1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (const auto *PreInit = 34 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 35 for (const auto *I : PreInit->decls()) { 36 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 37 CGF.EmitVarDecl(cast<VarDecl>(*I)); 38 } else { 39 CodeGenFunction::AutoVarEmission Emission = 40 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 41 CGF.EmitAutoVarCleanups(Emission); 42 } 43 } 44 } 45 } 46 } 47 } 48 CodeGenFunction::OMPPrivateScope InlinedShareds; 49 50 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 51 return CGF.LambdaCaptureFields.lookup(VD) || 52 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 53 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 54 } 55 56 public: 57 OMPLexicalScope( 58 CodeGenFunction &CGF, const OMPExecutableDirective &S, 59 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 60 const bool EmitPreInitStmt = true) 61 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 62 InlinedShareds(CGF) { 63 if (EmitPreInitStmt) 64 emitPreInitStmt(CGF, S); 65 if (!CapturedRegion.hasValue()) 66 return; 67 assert(S.hasAssociatedStmt() && 68 "Expected associated statement for inlined directive."); 69 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 70 for (const auto &C : CS->captures()) { 71 if (C.capturesVariable() || C.capturesVariableByCopy()) { 72 auto *VD = C.getCapturedVar(); 73 assert(VD == VD->getCanonicalDecl() && 74 "Canonical decl must be captured."); 75 DeclRefExpr DRE( 76 const_cast<VarDecl *>(VD), 77 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 78 InlinedShareds.isGlobalVarCaptured(VD)), 79 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 80 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 81 return CGF.EmitLValue(&DRE).getAddress(); 82 }); 83 } 84 } 85 (void)InlinedShareds.Privatize(); 86 } 87 }; 88 89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 90 /// for captured expressions. 91 class OMPParallelScope final : public OMPLexicalScope { 92 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 93 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 94 return !(isOpenMPTargetExecutionDirective(Kind) || 95 isOpenMPLoopBoundSharingDirective(Kind)) && 96 isOpenMPParallelDirective(Kind); 97 } 98 99 public: 100 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 101 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 102 EmitPreInitStmt(S)) {} 103 }; 104 105 /// Lexical scope for OpenMP teams construct, that handles correct codegen 106 /// for captured expressions. 107 class OMPTeamsScope final : public OMPLexicalScope { 108 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 109 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 110 return !isOpenMPTargetExecutionDirective(Kind) && 111 isOpenMPTeamsDirective(Kind); 112 } 113 114 public: 115 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 116 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 117 EmitPreInitStmt(S)) {} 118 }; 119 120 /// Private scope for OpenMP loop-based directives, that supports capturing 121 /// of used expression from loop statement. 122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 123 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 124 CodeGenFunction::OMPMapVars PreCondVars; 125 for (const auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 (void)PreCondVars.setVarAddr( 128 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 129 } 130 (void)PreCondVars.apply(CGF); 131 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 132 for (const auto *I : PreInits->decls()) 133 CGF.EmitVarDecl(cast<VarDecl>(*I)); 134 } 135 PreCondVars.restore(CGF); 136 } 137 138 public: 139 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 140 : CodeGenFunction::RunCleanupsScope(CGF) { 141 emitPreInitStmt(CGF, S); 142 } 143 }; 144 145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 146 CodeGenFunction::OMPPrivateScope InlinedShareds; 147 148 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 149 return CGF.LambdaCaptureFields.lookup(VD) || 150 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 151 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 152 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 153 } 154 155 public: 156 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 157 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 158 InlinedShareds(CGF) { 159 for (const auto *C : S.clauses()) { 160 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 161 if (const auto *PreInit = 162 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 163 for (const auto *I : PreInit->decls()) { 164 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 165 CGF.EmitVarDecl(cast<VarDecl>(*I)); 166 } else { 167 CodeGenFunction::AutoVarEmission Emission = 168 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 169 CGF.EmitAutoVarCleanups(Emission); 170 } 171 } 172 } 173 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 174 for (const Expr *E : UDP->varlists()) { 175 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 176 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 177 CGF.EmitVarDecl(*OED); 178 } 179 } 180 } 181 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 182 CGF.EmitOMPPrivateClause(S, InlinedShareds); 183 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 184 if (const Expr *E = TG->getReductionRef()) 185 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 186 } 187 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 188 while (CS) { 189 for (auto &C : CS->captures()) { 190 if (C.capturesVariable() || C.capturesVariableByCopy()) { 191 auto *VD = C.getCapturedVar(); 192 assert(VD == VD->getCanonicalDecl() && 193 "Canonical decl must be captured."); 194 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 195 isCapturedVar(CGF, VD) || 196 (CGF.CapturedStmtInfo && 197 InlinedShareds.isGlobalVarCaptured(VD)), 198 VD->getType().getNonReferenceType(), VK_LValue, 199 C.getLocation()); 200 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 201 return CGF.EmitLValue(&DRE).getAddress(); 202 }); 203 } 204 } 205 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 206 } 207 (void)InlinedShareds.Privatize(); 208 } 209 }; 210 211 } // namespace 212 213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 214 const OMPExecutableDirective &S, 215 const RegionCodeGenTy &CodeGen); 216 217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 218 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 219 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 220 OrigVD = OrigVD->getCanonicalDecl(); 221 bool IsCaptured = 222 LambdaCaptureFields.lookup(OrigVD) || 223 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 224 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 225 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 226 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 227 return EmitLValue(&DRE); 228 } 229 } 230 return EmitLValue(E); 231 } 232 233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 234 ASTContext &C = getContext(); 235 llvm::Value *Size = nullptr; 236 auto SizeInChars = C.getTypeSizeInChars(Ty); 237 if (SizeInChars.isZero()) { 238 // getTypeSizeInChars() returns 0 for a VLA. 239 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 240 VlaSizePair VlaSize = getVLASize(VAT); 241 Ty = VlaSize.Type; 242 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 243 : VlaSize.NumElts; 244 } 245 SizeInChars = C.getTypeSizeInChars(Ty); 246 if (SizeInChars.isZero()) 247 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 248 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 249 } 250 return CGM.getSize(SizeInChars); 251 } 252 253 void CodeGenFunction::GenerateOpenMPCapturedVars( 254 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 255 const RecordDecl *RD = S.getCapturedRecordDecl(); 256 auto CurField = RD->field_begin(); 257 auto CurCap = S.captures().begin(); 258 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 259 E = S.capture_init_end(); 260 I != E; ++I, ++CurField, ++CurCap) { 261 if (CurField->hasCapturedVLAType()) { 262 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 263 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 264 CapturedVars.push_back(Val); 265 } else if (CurCap->capturesThis()) { 266 CapturedVars.push_back(CXXThisValue); 267 } else if (CurCap->capturesVariableByCopy()) { 268 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 269 270 // If the field is not a pointer, we need to save the actual value 271 // and load it as a void pointer. 272 if (!CurField->getType()->isAnyPointerType()) { 273 ASTContext &Ctx = getContext(); 274 Address DstAddr = CreateMemTemp( 275 Ctx.getUIntPtrType(), 276 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 277 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 278 279 llvm::Value *SrcAddrVal = EmitScalarConversion( 280 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 281 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 282 LValue SrcLV = 283 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 284 285 // Store the value using the source type pointer. 286 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 287 288 // Load the value using the destination type pointer. 289 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 290 } 291 CapturedVars.push_back(CV); 292 } else { 293 assert(CurCap->capturesVariable() && "Expected capture by reference."); 294 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 295 } 296 } 297 } 298 299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 300 QualType DstType, StringRef Name, 301 LValue AddrLV, 302 bool isReferenceType = false) { 303 ASTContext &Ctx = CGF.getContext(); 304 305 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 306 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 307 Ctx.getPointerType(DstType), Loc); 308 Address TmpAddr = 309 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 310 .getAddress(); 311 312 // If we are dealing with references we need to return the address of the 313 // reference instead of the reference of the value. 314 if (isReferenceType) { 315 QualType RefType = Ctx.getLValueReferenceType(DstType); 316 llvm::Value *RefVal = TmpAddr.getPointer(); 317 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 318 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 319 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 320 } 321 322 return TmpAddr; 323 } 324 325 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 326 if (T->isLValueReferenceType()) 327 return C.getLValueReferenceType( 328 getCanonicalParamType(C, T.getNonReferenceType()), 329 /*SpelledAsLValue=*/false); 330 if (T->isPointerType()) 331 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 332 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 333 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 334 return getCanonicalParamType(C, VLA->getElementType()); 335 if (!A->isVariablyModifiedType()) 336 return C.getCanonicalType(T); 337 } 338 return C.getCanonicalParamType(T); 339 } 340 341 namespace { 342 /// Contains required data for proper outlined function codegen. 343 struct FunctionOptions { 344 /// Captured statement for which the function is generated. 345 const CapturedStmt *S = nullptr; 346 /// true if cast to/from UIntPtr is required for variables captured by 347 /// value. 348 const bool UIntPtrCastRequired = true; 349 /// true if only casted arguments must be registered as local args or VLA 350 /// sizes. 351 const bool RegisterCastedArgsOnly = false; 352 /// Name of the generated function. 353 const StringRef FunctionName; 354 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 355 bool RegisterCastedArgsOnly, 356 StringRef FunctionName) 357 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 358 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 359 FunctionName(FunctionName) {} 360 }; 361 } 362 363 static llvm::Function *emitOutlinedFunctionPrologue( 364 CodeGenFunction &CGF, FunctionArgList &Args, 365 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 366 &LocalAddrs, 367 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 368 &VLASizes, 369 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 370 const CapturedDecl *CD = FO.S->getCapturedDecl(); 371 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 372 assert(CD->hasBody() && "missing CapturedDecl body"); 373 374 CXXThisValue = nullptr; 375 // Build the argument list. 376 CodeGenModule &CGM = CGF.CGM; 377 ASTContext &Ctx = CGM.getContext(); 378 FunctionArgList TargetArgs; 379 Args.append(CD->param_begin(), 380 std::next(CD->param_begin(), CD->getContextParamPosition())); 381 TargetArgs.append( 382 CD->param_begin(), 383 std::next(CD->param_begin(), CD->getContextParamPosition())); 384 auto I = FO.S->captures().begin(); 385 FunctionDecl *DebugFunctionDecl = nullptr; 386 if (!FO.UIntPtrCastRequired) { 387 FunctionProtoType::ExtProtoInfo EPI; 388 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 389 DebugFunctionDecl = FunctionDecl::Create( 390 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 391 SourceLocation(), DeclarationName(), FunctionTy, 392 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 393 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 394 } 395 for (const FieldDecl *FD : RD->fields()) { 396 QualType ArgType = FD->getType(); 397 IdentifierInfo *II = nullptr; 398 VarDecl *CapVar = nullptr; 399 400 // If this is a capture by copy and the type is not a pointer, the outlined 401 // function argument type should be uintptr and the value properly casted to 402 // uintptr. This is necessary given that the runtime library is only able to 403 // deal with pointers. We can pass in the same way the VLA type sizes to the 404 // outlined function. 405 if (FO.UIntPtrCastRequired && 406 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 407 I->capturesVariableArrayType())) 408 ArgType = Ctx.getUIntPtrType(); 409 410 if (I->capturesVariable() || I->capturesVariableByCopy()) { 411 CapVar = I->getCapturedVar(); 412 II = CapVar->getIdentifier(); 413 } else if (I->capturesThis()) { 414 II = &Ctx.Idents.get("this"); 415 } else { 416 assert(I->capturesVariableArrayType()); 417 II = &Ctx.Idents.get("vla"); 418 } 419 if (ArgType->isVariablyModifiedType()) 420 ArgType = getCanonicalParamType(Ctx, ArgType); 421 VarDecl *Arg; 422 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 423 Arg = ParmVarDecl::Create( 424 Ctx, DebugFunctionDecl, 425 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 426 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 427 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 428 } else { 429 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 430 II, ArgType, ImplicitParamDecl::Other); 431 } 432 Args.emplace_back(Arg); 433 // Do not cast arguments if we emit function with non-original types. 434 TargetArgs.emplace_back( 435 FO.UIntPtrCastRequired 436 ? Arg 437 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 438 ++I; 439 } 440 Args.append( 441 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 442 CD->param_end()); 443 TargetArgs.append( 444 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 445 CD->param_end()); 446 447 // Create the function declaration. 448 const CGFunctionInfo &FuncInfo = 449 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 450 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 451 452 auto *F = 453 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 454 FO.FunctionName, &CGM.getModule()); 455 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 456 if (CD->isNothrow()) 457 F->setDoesNotThrow(); 458 F->setDoesNotRecurse(); 459 460 // Generate the function. 461 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 462 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 463 unsigned Cnt = CD->getContextParamPosition(); 464 I = FO.S->captures().begin(); 465 for (const FieldDecl *FD : RD->fields()) { 466 // Do not map arguments if we emit function with non-original types. 467 Address LocalAddr(Address::invalid()); 468 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 469 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 470 TargetArgs[Cnt]); 471 } else { 472 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 473 } 474 // If we are capturing a pointer by copy we don't need to do anything, just 475 // use the value that we get from the arguments. 476 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 477 const VarDecl *CurVD = I->getCapturedVar(); 478 // If the variable is a reference we need to materialize it here. 479 if (CurVD->getType()->isReferenceType()) { 480 Address RefAddr = CGF.CreateMemTemp( 481 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 482 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 483 /*Volatile=*/false, CurVD->getType()); 484 LocalAddr = RefAddr; 485 } 486 if (!FO.RegisterCastedArgsOnly) 487 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 488 ++Cnt; 489 ++I; 490 continue; 491 } 492 493 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 494 AlignmentSource::Decl); 495 if (FD->hasCapturedVLAType()) { 496 if (FO.UIntPtrCastRequired) { 497 ArgLVal = CGF.MakeAddrLValue( 498 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 499 Args[Cnt]->getName(), ArgLVal), 500 FD->getType(), AlignmentSource::Decl); 501 } 502 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 503 const VariableArrayType *VAT = FD->getCapturedVLAType(); 504 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 505 } else if (I->capturesVariable()) { 506 const VarDecl *Var = I->getCapturedVar(); 507 QualType VarTy = Var->getType(); 508 Address ArgAddr = ArgLVal.getAddress(); 509 if (!VarTy->isReferenceType()) { 510 if (ArgLVal.getType()->isLValueReferenceType()) { 511 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 512 } else if (!VarTy->isVariablyModifiedType() || 513 !VarTy->isPointerType()) { 514 assert(ArgLVal.getType()->isPointerType()); 515 ArgAddr = CGF.EmitLoadOfPointer( 516 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 517 } 518 } 519 if (!FO.RegisterCastedArgsOnly) { 520 LocalAddrs.insert( 521 {Args[Cnt], 522 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 523 } 524 } else if (I->capturesVariableByCopy()) { 525 assert(!FD->getType()->isAnyPointerType() && 526 "Not expecting a captured pointer."); 527 const VarDecl *Var = I->getCapturedVar(); 528 QualType VarTy = Var->getType(); 529 LocalAddrs.insert( 530 {Args[Cnt], 531 {Var, FO.UIntPtrCastRequired 532 ? castValueFromUintptr(CGF, I->getLocation(), 533 FD->getType(), Args[Cnt]->getName(), 534 ArgLVal, VarTy->isReferenceType()) 535 : ArgLVal.getAddress()}}); 536 } else { 537 // If 'this' is captured, load it into CXXThisValue. 538 assert(I->capturesThis()); 539 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 540 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 541 } 542 ++Cnt; 543 ++I; 544 } 545 546 return F; 547 } 548 549 llvm::Function * 550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 551 assert( 552 CapturedStmtInfo && 553 "CapturedStmtInfo should be set when generating the captured function"); 554 const CapturedDecl *CD = S.getCapturedDecl(); 555 // Build the argument list. 556 bool NeedWrapperFunction = 557 getDebugInfo() && 558 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 559 FunctionArgList Args; 560 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 561 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 562 SmallString<256> Buffer; 563 llvm::raw_svector_ostream Out(Buffer); 564 Out << CapturedStmtInfo->getHelperName(); 565 if (NeedWrapperFunction) 566 Out << "_debug__"; 567 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 568 Out.str()); 569 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 570 VLASizes, CXXThisValue, FO); 571 for (const auto &LocalAddrPair : LocalAddrs) { 572 if (LocalAddrPair.second.first) { 573 setAddrOfLocalVar(LocalAddrPair.second.first, 574 LocalAddrPair.second.second); 575 } 576 } 577 for (const auto &VLASizePair : VLASizes) 578 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 579 PGO.assignRegionCounters(GlobalDecl(CD), F); 580 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 581 FinishFunction(CD->getBodyRBrace()); 582 if (!NeedWrapperFunction) 583 return F; 584 585 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 586 /*RegisterCastedArgsOnly=*/true, 587 CapturedStmtInfo->getHelperName()); 588 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 589 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 590 Args.clear(); 591 LocalAddrs.clear(); 592 VLASizes.clear(); 593 llvm::Function *WrapperF = 594 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 595 WrapperCGF.CXXThisValue, WrapperFO); 596 llvm::SmallVector<llvm::Value *, 4> CallArgs; 597 for (const auto *Arg : Args) { 598 llvm::Value *CallArg; 599 auto I = LocalAddrs.find(Arg); 600 if (I != LocalAddrs.end()) { 601 LValue LV = WrapperCGF.MakeAddrLValue( 602 I->second.second, 603 I->second.first ? I->second.first->getType() : Arg->getType(), 604 AlignmentSource::Decl); 605 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 606 } else { 607 auto EI = VLASizes.find(Arg); 608 if (EI != VLASizes.end()) { 609 CallArg = EI->second.second; 610 } else { 611 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 612 Arg->getType(), 613 AlignmentSource::Decl); 614 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 615 } 616 } 617 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 618 } 619 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 620 F, CallArgs); 621 WrapperCGF.FinishFunction(); 622 return WrapperF; 623 } 624 625 //===----------------------------------------------------------------------===// 626 // OpenMP Directive Emission 627 //===----------------------------------------------------------------------===// 628 void CodeGenFunction::EmitOMPAggregateAssign( 629 Address DestAddr, Address SrcAddr, QualType OriginalType, 630 const llvm::function_ref<void(Address, Address)> CopyGen) { 631 // Perform element-by-element initialization. 632 QualType ElementTy; 633 634 // Drill down to the base element type on both arrays. 635 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 636 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 637 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 638 639 llvm::Value *SrcBegin = SrcAddr.getPointer(); 640 llvm::Value *DestBegin = DestAddr.getPointer(); 641 // Cast from pointer to array type to pointer to single element. 642 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 643 // The basic structure here is a while-do loop. 644 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 645 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 646 llvm::Value *IsEmpty = 647 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 648 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 649 650 // Enter the loop body, making that address the current address. 651 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 652 EmitBlock(BodyBB); 653 654 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 655 656 llvm::PHINode *SrcElementPHI = 657 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 658 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 659 Address SrcElementCurrent = 660 Address(SrcElementPHI, 661 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 662 663 llvm::PHINode *DestElementPHI = 664 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 665 DestElementPHI->addIncoming(DestBegin, EntryBB); 666 Address DestElementCurrent = 667 Address(DestElementPHI, 668 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 669 670 // Emit copy. 671 CopyGen(DestElementCurrent, SrcElementCurrent); 672 673 // Shift the address forward by one element. 674 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 675 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 676 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 677 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 678 // Check whether we've reached the end. 679 llvm::Value *Done = 680 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 681 Builder.CreateCondBr(Done, DoneBB, BodyBB); 682 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 683 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 684 685 // Done. 686 EmitBlock(DoneBB, /*IsFinished=*/true); 687 } 688 689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 690 Address SrcAddr, const VarDecl *DestVD, 691 const VarDecl *SrcVD, const Expr *Copy) { 692 if (OriginalType->isArrayType()) { 693 const auto *BO = dyn_cast<BinaryOperator>(Copy); 694 if (BO && BO->getOpcode() == BO_Assign) { 695 // Perform simple memcpy for simple copying. 