1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     emitPreInitStmt(CGF, S);
61     if (AsInlined) {
62       if (S.hasAssociatedStmt()) {
63         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
64         for (auto &C : CS->captures()) {
65           if (C.capturesVariable() || C.capturesVariableByCopy()) {
66             auto *VD = C.getCapturedVar();
67             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
68                             isCapturedVar(CGF, VD) ||
69                                 (CGF.CapturedStmtInfo &&
70                                  InlinedShareds.isGlobalVarCaptured(VD)),
71                             VD->getType().getNonReferenceType(), VK_LValue,
72                             SourceLocation());
73             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
74               return CGF.EmitLValue(&DRE).getAddress();
75             });
76           }
77         }
78         (void)InlinedShareds.Privatize();
79       }
80     }
81   }
82 };
83 
84 /// Private scope for OpenMP loop-based directives, that supports capturing
85 /// of used expression from loop statement.
86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
87   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
88     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
89       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
90         for (const auto *I : PreInits->decls())
91           CGF.EmitVarDecl(cast<VarDecl>(*I));
92       }
93     }
94   }
95 
96 public:
97   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
98       : CodeGenFunction::RunCleanupsScope(CGF) {
99     emitPreInitStmt(CGF, S);
100   }
101 };
102 
103 } // namespace
104 
105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
106   auto &C = getContext();
107   llvm::Value *Size = nullptr;
108   auto SizeInChars = C.getTypeSizeInChars(Ty);
109   if (SizeInChars.isZero()) {
110     // getTypeSizeInChars() returns 0 for a VLA.
111     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
112       llvm::Value *ArraySize;
113       std::tie(ArraySize, Ty) = getVLASize(VAT);
114       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
115     }
116     SizeInChars = C.getTypeSizeInChars(Ty);
117     if (SizeInChars.isZero())
118       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
119     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
120   } else
121     Size = CGM.getSize(SizeInChars);
122   return Size;
123 }
124 
125 void CodeGenFunction::GenerateOpenMPCapturedVars(
126     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
127   const RecordDecl *RD = S.getCapturedRecordDecl();
128   auto CurField = RD->field_begin();
129   auto CurCap = S.captures().begin();
130   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
131                                                  E = S.capture_init_end();
132        I != E; ++I, ++CurField, ++CurCap) {
133     if (CurField->hasCapturedVLAType()) {
134       auto VAT = CurField->getCapturedVLAType();
135       auto *Val = VLASizeMap[VAT->getSizeExpr()];
136       CapturedVars.push_back(Val);
137     } else if (CurCap->capturesThis())
138       CapturedVars.push_back(CXXThisValue);
139     else if (CurCap->capturesVariableByCopy()) {
140       llvm::Value *CV =
141           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
142 
143       // If the field is not a pointer, we need to save the actual value
144       // and load it as a void pointer.
145       if (!CurField->getType()->isAnyPointerType()) {
146         auto &Ctx = getContext();
147         auto DstAddr = CreateMemTemp(
148             Ctx.getUIntPtrType(),
149             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
150         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
151 
152         auto *SrcAddrVal = EmitScalarConversion(
153             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
154             Ctx.getPointerType(CurField->getType()), SourceLocation());
155         LValue SrcLV =
156             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
157 
158         // Store the value using the source type pointer.
159         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
160 
161         // Load the value using the destination type pointer.
162         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
163       }
164       CapturedVars.push_back(CV);
165     } else {
166       assert(CurCap->capturesVariable() && "Expected capture by reference.");
167       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
168     }
169   }
170 }
171 
172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
173                                     StringRef Name, LValue AddrLV,
174                                     bool isReferenceType = false) {
175   ASTContext &Ctx = CGF.getContext();
176 
177   auto *CastedPtr = CGF.EmitScalarConversion(
178       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
179       Ctx.getPointerType(DstType), SourceLocation());
180   auto TmpAddr =
181       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
182           .getAddress();
183 
184   // If we are dealing with references we need to return the address of the
185   // reference instead of the reference of the value.
186   if (isReferenceType) {
187     QualType RefType = Ctx.getLValueReferenceType(DstType);
188     auto *RefVal = TmpAddr.getPointer();
189     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
190     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
191     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true);
192   }
193 
194   return TmpAddr;
195 }
196 
197 llvm::Function *
198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
199   assert(
200       CapturedStmtInfo &&
201       "CapturedStmtInfo should be set when generating the captured function");
202   const CapturedDecl *CD = S.getCapturedDecl();
203   const RecordDecl *RD = S.getCapturedRecordDecl();
204   assert(CD->hasBody() && "missing CapturedDecl body");
205 
206   // Build the argument list.
