && 95 isOpenMPParallelDirective(Kind); 96 } 97 98 public: 99 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 100 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 101 EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 116 EmitPreInitStmt(S)) {} 117 }; 118 119 /// Private scope for OpenMP loop-based directives, that supports capturing 120 /// of used expression from loop statement. 121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 122 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 123 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 124 for (auto *E : S.counters()) { 125 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 126 (void)PreCondScope.addPrivate(VD, [&CGF, VD]() { 127 return CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 128 }); 129 } 130 (void)PreCondScope.Privatize(); 131 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 132 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 133 for (const auto *I : PreInits->decls()) 134 CGF.EmitVarDecl(cast<VarDecl>(*I)); 135 } 136 } 137 } 138 139 public: 140 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 141 : CodeGenFunction::RunCleanupsScope(CGF) { 142 emitPreInitStmt(CGF, S); 143 } 144 }; 145 146 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 147 CodeGenFunction::OMPPrivateScope InlinedShareds; 148 149 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 150 return CGF.LambdaCaptureFields.lookup(VD) || 151 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 152 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 153 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 154 } 155 156 public: 157 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 158 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 159 InlinedShareds(CGF) { 160 for (const auto *C : S.clauses()) { 161 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 162 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 163 for (const auto *I : PreInit->decls()) { 164 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 165 CGF.EmitVarDecl(cast<VarDecl>(*I)); 166 else { 167 CodeGenFunction::AutoVarEmission Emission = 168 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 169 CGF.EmitAutoVarCleanups(Emission); 170 } 171 } 172 } 173 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 174 for (const Expr *E : UDP->varlists()) { 175 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 176 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 177 CGF.EmitVarDecl(*OED); 178 } 179 } 180 } 181 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 182 CGF.EmitOMPPrivateClause(S, InlinedShareds); 183 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 184 if (const Expr *E = TG->getReductionRef()) 185 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 186 } 187 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 188 while (CS) { 189 for (auto &C : CS->captures()) { 190 if (C.capturesVariable() || C.capturesVariableByCopy()) { 191 auto *VD = C.getCapturedVar(); 192 assert(VD == VD->getCanonicalDecl() && 193 "Canonical decl must be captured."); 194 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 195 isCapturedVar(CGF, VD) || 196 (CGF.CapturedStmtInfo && 197 InlinedShareds.isGlobalVarCaptured(VD)), 198 VD->getType().getNonReferenceType(), VK_LValue, 199 C.getLocation()); 200 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 201 return CGF.EmitLValue(&DRE).getAddress(); 202 }); 203 } 204 } 205 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 206 } 207 (void)InlinedShareds.Privatize(); 208 } 209 }; 210 211 } // namespace 212 213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 214 const OMPExecutableDirective &S, 215 const RegionCodeGenTy &CodeGen); 216 217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 218 if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 219 if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 220 OrigVD = OrigVD->getCanonicalDecl(); 221 bool IsCaptured = 222 LambdaCaptureFields.lookup(OrigVD) || 223 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 224 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 225 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 226 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 227 return EmitLValue(&DRE); 228 } 229 } 230 return EmitLValue(E); 231 } 232 233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 234 auto &C = getContext(); 235 llvm::Value *Size = nullptr; 236 auto SizeInChars = C.getTypeSizeInChars(Ty); 237 if (SizeInChars.isZero()) { 238 // getTypeSizeInChars() returns 0 for a VLA. 239 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 240 auto VlaSize = getVLASize(VAT); 241 Ty = VlaSize.Type; 242 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 243 : VlaSize.NumElts; 244 } 245 SizeInChars = C.getTypeSizeInChars(Ty); 246 if (SizeInChars.isZero()) 247 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 248 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 249 } else 250 Size = CGM.getSize(SizeInChars); 251 return Size; 252 } 253 254 void CodeGenFunction::GenerateOpenMPCapturedVars( 255 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 256 const RecordDecl *RD = S.getCapturedRecordDecl(); 257 auto CurField = RD->field_begin(); 258 auto CurCap = S.captures().begin(); 259 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 260 E = S.capture_init_end(); 261 I != E; ++I, ++CurField, ++CurCap) { 262 if (CurField->hasCapturedVLAType()) { 263 auto VAT = CurField->getCapturedVLAType(); 264 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 265 CapturedVars.push_back(Val); 266 } else if (CurCap->capturesThis()) 267 CapturedVars.push_back(CXXThisValue); 268 else if (CurCap->capturesVariableByCopy()) { 269 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 270 271 // If the field is not a pointer, we need to save the actual value 272 // and load it as a void pointer. 273 if (!CurField->getType()->isAnyPointerType()) { 274 auto &Ctx = getContext(); 275 auto DstAddr = CreateMemTemp( 276 Ctx.getUIntPtrType(), 277 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 278 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 279 280 auto *SrcAddrVal = EmitScalarConversion( 281 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 282 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 283 LValue SrcLV = 284 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 285 286 // Store the value using the source type pointer. 287 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 288 289 // Load the value using the destination type pointer. 290 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 291 } 292 CapturedVars.push_back(CV); 293 } else { 294 assert(CurCap->capturesVariable() && "Expected capture by reference."); 295 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 296 } 297 } 298 } 299 300 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 301 QualType DstType, StringRef Name, 302 LValue AddrLV, 303 bool isReferenceType = false) { 304 ASTContext &Ctx = CGF.getContext(); 305 306 auto *CastedPtr = CGF.EmitScalarConversion(AddrLV.getAddress().getPointer(), 307 Ctx.getUIntPtrType(), 308 Ctx.getPointerType(DstType), Loc); 309 auto TmpAddr = 310 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 311 .getAddress(); 312 313 // If we are dealing with references we need to return the address of the 314 // reference instead of the reference of the value. 315 if (isReferenceType) { 316 QualType RefType = Ctx.getLValueReferenceType(DstType); 317 auto *RefVal = TmpAddr.getPointer(); 318 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 319 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 320 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 321 } 322 323 return TmpAddr; 324 } 325 326 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 327 if (T->isLValueReferenceType()) { 328 return C.getLValueReferenceType( 329 getCanonicalParamType(C, T.getNonReferenceType()), 330 /*SpelledAsLValue=*/false); 331 } 332 if (T->isPointerType()) 333 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 334 if (auto *A = T->getAsArrayTypeUnsafe()) { 335 if (auto *VLA = dyn_cast<VariableArrayType>(A)) 336 return getCanonicalParamType(C, VLA->getElementType()); 337 else if (!A->isVariablyModifiedType()) 338 return C.getCanonicalType(T); 339 } 340 return C.getCanonicalParamType(T); 341 } 342 343 namespace { 344 /// Contains required data for proper outlined function codegen. 345 struct FunctionOptions { 346 /// Captured statement for which the function is generated. 347 const CapturedStmt *S = nullptr; 348 /// true if cast to/from UIntPtr is required for variables captured by 349 /// value. 350 const bool UIntPtrCastRequired = true; 351 /// true if only casted arguments must be registered as local args or VLA 352 /// sizes. 353 const bool RegisterCastedArgsOnly = false; 354 /// Name of the generated function. 355 const StringRef FunctionName; 356 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 357 bool RegisterCastedArgsOnly, 358 StringRef FunctionName) 359 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 360 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 361 FunctionName(FunctionName) {} 362 }; 363 } 364 365 static llvm::Function *emitOutlinedFunctionPrologue( 366 CodeGenFunction &CGF, FunctionArgList &Args, 367 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 368 &LocalAddrs, 369 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 370 &VLASizes, 371 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 372 const CapturedDecl *CD = FO.S->getCapturedDecl(); 373 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 374 assert(CD->hasBody() && "missing CapturedDecl body"); 375 376 CXXThisValue = nullptr; 377 // Build the argument list. 378 CodeGenModule &CGM = CGF.CGM; 379 ASTContext &Ctx = CGM.getContext(); 380 FunctionArgList TargetArgs; 381 Args.append(CD->param_begin(), 382 std::next(CD->param_begin(), CD->getContextParamPosition())); 383 TargetArgs.append( 384 CD->param_begin(), 385 std::next(CD->param_begin(), CD->getContextParamPosition())); 386 auto I = FO.S->captures().begin(); 387 FunctionDecl *DebugFunctionDecl = nullptr; 388 if (!FO.UIntPtrCastRequired) { 389 FunctionProtoType::ExtProtoInfo EPI; 390 DebugFunctionDecl = FunctionDecl::Create( 391 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(), 392 SourceLocation(), DeclarationName(), Ctx.VoidTy, 393 Ctx.getTrivialTypeSourceInfo( 394 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 395 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 396 } 397 for (auto *FD : RD->fields()) { 398 QualType ArgType = FD->getType(); 399 IdentifierInfo *II = nullptr; 400 VarDecl *CapVar = nullptr; 401 402 // If this is a capture by copy and the type is not a pointer, the outlined 403 // function argument type should be uintptr and the value properly casted to 404 // uintptr. This is necessary given that the runtime library is only able to 405 // deal with pointers. We can pass in the same way the VLA type sizes to the 406 // outlined function. 407 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 408 I->capturesVariableArrayType()) { 409 if (FO.UIntPtrCastRequired) 410 ArgType = Ctx.getUIntPtrType(); 411 } 412 413 if (I->capturesVariable() || I->capturesVariableByCopy()) { 414 CapVar = I->getCapturedVar(); 415 II = CapVar->getIdentifier(); 416 } else if (I->capturesThis()) 417 II = &Ctx.Idents.get("this"); 418 else { 419 assert(I->capturesVariableArrayType()); 420 II = &Ctx.Idents.get("vla"); 421 } 422 if (ArgType->isVariablyModifiedType()) 423 ArgType = getCanonicalParamType(Ctx, ArgType); 424 VarDecl *Arg; 425 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 426 Arg = ParmVarDecl::Create( 427 Ctx, DebugFunctionDecl, 428 CapVar ? CapVar->getLocStart() : FD->getLocStart(), 429 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 430 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 431 } else { 432 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 433 II, ArgType, ImplicitParamDecl::Other); 434 } 435 Args.emplace_back(Arg); 436 // Do not cast arguments if we emit function with non-original types. 437 TargetArgs.emplace_back( 438 FO.UIntPtrCastRequired 439 ? Arg 440 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 441 ++I; 442 } 443 Args.append( 444 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 445 CD->param_end()); 446 TargetArgs.append( 447 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 448 CD->param_end()); 449 450 // Create the function declaration. 451 const CGFunctionInfo &FuncInfo = 452 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 453 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 454 455 llvm::Function *F = 456 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 457 FO.FunctionName, &CGM.getModule()); 458 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 459 if (CD->isNothrow()) 460 F->setDoesNotThrow(); 461 462 // Generate the function. 463 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 464 FO.S->getLocStart(), CD->getBody()->getLocStart()); 465 unsigned Cnt = CD->getContextParamPosition(); 466 I = FO.S->captures().begin(); 467 for (auto *FD : RD->fields()) { 468 // Do not map arguments if we emit function with non-original types. 469 Address LocalAddr(Address::invalid()); 470 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 471 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 472 TargetArgs[Cnt]); 473 } else { 474 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 475 } 476 // If we are capturing a pointer by copy we don't need to do anything, just 477 // use the value that we get from the arguments. 478 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 479 const VarDecl *CurVD = I->getCapturedVar(); 480 // If the variable is a reference we need to materialize it here. 481 if (CurVD->getType()->isReferenceType()) { 482 Address RefAddr = CGF.CreateMemTemp( 483 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 484 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 485 /*Volatile=*/false, CurVD->getType()); 486 LocalAddr = RefAddr; 487 } 488 if (!FO.RegisterCastedArgsOnly) 489 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 490 ++Cnt; 491 ++I; 492 continue; 493 } 494 495 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 496 AlignmentSource::Decl); 497 if (FD->hasCapturedVLAType()) { 498 if (FO.UIntPtrCastRequired) { 499 ArgLVal = CGF.MakeAddrLValue( 500 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 501 Args[Cnt]->getName(), ArgLVal), 502 FD->getType(), AlignmentSource::Decl); 503 } 504 auto *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 505 auto VAT = FD->getCapturedVLAType(); 506 VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}}); 507 } else if (I->capturesVariable()) { 508 auto *Var = I->getCapturedVar(); 509 QualType VarTy = Var->getType(); 510 Address ArgAddr = ArgLVal.getAddress(); 511 if (!VarTy->isReferenceType()) { 512 if (ArgLVal.getType()->isLValueReferenceType()) { 513 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 514 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 515 assert(ArgLVal.getType()->isPointerType()); 516 ArgAddr = CGF.EmitLoadOfPointer( 517 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 518 } 519 } 520 if (!FO.RegisterCastedArgsOnly) { 521 LocalAddrs.insert( 522 {Args[Cnt], 523 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 524 } 525 } else if (I->capturesVariableByCopy()) { 526 assert(!FD->getType()->isAnyPointerType() && 527 "Not expecting a captured pointer."); 528 auto *Var = I->getCapturedVar(); 529 QualType VarTy = Var->getType(); 530 LocalAddrs.insert( 531 {Args[Cnt], 532 {Var, FO.UIntPtrCastRequired 533 ? castValueFromUintptr(CGF, I->getLocation(), 534 FD->getType(), Args[Cnt]->getName(), 535 ArgLVal, VarTy->isReferenceType()) 536 : ArgLVal.getAddress()}}); 537 } else { 538 // If 'this' is captured, load it into CXXThisValue. 539 assert(I->capturesThis()); 540 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 541 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 542 } 543 ++Cnt; 544 ++I; 545 } 546 547 return F; 548 } 549 550 llvm::Function * 551 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 552 assert( 553 CapturedStmtInfo && 554 "CapturedStmtInfo should be set when generating the captured function"); 555 const CapturedDecl *CD = S.getCapturedDecl(); 556 // Build the argument list. 557 bool NeedWrapperFunction = 558 getDebugInfo() && 559 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 560 FunctionArgList Args; 561 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 562 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 563 SmallString<256> Buffer; 564 llvm::raw_svector_ostream Out(Buffer); 565 Out << CapturedStmtInfo->getHelperName(); 566 if (NeedWrapperFunction) 567 Out << "_debug__"; 568 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 569 Out.str()); 570 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 571 VLASizes, CXXThisValue, FO); 572 for (const auto &LocalAddrPair : LocalAddrs) { 573 if (LocalAddrPair.second.first) { 574 setAddrOfLocalVar(LocalAddrPair.second.first, 575 LocalAddrPair.second.second); 576 } 577 } 578 for (const auto &VLASizePair : VLASizes) 579 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 580 PGO.assignRegionCounters(GlobalDecl(CD), F); 581 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 582 FinishFunction(CD->getBodyRBrace()); 583 if (!NeedWrapperFunction) 584 return F; 585 586 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 587 /*RegisterCastedArgsOnly=*/true, 588 CapturedStmtInfo->getHelperName()); 589 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 590 Args.clear(); 591 LocalAddrs.clear(); 592 VLASizes.clear(); 593 llvm::Function *WrapperF = 594 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 595 WrapperCGF.CXXThisValue, WrapperFO); 596 llvm::SmallVector<llvm::Value *, 4> CallArgs; 597 for (const auto *Arg : Args) { 598 llvm::Value *CallArg; 599 auto I = LocalAddrs.find(Arg); 600 if (I != LocalAddrs.end()) { 601 LValue LV = WrapperCGF.MakeAddrLValue( 602 I->second.second, 603 I->second.first ? I->second.first->getType() : Arg->getType(), 604 AlignmentSource::Decl); 605 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart()); 606 } else { 607 auto EI = VLASizes.find(Arg); 608 if (EI != VLASizes.end()) 609 CallArg = EI->second.second; 610 else { 611 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 612 Arg->getType(), 613 AlignmentSource::Decl); 614 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart()); 615 } 616 } 617 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 618 } 619 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(), 620 F, CallArgs); 621 WrapperCGF.FinishFunction(); 622 return WrapperF; 623 } 624 625 //===----------------------------------------------------------------------===// 626 // OpenMP Directive Emission 627 //===----------------------------------------------------------------------===// 628 void CodeGenFunction::EmitOMPAggregateAssign( 629 Address DestAddr, Address SrcAddr, QualType OriginalType, 630 const llvm::function_ref<void(Address, Address)> &CopyGen) { 631 // Perform element-by-element initialization. 632 QualType ElementTy; 633 634 // Drill down to the base element type on both arrays. 635 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 636 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 637 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 638 639 auto SrcBegin = SrcAddr.getPointer(); 640 auto DestBegin = DestAddr.getPointer(); 641 // Cast from pointer to array type to pointer to single element. 642 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 643 // The basic structure here is a while-do loop. 644 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 645 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 646 auto IsEmpty = 647 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 648 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 649 650 // Enter the loop body, making that address the current address. 651 auto EntryBB = Builder.GetInsertBlock(); 652 EmitBlock(BodyBB); 653 654 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 655 656 llvm::PHINode *SrcElementPHI = 657 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 658 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 659 Address SrcElementCurrent = 660 Address(SrcElementPHI, 661 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 662 663 llvm::PHINode *DestElementPHI = 664 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 665 DestElementPHI->addIncoming(DestBegin, EntryBB); 666 Address DestElementCurrent = 667 Address(DestElementPHI, 668 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 669 670 // Emit copy. 671 CopyGen(DestElementCurrent, SrcElementCurrent); 672 673 // Shift the address forward by one element. 674 auto DestElementNext = Builder.CreateConstGEP1_32( 675 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 676 auto SrcElementNext = Builder.CreateConstGEP1_32( 677 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 678 // Check whether we've reached the end. 679 auto Done = 680 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 681 Builder.CreateCondBr(Done, DoneBB, BodyBB); 682 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 683 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 684 685 // Done. 686 EmitBlock(DoneBB, /*IsFinished=*/true); 687 } 688 689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 690 Address SrcAddr, const VarDecl *DestVD, 691 const VarDecl *SrcVD, const Expr *Copy) { 692 if (OriginalType->isArrayType()) { 693 auto *BO = dyn_cast<BinaryOperator>(Copy); 694 if (BO && BO->getOpcode() == BO_Assign) { 695 // Perform simple memcpy for simple copying. 696 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 697 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 698 EmitAggregateAssign(Dest, Src, OriginalType); 699 } else { 700 // For arrays with complex element types perform element by element 701 // copying. 702 EmitOMPAggregateAssign( 703 DestAddr, SrcAddr, OriginalType, 704 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 705 // Working with the single array element, so have to remap 706 // destination and source variables to corresponding array 707 // elements. 708 CodeGenFunction::OMPPrivateScope Remap(*this); 709 Remap.addPrivate(DestVD, [DestElement]() -> Address { 710 return DestElement; 711 }); 712 Remap.addPrivate( 713 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 714 (void)Remap.Privatize(); 715 EmitIgnoredExpr(Copy); 716 }); 717 } 718 } else { 719 // Remap pseudo source variable to private copy. 720 CodeGenFunction::OMPPrivateScope Remap(*this); 721 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 722 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 723 (void)Remap.Privatize(); 724 // Emit copying of the whole variable. 