696 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 697 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 698 EmitAggregateAssign(Dest, Src, OriginalType); 699 } else { 700 // For arrays with complex element types perform element by element 701 // copying. 702 EmitOMPAggregateAssign( 703 DestAddr, SrcAddr, OriginalType, 704 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 705 // Working with the single array element, so have to remap 706 // destination and source variables to corresponding array 707 // elements. 708 CodeGenFunction::OMPPrivateScope Remap(*this); 709 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 710 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 711 (void)Remap.Privatize(); 712 EmitIgnoredExpr(Copy); 713 }); 714 } 715 } else { 716 // Remap pseudo source variable to private copy. 717 CodeGenFunction::OMPPrivateScope Remap(*this); 718 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 719 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 720 (void)Remap.Privatize(); 721 // Emit copying of the whole variable. 722 EmitIgnoredExpr(Copy); 723 } 724 } 725 726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 727 OMPPrivateScope &PrivateScope) { 728 if (!HaveInsertPoint()) 729 return false; 730 bool FirstprivateIsLastprivate = false; 731 llvm::DenseSet<const VarDecl *> Lastprivates; 732 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 733 for (const auto *D : C->varlists()) 734 Lastprivates.insert( 735 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 736 } 737 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 738 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 739 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 740 // Force emission of the firstprivate copy if the directive does not emit 741 // outlined function, like omp for, omp simd, omp distribute etc. 742 bool MustEmitFirstprivateCopy = 743 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 744 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 745 auto IRef = C->varlist_begin(); 746 auto InitsRef = C->inits().begin(); 747 for (const Expr *IInit : C->private_copies()) { 748 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 749 bool ThisFirstprivateIsLastprivate = 750 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 751 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 752 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 753 !FD->getType()->isReferenceType()) { 754 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 755 ++IRef; 756 ++InitsRef; 757 continue; 758 } 759 FirstprivateIsLastprivate = 760 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 761 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 762 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 763 const auto *VDInit = 764 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 765 bool IsRegistered; 766 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 767 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 768 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 769 LValue OriginalLVal = EmitLValue(&DRE); 770 QualType Type = VD->getType(); 771 if (Type->isArrayType()) { 772 // Emit VarDecl with copy init for arrays. 773 // Get the address of the original variable captured in current 774 // captured region. 775 IsRegistered = PrivateScope.addPrivate( 776 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 777 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 778 const Expr *Init = VD->getInit(); 779 if (!isa<CXXConstructExpr>(Init) || 780 isTrivialInitializer(Init)) { 781 // Perform simple memcpy. 782 LValue Dest = 783 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 784 EmitAggregateAssign(Dest, OriginalLVal, Type); 785 } else { 786 EmitOMPAggregateAssign( 787 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 788 Type, 789 [this, VDInit, Init](Address DestElement, 790 Address SrcElement) { 791 // Clean up any temporaries needed by the 792 // initialization. 793 RunCleanupsScope InitScope(*this); 794 // Emit initialization for single element. 795 setAddrOfLocalVar(VDInit, SrcElement); 796 EmitAnyExprToMem(Init, DestElement, 797 Init->getType().getQualifiers(), 798 /*IsInitializer*/ false); 799 LocalDeclMap.erase(VDInit); 800 }); 801 } 802 EmitAutoVarCleanups(Emission); 803 return Emission.getAllocatedAddress(); 804 }); 805 } else { 806 Address OriginalAddr = OriginalLVal.getAddress(); 807 IsRegistered = PrivateScope.addPrivate( 808 OrigVD, [this, VDInit, OriginalAddr, VD]() { 809 // Emit private VarDecl with copy init. 810 // Remap temp VDInit variable to the address of the original 811 // variable (for proper handling of captured global variables). 812 setAddrOfLocalVar(VDInit, OriginalAddr); 813 EmitDecl(*VD); 814 LocalDeclMap.erase(VDInit); 815 return GetAddrOfLocalVar(VD); 816 }); 817 } 818 assert(IsRegistered && 819 "firstprivate var already registered as private"); 820 // Silence the warning about unused variable. 821 (void)IsRegistered; 822 } 823 ++IRef; 824 ++InitsRef; 825 } 826 } 827 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 828 } 829 830 void CodeGenFunction::EmitOMPPrivateClause( 831 const OMPExecutableDirective &D, 832 CodeGenFunction::OMPPrivateScope &PrivateScope) { 833 if (!HaveInsertPoint()) 834 return; 835 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 836 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 837 auto IRef = C->varlist_begin(); 838 for (const Expr *IInit : C->private_copies()) { 839 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 840 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 841 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 842 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 843 // Emit private VarDecl with copy init. 844 EmitDecl(*VD); 845 return GetAddrOfLocalVar(VD); 846 }); 847 assert(IsRegistered && "private var already registered as private"); 848 // Silence the warning about unused variable. 849 (void)IsRegistered; 850 } 851 ++IRef; 852 } 853 } 854 } 855 856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 857 if (!HaveInsertPoint()) 858 return false; 859 // threadprivate_var1 = master_threadprivate_var1; 860 // operator=(threadprivate_var2, master_threadprivate_var2); 861 // ... 862 // __kmpc_barrier(&loc, global_tid); 863 llvm::DenseSet<const VarDecl *> CopiedVars; 864 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 865 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 866 auto IRef = C->varlist_begin(); 867 auto ISrcRef = C->source_exprs().begin(); 868 auto IDestRef = C->destination_exprs().begin(); 869 for (const Expr *AssignOp : C->assignment_ops()) { 870 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 871 QualType Type = VD->getType(); 872 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 873 // Get the address of the master variable. If we are emitting code with 874 // TLS support, the address is passed from the master as field in the 875 // captured declaration. 876 Address MasterAddr = Address::invalid(); 877 if (getLangOpts().OpenMPUseTLS && 878 getContext().getTargetInfo().isTLSSupported()) { 879 assert(CapturedStmtInfo->lookup(VD) && 880 "Copyin threadprivates should have been captured!"); 881 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 882 VK_LValue, (*IRef)->getExprLoc()); 883 MasterAddr = EmitLValue(&DRE).getAddress(); 884 LocalDeclMap.erase(VD); 885 } else { 886 MasterAddr = 887 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 888 : CGM.GetAddrOfGlobal(VD), 889 getContext().getDeclAlign(VD)); 890 } 891 // Get the address of the threadprivate variable. 892 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 893 if (CopiedVars.size() == 1) { 894 // At first check if current thread is a master thread. If it is, no 895 // need to copy data. 896 CopyBegin = createBasicBlock("copyin.not.master"); 897 CopyEnd = createBasicBlock("copyin.not.master.end"); 898 Builder.CreateCondBr( 899 Builder.CreateICmpNE( 900 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 901 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 902 CGM.IntPtrTy)), 903 CopyBegin, CopyEnd); 904 EmitBlock(CopyBegin); 905 } 906 const auto *SrcVD = 907 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 908 const auto *DestVD = 909 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 910 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 911 } 912 ++IRef; 913 ++ISrcRef; 914 ++IDestRef; 915 } 916 } 917 if (CopyEnd) { 918 // Exit out of copying procedure for non-master thread. 919 EmitBlock(CopyEnd, /*IsFinished=*/true); 920 return true; 921 } 922 return false; 923 } 924 925 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 926 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 927 if (!HaveInsertPoint()) 928 return false; 929 bool HasAtLeastOneLastprivate = false; 930 llvm::DenseSet<const VarDecl *> SIMDLCVs; 931 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 932 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 933 for (const Expr *C : LoopDirective->counters()) { 934 SIMDLCVs.insert( 935 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 936 } 937 } 938 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 939 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 940 HasAtLeastOneLastprivate = true; 941 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 942 !getLangOpts().OpenMPSimd) 943 break; 944 auto IRef = C->varlist_begin(); 945 auto IDestRef = C->destination_exprs().begin(); 946 for (const Expr *IInit : C->private_copies()) { 947 // Keep the address of the original variable for future update at the end 948 // of the loop. 949 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 950 // Taskloops do not require additional initialization, it is done in 951 // runtime support library. 952 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 953 const auto *DestVD = 954 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 955 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 956 DeclRefExpr DRE( 957 const_cast<VarDecl *>(OrigVD), 958 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 959 OrigVD) != nullptr, 960 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 961 return EmitLValue(&DRE).getAddress(); 962 }); 963 // Check if the variable is also a firstprivate: in this case IInit is 964 // not generated. Initialization of this variable will happen in codegen 965 // for 'firstprivate' clause. 966 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 967 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 968 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 969 // Emit private VarDecl with copy init. 970 EmitDecl(*VD); 971 return GetAddrOfLocalVar(VD); 972 }); 973 assert(IsRegistered && 974 "lastprivate var already registered as private"); 975 (void)IsRegistered; 976 } 977 } 978 ++IRef; 979 ++IDestRef; 980 } 981 } 982 return HasAtLeastOneLastprivate; 983 } 984 985 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 986 const OMPExecutableDirective &D, bool NoFinals, 987 llvm::Value *IsLastIterCond) { 988 if (!HaveInsertPoint()) 989 return; 990 // Emit following code: 991 // if (<IsLastIterCond>) { 992 // orig_var1 = private_orig_var1; 993 // ... 994 // orig_varn = private_orig_varn; 995 // } 996 llvm::BasicBlock *ThenBB = nullptr; 997 llvm::BasicBlock *DoneBB = nullptr; 998 if (IsLastIterCond) { 999 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1000 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1001 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1002 EmitBlock(ThenBB); 1003 } 1004 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1005 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1006 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1007 auto IC = LoopDirective->counters().begin(); 1008 for (const Expr *F : LoopDirective->finals()) { 1009 const auto *D = 1010 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1011 if (NoFinals) 1012 AlreadyEmittedVars.insert(D); 1013 else 1014 LoopCountersAndUpdates[D] = F; 1015 ++IC; 1016 } 1017 } 1018 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1019 auto IRef = C->varlist_begin(); 1020 auto ISrcRef = C->source_exprs().begin(); 1021 auto IDestRef = C->destination_exprs().begin(); 1022 for (const Expr *AssignOp : C->assignment_ops()) { 1023 const auto *PrivateVD = 1024 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1025 QualType Type = PrivateVD->getType(); 1026 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1027 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1028 // If lastprivate variable is a loop control variable for loop-based 1029 // directive, update its value before copyin back to original 1030 // variable. 1031 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1032 EmitIgnoredExpr(FinalExpr); 1033 const auto *SrcVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1035 const auto *DestVD = 1036 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1037 // Get the address of the original variable. 1038 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1039 // Get the address of the private variable. 1040 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1041 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1042 PrivateAddr = 1043 Address(Builder.CreateLoad(PrivateAddr), 1044 getNaturalTypeAlignment(RefTy->getPointeeType())); 1045 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1046 } 1047 ++IRef; 1048 ++ISrcRef; 1049 ++IDestRef; 1050 } 1051 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1052 EmitIgnoredExpr(PostUpdate); 1053 } 1054 if (IsLastIterCond) 1055 EmitBlock(DoneBB, /*IsFinished=*/true); 1056 } 1057 1058 void CodeGenFunction::EmitOMPReductionClauseInit( 1059 const OMPExecutableDirective &D, 1060 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1061 if (!HaveInsertPoint()) 1062 return; 1063 SmallVector<const Expr *, 4> Shareds; 1064 SmallVector<const Expr *, 4> Privates; 1065 SmallVector<const Expr *, 4> ReductionOps; 1066 SmallVector<const Expr *, 4> LHSs; 1067 SmallVector<const Expr *, 4> RHSs; 1068 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1069 auto IPriv = C->privates().begin(); 1070 auto IRed = C->reduction_ops().begin(); 1071 auto ILHS = C->lhs_exprs().begin(); 1072 auto IRHS = C->rhs_exprs().begin(); 1073 for (const Expr *Ref : C->varlists()) { 1074 Shareds.emplace_back(Ref); 1075 Privates.emplace_back(*IPriv); 1076 ReductionOps.emplace_back(*IRed); 1077 LHSs.emplace_back(*ILHS); 1078 RHSs.emplace_back(*IRHS); 1079 std::advance(IPriv, 1); 1080 std::advance(IRed, 1); 1081 std::advance(ILHS, 1); 1082 std::advance(IRHS, 1); 1083 } 1084 } 1085 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1086 unsigned Count = 0; 1087 auto ILHS = LHSs.begin(); 1088 auto IRHS = RHSs.begin(); 1089 auto IPriv = Privates.begin(); 1090 for (const Expr *IRef : Shareds) { 1091 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1092 // Emit private VarDecl with reduction init. 1093 RedCG.emitSharedLValue(*this, Count); 1094 RedCG.emitAggregateType(*this, Count); 1095 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1096 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1097 RedCG.getSharedLValue(Count), 1098 [&Emission](CodeGenFunction &CGF) { 1099 CGF.EmitAutoVarInit(Emission); 1100 return true; 1101 }); 1102 EmitAutoVarCleanups(Emission); 1103 Address BaseAddr = RedCG.adjustPrivateAddress( 1104 *this, Count, Emission.getAllocatedAddress()); 1105 bool IsRegistered = PrivateScope.addPrivate( 1106 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1107 assert(IsRegistered && "private var already registered as private"); 1108 // Silence the warning about unused variable. 1109 (void)IsRegistered; 1110 1111 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1112 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1113 QualType Type = PrivateVD->getType(); 1114 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1115 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1116 // Store the address of the original variable associated with the LHS 1117 // implicit variable. 1118 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1119 return RedCG.getSharedLValue(Count).getAddress(); 1120 }); 1121 PrivateScope.addPrivate( 1122 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1123 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1124 isa<ArraySubscriptExpr>(IRef)) { 1125 // Store the address of the original variable associated with the LHS 1126 // implicit variable. 1127 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1128 return RedCG.getSharedLValue(Count).getAddress(); 1129 }); 1130 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1131 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1132 ConvertTypeForMem(RHSVD->getType()), 1133 "rhs.begin"); 1134 }); 1135 } else { 1136 QualType Type = PrivateVD->getType(); 1137 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1138 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1139 // Store the address of the original variable associated with the LHS 1140 // implicit variable. 1141 if (IsArray) { 1142 OriginalAddr = Builder.CreateElementBitCast( 1143 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1144 } 1145 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1146 PrivateScope.addPrivate( 1147 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1148 return IsArray 1149 ? Builder.CreateElementBitCast( 1150 GetAddrOfLocalVar(PrivateVD), 1151 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1152 : GetAddrOfLocalVar(PrivateVD); 1153 }); 1154 } 1155 ++ILHS; 1156 ++IRHS; 1157 ++IPriv; 1158 ++Count; 1159 } 1160 } 1161 1162 void CodeGenFunction::EmitOMPReductionClauseFinal( 1163 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1164 if (!HaveInsertPoint()) 1165 return; 1166 llvm::SmallVector<const Expr *, 8> Privates; 1167 llvm::SmallVector<const Expr *, 8> LHSExprs; 1168 llvm::SmallVector<const Expr *, 8> RHSExprs; 1169 llvm::SmallVector<const Expr *, 8> ReductionOps; 1170 bool HasAtLeastOneReduction = false; 1171 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1172 HasAtLeastOneReduction = true; 1173 Privates.append(C->privates().begin(), C->privates().end()); 1174 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1175 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1176 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1177 } 1178 if (HasAtLeastOneReduction) { 1179 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1180 isOpenMPParallelDirective(D.getDirectiveKind()) || 1181 ReductionKind == OMPD_simd; 1182 bool SimpleReduction = ReductionKind == OMPD_simd; 1183 // Emit nowait reduction if nowait clause is present or directive is a 1184 // parallel directive (it always has implicit barrier). 1185 CGM.getOpenMPRuntime().emitReduction( 1186 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1187 {WithNowait, SimpleReduction, ReductionKind}); 1188 } 1189 } 1190 1191 static void emitPostUpdateForReductionClause( 1192 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1193 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1194 if (!CGF.HaveInsertPoint()) 1195 return; 1196 llvm::BasicBlock *DoneBB = nullptr; 1197 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1198 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1199 if (!DoneBB) { 1200 if (llvm::Value *Cond = CondGen(CGF)) { 1201 // If the first post-update expression is found, emit conditional 1202 // block if it was requested. 1203 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1204 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1205 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1206 CGF.EmitBlock(ThenBB); 1207 } 1208 } 1209 CGF.EmitIgnoredExpr(PostUpdate); 1210 } 1211 } 1212 if (DoneBB) 1213 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1214 } 1215 1216 namespace { 1217 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1218 /// parallel function. This is necessary for combined constructs such as 1219 /// 'distribute parallel for' 1220 typedef llvm::function_ref<void(CodeGenFunction &, 1221 const OMPExecutableDirective &, 1222 llvm::SmallVectorImpl<llvm::Value *> &)> 1223 CodeGenBoundParametersTy; 1224 } // anonymous namespace 1225 1226 static void emitCommonOMPParallelDirective( 1227 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1228 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1229 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1230 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1231 llvm::Value *OutlinedFn = 1232 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1233 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1234 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1235 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1236 llvm::Value *NumThreads = 1237 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1238 /*IgnoreResultAssign=*/true); 1239 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1240 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1241 } 1242 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1243 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1244 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1245 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1246 } 1247 const Expr *IfCond = nullptr; 1248 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1249 if (C->getNameModifier() == OMPD_unknown || 1250 C->getNameModifier() == OMPD_parallel) { 1251 IfCond = C->getCondition(); 1252 break; 1253 } 1254 } 1255 1256 OMPParallelScope Scope(CGF, S); 1257 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1258 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1259 // lower and upper bounds with the pragma 'for' chunking mechanism. 1260 // The following lambda takes care of appending the lower and upper bound 1261 // parameters when necessary 1262 CodeGenBoundParameters(CGF, S, CapturedVars); 1263 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1264 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1265 CapturedVars, IfCond); 1266 } 1267 1268 static void emitEmptyBoundParameters(CodeGenFunction &, 1269 const OMPExecutableDirective &, 1270 llvm::SmallVectorImpl<llvm::Value *> &) {} 1271 1272 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1273 // Emit parallel region as a standalone region. 1274 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1275 Action.Enter(CGF); 1276 OMPPrivateScope PrivateScope(CGF); 1277 bool Copyins = CGF.EmitOMPCopyinClause(S); 1278 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1279 if (Copyins) { 1280 // Emit implicit barrier to synchronize threads and avoid data races on 1281 // propagation master's thread values of threadprivate variables to local 1282 // instances of that variables of all other implicit threads. 1283 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1284 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1285 /*ForceSimpleCall=*/true); 1286 } 1287 CGF.EmitOMPPrivateClause(S, PrivateScope); 1288 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1289 (void)PrivateScope.Privatize(); 1290 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1291 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1292 }; 1293 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1294 emitEmptyBoundParameters); 1295 emitPostUpdateForReductionClause(*this, S, 1296 [](CodeGenFunction &) { return nullptr; }); 1297 } 1298 1299 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1300 JumpDest LoopExit) { 1301 RunCleanupsScope BodyScope(*this); 1302 // Update counters values on current iteration. 1303 for (const Expr *UE : D.updates()) 1304 EmitIgnoredExpr(UE); 1305 // Update the linear variables. 