1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 emitPreInitStmt(CGF, S); 61 if (AsInlined) { 62 if (S.hasAssociatedStmt()) { 63 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 64 for (auto &C : CS->captures()) { 65 if (C.capturesVariable() || C.capturesVariableByCopy()) { 66 auto *VD = C.getCapturedVar(); 67 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 68 isCapturedVar(CGF, VD) || 69 (CGF.CapturedStmtInfo && 70 InlinedShareds.isGlobalVarCaptured(VD)), 71 VD->getType().getNonReferenceType(), VK_LValue, 72 SourceLocation()); 73 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 74 return CGF.EmitLValue(&DRE).getAddress(); 75 }); 76 } 77 } 78 (void)InlinedShareds.Privatize(); 79 } 80 } 81 } 82 }; 83 84 /// Private scope for OpenMP loop-based directives, that supports capturing 85 /// of used expression from loop statement. 86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 87 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 88 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 89 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 90 for (const auto *I : PreInits->decls()) 91 CGF.EmitVarDecl(cast<VarDecl>(*I)); 92 } 93 } 94 } 95 96 public: 97 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 98 : CodeGenFunction::RunCleanupsScope(CGF) { 99 emitPreInitStmt(CGF, S); 100 } 101 }; 102 103 } // namespace 104 105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 106 auto &C = getContext(); 107 llvm::Value *Size = nullptr; 108 auto SizeInChars = C.getTypeSizeInChars(Ty); 109 if (SizeInChars.isZero()) { 110 // getTypeSizeInChars() returns 0 for a VLA. 111 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 112 llvm::Value *ArraySize; 113 std::tie(ArraySize, Ty) = getVLASize(VAT); 114 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 115 } 116 SizeInChars = C.getTypeSizeInChars(Ty); 117 if (SizeInChars.isZero()) 118 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 119 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 120 } else 121 Size = CGM.getSize(SizeInChars); 122 return Size; 123 } 124 125 void CodeGenFunction::GenerateOpenMPCapturedVars( 126 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 127 const RecordDecl *RD = S.getCapturedRecordDecl(); 128 auto CurField = RD->field_begin(); 129 auto CurCap = S.captures().begin(); 130 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 131 E = S.capture_init_end(); 132 I != E; ++I, ++CurField, ++CurCap) { 133 if (CurField->hasCapturedVLAType()) { 134 auto VAT = CurField->getCapturedVLAType(); 135 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 136 CapturedVars.push_back(Val); 137 } else if (CurCap->capturesThis()) 138 CapturedVars.push_back(CXXThisValue); 139 else if (CurCap->capturesVariableByCopy()) { 140 llvm::Value *CV = 141 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 142 143 // If the field is not a pointer, we need to save the actual value 144 // and load it as a void pointer. 145 if (!CurField->getType()->isAnyPointerType()) { 146 auto &Ctx = getContext(); 147 auto DstAddr = CreateMemTemp( 148 Ctx.getUIntPtrType(), 149 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 150 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 151 152 auto *SrcAddrVal = EmitScalarConversion( 153 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 154 Ctx.getPointerType(CurField->getType()), SourceLocation()); 155 LValue SrcLV = 156 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 157 158 // Store the value using the source type pointer. 159 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 160 161 // Load the value using the destination type pointer. 162 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 163 } 164 CapturedVars.push_back(CV); 165 } else { 166 assert(CurCap->capturesVariable() && "Expected capture by reference."); 167 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 168 } 169 } 170 } 171 172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 173 StringRef Name, LValue AddrLV, 174 bool isReferenceType = false) { 175 ASTContext &Ctx = CGF.getContext(); 176 177 auto *CastedPtr = CGF.EmitScalarConversion( 178 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 179 Ctx.getPointerType(DstType), SourceLocation()); 180 auto TmpAddr = 181 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 182 .getAddress(); 183 184 // If we are dealing with references we need to return the address of the 185 // reference instead of the reference of the value. 186 if (isReferenceType) { 187 QualType RefType = Ctx.getLValueReferenceType(DstType); 188 auto *RefVal = TmpAddr.getPointer(); 189 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 190 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 191 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 192 } 193 194 return TmpAddr; 195 } 196 197 llvm::Function * 198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 199 assert( 200 CapturedStmtInfo && 201 "CapturedStmtInfo should be set when generating the captured function"); 202 const CapturedDecl *CD = S.getCapturedDecl(); 203 const RecordDecl *RD = S.getCapturedRecordDecl(); 204 assert(CD->hasBody() && "missing CapturedDecl body"); 205 206 // Build the argument list. 207 ASTContext &Ctx = CGM.getContext(); 208 FunctionArgList Args; 209 Args.append(CD->param_begin(), 210 std::next(CD->param_begin(), CD->getContextParamPosition())); 211 auto I = S.captures().begin(); 212 for (auto *FD : RD->fields()) { 213 QualType ArgType = FD->getType(); 214 IdentifierInfo *II = nullptr; 215 VarDecl *CapVar = nullptr; 216 217 // If this is a capture by copy and the type is not a pointer, the outlined 218 // function argument type should be uintptr and the value properly casted to 219 // uintptr. This is necessary given that the runtime library is only able to 220 // deal with pointers. We can pass in the same way the VLA type sizes to the 221 // outlined function. 222 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 223 I->capturesVariableArrayType()) 224 ArgType = Ctx.getUIntPtrType(); 225 226 if (I->capturesVariable() || I->capturesVariableByCopy()) { 227 CapVar = I->getCapturedVar(); 228 II = CapVar->getIdentifier(); 229 } else if (I->capturesThis()) 230 II = &getContext().Idents.get("this"); 231 else { 232 assert(I->capturesVariableArrayType()); 233 II = &getContext().Idents.get("vla"); 234 } 235 if (ArgType->isVariablyModifiedType()) { 236 bool IsReference = ArgType->isLValueReferenceType(); 237 ArgType = 238 getContext().getCanonicalParamType(ArgType.getNonReferenceType()); 239 if (IsReference && !ArgType->isPointerType()) { 240 ArgType = getContext().getLValueReferenceType( 241 ArgType, /*SpelledAsLValue=*/false); 242 } 243 } 244 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 245 FD->getLocation(), II, ArgType)); 246 ++I; 247 } 248 Args.append( 249 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 250 CD->param_end()); 251 252 // Create the function declaration. 253 FunctionType::ExtInfo ExtInfo; 254 const CGFunctionInfo &FuncInfo = 255 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 256 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 257 258 llvm::Function *F = llvm::Function::Create( 259 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 260 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 261 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 262 if (CD->isNothrow()) 263 F->addFnAttr(llvm::Attribute::NoUnwind); 264 265 // Generate the function. 266 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 267 CD->getBody()->getLocStart()); 268 unsigned Cnt = CD->getContextParamPosition(); 269 I = S.captures().begin(); 270 for (auto *FD : RD->fields()) { 271 // If we are capturing a pointer by copy we don't need to do anything, just 272 // use the value that we get from the arguments. 273 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 274 const VarDecl *CurVD = I->getCapturedVar(); 275 Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]); 276 // If the variable is a reference we need to materialize it here. 277 if (CurVD->getType()->isReferenceType()) { 278 Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(), 279 ".materialized_ref"); 280 EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false, 281 CurVD->getType()); 282 LocalAddr = RefAddr; 283 } 284 setAddrOfLocalVar(CurVD, LocalAddr); 285 ++Cnt; 286 ++I; 287 continue; 288 } 289 290 LValue ArgLVal = 291 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 292 AlignmentSource::Decl); 293 if (FD->hasCapturedVLAType()) { 294 LValue CastedArgLVal = 295 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 296 Args[Cnt]->getName(), ArgLVal), 297 FD->getType(), AlignmentSource::Decl); 298 auto *ExprArg = 299 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 300 auto VAT = FD->getCapturedVLAType(); 301 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 302 } else if (I->capturesVariable()) { 303 auto *Var = I->getCapturedVar(); 304 QualType VarTy = Var->getType(); 305 Address ArgAddr = ArgLVal.getAddress(); 306 if (!VarTy->isReferenceType()) { 307 if (ArgLVal.getType()->isLValueReferenceType()) { 308 ArgAddr = EmitLoadOfReference( 309 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 310 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 311 assert(ArgLVal.getType()->isPointerType()); 312 ArgAddr = EmitLoadOfPointer( 313 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 314 } 315 } 316 setAddrOfLocalVar( 317 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 318 } else if (I->capturesVariableByCopy()) { 319 assert(!FD->getType()->isAnyPointerType() && 320 "Not expecting a captured pointer."); 321 auto *Var = I->getCapturedVar(); 322 QualType VarTy = Var->getType(); 323 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 324 Args[Cnt]->getName(), ArgLVal, 325 VarTy->isReferenceType())); 326 } else { 327 // If 'this' is captured, load it into CXXThisValue. 328 assert(I->capturesThis()); 329 CXXThisValue = 330 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 331 } 332 ++Cnt; 333 ++I; 334 } 335 336 PGO.assignRegionCounters(GlobalDecl(CD), F); 337 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 338 FinishFunction(CD->getBodyRBrace()); 339 340 return F; 341 } 342 343 //===----------------------------------------------------------------------===// 344 // OpenMP Directive Emission 345 //===----------------------------------------------------------------------===// 346 void CodeGenFunction::EmitOMPAggregateAssign( 347 Address DestAddr, Address SrcAddr, QualType OriginalType, 348 const llvm::function_ref<void(Address, Address)> &CopyGen) { 349 // Perform element-by-element initialization. 350 QualType ElementTy; 351 352 // Drill down to the base element type on both arrays. 353 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 354 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 355 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 356 357 auto SrcBegin = SrcAddr.getPointer(); 358 auto DestBegin = DestAddr.getPointer(); 359 // Cast from pointer to array type to pointer to single element. 360 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 361 // The basic structure here is a while-do loop. 362 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 363 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 364 auto IsEmpty = 365 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 366 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 367 368 // Enter the loop body, making that address the current address. 369 auto EntryBB = Builder.GetInsertBlock(); 370 EmitBlock(BodyBB); 371 372 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 373 374 llvm::PHINode *SrcElementPHI = 375 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 376 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 377 Address SrcElementCurrent = 378 Address(SrcElementPHI, 379 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 380 381 llvm::PHINode *DestElementPHI = 382 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 383 DestElementPHI->addIncoming(DestBegin, EntryBB); 384 Address DestElementCurrent = 385 Address(DestElementPHI, 386 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 387 388 // Emit copy. 389 CopyGen(DestElementCurrent, SrcElementCurrent); 390 391 // Shift the address forward by one element. 392 auto DestElementNext = Builder.CreateConstGEP1_32( 393 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 394 auto SrcElementNext = Builder.CreateConstGEP1_32( 395 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 396 // Check whether we've reached the end. 397 auto Done = 398 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 399 Builder.CreateCondBr(Done, DoneBB, BodyBB); 400 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 401 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 402 403 // Done. 404 EmitBlock(DoneBB, /*IsFinished=*/true); 405 } 406 407 /// Check if the combiner is a call to UDR combiner and if it is so return the 408 /// UDR decl used for reduction. 409 static const OMPDeclareReductionDecl * 410 getReductionInit(const Expr *ReductionOp) { 411 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 412 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 413 if (auto *DRE = 414 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 415 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 416 return DRD; 417 return nullptr; 418 } 419 420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 421 const OMPDeclareReductionDecl *DRD, 422 const Expr *InitOp, 423 Address Private, Address Original, 424 QualType Ty) { 425 if (DRD->getInitializer()) { 426 std::pair<llvm::Function *, llvm::Function *> Reduction = 427 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 428 auto *CE = cast<CallExpr>(InitOp); 429 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 430 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 431 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 432 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 433 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 434 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 435 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 436 [=]() -> Address { return Private; }); 437 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 438 [=]() -> Address { return Original; }); 439 (void)PrivateScope.Privatize(); 440 RValue Func = RValue::get(Reduction.second); 441 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 442 CGF.EmitIgnoredExpr(InitOp); 443 } else { 444 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 445 auto *GV = new llvm::GlobalVariable( 446 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 447 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 448 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 449 RValue InitRVal; 450 switch (CGF.getEvaluationKind(Ty)) { 451 case TEK_Scalar: 452 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 453 break; 454 case TEK_Complex: 455 InitRVal = 456 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 457 break; 458 case TEK_Aggregate: 459 InitRVal = RValue::getAggregate(LV.getAddress()); 460 break; 461 } 462 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 463 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 464 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 465 /*IsInitializer=*/false); 466 } 467 } 468 469 /// \brief Emit initialization of arrays of complex types. 470 /// \param DestAddr Address of the array. 471 /// \param Type Type of array. 472 /// \param Init Initial expression of array. 473 /// \param SrcAddr Address of the original array. 474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 475 QualType Type, const Expr *Init, 476 Address SrcAddr = Address::invalid()) { 477 auto *DRD = getReductionInit(Init); 478 // Perform element-by-element initialization. 479 QualType ElementTy; 480 481 // Drill down to the base element type on both arrays. 482 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 483 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 484 DestAddr = 485 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 486 if (DRD) 487 SrcAddr = 488 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 489 490 llvm::Value *SrcBegin = nullptr; 491 if (DRD) 492 SrcBegin = SrcAddr.getPointer(); 493 auto DestBegin = DestAddr.getPointer(); 494 // Cast from pointer to array type to pointer to single element. 495 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 496 // The basic structure here is a while-do loop. 497 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 498 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 499 auto IsEmpty = 500 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 501 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 502 503 // Enter the loop body, making that address the current address. 504 auto EntryBB = CGF.Builder.GetInsertBlock(); 505 CGF.EmitBlock(BodyBB); 506 507 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 508 509 llvm::PHINode *SrcElementPHI = nullptr; 510 Address SrcElementCurrent = Address::invalid(); 511 if (DRD) { 512 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 513 "omp.arraycpy.srcElementPast"); 514 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 515 SrcElementCurrent = 516 Address(SrcElementPHI, 517 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 518 } 519 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 520 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 521 DestElementPHI->addIncoming(DestBegin, EntryBB); 522 Address DestElementCurrent = 523 Address(DestElementPHI, 524 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 525 526 // Emit copy. 527 { 528 CodeGenFunction::RunCleanupsScope InitScope(CGF); 529 if (DRD && (DRD->getInitializer() || !Init)) { 530 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 531 SrcElementCurrent, ElementTy); 532 } else 533 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 534 /*IsInitializer=*/false); 535 } 536 537 if (DRD) { 538 // Shift the address forward by one element. 