725 EmitIgnoredExpr(Copy); 726 } 727 } 728 729 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 730 OMPPrivateScope &PrivateScope) { 731 if (!HaveInsertPoint()) 732 return false; 733 bool FirstprivateIsLastprivate = false; 734 llvm::DenseSet<const VarDecl *> Lastprivates; 735 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 736 for (const auto *D : C->varlists()) 737 Lastprivates.insert( 738 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 739 } 740 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 741 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 742 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 743 // Force emission of the firstprivate copy if the directive does not emit 744 // outlined function, like omp for, omp simd, omp distribute etc. 745 bool MustEmitFirstprivateCopy = 746 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 747 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 748 auto IRef = C->varlist_begin(); 749 auto InitsRef = C->inits().begin(); 750 for (auto IInit : C->private_copies()) { 751 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 752 bool ThisFirstprivateIsLastprivate = 753 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 754 auto *FD = CapturedStmtInfo->lookup(OrigVD); 755 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 756 !FD->getType()->isReferenceType()) { 757 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 758 ++IRef; 759 ++InitsRef; 760 continue; 761 } 762 FirstprivateIsLastprivate = 763 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 764 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 765 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 766 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 767 bool IsRegistered; 768 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 769 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 770 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 771 LValue OriginalLVal = EmitLValue(&DRE); 772 Address OriginalAddr = OriginalLVal.getAddress(); 773 QualType Type = VD->getType(); 774 if (Type->isArrayType()) { 775 // Emit VarDecl with copy init for arrays. 776 // Get the address of the original variable captured in current 777 // captured region. 778 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 779 auto Emission = EmitAutoVarAlloca(*VD); 780 auto *Init = VD->getInit(); 781 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 782 // Perform simple memcpy. 783 LValue Dest = MakeAddrLValue(Emission.getAllocatedAddress(), 784 Type); 785 EmitAggregateAssign(Dest, OriginalLVal, Type); 786 } else { 787 EmitOMPAggregateAssign( 788 Emission.getAllocatedAddress(), OriginalAddr, Type, 789 [this, VDInit, Init](Address DestElement, 790 Address SrcElement) { 791 // Clean up any temporaries needed by the initialization. 792 RunCleanupsScope InitScope(*this); 793 // Emit initialization for single element. 794 setAddrOfLocalVar(VDInit, SrcElement); 795 EmitAnyExprToMem(Init, DestElement, 796 Init->getType().getQualifiers(), 797 /*IsInitializer*/ false); 798 LocalDeclMap.erase(VDInit); 799 }); 800 } 801 EmitAutoVarCleanups(Emission); 802 return Emission.getAllocatedAddress(); 803 }); 804 } else { 805 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 806 // Emit private VarDecl with copy init. 807 // Remap temp VDInit variable to the address of the original 808 // variable 809 // (for proper handling of captured global variables). 810 setAddrOfLocalVar(VDInit, OriginalAddr); 811 EmitDecl(*VD); 812 LocalDeclMap.erase(VDInit); 813 return GetAddrOfLocalVar(VD); 814 }); 815 } 816 assert(IsRegistered && 817 "firstprivate var already registered as private"); 818 // Silence the warning about unused variable. 819 (void)IsRegistered; 820 } 821 ++IRef; 822 ++InitsRef; 823 } 824 } 825 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 826 } 827 828 void CodeGenFunction::EmitOMPPrivateClause( 829 const OMPExecutableDirective &D, 830 CodeGenFunction::OMPPrivateScope &PrivateScope) { 831 if (!HaveInsertPoint()) 832 return; 833 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 834 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 835 auto IRef = C->varlist_begin(); 836 for (auto IInit : C->private_copies()) { 837 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 838 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 839 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 840 bool IsRegistered = 841 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 842 // Emit private VarDecl with copy init. 843 EmitDecl(*VD); 844 return GetAddrOfLocalVar(VD); 845 }); 846 assert(IsRegistered && "private var already registered as private"); 847 // Silence the warning about unused variable. 848 (void)IsRegistered; 849 } 850 ++IRef; 851 } 852 } 853 } 854 855 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 856 if (!HaveInsertPoint()) 857 return false; 858 // threadprivate_var1 = master_threadprivate_var1; 859 // operator=(threadprivate_var2, master_threadprivate_var2); 860 // ... 861 // __kmpc_barrier(&loc, global_tid); 862 llvm::DenseSet<const VarDecl *> CopiedVars; 863 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 864 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 865 auto IRef = C->varlist_begin(); 866 auto ISrcRef = C->source_exprs().begin(); 867 auto IDestRef = C->destination_exprs().begin(); 868 for (auto *AssignOp : C->assignment_ops()) { 869 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 870 QualType Type = VD->getType(); 871 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 872 // Get the address of the master variable. If we are emitting code with 873 // TLS support, the address is passed from the master as field in the 874 // captured declaration. 875 Address MasterAddr = Address::invalid(); 876 if (getLangOpts().OpenMPUseTLS && 877 getContext().getTargetInfo().isTLSSupported()) { 878 assert(CapturedStmtInfo->lookup(VD) && 879 "Copyin threadprivates should have been captured!"); 880 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 881 VK_LValue, (*IRef)->getExprLoc()); 882 MasterAddr = EmitLValue(&DRE).getAddress(); 883 LocalDeclMap.erase(VD); 884 } else { 885 MasterAddr = 886 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 887 : CGM.GetAddrOfGlobal(VD), 888 getContext().getDeclAlign(VD)); 889 } 890 // Get the address of the threadprivate variable. 891 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 892 if (CopiedVars.size() == 1) { 893 // At first check if current thread is a master thread. If it is, no 894 // need to copy data. 895 CopyBegin = createBasicBlock("copyin.not.master"); 896 CopyEnd = createBasicBlock("copyin.not.master.end"); 897 Builder.CreateCondBr( 898 Builder.CreateICmpNE( 899 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 900 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 901 CopyBegin, CopyEnd); 902 EmitBlock(CopyBegin); 903 } 904 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 905 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 906 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 907 } 908 ++IRef; 909 ++ISrcRef; 910 ++IDestRef; 911 } 912 } 913 if (CopyEnd) { 914 // Exit out of copying procedure for non-master thread. 915 EmitBlock(CopyEnd, /*IsFinished=*/true); 916 return true; 917 } 918 return false; 919 } 920 921 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 922 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 923 if (!HaveInsertPoint()) 924 return false; 925 bool HasAtLeastOneLastprivate = false; 926 llvm::DenseSet<const VarDecl *> SIMDLCVs; 927 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 928 auto *LoopDirective = cast<OMPLoopDirective>(&D); 929 for (auto *C : LoopDirective->counters()) { 930 SIMDLCVs.insert( 931 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 932 } 933 } 934 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 935 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 936 HasAtLeastOneLastprivate = true; 937 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 938 !getLangOpts().OpenMPSimd) 939 break; 940 auto IRef = C->varlist_begin(); 941 auto IDestRef = C->destination_exprs().begin(); 942 for (auto *IInit : C->private_copies()) { 943 // Keep the address of the original variable for future update at the end 944 // of the loop. 945 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 946 // Taskloops do not require additional initialization, it is done in 947 // runtime support library. 948 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 949 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 950 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 951 DeclRefExpr DRE( 952 const_cast<VarDecl *>(OrigVD), 953 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 954 OrigVD) != nullptr, 955 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 956 return EmitLValue(&DRE).getAddress(); 957 }); 958 // Check if the variable is also a firstprivate: in this case IInit is 959 // not generated. Initialization of this variable will happen in codegen 960 // for 'firstprivate' clause. 961 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 962 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 963 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 964 // Emit private VarDecl with copy init. 965 EmitDecl(*VD); 966 return GetAddrOfLocalVar(VD); 967 }); 968 assert(IsRegistered && 969 "lastprivate var already registered as private"); 970 (void)IsRegistered; 971 } 972 } 973 ++IRef; 974 ++IDestRef; 975 } 976 } 977 return HasAtLeastOneLastprivate; 978 } 979 980 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 981 const OMPExecutableDirective &D, bool NoFinals, 982 llvm::Value *IsLastIterCond) { 983 if (!HaveInsertPoint()) 984 return; 985 // Emit following code: 986 // if (<IsLastIterCond>) { 987 // orig_var1 = private_orig_var1; 988 // ... 989 // orig_varn = private_orig_varn; 990 // } 991 llvm::BasicBlock *ThenBB = nullptr; 992 llvm::BasicBlock *DoneBB = nullptr; 993 if (IsLastIterCond) { 994 ThenBB = createBasicBlock(".omp.lastprivate.then"); 995 DoneBB = createBasicBlock(".omp.lastprivate.done"); 996 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 997 EmitBlock(ThenBB); 998 } 999 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1000 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1001 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1002 auto IC = LoopDirective->counters().begin(); 1003 for (auto F : LoopDirective->finals()) { 1004 auto *D = 1005 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1006 if (NoFinals) 1007 AlreadyEmittedVars.insert(D); 1008 else 1009 LoopCountersAndUpdates[D] = F; 1010 ++IC; 1011 } 1012 } 1013 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1014 auto IRef = C->varlist_begin(); 1015 auto ISrcRef = C->source_exprs().begin(); 1016 auto IDestRef = C->destination_exprs().begin(); 1017 for (auto *AssignOp : C->assignment_ops()) { 1018 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1019 QualType Type = PrivateVD->getType(); 1020 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1021 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1022 // If lastprivate variable is a loop control variable for loop-based 1023 // directive, update its value before copyin back to original 1024 // variable. 1025 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1026 EmitIgnoredExpr(FinalExpr); 1027 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1028 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1029 // Get the address of the original variable. 1030 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1031 // Get the address of the private variable. 1032 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1033 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1034 PrivateAddr = 1035 Address(Builder.CreateLoad(PrivateAddr), 1036 getNaturalTypeAlignment(RefTy->getPointeeType())); 1037 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1038 } 1039 ++IRef; 1040 ++ISrcRef; 1041 ++IDestRef; 1042 } 1043 if (auto *PostUpdate = C->getPostUpdateExpr()) 1044 EmitIgnoredExpr(PostUpdate); 1045 } 1046 if (IsLastIterCond) 1047 EmitBlock(DoneBB, /*IsFinished=*/true); 1048 } 1049 1050 void CodeGenFunction::EmitOMPReductionClauseInit( 1051 const OMPExecutableDirective &D, 1052 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1053 if (!HaveInsertPoint()) 1054 return; 1055 SmallVector<const Expr *, 4> Shareds; 1056 SmallVector<const Expr *, 4> Privates; 1057 SmallVector<const Expr *, 4> ReductionOps; 1058 SmallVector<const Expr *, 4> LHSs; 1059 SmallVector<const Expr *, 4> RHSs; 1060 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1061 auto IPriv = C->privates().begin(); 1062 auto IRed = C->reduction_ops().begin(); 1063 auto ILHS = C->lhs_exprs().begin(); 1064 auto IRHS = C->rhs_exprs().begin(); 1065 for (const auto *Ref : C->varlists()) { 1066 Shareds.emplace_back(Ref); 1067 Privates.emplace_back(*IPriv); 1068 ReductionOps.emplace_back(*IRed); 1069 LHSs.emplace_back(*ILHS); 1070 RHSs.emplace_back(*IRHS); 1071 std::advance(IPriv, 1); 1072 std::advance(IRed, 1); 1073 std::advance(ILHS, 1); 1074 std::advance(IRHS, 1); 1075 } 1076 } 1077 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1078 unsigned Count = 0; 1079 auto ILHS = LHSs.begin(); 1080 auto IRHS = RHSs.begin(); 1081 auto IPriv = Privates.begin(); 1082 for (const auto *IRef : Shareds) { 1083 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1084 // Emit private VarDecl with reduction init. 1085 RedCG.emitSharedLValue(*this, Count); 1086 RedCG.emitAggregateType(*this, Count); 1087 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1088 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1089 RedCG.getSharedLValue(Count), 1090 [&Emission](CodeGenFunction &CGF) { 1091 CGF.EmitAutoVarInit(Emission); 1092 return true; 1093 }); 1094 EmitAutoVarCleanups(Emission); 1095 Address BaseAddr = RedCG.adjustPrivateAddress( 1096 *this, Count, Emission.getAllocatedAddress()); 1097 bool IsRegistered = PrivateScope.addPrivate( 1098 RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; }); 1099 assert(IsRegistered && "private var already registered as private"); 1100 // Silence the warning about unused variable. 1101 (void)IsRegistered; 1102 1103 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1104 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1105 QualType Type = PrivateVD->getType(); 1106 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1107 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1108 // Store the address of the original variable associated with the LHS 1109 // implicit variable. 1110 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1111 return RedCG.getSharedLValue(Count).getAddress(); 1112 }); 1113 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1114 return GetAddrOfLocalVar(PrivateVD); 1115 }); 1116 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1117 isa<ArraySubscriptExpr>(IRef)) { 1118 // Store the address of the original variable associated with the LHS 1119 // implicit variable. 1120 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1121 return RedCG.getSharedLValue(Count).getAddress(); 1122 }); 1123 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1124 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1125 ConvertTypeForMem(RHSVD->getType()), 1126 "rhs.begin"); 1127 }); 1128 } else { 1129 QualType Type = PrivateVD->getType(); 1130 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1131 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1132 // Store the address of the original variable associated with the LHS 1133 // implicit variable. 1134 if (IsArray) { 1135 OriginalAddr = Builder.CreateElementBitCast( 1136 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1137 } 1138 PrivateScope.addPrivate( 1139 LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; }); 1140 PrivateScope.addPrivate( 1141 RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address { 1142 return IsArray 1143 ? Builder.CreateElementBitCast( 1144 GetAddrOfLocalVar(PrivateVD), 1145 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1146 : GetAddrOfLocalVar(PrivateVD); 1147 }); 1148 } 1149 ++ILHS; 1150 ++IRHS; 1151 ++IPriv; 1152 ++Count; 1153 } 1154 } 1155 1156 void CodeGenFunction::EmitOMPReductionClauseFinal( 1157 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1158 if (!HaveInsertPoint()) 1159 return; 1160 llvm::SmallVector<const Expr *, 8> Privates; 1161 llvm::SmallVector<const Expr *, 8> LHSExprs; 1162 llvm::SmallVector<const Expr *, 8> RHSExprs; 1163 llvm::SmallVector<const Expr *, 8> ReductionOps; 1164 bool HasAtLeastOneReduction = false; 1165 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1166 HasAtLeastOneReduction = true; 1167 Privates.append(C->privates().begin(), C->privates().end()); 1168 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1169 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1170 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1171 } 1172 if (HasAtLeastOneReduction) { 1173 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1174 isOpenMPParallelDirective(D.getDirectiveKind()) || 1175 ReductionKind == OMPD_simd; 1176 bool SimpleReduction = ReductionKind == OMPD_simd; 1177 // Emit nowait reduction if nowait clause is present or directive is a 1178 // parallel directive (it always has implicit barrier). 1179 CGM.getOpenMPRuntime().emitReduction( 1180 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1181 {WithNowait, SimpleReduction, ReductionKind}); 1182 } 1183 } 1184 1185 static void emitPostUpdateForReductionClause( 1186 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1187 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1188 if (!CGF.HaveInsertPoint()) 1189 return; 1190 llvm::BasicBlock *DoneBB = nullptr; 1191 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1192 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1193 if (!DoneBB) { 1194 if (auto *Cond = CondGen(CGF)) { 1195 // If the first post-update expression is found, emit conditional 1196 // block if it was requested. 1197 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1198 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1199 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1200 CGF.EmitBlock(ThenBB); 1201 } 1202 } 1203 CGF.EmitIgnoredExpr(PostUpdate); 1204 } 1205 } 1206 if (DoneBB) 1207 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1208 } 1209 1210 namespace { 1211 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1212 /// parallel function. This is necessary for combined constructs such as 1213 /// 'distribute parallel for' 1214 typedef llvm::function_ref<void(CodeGenFunction &, 1215 const OMPExecutableDirective &, 1216 llvm::SmallVectorImpl<llvm::Value *> &)> 1217 CodeGenBoundParametersTy; 1218 } // anonymous namespace 1219 1220 static void emitCommonOMPParallelDirective( 1221 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1222 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1223 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1224 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1225 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1226 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1227 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1228 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1229 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1230 /*IgnoreResultAssign*/ true); 1231 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1232 CGF, NumThreads, NumThreadsClause->getLocStart()); 1233 } 1234 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1235 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1236 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1237 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1238 } 1239 const Expr *IfCond = nullptr; 1240 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1241 if (C->getNameModifier() == OMPD_unknown || 1242 C->getNameModifier() == OMPD_parallel) { 1243 IfCond = C->getCondition(); 1244 break; 1245 } 1246 } 1247 1248 OMPParallelScope Scope(CGF, S); 1249 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1250 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1251 // lower and upper bounds with the pragma 'for' chunking mechanism. 1252 // The following lambda takes care of appending the lower and upper bound 1253 // parameters when necessary 1254 CodeGenBoundParameters(CGF, S, CapturedVars); 1255 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1256 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1257 CapturedVars, IfCond); 1258 } 1259 1260 static void emitEmptyBoundParameters(CodeGenFunction &, 1261 const OMPExecutableDirective &, 1262 llvm::SmallVectorImpl<llvm::Value *> &) {} 1263 1264 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1265 // Emit parallel region as a standalone region. 1266 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1267 OMPPrivateScope PrivateScope(CGF); 1268 bool Copyins = CGF.EmitOMPCopyinClause(S); 1269 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1270 if (Copyins) { 1271 // Emit implicit barrier to synchronize threads and avoid data races on 1272 // propagation master's thread values of threadprivate variables to local 1273 // instances of that variables of all other implicit threads. 1274 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1275 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1276 /*ForceSimpleCall=*/true); 1277 } 1278 CGF.EmitOMPPrivateClause(S, PrivateScope); 1279 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1280 (void)PrivateScope.Privatize(); 1281 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1282 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1283 }; 1284 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1285 emitEmptyBoundParameters); 1286 emitPostUpdateForReductionClause( 1287 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1288 } 1289 1290 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1291 JumpDest LoopExit) { 1292 RunCleanupsScope BodyScope(*this); 1293 // Update counters values on current iteration. 1294 for (auto I : D.updates()) { 1295 EmitIgnoredExpr(I); 1296 } 1297 // Update the linear variables. 1298 // In distribute directives only loop counters may be marked as linear, no 1299 // need to generate the code for them. 1300 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1301 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1302 for (auto *U : C->updates()) 1303 EmitIgnoredExpr(U); 1304 } 1305 } 1306 1307 // On a continue in the body, jump to the end. 1308 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1309 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1310 // Emit loop body. 1311 EmitStmt(D.getBody()); 1312 // The end (updates/cleanups). 1313 EmitBlock(Continue.getBlock()); 1314 BreakContinueStack.pop_back(); 1315 } 1316 1317 void CodeGenFunction::EmitOMPInnerLoop( 1318 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1319 const Expr *IncExpr, 1320 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1321 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1322 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1323 1324 // Start the loop with a block that tests the condition. 