1306 // In distribute directives only loop counters may be marked as linear, no 1307 // need to generate the code for them. 1308 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1309 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1310 for (const Expr *UE : C->updates()) 1311 EmitIgnoredExpr(UE); 1312 } 1313 } 1314 1315 // On a continue in the body, jump to the end. 1316 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1317 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1318 // Emit loop body. 1319 EmitStmt(D.getBody()); 1320 // The end (updates/cleanups). 1321 EmitBlock(Continue.getBlock()); 1322 BreakContinueStack.pop_back(); 1323 } 1324 1325 void CodeGenFunction::EmitOMPInnerLoop( 1326 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1327 const Expr *IncExpr, 1328 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1329 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1330 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1331 1332 // Start the loop with a block that tests the condition. 1333 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1334 EmitBlock(CondBlock); 1335 const SourceRange R = S.getSourceRange(); 1336 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1337 SourceLocToDebugLoc(R.getEnd())); 1338 1339 // If there are any cleanups between here and the loop-exit scope, 1340 // create a block to stage a loop exit along. 1341 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1342 if (RequiresCleanup) 1343 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1344 1345 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1346 1347 // Emit condition. 1348 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1349 if (ExitBlock != LoopExit.getBlock()) { 1350 EmitBlock(ExitBlock); 1351 EmitBranchThroughCleanup(LoopExit); 1352 } 1353 1354 EmitBlock(LoopBody); 1355 incrementProfileCounter(&S); 1356 1357 // Create a block for the increment. 1358 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1359 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1360 1361 BodyGen(*this); 1362 1363 // Emit "IV = IV + 1" and a back-edge to the condition block. 1364 EmitBlock(Continue.getBlock()); 1365 EmitIgnoredExpr(IncExpr); 1366 PostIncGen(*this); 1367 BreakContinueStack.pop_back(); 1368 EmitBranch(CondBlock); 1369 LoopStack.pop(); 1370 // Emit the fall-through block. 1371 EmitBlock(LoopExit.getBlock()); 1372 } 1373 1374 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1375 if (!HaveInsertPoint()) 1376 return false; 1377 // Emit inits for the linear variables. 1378 bool HasLinears = false; 1379 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1380 for (const Expr *Init : C->inits()) { 1381 HasLinears = true; 1382 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1383 if (const auto *Ref = 1384 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1385 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1386 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1387 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1388 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1389 VD->getInit()->getType(), VK_LValue, 1390 VD->getInit()->getExprLoc()); 1391 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1392 VD->getType()), 1393 /*capturedByInit=*/false); 1394 EmitAutoVarCleanups(Emission); 1395 } else { 1396 EmitVarDecl(*VD); 1397 } 1398 } 1399 // Emit the linear steps for the linear clauses. 1400 // If a step is not constant, it is pre-calculated before the loop. 1401 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1402 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1403 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1404 // Emit calculation of the linear step. 1405 EmitIgnoredExpr(CS); 1406 } 1407 } 1408 return HasLinears; 1409 } 1410 1411 void CodeGenFunction::EmitOMPLinearClauseFinal( 1412 const OMPLoopDirective &D, 1413 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1414 if (!HaveInsertPoint()) 1415 return; 1416 llvm::BasicBlock *DoneBB = nullptr; 1417 // Emit the final values of the linear variables. 1418 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1419 auto IC = C->varlist_begin(); 1420 for (const Expr *F : C->finals()) { 1421 if (!DoneBB) { 1422 if (llvm::Value *Cond = CondGen(*this)) { 1423 // If the first post-update expression is found, emit conditional 1424 // block if it was requested. 1425 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1426 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1427 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1428 EmitBlock(ThenBB); 1429 } 1430 } 1431 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1432 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1433 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1434 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1435 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1436 CodeGenFunction::OMPPrivateScope VarScope(*this); 1437 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1438 (void)VarScope.Privatize(); 1439 EmitIgnoredExpr(F); 1440 ++IC; 1441 } 1442 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1443 EmitIgnoredExpr(PostUpdate); 1444 } 1445 if (DoneBB) 1446 EmitBlock(DoneBB, /*IsFinished=*/true); 1447 } 1448 1449 static void emitAlignedClause(CodeGenFunction &CGF, 1450 const OMPExecutableDirective &D) { 1451 if (!CGF.HaveInsertPoint()) 1452 return; 1453 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1454 unsigned ClauseAlignment = 0; 1455 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1456 auto *AlignmentCI = 1457 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1458 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1459 } 1460 for (const Expr *E : Clause->varlists()) { 1461 unsigned Alignment = ClauseAlignment; 1462 if (Alignment == 0) { 1463 // OpenMP [2.8.1, Description] 1464 // If no optional parameter is specified, implementation-defined default 1465 // alignments for SIMD instructions on the target platforms are assumed. 1466 Alignment = 1467 CGF.getContext() 1468 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1469 E->getType()->getPointeeType())) 1470 .getQuantity(); 1471 } 1472 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1473 "alignment is not power of 2"); 1474 if (Alignment != 0) { 1475 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1476 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1477 } 1478 } 1479 } 1480 } 1481 1482 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1483 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1484 if (!HaveInsertPoint()) 1485 return; 1486 auto I = S.private_counters().begin(); 1487 for (const Expr *E : S.counters()) { 1488 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1489 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1490 // Emit var without initialization. 1491 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1492 EmitAutoVarCleanups(VarEmission); 1493 LocalDeclMap.erase(PrivateVD); 1494 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1495 return VarEmission.getAllocatedAddress(); 1496 }); 1497 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1498 VD->hasGlobalStorage()) { 1499 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1500 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1501 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1502 E->getType(), VK_LValue, E->getExprLoc()); 1503 return EmitLValue(&DRE).getAddress(); 1504 }); 1505 } else { 1506 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1507 return VarEmission.getAllocatedAddress(); 1508 }); 1509 } 1510 ++I; 1511 } 1512 // Privatize extra loop counters used in loops for ordered(n) clauses. 1513 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1514 if (!C->getNumForLoops()) 1515 continue; 1516 for (unsigned I = S.getCollapsedNumber(), 1517 E = C->getLoopNumIterations().size(); 1518 I < E; ++I) { 1519 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1520 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1521 // Override only those variables that are really emitted already. 1522 if (LocalDeclMap.count(VD)) { 1523 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1524 return CreateMemTemp(DRE->getType(), VD->getName()); 1525 }); 1526 } 1527 } 1528 } 1529 } 1530 1531 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1532 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1533 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1534 if (!CGF.HaveInsertPoint()) 1535 return; 1536 { 1537 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1538 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1539 (void)PreCondScope.Privatize(); 1540 // Get initial values of real counters. 1541 for (const Expr *I : S.inits()) { 1542 CGF.EmitIgnoredExpr(I); 1543 } 1544 } 1545 // Check that loop is executed at least one time. 1546 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1547 } 1548 1549 void CodeGenFunction::EmitOMPLinearClause( 1550 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1551 if (!HaveInsertPoint()) 1552 return; 1553 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1554 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1555 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1556 for (const Expr *C : LoopDirective->counters()) { 1557 SIMDLCVs.insert( 1558 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1559 } 1560 } 1561 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1562 auto CurPrivate = C->privates().begin(); 1563 for (const Expr *E : C->varlists()) { 1564 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1565 const auto *PrivateVD = 1566 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1567 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1568 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1569 // Emit private VarDecl with copy init. 1570 EmitVarDecl(*PrivateVD); 1571 return GetAddrOfLocalVar(PrivateVD); 1572 }); 1573 assert(IsRegistered && "linear var already registered as private"); 1574 // Silence the warning about unused variable. 1575 (void)IsRegistered; 1576 } else { 1577 EmitVarDecl(*PrivateVD); 1578 } 1579 ++CurPrivate; 1580 } 1581 } 1582 } 1583 1584 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1585 const OMPExecutableDirective &D, 1586 bool IsMonotonic) { 1587 if (!CGF.HaveInsertPoint()) 1588 return; 1589 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1590 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1591 /*ignoreResult=*/true); 1592 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1593 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1594 // In presence of finite 'safelen', it may be unsafe to mark all 1595 // the memory instructions parallel, because loop-carried 1596 // dependences of 'safelen' iterations are possible. 1597 if (!IsMonotonic) 1598 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1599 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1600 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1601 /*ignoreResult=*/true); 1602 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1603 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1604 // In presence of finite 'safelen', it may be unsafe to mark all 1605 // the memory instructions parallel, because loop-carried 1606 // dependences of 'safelen' iterations are possible. 1607 CGF.LoopStack.setParallel(/*Enable=*/false); 1608 } 1609 } 1610 1611 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1612 bool IsMonotonic) { 1613 // Walk clauses and process safelen/lastprivate. 1614 LoopStack.setParallel(!IsMonotonic); 1615 LoopStack.setVectorizeEnable(); 1616 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1617 } 1618 1619 void CodeGenFunction::EmitOMPSimdFinal( 1620 const OMPLoopDirective &D, 1621 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1622 if (!HaveInsertPoint()) 1623 return; 1624 llvm::BasicBlock *DoneBB = nullptr; 1625 auto IC = D.counters().begin(); 1626 auto IPC = D.private_counters().begin(); 1627 for (const Expr *F : D.finals()) { 1628 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1629 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1630 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1631 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1632 OrigVD->hasGlobalStorage() || CED) { 1633 if (!DoneBB) { 1634 if (llvm::Value *Cond = CondGen(*this)) { 1635 // If the first post-update expression is found, emit conditional 1636 // block if it was requested. 1637 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1638 DoneBB = createBasicBlock(".omp.final.done"); 1639 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1640 EmitBlock(ThenBB); 1641 } 1642 } 1643 Address OrigAddr = Address::invalid(); 1644 if (CED) { 1645 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1646 } else { 1647 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1648 /*RefersToEnclosingVariableOrCapture=*/false, 1649 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1650 OrigAddr = EmitLValue(&DRE).getAddress(); 1651 } 1652 OMPPrivateScope VarScope(*this); 1653 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1654 (void)VarScope.Privatize(); 1655 EmitIgnoredExpr(F); 1656 } 1657 ++IC; 1658 ++IPC; 1659 } 1660 if (DoneBB) 1661 EmitBlock(DoneBB, /*IsFinished=*/true); 1662 } 1663 1664 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1665 const OMPLoopDirective &S, 1666 CodeGenFunction::JumpDest LoopExit) { 1667 CGF.EmitOMPLoopBody(S, LoopExit); 1668 CGF.EmitStopPoint(&S); 1669 } 1670 1671 /// Emit a helper variable and return corresponding lvalue. 1672 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1673 const DeclRefExpr *Helper) { 1674 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1675 CGF.EmitVarDecl(*VDecl); 1676 return CGF.EmitLValue(Helper); 1677 } 1678 1679 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1680 PrePostActionTy &Action) { 1681 Action.Enter(CGF); 1682 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1683 "Expected simd directive"); 1684 OMPLoopScope PreInitScope(CGF, S); 1685 // if (PreCond) { 1686 // for (IV in 0..LastIteration) BODY; 1687 // <Final counter/linear vars updates>; 1688 // } 1689 // 1690 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1691 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1692 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1693 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1694 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1695 } 1696 1697 // Emit: if (PreCond) - begin. 1698 // If the condition constant folds and can be elided, avoid emitting the 1699 // whole loop. 1700 bool CondConstant; 1701 llvm::BasicBlock *ContBlock = nullptr; 1702 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1703 if (!CondConstant) 1704 return; 1705 } else { 1706 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1707 ContBlock = CGF.createBasicBlock("simd.if.end"); 1708 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1709 CGF.getProfileCount(&S)); 1710 CGF.EmitBlock(ThenBlock); 1711 CGF.incrementProfileCounter(&S); 1712 } 1713 1714 // Emit the loop iteration variable. 1715 const Expr *IVExpr = S.getIterationVariable(); 1716 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1717 CGF.EmitVarDecl(*IVDecl); 1718 CGF.EmitIgnoredExpr(S.getInit()); 1719 1720 // Emit the iterations count variable. 1721 // If it is not a variable, Sema decided to calculate iterations count on 1722 // each iteration (e.g., it is foldable into a constant). 1723 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1724 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1725 // Emit calculation of the iterations count. 1726 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1727 } 1728 1729 CGF.EmitOMPSimdInit(S); 1730 1731 emitAlignedClause(CGF, S); 1732 (void)CGF.EmitOMPLinearClauseInit(S); 1733 { 1734 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1735 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1736 CGF.EmitOMPLinearClause(S, LoopScope); 1737 CGF.EmitOMPPrivateClause(S, LoopScope); 1738 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1739 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1740 (void)LoopScope.Privatize(); 1741 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1742 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1743 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1744 S.getInc(), 1745 [&S](CodeGenFunction &CGF) { 1746 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1747 CGF.EmitStopPoint(&S); 1748 }, 1749 [](CodeGenFunction &) {}); 1750 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1751 // Emit final copy of the lastprivate variables at the end of loops. 1752 if (HasLastprivateClause) 1753 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1754 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1755 emitPostUpdateForReductionClause(CGF, S, 1756 [](CodeGenFunction &) { return nullptr; }); 1757 } 1758 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1759 // Emit: if (PreCond) - end. 1760 if (ContBlock) { 1761 CGF.EmitBranch(ContBlock); 1762 CGF.EmitBlock(ContBlock, true); 1763 } 1764 } 1765 1766 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1767 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1768 emitOMPSimdRegion(CGF, S, Action); 1769 }; 1770 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1771 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1772 } 1773 1774 void CodeGenFunction::EmitOMPOuterLoop( 1775 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1776 CodeGenFunction::OMPPrivateScope &LoopScope, 1777 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1778 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1779 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1780 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1781 1782 const Expr *IVExpr = S.getIterationVariable(); 1783 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1784 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1785 1786 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1787 1788 // Start the loop with a block that tests the condition. 1789 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1790 EmitBlock(CondBlock); 1791 const SourceRange R = S.getSourceRange(); 1792 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1793 SourceLocToDebugLoc(R.getEnd())); 1794 1795 llvm::Value *BoolCondVal = nullptr; 1796 if (!DynamicOrOrdered) { 1797 // UB = min(UB, GlobalUB) or 1798 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1799 // 'distribute parallel for') 1800 EmitIgnoredExpr(LoopArgs.EUB); 1801 // IV = LB 1802 EmitIgnoredExpr(LoopArgs.Init); 1803 // IV < UB 1804 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1805 } else { 1806 BoolCondVal = 1807 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1808 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1809 } 1810 1811 // If there are any cleanups between here and the loop-exit scope, 1812 // create a block to stage a loop exit along. 1813 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1814 if (LoopScope.requiresCleanups()) 1815 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1816 1817 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1818 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1819 if (ExitBlock != LoopExit.getBlock()) { 1820 EmitBlock(ExitBlock); 1821 EmitBranchThroughCleanup(LoopExit); 1822 } 1823 EmitBlock(LoopBody); 1824 1825 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1826 // LB for loop condition and emitted it above). 1827 if (DynamicOrOrdered) 1828 EmitIgnoredExpr(LoopArgs.Init); 1829 1830 // Create a block for the increment. 1831 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1832 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1833 1834 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1835 // with dynamic/guided scheduling and without ordered clause. 1836 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1837 LoopStack.setParallel(!IsMonotonic); 1838 else 1839 EmitOMPSimdInit(S, IsMonotonic); 1840 1841 SourceLocation Loc = S.getBeginLoc(); 1842 1843 // when 'distribute' is not combined with a 'for': 1844 // while (idx <= UB) { BODY; ++idx; } 1845 // when 'distribute' is combined with a 'for' 1846 // (e.g. 'distribute parallel for') 1847 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1848 EmitOMPInnerLoop( 1849 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1850 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1851 CodeGenLoop(CGF, S, LoopExit); 1852 }, 1853 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1854 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1855 }); 1856 1857 EmitBlock(Continue.getBlock()); 1858 BreakContinueStack.pop_back(); 1859 if (!DynamicOrOrdered) { 1860 // Emit "LB = LB + Stride", "UB = UB + Stride". 1861 EmitIgnoredExpr(LoopArgs.NextLB); 1862 EmitIgnoredExpr(LoopArgs.NextUB); 1863 } 1864 1865 EmitBranch(CondBlock); 1866 LoopStack.pop(); 1867 // Emit the fall-through block. 1868 EmitBlock(LoopExit.getBlock()); 1869 1870 // Tell the runtime we are done. 1871 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1872 if (!DynamicOrOrdered) 1873 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1874 S.getDirectiveKind()); 1875 }; 1876 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1877 } 1878 1879 void CodeGenFunction::EmitOMPForOuterLoop( 1880 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1881 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1882 const OMPLoopArguments &LoopArgs, 1883 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1884 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1885 1886 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1887 const bool DynamicOrOrdered = 1888 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1889 1890 assert((Ordered || 1891 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1892 LoopArgs.Chunk != nullptr)) && 1893 "static non-chunked schedule does not need outer loop"); 1894 1895 // Emit outer loop. 1896 // 1897 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1898 // When schedule(dynamic,chunk_size) is specified, the iterations are 1899 // distributed to threads in the team in chunks as the threads request them. 1900 // Each thread executes a chunk of iterations, then requests another chunk, 1901 // until no chunks remain to be distributed. Each chunk contains chunk_size 1902 // iterations, except for the last chunk to be distributed, which may have 1903 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1904 // 1905 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1906 // to threads in the team in chunks as the executing threads request them. 1907 // Each thread executes a chunk of iterations, then requests another chunk, 1908 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1909 // each chunk is proportional to the number of unassigned iterations divided 1910 // by the number of threads in the team, decreasing to 1. For a chunk_size 1911 // with value k (greater than 1), the size of each chunk is determined in the 1912 // same way, with the restriction that the chunks do not contain fewer than k 1913 // iterations (except for the last chunk to be assigned, which may have fewer 1914 // than k iterations). 1915 // 1916 // When schedule(auto) is specified, the decision regarding scheduling is 1917 // delegated to the compiler and/or runtime system. The programmer gives the 1918 // implementation the freedom to choose any possible mapping of iterations to 1919 // threads in the team. 1920 // 1921 // When schedule(runtime) is specified, the decision regarding scheduling is 1922 // deferred until run time, and the schedule and chunk size are taken from the 1923 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1924 // implementation defined 1925 // 1926 // while(__kmpc_dispatch_next(&LB, &UB)) { 1927 // idx = LB; 1928 // while (idx <= UB) { BODY; ++idx; 1929 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1930 // } // inner loop 1931 // } 1932 // 1933 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1934 // When schedule(static, chunk_size) is specified, iterations are divided into 1935 // chunks of size chunk_size, and the chunks are assigned to the threads in 1936 // the team in a round-robin fashion in the order of the thread number. 