539 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 540 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 541 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 542 } 543 544 // Shift the address forward by one element. 545 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 546 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 547 // Check whether we've reached the end. 548 auto Done = 549 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 550 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 551 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 552 553 // Done. 554 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 555 } 556 557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 558 Address SrcAddr, const VarDecl *DestVD, 559 const VarDecl *SrcVD, const Expr *Copy) { 560 if (OriginalType->isArrayType()) { 561 auto *BO = dyn_cast<BinaryOperator>(Copy); 562 if (BO && BO->getOpcode() == BO_Assign) { 563 // Perform simple memcpy for simple copying. 564 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 565 } else { 566 // For arrays with complex element types perform element by element 567 // copying. 568 EmitOMPAggregateAssign( 569 DestAddr, SrcAddr, OriginalType, 570 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 571 // Working with the single array element, so have to remap 572 // destination and source variables to corresponding array 573 // elements. 574 CodeGenFunction::OMPPrivateScope Remap(*this); 575 Remap.addPrivate(DestVD, [DestElement]() -> Address { 576 return DestElement; 577 }); 578 Remap.addPrivate( 579 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 580 (void)Remap.Privatize(); 581 EmitIgnoredExpr(Copy); 582 }); 583 } 584 } else { 585 // Remap pseudo source variable to private copy. 586 CodeGenFunction::OMPPrivateScope Remap(*this); 587 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 588 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 589 (void)Remap.Privatize(); 590 // Emit copying of the whole variable. 591 EmitIgnoredExpr(Copy); 592 } 593 } 594 595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 596 OMPPrivateScope &PrivateScope) { 597 if (!HaveInsertPoint()) 598 return false; 599 bool FirstprivateIsLastprivate = false; 600 llvm::DenseSet<const VarDecl *> Lastprivates; 601 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 602 for (const auto *D : C->varlists()) 603 Lastprivates.insert( 604 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 605 } 606 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 607 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 608 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 609 auto IRef = C->varlist_begin(); 610 auto InitsRef = C->inits().begin(); 611 for (auto IInit : C->private_copies()) { 612 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 613 bool ThisFirstprivateIsLastprivate = 614 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 615 auto *CapFD = CapturesInfo.lookup(OrigVD); 616 auto *FD = CapturedStmtInfo->lookup(OrigVD); 617 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 618 !FD->getType()->isReferenceType()) { 619 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 620 ++IRef; 621 ++InitsRef; 622 continue; 623 } 624 FirstprivateIsLastprivate = 625 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 626 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 627 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 628 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 629 bool IsRegistered; 630 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 631 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 632 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 633 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 634 QualType Type = VD->getType(); 635 if (Type->isArrayType()) { 636 // Emit VarDecl with copy init for arrays. 637 // Get the address of the original variable captured in current 638 // captured region. 639 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 640 auto Emission = EmitAutoVarAlloca(*VD); 641 auto *Init = VD->getInit(); 642 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 643 // Perform simple memcpy. 644 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 645 Type); 646 } else { 647 EmitOMPAggregateAssign( 648 Emission.getAllocatedAddress(), OriginalAddr, Type, 649 [this, VDInit, Init](Address DestElement, 650 Address SrcElement) { 651 // Clean up any temporaries needed by the initialization. 652 RunCleanupsScope InitScope(*this); 653 // Emit initialization for single element. 654 setAddrOfLocalVar(VDInit, SrcElement); 655 EmitAnyExprToMem(Init, DestElement, 656 Init->getType().getQualifiers(), 657 /*IsInitializer*/ false); 658 LocalDeclMap.erase(VDInit); 659 }); 660 } 661 EmitAutoVarCleanups(Emission); 662 return Emission.getAllocatedAddress(); 663 }); 664 } else { 665 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 666 // Emit private VarDecl with copy init. 667 // Remap temp VDInit variable to the address of the original 668 // variable 669 // (for proper handling of captured global variables). 670 setAddrOfLocalVar(VDInit, OriginalAddr); 671 EmitDecl(*VD); 672 LocalDeclMap.erase(VDInit); 673 return GetAddrOfLocalVar(VD); 674 }); 675 } 676 assert(IsRegistered && 677 "firstprivate var already registered as private"); 678 // Silence the warning about unused variable. 679 (void)IsRegistered; 680 } 681 ++IRef; 682 ++InitsRef; 683 } 684 } 685 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 686 } 687 688 void CodeGenFunction::EmitOMPPrivateClause( 689 const OMPExecutableDirective &D, 690 CodeGenFunction::OMPPrivateScope &PrivateScope) { 691 if (!HaveInsertPoint()) 692 return; 693 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 694 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 695 auto IRef = C->varlist_begin(); 696 for (auto IInit : C->private_copies()) { 697 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 698 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 699 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 700 bool IsRegistered = 701 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 702 // Emit private VarDecl with copy init. 703 EmitDecl(*VD); 704 return GetAddrOfLocalVar(VD); 705 }); 706 assert(IsRegistered && "private var already registered as private"); 707 // Silence the warning about unused variable. 708 (void)IsRegistered; 709 } 710 ++IRef; 711 } 712 } 713 } 714 715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 716 if (!HaveInsertPoint()) 717 return false; 718 // threadprivate_var1 = master_threadprivate_var1; 719 // operator=(threadprivate_var2, master_threadprivate_var2); 720 // ... 721 // __kmpc_barrier(&loc, global_tid); 722 llvm::DenseSet<const VarDecl *> CopiedVars; 723 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 724 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 725 auto IRef = C->varlist_begin(); 726 auto ISrcRef = C->source_exprs().begin(); 727 auto IDestRef = C->destination_exprs().begin(); 728 for (auto *AssignOp : C->assignment_ops()) { 729 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 730 QualType Type = VD->getType(); 731 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 732 // Get the address of the master variable. If we are emitting code with 733 // TLS support, the address is passed from the master as field in the 734 // captured declaration. 735 Address MasterAddr = Address::invalid(); 736 if (getLangOpts().OpenMPUseTLS && 737 getContext().getTargetInfo().isTLSSupported()) { 738 assert(CapturedStmtInfo->lookup(VD) && 739 "Copyin threadprivates should have been captured!"); 740 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 741 VK_LValue, (*IRef)->getExprLoc()); 742 MasterAddr = EmitLValue(&DRE).getAddress(); 743 LocalDeclMap.erase(VD); 744 } else { 745 MasterAddr = 746 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 747 : CGM.GetAddrOfGlobal(VD), 748 getContext().getDeclAlign(VD)); 749 } 750 // Get the address of the threadprivate variable. 751 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 752 if (CopiedVars.size() == 1) { 753 // At first check if current thread is a master thread. If it is, no 754 // need to copy data. 755 CopyBegin = createBasicBlock("copyin.not.master"); 756 CopyEnd = createBasicBlock("copyin.not.master.end"); 757 Builder.CreateCondBr( 758 Builder.CreateICmpNE( 759 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 760 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 761 CopyBegin, CopyEnd); 762 EmitBlock(CopyBegin); 763 } 764 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 765 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 766 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 767 } 768 ++IRef; 769 ++ISrcRef; 770 ++IDestRef; 771 } 772 } 773 if (CopyEnd) { 774 // Exit out of copying procedure for non-master thread. 775 EmitBlock(CopyEnd, /*IsFinished=*/true); 776 return true; 777 } 778 return false; 779 } 780 781 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 782 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 783 if (!HaveInsertPoint()) 784 return false; 785 bool HasAtLeastOneLastprivate = false; 786 llvm::DenseSet<const VarDecl *> SIMDLCVs; 787 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 788 auto *LoopDirective = cast<OMPLoopDirective>(&D); 789 for (auto *C : LoopDirective->counters()) { 790 SIMDLCVs.insert( 791 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 792 } 793 } 794 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 795 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 796 HasAtLeastOneLastprivate = true; 797 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 798 break; 799 auto IRef = C->varlist_begin(); 800 auto IDestRef = C->destination_exprs().begin(); 801 for (auto *IInit : C->private_copies()) { 802 // Keep the address of the original variable for future update at the end 803 // of the loop. 804 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 805 // Taskloops do not require additional initialization, it is done in 806 // runtime support library. 807 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 808 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 809 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 810 DeclRefExpr DRE( 811 const_cast<VarDecl *>(OrigVD), 812 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 813 OrigVD) != nullptr, 814 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 815 return EmitLValue(&DRE).getAddress(); 816 }); 817 // Check if the variable is also a firstprivate: in this case IInit is 818 // not generated. Initialization of this variable will happen in codegen 819 // for 'firstprivate' clause. 820 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 821 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 822 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 823 // Emit private VarDecl with copy init. 824 EmitDecl(*VD); 825 return GetAddrOfLocalVar(VD); 826 }); 827 assert(IsRegistered && 828 "lastprivate var already registered as private"); 829 (void)IsRegistered; 830 } 831 } 832 ++IRef; 833 ++IDestRef; 834 } 835 } 836 return HasAtLeastOneLastprivate; 837 } 838 839 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 840 const OMPExecutableDirective &D, bool NoFinals, 841 llvm::Value *IsLastIterCond) { 842 if (!HaveInsertPoint()) 843 return; 844 // Emit following code: 845 // if (<IsLastIterCond>) { 846 // orig_var1 = private_orig_var1; 847 // ... 848 // orig_varn = private_orig_varn; 849 // } 850 llvm::BasicBlock *ThenBB = nullptr; 851 llvm::BasicBlock *DoneBB = nullptr; 852 if (IsLastIterCond) { 853 ThenBB = createBasicBlock(".omp.lastprivate.then"); 854 DoneBB = createBasicBlock(".omp.lastprivate.done"); 855 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 856 EmitBlock(ThenBB); 857 } 858 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 859 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 860 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 861 auto IC = LoopDirective->counters().begin(); 862 for (auto F : LoopDirective->finals()) { 863 auto *D = 864 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 865 if (NoFinals) 866 AlreadyEmittedVars.insert(D); 867 else 868 LoopCountersAndUpdates[D] = F; 869 ++IC; 870 } 871 } 872 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 873 auto IRef = C->varlist_begin(); 874 auto ISrcRef = C->source_exprs().begin(); 875 auto IDestRef = C->destination_exprs().begin(); 876 for (auto *AssignOp : C->assignment_ops()) { 877 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 878 QualType Type = PrivateVD->getType(); 879 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 880 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 881 // If lastprivate variable is a loop control variable for loop-based 882 // directive, update its value before copyin back to original 883 // variable. 884 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 885 EmitIgnoredExpr(FinalExpr); 886 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 887 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 888 // Get the address of the original variable. 889 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 890 // Get the address of the private variable. 891 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 892 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 893 PrivateAddr = 894 Address(Builder.CreateLoad(PrivateAddr), 895 getNaturalTypeAlignment(RefTy->getPointeeType())); 896 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 897 } 898 ++IRef; 899 ++ISrcRef; 900 ++IDestRef; 901 } 902 if (auto *PostUpdate = C->getPostUpdateExpr()) 903 EmitIgnoredExpr(PostUpdate); 904 } 905 if (IsLastIterCond) 906 EmitBlock(DoneBB, /*IsFinished=*/true); 907 } 908 909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 910 LValue BaseLV, llvm::Value *Addr) { 911 Address Tmp = Address::invalid(); 912 Address TopTmp = Address::invalid(); 913 Address MostTopTmp = Address::invalid(); 914 BaseTy = BaseTy.getNonReferenceType(); 915 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 916 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 917 Tmp = CGF.CreateMemTemp(BaseTy); 918 if (TopTmp.isValid()) 919 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 920 else 921 MostTopTmp = Tmp; 922 TopTmp = Tmp; 923 BaseTy = BaseTy->getPointeeType(); 924 } 925 llvm::Type *Ty = BaseLV.getPointer()->getType(); 926 if (Tmp.isValid()) 927 Ty = Tmp.getElementType(); 928 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 929 if (Tmp.isValid()) { 930 CGF.Builder.CreateStore(Addr, Tmp); 931 return MostTopTmp; 932 } 933 return Address(Addr, BaseLV.getAlignment()); 934 } 935 936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 937 LValue BaseLV) { 938 BaseTy = BaseTy.getNonReferenceType(); 939 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 940 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 941 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 942 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 943 else { 944 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 945 BaseTy->castAs<ReferenceType>()); 946 } 947 BaseTy = BaseTy->getPointeeType(); 948 } 949 return CGF.MakeAddrLValue( 950 Address( 951 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 952 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 953 BaseLV.getAlignment()), 954 BaseLV.getType(), BaseLV.getAlignmentSource()); 955 } 956 957 void CodeGenFunction::EmitOMPReductionClauseInit( 958 const OMPExecutableDirective &D, 959 CodeGenFunction::OMPPrivateScope &PrivateScope) { 960 if (!HaveInsertPoint()) 961 return; 962 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 963 auto ILHS = C->lhs_exprs().begin(); 964 auto IRHS = C->rhs_exprs().begin(); 965 auto IPriv = C->privates().begin(); 966 auto IRed = C->reduction_ops().begin(); 967 for (auto IRef : C->varlists()) { 968 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 969 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 970 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 971 auto *DRD = getReductionInit(*IRed); 972 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 973 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 974 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 975 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 976 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 977 Base = TempASE->getBase()->IgnoreParenImpCasts(); 978 auto *DE = cast<DeclRefExpr>(Base); 979 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 980 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 981 auto OASELValueUB = 982 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 983 auto OriginalBaseLValue = EmitLValue(DE); 984 LValue BaseLValue = 985 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 986 OriginalBaseLValue); 987 // Store the address of the original variable associated with the LHS 988 // implicit variable. 989 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 990 return OASELValueLB.getAddress(); 991 }); 992 // Emit reduction copy. 993 bool IsRegistered = PrivateScope.addPrivate( 994 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 995 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 996 // Emit VarDecl with copy init for arrays. 997 // Get the address of the original variable captured in current 998 // captured region. 