1325 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1326 EmitBlock(CondBlock); 1327 const SourceRange &R = S.getSourceRange(); 1328 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1329 SourceLocToDebugLoc(R.getEnd())); 1330 1331 // If there are any cleanups between here and the loop-exit scope, 1332 // create a block to stage a loop exit along. 1333 auto ExitBlock = LoopExit.getBlock(); 1334 if (RequiresCleanup) 1335 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1336 1337 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1338 1339 // Emit condition. 1340 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1341 if (ExitBlock != LoopExit.getBlock()) { 1342 EmitBlock(ExitBlock); 1343 EmitBranchThroughCleanup(LoopExit); 1344 } 1345 1346 EmitBlock(LoopBody); 1347 incrementProfileCounter(&S); 1348 1349 // Create a block for the increment. 1350 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1351 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1352 1353 BodyGen(*this); 1354 1355 // Emit "IV = IV + 1" and a back-edge to the condition block. 1356 EmitBlock(Continue.getBlock()); 1357 EmitIgnoredExpr(IncExpr); 1358 PostIncGen(*this); 1359 BreakContinueStack.pop_back(); 1360 EmitBranch(CondBlock); 1361 LoopStack.pop(); 1362 // Emit the fall-through block. 1363 EmitBlock(LoopExit.getBlock()); 1364 } 1365 1366 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1367 if (!HaveInsertPoint()) 1368 return false; 1369 // Emit inits for the linear variables. 1370 bool HasLinears = false; 1371 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1372 for (auto *Init : C->inits()) { 1373 HasLinears = true; 1374 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1375 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1376 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1377 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1378 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1379 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1380 VD->getInit()->getType(), VK_LValue, 1381 VD->getInit()->getExprLoc()); 1382 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1383 VD->getType()), 1384 /*capturedByInit=*/false); 1385 EmitAutoVarCleanups(Emission); 1386 } else 1387 EmitVarDecl(*VD); 1388 } 1389 // Emit the linear steps for the linear clauses. 1390 // If a step is not constant, it is pre-calculated before the loop. 1391 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1392 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1393 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1394 // Emit calculation of the linear step. 1395 EmitIgnoredExpr(CS); 1396 } 1397 } 1398 return HasLinears; 1399 } 1400 1401 void CodeGenFunction::EmitOMPLinearClauseFinal( 1402 const OMPLoopDirective &D, 1403 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1404 if (!HaveInsertPoint()) 1405 return; 1406 llvm::BasicBlock *DoneBB = nullptr; 1407 // Emit the final values of the linear variables. 1408 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1409 auto IC = C->varlist_begin(); 1410 for (auto *F : C->finals()) { 1411 if (!DoneBB) { 1412 if (auto *Cond = CondGen(*this)) { 1413 // If the first post-update expression is found, emit conditional 1414 // block if it was requested. 1415 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1416 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1417 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1418 EmitBlock(ThenBB); 1419 } 1420 } 1421 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1422 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1423 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1424 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1425 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1426 CodeGenFunction::OMPPrivateScope VarScope(*this); 1427 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1428 (void)VarScope.Privatize(); 1429 EmitIgnoredExpr(F); 1430 ++IC; 1431 } 1432 if (auto *PostUpdate = C->getPostUpdateExpr()) 1433 EmitIgnoredExpr(PostUpdate); 1434 } 1435 if (DoneBB) 1436 EmitBlock(DoneBB, /*IsFinished=*/true); 1437 } 1438 1439 static void emitAlignedClause(CodeGenFunction &CGF, 1440 const OMPExecutableDirective &D) { 1441 if (!CGF.HaveInsertPoint()) 1442 return; 1443 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1444 unsigned ClauseAlignment = 0; 1445 if (auto AlignmentExpr = Clause->getAlignment()) { 1446 auto AlignmentCI = 1447 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1448 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1449 } 1450 for (auto E : Clause->varlists()) { 1451 unsigned Alignment = ClauseAlignment; 1452 if (Alignment == 0) { 1453 // OpenMP [2.8.1, Description] 1454 // If no optional parameter is specified, implementation-defined default 1455 // alignments for SIMD instructions on the target platforms are assumed. 1456 Alignment = 1457 CGF.getContext() 1458 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1459 E->getType()->getPointeeType())) 1460 .getQuantity(); 1461 } 1462 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1463 "alignment is not power of 2"); 1464 if (Alignment != 0) { 1465 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1466 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1467 } 1468 } 1469 } 1470 } 1471 1472 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1473 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1474 if (!HaveInsertPoint()) 1475 return; 1476 auto I = S.private_counters().begin(); 1477 for (auto *E : S.counters()) { 1478 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1479 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1480 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1481 // Emit var without initialization. 1482 if (!LocalDeclMap.count(PrivateVD)) { 1483 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1484 EmitAutoVarCleanups(VarEmission); 1485 } 1486 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1487 /*RefersToEnclosingVariableOrCapture=*/false, 1488 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1489 return EmitLValue(&DRE).getAddress(); 1490 }); 1491 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1492 VD->hasGlobalStorage()) { 1493 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1494 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1495 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1496 E->getType(), VK_LValue, E->getExprLoc()); 1497 return EmitLValue(&DRE).getAddress(); 1498 }); 1499 } 1500 ++I; 1501 } 1502 } 1503 1504 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1505 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1506 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1507 if (!CGF.HaveInsertPoint()) 1508 return; 1509 { 1510 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1511 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1512 (void)PreCondScope.Privatize(); 1513 // Get initial values of real counters. 1514 for (auto I : S.inits()) { 1515 CGF.EmitIgnoredExpr(I); 1516 } 1517 } 1518 // Check that loop is executed at least one time. 1519 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1520 } 1521 1522 void CodeGenFunction::EmitOMPLinearClause( 1523 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1524 if (!HaveInsertPoint()) 1525 return; 1526 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1527 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1528 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1529 for (auto *C : LoopDirective->counters()) { 1530 SIMDLCVs.insert( 1531 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1532 } 1533 } 1534 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1535 auto CurPrivate = C->privates().begin(); 1536 for (auto *E : C->varlists()) { 1537 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1538 auto *PrivateVD = 1539 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1540 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1541 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1542 // Emit private VarDecl with copy init. 1543 EmitVarDecl(*PrivateVD); 1544 return GetAddrOfLocalVar(PrivateVD); 1545 }); 1546 assert(IsRegistered && "linear var already registered as private"); 1547 // Silence the warning about unused variable. 1548 (void)IsRegistered; 1549 } else 1550 EmitVarDecl(*PrivateVD); 1551 ++CurPrivate; 1552 } 1553 } 1554 } 1555 1556 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1557 const OMPExecutableDirective &D, 1558 bool IsMonotonic) { 1559 if (!CGF.HaveInsertPoint()) 1560 return; 1561 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1562 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1563 /*ignoreResult=*/true); 1564 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1565 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1566 // In presence of finite 'safelen', it may be unsafe to mark all 1567 // the memory instructions parallel, because loop-carried 1568 // dependences of 'safelen' iterations are possible. 1569 if (!IsMonotonic) 1570 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1571 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1572 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1573 /*ignoreResult=*/true); 1574 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1575 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1576 // In presence of finite 'safelen', it may be unsafe to mark all 1577 // the memory instructions parallel, because loop-carried 1578 // dependences of 'safelen' iterations are possible. 1579 CGF.LoopStack.setParallel(false); 1580 } 1581 } 1582 1583 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1584 bool IsMonotonic) { 1585 // Walk clauses and process safelen/lastprivate. 1586 LoopStack.setParallel(!IsMonotonic); 1587 LoopStack.setVectorizeEnable(true); 1588 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1589 } 1590 1591 void CodeGenFunction::EmitOMPSimdFinal( 1592 const OMPLoopDirective &D, 1593 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1594 if (!HaveInsertPoint()) 1595 return; 1596 llvm::BasicBlock *DoneBB = nullptr; 1597 auto IC = D.counters().begin(); 1598 auto IPC = D.private_counters().begin(); 1599 for (auto F : D.finals()) { 1600 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1601 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1602 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1603 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1604 OrigVD->hasGlobalStorage() || CED) { 1605 if (!DoneBB) { 1606 if (auto *Cond = CondGen(*this)) { 1607 // If the first post-update expression is found, emit conditional 1608 // block if it was requested. 1609 auto *ThenBB = createBasicBlock(".omp.final.then"); 1610 DoneBB = createBasicBlock(".omp.final.done"); 1611 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1612 EmitBlock(ThenBB); 1613 } 1614 } 1615 Address OrigAddr = Address::invalid(); 1616 if (CED) 1617 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1618 else { 1619 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1620 /*RefersToEnclosingVariableOrCapture=*/false, 1621 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1622 OrigAddr = EmitLValue(&DRE).getAddress(); 1623 } 1624 OMPPrivateScope VarScope(*this); 1625 VarScope.addPrivate(OrigVD, 1626 [OrigAddr]() -> Address { return OrigAddr; }); 1627 (void)VarScope.Privatize(); 1628 EmitIgnoredExpr(F); 1629 } 1630 ++IC; 1631 ++IPC; 1632 } 1633 if (DoneBB) 1634 EmitBlock(DoneBB, /*IsFinished=*/true); 1635 } 1636 1637 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1638 const OMPLoopDirective &S, 1639 CodeGenFunction::JumpDest LoopExit) { 1640 CGF.EmitOMPLoopBody(S, LoopExit); 1641 CGF.EmitStopPoint(&S); 1642 } 1643 1644 /// Emit a helper variable and return corresponding lvalue. 1645 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1646 const DeclRefExpr *Helper) { 1647 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1648 CGF.EmitVarDecl(*VDecl); 1649 return CGF.EmitLValue(Helper); 1650 } 1651 1652 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1653 PrePostActionTy &Action) { 1654 Action.Enter(CGF); 1655 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1656 "Expected simd directive"); 1657 OMPLoopScope PreInitScope(CGF, S); 1658 // if (PreCond) { 1659 // for (IV in 0..LastIteration) BODY; 1660 // <Final counter/linear vars updates>; 1661 // } 1662 // 1663 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1664 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1665 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1666 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1667 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1668 } 1669 1670 // Emit: if (PreCond) - begin. 1671 // If the condition constant folds and can be elided, avoid emitting the 1672 // whole loop. 1673 bool CondConstant; 1674 llvm::BasicBlock *ContBlock = nullptr; 1675 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1676 if (!CondConstant) 1677 return; 1678 } else { 1679 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1680 ContBlock = CGF.createBasicBlock("simd.if.end"); 1681 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1682 CGF.getProfileCount(&S)); 1683 CGF.EmitBlock(ThenBlock); 1684 CGF.incrementProfileCounter(&S); 1685 } 1686 1687 // Emit the loop iteration variable. 1688 const Expr *IVExpr = S.getIterationVariable(); 1689 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1690 CGF.EmitVarDecl(*IVDecl); 1691 CGF.EmitIgnoredExpr(S.getInit()); 1692 1693 // Emit the iterations count variable. 1694 // If it is not a variable, Sema decided to calculate iterations count on 1695 // each iteration (e.g., it is foldable into a constant). 1696 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1697 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1698 // Emit calculation of the iterations count. 1699 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1700 } 1701 1702 CGF.EmitOMPSimdInit(S); 1703 1704 emitAlignedClause(CGF, S); 1705 (void)CGF.EmitOMPLinearClauseInit(S); 1706 { 1707 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1708 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1709 CGF.EmitOMPLinearClause(S, LoopScope); 1710 CGF.EmitOMPPrivateClause(S, LoopScope); 1711 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1712 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1713 (void)LoopScope.Privatize(); 1714 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1715 S.getInc(), 1716 [&S](CodeGenFunction &CGF) { 1717 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1718 CGF.EmitStopPoint(&S); 1719 }, 1720 [](CodeGenFunction &) {}); 1721 CGF.EmitOMPSimdFinal( 1722 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1723 // Emit final copy of the lastprivate variables at the end of loops. 1724 if (HasLastprivateClause) 1725 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1726 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1727 emitPostUpdateForReductionClause( 1728 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1729 } 1730 CGF.EmitOMPLinearClauseFinal( 1731 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1732 // Emit: if (PreCond) - end. 1733 if (ContBlock) { 1734 CGF.EmitBranch(ContBlock); 1735 CGF.EmitBlock(ContBlock, true); 1736 } 1737 } 1738 1739 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1740 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1741 emitOMPSimdRegion(CGF, S, Action); 1742 }; 1743 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1744 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1745 } 1746 1747 void CodeGenFunction::EmitOMPOuterLoop( 1748 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1749 CodeGenFunction::OMPPrivateScope &LoopScope, 1750 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1751 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1752 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1753 auto &RT = CGM.getOpenMPRuntime(); 1754 1755 const Expr *IVExpr = S.getIterationVariable(); 1756 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1757 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1758 1759 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1760 1761 // Start the loop with a block that tests the condition. 1762 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1763 EmitBlock(CondBlock); 1764 const SourceRange &R = S.getSourceRange(); 1765 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1766 SourceLocToDebugLoc(R.getEnd())); 1767 1768 llvm::Value *BoolCondVal = nullptr; 1769 if (!DynamicOrOrdered) { 1770 // UB = min(UB, GlobalUB) or 1771 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1772 // 'distribute parallel for') 1773 EmitIgnoredExpr(LoopArgs.EUB); 1774 // IV = LB 1775 EmitIgnoredExpr(LoopArgs.Init); 1776 // IV < UB 1777 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1778 } else { 1779 BoolCondVal = 1780 RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL, 1781 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1782 } 1783 1784 // If there are any cleanups between here and the loop-exit scope, 1785 // create a block to stage a loop exit along. 1786 auto ExitBlock = LoopExit.getBlock(); 1787 if (LoopScope.requiresCleanups()) 1788 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1789 1790 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1791 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1792 if (ExitBlock != LoopExit.getBlock()) { 1793 EmitBlock(ExitBlock); 1794 EmitBranchThroughCleanup(LoopExit); 1795 } 1796 EmitBlock(LoopBody); 1797 1798 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1799 // LB for loop condition and emitted it above). 1800 if (DynamicOrOrdered) 1801 EmitIgnoredExpr(LoopArgs.Init); 1802 1803 // Create a block for the increment. 1804 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1805 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1806 1807 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1808 // with dynamic/guided scheduling and without ordered clause. 1809 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1810 LoopStack.setParallel(!IsMonotonic); 1811 else 1812 EmitOMPSimdInit(S, IsMonotonic); 1813 1814 SourceLocation Loc = S.getLocStart(); 1815 1816 // when 'distribute' is not combined with a 'for': 1817 // while (idx <= UB) { BODY; ++idx; } 1818 // when 'distribute' is combined with a 'for' 1819 // (e.g. 'distribute parallel for') 1820 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1821 EmitOMPInnerLoop( 1822 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1823 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1824 CodeGenLoop(CGF, S, LoopExit); 1825 }, 1826 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1827 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1828 }); 1829 1830 EmitBlock(Continue.getBlock()); 1831 BreakContinueStack.pop_back(); 1832 if (!DynamicOrOrdered) { 1833 // Emit "LB = LB + Stride", "UB = UB + Stride". 1834 EmitIgnoredExpr(LoopArgs.NextLB); 1835 EmitIgnoredExpr(LoopArgs.NextUB); 1836 } 1837 1838 EmitBranch(CondBlock); 1839 LoopStack.pop(); 1840 // Emit the fall-through block. 1841 EmitBlock(LoopExit.getBlock()); 1842 1843 // Tell the runtime we are done. 1844 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1845 if (!DynamicOrOrdered) 1846 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 1847 S.getDirectiveKind()); 1848 }; 1849 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1850 } 1851 1852 void CodeGenFunction::EmitOMPForOuterLoop( 1853 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1854 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1855 const OMPLoopArguments &LoopArgs, 1856 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1857 auto &RT = CGM.getOpenMPRuntime(); 1858 1859 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1860 const bool DynamicOrOrdered = 1861 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1862 1863 assert((Ordered || 1864 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1865 LoopArgs.Chunk != nullptr)) && 1866 "static non-chunked schedule does not need outer loop"); 1867 1868 // Emit outer loop. 1869 // 1870 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1871 // When schedule(dynamic,chunk_size) is specified, the iterations are 1872 // distributed to threads in the team in chunks as the threads request them. 1873 // Each thread executes a chunk of iterations, then requests another chunk, 1874 // until no chunks remain to be distributed. Each chunk contains chunk_size 1875 // iterations, except for the last chunk to be distributed, which may have 1876 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1877 // 1878 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1879 // to threads in the team in chunks as the executing threads request them. 1880 // Each thread executes a chunk of iterations, then requests another chunk, 1881 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1882 // each chunk is proportional to the number of unassigned iterations divided 1883 // by the number of threads in the team, decreasing to 1. For a chunk_size 1884 // with value k (greater than 1), the size of each chunk is determined in the 1885 // same way, with the restriction that the chunks do not contain fewer than k 1886 // iterations (except for the last chunk to be assigned, which may have fewer 1887 // than k iterations). 1888 // 1889 // When schedule(auto) is specified, the decision regarding scheduling is 1890 // delegated to the compiler and/or runtime system. The programmer gives the 1891 // implementation the freedom to choose any possible mapping of iterations to 1892 // threads in the team. 1893 // 1894 // When schedule(runtime) is specified, the decision regarding scheduling is 1895 // deferred until run time, and the schedule and chunk size are taken from the 1896 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1897 // implementation defined 1898 // 1899 // while(__kmpc_dispatch_next(&LB, &UB)) { 1900 // idx = LB; 1901 // while (idx <= UB) { BODY; ++idx; 1902 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1903 // } // inner loop 1904 // } 1905 // 1906 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1907 // When schedule(static, chunk_size) is specified, iterations are divided into 1908 // chunks of size chunk_size, and the chunks are assigned to the threads in 1909 // the team in a round-robin fashion in the order of the thread number. 