1937 // 1938 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1939 // while (idx <= UB) { BODY; ++idx; } // inner loop 1940 // LB = LB + ST; 1941 // UB = UB + ST; 1942 // } 1943 // 1944 1945 const Expr *IVExpr = S.getIterationVariable(); 1946 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1947 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1948 1949 if (DynamicOrOrdered) { 1950 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1951 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1952 llvm::Value *LBVal = DispatchBounds.first; 1953 llvm::Value *UBVal = DispatchBounds.second; 1954 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1955 LoopArgs.Chunk}; 1956 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1957 IVSigned, Ordered, DipatchRTInputValues); 1958 } else { 1959 CGOpenMPRuntime::StaticRTInput StaticInit( 1960 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1961 LoopArgs.ST, LoopArgs.Chunk); 1962 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1963 ScheduleKind, StaticInit); 1964 } 1965 1966 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1967 const unsigned IVSize, 1968 const bool IVSigned) { 1969 if (Ordered) { 1970 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1971 IVSigned); 1972 } 1973 }; 1974 1975 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1976 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1977 OuterLoopArgs.IncExpr = S.getInc(); 1978 OuterLoopArgs.Init = S.getInit(); 1979 OuterLoopArgs.Cond = S.getCond(); 1980 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1981 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1982 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1983 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1984 } 1985 1986 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1987 const unsigned IVSize, const bool IVSigned) {} 1988 1989 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1990 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1991 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1992 const CodeGenLoopTy &CodeGenLoopContent) { 1993 1994 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1995 1996 // Emit outer loop. 1997 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1998 // dynamic 1999 // 2000 2001 const Expr *IVExpr = S.getIterationVariable(); 2002 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2003 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2004 2005 CGOpenMPRuntime::StaticRTInput StaticInit( 2006 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2007 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2008 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2009 2010 // for combined 'distribute' and 'for' the increment expression of distribute 2011 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2012 Expr *IncExpr; 2013 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2014 IncExpr = S.getDistInc(); 2015 else 2016 IncExpr = S.getInc(); 2017 2018 // this routine is shared by 'omp distribute parallel for' and 2019 // 'omp distribute': select the right EUB expression depending on the 2020 // directive 2021 OMPLoopArguments OuterLoopArgs; 2022 OuterLoopArgs.LB = LoopArgs.LB; 2023 OuterLoopArgs.UB = LoopArgs.UB; 2024 OuterLoopArgs.ST = LoopArgs.ST; 2025 OuterLoopArgs.IL = LoopArgs.IL; 2026 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2027 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2028 ? S.getCombinedEnsureUpperBound() 2029 : S.getEnsureUpperBound(); 2030 OuterLoopArgs.IncExpr = IncExpr; 2031 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2032 ? S.getCombinedInit() 2033 : S.getInit(); 2034 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2035 ? S.getCombinedCond() 2036 : S.getCond(); 2037 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2038 ? S.getCombinedNextLowerBound() 2039 : S.getNextLowerBound(); 2040 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2041 ? S.getCombinedNextUpperBound() 2042 : S.getNextUpperBound(); 2043 2044 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2045 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2046 emitEmptyOrdered); 2047 } 2048 2049 static std::pair<LValue, LValue> 2050 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2051 const OMPExecutableDirective &S) { 2052 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2053 LValue LB = 2054 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2055 LValue UB = 2056 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2057 2058 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2059 // parallel for') we need to use the 'distribute' 2060 // chunk lower and upper bounds rather than the whole loop iteration 2061 // space. These are parameters to the outlined function for 'parallel' 2062 // and we copy the bounds of the previous schedule into the 2063 // the current ones. 2064 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2065 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2066 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2067 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2068 PrevLBVal = CGF.EmitScalarConversion( 2069 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2070 LS.getIterationVariable()->getType(), 2071 LS.getPrevLowerBoundVariable()->getExprLoc()); 2072 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2073 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2074 PrevUBVal = CGF.EmitScalarConversion( 2075 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2076 LS.getIterationVariable()->getType(), 2077 LS.getPrevUpperBoundVariable()->getExprLoc()); 2078 2079 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2080 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2081 2082 return {LB, UB}; 2083 } 2084 2085 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2086 /// we need to use the LB and UB expressions generated by the worksharing 2087 /// code generation support, whereas in non combined situations we would 2088 /// just emit 0 and the LastIteration expression 2089 /// This function is necessary due to the difference of the LB and UB 2090 /// types for the RT emission routines for 'for_static_init' and 2091 /// 'for_dispatch_init' 2092 static std::pair<llvm::Value *, llvm::Value *> 2093 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2094 const OMPExecutableDirective &S, 2095 Address LB, Address UB) { 2096 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2097 const Expr *IVExpr = LS.getIterationVariable(); 2098 // when implementing a dynamic schedule for a 'for' combined with a 2099 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2100 // is not normalized as each team only executes its own assigned 2101 // distribute chunk 2102 QualType IteratorTy = IVExpr->getType(); 2103 llvm::Value *LBVal = 2104 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2105 llvm::Value *UBVal = 2106 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2107 return {LBVal, UBVal}; 2108 } 2109 2110 static void emitDistributeParallelForDistributeInnerBoundParams( 2111 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2112 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2113 const auto &Dir = cast<OMPLoopDirective>(S); 2114 LValue LB = 2115 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2116 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2117 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2118 CapturedVars.push_back(LBCast); 2119 LValue UB = 2120 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2121 2122 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2123 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2124 CapturedVars.push_back(UBCast); 2125 } 2126 2127 static void 2128 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2129 const OMPLoopDirective &S, 2130 CodeGenFunction::JumpDest LoopExit) { 2131 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2132 PrePostActionTy &Action) { 2133 Action.Enter(CGF); 2134 bool HasCancel = false; 2135 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2136 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2137 HasCancel = D->hasCancel(); 2138 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2139 HasCancel = D->hasCancel(); 2140 else if (const auto *D = 2141 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2142 HasCancel = D->hasCancel(); 2143 } 2144 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2145 HasCancel); 2146 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2147 emitDistributeParallelForInnerBounds, 2148 emitDistributeParallelForDispatchBounds); 2149 }; 2150 2151 emitCommonOMPParallelDirective( 2152 CGF, S, 2153 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2154 CGInlinedWorksharingLoop, 2155 emitDistributeParallelForDistributeInnerBoundParams); 2156 } 2157 2158 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2159 const OMPDistributeParallelForDirective &S) { 2160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2161 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2162 S.getDistInc()); 2163 }; 2164 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2165 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2166 } 2167 2168 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2169 const OMPDistributeParallelForSimdDirective &S) { 2170 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2171 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2172 S.getDistInc()); 2173 }; 2174 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2175 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2176 } 2177 2178 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2179 const OMPDistributeSimdDirective &S) { 2180 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2181 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2182 }; 2183 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2184 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2185 } 2186 2187 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2188 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2189 // Emit SPMD target parallel for region as a standalone region. 2190 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2191 emitOMPSimdRegion(CGF, S, Action); 2192 }; 2193 llvm::Function *Fn; 2194 llvm::Constant *Addr; 2195 // Emit target region as a standalone region. 2196 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2197 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2198 assert(Fn && Addr && "Target device function emission failed."); 2199 } 2200 2201 void CodeGenFunction::EmitOMPTargetSimdDirective( 2202 const OMPTargetSimdDirective &S) { 2203 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2204 emitOMPSimdRegion(CGF, S, Action); 2205 }; 2206 emitCommonOMPTargetDirective(*this, S, CodeGen); 2207 } 2208 2209 namespace { 2210 struct ScheduleKindModifiersTy { 2211 OpenMPScheduleClauseKind Kind; 2212 OpenMPScheduleClauseModifier M1; 2213 OpenMPScheduleClauseModifier M2; 2214 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2215 OpenMPScheduleClauseModifier M1, 2216 OpenMPScheduleClauseModifier M2) 2217 : Kind(Kind), M1(M1), M2(M2) {} 2218 }; 2219 } // namespace 2220 2221 bool CodeGenFunction::EmitOMPWorksharingLoop( 2222 const OMPLoopDirective &S, Expr *EUB, 2223 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2224 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2225 // Emit the loop iteration variable. 2226 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2227 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2228 EmitVarDecl(*IVDecl); 2229 2230 // Emit the iterations count variable. 2231 // If it is not a variable, Sema decided to calculate iterations count on each 2232 // iteration (e.g., it is foldable into a constant). 2233 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2234 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2235 // Emit calculation of the iterations count. 2236 EmitIgnoredExpr(S.getCalcLastIteration()); 2237 } 2238 2239 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2240 2241 bool HasLastprivateClause; 2242 // Check pre-condition. 2243 { 2244 OMPLoopScope PreInitScope(*this, S); 2245 // Skip the entire loop if we don't meet the precondition. 2246 // If the condition constant folds and can be elided, avoid emitting the 2247 // whole loop. 2248 bool CondConstant; 2249 llvm::BasicBlock *ContBlock = nullptr; 2250 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2251 if (!CondConstant) 2252 return false; 2253 } else { 2254 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2255 ContBlock = createBasicBlock("omp.precond.end"); 2256 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2257 getProfileCount(&S)); 2258 EmitBlock(ThenBlock); 2259 incrementProfileCounter(&S); 2260 } 2261 2262 RunCleanupsScope DoacrossCleanupScope(*this); 2263 bool Ordered = false; 2264 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2265 if (OrderedClause->getNumForLoops()) 2266 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2267 else 2268 Ordered = true; 2269 } 2270 2271 llvm::DenseSet<const Expr *> EmittedFinals; 2272 emitAlignedClause(*this, S); 2273 bool HasLinears = EmitOMPLinearClauseInit(S); 2274 // Emit helper vars inits. 2275 2276 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2277 LValue LB = Bounds.first; 2278 LValue UB = Bounds.second; 2279 LValue ST = 2280 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2281 LValue IL = 2282 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2283 2284 // Emit 'then' code. 2285 { 2286 OMPPrivateScope LoopScope(*this); 2287 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2288 // Emit implicit barrier to synchronize threads and avoid data races on 2289 // initialization of firstprivate variables and post-update of 2290 // lastprivate variables. 2291 CGM.getOpenMPRuntime().emitBarrierCall( 2292 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2293 /*ForceSimpleCall=*/true); 2294 } 2295 EmitOMPPrivateClause(S, LoopScope); 2296 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2297 EmitOMPReductionClauseInit(S, LoopScope); 2298 EmitOMPPrivateLoopCounters(S, LoopScope); 2299 EmitOMPLinearClause(S, LoopScope); 2300 (void)LoopScope.Privatize(); 2301 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2302 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2303 2304 // Detect the loop schedule kind and chunk. 2305 const Expr *ChunkExpr = nullptr; 2306 OpenMPScheduleTy ScheduleKind; 2307 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2308 ScheduleKind.Schedule = C->getScheduleKind(); 2309 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2310 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2311 ChunkExpr = C->getChunkSize(); 2312 } else { 2313 // Default behaviour for schedule clause. 2314 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2315 *this, S, ScheduleKind.Schedule, ChunkExpr); 2316 } 2317 bool HasChunkSizeOne = false; 2318 llvm::Value *Chunk = nullptr; 2319 if (ChunkExpr) { 2320 Chunk = EmitScalarExpr(ChunkExpr); 2321 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2322 S.getIterationVariable()->getType(), 2323 S.getBeginLoc()); 2324 llvm::APSInt EvaluatedChunk; 2325 if (ChunkExpr->EvaluateAsInt(EvaluatedChunk, getContext())) 2326 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2327 } 2328 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2329 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2330 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2331 // If the static schedule kind is specified or if the ordered clause is 2332 // specified, and if no monotonic modifier is specified, the effect will 2333 // be as if the monotonic modifier was specified. 2334 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2335 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2336 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2337 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2338 /* Chunked */ Chunk != nullptr) || 2339 StaticChunkedOne) && 2340 !Ordered) { 2341 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2342 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2343 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2344 // When no chunk_size is specified, the iteration space is divided into 2345 // chunks that are approximately equal in size, and at most one chunk is 2346 // distributed to each thread. Note that the size of the chunks is 2347 // unspecified in this case. 2348 CGOpenMPRuntime::StaticRTInput StaticInit( 2349 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2350 UB.getAddress(), ST.getAddress(), 2351 StaticChunkedOne ? Chunk : nullptr); 2352 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2353 ScheduleKind, StaticInit); 2354 JumpDest LoopExit = 2355 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2356 // UB = min(UB, GlobalUB); 2357 if (!StaticChunkedOne) 2358 EmitIgnoredExpr(S.getEnsureUpperBound()); 2359 // IV = LB; 2360 EmitIgnoredExpr(S.getInit()); 2361 // For unchunked static schedule generate: 2362 // 2363 // while (idx <= UB) { 2364 // BODY; 2365 // ++idx; 2366 // } 2367 // 2368 // For static schedule with chunk one: 2369 // 2370 // while (IV <= PrevUB) { 2371 // BODY; 2372 // IV += ST; 2373 // } 2374 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2375 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2376 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2377 [&S, LoopExit](CodeGenFunction &CGF) { 2378 CGF.EmitOMPLoopBody(S, LoopExit); 2379 CGF.EmitStopPoint(&S); 2380 }, 2381 [](CodeGenFunction &) {}); 2382 EmitBlock(LoopExit.getBlock()); 2383 // Tell the runtime we are done. 2384 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2385 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2386 S.getDirectiveKind()); 2387 }; 2388 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2389 } else { 2390 const bool IsMonotonic = 2391 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2392 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2393 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2394 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2395 // Emit the outer loop, which requests its work chunk [LB..UB] from 2396 // runtime and runs the inner loop to process it. 2397 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2398 ST.getAddress(), IL.getAddress(), 2399 Chunk, EUB); 2400 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2401 LoopArguments, CGDispatchBounds); 2402 } 2403 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2404 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2405 return CGF.Builder.CreateIsNotNull( 2406 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2407 }); 2408 } 2409 EmitOMPReductionClauseFinal( 2410 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2411 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2412 : /*Parallel only*/ OMPD_parallel); 2413 // Emit post-update of the reduction variables if IsLastIter != 0. 2414 emitPostUpdateForReductionClause( 2415 *this, S, [IL, &S](CodeGenFunction &CGF) { 2416 return CGF.Builder.CreateIsNotNull( 2417 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2418 }); 2419 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2420 if (HasLastprivateClause) 2421 EmitOMPLastprivateClauseFinal( 2422 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2423 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2424 } 2425 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2426 return CGF.Builder.CreateIsNotNull( 2427 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2428 }); 2429 DoacrossCleanupScope.ForceCleanup(); 2430 // We're now done with the loop, so jump to the continuation block. 2431 if (ContBlock) { 2432 EmitBranch(ContBlock); 2433 EmitBlock(ContBlock, /*IsFinished=*/true); 2434 } 2435 } 2436 return HasLastprivateClause; 2437 } 2438 2439 /// The following two functions generate expressions for the loop lower 2440 /// and upper bounds in case of static and dynamic (dispatch) schedule 2441 /// of the associated 'for' or 'distribute' loop. 2442 static std::pair<LValue, LValue> 2443 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2444 const auto &LS = cast<OMPLoopDirective>(S); 2445 LValue LB = 2446 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2447 LValue UB = 2448 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2449 return {LB, UB}; 2450 } 2451 2452 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2453 /// consider the lower and upper bound expressions generated by the 2454 /// worksharing loop support, but we use 0 and the iteration space size as 2455 /// constants 2456 static std::pair<llvm::Value *, llvm::Value *> 2457 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2458 Address LB, Address UB) { 2459 const auto &LS = cast<OMPLoopDirective>(S); 2460 const Expr *IVExpr = LS.getIterationVariable(); 2461 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2462 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2463 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2464 return {LBVal, UBVal}; 2465 } 2466 2467 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2468 bool HasLastprivates = false; 2469 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2470 PrePostActionTy &) { 2471 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2472 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2473 emitForLoopBounds, 2474 emitDispatchForLoopBounds); 2475 }; 2476 { 2477 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2478 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2479 S.hasCancel()); 2480 } 2481 2482 // Emit an implicit barrier at the end. 2483 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2484 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2485 } 2486 2487 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2488 bool HasLastprivates = false; 2489 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2490 PrePostActionTy &) { 2491 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2492 emitForLoopBounds, 2493 emitDispatchForLoopBounds); 2494 }; 2495 { 2496 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2497 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2498 } 2499 2500 // Emit an implicit barrier at the end. 2501 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2502 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2503 } 2504 2505 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2506 const Twine &Name, 2507 llvm::Value *Init = nullptr) { 2508 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2509 if (Init) 2510 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2511 return LVal; 2512 } 2513 2514 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2515 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2516 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2517 bool HasLastprivates = false; 2518 auto &&CodeGen = [&S, CapturedStmt, CS, 2519 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2520 ASTContext &C = CGF.getContext(); 2521 QualType KmpInt32Ty = 2522 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2523 // Emit helper vars inits. 2524 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2525 CGF.Builder.getInt32(0)); 2526 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2527 ? CGF.Builder.getInt32(CS->size() - 1) 2528 : CGF.Builder.getInt32(0); 2529 LValue UB = 2530 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2531 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2532 CGF.Builder.getInt32(1)); 2533 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2534 CGF.Builder.getInt32(0)); 2535 // Loop counter. 2536 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2537 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2538 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2539 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2540 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2541 // Generate condition for loop. 2542 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2543 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2544 // Increment for loop counter. 2545 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2546 S.getBeginLoc(), true); 2547 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2548 // Iterate through all sections and emit a switch construct: 2549 // switch (IV) { 2550 // case 0: 2551 // <SectionStmt[0]>; 2552 // break; 2553 // ... 