999 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 1000 OASELValueLB.getPointer()); 1001 Size = Builder.CreateNUWAdd( 1002 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 1003 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1004 *this, cast<OpaqueValueExpr>( 1005 getContext() 1006 .getAsVariableArrayType(PrivateVD->getType()) 1007 ->getSizeExpr()), 1008 RValue::get(Size)); 1009 EmitVariablyModifiedType(PrivateVD->getType()); 1010 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1011 auto Addr = Emission.getAllocatedAddress(); 1012 auto *Init = PrivateVD->getInit(); 1013 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1014 DRD ? *IRed : Init, 1015 OASELValueLB.getAddress()); 1016 EmitAutoVarCleanups(Emission); 1017 // Emit private VarDecl with reduction init. 1018 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1019 OASELValueLB.getPointer()); 1020 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1021 return castToBase(*this, OrigVD->getType(), 1022 OASELValueLB.getType(), OriginalBaseLValue, 1023 Ptr); 1024 }); 1025 assert(IsRegistered && "private var already registered as private"); 1026 // Silence the warning about unused variable. 1027 (void)IsRegistered; 1028 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1029 return GetAddrOfLocalVar(PrivateVD); 1030 }); 1031 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1032 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1033 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1034 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1035 auto *DE = cast<DeclRefExpr>(Base); 1036 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1037 auto ASELValue = EmitLValue(ASE); 1038 auto OriginalBaseLValue = EmitLValue(DE); 1039 LValue BaseLValue = loadToBegin( 1040 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1041 // Store the address of the original variable associated with the LHS 1042 // implicit variable. 1043 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 1044 return ASELValue.getAddress(); 1045 }); 1046 // Emit reduction copy. 1047 bool IsRegistered = PrivateScope.addPrivate( 1048 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1049 OriginalBaseLValue, DRD, IRed]() -> Address { 1050 // Emit private VarDecl with reduction init. 1051 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1052 auto Addr = Emission.getAllocatedAddress(); 1053 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1054 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1055 ASELValue.getAddress(), 1056 ASELValue.getType()); 1057 } else 1058 EmitAutoVarInit(Emission); 1059 EmitAutoVarCleanups(Emission); 1060 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1061 ASELValue.getPointer()); 1062 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1063 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1064 OriginalBaseLValue, Ptr); 1065 }); 1066 assert(IsRegistered && "private var already registered as private"); 1067 // Silence the warning about unused variable. 1068 (void)IsRegistered; 1069 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1070 return Builder.CreateElementBitCast( 1071 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1072 "rhs.begin"); 1073 }); 1074 } else { 1075 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1076 QualType Type = PrivateVD->getType(); 1077 if (getContext().getAsArrayType(Type)) { 1078 // Store the address of the original variable associated with the LHS 1079 // implicit variable. 1080 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1081 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1082 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1083 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1084 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1085 LHSVD]() -> Address { 1086 OriginalAddr = Builder.CreateElementBitCast( 1087 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1088 return OriginalAddr; 1089 }); 1090 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1091 if (Type->isVariablyModifiedType()) { 1092 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1093 *this, cast<OpaqueValueExpr>( 1094 getContext() 1095 .getAsVariableArrayType(PrivateVD->getType()) 1096 ->getSizeExpr()), 1097 RValue::get( 1098 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1099 EmitVariablyModifiedType(Type); 1100 } 1101 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1102 auto Addr = Emission.getAllocatedAddress(); 1103 auto *Init = PrivateVD->getInit(); 1104 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1105 DRD ? *IRed : Init, OriginalAddr); 1106 EmitAutoVarCleanups(Emission); 1107 return Emission.getAllocatedAddress(); 1108 }); 1109 assert(IsRegistered && "private var already registered as private"); 1110 // Silence the warning about unused variable. 1111 (void)IsRegistered; 1112 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1113 return Builder.CreateElementBitCast( 1114 GetAddrOfLocalVar(PrivateVD), 1115 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1116 }); 1117 } else { 1118 // Store the address of the original variable associated with the LHS 1119 // implicit variable. 1120 Address OriginalAddr = Address::invalid(); 1121 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1122 &OriginalAddr]() -> Address { 1123 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1124 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1125 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1126 OriginalAddr = EmitLValue(&DRE).getAddress(); 1127 return OriginalAddr; 1128 }); 1129 // Emit reduction copy. 1130 bool IsRegistered = PrivateScope.addPrivate( 1131 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1132 // Emit private VarDecl with reduction init. 1133 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1134 auto Addr = Emission.getAllocatedAddress(); 1135 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1136 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1137 OriginalAddr, 1138 PrivateVD->getType()); 1139 } else 1140 EmitAutoVarInit(Emission); 1141 EmitAutoVarCleanups(Emission); 1142 return Addr; 1143 }); 1144 assert(IsRegistered && "private var already registered as private"); 1145 // Silence the warning about unused variable. 1146 (void)IsRegistered; 1147 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1148 return GetAddrOfLocalVar(PrivateVD); 1149 }); 1150 } 1151 } 1152 ++ILHS; 1153 ++IRHS; 1154 ++IPriv; 1155 ++IRed; 1156 } 1157 } 1158 } 1159 1160 void CodeGenFunction::EmitOMPReductionClauseFinal( 1161 const OMPExecutableDirective &D) { 1162 if (!HaveInsertPoint()) 1163 return; 1164 llvm::SmallVector<const Expr *, 8> Privates; 1165 llvm::SmallVector<const Expr *, 8> LHSExprs; 1166 llvm::SmallVector<const Expr *, 8> RHSExprs; 1167 llvm::SmallVector<const Expr *, 8> ReductionOps; 1168 bool HasAtLeastOneReduction = false; 1169 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1170 HasAtLeastOneReduction = true; 1171 Privates.append(C->privates().begin(), C->privates().end()); 1172 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1173 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1174 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1175 } 1176 if (HasAtLeastOneReduction) { 1177 // Emit nowait reduction if nowait clause is present or directive is a 1178 // parallel directive (it always has implicit barrier). 1179 CGM.getOpenMPRuntime().emitReduction( 1180 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1181 D.getSingleClause<OMPNowaitClause>() || 1182 isOpenMPParallelDirective(D.getDirectiveKind()) || 1183 D.getDirectiveKind() == OMPD_simd, 1184 D.getDirectiveKind() == OMPD_simd); 1185 } 1186 } 1187 1188 static void emitPostUpdateForReductionClause( 1189 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1190 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1191 if (!CGF.HaveInsertPoint()) 1192 return; 1193 llvm::BasicBlock *DoneBB = nullptr; 1194 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1195 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1196 if (!DoneBB) { 1197 if (auto *Cond = CondGen(CGF)) { 1198 // If the first post-update expression is found, emit conditional 1199 // block if it was requested. 1200 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1201 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1202 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1203 CGF.EmitBlock(ThenBB); 1204 } 1205 } 1206 CGF.EmitIgnoredExpr(PostUpdate); 1207 } 1208 } 1209 if (DoneBB) 1210 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1211 } 1212 1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1214 const OMPExecutableDirective &S, 1215 OpenMPDirectiveKind InnermostKind, 1216 const RegionCodeGenTy &CodeGen) { 1217 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1218 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 1219 emitParallelOrTeamsOutlinedFunction(S, 1220 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1221 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1222 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1223 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1224 /*IgnoreResultAssign*/ true); 1225 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1226 CGF, NumThreads, NumThreadsClause->getLocStart()); 1227 } 1228 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1229 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1230 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1231 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1232 } 1233 const Expr *IfCond = nullptr; 1234 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1235 if (C->getNameModifier() == OMPD_unknown || 1236 C->getNameModifier() == OMPD_parallel) { 1237 IfCond = C->getCondition(); 1238 break; 1239 } 1240 } 1241 1242 OMPLexicalScope Scope(CGF, S); 1243 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1244 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1245 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1246 CapturedVars, IfCond); 1247 } 1248 1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1250 // Emit parallel region as a standalone region. 1251 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1252 OMPPrivateScope PrivateScope(CGF); 1253 bool Copyins = CGF.EmitOMPCopyinClause(S); 1254 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1255 if (Copyins) { 1256 // Emit implicit barrier to synchronize threads and avoid data races on 1257 // propagation master's thread values of threadprivate variables to local 1258 // instances of that variables of all other implicit threads. 1259 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1260 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1261 /*ForceSimpleCall=*/true); 1262 } 1263 CGF.EmitOMPPrivateClause(S, PrivateScope); 1264 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1265 (void)PrivateScope.Privatize(); 1266 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1267 CGF.EmitOMPReductionClauseFinal(S); 1268 }; 1269 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1270 emitPostUpdateForReductionClause( 1271 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1272 } 1273 1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1275 JumpDest LoopExit) { 1276 RunCleanupsScope BodyScope(*this); 1277 // Update counters values on current iteration. 1278 for (auto I : D.updates()) { 1279 EmitIgnoredExpr(I); 1280 } 1281 // Update the linear variables. 1282 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1283 for (auto *U : C->updates()) 1284 EmitIgnoredExpr(U); 1285 } 1286 1287 // On a continue in the body, jump to the end. 1288 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1289 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1290 // Emit loop body. 1291 EmitStmt(D.getBody()); 1292 // The end (updates/cleanups). 1293 EmitBlock(Continue.getBlock()); 1294 BreakContinueStack.pop_back(); 1295 } 1296 1297 void CodeGenFunction::EmitOMPInnerLoop( 1298 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1299 const Expr *IncExpr, 1300 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1301 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1302 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1303 1304 // Start the loop with a block that tests the condition. 1305 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1306 EmitBlock(CondBlock); 1307 const SourceRange &R = S.getSourceRange(); 1308 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1309 SourceLocToDebugLoc(R.getEnd())); 1310 1311 // If there are any cleanups between here and the loop-exit scope, 1312 // create a block to stage a loop exit along. 1313 auto ExitBlock = LoopExit.getBlock(); 1314 if (RequiresCleanup) 1315 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1316 1317 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1318 1319 // Emit condition. 1320 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1321 if (ExitBlock != LoopExit.getBlock()) { 1322 EmitBlock(ExitBlock); 1323 EmitBranchThroughCleanup(LoopExit); 1324 } 1325 1326 EmitBlock(LoopBody); 1327 incrementProfileCounter(&S); 1328 1329 // Create a block for the increment. 1330 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1331 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1332 1333 BodyGen(*this); 1334 1335 // Emit "IV = IV + 1" and a back-edge to the condition block. 1336 EmitBlock(Continue.getBlock()); 1337 EmitIgnoredExpr(IncExpr); 1338 PostIncGen(*this); 1339 BreakContinueStack.pop_back(); 1340 EmitBranch(CondBlock); 1341 LoopStack.pop(); 1342 // Emit the fall-through block. 1343 EmitBlock(LoopExit.getBlock()); 1344 } 1345 1346 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1347 if (!HaveInsertPoint()) 1348 return; 1349 // Emit inits for the linear variables. 1350 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1351 for (auto *Init : C->inits()) { 1352 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1353 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1354 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1355 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1356 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1357 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1358 VD->getInit()->getType(), VK_LValue, 1359 VD->getInit()->getExprLoc()); 1360 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1361 VD->getType()), 1362 /*capturedByInit=*/false); 1363 EmitAutoVarCleanups(Emission); 1364 } else 1365 EmitVarDecl(*VD); 1366 } 1367 // Emit the linear steps for the linear clauses. 1368 // If a step is not constant, it is pre-calculated before the loop. 1369 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1370 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1371 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1372 // Emit calculation of the linear step. 1373 EmitIgnoredExpr(CS); 1374 } 1375 } 1376 } 1377 1378 void CodeGenFunction::EmitOMPLinearClauseFinal( 1379 const OMPLoopDirective &D, 1380 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1381 if (!HaveInsertPoint()) 1382 return; 1383 llvm::BasicBlock *DoneBB = nullptr; 1384 // Emit the final values of the linear variables. 1385 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1386 auto IC = C->varlist_begin(); 1387 for (auto *F : C->finals()) { 1388 if (!DoneBB) { 1389 if (auto *Cond = CondGen(*this)) { 1390 // If the first post-update expression is found, emit conditional 1391 // block if it was requested. 1392 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1393 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1394 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1395 EmitBlock(ThenBB); 1396 } 1397 } 1398 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1399 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1400 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1401 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1402 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1403 CodeGenFunction::OMPPrivateScope VarScope(*this); 1404 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1405 (void)VarScope.Privatize(); 1406 EmitIgnoredExpr(F); 1407 ++IC; 1408 } 1409 if (auto *PostUpdate = C->getPostUpdateExpr()) 1410 EmitIgnoredExpr(PostUpdate); 1411 } 1412 if (DoneBB) 1413 EmitBlock(DoneBB, /*IsFinished=*/true); 1414 } 1415 1416 static void emitAlignedClause(CodeGenFunction &CGF, 1417 const OMPExecutableDirective &D) { 1418 if (!CGF.HaveInsertPoint()) 1419 return; 1420 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1421 unsigned ClauseAlignment = 0; 1422 if (auto AlignmentExpr = Clause->getAlignment()) { 1423 auto AlignmentCI = 1424 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1425 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1426 } 1427 for (auto E : Clause->varlists()) { 1428 unsigned Alignment = ClauseAlignment; 1429 if (Alignment == 0) { 1430 // OpenMP [2.8.1, Description] 1431 // If no optional parameter is specified, implementation-defined default 1432 // alignments for SIMD instructions on the target platforms are assumed. 1433 Alignment = 1434 CGF.getContext() 1435 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1436 E->getType()->getPointeeType())) 1437 .getQuantity(); 1438 } 1439 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1440 "alignment is not power of 2"); 1441 if (Alignment != 0) { 1442 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1443 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1444 } 1445 } 1446 } 1447 } 1448 1449 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1450 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1451 if (!HaveInsertPoint()) 1452 return; 1453 auto I = S.private_counters().begin(); 1454 for (auto *E : S.counters()) { 1455 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1456 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1457 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1458 // Emit var without initialization. 1459 if (!LocalDeclMap.count(PrivateVD)) { 1460 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1461 EmitAutoVarCleanups(VarEmission); 1462 } 1463 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1464 /*RefersToEnclosingVariableOrCapture=*/false, 1465 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1466 return EmitLValue(&DRE).getAddress(); 1467 }); 1468 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1469 VD->hasGlobalStorage()) { 1470 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1471 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1472 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1473 E->getType(), VK_LValue, E->getExprLoc()); 1474 return EmitLValue(&DRE).getAddress(); 1475 }); 1476 } 1477 ++I; 1478 } 1479 } 1480 1481 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1482 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1483 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1484 if (!CGF.HaveInsertPoint()) 1485 return; 1486 { 1487 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1488 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1489 (void)PreCondScope.Privatize(); 1490 // Get initial values of real counters. 