1910 // 1911 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1912 // while (idx <= UB) { BODY; ++idx; } // inner loop 1913 // LB = LB + ST; 1914 // UB = UB + ST; 1915 // } 1916 // 1917 1918 const Expr *IVExpr = S.getIterationVariable(); 1919 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1920 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1921 1922 if (DynamicOrOrdered) { 1923 auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1924 llvm::Value *LBVal = DispatchBounds.first; 1925 llvm::Value *UBVal = DispatchBounds.second; 1926 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1927 LoopArgs.Chunk}; 1928 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1929 IVSigned, Ordered, DipatchRTInputValues); 1930 } else { 1931 CGOpenMPRuntime::StaticRTInput StaticInit( 1932 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1933 LoopArgs.ST, LoopArgs.Chunk); 1934 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 1935 ScheduleKind, StaticInit); 1936 } 1937 1938 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1939 const unsigned IVSize, 1940 const bool IVSigned) { 1941 if (Ordered) { 1942 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1943 IVSigned); 1944 } 1945 }; 1946 1947 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1948 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1949 OuterLoopArgs.IncExpr = S.getInc(); 1950 OuterLoopArgs.Init = S.getInit(); 1951 OuterLoopArgs.Cond = S.getCond(); 1952 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1953 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1954 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1955 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1956 } 1957 1958 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1959 const unsigned IVSize, const bool IVSigned) {} 1960 1961 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1962 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1963 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1964 const CodeGenLoopTy &CodeGenLoopContent) { 1965 1966 auto &RT = CGM.getOpenMPRuntime(); 1967 1968 // Emit outer loop. 1969 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1970 // dynamic 1971 // 1972 1973 const Expr *IVExpr = S.getIterationVariable(); 1974 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1975 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1976 1977 CGOpenMPRuntime::StaticRTInput StaticInit( 1978 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 1979 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 1980 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit); 1981 1982 // for combined 'distribute' and 'for' the increment expression of distribute 1983 // is store in DistInc. For 'distribute' alone, it is in Inc. 1984 Expr *IncExpr; 1985 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 1986 IncExpr = S.getDistInc(); 1987 else 1988 IncExpr = S.getInc(); 1989 1990 // this routine is shared by 'omp distribute parallel for' and 1991 // 'omp distribute': select the right EUB expression depending on the 1992 // directive 1993 OMPLoopArguments OuterLoopArgs; 1994 OuterLoopArgs.LB = LoopArgs.LB; 1995 OuterLoopArgs.UB = LoopArgs.UB; 1996 OuterLoopArgs.ST = LoopArgs.ST; 1997 OuterLoopArgs.IL = LoopArgs.IL; 1998 OuterLoopArgs.Chunk = LoopArgs.Chunk; 1999 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2000 ? S.getCombinedEnsureUpperBound() 2001 : S.getEnsureUpperBound(); 2002 OuterLoopArgs.IncExpr = IncExpr; 2003 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2004 ? S.getCombinedInit() 2005 : S.getInit(); 2006 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2007 ? S.getCombinedCond() 2008 : S.getCond(); 2009 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2010 ? S.getCombinedNextLowerBound() 2011 : S.getNextLowerBound(); 2012 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2013 ? S.getCombinedNextUpperBound() 2014 : S.getNextUpperBound(); 2015 2016 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2017 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2018 emitEmptyOrdered); 2019 } 2020 2021 static std::pair<LValue, LValue> 2022 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2023 const OMPExecutableDirective &S) { 2024 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2025 LValue LB = 2026 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2027 LValue UB = 2028 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2029 2030 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2031 // parallel for') we need to use the 'distribute' 2032 // chunk lower and upper bounds rather than the whole loop iteration 2033 // space. These are parameters to the outlined function for 'parallel' 2034 // and we copy the bounds of the previous schedule into the 2035 // the current ones. 2036 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2037 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2038 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2039 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2040 PrevLBVal = CGF.EmitScalarConversion( 2041 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2042 LS.getIterationVariable()->getType(), 2043 LS.getPrevLowerBoundVariable()->getExprLoc()); 2044 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2045 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2046 PrevUBVal = CGF.EmitScalarConversion( 2047 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2048 LS.getIterationVariable()->getType(), 2049 LS.getPrevUpperBoundVariable()->getExprLoc()); 2050 2051 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2052 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2053 2054 return {LB, UB}; 2055 } 2056 2057 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2058 /// we need to use the LB and UB expressions generated by the worksharing 2059 /// code generation support, whereas in non combined situations we would 2060 /// just emit 0 and the LastIteration expression 2061 /// This function is necessary due to the difference of the LB and UB 2062 /// types for the RT emission routines for 'for_static_init' and 2063 /// 'for_dispatch_init' 2064 static std::pair<llvm::Value *, llvm::Value *> 2065 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2066 const OMPExecutableDirective &S, 2067 Address LB, Address UB) { 2068 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2069 const Expr *IVExpr = LS.getIterationVariable(); 2070 // when implementing a dynamic schedule for a 'for' combined with a 2071 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2072 // is not normalized as each team only executes its own assigned 2073 // distribute chunk 2074 QualType IteratorTy = IVExpr->getType(); 2075 llvm::Value *LBVal = 2076 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getLocStart()); 2077 llvm::Value *UBVal = 2078 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getLocStart()); 2079 return {LBVal, UBVal}; 2080 } 2081 2082 static void emitDistributeParallelForDistributeInnerBoundParams( 2083 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2084 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2085 const auto &Dir = cast<OMPLoopDirective>(S); 2086 LValue LB = 2087 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2088 auto LBCast = CGF.Builder.CreateIntCast( 2089 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2090 CapturedVars.push_back(LBCast); 2091 LValue UB = 2092 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2093 2094 auto UBCast = CGF.Builder.CreateIntCast( 2095 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2096 CapturedVars.push_back(UBCast); 2097 } 2098 2099 static void 2100 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2101 const OMPLoopDirective &S, 2102 CodeGenFunction::JumpDest LoopExit) { 2103 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2104 PrePostActionTy &) { 2105 bool HasCancel = false; 2106 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2107 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2108 HasCancel = D->hasCancel(); 2109 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2110 HasCancel = D->hasCancel(); 2111 else if (const auto *D = 2112 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2113 HasCancel = D->hasCancel(); 2114 } 2115 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2116 HasCancel); 2117 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2118 emitDistributeParallelForInnerBounds, 2119 emitDistributeParallelForDispatchBounds); 2120 }; 2121 2122 emitCommonOMPParallelDirective( 2123 CGF, S, 2124 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2125 CGInlinedWorksharingLoop, 2126 emitDistributeParallelForDistributeInnerBoundParams); 2127 } 2128 2129 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2130 const OMPDistributeParallelForDirective &S) { 2131 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2132 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2133 S.getDistInc()); 2134 }; 2135 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2136 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2137 } 2138 2139 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2140 const OMPDistributeParallelForSimdDirective &S) { 2141 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2142 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2143 S.getDistInc()); 2144 }; 2145 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2146 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2147 } 2148 2149 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2150 const OMPDistributeSimdDirective &S) { 2151 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2152 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2153 }; 2154 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2155 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2156 } 2157 2158 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2159 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2160 // Emit SPMD target parallel for region as a standalone region. 2161 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2162 emitOMPSimdRegion(CGF, S, Action); 2163 }; 2164 llvm::Function *Fn; 2165 llvm::Constant *Addr; 2166 // Emit target region as a standalone region. 2167 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2168 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2169 assert(Fn && Addr && "Target device function emission failed."); 2170 } 2171 2172 void CodeGenFunction::EmitOMPTargetSimdDirective( 2173 const OMPTargetSimdDirective &S) { 2174 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2175 emitOMPSimdRegion(CGF, S, Action); 2176 }; 2177 emitCommonOMPTargetDirective(*this, S, CodeGen); 2178 } 2179 2180 namespace { 2181 struct ScheduleKindModifiersTy { 2182 OpenMPScheduleClauseKind Kind; 2183 OpenMPScheduleClauseModifier M1; 2184 OpenMPScheduleClauseModifier M2; 2185 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2186 OpenMPScheduleClauseModifier M1, 2187 OpenMPScheduleClauseModifier M2) 2188 : Kind(Kind), M1(M1), M2(M2) {} 2189 }; 2190 } // namespace 2191 2192 bool CodeGenFunction::EmitOMPWorksharingLoop( 2193 const OMPLoopDirective &S, Expr *EUB, 2194 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2195 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2196 // Emit the loop iteration variable. 2197 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2198 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2199 EmitVarDecl(*IVDecl); 2200 2201 // Emit the iterations count variable. 2202 // If it is not a variable, Sema decided to calculate iterations count on each 2203 // iteration (e.g., it is foldable into a constant). 2204 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2205 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2206 // Emit calculation of the iterations count. 2207 EmitIgnoredExpr(S.getCalcLastIteration()); 2208 } 2209 2210 auto &RT = CGM.getOpenMPRuntime(); 2211 2212 bool HasLastprivateClause; 2213 // Check pre-condition. 2214 { 2215 OMPLoopScope PreInitScope(*this, S); 2216 // Skip the entire loop if we don't meet the precondition. 2217 // If the condition constant folds and can be elided, avoid emitting the 2218 // whole loop. 2219 bool CondConstant; 2220 llvm::BasicBlock *ContBlock = nullptr; 2221 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2222 if (!CondConstant) 2223 return false; 2224 } else { 2225 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2226 ContBlock = createBasicBlock("omp.precond.end"); 2227 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2228 getProfileCount(&S)); 2229 EmitBlock(ThenBlock); 2230 incrementProfileCounter(&S); 2231 } 2232 2233 bool Ordered = false; 2234 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2235 if (OrderedClause->getNumForLoops()) 2236 RT.emitDoacrossInit(*this, S); 2237 else 2238 Ordered = true; 2239 } 2240 2241 llvm::DenseSet<const Expr *> EmittedFinals; 2242 emitAlignedClause(*this, S); 2243 bool HasLinears = EmitOMPLinearClauseInit(S); 2244 // Emit helper vars inits. 2245 2246 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2247 LValue LB = Bounds.first; 2248 LValue UB = Bounds.second; 2249 LValue ST = 2250 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2251 LValue IL = 2252 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2253 2254 // Emit 'then' code. 2255 { 2256 OMPPrivateScope LoopScope(*this); 2257 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2258 // Emit implicit barrier to synchronize threads and avoid data races on 2259 // initialization of firstprivate variables and post-update of 2260 // lastprivate variables. 2261 CGM.getOpenMPRuntime().emitBarrierCall( 2262 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2263 /*ForceSimpleCall=*/true); 2264 } 2265 EmitOMPPrivateClause(S, LoopScope); 2266 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2267 EmitOMPReductionClauseInit(S, LoopScope); 2268 EmitOMPPrivateLoopCounters(S, LoopScope); 2269 EmitOMPLinearClause(S, LoopScope); 2270 (void)LoopScope.Privatize(); 2271 2272 // Detect the loop schedule kind and chunk. 2273 llvm::Value *Chunk = nullptr; 2274 OpenMPScheduleTy ScheduleKind; 2275 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2276 ScheduleKind.Schedule = C->getScheduleKind(); 2277 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2278 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2279 if (const auto *Ch = C->getChunkSize()) { 2280 Chunk = EmitScalarExpr(Ch); 2281 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2282 S.getIterationVariable()->getType(), 2283 S.getLocStart()); 2284 } 2285 } 2286 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2287 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2288 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2289 // If the static schedule kind is specified or if the ordered clause is 2290 // specified, and if no monotonic modifier is specified, the effect will 2291 // be as if the monotonic modifier was specified. 2292 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2293 /* Chunked */ Chunk != nullptr) && 2294 !Ordered) { 2295 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2296 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2297 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2298 // When no chunk_size is specified, the iteration space is divided into 2299 // chunks that are approximately equal in size, and at most one chunk is 2300 // distributed to each thread. Note that the size of the chunks is 2301 // unspecified in this case. 2302 CGOpenMPRuntime::StaticRTInput StaticInit( 2303 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2304 UB.getAddress(), ST.getAddress()); 2305 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 2306 ScheduleKind, StaticInit); 2307 auto LoopExit = 2308 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2309 // UB = min(UB, GlobalUB); 2310 EmitIgnoredExpr(S.getEnsureUpperBound()); 2311 // IV = LB; 2312 EmitIgnoredExpr(S.getInit()); 2313 // while (idx <= UB) { BODY; ++idx; } 2314 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2315 S.getInc(), 2316 [&S, LoopExit](CodeGenFunction &CGF) { 2317 CGF.EmitOMPLoopBody(S, LoopExit); 2318 CGF.EmitStopPoint(&S); 2319 }, 2320 [](CodeGenFunction &) {}); 2321 EmitBlock(LoopExit.getBlock()); 2322 // Tell the runtime we are done. 2323 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2324 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2325 S.getDirectiveKind()); 2326 }; 2327 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2328 } else { 2329 const bool IsMonotonic = 2330 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2331 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2332 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2333 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2334 // Emit the outer loop, which requests its work chunk [LB..UB] from 2335 // runtime and runs the inner loop to process it. 2336 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2337 ST.getAddress(), IL.getAddress(), 2338 Chunk, EUB); 2339 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2340 LoopArguments, CGDispatchBounds); 2341 } 2342 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2343 EmitOMPSimdFinal(S, 2344 [&](CodeGenFunction &CGF) -> llvm::Value * { 2345 return CGF.Builder.CreateIsNotNull( 2346 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2347 }); 2348 } 2349 EmitOMPReductionClauseFinal( 2350 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2351 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2352 : /*Parallel only*/ OMPD_parallel); 2353 // Emit post-update of the reduction variables if IsLastIter != 0. 2354 emitPostUpdateForReductionClause( 2355 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2356 return CGF.Builder.CreateIsNotNull( 2357 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2358 }); 2359 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2360 if (HasLastprivateClause) 2361 EmitOMPLastprivateClauseFinal( 2362 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2363 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2364 } 2365 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2366 return CGF.Builder.CreateIsNotNull( 2367 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2368 }); 2369 // We're now done with the loop, so jump to the continuation block. 2370 if (ContBlock) { 2371 EmitBranch(ContBlock); 2372 EmitBlock(ContBlock, true); 2373 } 2374 } 2375 return HasLastprivateClause; 2376 } 2377 2378 /// The following two functions generate expressions for the loop lower 2379 /// and upper bounds in case of static and dynamic (dispatch) schedule 2380 /// of the associated 'for' or 'distribute' loop. 2381 static std::pair<LValue, LValue> 2382 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2383 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2384 LValue LB = 2385 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2386 LValue UB = 2387 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2388 return {LB, UB}; 2389 } 2390 2391 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2392 /// consider the lower and upper bound expressions generated by the 2393 /// worksharing loop support, but we use 0 and the iteration space size as 2394 /// constants 2395 static std::pair<llvm::Value *, llvm::Value *> 2396 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2397 Address LB, Address UB) { 2398 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2399 const Expr *IVExpr = LS.getIterationVariable(); 2400 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2401 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2402 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2403 return {LBVal, UBVal}; 2404 } 2405 2406 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2407 bool HasLastprivates = false; 2408 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2409 PrePostActionTy &) { 2410 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2411 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2412 emitForLoopBounds, 2413 emitDispatchForLoopBounds); 2414 }; 2415 { 2416 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2417 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2418 S.hasCancel()); 2419 } 2420 2421 // Emit an implicit barrier at the end. 2422 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2423 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2424 } 2425 } 2426 2427 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2428 bool HasLastprivates = false; 2429 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2430 PrePostActionTy &) { 2431 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2432 emitForLoopBounds, 2433 emitDispatchForLoopBounds); 2434 }; 2435 { 2436 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2437 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2438 } 2439 2440 // Emit an implicit barrier at the end. 2441 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2442 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2443 } 2444 } 2445 2446 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2447 const Twine &Name, 2448 llvm::Value *Init = nullptr) { 2449 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2450 if (Init) 2451 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2452 return LVal; 2453 } 2454 2455 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2456 const Stmt *Stmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2457 const auto *CS = dyn_cast<CompoundStmt>(Stmt); 2458 bool HasLastprivates = false; 2459 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2460 PrePostActionTy &) { 2461 auto &C = CGF.CGM.getContext(); 2462 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2463 // Emit helper vars inits. 2464 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2465 CGF.Builder.getInt32(0)); 2466 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2467 : CGF.Builder.getInt32(0); 2468 LValue UB = 2469 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2470 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2471 CGF.Builder.getInt32(1)); 2472 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2473 CGF.Builder.getInt32(0)); 2474 // Loop counter. 2475 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2476 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2477 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2478 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2479 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2480 // Generate condition for loop. 2481 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2482 OK_Ordinary, S.getLocStart(), FPOptions()); 2483 // Increment for loop counter. 2484 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2485 S.getLocStart(), true); 2486 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2487 // Iterate through all sections and emit a switch construct: 2488 // switch (IV) { 2489 // case 0: 2490 // <SectionStmt[0]>; 2491 // break; 2492 // ... 2493 // case <NumSection> - 1: 2494 // <SectionStmt[<NumSection> - 1]>; 2495 // break; 2496 // } 2497 // .omp.sections.exit: 2498 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2499 auto *SwitchStmt = 2500 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getLocStart()), 2501 ExitBB, CS == nullptr ? 1 : CS->size()); 2502 if (CS) { 2503 unsigned CaseNumber = 0; 2504 for (auto *SubStmt : CS->children()) { 2505 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2506 CGF.EmitBlock(CaseBB); 2507 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2508 CGF.EmitStmt(SubStmt); 2509 CGF.EmitBranch(ExitBB); 2510 ++CaseNumber; 2511 } 2512 } else { 2513 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2514 CGF.EmitBlock(CaseBB); 2515 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2516 CGF.EmitStmt(Stmt); 2517 CGF.EmitBranch(ExitBB); 2518 } 2519 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2520 }; 2521 2522 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2523 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2524 // Emit implicit barrier to synchronize threads and avoid data races on 2525 // initialization of firstprivate variables and post-update of lastprivate 2526 // variables. 