2554 // case <NumSection> - 1: 2555 // <SectionStmt[<NumSection> - 1]>; 2556 // break; 2557 // } 2558 // .omp.sections.exit: 2559 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2560 llvm::SwitchInst *SwitchStmt = 2561 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2562 ExitBB, CS == nullptr ? 1 : CS->size()); 2563 if (CS) { 2564 unsigned CaseNumber = 0; 2565 for (const Stmt *SubStmt : CS->children()) { 2566 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2567 CGF.EmitBlock(CaseBB); 2568 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2569 CGF.EmitStmt(SubStmt); 2570 CGF.EmitBranch(ExitBB); 2571 ++CaseNumber; 2572 } 2573 } else { 2574 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2575 CGF.EmitBlock(CaseBB); 2576 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2577 CGF.EmitStmt(CapturedStmt); 2578 CGF.EmitBranch(ExitBB); 2579 } 2580 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2581 }; 2582 2583 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2584 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2585 // Emit implicit barrier to synchronize threads and avoid data races on 2586 // initialization of firstprivate variables and post-update of lastprivate 2587 // variables. 2588 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2589 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2590 /*ForceSimpleCall=*/true); 2591 } 2592 CGF.EmitOMPPrivateClause(S, LoopScope); 2593 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2594 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2595 (void)LoopScope.Privatize(); 2596 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2597 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2598 2599 // Emit static non-chunked loop. 2600 OpenMPScheduleTy ScheduleKind; 2601 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2602 CGOpenMPRuntime::StaticRTInput StaticInit( 2603 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2604 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2605 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2606 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2607 // UB = min(UB, GlobalUB); 2608 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2609 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2610 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2611 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2612 // IV = LB; 2613 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2614 // while (idx <= UB) { BODY; ++idx; } 2615 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2616 [](CodeGenFunction &) {}); 2617 // Tell the runtime we are done. 2618 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2619 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2620 S.getDirectiveKind()); 2621 }; 2622 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2623 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2624 // Emit post-update of the reduction variables if IsLastIter != 0. 2625 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2626 return CGF.Builder.CreateIsNotNull( 2627 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2628 }); 2629 2630 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2631 if (HasLastprivates) 2632 CGF.EmitOMPLastprivateClauseFinal( 2633 S, /*NoFinals=*/false, 2634 CGF.Builder.CreateIsNotNull( 2635 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2636 }; 2637 2638 bool HasCancel = false; 2639 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2640 HasCancel = OSD->hasCancel(); 2641 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2642 HasCancel = OPSD->hasCancel(); 2643 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2644 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2645 HasCancel); 2646 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2647 // clause. Otherwise the barrier will be generated by the codegen for the 2648 // directive. 2649 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2650 // Emit implicit barrier to synchronize threads and avoid data races on 2651 // initialization of firstprivate variables. 2652 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2653 OMPD_unknown); 2654 } 2655 } 2656 2657 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2658 { 2659 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2660 EmitSections(S); 2661 } 2662 // Emit an implicit barrier at the end. 2663 if (!S.getSingleClause<OMPNowaitClause>()) { 2664 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2665 OMPD_sections); 2666 } 2667 } 2668 2669 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2670 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2671 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2672 }; 2673 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2674 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2675 S.hasCancel()); 2676 } 2677 2678 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2679 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2680 llvm::SmallVector<const Expr *, 8> DestExprs; 2681 llvm::SmallVector<const Expr *, 8> SrcExprs; 2682 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2683 // Check if there are any 'copyprivate' clauses associated with this 2684 // 'single' construct. 2685 // Build a list of copyprivate variables along with helper expressions 2686 // (<source>, <destination>, <destination>=<source> expressions) 2687 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2688 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2689 DestExprs.append(C->destination_exprs().begin(), 2690 C->destination_exprs().end()); 2691 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2692 AssignmentOps.append(C->assignment_ops().begin(), 2693 C->assignment_ops().end()); 2694 } 2695 // Emit code for 'single' region along with 'copyprivate' clauses 2696 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2697 Action.Enter(CGF); 2698 OMPPrivateScope SingleScope(CGF); 2699 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2700 CGF.EmitOMPPrivateClause(S, SingleScope); 2701 (void)SingleScope.Privatize(); 2702 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2703 }; 2704 { 2705 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2706 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2707 CopyprivateVars, DestExprs, 2708 SrcExprs, AssignmentOps); 2709 } 2710 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2711 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2712 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2713 CGM.getOpenMPRuntime().emitBarrierCall( 2714 *this, S.getBeginLoc(), 2715 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2716 } 2717 } 2718 2719 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2720 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2721 Action.Enter(CGF); 2722 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2723 }; 2724 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2725 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2726 } 2727 2728 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2729 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2730 Action.Enter(CGF); 2731 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2732 }; 2733 const Expr *Hint = nullptr; 2734 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2735 Hint = HintClause->getHint(); 2736 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2737 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2738 S.getDirectiveName().getAsString(), 2739 CodeGen, S.getBeginLoc(), Hint); 2740 } 2741 2742 void CodeGenFunction::EmitOMPParallelForDirective( 2743 const OMPParallelForDirective &S) { 2744 // Emit directive as a combined directive that consists of two implicit 2745 // directives: 'parallel' with 'for' directive. 2746 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2747 Action.Enter(CGF); 2748 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2749 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2750 emitDispatchForLoopBounds); 2751 }; 2752 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2753 emitEmptyBoundParameters); 2754 } 2755 2756 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2757 const OMPParallelForSimdDirective &S) { 2758 // Emit directive as a combined directive that consists of two implicit 2759 // directives: 'parallel' with 'for' directive. 2760 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2761 Action.Enter(CGF); 2762 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2763 emitDispatchForLoopBounds); 2764 }; 2765 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2766 emitEmptyBoundParameters); 2767 } 2768 2769 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2770 const OMPParallelSectionsDirective &S) { 2771 // Emit directive as a combined directive that consists of two implicit 2772 // directives: 'parallel' with 'sections' directive. 2773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2774 Action.Enter(CGF); 2775 CGF.EmitSections(S); 2776 }; 2777 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2778 emitEmptyBoundParameters); 2779 } 2780 2781 void CodeGenFunction::EmitOMPTaskBasedDirective( 2782 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2783 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2784 OMPTaskDataTy &Data) { 2785 // Emit outlined function for task construct. 2786 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2787 auto I = CS->getCapturedDecl()->param_begin(); 2788 auto PartId = std::next(I); 2789 auto TaskT = std::next(I, 4); 2790 // Check if the task is final 2791 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2792 // If the condition constant folds and can be elided, try to avoid emitting 2793 // the condition and the dead arm of the if/else. 2794 const Expr *Cond = Clause->getCondition(); 2795 bool CondConstant; 2796 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2797 Data.Final.setInt(CondConstant); 2798 else 2799 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2800 } else { 2801 // By default the task is not final. 2802 Data.Final.setInt(/*IntVal=*/false); 2803 } 2804 // Check if the task has 'priority' clause. 2805 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2806 const Expr *Prio = Clause->getPriority(); 2807 Data.Priority.setInt(/*IntVal=*/true); 2808 Data.Priority.setPointer(EmitScalarConversion( 2809 EmitScalarExpr(Prio), Prio->getType(), 2810 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2811 Prio->getExprLoc())); 2812 } 2813 // The first function argument for tasks is a thread id, the second one is a 2814 // part id (0 for tied tasks, >=0 for untied task). 2815 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2816 // Get list of private variables. 2817 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2818 auto IRef = C->varlist_begin(); 2819 for (const Expr *IInit : C->private_copies()) { 2820 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2821 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2822 Data.PrivateVars.push_back(*IRef); 2823 Data.PrivateCopies.push_back(IInit); 2824 } 2825 ++IRef; 2826 } 2827 } 2828 EmittedAsPrivate.clear(); 2829 // Get list of firstprivate variables. 2830 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2831 auto IRef = C->varlist_begin(); 2832 auto IElemInitRef = C->inits().begin(); 2833 for (const Expr *IInit : C->private_copies()) { 2834 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2835 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2836 Data.FirstprivateVars.push_back(*IRef); 2837 Data.FirstprivateCopies.push_back(IInit); 2838 Data.FirstprivateInits.push_back(*IElemInitRef); 2839 } 2840 ++IRef; 2841 ++IElemInitRef; 2842 } 2843 } 2844 // Get list of lastprivate variables (for taskloops). 2845 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2846 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2847 auto IRef = C->varlist_begin(); 2848 auto ID = C->destination_exprs().begin(); 2849 for (const Expr *IInit : C->private_copies()) { 2850 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2851 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2852 Data.LastprivateVars.push_back(*IRef); 2853 Data.LastprivateCopies.push_back(IInit); 2854 } 2855 LastprivateDstsOrigs.insert( 2856 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2857 cast<DeclRefExpr>(*IRef)}); 2858 ++IRef; 2859 ++ID; 2860 } 2861 } 2862 SmallVector<const Expr *, 4> LHSs; 2863 SmallVector<const Expr *, 4> RHSs; 2864 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2865 auto IPriv = C->privates().begin(); 2866 auto IRed = C->reduction_ops().begin(); 2867 auto ILHS = C->lhs_exprs().begin(); 2868 auto IRHS = C->rhs_exprs().begin(); 2869 for (const Expr *Ref : C->varlists()) { 2870 Data.ReductionVars.emplace_back(Ref); 2871 Data.ReductionCopies.emplace_back(*IPriv); 2872 Data.ReductionOps.emplace_back(*IRed); 2873 LHSs.emplace_back(*ILHS); 2874 RHSs.emplace_back(*IRHS); 2875 std::advance(IPriv, 1); 2876 std::advance(IRed, 1); 2877 std::advance(ILHS, 1); 2878 std::advance(IRHS, 1); 2879 } 2880 } 2881 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2882 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2883 // Build list of dependences. 2884 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2885 for (const Expr *IRef : C->varlists()) 2886 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2887 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2888 CapturedRegion](CodeGenFunction &CGF, 2889 PrePostActionTy &Action) { 2890 // Set proper addresses for generated private copies. 2891 OMPPrivateScope Scope(CGF); 2892 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2893 !Data.LastprivateVars.empty()) { 2894 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2895 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2896 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2897 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2898 CS->getCapturedDecl()->getParam(PrivatesParam))); 2899 // Map privates. 2900 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2901 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2902 CallArgs.push_back(PrivatesPtr); 2903 for (const Expr *E : Data.PrivateVars) { 2904 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2905 Address PrivatePtr = CGF.CreateMemTemp( 2906 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2907 PrivatePtrs.emplace_back(VD, PrivatePtr); 2908 CallArgs.push_back(PrivatePtr.getPointer()); 2909 } 2910 for (const Expr *E : Data.FirstprivateVars) { 2911 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2912 Address PrivatePtr = 2913 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2914 ".firstpriv.ptr.addr"); 2915 PrivatePtrs.emplace_back(VD, PrivatePtr); 2916 CallArgs.push_back(PrivatePtr.getPointer()); 2917 } 2918 for (const Expr *E : Data.LastprivateVars) { 2919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2920 Address PrivatePtr = 2921 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2922 ".lastpriv.ptr.addr"); 2923 PrivatePtrs.emplace_back(VD, PrivatePtr); 2924 CallArgs.push_back(PrivatePtr.getPointer()); 2925 } 2926 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 2927 CopyFn, CallArgs); 2928 for (const auto &Pair : LastprivateDstsOrigs) { 2929 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2930 DeclRefExpr DRE( 2931 const_cast<VarDecl *>(OrigVD), 2932 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2933 OrigVD) != nullptr, 2934 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2935 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2936 return CGF.EmitLValue(&DRE).getAddress(); 2937 }); 2938 } 2939 for (const auto &Pair : PrivatePtrs) { 2940 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2941 CGF.getContext().getDeclAlign(Pair.first)); 2942 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2943 } 2944 } 2945 if (Data.Reductions) { 2946 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2947 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2948 Data.ReductionOps); 2949 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2950 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2951 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2952 RedCG.emitSharedLValue(CGF, Cnt); 2953 RedCG.emitAggregateType(CGF, Cnt); 2954 // FIXME: This must removed once the runtime library is fixed. 2955 // Emit required threadprivate variables for 2956 // initilizer/combiner/finalizer. 2957 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2958 RedCG, Cnt); 2959 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2960 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2961 Replacement = 2962 Address(CGF.EmitScalarConversion( 2963 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2964 CGF.getContext().getPointerType( 2965 Data.ReductionCopies[Cnt]->getType()), 2966 Data.ReductionCopies[Cnt]->getExprLoc()), 2967 Replacement.getAlignment()); 2968 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2969 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2970 [Replacement]() { return Replacement; }); 2971 } 2972 } 2973 // Privatize all private variables except for in_reduction items. 2974 (void)Scope.Privatize(); 2975 SmallVector<const Expr *, 4> InRedVars; 2976 SmallVector<const Expr *, 4> InRedPrivs; 2977 SmallVector<const Expr *, 4> InRedOps; 2978 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2979 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2980 auto IPriv = C->privates().begin(); 2981 auto IRed = C->reduction_ops().begin(); 2982 auto ITD = C->taskgroup_descriptors().begin(); 2983 for (const Expr *Ref : C->varlists()) { 2984 InRedVars.emplace_back(Ref); 2985 InRedPrivs.emplace_back(*IPriv); 2986 InRedOps.emplace_back(*IRed); 2987 TaskgroupDescriptors.emplace_back(*ITD); 2988 std::advance(IPriv, 1); 2989 std::advance(IRed, 1); 2990 std::advance(ITD, 1); 2991 } 2992 } 2993 // Privatize in_reduction items here, because taskgroup descriptors must be 2994 // privatized earlier. 2995 OMPPrivateScope InRedScope(CGF); 2996 if (!InRedVars.empty()) { 2997 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2998 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2999 RedCG.emitSharedLValue(CGF, Cnt); 3000 RedCG.emitAggregateType(CGF, Cnt); 3001 // The taskgroup descriptor variable is always implicit firstprivate and 3002 // privatized already during procoessing of the firstprivates. 3003 // FIXME: This must removed once the runtime library is fixed. 3004 // Emit required threadprivate variables for 3005 // initilizer/combiner/finalizer. 3006 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3007 RedCG, Cnt); 3008 llvm::Value *ReductionsPtr = 3009 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3010 TaskgroupDescriptors[Cnt]->getExprLoc()); 3011 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3012 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3013 Replacement = Address( 3014 CGF.EmitScalarConversion( 3015 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3016 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3017 InRedPrivs[Cnt]->getExprLoc()), 3018 Replacement.getAlignment()); 3019 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3020 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3021 [Replacement]() { return Replacement; }); 3022 } 3023 } 3024 (void)InRedScope.Privatize(); 3025 3026 Action.Enter(CGF); 3027 BodyGen(CGF); 3028 }; 3029 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3030 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3031 Data.NumberOfParts); 3032 OMPLexicalScope Scope(*this, S); 3033 TaskGen(*this, OutlinedFn, Data); 3034 } 3035 3036 static ImplicitParamDecl * 3037 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3038 QualType Ty, CapturedDecl *CD, 3039 SourceLocation Loc) { 3040 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3041 ImplicitParamDecl::Other); 3042 auto *OrigRef = DeclRefExpr::Create( 3043 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3044 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3045 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3046 ImplicitParamDecl::Other); 3047 auto *PrivateRef = DeclRefExpr::Create( 3048 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3049 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3050 QualType ElemType = C.getBaseElementType(Ty); 3051 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3052 ImplicitParamDecl::Other); 3053 auto *InitRef = DeclRefExpr::Create( 3054 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3055 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3056 PrivateVD->setInitStyle(VarDecl::CInit); 3057 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3058 InitRef, /*BasePath=*/nullptr, 3059 VK_RValue)); 3060 Data.FirstprivateVars.emplace_back(OrigRef); 3061 Data.FirstprivateCopies.emplace_back(PrivateRef); 3062 Data.FirstprivateInits.emplace_back(InitRef); 3063 return OrigVD; 3064 } 3065 3066 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3067 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3068 OMPTargetDataInfo &InputInfo) { 3069 // Emit outlined function for task construct. 3070 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3071 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3072 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3073 auto I = CS->getCapturedDecl()->param_begin(); 3074 auto PartId = std::next(I); 3075 auto TaskT = std::next(I, 4); 3076 OMPTaskDataTy Data; 3077 // The task is not final. 3078 Data.Final.setInt(/*IntVal=*/false); 3079 // Get list of firstprivate variables. 3080 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3081 auto IRef = C->varlist_begin(); 3082 auto IElemInitRef = C->inits().begin(); 3083 for (auto *IInit : C->private_copies()) { 3084 Data.FirstprivateVars.push_back(*IRef); 3085 Data.FirstprivateCopies.push_back(IInit); 3086 Data.FirstprivateInits.push_back(*IElemInitRef); 3087 ++IRef; 3088 ++IElemInitRef; 3089 } 3090 } 3091 OMPPrivateScope TargetScope(*this); 3092 VarDecl *BPVD = nullptr; 3093 VarDecl *PVD = nullptr; 3094 VarDecl *SVD = nullptr; 3095 if (InputInfo.NumberOfTargetItems > 0) { 3096 auto *CD = CapturedDecl::Create( 3097 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3098 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3099 QualType BaseAndPointersType = getContext().getConstantArrayType( 3100 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3101 /*IndexTypeQuals=*/0); 3102 BPVD = createImplicitFirstprivateForType( 3103 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3104 PVD = createImplicitFirstprivateForType( 3105 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3106 QualType SizesType = getContext().getConstantArrayType( 3107 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3108 /*IndexTypeQuals=*/0); 3109 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3110 S.getBeginLoc()); 3111 TargetScope.addPrivate( 3112 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3113 TargetScope.addPrivate(PVD, 3114 [&InputInfo]() { return InputInfo.PointersArray; }); 3115 TargetScope.addPrivate(SVD, 3116 [&InputInfo]() { return InputInfo.SizesArray; }); 3117 } 3118 (void)TargetScope.Privatize(); 3119 // Build list of dependences. 3120 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3121 for (const Expr *IRef : C->varlists()) 3122 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3123 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3124 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3125 // Set proper addresses for generated private copies. 3126 OMPPrivateScope Scope(CGF); 3127 if (!Data.FirstprivateVars.empty()) { 3128 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3129 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3130 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3131 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3132 CS->getCapturedDecl()->getParam(PrivatesParam))); 3133 // Map privates. 