1491 for (auto I : S.inits()) { 1492 CGF.EmitIgnoredExpr(I); 1493 } 1494 } 1495 // Check that loop is executed at least one time. 1496 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1497 } 1498 1499 void CodeGenFunction::EmitOMPLinearClause( 1500 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1501 if (!HaveInsertPoint()) 1502 return; 1503 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1504 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1505 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1506 for (auto *C : LoopDirective->counters()) { 1507 SIMDLCVs.insert( 1508 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1509 } 1510 } 1511 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1512 auto CurPrivate = C->privates().begin(); 1513 for (auto *E : C->varlists()) { 1514 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1515 auto *PrivateVD = 1516 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1517 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1518 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1519 // Emit private VarDecl with copy init. 1520 EmitVarDecl(*PrivateVD); 1521 return GetAddrOfLocalVar(PrivateVD); 1522 }); 1523 assert(IsRegistered && "linear var already registered as private"); 1524 // Silence the warning about unused variable. 1525 (void)IsRegistered; 1526 } else 1527 EmitVarDecl(*PrivateVD); 1528 ++CurPrivate; 1529 } 1530 } 1531 } 1532 1533 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1534 const OMPExecutableDirective &D, 1535 bool IsMonotonic) { 1536 if (!CGF.HaveInsertPoint()) 1537 return; 1538 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1539 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1540 /*ignoreResult=*/true); 1541 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1542 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1543 // In presence of finite 'safelen', it may be unsafe to mark all 1544 // the memory instructions parallel, because loop-carried 1545 // dependences of 'safelen' iterations are possible. 1546 if (!IsMonotonic) 1547 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1548 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1549 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1550 /*ignoreResult=*/true); 1551 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1552 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1553 // In presence of finite 'safelen', it may be unsafe to mark all 1554 // the memory instructions parallel, because loop-carried 1555 // dependences of 'safelen' iterations are possible. 1556 CGF.LoopStack.setParallel(false); 1557 } 1558 } 1559 1560 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1561 bool IsMonotonic) { 1562 // Walk clauses and process safelen/lastprivate. 1563 LoopStack.setParallel(!IsMonotonic); 1564 LoopStack.setVectorizeEnable(true); 1565 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1566 } 1567 1568 void CodeGenFunction::EmitOMPSimdFinal( 1569 const OMPLoopDirective &D, 1570 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1571 if (!HaveInsertPoint()) 1572 return; 1573 llvm::BasicBlock *DoneBB = nullptr; 1574 auto IC = D.counters().begin(); 1575 auto IPC = D.private_counters().begin(); 1576 for (auto F : D.finals()) { 1577 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1578 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1579 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1580 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1581 OrigVD->hasGlobalStorage() || CED) { 1582 if (!DoneBB) { 1583 if (auto *Cond = CondGen(*this)) { 1584 // If the first post-update expression is found, emit conditional 1585 // block if it was requested. 1586 auto *ThenBB = createBasicBlock(".omp.final.then"); 1587 DoneBB = createBasicBlock(".omp.final.done"); 1588 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1589 EmitBlock(ThenBB); 1590 } 1591 } 1592 Address OrigAddr = Address::invalid(); 1593 if (CED) 1594 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1595 else { 1596 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1597 /*RefersToEnclosingVariableOrCapture=*/false, 1598 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1599 OrigAddr = EmitLValue(&DRE).getAddress(); 1600 } 1601 OMPPrivateScope VarScope(*this); 1602 VarScope.addPrivate(OrigVD, 1603 [OrigAddr]() -> Address { return OrigAddr; }); 1604 (void)VarScope.Privatize(); 1605 EmitIgnoredExpr(F); 1606 } 1607 ++IC; 1608 ++IPC; 1609 } 1610 if (DoneBB) 1611 EmitBlock(DoneBB, /*IsFinished=*/true); 1612 } 1613 1614 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1615 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1616 OMPLoopScope PreInitScope(CGF, S); 1617 // if (PreCond) { 1618 // for (IV in 0..LastIteration) BODY; 1619 // <Final counter/linear vars updates>; 1620 // } 1621 // 1622 1623 // Emit: if (PreCond) - begin. 1624 // If the condition constant folds and can be elided, avoid emitting the 1625 // whole loop. 1626 bool CondConstant; 1627 llvm::BasicBlock *ContBlock = nullptr; 1628 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1629 if (!CondConstant) 1630 return; 1631 } else { 1632 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1633 ContBlock = CGF.createBasicBlock("simd.if.end"); 1634 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1635 CGF.getProfileCount(&S)); 1636 CGF.EmitBlock(ThenBlock); 1637 CGF.incrementProfileCounter(&S); 1638 } 1639 1640 // Emit the loop iteration variable. 1641 const Expr *IVExpr = S.getIterationVariable(); 1642 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1643 CGF.EmitVarDecl(*IVDecl); 1644 CGF.EmitIgnoredExpr(S.getInit()); 1645 1646 // Emit the iterations count variable. 1647 // If it is not a variable, Sema decided to calculate iterations count on 1648 // each iteration (e.g., it is foldable into a constant). 1649 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1650 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1651 // Emit calculation of the iterations count. 1652 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1653 } 1654 1655 CGF.EmitOMPSimdInit(S); 1656 1657 emitAlignedClause(CGF, S); 1658 CGF.EmitOMPLinearClauseInit(S); 1659 { 1660 OMPPrivateScope LoopScope(CGF); 1661 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1662 CGF.EmitOMPLinearClause(S, LoopScope); 1663 CGF.EmitOMPPrivateClause(S, LoopScope); 1664 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1665 bool HasLastprivateClause = 1666 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1667 (void)LoopScope.Privatize(); 1668 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1669 S.getInc(), 1670 [&S](CodeGenFunction &CGF) { 1671 CGF.EmitOMPLoopBody(S, JumpDest()); 1672 CGF.EmitStopPoint(&S); 1673 }, 1674 [](CodeGenFunction &) {}); 1675 CGF.EmitOMPSimdFinal( 1676 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1677 // Emit final copy of the lastprivate variables at the end of loops. 1678 if (HasLastprivateClause) 1679 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1680 CGF.EmitOMPReductionClauseFinal(S); 1681 emitPostUpdateForReductionClause( 1682 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1683 } 1684 CGF.EmitOMPLinearClauseFinal( 1685 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1686 // Emit: if (PreCond) - end. 1687 if (ContBlock) { 1688 CGF.EmitBranch(ContBlock); 1689 CGF.EmitBlock(ContBlock, true); 1690 } 1691 }; 1692 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1693 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1694 } 1695 1696 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1697 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1698 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1699 auto &RT = CGM.getOpenMPRuntime(); 1700 1701 const Expr *IVExpr = S.getIterationVariable(); 1702 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1703 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1704 1705 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1706 1707 // Start the loop with a block that tests the condition. 1708 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1709 EmitBlock(CondBlock); 1710 const SourceRange &R = S.getSourceRange(); 1711 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1712 SourceLocToDebugLoc(R.getEnd())); 1713 1714 llvm::Value *BoolCondVal = nullptr; 1715 if (!DynamicOrOrdered) { 1716 // UB = min(UB, GlobalUB) 1717 EmitIgnoredExpr(S.getEnsureUpperBound()); 1718 // IV = LB 1719 EmitIgnoredExpr(S.getInit()); 1720 // IV < UB 1721 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1722 } else { 1723 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1724 LB, UB, ST); 1725 } 1726 1727 // If there are any cleanups between here and the loop-exit scope, 1728 // create a block to stage a loop exit along. 1729 auto ExitBlock = LoopExit.getBlock(); 1730 if (LoopScope.requiresCleanups()) 1731 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1732 1733 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1734 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1735 if (ExitBlock != LoopExit.getBlock()) { 1736 EmitBlock(ExitBlock); 1737 EmitBranchThroughCleanup(LoopExit); 1738 } 1739 EmitBlock(LoopBody); 1740 1741 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1742 // LB for loop condition and emitted it above). 1743 if (DynamicOrOrdered) 1744 EmitIgnoredExpr(S.getInit()); 1745 1746 // Create a block for the increment. 1747 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1748 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1749 1750 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1751 // with dynamic/guided scheduling and without ordered clause. 1752 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1753 LoopStack.setParallel(!IsMonotonic); 1754 else 1755 EmitOMPSimdInit(S, IsMonotonic); 1756 1757 SourceLocation Loc = S.getLocStart(); 1758 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1759 [&S, LoopExit](CodeGenFunction &CGF) { 1760 CGF.EmitOMPLoopBody(S, LoopExit); 1761 CGF.EmitStopPoint(&S); 1762 }, 1763 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1764 if (Ordered) { 1765 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1766 CGF, Loc, IVSize, IVSigned); 1767 } 1768 }); 1769 1770 EmitBlock(Continue.getBlock()); 1771 BreakContinueStack.pop_back(); 1772 if (!DynamicOrOrdered) { 1773 // Emit "LB = LB + Stride", "UB = UB + Stride". 1774 EmitIgnoredExpr(S.getNextLowerBound()); 1775 EmitIgnoredExpr(S.getNextUpperBound()); 1776 } 1777 1778 EmitBranch(CondBlock); 1779 LoopStack.pop(); 1780 // Emit the fall-through block. 1781 EmitBlock(LoopExit.getBlock()); 1782 1783 // Tell the runtime we are done. 1784 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1785 if (!DynamicOrOrdered) 1786 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 1787 }; 1788 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1789 } 1790 1791 void CodeGenFunction::EmitOMPForOuterLoop( 1792 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1793 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1794 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1795 auto &RT = CGM.getOpenMPRuntime(); 1796 1797 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1798 const bool DynamicOrOrdered = 1799 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1800 1801 assert((Ordered || 1802 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1803 /*Chunked=*/Chunk != nullptr)) && 1804 "static non-chunked schedule does not need outer loop"); 1805 1806 // Emit outer loop. 1807 // 1808 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1809 // When schedule(dynamic,chunk_size) is specified, the iterations are 1810 // distributed to threads in the team in chunks as the threads request them. 1811 // Each thread executes a chunk of iterations, then requests another chunk, 1812 // until no chunks remain to be distributed. Each chunk contains chunk_size 1813 // iterations, except for the last chunk to be distributed, which may have 1814 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1815 // 1816 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1817 // to threads in the team in chunks as the executing threads request them. 1818 // Each thread executes a chunk of iterations, then requests another chunk, 1819 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1820 // each chunk is proportional to the number of unassigned iterations divided 1821 // by the number of threads in the team, decreasing to 1. For a chunk_size 1822 // with value k (greater than 1), the size of each chunk is determined in the 1823 // same way, with the restriction that the chunks do not contain fewer than k 1824 // iterations (except for the last chunk to be assigned, which may have fewer 1825 // than k iterations). 1826 // 1827 // When schedule(auto) is specified, the decision regarding scheduling is 1828 // delegated to the compiler and/or runtime system. The programmer gives the 1829 // implementation the freedom to choose any possible mapping of iterations to 1830 // threads in the team. 1831 // 1832 // When schedule(runtime) is specified, the decision regarding scheduling is 1833 // deferred until run time, and the schedule and chunk size are taken from the 1834 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1835 // implementation defined 1836 // 1837 // while(__kmpc_dispatch_next(&LB, &UB)) { 1838 // idx = LB; 1839 // while (idx <= UB) { BODY; ++idx; 1840 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1841 // } // inner loop 1842 // } 1843 // 1844 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1845 // When schedule(static, chunk_size) is specified, iterations are divided into 1846 // chunks of size chunk_size, and the chunks are assigned to the threads in 1847 // the team in a round-robin fashion in the order of the thread number. 1848 // 1849 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1850 // while (idx <= UB) { BODY; ++idx; } // inner loop 1851 // LB = LB + ST; 1852 // UB = UB + ST; 1853 // } 1854 // 1855 1856 const Expr *IVExpr = S.getIterationVariable(); 1857 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1858 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1859 1860 if (DynamicOrOrdered) { 1861 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1862 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1863 IVSigned, Ordered, UBVal, Chunk); 1864 } else { 1865 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1866 Ordered, IL, LB, UB, ST, Chunk); 1867 } 1868 1869 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1870 ST, IL, Chunk); 1871 } 1872 1873 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1874 OpenMPDistScheduleClauseKind ScheduleKind, 1875 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1876 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1877 1878 auto &RT = CGM.getOpenMPRuntime(); 1879 1880 // Emit outer loop. 1881 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1882 // dynamic 1883 // 1884 1885 const Expr *IVExpr = S.getIterationVariable(); 1886 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1887 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1888 1889 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1890 IVSize, IVSigned, /* Ordered = */ false, 1891 IL, LB, UB, ST, Chunk); 1892 1893 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1894 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1895 } 1896 1897 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 1898 const OMPDistributeParallelForDirective &S) { 1899 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1900 CGM.getOpenMPRuntime().emitInlinedDirective( 1901 *this, OMPD_distribute_parallel_for, 1902 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1903 OMPLoopScope PreInitScope(CGF, S); 1904 OMPCancelStackRAII CancelRegion(CGF, OMPD_distribute_parallel_for, 1905 /*HasCancel=*/false); 1906 CGF.EmitStmt( 1907 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1908 }); 1909 } 1910 1911 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 1912 const OMPDistributeParallelForSimdDirective &S) { 1913 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1914 CGM.getOpenMPRuntime().emitInlinedDirective( 1915 *this, OMPD_distribute_parallel_for_simd, 1916 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1917 OMPLoopScope PreInitScope(CGF, S); 1918 CGF.EmitStmt( 1919 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1920 }); 1921 } 1922 1923 void CodeGenFunction::EmitOMPDistributeSimdDirective( 1924 const OMPDistributeSimdDirective &S) { 1925 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1926 CGM.getOpenMPRuntime().emitInlinedDirective( 1927 *this, OMPD_distribute_simd, 1928 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1929 OMPLoopScope PreInitScope(CGF, S); 1930 CGF.EmitStmt( 1931 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1932 }); 1933 } 1934 1935 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 1936 const OMPTargetParallelForSimdDirective &S) { 1937 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1938 CGM.getOpenMPRuntime().emitInlinedDirective( 1939 *this, OMPD_target_parallel_for_simd, 1940 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1941 OMPLoopScope PreInitScope(CGF, S); 1942 CGF.EmitStmt( 1943 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1944 }); 1945 } 1946 1947 void CodeGenFunction::EmitOMPTargetSimdDirective( 1948 const OMPTargetSimdDirective &S) { 1949 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1950 CGM.getOpenMPRuntime().emitInlinedDirective( 1951 *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1952 OMPLoopScope PreInitScope(CGF, S); 1953 CGF.EmitStmt( 1954 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1955 }); 1956 } 1957 1958 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 1959 const OMPTeamsDistributeDirective &S) { 1960 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1961 CGM.getOpenMPRuntime().emitInlinedDirective( 1962 *this, OMPD_teams_distribute, 1963 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1964 OMPLoopScope PreInitScope(CGF, S); 1965 CGF.EmitStmt( 1966 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1967 }); 1968 } 1969 1970 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 1971 const OMPTeamsDistributeSimdDirective &S) { 1972 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1973 CGM.getOpenMPRuntime().emitInlinedDirective( 1974 *this, OMPD_teams_distribute_simd, 1975 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1976 OMPLoopScope PreInitScope(CGF, S); 1977 CGF.EmitStmt( 1978 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1979 }); 1980 } 1981 1982 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 1983 const OMPTeamsDistributeParallelForSimdDirective &S) { 1984 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1985 CGM.getOpenMPRuntime().emitInlinedDirective( 1986 *this, OMPD_teams_distribute_parallel_for_simd, 1987 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1988 OMPLoopScope PreInitScope(CGF, S); 1989 CGF.EmitStmt( 1990 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1991 }); 1992 } 1993 1994 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 1995 const OMPTeamsDistributeParallelForDirective &S) { 1996 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1997 CGM.getOpenMPRuntime().emitInlinedDirective( 1998 *this, OMPD_teams_distribute_parallel_for, 1999 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2000 OMPLoopScope PreInitScope(CGF, S); 2001 CGF.EmitStmt( 2002 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2003 }); 2004 } 2005 2006 /// \brief Emit a helper variable and return corresponding lvalue. 