2527 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2528 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2529 /*ForceSimpleCall=*/true); 2530 } 2531 CGF.EmitOMPPrivateClause(S, LoopScope); 2532 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2533 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2534 (void)LoopScope.Privatize(); 2535 2536 // Emit static non-chunked loop. 2537 OpenMPScheduleTy ScheduleKind; 2538 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2539 CGOpenMPRuntime::StaticRTInput StaticInit( 2540 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2541 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2542 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2543 CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2544 // UB = min(UB, GlobalUB); 2545 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2546 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2547 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2548 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2549 // IV = LB; 2550 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2551 // while (idx <= UB) { BODY; ++idx; } 2552 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2553 [](CodeGenFunction &) {}); 2554 // Tell the runtime we are done. 2555 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2556 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2557 S.getDirectiveKind()); 2558 }; 2559 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2560 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2561 // Emit post-update of the reduction variables if IsLastIter != 0. 2562 emitPostUpdateForReductionClause( 2563 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2564 return CGF.Builder.CreateIsNotNull( 2565 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2566 }); 2567 2568 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2569 if (HasLastprivates) 2570 CGF.EmitOMPLastprivateClauseFinal( 2571 S, /*NoFinals=*/false, 2572 CGF.Builder.CreateIsNotNull( 2573 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2574 }; 2575 2576 bool HasCancel = false; 2577 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2578 HasCancel = OSD->hasCancel(); 2579 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2580 HasCancel = OPSD->hasCancel(); 2581 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2582 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2583 HasCancel); 2584 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2585 // clause. Otherwise the barrier will be generated by the codegen for the 2586 // directive. 2587 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2588 // Emit implicit barrier to synchronize threads and avoid data races on 2589 // initialization of firstprivate variables. 2590 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2591 OMPD_unknown); 2592 } 2593 } 2594 2595 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2596 { 2597 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2598 EmitSections(S); 2599 } 2600 // Emit an implicit barrier at the end. 2601 if (!S.getSingleClause<OMPNowaitClause>()) { 2602 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2603 OMPD_sections); 2604 } 2605 } 2606 2607 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2608 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2609 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2610 }; 2611 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2612 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2613 S.hasCancel()); 2614 } 2615 2616 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2617 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2618 llvm::SmallVector<const Expr *, 8> DestExprs; 2619 llvm::SmallVector<const Expr *, 8> SrcExprs; 2620 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2621 // Check if there are any 'copyprivate' clauses associated with this 2622 // 'single' construct. 2623 // Build a list of copyprivate variables along with helper expressions 2624 // (<source>, <destination>, <destination>=<source> expressions) 2625 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2626 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2627 DestExprs.append(C->destination_exprs().begin(), 2628 C->destination_exprs().end()); 2629 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2630 AssignmentOps.append(C->assignment_ops().begin(), 2631 C->assignment_ops().end()); 2632 } 2633 // Emit code for 'single' region along with 'copyprivate' clauses 2634 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2635 Action.Enter(CGF); 2636 OMPPrivateScope SingleScope(CGF); 2637 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2638 CGF.EmitOMPPrivateClause(S, SingleScope); 2639 (void)SingleScope.Privatize(); 2640 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2641 }; 2642 { 2643 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2644 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2645 CopyprivateVars, DestExprs, 2646 SrcExprs, AssignmentOps); 2647 } 2648 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2649 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2650 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2651 CGM.getOpenMPRuntime().emitBarrierCall( 2652 *this, S.getLocStart(), 2653 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2654 } 2655 } 2656 2657 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2658 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2659 Action.Enter(CGF); 2660 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2661 }; 2662 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2663 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2664 } 2665 2666 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2667 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2668 Action.Enter(CGF); 2669 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2670 }; 2671 Expr *Hint = nullptr; 2672 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2673 Hint = HintClause->getHint(); 2674 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2675 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2676 S.getDirectiveName().getAsString(), 2677 CodeGen, S.getLocStart(), Hint); 2678 } 2679 2680 void CodeGenFunction::EmitOMPParallelForDirective( 2681 const OMPParallelForDirective &S) { 2682 // Emit directive as a combined directive that consists of two implicit 2683 // directives: 'parallel' with 'for' directive. 2684 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2685 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2686 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2687 emitDispatchForLoopBounds); 2688 }; 2689 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2690 emitEmptyBoundParameters); 2691 } 2692 2693 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2694 const OMPParallelForSimdDirective &S) { 2695 // Emit directive as a combined directive that consists of two implicit 2696 // directives: 'parallel' with 'for' directive. 2697 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2698 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2699 emitDispatchForLoopBounds); 2700 }; 2701 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2702 emitEmptyBoundParameters); 2703 } 2704 2705 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2706 const OMPParallelSectionsDirective &S) { 2707 // Emit directive as a combined directive that consists of two implicit 2708 // directives: 'parallel' with 'sections' directive. 2709 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2710 CGF.EmitSections(S); 2711 }; 2712 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2713 emitEmptyBoundParameters); 2714 } 2715 2716 void CodeGenFunction::EmitOMPTaskBasedDirective( 2717 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2718 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2719 OMPTaskDataTy &Data) { 2720 // Emit outlined function for task construct. 2721 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2722 auto *I = CS->getCapturedDecl()->param_begin(); 2723 auto *PartId = std::next(I); 2724 auto *TaskT = std::next(I, 4); 2725 // Check if the task is final 2726 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2727 // If the condition constant folds and can be elided, try to avoid emitting 2728 // the condition and the dead arm of the if/else. 2729 auto *Cond = Clause->getCondition(); 2730 bool CondConstant; 2731 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2732 Data.Final.setInt(CondConstant); 2733 else 2734 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2735 } else { 2736 // By default the task is not final. 2737 Data.Final.setInt(/*IntVal=*/false); 2738 } 2739 // Check if the task has 'priority' clause. 2740 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2741 auto *Prio = Clause->getPriority(); 2742 Data.Priority.setInt(/*IntVal=*/true); 2743 Data.Priority.setPointer(EmitScalarConversion( 2744 EmitScalarExpr(Prio), Prio->getType(), 2745 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2746 Prio->getExprLoc())); 2747 } 2748 // The first function argument for tasks is a thread id, the second one is a 2749 // part id (0 for tied tasks, >=0 for untied task). 2750 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2751 // Get list of private variables. 2752 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2753 auto IRef = C->varlist_begin(); 2754 for (auto *IInit : C->private_copies()) { 2755 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2756 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2757 Data.PrivateVars.push_back(*IRef); 2758 Data.PrivateCopies.push_back(IInit); 2759 } 2760 ++IRef; 2761 } 2762 } 2763 EmittedAsPrivate.clear(); 2764 // Get list of firstprivate variables. 2765 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2766 auto IRef = C->varlist_begin(); 2767 auto IElemInitRef = C->inits().begin(); 2768 for (auto *IInit : C->private_copies()) { 2769 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2770 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2771 Data.FirstprivateVars.push_back(*IRef); 2772 Data.FirstprivateCopies.push_back(IInit); 2773 Data.FirstprivateInits.push_back(*IElemInitRef); 2774 } 2775 ++IRef; 2776 ++IElemInitRef; 2777 } 2778 } 2779 // Get list of lastprivate variables (for taskloops). 2780 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2781 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2782 auto IRef = C->varlist_begin(); 2783 auto ID = C->destination_exprs().begin(); 2784 for (auto *IInit : C->private_copies()) { 2785 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2786 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2787 Data.LastprivateVars.push_back(*IRef); 2788 Data.LastprivateCopies.push_back(IInit); 2789 } 2790 LastprivateDstsOrigs.insert( 2791 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2792 cast<DeclRefExpr>(*IRef)}); 2793 ++IRef; 2794 ++ID; 2795 } 2796 } 2797 SmallVector<const Expr *, 4> LHSs; 2798 SmallVector<const Expr *, 4> RHSs; 2799 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2800 auto IPriv = C->privates().begin(); 2801 auto IRed = C->reduction_ops().begin(); 2802 auto ILHS = C->lhs_exprs().begin(); 2803 auto IRHS = C->rhs_exprs().begin(); 2804 for (const auto *Ref : C->varlists()) { 2805 Data.ReductionVars.emplace_back(Ref); 2806 Data.ReductionCopies.emplace_back(*IPriv); 2807 Data.ReductionOps.emplace_back(*IRed); 2808 LHSs.emplace_back(*ILHS); 2809 RHSs.emplace_back(*IRHS); 2810 std::advance(IPriv, 1); 2811 std::advance(IRed, 1); 2812 std::advance(ILHS, 1); 2813 std::advance(IRHS, 1); 2814 } 2815 } 2816 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2817 *this, S.getLocStart(), LHSs, RHSs, Data); 2818 // Build list of dependences. 2819 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2820 for (auto *IRef : C->varlists()) 2821 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2822 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2823 CapturedRegion](CodeGenFunction &CGF, 2824 PrePostActionTy &Action) { 2825 // Set proper addresses for generated private copies. 2826 OMPPrivateScope Scope(CGF); 2827 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2828 !Data.LastprivateVars.empty()) { 2829 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2830 auto *CopyFn = CGF.Builder.CreateLoad( 2831 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2832 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2833 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2834 // Map privates. 2835 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2836 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2837 CallArgs.push_back(PrivatesPtr); 2838 for (auto *E : Data.PrivateVars) { 2839 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2840 Address PrivatePtr = CGF.CreateMemTemp( 2841 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2842 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2843 CallArgs.push_back(PrivatePtr.getPointer()); 2844 } 2845 for (auto *E : Data.FirstprivateVars) { 2846 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2847 Address PrivatePtr = 2848 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2849 ".firstpriv.ptr.addr"); 2850 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2851 CallArgs.push_back(PrivatePtr.getPointer()); 2852 } 2853 for (auto *E : Data.LastprivateVars) { 2854 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2855 Address PrivatePtr = 2856 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2857 ".lastpriv.ptr.addr"); 2858 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2859 CallArgs.push_back(PrivatePtr.getPointer()); 2860 } 2861 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 2862 CopyFn, CallArgs); 2863 for (auto &&Pair : LastprivateDstsOrigs) { 2864 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2865 DeclRefExpr DRE( 2866 const_cast<VarDecl *>(OrigVD), 2867 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2868 OrigVD) != nullptr, 2869 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2870 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2871 return CGF.EmitLValue(&DRE).getAddress(); 2872 }); 2873 } 2874 for (auto &&Pair : PrivatePtrs) { 2875 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2876 CGF.getContext().getDeclAlign(Pair.first)); 2877 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2878 } 2879 } 2880 if (Data.Reductions) { 2881 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2882 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2883 Data.ReductionOps); 2884 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2885 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2886 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2887 RedCG.emitSharedLValue(CGF, Cnt); 2888 RedCG.emitAggregateType(CGF, Cnt); 2889 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2890 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2891 Replacement = 2892 Address(CGF.EmitScalarConversion( 2893 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2894 CGF.getContext().getPointerType( 2895 Data.ReductionCopies[Cnt]->getType()), 2896 Data.ReductionCopies[Cnt]->getExprLoc()), 2897 Replacement.getAlignment()); 2898 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2899 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2900 [Replacement]() { return Replacement; }); 2901 // FIXME: This must removed once the runtime library is fixed. 2902 // Emit required threadprivate variables for 2903 // initilizer/combiner/finalizer. 2904 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2905 RedCG, Cnt); 2906 } 2907 } 2908 // Privatize all private variables except for in_reduction items. 2909 (void)Scope.Privatize(); 2910 SmallVector<const Expr *, 4> InRedVars; 2911 SmallVector<const Expr *, 4> InRedPrivs; 2912 SmallVector<const Expr *, 4> InRedOps; 2913 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2914 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2915 auto IPriv = C->privates().begin(); 2916 auto IRed = C->reduction_ops().begin(); 2917 auto ITD = C->taskgroup_descriptors().begin(); 2918 for (const auto *Ref : C->varlists()) { 2919 InRedVars.emplace_back(Ref); 2920 InRedPrivs.emplace_back(*IPriv); 2921 InRedOps.emplace_back(*IRed); 2922 TaskgroupDescriptors.emplace_back(*ITD); 2923 std::advance(IPriv, 1); 2924 std::advance(IRed, 1); 2925 std::advance(ITD, 1); 2926 } 2927 } 2928 // Privatize in_reduction items here, because taskgroup descriptors must be 2929 // privatized earlier. 2930 OMPPrivateScope InRedScope(CGF); 2931 if (!InRedVars.empty()) { 2932 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2933 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2934 RedCG.emitSharedLValue(CGF, Cnt); 2935 RedCG.emitAggregateType(CGF, Cnt); 2936 // The taskgroup descriptor variable is always implicit firstprivate and 2937 // privatized already during procoessing of the firstprivates. 2938 llvm::Value *ReductionsPtr = 2939 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 2940 TaskgroupDescriptors[Cnt]->getExprLoc()); 2941 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2942 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2943 Replacement = Address( 2944 CGF.EmitScalarConversion( 2945 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2946 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2947 InRedPrivs[Cnt]->getExprLoc()), 2948 Replacement.getAlignment()); 2949 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2950 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2951 [Replacement]() { return Replacement; }); 2952 // FIXME: This must removed once the runtime library is fixed. 2953 // Emit required threadprivate variables for 2954 // initilizer/combiner/finalizer. 2955 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2956 RedCG, Cnt); 2957 } 2958 } 2959 (void)InRedScope.Privatize(); 2960 2961 Action.Enter(CGF); 2962 BodyGen(CGF); 2963 }; 2964 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2965 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2966 Data.NumberOfParts); 2967 OMPLexicalScope Scope(*this, S); 2968 TaskGen(*this, OutlinedFn, Data); 2969 } 2970 2971 static ImplicitParamDecl * 2972 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 2973 QualType Ty, CapturedDecl *CD, 2974 SourceLocation Loc) { 2975 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 2976 ImplicitParamDecl::Other); 2977 auto *OrigRef = DeclRefExpr::Create( 2978 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 2979 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 2980 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 2981 ImplicitParamDecl::Other); 2982 auto *PrivateRef = DeclRefExpr::Create( 2983 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 2984 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 2985 QualType ElemType = C.getBaseElementType(Ty); 2986 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 2987 ImplicitParamDecl::Other); 2988 auto *InitRef = DeclRefExpr::Create( 2989 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 2990 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 2991 PrivateVD->setInitStyle(VarDecl::CInit); 2992 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 2993 InitRef, /*BasePath=*/nullptr, 2994 VK_RValue)); 2995 Data.FirstprivateVars.emplace_back(OrigRef); 2996 Data.FirstprivateCopies.emplace_back(PrivateRef); 2997 Data.FirstprivateInits.emplace_back(InitRef); 2998 return OrigVD; 2999 } 3000 3001 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3002 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3003 OMPTargetDataInfo &InputInfo) { 3004 // Emit outlined function for task construct. 3005 auto CS = S.getCapturedStmt(OMPD_task); 3006 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3007 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3008 auto *I = CS->getCapturedDecl()->param_begin(); 3009 auto *PartId = std::next(I); 3010 auto *TaskT = std::next(I, 4); 3011 OMPTaskDataTy Data; 3012 // The task is not final. 3013 Data.Final.setInt(/*IntVal=*/false); 3014 // Get list of firstprivate variables. 3015 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3016 auto IRef = C->varlist_begin(); 3017 auto IElemInitRef = C->inits().begin(); 3018 for (auto *IInit : C->private_copies()) { 3019 Data.FirstprivateVars.push_back(*IRef); 3020 Data.FirstprivateCopies.push_back(IInit); 3021 Data.FirstprivateInits.push_back(*IElemInitRef); 3022 ++IRef; 3023 ++IElemInitRef; 3024 } 3025 } 3026 OMPPrivateScope TargetScope(*this); 3027 VarDecl *BPVD = nullptr; 3028 VarDecl *PVD = nullptr; 3029 VarDecl *SVD = nullptr; 3030 if (InputInfo.NumberOfTargetItems > 0) { 3031 auto *CD = CapturedDecl::Create( 3032 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3033 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3034 QualType BaseAndPointersType = getContext().getConstantArrayType( 3035 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3036 /*IndexTypeQuals=*/0); 3037 BPVD = createImplicitFirstprivateForType( 3038 getContext(), Data, BaseAndPointersType, CD, S.getLocStart()); 3039 PVD = createImplicitFirstprivateForType( 3040 getContext(), Data, BaseAndPointersType, CD, S.getLocStart()); 3041 QualType SizesType = getContext().getConstantArrayType( 3042 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3043 /*IndexTypeQuals=*/0); 3044 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3045 S.getLocStart()); 3046 TargetScope.addPrivate( 3047 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3048 TargetScope.addPrivate(PVD, 3049 [&InputInfo]() { return InputInfo.PointersArray; }); 3050 TargetScope.addPrivate(SVD, 3051 [&InputInfo]() { return InputInfo.SizesArray; }); 3052 } 3053 (void)TargetScope.Privatize(); 3054 // Build list of dependences. 3055 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3056 for (auto *IRef : C->varlists()) 3057 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 3058 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3059 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3060 // Set proper addresses for generated private copies. 3061 OMPPrivateScope Scope(CGF); 3062 if (!Data.FirstprivateVars.empty()) { 3063 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3064 auto *CopyFn = CGF.Builder.CreateLoad( 3065 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 3066 auto *PrivatesPtr = CGF.Builder.CreateLoad( 3067 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 3068 // Map privates. 3069 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3070 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3071 CallArgs.push_back(PrivatesPtr); 3072 for (auto *E : Data.FirstprivateVars) { 3073 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3074 Address PrivatePtr = 3075 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3076 ".firstpriv.ptr.addr"); 3077 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 3078 CallArgs.push_back(PrivatePtr.getPointer()); 3079 } 3080 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3081 CopyFn, CallArgs); 3082 for (auto &&Pair : PrivatePtrs) { 3083 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3084 CGF.getContext().getDeclAlign(Pair.first)); 3085 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3086 } 3087 } 3088 // Privatize all private variables except for in_reduction items. 