3134 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3135 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3136 CallArgs.push_back(PrivatesPtr); 3137 for (const Expr *E : Data.FirstprivateVars) { 3138 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3139 Address PrivatePtr = 3140 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3141 ".firstpriv.ptr.addr"); 3142 PrivatePtrs.emplace_back(VD, PrivatePtr); 3143 CallArgs.push_back(PrivatePtr.getPointer()); 3144 } 3145 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3146 CopyFn, CallArgs); 3147 for (const auto &Pair : PrivatePtrs) { 3148 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3149 CGF.getContext().getDeclAlign(Pair.first)); 3150 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3151 } 3152 } 3153 // Privatize all private variables except for in_reduction items. 3154 (void)Scope.Privatize(); 3155 if (InputInfo.NumberOfTargetItems > 0) { 3156 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3157 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3158 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3159 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3160 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3161 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3162 } 3163 3164 Action.Enter(CGF); 3165 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3166 BodyGen(CGF); 3167 }; 3168 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3169 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3170 Data.NumberOfParts); 3171 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3172 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3173 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3174 SourceLocation()); 3175 3176 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3177 SharedsTy, CapturedStruct, &IfCond, Data); 3178 } 3179 3180 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3181 // Emit outlined function for task construct. 3182 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3183 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3184 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3185 const Expr *IfCond = nullptr; 3186 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3187 if (C->getNameModifier() == OMPD_unknown || 3188 C->getNameModifier() == OMPD_task) { 3189 IfCond = C->getCondition(); 3190 break; 3191 } 3192 } 3193 3194 OMPTaskDataTy Data; 3195 // Check if we should emit tied or untied task. 3196 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3197 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3198 CGF.EmitStmt(CS->getCapturedStmt()); 3199 }; 3200 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3201 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3202 const OMPTaskDataTy &Data) { 3203 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3204 SharedsTy, CapturedStruct, IfCond, 3205 Data); 3206 }; 3207 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3208 } 3209 3210 void CodeGenFunction::EmitOMPTaskyieldDirective( 3211 const OMPTaskyieldDirective &S) { 3212 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3213 } 3214 3215 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3216 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3217 } 3218 3219 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3220 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3221 } 3222 3223 void CodeGenFunction::EmitOMPTaskgroupDirective( 3224 const OMPTaskgroupDirective &S) { 3225 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3226 Action.Enter(CGF); 3227 if (const Expr *E = S.getReductionRef()) { 3228 SmallVector<const Expr *, 4> LHSs; 3229 SmallVector<const Expr *, 4> RHSs; 3230 OMPTaskDataTy Data; 3231 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3232 auto IPriv = C->privates().begin(); 3233 auto IRed = C->reduction_ops().begin(); 3234 auto ILHS = C->lhs_exprs().begin(); 3235 auto IRHS = C->rhs_exprs().begin(); 3236 for (const Expr *Ref : C->varlists()) { 3237 Data.ReductionVars.emplace_back(Ref); 3238 Data.ReductionCopies.emplace_back(*IPriv); 3239 Data.ReductionOps.emplace_back(*IRed); 3240 LHSs.emplace_back(*ILHS); 3241 RHSs.emplace_back(*IRHS); 3242 std::advance(IPriv, 1); 3243 std::advance(IRed, 1); 3244 std::advance(ILHS, 1); 3245 std::advance(IRHS, 1); 3246 } 3247 } 3248 llvm::Value *ReductionDesc = 3249 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3250 LHSs, RHSs, Data); 3251 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3252 CGF.EmitVarDecl(*VD); 3253 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3254 /*Volatile=*/false, E->getType()); 3255 } 3256 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3257 }; 3258 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3259 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3260 } 3261 3262 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3263 CGM.getOpenMPRuntime().emitFlush( 3264 *this, 3265 [&S]() -> ArrayRef<const Expr *> { 3266 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3267 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3268 FlushClause->varlist_end()); 3269 return llvm::None; 3270 }(), 3271 S.getBeginLoc()); 3272 } 3273 3274 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3275 const CodeGenLoopTy &CodeGenLoop, 3276 Expr *IncExpr) { 3277 // Emit the loop iteration variable. 3278 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3279 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3280 EmitVarDecl(*IVDecl); 3281 3282 // Emit the iterations count variable. 3283 // If it is not a variable, Sema decided to calculate iterations count on each 3284 // iteration (e.g., it is foldable into a constant). 3285 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3286 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3287 // Emit calculation of the iterations count. 3288 EmitIgnoredExpr(S.getCalcLastIteration()); 3289 } 3290 3291 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3292 3293 bool HasLastprivateClause = false; 3294 // Check pre-condition. 3295 { 3296 OMPLoopScope PreInitScope(*this, S); 3297 // Skip the entire loop if we don't meet the precondition. 3298 // If the condition constant folds and can be elided, avoid emitting the 3299 // whole loop. 3300 bool CondConstant; 3301 llvm::BasicBlock *ContBlock = nullptr; 3302 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3303 if (!CondConstant) 3304 return; 3305 } else { 3306 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3307 ContBlock = createBasicBlock("omp.precond.end"); 3308 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3309 getProfileCount(&S)); 3310 EmitBlock(ThenBlock); 3311 incrementProfileCounter(&S); 3312 } 3313 3314 emitAlignedClause(*this, S); 3315 // Emit 'then' code. 3316 { 3317 // Emit helper vars inits. 3318 3319 LValue LB = EmitOMPHelperVar( 3320 *this, cast<DeclRefExpr>( 3321 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3322 ? S.getCombinedLowerBoundVariable() 3323 : S.getLowerBoundVariable()))); 3324 LValue UB = EmitOMPHelperVar( 3325 *this, cast<DeclRefExpr>( 3326 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3327 ? S.getCombinedUpperBoundVariable() 3328 : S.getUpperBoundVariable()))); 3329 LValue ST = 3330 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3331 LValue IL = 3332 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3333 3334 OMPPrivateScope LoopScope(*this); 3335 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3336 // Emit implicit barrier to synchronize threads and avoid data races 3337 // on initialization of firstprivate variables and post-update of 3338 // lastprivate variables. 3339 CGM.getOpenMPRuntime().emitBarrierCall( 3340 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3341 /*ForceSimpleCall=*/true); 3342 } 3343 EmitOMPPrivateClause(S, LoopScope); 3344 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3345 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3346 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3347 EmitOMPReductionClauseInit(S, LoopScope); 3348 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3349 EmitOMPPrivateLoopCounters(S, LoopScope); 3350 (void)LoopScope.Privatize(); 3351 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3352 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3353 3354 // Detect the distribute schedule kind and chunk. 3355 llvm::Value *Chunk = nullptr; 3356 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3357 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3358 ScheduleKind = C->getDistScheduleKind(); 3359 if (const Expr *Ch = C->getChunkSize()) { 3360 Chunk = EmitScalarExpr(Ch); 3361 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3362 S.getIterationVariable()->getType(), 3363 S.getBeginLoc()); 3364 } 3365 } else { 3366 // Default behaviour for dist_schedule clause. 3367 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3368 *this, S, ScheduleKind, Chunk); 3369 } 3370 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3371 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3372 3373 // OpenMP [2.10.8, distribute Construct, Description] 3374 // If dist_schedule is specified, kind must be static. If specified, 3375 // iterations are divided into chunks of size chunk_size, chunks are 3376 // assigned to the teams of the league in a round-robin fashion in the 3377 // order of the team number. When no chunk_size is specified, the 3378 // iteration space is divided into chunks that are approximately equal 3379 // in size, and at most one chunk is distributed to each team of the 3380 // league. The size of the chunks is unspecified in this case. 3381 bool StaticChunked = RT.isStaticChunked( 3382 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3383 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3384 if (RT.isStaticNonchunked(ScheduleKind, 3385 /* Chunked */ Chunk != nullptr) || 3386 StaticChunked) { 3387 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3388 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3389 CGOpenMPRuntime::StaticRTInput StaticInit( 3390 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3391 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3392 StaticChunked ? Chunk : nullptr); 3393 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3394 StaticInit); 3395 JumpDest LoopExit = 3396 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3397 // UB = min(UB, GlobalUB); 3398 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3399 ? S.getCombinedEnsureUpperBound() 3400 : S.getEnsureUpperBound()); 3401 // IV = LB; 3402 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3403 ? S.getCombinedInit() 3404 : S.getInit()); 3405 3406 const Expr *Cond = 3407 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3408 ? S.getCombinedCond() 3409 : S.getCond(); 3410 3411 if (StaticChunked) 3412 Cond = S.getCombinedDistCond(); 3413 3414 // For static unchunked schedules generate: 3415 // 3416 // 1. For distribute alone, codegen 3417 // while (idx <= UB) { 3418 // BODY; 3419 // ++idx; 3420 // } 3421 // 3422 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3423 // while (idx <= UB) { 3424 // <CodeGen rest of pragma>(LB, UB); 3425 // idx += ST; 3426 // } 3427 // 3428 // For static chunk one schedule generate: 3429 // 3430 // while (IV <= GlobalUB) { 3431 // <CodeGen rest of pragma>(LB, UB); 3432 // LB += ST; 3433 // UB += ST; 3434 // UB = min(UB, GlobalUB); 3435 // IV = LB; 3436 // } 3437 // 3438 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3439 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3440 CodeGenLoop(CGF, S, LoopExit); 3441 }, 3442 [&S, StaticChunked](CodeGenFunction &CGF) { 3443 if (StaticChunked) { 3444 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3445 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3446 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3447 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3448 } 3449 }); 3450 EmitBlock(LoopExit.getBlock()); 3451 // Tell the runtime we are done. 3452 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3453 } else { 3454 // Emit the outer loop, which requests its work chunk [LB..UB] from 3455 // runtime and runs the inner loop to process it. 3456 const OMPLoopArguments LoopArguments = { 3457 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3458 Chunk}; 3459 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3460 CodeGenLoop); 3461 } 3462 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3463 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3464 return CGF.Builder.CreateIsNotNull( 3465 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3466 }); 3467 } 3468 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3469 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3470 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3471 EmitOMPReductionClauseFinal(S, OMPD_simd); 3472 // Emit post-update of the reduction variables if IsLastIter != 0. 3473 emitPostUpdateForReductionClause( 3474 *this, S, [IL, &S](CodeGenFunction &CGF) { 3475 return CGF.Builder.CreateIsNotNull( 3476 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3477 }); 3478 } 3479 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3480 if (HasLastprivateClause) { 3481 EmitOMPLastprivateClauseFinal( 3482 S, /*NoFinals=*/false, 3483 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3484 } 3485 } 3486 3487 // We're now done with the loop, so jump to the continuation block. 3488 if (ContBlock) { 3489 EmitBranch(ContBlock); 3490 EmitBlock(ContBlock, true); 3491 } 3492 } 3493 } 3494 3495 void CodeGenFunction::EmitOMPDistributeDirective( 3496 const OMPDistributeDirective &S) { 3497 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3498 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3499 }; 3500 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3501 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3502 } 3503 3504 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3505 const CapturedStmt *S) { 3506 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3507 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3508 CGF.CapturedStmtInfo = &CapStmtInfo; 3509 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3510 Fn->setDoesNotRecurse(); 3511 return Fn; 3512 } 3513 3514 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3515 if (S.hasClausesOfKind<OMPDependClause>()) { 3516 assert(!S.getAssociatedStmt() && 3517 "No associated statement must be in ordered depend construct."); 3518 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3519 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3520 return; 3521 } 3522 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3523 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3524 PrePostActionTy &Action) { 3525 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3526 if (C) { 3527 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3528 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3529 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3530 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3531 OutlinedFn, CapturedVars); 3532 } else { 3533 Action.Enter(CGF); 3534 CGF.EmitStmt(CS->getCapturedStmt()); 3535 } 3536 }; 3537 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3538 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3539 } 3540 3541 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3542 QualType SrcType, QualType DestType, 3543 SourceLocation Loc) { 3544 assert(CGF.hasScalarEvaluationKind(DestType) && 3545 "DestType must have scalar evaluation kind."); 3546 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3547 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3548 DestType, Loc) 3549 : CGF.EmitComplexToScalarConversion( 3550 Val.getComplexVal(), SrcType, DestType, Loc); 3551 } 3552 3553 static CodeGenFunction::ComplexPairTy 3554 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3555 QualType DestType, SourceLocation Loc) { 3556 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3557 "DestType must have complex evaluation kind."); 3558 CodeGenFunction::ComplexPairTy ComplexVal; 3559 if (Val.isScalar()) { 3560 // Convert the input element to the element type of the complex. 3561 QualType DestElementType = 3562 DestType->castAs<ComplexType>()->getElementType(); 3563 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3564 Val.getScalarVal(), SrcType, DestElementType, Loc); 3565 ComplexVal = CodeGenFunction::ComplexPairTy( 3566 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3567 } else { 3568 assert(Val.isComplex() && "Must be a scalar or complex."); 3569 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3570 QualType DestElementType = 3571 DestType->castAs<ComplexType>()->getElementType(); 3572 ComplexVal.first = CGF.EmitScalarConversion( 3573 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3574 ComplexVal.second = CGF.EmitScalarConversion( 3575 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3576 } 3577 return ComplexVal; 3578 } 3579 3580 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3581 LValue LVal, RValue RVal) { 3582 if (LVal.isGlobalReg()) { 3583 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3584 } else { 3585 CGF.EmitAtomicStore(RVal, LVal, 3586 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3587 : llvm::AtomicOrdering::Monotonic, 3588 LVal.isVolatile(), /*IsInit=*/false); 3589 } 3590 } 3591 3592 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3593 QualType RValTy, SourceLocation Loc) { 3594 switch (getEvaluationKind(LVal.getType())) { 3595 case TEK_Scalar: 3596 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3597 *this, RVal, RValTy, LVal.getType(), Loc)), 3598 LVal); 3599 break; 3600 case TEK_Complex: 3601 EmitStoreOfComplex( 3602 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3603 /*isInit=*/false); 3604 break; 3605 case TEK_Aggregate: 3606 llvm_unreachable("Must be a scalar or complex."); 3607 } 3608 } 3609 3610 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3611 const Expr *X, const Expr *V, 3612 SourceLocation Loc) { 3613 // v = x; 3614 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3615 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3616 LValue XLValue = CGF.EmitLValue(X); 3617 LValue VLValue = CGF.EmitLValue(V); 3618 RValue Res = XLValue.isGlobalReg() 3619 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3620 : CGF.EmitAtomicLoad( 3621 XLValue, Loc, 3622 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3623 : llvm::AtomicOrdering::Monotonic, 3624 XLValue.isVolatile()); 3625 // OpenMP, 2.12.6, atomic Construct 3626 // Any atomic construct with a seq_cst clause forces the atomically 3627 // performed operation to include an implicit flush operation without a 3628 // list. 3629 if (IsSeqCst) 3630 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3631 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3632 } 3633 3634 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3635 const Expr *X, const Expr *E, 3636 SourceLocation Loc) { 3637 // x = expr; 3638 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3639 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3640 // OpenMP, 2.12.6, atomic Construct 3641 // Any atomic construct with a seq_cst clause forces the atomically 3642 // performed operation to include an implicit flush operation without a 3643 // list. 3644 if (IsSeqCst) 3645 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3646 } 3647 3648 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3649 RValue Update, 3650 BinaryOperatorKind BO, 3651 llvm::AtomicOrdering AO, 3652 bool IsXLHSInRHSPart) { 3653 ASTContext &Context = CGF.getContext(); 3654 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3655 // expression is simple and atomic is allowed for the given type for the 3656 // target platform. 3657 if (BO == BO_Comma || !Update.isScalar() || 3658 !Update.getScalarVal()->getType()->isIntegerTy() || 3659 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3660 (Update.getScalarVal()->getType() != 3661 X.getAddress().getElementType())) || 3662 !X.getAddress().getElementType()->isIntegerTy() || 3663 !Context.getTargetInfo().hasBuiltinAtomic( 3664 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3665 return std::make_pair(false, RValue::get(nullptr)); 3666 3667 llvm::AtomicRMWInst::BinOp RMWOp; 3668 switch (BO) { 3669 case BO_Add: 3670 RMWOp = llvm::AtomicRMWInst::Add; 3671 break; 3672 case BO_Sub: 3673 if (!IsXLHSInRHSPart) 3674 return std::make_pair(false, RValue::get(nullptr)); 3675 RMWOp = llvm::AtomicRMWInst::Sub; 3676 break; 3677 case BO_And: 3678 RMWOp = llvm::AtomicRMWInst::And; 3679 break; 3680 case BO_Or: 3681 RMWOp = llvm::AtomicRMWInst::Or; 3682 break; 3683 case BO_Xor: 3684 RMWOp = llvm::AtomicRMWInst::Xor; 3685 break; 3686 case BO_LT: 3687 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3688 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3689 : llvm::AtomicRMWInst::Max) 3690 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3691 : llvm::AtomicRMWInst::UMax); 3692 break; 3693 case BO_GT: 3694 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3695 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3696 : llvm::AtomicRMWInst::Min) 3697 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3698 : llvm::AtomicRMWInst::UMin); 3699 break; 3700 case BO_Assign: 3701 RMWOp = llvm::AtomicRMWInst::Xchg; 3702 break; 3703 case BO_Mul: 3704 case BO_Div: 3705 case BO_Rem: 3706 case BO_Shl: 3707 case BO_Shr: 3708 case BO_LAnd: 3709 case BO_LOr: 3710 return std::make_pair(false, RValue::get(nullptr)); 3711 case BO_PtrMemD: 3712 case BO_PtrMemI: 3713 case BO_LE: 3714 case BO_GE: 3715 case BO_EQ: 3716 case BO_NE: 3717 case BO_Cmp: 3718 case BO_AddAssign: 3719 case BO_SubAssign: 3720 case BO_AndAssign: 3721 case BO_OrAssign: 3722 case BO_XorAssign: 3723 case BO_MulAssign: 3724 case BO_DivAssign: 3725 case BO_RemAssign: 3726 case BO_ShlAssign: 3727 case BO_ShrAssign: 3728 case BO_Comma: 3729 llvm_unreachable("Unsupported atomic update operation"); 3730 } 3731 llvm::Value *UpdateVal = Update.getScalarVal(); 3732 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3733 UpdateVal = CGF.Builder.CreateIntCast( 3734 IC, X.getAddress().getElementType(), 3735 X.getType()->hasSignedIntegerRepresentation()); 3736 } 3737 llvm::Value *Res = 3738 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3739 return std::make_pair(true, RValue::get(Res)); 3740 } 3741 3742 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3743 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3744 llvm::AtomicOrdering AO, SourceLocation Loc, 3745 const llvm::function_ref<RValue(RValue)> CommonGen) { 3746 // Update expressions are allowed to have the following forms: 3747 // x binop= expr; -> xrval + expr; 3748 // x++, ++x -> xrval + 1; 3749 // x--, --x -> xrval - 1; 3750 // x = x binop expr; -> xrval binop expr 3751 // x = expr Op x; - > expr binop xrval; 3752 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3753 if (!Res.first) { 3754 if (X.isGlobalReg()) { 3755 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3756 // 'xrval'. 3757 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3758 } else { 3759 // Perform compare-and-swap procedure. 