2007 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2008 const DeclRefExpr *Helper) { 2009 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2010 CGF.EmitVarDecl(*VDecl); 2011 return CGF.EmitLValue(Helper); 2012 } 2013 2014 namespace { 2015 struct ScheduleKindModifiersTy { 2016 OpenMPScheduleClauseKind Kind; 2017 OpenMPScheduleClauseModifier M1; 2018 OpenMPScheduleClauseModifier M2; 2019 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2020 OpenMPScheduleClauseModifier M1, 2021 OpenMPScheduleClauseModifier M2) 2022 : Kind(Kind), M1(M1), M2(M2) {} 2023 }; 2024 } // namespace 2025 2026 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 2027 // Emit the loop iteration variable. 2028 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2029 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2030 EmitVarDecl(*IVDecl); 2031 2032 // Emit the iterations count variable. 2033 // If it is not a variable, Sema decided to calculate iterations count on each 2034 // iteration (e.g., it is foldable into a constant). 2035 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2036 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2037 // Emit calculation of the iterations count. 2038 EmitIgnoredExpr(S.getCalcLastIteration()); 2039 } 2040 2041 auto &RT = CGM.getOpenMPRuntime(); 2042 2043 bool HasLastprivateClause; 2044 // Check pre-condition. 2045 { 2046 OMPLoopScope PreInitScope(*this, S); 2047 // Skip the entire loop if we don't meet the precondition. 2048 // If the condition constant folds and can be elided, avoid emitting the 2049 // whole loop. 2050 bool CondConstant; 2051 llvm::BasicBlock *ContBlock = nullptr; 2052 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2053 if (!CondConstant) 2054 return false; 2055 } else { 2056 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2057 ContBlock = createBasicBlock("omp.precond.end"); 2058 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2059 getProfileCount(&S)); 2060 EmitBlock(ThenBlock); 2061 incrementProfileCounter(&S); 2062 } 2063 2064 bool Ordered = false; 2065 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2066 if (OrderedClause->getNumForLoops()) 2067 RT.emitDoacrossInit(*this, S); 2068 else 2069 Ordered = true; 2070 } 2071 2072 llvm::DenseSet<const Expr *> EmittedFinals; 2073 emitAlignedClause(*this, S); 2074 EmitOMPLinearClauseInit(S); 2075 // Emit helper vars inits. 2076 LValue LB = 2077 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2078 LValue UB = 2079 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2080 LValue ST = 2081 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2082 LValue IL = 2083 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2084 2085 // Emit 'then' code. 2086 { 2087 OMPPrivateScope LoopScope(*this); 2088 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2089 // Emit implicit barrier to synchronize threads and avoid data races on 2090 // initialization of firstprivate variables and post-update of 2091 // lastprivate variables. 2092 CGM.getOpenMPRuntime().emitBarrierCall( 2093 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2094 /*ForceSimpleCall=*/true); 2095 } 2096 EmitOMPPrivateClause(S, LoopScope); 2097 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2098 EmitOMPReductionClauseInit(S, LoopScope); 2099 EmitOMPPrivateLoopCounters(S, LoopScope); 2100 EmitOMPLinearClause(S, LoopScope); 2101 (void)LoopScope.Privatize(); 2102 2103 // Detect the loop schedule kind and chunk. 2104 llvm::Value *Chunk = nullptr; 2105 OpenMPScheduleTy ScheduleKind; 2106 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2107 ScheduleKind.Schedule = C->getScheduleKind(); 2108 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2109 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2110 if (const auto *Ch = C->getChunkSize()) { 2111 Chunk = EmitScalarExpr(Ch); 2112 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2113 S.getIterationVariable()->getType(), 2114 S.getLocStart()); 2115 } 2116 } 2117 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2118 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2119 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2120 // If the static schedule kind is specified or if the ordered clause is 2121 // specified, and if no monotonic modifier is specified, the effect will 2122 // be as if the monotonic modifier was specified. 2123 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2124 /* Chunked */ Chunk != nullptr) && 2125 !Ordered) { 2126 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2127 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2128 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2129 // When no chunk_size is specified, the iteration space is divided into 2130 // chunks that are approximately equal in size, and at most one chunk is 2131 // distributed to each thread. Note that the size of the chunks is 2132 // unspecified in this case. 2133 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 2134 IVSize, IVSigned, Ordered, 2135 IL.getAddress(), LB.getAddress(), 2136 UB.getAddress(), ST.getAddress()); 2137 auto LoopExit = 2138 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2139 // UB = min(UB, GlobalUB); 2140 EmitIgnoredExpr(S.getEnsureUpperBound()); 2141 // IV = LB; 2142 EmitIgnoredExpr(S.getInit()); 2143 // while (idx <= UB) { BODY; ++idx; } 2144 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2145 S.getInc(), 2146 [&S, LoopExit](CodeGenFunction &CGF) { 2147 CGF.EmitOMPLoopBody(S, LoopExit); 2148 CGF.EmitStopPoint(&S); 2149 }, 2150 [](CodeGenFunction &) {}); 2151 EmitBlock(LoopExit.getBlock()); 2152 // Tell the runtime we are done. 2153 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2154 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 2155 }; 2156 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2157 } else { 2158 const bool IsMonotonic = 2159 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2160 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2161 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2162 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2163 // Emit the outer loop, which requests its work chunk [LB..UB] from 2164 // runtime and runs the inner loop to process it. 2165 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2166 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2167 IL.getAddress(), Chunk); 2168 } 2169 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2170 EmitOMPSimdFinal(S, 2171 [&](CodeGenFunction &CGF) -> llvm::Value * { 2172 return CGF.Builder.CreateIsNotNull( 2173 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2174 }); 2175 } 2176 EmitOMPReductionClauseFinal(S); 2177 // Emit post-update of the reduction variables if IsLastIter != 0. 2178 emitPostUpdateForReductionClause( 2179 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2180 return CGF.Builder.CreateIsNotNull( 2181 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2182 }); 2183 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2184 if (HasLastprivateClause) 2185 EmitOMPLastprivateClauseFinal( 2186 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2187 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2188 } 2189 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2190 return CGF.Builder.CreateIsNotNull( 2191 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2192 }); 2193 // We're now done with the loop, so jump to the continuation block. 2194 if (ContBlock) { 2195 EmitBranch(ContBlock); 2196 EmitBlock(ContBlock, true); 2197 } 2198 } 2199 return HasLastprivateClause; 2200 } 2201 2202 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2203 bool HasLastprivates = false; 2204 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2205 PrePostActionTy &) { 2206 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2207 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2208 }; 2209 { 2210 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2211 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2212 S.hasCancel()); 2213 } 2214 2215 // Emit an implicit barrier at the end. 2216 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2217 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2218 } 2219 } 2220 2221 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2222 bool HasLastprivates = false; 2223 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2224 PrePostActionTy &) { 2225 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2226 }; 2227 { 2228 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2229 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2230 } 2231 2232 // Emit an implicit barrier at the end. 2233 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2234 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2235 } 2236 } 2237 2238 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2239 const Twine &Name, 2240 llvm::Value *Init = nullptr) { 2241 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2242 if (Init) 2243 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2244 return LVal; 2245 } 2246 2247 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2248 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2249 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2250 bool HasLastprivates = false; 2251 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2252 PrePostActionTy &) { 2253 auto &C = CGF.CGM.getContext(); 2254 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2255 // Emit helper vars inits. 2256 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2257 CGF.Builder.getInt32(0)); 2258 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2259 : CGF.Builder.getInt32(0); 2260 LValue UB = 2261 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2262 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2263 CGF.Builder.getInt32(1)); 2264 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2265 CGF.Builder.getInt32(0)); 2266 // Loop counter. 2267 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2268 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2269 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2270 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2271 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2272 // Generate condition for loop. 2273 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2274 OK_Ordinary, S.getLocStart(), 2275 /*fpContractable=*/false); 2276 // Increment for loop counter. 2277 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2278 S.getLocStart()); 2279 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2280 // Iterate through all sections and emit a switch construct: 2281 // switch (IV) { 2282 // case 0: 2283 // <SectionStmt[0]>; 2284 // break; 2285 // ... 2286 // case <NumSection> - 1: 2287 // <SectionStmt[<NumSection> - 1]>; 2288 // break; 2289 // } 2290 // .omp.sections.exit: 2291 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2292 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2293 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2294 CS == nullptr ? 1 : CS->size()); 2295 if (CS) { 2296 unsigned CaseNumber = 0; 2297 for (auto *SubStmt : CS->children()) { 2298 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2299 CGF.EmitBlock(CaseBB); 2300 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2301 CGF.EmitStmt(SubStmt); 2302 CGF.EmitBranch(ExitBB); 2303 ++CaseNumber; 2304 } 2305 } else { 2306 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2307 CGF.EmitBlock(CaseBB); 2308 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2309 CGF.EmitStmt(Stmt); 2310 CGF.EmitBranch(ExitBB); 2311 } 2312 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2313 }; 2314 2315 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2316 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2317 // Emit implicit barrier to synchronize threads and avoid data races on 2318 // initialization of firstprivate variables and post-update of lastprivate 2319 // variables. 2320 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2321 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2322 /*ForceSimpleCall=*/true); 2323 } 2324 CGF.EmitOMPPrivateClause(S, LoopScope); 2325 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2326 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2327 (void)LoopScope.Privatize(); 2328 2329 // Emit static non-chunked loop. 2330 OpenMPScheduleTy ScheduleKind; 2331 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2332 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2333 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2334 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2335 UB.getAddress(), ST.getAddress()); 2336 // UB = min(UB, GlobalUB); 2337 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2338 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2339 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2340 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2341 // IV = LB; 2342 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2343 // while (idx <= UB) { BODY; ++idx; } 2344 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2345 [](CodeGenFunction &) {}); 2346 // Tell the runtime we are done. 2347 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2348 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 2349 }; 2350 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2351 CGF.EmitOMPReductionClauseFinal(S); 2352 // Emit post-update of the reduction variables if IsLastIter != 0. 2353 emitPostUpdateForReductionClause( 2354 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2355 return CGF.Builder.CreateIsNotNull( 2356 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2357 }); 2358 2359 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2360 if (HasLastprivates) 2361 CGF.EmitOMPLastprivateClauseFinal( 2362 S, /*NoFinals=*/false, 2363 CGF.Builder.CreateIsNotNull( 2364 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2365 }; 2366 2367 bool HasCancel = false; 2368 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2369 HasCancel = OSD->hasCancel(); 2370 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2371 HasCancel = OPSD->hasCancel(); 2372 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2373 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2374 HasCancel); 2375 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2376 // clause. Otherwise the barrier will be generated by the codegen for the 2377 // directive. 2378 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2379 // Emit implicit barrier to synchronize threads and avoid data races on 2380 // initialization of firstprivate variables. 2381 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2382 OMPD_unknown); 2383 } 2384 } 2385 2386 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2387 { 2388 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2389 EmitSections(S); 2390 } 2391 // Emit an implicit barrier at the end. 2392 if (!S.getSingleClause<OMPNowaitClause>()) { 2393 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2394 OMPD_sections); 2395 } 2396 } 2397 2398 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2399 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2400 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2401 }; 2402 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2403 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2404 S.hasCancel()); 2405 } 2406 2407 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2408 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2409 llvm::SmallVector<const Expr *, 8> DestExprs; 2410 llvm::SmallVector<const Expr *, 8> SrcExprs; 2411 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2412 // Check if there are any 'copyprivate' clauses associated with this 2413 // 'single' construct. 