3089 (void)Scope.Privatize(); 3090 if (InputInfo.NumberOfTargetItems > 0) { 3091 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3092 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3093 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3094 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3095 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3096 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3097 } 3098 3099 Action.Enter(CGF); 3100 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3101 BodyGen(CGF); 3102 }; 3103 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3104 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3105 Data.NumberOfParts); 3106 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3107 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3108 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3109 SourceLocation()); 3110 3111 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), S, OutlinedFn, 3112 SharedsTy, CapturedStruct, &IfCond, Data); 3113 } 3114 3115 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3116 // Emit outlined function for task construct. 3117 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3118 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3119 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3120 const Expr *IfCond = nullptr; 3121 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3122 if (C->getNameModifier() == OMPD_unknown || 3123 C->getNameModifier() == OMPD_task) { 3124 IfCond = C->getCondition(); 3125 break; 3126 } 3127 } 3128 3129 OMPTaskDataTy Data; 3130 // Check if we should emit tied or untied task. 3131 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3132 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3133 CGF.EmitStmt(CS->getCapturedStmt()); 3134 }; 3135 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3136 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3137 const OMPTaskDataTy &Data) { 3138 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 3139 SharedsTy, CapturedStruct, IfCond, 3140 Data); 3141 }; 3142 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3143 } 3144 3145 void CodeGenFunction::EmitOMPTaskyieldDirective( 3146 const OMPTaskyieldDirective &S) { 3147 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 3148 } 3149 3150 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3151 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 3152 } 3153 3154 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3155 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 3156 } 3157 3158 void CodeGenFunction::EmitOMPTaskgroupDirective( 3159 const OMPTaskgroupDirective &S) { 3160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3161 Action.Enter(CGF); 3162 if (const Expr *E = S.getReductionRef()) { 3163 SmallVector<const Expr *, 4> LHSs; 3164 SmallVector<const Expr *, 4> RHSs; 3165 OMPTaskDataTy Data; 3166 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3167 auto IPriv = C->privates().begin(); 3168 auto IRed = C->reduction_ops().begin(); 3169 auto ILHS = C->lhs_exprs().begin(); 3170 auto IRHS = C->rhs_exprs().begin(); 3171 for (const auto *Ref : C->varlists()) { 3172 Data.ReductionVars.emplace_back(Ref); 3173 Data.ReductionCopies.emplace_back(*IPriv); 3174 Data.ReductionOps.emplace_back(*IRed); 3175 LHSs.emplace_back(*ILHS); 3176 RHSs.emplace_back(*IRHS); 3177 std::advance(IPriv, 1); 3178 std::advance(IRed, 1); 3179 std::advance(ILHS, 1); 3180 std::advance(IRHS, 1); 3181 } 3182 } 3183 llvm::Value *ReductionDesc = 3184 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(), 3185 LHSs, RHSs, Data); 3186 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3187 CGF.EmitVarDecl(*VD); 3188 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3189 /*Volatile=*/false, E->getType()); 3190 } 3191 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3192 }; 3193 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3194 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 3195 } 3196 3197 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3198 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 3199 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 3200 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3201 FlushClause->varlist_end()); 3202 } 3203 return llvm::None; 3204 }(), S.getLocStart()); 3205 } 3206 3207 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3208 const CodeGenLoopTy &CodeGenLoop, 3209 Expr *IncExpr) { 3210 // Emit the loop iteration variable. 3211 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3212 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3213 EmitVarDecl(*IVDecl); 3214 3215 // Emit the iterations count variable. 3216 // If it is not a variable, Sema decided to calculate iterations count on each 3217 // iteration (e.g., it is foldable into a constant). 3218 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3219 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3220 // Emit calculation of the iterations count. 3221 EmitIgnoredExpr(S.getCalcLastIteration()); 3222 } 3223 3224 auto &RT = CGM.getOpenMPRuntime(); 3225 3226 bool HasLastprivateClause = false; 3227 // Check pre-condition. 3228 { 3229 OMPLoopScope PreInitScope(*this, S); 3230 // Skip the entire loop if we don't meet the precondition. 3231 // If the condition constant folds and can be elided, avoid emitting the 3232 // whole loop. 3233 bool CondConstant; 3234 llvm::BasicBlock *ContBlock = nullptr; 3235 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3236 if (!CondConstant) 3237 return; 3238 } else { 3239 auto *ThenBlock = createBasicBlock("omp.precond.then"); 3240 ContBlock = createBasicBlock("omp.precond.end"); 3241 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3242 getProfileCount(&S)); 3243 EmitBlock(ThenBlock); 3244 incrementProfileCounter(&S); 3245 } 3246 3247 emitAlignedClause(*this, S); 3248 // Emit 'then' code. 3249 { 3250 // Emit helper vars inits. 3251 3252 LValue LB = EmitOMPHelperVar( 3253 *this, cast<DeclRefExpr>( 3254 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3255 ? S.getCombinedLowerBoundVariable() 3256 : S.getLowerBoundVariable()))); 3257 LValue UB = EmitOMPHelperVar( 3258 *this, cast<DeclRefExpr>( 3259 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3260 ? S.getCombinedUpperBoundVariable() 3261 : S.getUpperBoundVariable()))); 3262 LValue ST = 3263 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3264 LValue IL = 3265 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3266 3267 OMPPrivateScope LoopScope(*this); 3268 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3269 // Emit implicit barrier to synchronize threads and avoid data races 3270 // on initialization of firstprivate variables and post-update of 3271 // lastprivate variables. 3272 CGM.getOpenMPRuntime().emitBarrierCall( 3273 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 3274 /*ForceSimpleCall=*/true); 3275 } 3276 EmitOMPPrivateClause(S, LoopScope); 3277 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3278 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3279 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3280 EmitOMPReductionClauseInit(S, LoopScope); 3281 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3282 EmitOMPPrivateLoopCounters(S, LoopScope); 3283 (void)LoopScope.Privatize(); 3284 3285 // Detect the distribute schedule kind and chunk. 3286 llvm::Value *Chunk = nullptr; 3287 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3288 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3289 ScheduleKind = C->getDistScheduleKind(); 3290 if (const auto *Ch = C->getChunkSize()) { 3291 Chunk = EmitScalarExpr(Ch); 3292 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3293 S.getIterationVariable()->getType(), 3294 S.getLocStart()); 3295 } 3296 } 3297 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3298 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3299 3300 // OpenMP [2.10.8, distribute Construct, Description] 3301 // If dist_schedule is specified, kind must be static. If specified, 3302 // iterations are divided into chunks of size chunk_size, chunks are 3303 // assigned to the teams of the league in a round-robin fashion in the 3304 // order of the team number. When no chunk_size is specified, the 3305 // iteration space is divided into chunks that are approximately equal 3306 // in size, and at most one chunk is distributed to each team of the 3307 // league. The size of the chunks is unspecified in this case. 3308 if (RT.isStaticNonchunked(ScheduleKind, 3309 /* Chunked */ Chunk != nullptr)) { 3310 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3311 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3312 CGOpenMPRuntime::StaticRTInput StaticInit( 3313 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3314 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3315 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 3316 StaticInit); 3317 auto LoopExit = 3318 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3319 // UB = min(UB, GlobalUB); 3320 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3321 ? S.getCombinedEnsureUpperBound() 3322 : S.getEnsureUpperBound()); 3323 // IV = LB; 3324 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3325 ? S.getCombinedInit() 3326 : S.getInit()); 3327 3328 Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3329 ? S.getCombinedCond() 3330 : S.getCond(); 3331 3332 // for distribute alone, codegen 3333 // while (idx <= UB) { BODY; ++idx; } 3334 // when combined with 'for' (e.g. as in 'distribute parallel for') 3335 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3336 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3337 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3338 CodeGenLoop(CGF, S, LoopExit); 3339 }, 3340 [](CodeGenFunction &) {}); 3341 EmitBlock(LoopExit.getBlock()); 3342 // Tell the runtime we are done. 3343 RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind()); 3344 } else { 3345 // Emit the outer loop, which requests its work chunk [LB..UB] from 3346 // runtime and runs the inner loop to process it. 3347 const OMPLoopArguments LoopArguments = { 3348 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3349 Chunk}; 3350 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3351 CodeGenLoop); 3352 } 3353 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3354 EmitOMPSimdFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3355 return CGF.Builder.CreateIsNotNull( 3356 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3357 }); 3358 } 3359 OpenMPDirectiveKind ReductionKind = OMPD_unknown; 3360 if (isOpenMPParallelDirective(S.getDirectiveKind()) && 3361 isOpenMPSimdDirective(S.getDirectiveKind())) { 3362 ReductionKind = OMPD_parallel_for_simd; 3363 } else if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3364 ReductionKind = OMPD_parallel_for; 3365 } else if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3366 ReductionKind = OMPD_simd; 3367 } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) && 3368 S.hasClausesOfKind<OMPReductionClause>()) { 3369 llvm_unreachable( 3370 "No reduction clauses is allowed in distribute directive."); 3371 } 3372 EmitOMPReductionClauseFinal(S, ReductionKind); 3373 // Emit post-update of the reduction variables if IsLastIter != 0. 3374 emitPostUpdateForReductionClause( 3375 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3376 return CGF.Builder.CreateIsNotNull( 3377 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3378 }); 3379 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3380 if (HasLastprivateClause) { 3381 EmitOMPLastprivateClauseFinal( 3382 S, /*NoFinals=*/false, 3383 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 3384 } 3385 } 3386 3387 // We're now done with the loop, so jump to the continuation block. 3388 if (ContBlock) { 3389 EmitBranch(ContBlock); 3390 EmitBlock(ContBlock, true); 3391 } 3392 } 3393 } 3394 3395 void CodeGenFunction::EmitOMPDistributeDirective( 3396 const OMPDistributeDirective &S) { 3397 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3398 3399 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3400 }; 3401 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3402 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3403 } 3404 3405 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3406 const CapturedStmt *S) { 3407 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3408 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3409 CGF.CapturedStmtInfo = &CapStmtInfo; 3410 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3411 Fn->addFnAttr(llvm::Attribute::NoInline); 3412 return Fn; 3413 } 3414 3415 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3416 if (S.hasClausesOfKind<OMPDependClause>()) { 3417 assert(!S.getAssociatedStmt() && 3418 "No associated statement must be in ordered depend construct."); 3419 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3420 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3421 return; 3422 } 3423 auto *C = S.getSingleClause<OMPSIMDClause>(); 3424 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3425 PrePostActionTy &Action) { 3426 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3427 if (C) { 3428 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3429 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3430 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3431 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3432 OutlinedFn, CapturedVars); 3433 } else { 3434 Action.Enter(CGF); 3435 CGF.EmitStmt(CS->getCapturedStmt()); 3436 } 3437 }; 3438 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3439 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 3440 } 3441 3442 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3443 QualType SrcType, QualType DestType, 3444 SourceLocation Loc) { 3445 assert(CGF.hasScalarEvaluationKind(DestType) && 3446 "DestType must have scalar evaluation kind."); 3447 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3448 return Val.isScalar() 3449 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 3450 Loc) 3451 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 3452 DestType, Loc); 3453 } 3454 3455 static CodeGenFunction::ComplexPairTy 3456 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3457 QualType DestType, SourceLocation Loc) { 3458 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3459 "DestType must have complex evaluation kind."); 3460 CodeGenFunction::ComplexPairTy ComplexVal; 3461 if (Val.isScalar()) { 3462 // Convert the input element to the element type of the complex. 3463 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3464 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3465 DestElementType, Loc); 3466 ComplexVal = CodeGenFunction::ComplexPairTy( 3467 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3468 } else { 3469 assert(Val.isComplex() && "Must be a scalar or complex."); 3470 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3471 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3472 ComplexVal.first = CGF.EmitScalarConversion( 3473 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3474 ComplexVal.second = CGF.EmitScalarConversion( 3475 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3476 } 3477 return ComplexVal; 3478 } 3479 3480 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3481 LValue LVal, RValue RVal) { 3482 if (LVal.isGlobalReg()) { 3483 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3484 } else { 3485 CGF.EmitAtomicStore(RVal, LVal, 3486 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3487 : llvm::AtomicOrdering::Monotonic, 3488 LVal.isVolatile(), /*IsInit=*/false); 3489 } 3490 } 3491 3492 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3493 QualType RValTy, SourceLocation Loc) { 3494 switch (getEvaluationKind(LVal.getType())) { 3495 case TEK_Scalar: 3496 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3497 *this, RVal, RValTy, LVal.getType(), Loc)), 3498 LVal); 3499 break; 3500 case TEK_Complex: 3501 EmitStoreOfComplex( 3502 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3503 /*isInit=*/false); 3504 break; 3505 case TEK_Aggregate: 3506 llvm_unreachable("Must be a scalar or complex."); 3507 } 3508 } 3509 3510 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3511 const Expr *X, const Expr *V, 3512 SourceLocation Loc) { 3513 // v = x; 3514 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3515 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3516 LValue XLValue = CGF.EmitLValue(X); 3517 LValue VLValue = CGF.EmitLValue(V); 3518 RValue Res = XLValue.isGlobalReg() 3519 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3520 : CGF.EmitAtomicLoad( 3521 XLValue, Loc, 3522 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3523 : llvm::AtomicOrdering::Monotonic, 3524 XLValue.isVolatile()); 3525 // OpenMP, 2.12.6, atomic Construct 3526 // Any atomic construct with a seq_cst clause forces the atomically 3527 // performed operation to include an implicit flush operation without a 3528 // list. 3529 if (IsSeqCst) 3530 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3531 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3532 } 3533 3534 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3535 const Expr *X, const Expr *E, 3536 SourceLocation Loc) { 3537 // x = expr; 3538 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3539 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3540 // OpenMP, 2.12.6, atomic Construct 3541 // Any atomic construct with a seq_cst clause forces the atomically 3542 // performed operation to include an implicit flush operation without a 3543 // list. 3544 if (IsSeqCst) 3545 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3546 } 3547 3548 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3549 RValue Update, 3550 BinaryOperatorKind BO, 3551 llvm::AtomicOrdering AO, 3552 bool IsXLHSInRHSPart) { 3553 auto &Context = CGF.CGM.getContext(); 3554 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3555 // expression is simple and atomic is allowed for the given type for the 3556 // target platform. 3557 if (BO == BO_Comma || !Update.isScalar() || 3558 !Update.getScalarVal()->getType()->isIntegerTy() || 3559 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3560 (Update.getScalarVal()->getType() != 3561 X.getAddress().getElementType())) || 3562 !X.getAddress().getElementType()->isIntegerTy() || 3563 !Context.getTargetInfo().hasBuiltinAtomic( 3564 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3565 return std::make_pair(false, RValue::get(nullptr)); 3566 3567 llvm::AtomicRMWInst::BinOp RMWOp; 3568 switch (BO) { 3569 case BO_Add: 3570 RMWOp = llvm::AtomicRMWInst::Add; 3571 break; 3572 case BO_Sub: 3573 if (!IsXLHSInRHSPart) 3574 return std::make_pair(false, RValue::get(nullptr)); 3575 RMWOp = llvm::AtomicRMWInst::Sub; 3576 break; 3577 case BO_And: 3578 RMWOp = llvm::AtomicRMWInst::And; 3579 break; 3580 case BO_Or: 3581 RMWOp = llvm::AtomicRMWInst::Or; 3582 break; 3583 case BO_Xor: 3584 RMWOp = llvm::AtomicRMWInst::Xor; 3585 break; 3586 case BO_LT: 3587 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3588 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3589 : llvm::AtomicRMWInst::Max) 3590 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3591 : llvm::AtomicRMWInst::UMax); 3592 break; 3593 case BO_GT: 3594 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3595 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3596 : llvm::AtomicRMWInst::Min) 3597 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3598 : llvm::AtomicRMWInst::UMin); 3599 break; 3600 case BO_Assign: 3601 RMWOp = llvm::AtomicRMWInst::Xchg; 3602 break; 3603 case BO_Mul: 3604 case BO_Div: 3605 case BO_Rem: 3606 case BO_Shl: 3607 case BO_Shr: 3608 case BO_LAnd: 3609 case BO_LOr: 3610 return std::make_pair(false, RValue::get(nullptr)); 3611 case BO_PtrMemD: 3612 case BO_PtrMemI: 3613 case BO_LE: 3614 case BO_GE: 3615 case BO_EQ: 3616 case BO_NE: 3617 case BO_Cmp: 3618 case BO_AddAssign: 3619 case BO_SubAssign: 3620 case BO_AndAssign: 3621 case BO_OrAssign: 3622 case BO_XorAssign: 3623 case BO_MulAssign: 3624 case BO_DivAssign: 3625 case BO_RemAssign: 3626 case BO_ShlAssign: 3627 case BO_ShrAssign: 3628 case BO_Comma: 3629 llvm_unreachable("Unsupported atomic update operation"); 3630 } 3631 auto *UpdateVal = Update.getScalarVal(); 3632 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3633 UpdateVal = CGF.Builder.CreateIntCast( 3634 IC, X.getAddress().getElementType(), 3635 X.getType()->hasSignedIntegerRepresentation()); 3636 } 3637 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3638 return std::make_pair(true, RValue::get(Res)); 3639 } 3640 3641 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3642 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3643 llvm::AtomicOrdering AO, SourceLocation Loc, 3644 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3645 // Update expressions are allowed to have the following forms: 3646 // x binop= expr; -> xrval + expr; 3647 // x++, ++x -> xrval + 1; 3648 // x--, --x -> xrval - 1; 3649 // x = x binop expr; -> xrval binop expr 3650 // x = expr Op x; - > expr binop xrval; 3651 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3652 if (!Res.first) { 3653 if (X.isGlobalReg()) { 3654 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3655 // 'xrval'. 3656 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3657 } else { 3658 // Perform compare-and-swap procedure. 