3760 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3761 } 3762 } 3763 return Res; 3764 } 3765 3766 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3767 const Expr *X, const Expr *E, 3768 const Expr *UE, bool IsXLHSInRHSPart, 3769 SourceLocation Loc) { 3770 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3771 "Update expr in 'atomic update' must be a binary operator."); 3772 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3773 // Update expressions are allowed to have the following forms: 3774 // x binop= expr; -> xrval + expr; 3775 // x++, ++x -> xrval + 1; 3776 // x--, --x -> xrval - 1; 3777 // x = x binop expr; -> xrval binop expr 3778 // x = expr Op x; - > expr binop xrval; 3779 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3780 LValue XLValue = CGF.EmitLValue(X); 3781 RValue ExprRValue = CGF.EmitAnyExpr(E); 3782 llvm::AtomicOrdering AO = IsSeqCst 3783 ? llvm::AtomicOrdering::SequentiallyConsistent 3784 : llvm::AtomicOrdering::Monotonic; 3785 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3786 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3787 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3788 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3789 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3790 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3791 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3792 return CGF.EmitAnyExpr(UE); 3793 }; 3794 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3795 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3796 // OpenMP, 2.12.6, atomic Construct 3797 // Any atomic construct with a seq_cst clause forces the atomically 3798 // performed operation to include an implicit flush operation without a 3799 // list. 3800 if (IsSeqCst) 3801 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3802 } 3803 3804 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3805 QualType SourceType, QualType ResType, 3806 SourceLocation Loc) { 3807 switch (CGF.getEvaluationKind(ResType)) { 3808 case TEK_Scalar: 3809 return RValue::get( 3810 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3811 case TEK_Complex: { 3812 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3813 return RValue::getComplex(Res.first, Res.second); 3814 } 3815 case TEK_Aggregate: 3816 break; 3817 } 3818 llvm_unreachable("Must be a scalar or complex."); 3819 } 3820 3821 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3822 bool IsPostfixUpdate, const Expr *V, 3823 const Expr *X, const Expr *E, 3824 const Expr *UE, bool IsXLHSInRHSPart, 3825 SourceLocation Loc) { 3826 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3827 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3828 RValue NewVVal; 3829 LValue VLValue = CGF.EmitLValue(V); 3830 LValue XLValue = CGF.EmitLValue(X); 3831 RValue ExprRValue = CGF.EmitAnyExpr(E); 3832 llvm::AtomicOrdering AO = IsSeqCst 3833 ? llvm::AtomicOrdering::SequentiallyConsistent 3834 : llvm::AtomicOrdering::Monotonic; 3835 QualType NewVValType; 3836 if (UE) { 3837 // 'x' is updated with some additional value. 3838 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3839 "Update expr in 'atomic capture' must be a binary operator."); 3840 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3841 // Update expressions are allowed to have the following forms: 3842 // x binop= expr; -> xrval + expr; 3843 // x++, ++x -> xrval + 1; 3844 // x--, --x -> xrval - 1; 3845 // x = x binop expr; -> xrval binop expr 3846 // x = expr Op x; - > expr binop xrval; 3847 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3848 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3849 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3850 NewVValType = XRValExpr->getType(); 3851 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3852 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3853 IsPostfixUpdate](RValue XRValue) { 3854 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3855 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3856 RValue Res = CGF.EmitAnyExpr(UE); 3857 NewVVal = IsPostfixUpdate ? XRValue : Res; 3858 return Res; 3859 }; 3860 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3861 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3862 if (Res.first) { 3863 // 'atomicrmw' instruction was generated. 3864 if (IsPostfixUpdate) { 3865 // Use old value from 'atomicrmw'. 3866 NewVVal = Res.second; 3867 } else { 3868 // 'atomicrmw' does not provide new value, so evaluate it using old 3869 // value of 'x'. 3870 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3871 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3872 NewVVal = CGF.EmitAnyExpr(UE); 3873 } 3874 } 3875 } else { 3876 // 'x' is simply rewritten with some 'expr'. 3877 NewVValType = X->getType().getNonReferenceType(); 3878 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3879 X->getType().getNonReferenceType(), Loc); 3880 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3881 NewVVal = XRValue; 3882 return ExprRValue; 3883 }; 3884 // Try to perform atomicrmw xchg, otherwise simple exchange. 3885 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3886 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3887 Loc, Gen); 3888 if (Res.first) { 3889 // 'atomicrmw' instruction was generated. 3890 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3891 } 3892 } 3893 // Emit post-update store to 'v' of old/new 'x' value. 3894 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3895 // OpenMP, 2.12.6, atomic Construct 3896 // Any atomic construct with a seq_cst clause forces the atomically 3897 // performed operation to include an implicit flush operation without a 3898 // list. 3899 if (IsSeqCst) 3900 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3901 } 3902 3903 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3904 bool IsSeqCst, bool IsPostfixUpdate, 3905 const Expr *X, const Expr *V, const Expr *E, 3906 const Expr *UE, bool IsXLHSInRHSPart, 3907 SourceLocation Loc) { 3908 switch (Kind) { 3909 case OMPC_read: 3910 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3911 break; 3912 case OMPC_write: 3913 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3914 break; 3915 case OMPC_unknown: 3916 case OMPC_update: 3917 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3918 break; 3919 case OMPC_capture: 3920 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3921 IsXLHSInRHSPart, Loc); 3922 break; 3923 case OMPC_if: 3924 case OMPC_final: 3925 case OMPC_num_threads: 3926 case OMPC_private: 3927 case OMPC_firstprivate: 3928 case OMPC_lastprivate: 3929 case OMPC_reduction: 3930 case OMPC_task_reduction: 3931 case OMPC_in_reduction: 3932 case OMPC_safelen: 3933 case OMPC_simdlen: 3934 case OMPC_collapse: 3935 case OMPC_default: 3936 case OMPC_seq_cst: 3937 case OMPC_shared: 3938 case OMPC_linear: 3939 case OMPC_aligned: 3940 case OMPC_copyin: 3941 case OMPC_copyprivate: 3942 case OMPC_flush: 3943 case OMPC_proc_bind: 3944 case OMPC_schedule: 3945 case OMPC_ordered: 3946 case OMPC_nowait: 3947 case OMPC_untied: 3948 case OMPC_threadprivate: 3949 case OMPC_depend: 3950 case OMPC_mergeable: 3951 case OMPC_device: 3952 case OMPC_threads: 3953 case OMPC_simd: 3954 case OMPC_map: 3955 case OMPC_num_teams: 3956 case OMPC_thread_limit: 3957 case OMPC_priority: 3958 case OMPC_grainsize: 3959 case OMPC_nogroup: 3960 case OMPC_num_tasks: 3961 case OMPC_hint: 3962 case OMPC_dist_schedule: 3963 case OMPC_defaultmap: 3964 case OMPC_uniform: 3965 case OMPC_to: 3966 case OMPC_from: 3967 case OMPC_use_device_ptr: 3968 case OMPC_is_device_ptr: 3969 case OMPC_unified_address: 3970 case OMPC_unified_shared_memory: 3971 case OMPC_reverse_offload: 3972 case OMPC_dynamic_allocators: 3973 case OMPC_atomic_default_mem_order: 3974 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3975 } 3976 } 3977 3978 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3979 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3980 OpenMPClauseKind Kind = OMPC_unknown; 3981 for (const OMPClause *C : S.clauses()) { 3982 // Find first clause (skip seq_cst clause, if it is first). 3983 if (C->getClauseKind() != OMPC_seq_cst) { 3984 Kind = C->getClauseKind(); 3985 break; 3986 } 3987 } 3988 3989 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3990 if (const auto *FE = dyn_cast<FullExpr>(CS)) 3991 enterFullExpression(FE); 3992 // Processing for statements under 'atomic capture'. 3993 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3994 for (const Stmt *C : Compound->body()) { 3995 if (const auto *FE = dyn_cast<FullExpr>(C)) 3996 enterFullExpression(FE); 3997 } 3998 } 3999 4000 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4001 PrePostActionTy &) { 4002 CGF.EmitStopPoint(CS); 4003 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4004 S.getV(), S.getExpr(), S.getUpdateExpr(), 4005 S.isXLHSInRHSPart(), S.getBeginLoc()); 4006 }; 4007 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4008 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4009 } 4010 4011 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4012 const OMPExecutableDirective &S, 4013 const RegionCodeGenTy &CodeGen) { 4014 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4015 CodeGenModule &CGM = CGF.CGM; 4016 4017 // On device emit this construct as inlined code. 4018 if (CGM.getLangOpts().OpenMPIsDevice) { 4019 OMPLexicalScope Scope(CGF, S, OMPD_target); 4020 CGM.getOpenMPRuntime().emitInlinedDirective( 4021 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4022 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4023 }); 4024 return; 4025 } 4026 4027 llvm::Function *Fn = nullptr; 4028 llvm::Constant *FnID = nullptr; 4029 4030 const Expr *IfCond = nullptr; 4031 // Check for the at most one if clause associated with the target region. 4032 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4033 if (C->getNameModifier() == OMPD_unknown || 4034 C->getNameModifier() == OMPD_target) { 4035 IfCond = C->getCondition(); 4036 break; 4037 } 4038 } 4039 4040 // Check if we have any device clause associated with the directive. 4041 const Expr *Device = nullptr; 4042 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4043 Device = C->getDevice(); 4044 4045 // Check if we have an if clause whose conditional always evaluates to false 4046 // or if we do not have any targets specified. If so the target region is not 4047 // an offload entry point. 4048 bool IsOffloadEntry = true; 4049 if (IfCond) { 4050 bool Val; 4051 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4052 IsOffloadEntry = false; 4053 } 4054 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4055 IsOffloadEntry = false; 4056 4057 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4058 StringRef ParentName; 4059 // In case we have Ctors/Dtors we use the complete type variant to produce 4060 // the mangling of the device outlined kernel. 4061 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4062 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4063 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4064 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4065 else 4066 ParentName = 4067 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4068 4069 // Emit target region as a standalone region. 4070 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4071 IsOffloadEntry, CodeGen); 4072 OMPLexicalScope Scope(CGF, S, OMPD_task); 4073 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4074 } 4075 4076 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4077 PrePostActionTy &Action) { 4078 Action.Enter(CGF); 4079 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4080 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4081 CGF.EmitOMPPrivateClause(S, PrivateScope); 4082 (void)PrivateScope.Privatize(); 4083 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4084 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4085 4086 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4087 } 4088 4089 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4090 StringRef ParentName, 4091 const OMPTargetDirective &S) { 4092 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4093 emitTargetRegion(CGF, S, Action); 4094 }; 4095 llvm::Function *Fn; 4096 llvm::Constant *Addr; 4097 // Emit target region as a standalone region. 4098 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4099 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4100 assert(Fn && Addr && "Target device function emission failed."); 4101 } 4102 4103 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4104 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4105 emitTargetRegion(CGF, S, Action); 4106 }; 4107 emitCommonOMPTargetDirective(*this, S, CodeGen); 4108 } 4109 4110 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4111 const OMPExecutableDirective &S, 4112 OpenMPDirectiveKind InnermostKind, 4113 const RegionCodeGenTy &CodeGen) { 4114 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4115 llvm::Value *OutlinedFn = 4116 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4117 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4118 4119 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4120 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4121 if (NT || TL) { 4122 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4123 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4124 4125 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4126 S.getBeginLoc()); 4127 } 4128 4129 OMPTeamsScope Scope(CGF, S); 4130 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4131 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4132 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4133 CapturedVars); 4134 } 4135 4136 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4137 // Emit teams region as a standalone region. 4138 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4139 Action.Enter(CGF); 4140 OMPPrivateScope PrivateScope(CGF); 4141 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4142 CGF.EmitOMPPrivateClause(S, PrivateScope); 4143 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4144 (void)PrivateScope.Privatize(); 4145 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4146 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4147 }; 4148 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4149 emitPostUpdateForReductionClause(*this, S, 4150 [](CodeGenFunction &) { return nullptr; }); 4151 } 4152 4153 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4154 const OMPTargetTeamsDirective &S) { 4155 auto *CS = S.getCapturedStmt(OMPD_teams); 4156 Action.Enter(CGF); 4157 // Emit teams region as a standalone region. 4158 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4159 Action.Enter(CGF); 4160 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4161 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4162 CGF.EmitOMPPrivateClause(S, PrivateScope); 4163 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4164 (void)PrivateScope.Privatize(); 4165 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4166 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4167 CGF.EmitStmt(CS->getCapturedStmt()); 4168 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4169 }; 4170 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4171 emitPostUpdateForReductionClause(CGF, S, 4172 [](CodeGenFunction &) { return nullptr; }); 4173 } 4174 4175 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4176 CodeGenModule &CGM, StringRef ParentName, 4177 const OMPTargetTeamsDirective &S) { 4178 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4179 emitTargetTeamsRegion(CGF, Action, S); 4180 }; 4181 llvm::Function *Fn; 4182 llvm::Constant *Addr; 4183 // Emit target region as a standalone region. 4184 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4185 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4186 assert(Fn && Addr && "Target device function emission failed."); 4187 } 4188 4189 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4190 const OMPTargetTeamsDirective &S) { 4191 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4192 emitTargetTeamsRegion(CGF, Action, S); 4193 }; 4194 emitCommonOMPTargetDirective(*this, S, CodeGen); 4195 } 4196 4197 static void 4198 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4199 const OMPTargetTeamsDistributeDirective &S) { 4200 Action.Enter(CGF); 4201 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4202 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4203 }; 4204 4205 // Emit teams region as a standalone region. 4206 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4207 PrePostActionTy &Action) { 4208 Action.Enter(CGF); 4209 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4210 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4211 (void)PrivateScope.Privatize(); 4212 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4213 CodeGenDistribute); 4214 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4215 }; 4216 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4217 emitPostUpdateForReductionClause(CGF, S, 4218 [](CodeGenFunction &) { return nullptr; }); 4219 } 4220 4221 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4222 CodeGenModule &CGM, StringRef ParentName, 4223 const OMPTargetTeamsDistributeDirective &S) { 4224 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4225 emitTargetTeamsDistributeRegion(CGF, Action, S); 4226 }; 4227 llvm::Function *Fn; 4228 llvm::Constant *Addr; 4229 // Emit target region as a standalone region. 4230 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4231 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4232 assert(Fn && Addr && "Target device function emission failed."); 4233 } 4234 4235 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4236 const OMPTargetTeamsDistributeDirective &S) { 4237 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4238 emitTargetTeamsDistributeRegion(CGF, Action, S); 4239 }; 4240 emitCommonOMPTargetDirective(*this, S, CodeGen); 4241 } 4242 4243 static void emitTargetTeamsDistributeSimdRegion( 4244 CodeGenFunction &CGF, PrePostActionTy &Action, 4245 const OMPTargetTeamsDistributeSimdDirective &S) { 4246 Action.Enter(CGF); 4247 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4248 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4249 }; 4250 4251 // Emit teams region as a standalone region. 4252 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4253 PrePostActionTy &Action) { 4254 Action.Enter(CGF); 4255 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4256 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4257 (void)PrivateScope.Privatize(); 4258 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4259 CodeGenDistribute); 4260 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4261 }; 4262 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4263 emitPostUpdateForReductionClause(CGF, S, 4264 [](CodeGenFunction &) { return nullptr; }); 4265 } 4266 4267 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4268 CodeGenModule &CGM, StringRef ParentName, 4269 const OMPTargetTeamsDistributeSimdDirective &S) { 4270 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4271 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4272 }; 4273 llvm::Function *Fn; 4274 llvm::Constant *Addr; 4275 // Emit target region as a standalone region. 4276 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4277 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4278 assert(Fn && Addr && "Target device function emission failed."); 4279 } 4280 4281 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4282 const OMPTargetTeamsDistributeSimdDirective &S) { 4283 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4284 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4285 }; 4286 emitCommonOMPTargetDirective(*this, S, CodeGen); 4287 } 4288 4289 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4290 const OMPTeamsDistributeDirective &S) { 4291 4292 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4293 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4294 }; 4295 4296 // Emit teams region as a standalone region. 4297 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4298 PrePostActionTy &Action) { 4299 Action.Enter(CGF); 4300 OMPPrivateScope PrivateScope(CGF); 4301 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4302 (void)PrivateScope.Privatize(); 4303 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4304 CodeGenDistribute); 4305 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4306 }; 4307 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4308 emitPostUpdateForReductionClause(*this, S, 4309 [](CodeGenFunction &) { return nullptr; }); 4310 } 4311 4312 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4313 const OMPTeamsDistributeSimdDirective &S) { 4314 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4315 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4316 }; 4317 4318 // Emit teams region as a standalone region. 4319 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4320 PrePostActionTy &Action) { 4321 Action.Enter(CGF); 4322 OMPPrivateScope PrivateScope(CGF); 4323 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4324 (void)PrivateScope.Privatize(); 4325 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4326 CodeGenDistribute); 4327 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4328 }; 4329 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4330 emitPostUpdateForReductionClause(*this, S, 4331 [](CodeGenFunction &) { return nullptr; }); 4332 } 4333 4334 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4335 const OMPTeamsDistributeParallelForDirective &S) { 4336 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4337 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4338 S.getDistInc()); 4339 }; 4340 4341 // Emit teams region as a standalone region. 4342 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4343 PrePostActionTy &Action) { 4344 Action.Enter(CGF); 4345 OMPPrivateScope PrivateScope(CGF); 4346 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4347 (void)PrivateScope.Privatize(); 4348 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4349 CodeGenDistribute); 4350 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4351 }; 4352 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4353 emitPostUpdateForReductionClause(*this, S, 4354 [](CodeGenFunction &) { return nullptr; }); 4355 } 4356 4357 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4358 const OMPTeamsDistributeParallelForSimdDirective &S) { 4359 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4360 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4361 S.getDistInc()); 4362 }; 4363 4364 // Emit teams region as a standalone region. 4365 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4366 PrePostActionTy &Action) { 4367 Action.Enter(CGF); 4368 OMPPrivateScope PrivateScope(CGF); 4369 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4370 (void)PrivateScope.Privatize(); 4371 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4372 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4373 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4374 }; 4375 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4376 emitPostUpdateForReductionClause(*this, S, 4377 [](CodeGenFunction &) { return nullptr; }); 4378 } 4379 4380 static void emitTargetTeamsDistributeParallelForRegion( 4381 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4382 PrePostActionTy &Action) { 4383 Action.Enter(CGF); 4384 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4385 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4386 S.getDistInc()); 4387 }; 4388 4389 // Emit teams region as a standalone region. 4390 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4391 PrePostActionTy &Action) { 4392 Action.Enter(CGF); 4393 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4394 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4395 (void)PrivateScope.Privatize(); 4396 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4397 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4398 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4399 }; 4400 4401 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4402 CodeGenTeams); 4403 emitPostUpdateForReductionClause(CGF, S, 4404 [](CodeGenFunction &) { return nullptr; }); 4405 } 4406 4407 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4408 CodeGenModule &CGM, StringRef ParentName, 4409 const OMPTargetTeamsDistributeParallelForDirective &S) { 4410 // Emit SPMD target teams distribute parallel for region as a standalone 4411 // region. 4412 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4413 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4414 }; 4415 llvm::Function *Fn; 4416 llvm::Constant *Addr; 4417 // Emit target region as a standalone region. 4418 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4419 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4420 assert(Fn && Addr && "Target device function emission failed."); 4421 } 4422 4423 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4424 const OMPTargetTeamsDistributeParallelForDirective &S) { 4425 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4426 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4427 }; 4428 emitCommonOMPTargetDirective(*this, S, CodeGen); 4429 } 4430 4431 static void emitTargetTeamsDistributeParallelForSimdRegion( 4432 CodeGenFunction &CGF, 4433 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4434 PrePostActionTy &Action) { 4435 Action.Enter(CGF); 4436 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4437 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4438 S.getDistInc()); 4439 }; 4440 4441 // Emit teams region as a standalone region. 