2414 // Build a list of copyprivate variables along with helper expressions 2415 // (<source>, <destination>, <destination>=<source> expressions) 2416 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2417 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2418 DestExprs.append(C->destination_exprs().begin(), 2419 C->destination_exprs().end()); 2420 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2421 AssignmentOps.append(C->assignment_ops().begin(), 2422 C->assignment_ops().end()); 2423 } 2424 // Emit code for 'single' region along with 'copyprivate' clauses 2425 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2426 Action.Enter(CGF); 2427 OMPPrivateScope SingleScope(CGF); 2428 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2429 CGF.EmitOMPPrivateClause(S, SingleScope); 2430 (void)SingleScope.Privatize(); 2431 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2432 }; 2433 { 2434 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2435 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2436 CopyprivateVars, DestExprs, 2437 SrcExprs, AssignmentOps); 2438 } 2439 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2440 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2441 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2442 CGM.getOpenMPRuntime().emitBarrierCall( 2443 *this, S.getLocStart(), 2444 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2445 } 2446 } 2447 2448 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2449 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2450 Action.Enter(CGF); 2451 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2452 }; 2453 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2454 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2455 } 2456 2457 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2458 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2459 Action.Enter(CGF); 2460 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2461 }; 2462 Expr *Hint = nullptr; 2463 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2464 Hint = HintClause->getHint(); 2465 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2466 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2467 S.getDirectiveName().getAsString(), 2468 CodeGen, S.getLocStart(), Hint); 2469 } 2470 2471 void CodeGenFunction::EmitOMPParallelForDirective( 2472 const OMPParallelForDirective &S) { 2473 // Emit directive as a combined directive that consists of two implicit 2474 // directives: 'parallel' with 'for' directive. 2475 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2476 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2477 CGF.EmitOMPWorksharingLoop(S); 2478 }; 2479 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2480 } 2481 2482 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2483 const OMPParallelForSimdDirective &S) { 2484 // Emit directive as a combined directive that consists of two implicit 2485 // directives: 'parallel' with 'for' directive. 2486 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2487 CGF.EmitOMPWorksharingLoop(S); 2488 }; 2489 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2490 } 2491 2492 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2493 const OMPParallelSectionsDirective &S) { 2494 // Emit directive as a combined directive that consists of two implicit 2495 // directives: 'parallel' with 'sections' directive. 2496 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2497 CGF.EmitSections(S); 2498 }; 2499 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2500 } 2501 2502 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2503 const RegionCodeGenTy &BodyGen, 2504 const TaskGenTy &TaskGen, 2505 OMPTaskDataTy &Data) { 2506 // Emit outlined function for task construct. 2507 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2508 auto *I = CS->getCapturedDecl()->param_begin(); 2509 auto *PartId = std::next(I); 2510 auto *TaskT = std::next(I, 4); 2511 // Check if the task is final 2512 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2513 // If the condition constant folds and can be elided, try to avoid emitting 2514 // the condition and the dead arm of the if/else. 2515 auto *Cond = Clause->getCondition(); 2516 bool CondConstant; 2517 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2518 Data.Final.setInt(CondConstant); 2519 else 2520 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2521 } else { 2522 // By default the task is not final. 2523 Data.Final.setInt(/*IntVal=*/false); 2524 } 2525 // Check if the task has 'priority' clause. 2526 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2527 auto *Prio = Clause->getPriority(); 2528 Data.Priority.setInt(/*IntVal=*/true); 2529 Data.Priority.setPointer(EmitScalarConversion( 2530 EmitScalarExpr(Prio), Prio->getType(), 2531 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2532 Prio->getExprLoc())); 2533 } 2534 // The first function argument for tasks is a thread id, the second one is a 2535 // part id (0 for tied tasks, >=0 for untied task). 2536 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2537 // Get list of private variables. 2538 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2539 auto IRef = C->varlist_begin(); 2540 for (auto *IInit : C->private_copies()) { 2541 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2542 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2543 Data.PrivateVars.push_back(*IRef); 2544 Data.PrivateCopies.push_back(IInit); 2545 } 2546 ++IRef; 2547 } 2548 } 2549 EmittedAsPrivate.clear(); 2550 // Get list of firstprivate variables. 2551 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2552 auto IRef = C->varlist_begin(); 2553 auto IElemInitRef = C->inits().begin(); 2554 for (auto *IInit : C->private_copies()) { 2555 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2556 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2557 Data.FirstprivateVars.push_back(*IRef); 2558 Data.FirstprivateCopies.push_back(IInit); 2559 Data.FirstprivateInits.push_back(*IElemInitRef); 2560 } 2561 ++IRef; 2562 ++IElemInitRef; 2563 } 2564 } 2565 // Get list of lastprivate variables (for taskloops). 2566 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2567 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2568 auto IRef = C->varlist_begin(); 2569 auto ID = C->destination_exprs().begin(); 2570 for (auto *IInit : C->private_copies()) { 2571 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2572 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2573 Data.LastprivateVars.push_back(*IRef); 2574 Data.LastprivateCopies.push_back(IInit); 2575 } 2576 LastprivateDstsOrigs.insert( 2577 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2578 cast<DeclRefExpr>(*IRef)}); 2579 ++IRef; 2580 ++ID; 2581 } 2582 } 2583 // Build list of dependences. 2584 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2585 for (auto *IRef : C->varlists()) 2586 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2587 auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2588 CodeGenFunction &CGF, PrePostActionTy &Action) { 2589 // Set proper addresses for generated private copies. 2590 OMPPrivateScope Scope(CGF); 2591 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2592 !Data.LastprivateVars.empty()) { 2593 auto *CopyFn = CGF.Builder.CreateLoad( 2594 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2595 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2596 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2597 // Map privates. 2598 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2599 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2600 CallArgs.push_back(PrivatesPtr); 2601 for (auto *E : Data.PrivateVars) { 2602 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2603 Address PrivatePtr = CGF.CreateMemTemp( 2604 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2605 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2606 CallArgs.push_back(PrivatePtr.getPointer()); 2607 } 2608 for (auto *E : Data.FirstprivateVars) { 2609 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2610 Address PrivatePtr = 2611 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2612 ".firstpriv.ptr.addr"); 2613 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2614 CallArgs.push_back(PrivatePtr.getPointer()); 2615 } 2616 for (auto *E : Data.LastprivateVars) { 2617 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2618 Address PrivatePtr = 2619 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2620 ".lastpriv.ptr.addr"); 2621 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2622 CallArgs.push_back(PrivatePtr.getPointer()); 2623 } 2624 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2625 for (auto &&Pair : LastprivateDstsOrigs) { 2626 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2627 DeclRefExpr DRE( 2628 const_cast<VarDecl *>(OrigVD), 2629 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2630 OrigVD) != nullptr, 2631 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2632 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2633 return CGF.EmitLValue(&DRE).getAddress(); 2634 }); 2635 } 2636 for (auto &&Pair : PrivatePtrs) { 2637 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2638 CGF.getContext().getDeclAlign(Pair.first)); 2639 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2640 } 2641 } 2642 (void)Scope.Privatize(); 2643 2644 Action.Enter(CGF); 2645 BodyGen(CGF); 2646 }; 2647 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2648 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2649 Data.NumberOfParts); 2650 OMPLexicalScope Scope(*this, S); 2651 TaskGen(*this, OutlinedFn, Data); 2652 } 2653 2654 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2655 // Emit outlined function for task construct. 2656 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2657 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2658 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2659 const Expr *IfCond = nullptr; 2660 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2661 if (C->getNameModifier() == OMPD_unknown || 2662 C->getNameModifier() == OMPD_task) { 2663 IfCond = C->getCondition(); 2664 break; 2665 } 2666 } 2667 2668 OMPTaskDataTy Data; 2669 // Check if we should emit tied or untied task. 2670 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2671 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2672 CGF.EmitStmt(CS->getCapturedStmt()); 2673 }; 2674 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2675 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2676 const OMPTaskDataTy &Data) { 2677 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2678 SharedsTy, CapturedStruct, IfCond, 2679 Data); 2680 }; 2681 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2682 } 2683 2684 void CodeGenFunction::EmitOMPTaskyieldDirective( 2685 const OMPTaskyieldDirective &S) { 2686 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2687 } 2688 2689 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2690 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2691 } 2692 2693 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2694 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2695 } 2696 2697 void CodeGenFunction::EmitOMPTaskgroupDirective( 2698 const OMPTaskgroupDirective &S) { 2699 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2700 Action.Enter(CGF); 2701 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2702 }; 2703 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2704 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2705 } 2706 2707 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2708 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2709 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2710 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2711 FlushClause->varlist_end()); 2712 } 2713 return llvm::None; 2714 }(), S.getLocStart()); 2715 } 2716 2717 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2718 // Emit the loop iteration variable. 2719 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2720 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2721 EmitVarDecl(*IVDecl); 2722 2723 // Emit the iterations count variable. 2724 // If it is not a variable, Sema decided to calculate iterations count on each 2725 // iteration (e.g., it is foldable into a constant). 2726 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2727 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2728 // Emit calculation of the iterations count. 2729 EmitIgnoredExpr(S.getCalcLastIteration()); 2730 } 2731 2732 auto &RT = CGM.getOpenMPRuntime(); 2733 2734 // Check pre-condition. 2735 { 2736 OMPLoopScope PreInitScope(*this, S); 2737 // Skip the entire loop if we don't meet the precondition. 2738 // If the condition constant folds and can be elided, avoid emitting the 2739 // whole loop. 2740 bool CondConstant; 2741 llvm::BasicBlock *ContBlock = nullptr; 2742 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2743 if (!CondConstant) 2744 return; 2745 } else { 2746 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2747 ContBlock = createBasicBlock("omp.precond.end"); 2748 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2749 getProfileCount(&S)); 2750 EmitBlock(ThenBlock); 2751 incrementProfileCounter(&S); 2752 } 2753 2754 // Emit 'then' code. 2755 { 2756 // Emit helper vars inits. 2757 LValue LB = 2758 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2759 LValue UB = 2760 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2761 LValue ST = 2762 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2763 LValue IL = 2764 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2765 2766 OMPPrivateScope LoopScope(*this); 2767 EmitOMPPrivateLoopCounters(S, LoopScope); 2768 (void)LoopScope.Privatize(); 2769 2770 // Detect the distribute schedule kind and chunk. 2771 llvm::Value *Chunk = nullptr; 2772 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2773 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2774 ScheduleKind = C->getDistScheduleKind(); 2775 if (const auto *Ch = C->getChunkSize()) { 2776 Chunk = EmitScalarExpr(Ch); 2777 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2778 S.getIterationVariable()->getType(), 2779 S.getLocStart()); 2780 } 2781 } 2782 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2783 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2784 2785 // OpenMP [2.10.8, distribute Construct, Description] 2786 // If dist_schedule is specified, kind must be static. If specified, 2787 // iterations are divided into chunks of size chunk_size, chunks are 2788 // assigned to the teams of the league in a round-robin fashion in the 2789 // order of the team number. When no chunk_size is specified, the 2790 // iteration space is divided into chunks that are approximately equal 2791 // in size, and at most one chunk is distributed to each team of the 2792 // league. The size of the chunks is unspecified in this case. 2793 if (RT.isStaticNonchunked(ScheduleKind, 2794 /* Chunked */ Chunk != nullptr)) { 2795 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2796 IVSize, IVSigned, /* Ordered = */ false, 2797 IL.getAddress(), LB.getAddress(), 2798 UB.getAddress(), ST.getAddress()); 2799 auto LoopExit = 2800 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2801 // UB = min(UB, GlobalUB); 2802 EmitIgnoredExpr(S.getEnsureUpperBound()); 2803 // IV = LB; 2804 EmitIgnoredExpr(S.getInit()); 2805 // while (idx <= UB) { BODY; ++idx; } 2806 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2807 S.getInc(), 2808 [&S, LoopExit](CodeGenFunction &CGF) { 2809 CGF.EmitOMPLoopBody(S, LoopExit); 2810 CGF.EmitStopPoint(&S); 2811 }, 2812 [](CodeGenFunction &) {}); 2813 EmitBlock(LoopExit.getBlock()); 2814 // Tell the runtime we are done. 2815 RT.emitForStaticFinish(*this, S.getLocStart()); 2816 } else { 2817 // Emit the outer loop, which requests its work chunk [LB..UB] from 2818 // runtime and runs the inner loop to process it. 2819 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2820 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2821 IL.getAddress(), Chunk); 2822 } 2823 } 2824 2825 // We're now done with the loop, so jump to the continuation block. 2826 if (ContBlock) { 2827 EmitBranch(ContBlock); 2828 EmitBlock(ContBlock, true); 2829 } 2830 } 2831 } 2832 2833 void CodeGenFunction::EmitOMPDistributeDirective( 2834 const OMPDistributeDirective &S) { 2835 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2836 CGF.EmitOMPDistributeLoop(S); 2837 }; 2838 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2839 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2840 false); 2841 } 2842 2843 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2844 const CapturedStmt *S) { 2845 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2846 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2847 CGF.CapturedStmtInfo = &CapStmtInfo; 2848 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2849 Fn->addFnAttr(llvm::Attribute::NoInline); 2850 return Fn; 2851 } 2852 2853 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2854 if (!S.getAssociatedStmt()) { 2855 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2856 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2857 return; 2858 } 2859 auto *C = S.getSingleClause<OMPSIMDClause>(); 2860 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2861 PrePostActionTy &Action) { 2862 if (C) { 2863 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2864 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2865 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2866 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2867 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2868 } else { 2869 Action.Enter(CGF); 2870 CGF.EmitStmt( 2871 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2872 } 2873 }; 2874 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2875 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2876 } 2877 2878 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2879 QualType SrcType, QualType DestType, 2880 SourceLocation Loc) { 2881 assert(CGF.hasScalarEvaluationKind(DestType) && 2882 "DestType must have scalar evaluation kind."); 2883 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2884 return Val.isScalar() 2885 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2886 Loc) 2887 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2888 DestType, Loc); 2889 } 2890 2891 static CodeGenFunction::ComplexPairTy 2892 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2893 QualType DestType, SourceLocation Loc) { 2894 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2895 "DestType must have complex evaluation kind."); 2896 CodeGenFunction::ComplexPairTy ComplexVal; 2897 if (Val.isScalar()) { 2898 // Convert the input element to the element type of the complex. 