3659 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3660 } 3661 } 3662 return Res; 3663 } 3664 3665 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3666 const Expr *X, const Expr *E, 3667 const Expr *UE, bool IsXLHSInRHSPart, 3668 SourceLocation Loc) { 3669 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3670 "Update expr in 'atomic update' must be a binary operator."); 3671 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3672 // Update expressions are allowed to have the following forms: 3673 // x binop= expr; -> xrval + expr; 3674 // x++, ++x -> xrval + 1; 3675 // x--, --x -> xrval - 1; 3676 // x = x binop expr; -> xrval binop expr 3677 // x = expr Op x; - > expr binop xrval; 3678 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3679 LValue XLValue = CGF.EmitLValue(X); 3680 RValue ExprRValue = CGF.EmitAnyExpr(E); 3681 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3682 : llvm::AtomicOrdering::Monotonic; 3683 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3684 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3685 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3686 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3687 auto Gen = 3688 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3689 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3690 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3691 return CGF.EmitAnyExpr(UE); 3692 }; 3693 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3694 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3695 // OpenMP, 2.12.6, atomic Construct 3696 // Any atomic construct with a seq_cst clause forces the atomically 3697 // performed operation to include an implicit flush operation without a 3698 // list. 3699 if (IsSeqCst) 3700 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3701 } 3702 3703 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3704 QualType SourceType, QualType ResType, 3705 SourceLocation Loc) { 3706 switch (CGF.getEvaluationKind(ResType)) { 3707 case TEK_Scalar: 3708 return RValue::get( 3709 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3710 case TEK_Complex: { 3711 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3712 return RValue::getComplex(Res.first, Res.second); 3713 } 3714 case TEK_Aggregate: 3715 break; 3716 } 3717 llvm_unreachable("Must be a scalar or complex."); 3718 } 3719 3720 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3721 bool IsPostfixUpdate, const Expr *V, 3722 const Expr *X, const Expr *E, 3723 const Expr *UE, bool IsXLHSInRHSPart, 3724 SourceLocation Loc) { 3725 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3726 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3727 RValue NewVVal; 3728 LValue VLValue = CGF.EmitLValue(V); 3729 LValue XLValue = CGF.EmitLValue(X); 3730 RValue ExprRValue = CGF.EmitAnyExpr(E); 3731 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3732 : llvm::AtomicOrdering::Monotonic; 3733 QualType NewVValType; 3734 if (UE) { 3735 // 'x' is updated with some additional value. 3736 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3737 "Update expr in 'atomic capture' must be a binary operator."); 3738 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3739 // Update expressions are allowed to have the following forms: 3740 // x binop= expr; -> xrval + expr; 3741 // x++, ++x -> xrval + 1; 3742 // x--, --x -> xrval - 1; 3743 // x = x binop expr; -> xrval binop expr 3744 // x = expr Op x; - > expr binop xrval; 3745 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3746 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3747 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3748 NewVValType = XRValExpr->getType(); 3749 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3750 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3751 IsPostfixUpdate](RValue XRValue) -> RValue { 3752 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3753 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3754 RValue Res = CGF.EmitAnyExpr(UE); 3755 NewVVal = IsPostfixUpdate ? XRValue : Res; 3756 return Res; 3757 }; 3758 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3759 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3760 if (Res.first) { 3761 // 'atomicrmw' instruction was generated. 3762 if (IsPostfixUpdate) { 3763 // Use old value from 'atomicrmw'. 3764 NewVVal = Res.second; 3765 } else { 3766 // 'atomicrmw' does not provide new value, so evaluate it using old 3767 // value of 'x'. 3768 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3769 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3770 NewVVal = CGF.EmitAnyExpr(UE); 3771 } 3772 } 3773 } else { 3774 // 'x' is simply rewritten with some 'expr'. 3775 NewVValType = X->getType().getNonReferenceType(); 3776 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3777 X->getType().getNonReferenceType(), Loc); 3778 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3779 NewVVal = XRValue; 3780 return ExprRValue; 3781 }; 3782 // Try to perform atomicrmw xchg, otherwise simple exchange. 3783 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3784 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3785 Loc, Gen); 3786 if (Res.first) { 3787 // 'atomicrmw' instruction was generated. 3788 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3789 } 3790 } 3791 // Emit post-update store to 'v' of old/new 'x' value. 3792 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3793 // OpenMP, 2.12.6, atomic Construct 3794 // Any atomic construct with a seq_cst clause forces the atomically 3795 // performed operation to include an implicit flush operation without a 3796 // list. 3797 if (IsSeqCst) 3798 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3799 } 3800 3801 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3802 bool IsSeqCst, bool IsPostfixUpdate, 3803 const Expr *X, const Expr *V, const Expr *E, 3804 const Expr *UE, bool IsXLHSInRHSPart, 3805 SourceLocation Loc) { 3806 switch (Kind) { 3807 case OMPC_read: 3808 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3809 break; 3810 case OMPC_write: 3811 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3812 break; 3813 case OMPC_unknown: 3814 case OMPC_update: 3815 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3816 break; 3817 case OMPC_capture: 3818 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3819 IsXLHSInRHSPart, Loc); 3820 break; 3821 case OMPC_if: 3822 case OMPC_final: 3823 case OMPC_num_threads: 3824 case OMPC_private: 3825 case OMPC_firstprivate: 3826 case OMPC_lastprivate: 3827 case OMPC_reduction: 3828 case OMPC_task_reduction: 3829 case OMPC_in_reduction: 3830 case OMPC_safelen: 3831 case OMPC_simdlen: 3832 case OMPC_collapse: 3833 case OMPC_default: 3834 case OMPC_seq_cst: 3835 case OMPC_shared: 3836 case OMPC_linear: 3837 case OMPC_aligned: 3838 case OMPC_copyin: 3839 case OMPC_copyprivate: 3840 case OMPC_flush: 3841 case OMPC_proc_bind: 3842 case OMPC_schedule: 3843 case OMPC_ordered: 3844 case OMPC_nowait: 3845 case OMPC_untied: 3846 case OMPC_threadprivate: 3847 case OMPC_depend: 3848 case OMPC_mergeable: 3849 case OMPC_device: 3850 case OMPC_threads: 3851 case OMPC_simd: 3852 case OMPC_map: 3853 case OMPC_num_teams: 3854 case OMPC_thread_limit: 3855 case OMPC_priority: 3856 case OMPC_grainsize: 3857 case OMPC_nogroup: 3858 case OMPC_num_tasks: 3859 case OMPC_hint: 3860 case OMPC_dist_schedule: 3861 case OMPC_defaultmap: 3862 case OMPC_uniform: 3863 case OMPC_to: 3864 case OMPC_from: 3865 case OMPC_use_device_ptr: 3866 case OMPC_is_device_ptr: 3867 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3868 } 3869 } 3870 3871 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3872 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3873 OpenMPClauseKind Kind = OMPC_unknown; 3874 for (auto *C : S.clauses()) { 3875 // Find first clause (skip seq_cst clause, if it is first). 3876 if (C->getClauseKind() != OMPC_seq_cst) { 3877 Kind = C->getClauseKind(); 3878 break; 3879 } 3880 } 3881 3882 const auto *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3883 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3884 enterFullExpression(EWC); 3885 } 3886 // Processing for statements under 'atomic capture'. 3887 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3888 for (const auto *C : Compound->body()) { 3889 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3890 enterFullExpression(EWC); 3891 } 3892 } 3893 } 3894 3895 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3896 PrePostActionTy &) { 3897 CGF.EmitStopPoint(CS); 3898 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3899 S.getV(), S.getExpr(), S.getUpdateExpr(), 3900 S.isXLHSInRHSPart(), S.getLocStart()); 3901 }; 3902 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3903 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3904 } 3905 3906 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3907 const OMPExecutableDirective &S, 3908 const RegionCodeGenTy &CodeGen) { 3909 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3910 CodeGenModule &CGM = CGF.CGM; 3911 3912 llvm::Function *Fn = nullptr; 3913 llvm::Constant *FnID = nullptr; 3914 3915 const Expr *IfCond = nullptr; 3916 // Check for the at most one if clause associated with the target region. 3917 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3918 if (C->getNameModifier() == OMPD_unknown || 3919 C->getNameModifier() == OMPD_target) { 3920 IfCond = C->getCondition(); 3921 break; 3922 } 3923 } 3924 3925 // Check if we have any device clause associated with the directive. 3926 const Expr *Device = nullptr; 3927 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3928 Device = C->getDevice(); 3929 } 3930 3931 // Check if we have an if clause whose conditional always evaluates to false 3932 // or if we do not have any targets specified. If so the target region is not 3933 // an offload entry point. 3934 bool IsOffloadEntry = true; 3935 if (IfCond) { 3936 bool Val; 3937 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3938 IsOffloadEntry = false; 3939 } 3940 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3941 IsOffloadEntry = false; 3942 3943 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3944 StringRef ParentName; 3945 // In case we have Ctors/Dtors we use the complete type variant to produce 3946 // the mangling of the device outlined kernel. 3947 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3948 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3949 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3950 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3951 else 3952 ParentName = 3953 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3954 3955 // Emit target region as a standalone region. 3956 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3957 IsOffloadEntry, CodeGen); 3958 OMPLexicalScope Scope(CGF, S, OMPD_task); 3959 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 3960 } 3961 3962 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3963 PrePostActionTy &Action) { 3964 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3965 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3966 CGF.EmitOMPPrivateClause(S, PrivateScope); 3967 (void)PrivateScope.Privatize(); 3968 3969 Action.Enter(CGF); 3970 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 3971 } 3972 3973 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3974 StringRef ParentName, 3975 const OMPTargetDirective &S) { 3976 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3977 emitTargetRegion(CGF, S, Action); 3978 }; 3979 llvm::Function *Fn; 3980 llvm::Constant *Addr; 3981 // Emit target region as a standalone region. 3982 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3983 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3984 assert(Fn && Addr && "Target device function emission failed."); 3985 } 3986 3987 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3988 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3989 emitTargetRegion(CGF, S, Action); 3990 }; 3991 emitCommonOMPTargetDirective(*this, S, CodeGen); 3992 } 3993 3994 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3995 const OMPExecutableDirective &S, 3996 OpenMPDirectiveKind InnermostKind, 3997 const RegionCodeGenTy &CodeGen) { 3998 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 3999 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4000 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4001 4002 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 4003 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 4004 if (NT || TL) { 4005 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 4006 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 4007 4008 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4009 S.getLocStart()); 4010 } 4011 4012 OMPTeamsScope Scope(CGF, S); 4013 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4014 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4015 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 4016 CapturedVars); 4017 } 4018 4019 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4020 // Emit teams region as a standalone region. 4021 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4022 OMPPrivateScope PrivateScope(CGF); 4023 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4024 CGF.EmitOMPPrivateClause(S, PrivateScope); 4025 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4026 (void)PrivateScope.Privatize(); 4027 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4028 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4029 }; 4030 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4031 emitPostUpdateForReductionClause( 4032 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4033 } 4034 4035 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4036 const OMPTargetTeamsDirective &S) { 4037 auto *CS = S.getCapturedStmt(OMPD_teams); 4038 Action.Enter(CGF); 4039 // Emit teams region as a standalone region. 4040 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4041 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4042 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4043 CGF.EmitOMPPrivateClause(S, PrivateScope); 4044 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4045 (void)PrivateScope.Privatize(); 4046 Action.Enter(CGF); 4047 CGF.EmitStmt(CS->getCapturedStmt()); 4048 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4049 }; 4050 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4051 emitPostUpdateForReductionClause( 4052 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4053 } 4054 4055 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4056 CodeGenModule &CGM, StringRef ParentName, 4057 const OMPTargetTeamsDirective &S) { 4058 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4059 emitTargetTeamsRegion(CGF, Action, S); 4060 }; 4061 llvm::Function *Fn; 4062 llvm::Constant *Addr; 4063 // Emit target region as a standalone region. 4064 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4065 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4066 assert(Fn && Addr && "Target device function emission failed."); 4067 } 4068 4069 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4070 const OMPTargetTeamsDirective &S) { 4071 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4072 emitTargetTeamsRegion(CGF, Action, S); 4073 }; 4074 emitCommonOMPTargetDirective(*this, S, CodeGen); 4075 } 4076 4077 static void 4078 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4079 const OMPTargetTeamsDistributeDirective &S) { 4080 Action.Enter(CGF); 4081 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4082 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4083 }; 4084 4085 // Emit teams region as a standalone region. 4086 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4087 PrePostActionTy &) { 4088 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4089 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4090 (void)PrivateScope.Privatize(); 4091 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4092 CodeGenDistribute); 4093 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4094 }; 4095 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4096 emitPostUpdateForReductionClause(CGF, S, 4097 [](CodeGenFunction &) { return nullptr; }); 4098 } 4099 4100 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4101 CodeGenModule &CGM, StringRef ParentName, 4102 const OMPTargetTeamsDistributeDirective &S) { 4103 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4104 emitTargetTeamsDistributeRegion(CGF, Action, S); 4105 }; 4106 llvm::Function *Fn; 4107 llvm::Constant *Addr; 4108 // Emit target region as a standalone region. 4109 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4110 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4111 assert(Fn && Addr && "Target device function emission failed."); 4112 } 4113 4114 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4115 const OMPTargetTeamsDistributeDirective &S) { 4116 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4117 emitTargetTeamsDistributeRegion(CGF, Action, S); 4118 }; 4119 emitCommonOMPTargetDirective(*this, S, CodeGen); 4120 } 4121 4122 static void emitTargetTeamsDistributeSimdRegion( 4123 CodeGenFunction &CGF, PrePostActionTy &Action, 4124 const OMPTargetTeamsDistributeSimdDirective &S) { 4125 Action.Enter(CGF); 4126 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4127 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4128 }; 4129 4130 // Emit teams region as a standalone region. 4131 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4132 PrePostActionTy &) { 4133 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4134 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4135 (void)PrivateScope.Privatize(); 4136 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4137 CodeGenDistribute); 4138 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4139 }; 4140 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4141 emitPostUpdateForReductionClause(CGF, S, 4142 [](CodeGenFunction &) { return nullptr; }); 4143 } 4144 4145 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4146 CodeGenModule &CGM, StringRef ParentName, 4147 const OMPTargetTeamsDistributeSimdDirective &S) { 4148 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4149 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4150 }; 4151 llvm::Function *Fn; 4152 llvm::Constant *Addr; 4153 // Emit target region as a standalone region. 4154 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4155 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4156 assert(Fn && Addr && "Target device function emission failed."); 4157 } 4158 4159 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4160 const OMPTargetTeamsDistributeSimdDirective &S) { 4161 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4162 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4163 }; 4164 emitCommonOMPTargetDirective(*this, S, CodeGen); 4165 } 4166 4167 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4168 const OMPTeamsDistributeDirective &S) { 4169 4170 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4171 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4172 }; 4173 4174 // Emit teams region as a standalone region. 4175 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4176 PrePostActionTy &) { 4177 OMPPrivateScope PrivateScope(CGF); 4178 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4179 (void)PrivateScope.Privatize(); 4180 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4181 CodeGenDistribute); 4182 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4183 }; 4184 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4185 emitPostUpdateForReductionClause(*this, S, 4186 [](CodeGenFunction &) { return nullptr; }); 4187 } 4188 4189 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4190 const OMPTeamsDistributeSimdDirective &S) { 4191 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4192 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4193 }; 4194 4195 // Emit teams region as a standalone region. 4196 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4197 PrePostActionTy &) { 4198 OMPPrivateScope PrivateScope(CGF); 4199 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4200 (void)PrivateScope.Privatize(); 4201 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4202 CodeGenDistribute); 4203 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4204 }; 4205 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4206 emitPostUpdateForReductionClause(*this, S, 4207 [](CodeGenFunction &) { return nullptr; }); 4208 } 4209 4210 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4211 const OMPTeamsDistributeParallelForDirective &S) { 4212 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4213 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4214 S.getDistInc()); 4215 }; 4216 4217 // Emit teams region as a standalone region. 4218 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4219 PrePostActionTy &) { 4220 OMPPrivateScope PrivateScope(CGF); 4221 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4222 (void)PrivateScope.Privatize(); 4223 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4224 CodeGenDistribute); 4225 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4226 }; 4227 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4228 emitPostUpdateForReductionClause(*this, S, 4229 [](CodeGenFunction &) { return nullptr; }); 4230 } 4231 4232 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4233 const OMPTeamsDistributeParallelForSimdDirective &S) { 4234 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4235 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4236 S.getDistInc()); 4237 }; 4238 4239 // Emit teams region as a standalone region. 4240 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4241 PrePostActionTy &) { 4242 OMPPrivateScope PrivateScope(CGF); 4243 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4244 (void)PrivateScope.Privatize(); 4245 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4246 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4247 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4248 }; 4249 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4250 emitPostUpdateForReductionClause(*this, S, 4251 [](CodeGenFunction &) { return nullptr; }); 4252 } 4253 4254 static void emitTargetTeamsDistributeParallelForRegion( 4255 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4256 PrePostActionTy &Action) { 4257 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4258 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4259 S.getDistInc()); 4260 }; 4261 4262 // Emit teams region as a standalone region. 4263 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4264 PrePostActionTy &) { 4265 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4266 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4267 (void)PrivateScope.Privatize(); 4268 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4269 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4270 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4271 }; 4272 4273 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4274 CodeGenTeams); 4275 emitPostUpdateForReductionClause(CGF, S, 4276 [](CodeGenFunction &) { return nullptr; }); 4277 } 4278 4279 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4280 CodeGenModule &CGM, StringRef ParentName, 4281 const OMPTargetTeamsDistributeParallelForDirective &S) { 4282 // Emit SPMD target teams distribute parallel for region as a standalone 4283 // region. 4284 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4285 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4286 }; 4287 llvm::Function *Fn; 4288 llvm::Constant *Addr; 4289 // Emit target region as a standalone region. 4290 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4291 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4292 assert(Fn && Addr && "Target device function emission failed."); 4293 } 4294 4295 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4296 const OMPTargetTeamsDistributeParallelForDirective &S) { 4297 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4298 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4299 }; 4300 emitCommonOMPTargetDirective(*this, S, CodeGen); 4301 } 4302 4303 static void emitTargetTeamsDistributeParallelForSimdRegion( 4304 CodeGenFunction &CGF, 4305 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4306 PrePostActionTy &Action) { 4307 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4308 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4309 S.getDistInc()); 4310 }; 4311 4312 // Emit teams region as a standalone region. 