4442 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4443 PrePostActionTy &Action) { 4444 Action.Enter(CGF); 4445 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4446 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4447 (void)PrivateScope.Privatize(); 4448 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4449 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4450 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4451 }; 4452 4453 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4454 CodeGenTeams); 4455 emitPostUpdateForReductionClause(CGF, S, 4456 [](CodeGenFunction &) { return nullptr; }); 4457 } 4458 4459 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4460 CodeGenModule &CGM, StringRef ParentName, 4461 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4462 // Emit SPMD target teams distribute parallel for simd region as a standalone 4463 // region. 4464 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4465 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4466 }; 4467 llvm::Function *Fn; 4468 llvm::Constant *Addr; 4469 // Emit target region as a standalone region. 4470 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4471 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4472 assert(Fn && Addr && "Target device function emission failed."); 4473 } 4474 4475 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4476 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4477 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4478 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4479 }; 4480 emitCommonOMPTargetDirective(*this, S, CodeGen); 4481 } 4482 4483 void CodeGenFunction::EmitOMPCancellationPointDirective( 4484 const OMPCancellationPointDirective &S) { 4485 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4486 S.getCancelRegion()); 4487 } 4488 4489 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4490 const Expr *IfCond = nullptr; 4491 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4492 if (C->getNameModifier() == OMPD_unknown || 4493 C->getNameModifier() == OMPD_cancel) { 4494 IfCond = C->getCondition(); 4495 break; 4496 } 4497 } 4498 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4499 S.getCancelRegion()); 4500 } 4501 4502 CodeGenFunction::JumpDest 4503 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4504 if (Kind == OMPD_parallel || Kind == OMPD_task || 4505 Kind == OMPD_target_parallel) 4506 return ReturnBlock; 4507 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4508 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4509 Kind == OMPD_distribute_parallel_for || 4510 Kind == OMPD_target_parallel_for || 4511 Kind == OMPD_teams_distribute_parallel_for || 4512 Kind == OMPD_target_teams_distribute_parallel_for); 4513 return OMPCancelStack.getExitBlock(); 4514 } 4515 4516 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4517 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4518 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4519 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4520 auto OrigVarIt = C.varlist_begin(); 4521 auto InitIt = C.inits().begin(); 4522 for (const Expr *PvtVarIt : C.private_copies()) { 4523 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4524 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4525 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4526 4527 // In order to identify the right initializer we need to match the 4528 // declaration used by the mapping logic. In some cases we may get 4529 // OMPCapturedExprDecl that refers to the original declaration. 4530 const ValueDecl *MatchingVD = OrigVD; 4531 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4532 // OMPCapturedExprDecl are used to privative fields of the current 4533 // structure. 4534 const auto *ME = cast<MemberExpr>(OED->getInit()); 4535 assert(isa<CXXThisExpr>(ME->getBase()) && 4536 "Base should be the current struct!"); 4537 MatchingVD = ME->getMemberDecl(); 4538 } 4539 4540 // If we don't have information about the current list item, move on to 4541 // the next one. 4542 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4543 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4544 continue; 4545 4546 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4547 InitAddrIt, InitVD, 4548 PvtVD]() { 4549 // Initialize the temporary initialization variable with the address we 4550 // get from the runtime library. We have to cast the source address 4551 // because it is always a void *. References are materialized in the 4552 // privatization scope, so the initialization here disregards the fact 4553 // the original variable is a reference. 4554 QualType AddrQTy = 4555 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4556 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4557 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4558 setAddrOfLocalVar(InitVD, InitAddr); 4559 4560 // Emit private declaration, it will be initialized by the value we 4561 // declaration we just added to the local declarations map. 4562 EmitDecl(*PvtVD); 4563 4564 // The initialization variables reached its purpose in the emission 4565 // of the previous declaration, so we don't need it anymore. 4566 LocalDeclMap.erase(InitVD); 4567 4568 // Return the address of the private variable. 4569 return GetAddrOfLocalVar(PvtVD); 4570 }); 4571 assert(IsRegistered && "firstprivate var already registered as private"); 4572 // Silence the warning about unused variable. 4573 (void)IsRegistered; 4574 4575 ++OrigVarIt; 4576 ++InitIt; 4577 } 4578 } 4579 4580 // Generate the instructions for '#pragma omp target data' directive. 4581 void CodeGenFunction::EmitOMPTargetDataDirective( 4582 const OMPTargetDataDirective &S) { 4583 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4584 4585 // Create a pre/post action to signal the privatization of the device pointer. 4586 // This action can be replaced by the OpenMP runtime code generation to 4587 // deactivate privatization. 4588 bool PrivatizeDevicePointers = false; 4589 class DevicePointerPrivActionTy : public PrePostActionTy { 4590 bool &PrivatizeDevicePointers; 4591 4592 public: 4593 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4594 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4595 void Enter(CodeGenFunction &CGF) override { 4596 PrivatizeDevicePointers = true; 4597 } 4598 }; 4599 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4600 4601 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4602 CodeGenFunction &CGF, PrePostActionTy &Action) { 4603 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4604 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4605 }; 4606 4607 // Codegen that selects whether to generate the privatization code or not. 4608 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4609 &InnermostCodeGen](CodeGenFunction &CGF, 4610 PrePostActionTy &Action) { 4611 RegionCodeGenTy RCG(InnermostCodeGen); 4612 PrivatizeDevicePointers = false; 4613 4614 // Call the pre-action to change the status of PrivatizeDevicePointers if 4615 // needed. 4616 Action.Enter(CGF); 4617 4618 if (PrivatizeDevicePointers) { 4619 OMPPrivateScope PrivateScope(CGF); 4620 // Emit all instances of the use_device_ptr clause. 4621 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4622 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4623 Info.CaptureDeviceAddrMap); 4624 (void)PrivateScope.Privatize(); 4625 RCG(CGF); 4626 } else { 4627 RCG(CGF); 4628 } 4629 }; 4630 4631 // Forward the provided action to the privatization codegen. 4632 RegionCodeGenTy PrivRCG(PrivCodeGen); 4633 PrivRCG.setAction(Action); 4634 4635 // Notwithstanding the body of the region is emitted as inlined directive, 4636 // we don't use an inline scope as changes in the references inside the 4637 // region are expected to be visible outside, so we do not privative them. 4638 OMPLexicalScope Scope(CGF, S); 4639 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4640 PrivRCG); 4641 }; 4642 4643 RegionCodeGenTy RCG(CodeGen); 4644 4645 // If we don't have target devices, don't bother emitting the data mapping 4646 // code. 4647 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4648 RCG(*this); 4649 return; 4650 } 4651 4652 // Check if we have any if clause associated with the directive. 4653 const Expr *IfCond = nullptr; 4654 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4655 IfCond = C->getCondition(); 4656 4657 // Check if we have any device clause associated with the directive. 4658 const Expr *Device = nullptr; 4659 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4660 Device = C->getDevice(); 4661 4662 // Set the action to signal privatization of device pointers. 4663 RCG.setAction(PrivAction); 4664 4665 // Emit region code. 4666 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4667 Info); 4668 } 4669 4670 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4671 const OMPTargetEnterDataDirective &S) { 4672 // If we don't have target devices, don't bother emitting the data mapping 4673 // code. 4674 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4675 return; 4676 4677 // Check if we have any if clause associated with the directive. 4678 const Expr *IfCond = nullptr; 4679 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4680 IfCond = C->getCondition(); 4681 4682 // Check if we have any device clause associated with the directive. 4683 const Expr *Device = nullptr; 4684 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4685 Device = C->getDevice(); 4686 4687 OMPLexicalScope Scope(*this, S, OMPD_task); 4688 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4689 } 4690 4691 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4692 const OMPTargetExitDataDirective &S) { 4693 // If we don't have target devices, don't bother emitting the data mapping 4694 // code. 4695 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4696 return; 4697 4698 // Check if we have any if clause associated with the directive. 4699 const Expr *IfCond = nullptr; 4700 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4701 IfCond = C->getCondition(); 4702 4703 // Check if we have any device clause associated with the directive. 4704 const Expr *Device = nullptr; 4705 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4706 Device = C->getDevice(); 4707 4708 OMPLexicalScope Scope(*this, S, OMPD_task); 4709 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4710 } 4711 4712 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4713 const OMPTargetParallelDirective &S, 4714 PrePostActionTy &Action) { 4715 // Get the captured statement associated with the 'parallel' region. 4716 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4717 Action.Enter(CGF); 4718 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4719 Action.Enter(CGF); 4720 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4721 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4722 CGF.EmitOMPPrivateClause(S, PrivateScope); 4723 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4724 (void)PrivateScope.Privatize(); 4725 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4726 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4727 // TODO: Add support for clauses. 4728 CGF.EmitStmt(CS->getCapturedStmt()); 4729 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4730 }; 4731 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4732 emitEmptyBoundParameters); 4733 emitPostUpdateForReductionClause(CGF, S, 4734 [](CodeGenFunction &) { return nullptr; }); 4735 } 4736 4737 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4738 CodeGenModule &CGM, StringRef ParentName, 4739 const OMPTargetParallelDirective &S) { 4740 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4741 emitTargetParallelRegion(CGF, S, Action); 4742 }; 4743 llvm::Function *Fn; 4744 llvm::Constant *Addr; 4745 // Emit target region as a standalone region. 4746 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4747 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4748 assert(Fn && Addr && "Target device function emission failed."); 4749 } 4750 4751 void CodeGenFunction::EmitOMPTargetParallelDirective( 4752 const OMPTargetParallelDirective &S) { 4753 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4754 emitTargetParallelRegion(CGF, S, Action); 4755 }; 4756 emitCommonOMPTargetDirective(*this, S, CodeGen); 4757 } 4758 4759 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4760 const OMPTargetParallelForDirective &S, 4761 PrePostActionTy &Action) { 4762 Action.Enter(CGF); 4763 // Emit directive as a combined directive that consists of two implicit 4764 // directives: 'parallel' with 'for' directive. 4765 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4766 Action.Enter(CGF); 4767 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4768 CGF, OMPD_target_parallel_for, S.hasCancel()); 4769 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4770 emitDispatchForLoopBounds); 4771 }; 4772 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4773 emitEmptyBoundParameters); 4774 } 4775 4776 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4777 CodeGenModule &CGM, StringRef ParentName, 4778 const OMPTargetParallelForDirective &S) { 4779 // Emit SPMD target parallel for region as a standalone region. 4780 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4781 emitTargetParallelForRegion(CGF, S, Action); 4782 }; 4783 llvm::Function *Fn; 4784 llvm::Constant *Addr; 4785 // Emit target region as a standalone region. 4786 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4787 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4788 assert(Fn && Addr && "Target device function emission failed."); 4789 } 4790 4791 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4792 const OMPTargetParallelForDirective &S) { 4793 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4794 emitTargetParallelForRegion(CGF, S, Action); 4795 }; 4796 emitCommonOMPTargetDirective(*this, S, CodeGen); 4797 } 4798 4799 static void 4800 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4801 const OMPTargetParallelForSimdDirective &S, 4802 PrePostActionTy &Action) { 4803 Action.Enter(CGF); 4804 // Emit directive as a combined directive that consists of two implicit 4805 // directives: 'parallel' with 'for' directive. 4806 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4807 Action.Enter(CGF); 4808 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4809 emitDispatchForLoopBounds); 4810 }; 4811 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4812 emitEmptyBoundParameters); 4813 } 4814 4815 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4816 CodeGenModule &CGM, StringRef ParentName, 4817 const OMPTargetParallelForSimdDirective &S) { 4818 // Emit SPMD target parallel for region as a standalone region. 4819 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4820 emitTargetParallelForSimdRegion(CGF, S, Action); 4821 }; 4822 llvm::Function *Fn; 4823 llvm::Constant *Addr; 4824 // Emit target region as a standalone region. 4825 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4826 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4827 assert(Fn && Addr && "Target device function emission failed."); 4828 } 4829 4830 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4831 const OMPTargetParallelForSimdDirective &S) { 4832 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4833 emitTargetParallelForSimdRegion(CGF, S, Action); 4834 }; 4835 emitCommonOMPTargetDirective(*this, S, CodeGen); 4836 } 4837 4838 /// Emit a helper variable and return corresponding lvalue. 4839 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4840 const ImplicitParamDecl *PVD, 4841 CodeGenFunction::OMPPrivateScope &Privates) { 4842 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4843 Privates.addPrivate(VDecl, 4844 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4845 } 4846 4847 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4848 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4849 // Emit outlined function for task construct. 4850 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4851 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4852 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4853 const Expr *IfCond = nullptr; 4854 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4855 if (C->getNameModifier() == OMPD_unknown || 4856 C->getNameModifier() == OMPD_taskloop) { 4857 IfCond = C->getCondition(); 4858 break; 4859 } 4860 } 4861 4862 OMPTaskDataTy Data; 4863 // Check if taskloop must be emitted without taskgroup. 4864 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4865 // TODO: Check if we should emit tied or untied task. 4866 Data.Tied = true; 4867 // Set scheduling for taskloop 4868 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4869 // grainsize clause 4870 Data.Schedule.setInt(/*IntVal=*/false); 4871 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4872 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4873 // num_tasks clause 4874 Data.Schedule.setInt(/*IntVal=*/true); 4875 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4876 } 4877 4878 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4879 // if (PreCond) { 4880 // for (IV in 0..LastIteration) BODY; 4881 // <Final counter/linear vars updates>; 4882 // } 4883 // 4884 4885 // Emit: if (PreCond) - begin. 4886 // If the condition constant folds and can be elided, avoid emitting the 4887 // whole loop. 4888 bool CondConstant; 4889 llvm::BasicBlock *ContBlock = nullptr; 4890 OMPLoopScope PreInitScope(CGF, S); 4891 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4892 if (!CondConstant) 4893 return; 4894 } else { 4895 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4896 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4897 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4898 CGF.getProfileCount(&S)); 4899 CGF.EmitBlock(ThenBlock); 4900 CGF.incrementProfileCounter(&S); 4901 } 4902 4903 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4904 CGF.EmitOMPSimdInit(S); 4905 4906 OMPPrivateScope LoopScope(CGF); 4907 // Emit helper vars inits. 4908 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4909 auto *I = CS->getCapturedDecl()->param_begin(); 4910 auto *LBP = std::next(I, LowerBound); 4911 auto *UBP = std::next(I, UpperBound); 4912 auto *STP = std::next(I, Stride); 4913 auto *LIP = std::next(I, LastIter); 4914 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4915 LoopScope); 4916 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4917 LoopScope); 4918 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4919 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4920 LoopScope); 4921 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4922 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4923 (void)LoopScope.Privatize(); 4924 // Emit the loop iteration variable. 4925 const Expr *IVExpr = S.getIterationVariable(); 4926 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4927 CGF.EmitVarDecl(*IVDecl); 4928 CGF.EmitIgnoredExpr(S.getInit()); 4929 4930 // Emit the iterations count variable. 4931 // If it is not a variable, Sema decided to calculate iterations count on 4932 // each iteration (e.g., it is foldable into a constant). 4933 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4934 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4935 // Emit calculation of the iterations count. 4936 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4937 } 4938 4939 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4940 S.getInc(), 4941 [&S](CodeGenFunction &CGF) { 4942 CGF.EmitOMPLoopBody(S, JumpDest()); 4943 CGF.EmitStopPoint(&S); 4944 }, 4945 [](CodeGenFunction &) {}); 4946 // Emit: if (PreCond) - end. 4947 if (ContBlock) { 4948 CGF.EmitBranch(ContBlock); 4949 CGF.EmitBlock(ContBlock, true); 4950 } 4951 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4952 if (HasLastprivateClause) { 4953 CGF.EmitOMPLastprivateClauseFinal( 4954 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4955 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4956 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4957 (*LIP)->getType(), S.getBeginLoc()))); 4958 } 4959 }; 4960 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4961 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4962 const OMPTaskDataTy &Data) { 4963 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4964 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4965 OMPLoopScope PreInitScope(CGF, S); 4966 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4967 OutlinedFn, SharedsTy, 4968 CapturedStruct, IfCond, Data); 4969 }; 4970 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4971 CodeGen); 4972 }; 4973 if (Data.Nogroup) { 4974 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4975 } else { 4976 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4977 *this, 4978 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4979 PrePostActionTy &Action) { 4980 Action.Enter(CGF); 4981 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4982 Data); 4983 }, 4984 S.getBeginLoc()); 4985 } 4986 } 4987 4988 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4989 EmitOMPTaskLoopBasedDirective(S); 4990 } 4991 4992 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4993 const OMPTaskLoopSimdDirective &S) { 4994 EmitOMPTaskLoopBasedDirective(S); 4995 } 4996 4997 // Generate the instructions for '#pragma omp target update' directive. 4998 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4999 const OMPTargetUpdateDirective &S) { 5000 // If we don't have target devices, don't bother emitting the data mapping 5001 // code. 5002 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5003 return; 5004 5005 // Check if we have any if clause associated with the directive. 5006 const Expr *IfCond = nullptr; 5007 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5008 IfCond = C->getCondition(); 5009 5010 // Check if we have any device clause associated with the directive. 5011 const Expr *Device = nullptr; 5012 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5013 Device = C->getDevice(); 5014 5015 OMPLexicalScope Scope(*this, S, OMPD_task); 5016 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5017 } 5018 5019 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5020 const OMPExecutableDirective &D) { 5021 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5022 return; 5023 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5024 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5025 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5026 } else { 5027 OMPPrivateScope LoopGlobals(CGF); 5028 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5029 for (const Expr *E : LD->counters()) { 5030 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5031 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5032 LValue GlobLVal = CGF.EmitLValue(E); 5033 LoopGlobals.addPrivate( 5034 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5035 } 5036 if (isa<OMPCapturedExprDecl>(VD)) { 5037 // Emit only those that were not explicitly referenced in clauses. 5038 if (!CGF.LocalDeclMap.count(VD)) 5039 CGF.EmitVarDecl(*VD); 5040 } 5041 } 5042 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5043 if (!C->getNumForLoops()) 5044 continue; 5045 for (unsigned I = LD->getCollapsedNumber(), 5046 E = C->getLoopNumIterations().size(); 5047 I < E; ++I) { 5048 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5049 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5050 // Emit only those that were not explicitly referenced in clauses. 5051 if (!CGF.LocalDeclMap.count(VD)) 5052 CGF.EmitVarDecl(*VD); 5053 } 5054 } 5055 } 5056 } 5057 LoopGlobals.Privatize(); 5058 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5059 } 5060 }; 5061 OMPSimdLexicalScope Scope(*this, D); 5062 CGM.getOpenMPRuntime().emitInlinedDirective( 5063 *this, 5064 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5065 : D.getDirectiveKind(), 5066 CodeGen); 5067 } 5068 5069