2899 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2900 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2901 DestElementType, Loc); 2902 ComplexVal = CodeGenFunction::ComplexPairTy( 2903 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2904 } else { 2905 assert(Val.isComplex() && "Must be a scalar or complex."); 2906 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2907 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2908 ComplexVal.first = CGF.EmitScalarConversion( 2909 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2910 ComplexVal.second = CGF.EmitScalarConversion( 2911 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2912 } 2913 return ComplexVal; 2914 } 2915 2916 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2917 LValue LVal, RValue RVal) { 2918 if (LVal.isGlobalReg()) { 2919 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2920 } else { 2921 CGF.EmitAtomicStore(RVal, LVal, 2922 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2923 : llvm::AtomicOrdering::Monotonic, 2924 LVal.isVolatile(), /*IsInit=*/false); 2925 } 2926 } 2927 2928 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2929 QualType RValTy, SourceLocation Loc) { 2930 switch (getEvaluationKind(LVal.getType())) { 2931 case TEK_Scalar: 2932 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2933 *this, RVal, RValTy, LVal.getType(), Loc)), 2934 LVal); 2935 break; 2936 case TEK_Complex: 2937 EmitStoreOfComplex( 2938 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 2939 /*isInit=*/false); 2940 break; 2941 case TEK_Aggregate: 2942 llvm_unreachable("Must be a scalar or complex."); 2943 } 2944 } 2945 2946 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2947 const Expr *X, const Expr *V, 2948 SourceLocation Loc) { 2949 // v = x; 2950 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2951 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2952 LValue XLValue = CGF.EmitLValue(X); 2953 LValue VLValue = CGF.EmitLValue(V); 2954 RValue Res = XLValue.isGlobalReg() 2955 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2956 : CGF.EmitAtomicLoad( 2957 XLValue, Loc, 2958 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2959 : llvm::AtomicOrdering::Monotonic, 2960 XLValue.isVolatile()); 2961 // OpenMP, 2.12.6, atomic Construct 2962 // Any atomic construct with a seq_cst clause forces the atomically 2963 // performed operation to include an implicit flush operation without a 2964 // list. 2965 if (IsSeqCst) 2966 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2967 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 2968 } 2969 2970 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2971 const Expr *X, const Expr *E, 2972 SourceLocation Loc) { 2973 // x = expr; 2974 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2975 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2976 // OpenMP, 2.12.6, atomic Construct 2977 // Any atomic construct with a seq_cst clause forces the atomically 2978 // performed operation to include an implicit flush operation without a 2979 // list. 2980 if (IsSeqCst) 2981 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2982 } 2983 2984 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2985 RValue Update, 2986 BinaryOperatorKind BO, 2987 llvm::AtomicOrdering AO, 2988 bool IsXLHSInRHSPart) { 2989 auto &Context = CGF.CGM.getContext(); 2990 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2991 // expression is simple and atomic is allowed for the given type for the 2992 // target platform. 2993 if (BO == BO_Comma || !Update.isScalar() || 2994 !Update.getScalarVal()->getType()->isIntegerTy() || 2995 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2996 (Update.getScalarVal()->getType() != 2997 X.getAddress().getElementType())) || 2998 !X.getAddress().getElementType()->isIntegerTy() || 2999 !Context.getTargetInfo().hasBuiltinAtomic( 3000 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3001 return std::make_pair(false, RValue::get(nullptr)); 3002 3003 llvm::AtomicRMWInst::BinOp RMWOp; 3004 switch (BO) { 3005 case BO_Add: 3006 RMWOp = llvm::AtomicRMWInst::Add; 3007 break; 3008 case BO_Sub: 3009 if (!IsXLHSInRHSPart) 3010 return std::make_pair(false, RValue::get(nullptr)); 3011 RMWOp = llvm::AtomicRMWInst::Sub; 3012 break; 3013 case BO_And: 3014 RMWOp = llvm::AtomicRMWInst::And; 3015 break; 3016 case BO_Or: 3017 RMWOp = llvm::AtomicRMWInst::Or; 3018 break; 3019 case BO_Xor: 3020 RMWOp = llvm::AtomicRMWInst::Xor; 3021 break; 3022 case BO_LT: 3023 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3024 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3025 : llvm::AtomicRMWInst::Max) 3026 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3027 : llvm::AtomicRMWInst::UMax); 3028 break; 3029 case BO_GT: 3030 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3031 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3032 : llvm::AtomicRMWInst::Min) 3033 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3034 : llvm::AtomicRMWInst::UMin); 3035 break; 3036 case BO_Assign: 3037 RMWOp = llvm::AtomicRMWInst::Xchg; 3038 break; 3039 case BO_Mul: 3040 case BO_Div: 3041 case BO_Rem: 3042 case BO_Shl: 3043 case BO_Shr: 3044 case BO_LAnd: 3045 case BO_LOr: 3046 return std::make_pair(false, RValue::get(nullptr)); 3047 case BO_PtrMemD: 3048 case BO_PtrMemI: 3049 case BO_LE: 3050 case BO_GE: 3051 case BO_EQ: 3052 case BO_NE: 3053 case BO_AddAssign: 3054 case BO_SubAssign: 3055 case BO_AndAssign: 3056 case BO_OrAssign: 3057 case BO_XorAssign: 3058 case BO_MulAssign: 3059 case BO_DivAssign: 3060 case BO_RemAssign: 3061 case BO_ShlAssign: 3062 case BO_ShrAssign: 3063 case BO_Comma: 3064 llvm_unreachable("Unsupported atomic update operation"); 3065 } 3066 auto *UpdateVal = Update.getScalarVal(); 3067 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3068 UpdateVal = CGF.Builder.CreateIntCast( 3069 IC, X.getAddress().getElementType(), 3070 X.getType()->hasSignedIntegerRepresentation()); 3071 } 3072 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3073 return std::make_pair(true, RValue::get(Res)); 3074 } 3075 3076 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3077 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3078 llvm::AtomicOrdering AO, SourceLocation Loc, 3079 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3080 // Update expressions are allowed to have the following forms: 3081 // x binop= expr; -> xrval + expr; 3082 // x++, ++x -> xrval + 1; 3083 // x--, --x -> xrval - 1; 3084 // x = x binop expr; -> xrval binop expr 3085 // x = expr Op x; - > expr binop xrval; 3086 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3087 if (!Res.first) { 3088 if (X.isGlobalReg()) { 3089 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3090 // 'xrval'. 3091 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3092 } else { 3093 // Perform compare-and-swap procedure. 3094 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3095 } 3096 } 3097 return Res; 3098 } 3099 3100 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3101 const Expr *X, const Expr *E, 3102 const Expr *UE, bool IsXLHSInRHSPart, 3103 SourceLocation Loc) { 3104 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3105 "Update expr in 'atomic update' must be a binary operator."); 3106 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3107 // Update expressions are allowed to have the following forms: 3108 // x binop= expr; -> xrval + expr; 3109 // x++, ++x -> xrval + 1; 3110 // x--, --x -> xrval - 1; 3111 // x = x binop expr; -> xrval binop expr 3112 // x = expr Op x; - > expr binop xrval; 3113 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3114 LValue XLValue = CGF.EmitLValue(X); 3115 RValue ExprRValue = CGF.EmitAnyExpr(E); 3116 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3117 : llvm::AtomicOrdering::Monotonic; 3118 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3119 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3120 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3121 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3122 auto Gen = 3123 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3124 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3125 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3126 return CGF.EmitAnyExpr(UE); 3127 }; 3128 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3129 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3130 // OpenMP, 2.12.6, atomic Construct 3131 // Any atomic construct with a seq_cst clause forces the atomically 3132 // performed operation to include an implicit flush operation without a 3133 // list. 3134 if (IsSeqCst) 3135 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3136 } 3137 3138 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3139 QualType SourceType, QualType ResType, 3140 SourceLocation Loc) { 3141 switch (CGF.getEvaluationKind(ResType)) { 3142 case TEK_Scalar: 3143 return RValue::get( 3144 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3145 case TEK_Complex: { 3146 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3147 return RValue::getComplex(Res.first, Res.second); 3148 } 3149 case TEK_Aggregate: 3150 break; 3151 } 3152 llvm_unreachable("Must be a scalar or complex."); 3153 } 3154 3155 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3156 bool IsPostfixUpdate, const Expr *V, 3157 const Expr *X, const Expr *E, 3158 const Expr *UE, bool IsXLHSInRHSPart, 3159 SourceLocation Loc) { 3160 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3161 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3162 RValue NewVVal; 3163 LValue VLValue = CGF.EmitLValue(V); 3164 LValue XLValue = CGF.EmitLValue(X); 3165 RValue ExprRValue = CGF.EmitAnyExpr(E); 3166 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3167 : llvm::AtomicOrdering::Monotonic; 3168 QualType NewVValType; 3169 if (UE) { 3170 // 'x' is updated with some additional value. 3171 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3172 "Update expr in 'atomic capture' must be a binary operator."); 3173 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3174 // Update expressions are allowed to have the following forms: 3175 // x binop= expr; -> xrval + expr; 3176 // x++, ++x -> xrval + 1; 3177 // x--, --x -> xrval - 1; 3178 // x = x binop expr; -> xrval binop expr 3179 // x = expr Op x; - > expr binop xrval; 3180 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3181 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3182 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3183 NewVValType = XRValExpr->getType(); 3184 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3185 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3186 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 3187 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3188 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3189 RValue Res = CGF.EmitAnyExpr(UE); 3190 NewVVal = IsPostfixUpdate ? XRValue : Res; 3191 return Res; 3192 }; 3193 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3194 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3195 if (Res.first) { 3196 // 'atomicrmw' instruction was generated. 3197 if (IsPostfixUpdate) { 3198 // Use old value from 'atomicrmw'. 3199 NewVVal = Res.second; 3200 } else { 3201 // 'atomicrmw' does not provide new value, so evaluate it using old 3202 // value of 'x'. 3203 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3204 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3205 NewVVal = CGF.EmitAnyExpr(UE); 3206 } 3207 } 3208 } else { 3209 // 'x' is simply rewritten with some 'expr'. 3210 NewVValType = X->getType().getNonReferenceType(); 3211 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3212 X->getType().getNonReferenceType(), Loc); 3213 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 3214 NewVVal = XRValue; 3215 return ExprRValue; 3216 }; 3217 // Try to perform atomicrmw xchg, otherwise simple exchange. 3218 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3219 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3220 Loc, Gen); 3221 if (Res.first) { 3222 // 'atomicrmw' instruction was generated. 3223 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3224 } 3225 } 3226 // Emit post-update store to 'v' of old/new 'x' value. 3227 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3228 // OpenMP, 2.12.6, atomic Construct 3229 // Any atomic construct with a seq_cst clause forces the atomically 3230 // performed operation to include an implicit flush operation without a 3231 // list. 3232 if (IsSeqCst) 3233 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3234 } 3235 3236 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3237 bool IsSeqCst, bool IsPostfixUpdate, 3238 const Expr *X, const Expr *V, const Expr *E, 3239 const Expr *UE, bool IsXLHSInRHSPart, 3240 SourceLocation Loc) { 3241 switch (Kind) { 3242 case OMPC_read: 3243 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3244 break; 3245 case OMPC_write: 3246 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3247 break; 3248 case OMPC_unknown: 3249 case OMPC_update: 3250 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3251 break; 3252 case OMPC_capture: 3253 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3254 IsXLHSInRHSPart, Loc); 3255 break; 3256 case OMPC_if: 3257 case OMPC_final: 3258 case OMPC_num_threads: 3259 case OMPC_private: 3260 case OMPC_firstprivate: 3261 case OMPC_lastprivate: 3262 case OMPC_reduction: 3263 case OMPC_safelen: 3264 case OMPC_simdlen: 3265 case OMPC_collapse: 3266 case OMPC_default: 3267 case OMPC_seq_cst: 3268 case OMPC_shared: 3269 case OMPC_linear: 3270 case OMPC_aligned: 3271 case OMPC_copyin: 3272 case OMPC_copyprivate: 3273 case OMPC_flush: 3274 case OMPC_proc_bind: 3275 case OMPC_schedule: 3276 case OMPC_ordered: 3277 case OMPC_nowait: 3278 case OMPC_untied: 3279 case OMPC_threadprivate: 3280 case OMPC_depend: 3281 case OMPC_mergeable: 3282 case OMPC_device: 3283 case OMPC_threads: 3284 case OMPC_simd: 3285 case OMPC_map: 3286 case OMPC_num_teams: 3287 case OMPC_thread_limit: 3288 case OMPC_priority: 3289 case OMPC_grainsize: 3290 case OMPC_nogroup: 3291 case OMPC_num_tasks: 3292 case OMPC_hint: 3293 case OMPC_dist_schedule: 3294 case OMPC_defaultmap: 3295 case OMPC_uniform: 3296 case OMPC_to: 3297 case OMPC_from: 3298 case OMPC_use_device_ptr: 3299 case OMPC_is_device_ptr: 3300 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3301 } 3302 } 3303 3304 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3305 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3306 OpenMPClauseKind Kind = OMPC_unknown; 3307 for (auto *C : S.clauses()) { 3308 // Find first clause (skip seq_cst clause, if it is first). 3309 if (C->getClauseKind() != OMPC_seq_cst) { 3310 Kind = C->getClauseKind(); 3311 break; 3312 } 3313 } 3314 3315 const auto *CS = 3316 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3317 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3318 enterFullExpression(EWC); 3319 } 3320 // Processing for statements under 'atomic capture'. 3321 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3322 for (const auto *C : Compound->body()) { 3323 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3324 enterFullExpression(EWC); 3325 } 3326 } 3327 } 3328 3329 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3330 PrePostActionTy &) { 3331 CGF.EmitStopPoint(CS); 3332 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3333 S.getV(), S.getExpr(), S.getUpdateExpr(), 3334 S.isXLHSInRHSPart(), S.getLocStart()); 3335 }; 3336 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3337 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3338 } 3339 3340 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/> 3341 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction( 3342 CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName, 3343 bool IsOffloadEntry) { 3344 llvm::Function *OutlinedFn = nullptr; 3345 llvm::Constant *OutlinedFnID = nullptr; 3346 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3347 OMPPrivateScope PrivateScope(CGF); 3348 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3349 CGF.EmitOMPPrivateClause(S, PrivateScope); 3350 (void)PrivateScope.Privatize(); 3351 3352 Action.Enter(CGF); 3353 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3354 }; 3355 // Emit target region as a standalone region. 3356 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3357 S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); 3358 return std::make_pair(OutlinedFn, OutlinedFnID); 3359 } 3360 3361 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3362 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3363 3364 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3365 GenerateOpenMPCapturedVars(CS, CapturedVars); 3366 3367 llvm::Function *Fn = nullptr; 3368 llvm::Constant *FnID = nullptr; 3369 3370 // Check if we have any if clause associated with the directive. 3371 const Expr *IfCond = nullptr; 3372 3373 if (auto *C = S.getSingleClause<OMPIfClause>()) { 3374 IfCond = C->getCondition(); 3375 } 3376 3377 // Check if we have any device clause associated with the directive. 