4313 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4314 PrePostActionTy &) { 4315 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4316 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4317 (void)PrivateScope.Privatize(); 4318 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4319 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4320 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4321 }; 4322 4323 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4324 CodeGenTeams); 4325 emitPostUpdateForReductionClause(CGF, S, 4326 [](CodeGenFunction &) { return nullptr; }); 4327 } 4328 4329 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4330 CodeGenModule &CGM, StringRef ParentName, 4331 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4332 // Emit SPMD target teams distribute parallel for simd region as a standalone 4333 // region. 4334 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4335 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4336 }; 4337 llvm::Function *Fn; 4338 llvm::Constant *Addr; 4339 // Emit target region as a standalone region. 4340 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4341 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4342 assert(Fn && Addr && "Target device function emission failed."); 4343 } 4344 4345 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4346 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4347 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4348 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4349 }; 4350 emitCommonOMPTargetDirective(*this, S, CodeGen); 4351 } 4352 4353 void CodeGenFunction::EmitOMPCancellationPointDirective( 4354 const OMPCancellationPointDirective &S) { 4355 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 4356 S.getCancelRegion()); 4357 } 4358 4359 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4360 const Expr *IfCond = nullptr; 4361 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4362 if (C->getNameModifier() == OMPD_unknown || 4363 C->getNameModifier() == OMPD_cancel) { 4364 IfCond = C->getCondition(); 4365 break; 4366 } 4367 } 4368 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 4369 S.getCancelRegion()); 4370 } 4371 4372 CodeGenFunction::JumpDest 4373 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4374 if (Kind == OMPD_parallel || Kind == OMPD_task || 4375 Kind == OMPD_target_parallel) 4376 return ReturnBlock; 4377 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4378 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4379 Kind == OMPD_distribute_parallel_for || 4380 Kind == OMPD_target_parallel_for || 4381 Kind == OMPD_teams_distribute_parallel_for || 4382 Kind == OMPD_target_teams_distribute_parallel_for); 4383 return OMPCancelStack.getExitBlock(); 4384 } 4385 4386 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4387 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4388 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4389 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4390 auto OrigVarIt = C.varlist_begin(); 4391 auto InitIt = C.inits().begin(); 4392 for (auto PvtVarIt : C.private_copies()) { 4393 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4394 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4395 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4396 4397 // In order to identify the right initializer we need to match the 4398 // declaration used by the mapping logic. In some cases we may get 4399 // OMPCapturedExprDecl that refers to the original declaration. 4400 const ValueDecl *MatchingVD = OrigVD; 4401 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4402 // OMPCapturedExprDecl are used to privative fields of the current 4403 // structure. 4404 auto *ME = cast<MemberExpr>(OED->getInit()); 4405 assert(isa<CXXThisExpr>(ME->getBase()) && 4406 "Base should be the current struct!"); 4407 MatchingVD = ME->getMemberDecl(); 4408 } 4409 4410 // If we don't have information about the current list item, move on to 4411 // the next one. 4412 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4413 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4414 continue; 4415 4416 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 4417 // Initialize the temporary initialization variable with the address we 4418 // get from the runtime library. We have to cast the source address 4419 // because it is always a void *. References are materialized in the 4420 // privatization scope, so the initialization here disregards the fact 4421 // the original variable is a reference. 4422 QualType AddrQTy = 4423 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4424 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4425 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4426 setAddrOfLocalVar(InitVD, InitAddr); 4427 4428 // Emit private declaration, it will be initialized by the value we 4429 // declaration we just added to the local declarations map. 4430 EmitDecl(*PvtVD); 4431 4432 // The initialization variables reached its purpose in the emission 4433 // ofthe previous declaration, so we don't need it anymore. 4434 LocalDeclMap.erase(InitVD); 4435 4436 // Return the address of the private variable. 4437 return GetAddrOfLocalVar(PvtVD); 4438 }); 4439 assert(IsRegistered && "firstprivate var already registered as private"); 4440 // Silence the warning about unused variable. 4441 (void)IsRegistered; 4442 4443 ++OrigVarIt; 4444 ++InitIt; 4445 } 4446 } 4447 4448 // Generate the instructions for '#pragma omp target data' directive. 4449 void CodeGenFunction::EmitOMPTargetDataDirective( 4450 const OMPTargetDataDirective &S) { 4451 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4452 4453 // Create a pre/post action to signal the privatization of the device pointer. 4454 // This action can be replaced by the OpenMP runtime code generation to 4455 // deactivate privatization. 4456 bool PrivatizeDevicePointers = false; 4457 class DevicePointerPrivActionTy : public PrePostActionTy { 4458 bool &PrivatizeDevicePointers; 4459 4460 public: 4461 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4462 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4463 void Enter(CodeGenFunction &CGF) override { 4464 PrivatizeDevicePointers = true; 4465 } 4466 }; 4467 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4468 4469 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4470 CodeGenFunction &CGF, PrePostActionTy &Action) { 4471 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4472 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4473 }; 4474 4475 // Codegen that selects wheather to generate the privatization code or not. 4476 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4477 &InnermostCodeGen](CodeGenFunction &CGF, 4478 PrePostActionTy &Action) { 4479 RegionCodeGenTy RCG(InnermostCodeGen); 4480 PrivatizeDevicePointers = false; 4481 4482 // Call the pre-action to change the status of PrivatizeDevicePointers if 4483 // needed. 4484 Action.Enter(CGF); 4485 4486 if (PrivatizeDevicePointers) { 4487 OMPPrivateScope PrivateScope(CGF); 4488 // Emit all instances of the use_device_ptr clause. 4489 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4490 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4491 Info.CaptureDeviceAddrMap); 4492 (void)PrivateScope.Privatize(); 4493 RCG(CGF); 4494 } else 4495 RCG(CGF); 4496 }; 4497 4498 // Forward the provided action to the privatization codegen. 4499 RegionCodeGenTy PrivRCG(PrivCodeGen); 4500 PrivRCG.setAction(Action); 4501 4502 // Notwithstanding the body of the region is emitted as inlined directive, 4503 // we don't use an inline scope as changes in the references inside the 4504 // region are expected to be visible outside, so we do not privative them. 4505 OMPLexicalScope Scope(CGF, S); 4506 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4507 PrivRCG); 4508 }; 4509 4510 RegionCodeGenTy RCG(CodeGen); 4511 4512 // If we don't have target devices, don't bother emitting the data mapping 4513 // code. 4514 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4515 RCG(*this); 4516 return; 4517 } 4518 4519 // Check if we have any if clause associated with the directive. 4520 const Expr *IfCond = nullptr; 4521 if (auto *C = S.getSingleClause<OMPIfClause>()) 4522 IfCond = C->getCondition(); 4523 4524 // Check if we have any device clause associated with the directive. 4525 const Expr *Device = nullptr; 4526 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4527 Device = C->getDevice(); 4528 4529 // Set the action to signal privatization of device pointers. 4530 RCG.setAction(PrivAction); 4531 4532 // Emit region code. 4533 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4534 Info); 4535 } 4536 4537 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4538 const OMPTargetEnterDataDirective &S) { 4539 // If we don't have target devices, don't bother emitting the data mapping 4540 // code. 4541 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4542 return; 4543 4544 // Check if we have any if clause associated with the directive. 4545 const Expr *IfCond = nullptr; 4546 if (auto *C = S.getSingleClause<OMPIfClause>()) 4547 IfCond = C->getCondition(); 4548 4549 // Check if we have any device clause associated with the directive. 4550 const Expr *Device = nullptr; 4551 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4552 Device = C->getDevice(); 4553 4554 OMPLexicalScope Scope(*this, S, OMPD_task); 4555 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4556 } 4557 4558 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4559 const OMPTargetExitDataDirective &S) { 4560 // If we don't have target devices, don't bother emitting the data mapping 4561 // code. 4562 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4563 return; 4564 4565 // Check if we have any if clause associated with the directive. 4566 const Expr *IfCond = nullptr; 4567 if (auto *C = S.getSingleClause<OMPIfClause>()) 4568 IfCond = C->getCondition(); 4569 4570 // Check if we have any device clause associated with the directive. 4571 const Expr *Device = nullptr; 4572 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4573 Device = C->getDevice(); 4574 4575 OMPLexicalScope Scope(*this, S, OMPD_task); 4576 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4577 } 4578 4579 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4580 const OMPTargetParallelDirective &S, 4581 PrePostActionTy &Action) { 4582 // Get the captured statement associated with the 'parallel' region. 4583 auto *CS = S.getCapturedStmt(OMPD_parallel); 4584 Action.Enter(CGF); 4585 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) { 4586 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4587 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4588 CGF.EmitOMPPrivateClause(S, PrivateScope); 4589 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4590 (void)PrivateScope.Privatize(); 4591 // TODO: Add support for clauses. 4592 CGF.EmitStmt(CS->getCapturedStmt()); 4593 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4594 }; 4595 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4596 emitEmptyBoundParameters); 4597 emitPostUpdateForReductionClause( 4598 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4599 } 4600 4601 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4602 CodeGenModule &CGM, StringRef ParentName, 4603 const OMPTargetParallelDirective &S) { 4604 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4605 emitTargetParallelRegion(CGF, S, Action); 4606 }; 4607 llvm::Function *Fn; 4608 llvm::Constant *Addr; 4609 // Emit target region as a standalone region. 4610 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4611 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4612 assert(Fn && Addr && "Target device function emission failed."); 4613 } 4614 4615 void CodeGenFunction::EmitOMPTargetParallelDirective( 4616 const OMPTargetParallelDirective &S) { 4617 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4618 emitTargetParallelRegion(CGF, S, Action); 4619 }; 4620 emitCommonOMPTargetDirective(*this, S, CodeGen); 4621 } 4622 4623 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4624 const OMPTargetParallelForDirective &S, 4625 PrePostActionTy &Action) { 4626 Action.Enter(CGF); 4627 // Emit directive as a combined directive that consists of two implicit 4628 // directives: 'parallel' with 'for' directive. 4629 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4630 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4631 CGF, OMPD_target_parallel_for, S.hasCancel()); 4632 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4633 emitDispatchForLoopBounds); 4634 }; 4635 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4636 emitEmptyBoundParameters); 4637 } 4638 4639 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4640 CodeGenModule &CGM, StringRef ParentName, 4641 const OMPTargetParallelForDirective &S) { 4642 // Emit SPMD target parallel for region as a standalone region. 4643 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4644 emitTargetParallelForRegion(CGF, S, Action); 4645 }; 4646 llvm::Function *Fn; 4647 llvm::Constant *Addr; 4648 // Emit target region as a standalone region. 4649 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4650 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4651 assert(Fn && Addr && "Target device function emission failed."); 4652 } 4653 4654 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4655 const OMPTargetParallelForDirective &S) { 4656 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4657 emitTargetParallelForRegion(CGF, S, Action); 4658 }; 4659 emitCommonOMPTargetDirective(*this, S, CodeGen); 4660 } 4661 4662 static void 4663 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4664 const OMPTargetParallelForSimdDirective &S, 4665 PrePostActionTy &Action) { 4666 Action.Enter(CGF); 4667 // Emit directive as a combined directive that consists of two implicit 4668 // directives: 'parallel' with 'for' directive. 4669 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4670 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4671 emitDispatchForLoopBounds); 4672 }; 4673 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4674 emitEmptyBoundParameters); 4675 } 4676 4677 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4678 CodeGenModule &CGM, StringRef ParentName, 4679 const OMPTargetParallelForSimdDirective &S) { 4680 // Emit SPMD target parallel for region as a standalone region. 4681 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4682 emitTargetParallelForSimdRegion(CGF, S, Action); 4683 }; 4684 llvm::Function *Fn; 4685 llvm::Constant *Addr; 4686 // Emit target region as a standalone region. 4687 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4688 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4689 assert(Fn && Addr && "Target device function emission failed."); 4690 } 4691 4692 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4693 const OMPTargetParallelForSimdDirective &S) { 4694 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4695 emitTargetParallelForSimdRegion(CGF, S, Action); 4696 }; 4697 emitCommonOMPTargetDirective(*this, S, CodeGen); 4698 } 4699 4700 /// Emit a helper variable and return corresponding lvalue. 4701 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4702 const ImplicitParamDecl *PVD, 4703 CodeGenFunction::OMPPrivateScope &Privates) { 4704 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4705 Privates.addPrivate( 4706 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 4707 } 4708 4709 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4710 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4711 // Emit outlined function for task construct. 4712 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4713 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 4714 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4715 const Expr *IfCond = nullptr; 4716 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4717 if (C->getNameModifier() == OMPD_unknown || 4718 C->getNameModifier() == OMPD_taskloop) { 4719 IfCond = C->getCondition(); 4720 break; 4721 } 4722 } 4723 4724 OMPTaskDataTy Data; 4725 // Check if taskloop must be emitted without taskgroup. 4726 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4727 // TODO: Check if we should emit tied or untied task. 4728 Data.Tied = true; 4729 // Set scheduling for taskloop 4730 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4731 // grainsize clause 4732 Data.Schedule.setInt(/*IntVal=*/false); 4733 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4734 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4735 // num_tasks clause 4736 Data.Schedule.setInt(/*IntVal=*/true); 4737 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4738 } 4739 4740 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4741 // if (PreCond) { 4742 // for (IV in 0..LastIteration) BODY; 4743 // <Final counter/linear vars updates>; 4744 // } 4745 // 4746 4747 // Emit: if (PreCond) - begin. 4748 // If the condition constant folds and can be elided, avoid emitting the 4749 // whole loop. 4750 bool CondConstant; 4751 llvm::BasicBlock *ContBlock = nullptr; 4752 OMPLoopScope PreInitScope(CGF, S); 4753 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4754 if (!CondConstant) 4755 return; 4756 } else { 4757 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4758 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4759 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4760 CGF.getProfileCount(&S)); 4761 CGF.EmitBlock(ThenBlock); 4762 CGF.incrementProfileCounter(&S); 4763 } 4764 4765 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4766 CGF.EmitOMPSimdInit(S); 4767 4768 OMPPrivateScope LoopScope(CGF); 4769 // Emit helper vars inits. 4770 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4771 auto *I = CS->getCapturedDecl()->param_begin(); 4772 auto *LBP = std::next(I, LowerBound); 4773 auto *UBP = std::next(I, UpperBound); 4774 auto *STP = std::next(I, Stride); 4775 auto *LIP = std::next(I, LastIter); 4776 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4777 LoopScope); 4778 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4779 LoopScope); 4780 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4781 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4782 LoopScope); 4783 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4784 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4785 (void)LoopScope.Privatize(); 4786 // Emit the loop iteration variable. 4787 const Expr *IVExpr = S.getIterationVariable(); 4788 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4789 CGF.EmitVarDecl(*IVDecl); 4790 CGF.EmitIgnoredExpr(S.getInit()); 4791 4792 // Emit the iterations count variable. 4793 // If it is not a variable, Sema decided to calculate iterations count on 4794 // each iteration (e.g., it is foldable into a constant). 4795 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4796 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4797 // Emit calculation of the iterations count. 4798 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4799 } 4800 4801 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4802 S.getInc(), 4803 [&S](CodeGenFunction &CGF) { 4804 CGF.EmitOMPLoopBody(S, JumpDest()); 4805 CGF.EmitStopPoint(&S); 4806 }, 4807 [](CodeGenFunction &) {}); 4808 // Emit: if (PreCond) - end. 4809 if (ContBlock) { 4810 CGF.EmitBranch(ContBlock); 4811 CGF.EmitBlock(ContBlock, true); 4812 } 4813 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4814 if (HasLastprivateClause) { 4815 CGF.EmitOMPLastprivateClauseFinal( 4816 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4817 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4818 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4819 (*LIP)->getType(), S.getLocStart()))); 4820 } 4821 }; 4822 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4823 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4824 const OMPTaskDataTy &Data) { 4825 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4826 OMPLoopScope PreInitScope(CGF, S); 4827 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4828 OutlinedFn, SharedsTy, 4829 CapturedStruct, IfCond, Data); 4830 }; 4831 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4832 CodeGen); 4833 }; 4834 if (Data.Nogroup) { 4835 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4836 } else { 4837 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4838 *this, 4839 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4840 PrePostActionTy &Action) { 4841 Action.Enter(CGF); 4842 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4843 Data); 4844 }, 4845 S.getLocStart()); 4846 } 4847 } 4848 4849 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4850 EmitOMPTaskLoopBasedDirective(S); 4851 } 4852 4853 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4854 const OMPTaskLoopSimdDirective &S) { 4855 EmitOMPTaskLoopBasedDirective(S); 4856 } 4857 4858 // Generate the instructions for '#pragma omp target update' directive. 4859 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4860 const OMPTargetUpdateDirective &S) { 4861 // If we don't have target devices, don't bother emitting the data mapping 4862 // code. 4863 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4864 return; 4865 4866 // Check if we have any if clause associated with the directive. 4867 const Expr *IfCond = nullptr; 4868 if (auto *C = S.getSingleClause<OMPIfClause>()) 4869 IfCond = C->getCondition(); 4870 4871 // Check if we have any device clause associated with the directive. 4872 const Expr *Device = nullptr; 4873 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4874 Device = C->getDevice(); 4875 4876 OMPLexicalScope Scope(*this, S, OMPD_task); 4877 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4878 } 4879 4880 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 4881 const OMPExecutableDirective &D) { 4882 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 4883 return; 4884 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 4885 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 4886 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 4887 } else { 4888 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 4889 for (const auto *E : LD->counters()) { 4890 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 4891 cast<DeclRefExpr>(E)->getDecl())) { 4892 // Emit only those that were not explicitly referenced in clauses. 4893 if (!CGF.LocalDeclMap.count(VD)) 4894 CGF.EmitVarDecl(*VD); 4895 } 4896 } 4897 } 4898 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 4899 } 4900 }; 4901 OMPSimdLexicalScope Scope(*this, D); 4902 CGM.getOpenMPRuntime().emitInlinedDirective( 4903 *this, 4904 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 4905 : D.getDirectiveKind(), 4906 CodeGen); 4907 } 4908