3378 const Expr *Device = nullptr; 3379 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3380 Device = C->getDevice(); 3381 } 3382 3383 // Check if we have an if clause whose conditional always evaluates to false 3384 // or if we do not have any targets specified. If so the target region is not 3385 // an offload entry point. 3386 bool IsOffloadEntry = true; 3387 if (IfCond) { 3388 bool Val; 3389 if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3390 IsOffloadEntry = false; 3391 } 3392 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3393 IsOffloadEntry = false; 3394 3395 assert(CurFuncDecl && "No parent declaration for target region!"); 3396 StringRef ParentName; 3397 // In case we have Ctors/Dtors we use the complete type variant to produce 3398 // the mangling of the device outlined kernel. 3399 if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl)) 3400 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3401 else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl)) 3402 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3403 else 3404 ParentName = 3405 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl))); 3406 3407 std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction( 3408 CGM, S, ParentName, IsOffloadEntry); 3409 OMPLexicalScope Scope(*this, S); 3410 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device, 3411 CapturedVars); 3412 } 3413 3414 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3415 const OMPExecutableDirective &S, 3416 OpenMPDirectiveKind InnermostKind, 3417 const RegionCodeGenTy &CodeGen) { 3418 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3419 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 3420 emitParallelOrTeamsOutlinedFunction(S, 3421 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3422 3423 const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S); 3424 const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>(); 3425 const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>(); 3426 if (NT || TL) { 3427 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3428 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3429 3430 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3431 S.getLocStart()); 3432 } 3433 3434 OMPLexicalScope Scope(CGF, S); 3435 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3436 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3437 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3438 CapturedVars); 3439 } 3440 3441 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3442 // Emit parallel region as a standalone region. 3443 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3444 OMPPrivateScope PrivateScope(CGF); 3445 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3446 CGF.EmitOMPPrivateClause(S, PrivateScope); 3447 (void)PrivateScope.Privatize(); 3448 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3449 }; 3450 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3451 } 3452 3453 void CodeGenFunction::EmitOMPCancellationPointDirective( 3454 const OMPCancellationPointDirective &S) { 3455 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3456 S.getCancelRegion()); 3457 } 3458 3459 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3460 const Expr *IfCond = nullptr; 3461 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3462 if (C->getNameModifier() == OMPD_unknown || 3463 C->getNameModifier() == OMPD_cancel) { 3464 IfCond = C->getCondition(); 3465 break; 3466 } 3467 } 3468 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3469 S.getCancelRegion()); 3470 } 3471 3472 CodeGenFunction::JumpDest 3473 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3474 if (Kind == OMPD_parallel || Kind == OMPD_task || 3475 Kind == OMPD_target_parallel) 3476 return ReturnBlock; 3477 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3478 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 3479 Kind == OMPD_distribute_parallel_for || 3480 Kind == OMPD_target_parallel_for); 3481 return OMPCancelStack.getExitBlock(); 3482 } 3483 3484 void CodeGenFunction::EmitOMPUseDevicePtrClause( 3485 const OMPClause &NC, OMPPrivateScope &PrivateScope, 3486 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 3487 const auto &C = cast<OMPUseDevicePtrClause>(NC); 3488 auto OrigVarIt = C.varlist_begin(); 3489 auto InitIt = C.inits().begin(); 3490 for (auto PvtVarIt : C.private_copies()) { 3491 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 3492 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 3493 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 3494 3495 // In order to identify the right initializer we need to match the 3496 // declaration used by the mapping logic. In some cases we may get 3497 // OMPCapturedExprDecl that refers to the original declaration. 3498 const ValueDecl *MatchingVD = OrigVD; 3499 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 3500 // OMPCapturedExprDecl are used to privative fields of the current 3501 // structure. 3502 auto *ME = cast<MemberExpr>(OED->getInit()); 3503 assert(isa<CXXThisExpr>(ME->getBase()) && 3504 "Base should be the current struct!"); 3505 MatchingVD = ME->getMemberDecl(); 3506 } 3507 3508 // If we don't have information about the current list item, move on to 3509 // the next one. 3510 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 3511 if (InitAddrIt == CaptureDeviceAddrMap.end()) 3512 continue; 3513 3514 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 3515 // Initialize the temporary initialization variable with the address we 3516 // get from the runtime library. We have to cast the source address 3517 // because it is always a void *. References are materialized in the 3518 // privatization scope, so the initialization here disregards the fact 3519 // the original variable is a reference. 3520 QualType AddrQTy = 3521 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 3522 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 3523 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 3524 setAddrOfLocalVar(InitVD, InitAddr); 3525 3526 // Emit private declaration, it will be initialized by the value we 3527 // declaration we just added to the local declarations map. 3528 EmitDecl(*PvtVD); 3529 3530 // The initialization variables reached its purpose in the emission 3531 // ofthe previous declaration, so we don't need it anymore. 3532 LocalDeclMap.erase(InitVD); 3533 3534 // Return the address of the private variable. 3535 return GetAddrOfLocalVar(PvtVD); 3536 }); 3537 assert(IsRegistered && "firstprivate var already registered as private"); 3538 // Silence the warning about unused variable. 3539 (void)IsRegistered; 3540 3541 ++OrigVarIt; 3542 ++InitIt; 3543 } 3544 } 3545 3546 // Generate the instructions for '#pragma omp target data' directive. 3547 void CodeGenFunction::EmitOMPTargetDataDirective( 3548 const OMPTargetDataDirective &S) { 3549 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 3550 3551 // Create a pre/post action to signal the privatization of the device pointer. 3552 // This action can be replaced by the OpenMP runtime code generation to 3553 // deactivate privatization. 3554 bool PrivatizeDevicePointers = false; 3555 class DevicePointerPrivActionTy : public PrePostActionTy { 3556 bool &PrivatizeDevicePointers; 3557 3558 public: 3559 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 3560 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 3561 void Enter(CodeGenFunction &CGF) override { 3562 PrivatizeDevicePointers = true; 3563 } 3564 }; 3565 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 3566 3567 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 3568 CodeGenFunction &CGF, PrePostActionTy &Action) { 3569 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3570 CGF.EmitStmt( 3571 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3572 }; 3573 3574 // Codegen that selects wheather to generate the privatization code or not. 3575 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 3576 &InnermostCodeGen](CodeGenFunction &CGF, 3577 PrePostActionTy &Action) { 3578 RegionCodeGenTy RCG(InnermostCodeGen); 3579 PrivatizeDevicePointers = false; 3580 3581 // Call the pre-action to change the status of PrivatizeDevicePointers if 3582 // needed. 3583 Action.Enter(CGF); 3584 3585 if (PrivatizeDevicePointers) { 3586 OMPPrivateScope PrivateScope(CGF); 3587 // Emit all instances of the use_device_ptr clause. 3588 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 3589 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 3590 Info.CaptureDeviceAddrMap); 3591 (void)PrivateScope.Privatize(); 3592 RCG(CGF); 3593 } else 3594 RCG(CGF); 3595 }; 3596 3597 // Forward the provided action to the privatization codegen. 3598 RegionCodeGenTy PrivRCG(PrivCodeGen); 3599 PrivRCG.setAction(Action); 3600 3601 // Notwithstanding the body of the region is emitted as inlined directive, 3602 // we don't use an inline scope as changes in the references inside the 3603 // region are expected to be visible outside, so we do not privative them. 3604 OMPLexicalScope Scope(CGF, S); 3605 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 3606 PrivRCG); 3607 }; 3608 3609 RegionCodeGenTy RCG(CodeGen); 3610 3611 // If we don't have target devices, don't bother emitting the data mapping 3612 // code. 3613 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3614 RCG(*this); 3615 return; 3616 } 3617 3618 // Check if we have any if clause associated with the directive. 3619 const Expr *IfCond = nullptr; 3620 if (auto *C = S.getSingleClause<OMPIfClause>()) 3621 IfCond = C->getCondition(); 3622 3623 // Check if we have any device clause associated with the directive. 3624 const Expr *Device = nullptr; 3625 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3626 Device = C->getDevice(); 3627 3628 // Set the action to signal privatization of device pointers. 3629 RCG.setAction(PrivAction); 3630 3631 // Emit region code. 3632 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 3633 Info); 3634 } 3635 3636 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3637 const OMPTargetEnterDataDirective &S) { 3638 // If we don't have target devices, don't bother emitting the data mapping 3639 // code. 3640 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3641 return; 3642 3643 // Check if we have any if clause associated with the directive. 3644 const Expr *IfCond = nullptr; 3645 if (auto *C = S.getSingleClause<OMPIfClause>()) 3646 IfCond = C->getCondition(); 3647 3648 // Check if we have any device clause associated with the directive. 3649 const Expr *Device = nullptr; 3650 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3651 Device = C->getDevice(); 3652 3653 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3654 } 3655 3656 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3657 const OMPTargetExitDataDirective &S) { 3658 // If we don't have target devices, don't bother emitting the data mapping 3659 // code. 3660 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3661 return; 3662 3663 // Check if we have any if clause associated with the directive. 3664 const Expr *IfCond = nullptr; 3665 if (auto *C = S.getSingleClause<OMPIfClause>()) 3666 IfCond = C->getCondition(); 3667 3668 // Check if we have any device clause associated with the directive. 3669 const Expr *Device = nullptr; 3670 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3671 Device = C->getDevice(); 3672 3673 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3674 } 3675 3676 void CodeGenFunction::EmitOMPTargetParallelDirective( 3677 const OMPTargetParallelDirective &S) { 3678 // TODO: codegen for target parallel. 3679 } 3680 3681 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3682 const OMPTargetParallelForDirective &S) { 3683 // TODO: codegen for target parallel for. 3684 } 3685 3686 /// Emit a helper variable and return corresponding lvalue. 3687 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3688 const ImplicitParamDecl *PVD, 3689 CodeGenFunction::OMPPrivateScope &Privates) { 3690 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3691 Privates.addPrivate( 3692 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3693 } 3694 3695 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3696 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3697 // Emit outlined function for task construct. 3698 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3699 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3700 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3701 const Expr *IfCond = nullptr; 3702 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3703 if (C->getNameModifier() == OMPD_unknown || 3704 C->getNameModifier() == OMPD_taskloop) { 3705 IfCond = C->getCondition(); 3706 break; 3707 } 3708 } 3709 3710 OMPTaskDataTy Data; 3711 // Check if taskloop must be emitted without taskgroup. 3712 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3713 // TODO: Check if we should emit tied or untied task. 3714 Data.Tied = true; 3715 // Set scheduling for taskloop 3716 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3717 // grainsize clause 3718 Data.Schedule.setInt(/*IntVal=*/false); 3719 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3720 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3721 // num_tasks clause 3722 Data.Schedule.setInt(/*IntVal=*/true); 3723 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3724 } 3725 3726 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3727 // if (PreCond) { 3728 // for (IV in 0..LastIteration) BODY; 3729 // <Final counter/linear vars updates>; 3730 // } 3731 // 3732 3733 // Emit: if (PreCond) - begin. 3734 // If the condition constant folds and can be elided, avoid emitting the 3735 // whole loop. 3736 bool CondConstant; 3737 llvm::BasicBlock *ContBlock = nullptr; 3738 OMPLoopScope PreInitScope(CGF, S); 3739 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3740 if (!CondConstant) 3741 return; 3742 } else { 3743 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3744 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3745 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3746 CGF.getProfileCount(&S)); 3747 CGF.EmitBlock(ThenBlock); 3748 CGF.incrementProfileCounter(&S); 3749 } 3750 3751 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3752 CGF.EmitOMPSimdInit(S); 3753 3754 OMPPrivateScope LoopScope(CGF); 3755 // Emit helper vars inits. 3756 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3757 auto *I = CS->getCapturedDecl()->param_begin(); 3758 auto *LBP = std::next(I, LowerBound); 3759 auto *UBP = std::next(I, UpperBound); 3760 auto *STP = std::next(I, Stride); 3761 auto *LIP = std::next(I, LastIter); 3762 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3763 LoopScope); 3764 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3765 LoopScope); 3766 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3767 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3768 LoopScope); 3769 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3770 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3771 (void)LoopScope.Privatize(); 3772 // Emit the loop iteration variable. 3773 const Expr *IVExpr = S.getIterationVariable(); 3774 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3775 CGF.EmitVarDecl(*IVDecl); 3776 CGF.EmitIgnoredExpr(S.getInit()); 3777 3778 // Emit the iterations count variable. 3779 // If it is not a variable, Sema decided to calculate iterations count on 3780 // each iteration (e.g., it is foldable into a constant). 3781 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3782 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3783 // Emit calculation of the iterations count. 3784 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3785 } 3786 3787 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3788 S.getInc(), 3789 [&S](CodeGenFunction &CGF) { 3790 CGF.EmitOMPLoopBody(S, JumpDest()); 3791 CGF.EmitStopPoint(&S); 3792 }, 3793 [](CodeGenFunction &) {}); 3794 // Emit: if (PreCond) - end. 3795 if (ContBlock) { 3796 CGF.EmitBranch(ContBlock); 3797 CGF.EmitBlock(ContBlock, true); 3798 } 3799 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3800 if (HasLastprivateClause) { 3801 CGF.EmitOMPLastprivateClauseFinal( 3802 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3803 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3804 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3805 (*LIP)->getType(), S.getLocStart()))); 3806 } 3807 }; 3808 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3809 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3810 const OMPTaskDataTy &Data) { 3811 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 3812 OMPLoopScope PreInitScope(CGF, S); 3813 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 3814 OutlinedFn, SharedsTy, 3815 CapturedStruct, IfCond, Data); 3816 }; 3817 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 3818 CodeGen); 3819 }; 3820 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3821 } 3822 3823 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 3824 EmitOMPTaskLoopBasedDirective(S); 3825 } 3826 3827 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 3828 const OMPTaskLoopSimdDirective &S) { 3829 EmitOMPTaskLoopBasedDirective(S); 3830 } 3831 3832 // Generate the instructions for '#pragma omp target update' directive. 3833 void CodeGenFunction::EmitOMPTargetUpdateDirective( 3834 const OMPTargetUpdateDirective &S) { 3835 // If we don't have target devices, don't bother emitting the data mapping 3836 // code. 3837 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3838 return; 3839 3840 // Check if we have any if clause associated with the directive. 3841 const Expr *IfCond = nullptr; 3842 if (auto *C = S.getSingleClause<OMPIfClause>()) 3843 IfCond = C->getCondition(); 3844 3845 // Check if we have any device clause associated with the directive. 3846 const Expr *Device = nullptr; 3847 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3848 Device = C->getDevice(); 3849 3850 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3851 } 3852