207   ASTContext &Ctx = CGM.getContext();
208   FunctionArgList Args;
209   Args.append(CD->param_begin(),
210               std::next(CD->param_begin(), CD->getContextParamPosition()));
211   auto I = S.captures().begin();
212   for (auto *FD : RD->fields()) {
213     QualType ArgType = FD->getType();
214     IdentifierInfo *II = nullptr;
215     VarDecl *CapVar = nullptr;
216 
217     // If this is a capture by copy and the type is not a pointer, the outlined
218     // function argument type should be uintptr and the value properly casted to
219     // uintptr. This is necessary given that the runtime library is only able to
220     // deal with pointers. We can pass in the same way the VLA type sizes to the
221     // outlined function.
222     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
223         I->capturesVariableArrayType())
224       ArgType = Ctx.getUIntPtrType();
225 
226     if (I->capturesVariable() || I->capturesVariableByCopy()) {
227       CapVar = I->getCapturedVar();
228       II = CapVar->getIdentifier();
229     } else if (I->capturesThis())
230       II = &getContext().Idents.get("this");
231     else {
232       assert(I->capturesVariableArrayType());
233       II = &getContext().Idents.get("vla");
234     }
235     if (ArgType->isVariablyModifiedType()) {
236       bool IsReference = ArgType->isLValueReferenceType();
237       ArgType =
238           getContext().getCanonicalParamType(ArgType.getNonReferenceType());
239       if (IsReference && !ArgType->isPointerType()) {
240         ArgType = getContext().getLValueReferenceType(
241             ArgType, /*SpelledAsLValue=*/false);
242       }
243     }
244     Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
245                                              FD->getLocation(), II, ArgType));
246     ++I;
247   }
248   Args.append(
249       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
250       CD->param_end());
251 
252   // Create the function declaration.
253   FunctionType::ExtInfo ExtInfo;
254   const CGFunctionInfo &FuncInfo =
255       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
256   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
257 
258   llvm::Function *F = llvm::Function::Create(
259       FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
260       CapturedStmtInfo->getHelperName(), &CGM.getModule());
261   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
262   if (CD->isNothrow())
263     F->addFnAttr(llvm::Attribute::NoUnwind);
264 
265   // Generate the function.
266   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
267                 CD->getBody()->getLocStart());
268   unsigned Cnt = CD->getContextParamPosition();
269   I = S.captures().begin();
270   for (auto *FD : RD->fields()) {
271     // If we are capturing a pointer by copy we don't need to do anything, just
272     // use the value that we get from the arguments.
273     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
274       const VarDecl *CurVD = I->getCapturedVar();
275       Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]);
276       // If the variable is a reference we need to materialize it here.
277       if (CurVD->getType()->isReferenceType()) {
278         Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(),
279                                         ".materialized_ref");
280         EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false,
281                           CurVD->getType());
282         LocalAddr = RefAddr;
283       }
284       setAddrOfLocalVar(CurVD, LocalAddr);
285       ++Cnt;
286       ++I;
287       continue;
288     }
289 
290     LValue ArgLVal =
291         MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
292                        AlignmentSource::Decl);
293     if (FD->hasCapturedVLAType()) {
294       LValue CastedArgLVal =
295           MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
296                                               Args[Cnt]->getName(), ArgLVal),
297                          FD->getType(), AlignmentSource::Decl);
298       auto *ExprArg =
299           EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
300       auto VAT = FD->getCapturedVLAType();
301       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
302     } else if (I->capturesVariable()) {
303       auto *Var = I->getCapturedVar();
304       QualType VarTy = Var->getType();
305       Address ArgAddr = ArgLVal.getAddress();
306       if (!VarTy->isReferenceType()) {
307         if (ArgLVal.getType()->isLValueReferenceType()) {
308           ArgAddr = EmitLoadOfReference(
309               ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
310         } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
311           assert(ArgLVal.getType()->isPointerType());
312           ArgAddr = EmitLoadOfPointer(
313               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
314         }
315       }
316       setAddrOfLocalVar(
317           Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
318     } else if (I->capturesVariableByCopy()) {
319       assert(!FD->getType()->isAnyPointerType() &&
320              "Not expecting a captured pointer.");
321       auto *Var = I->getCapturedVar();
322       QualType VarTy = Var->getType();
323       setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(),
324                                                   Args[Cnt]->getName(), ArgLVal,
325                                                   VarTy->isReferenceType()));
326     } else {
327       // If 'this' is captured, load it into CXXThisValue.
328       assert(I->capturesThis());
329       CXXThisValue =
330           EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
331     }
332     ++Cnt;
333     ++I;
334   }
335 
336   PGO.assignRegionCounters(GlobalDecl(CD), F);
337   CapturedStmtInfo->EmitBody(*this, CD->getBody());
338   FinishFunction(CD->getBodyRBrace());
339 
340   return F;
341 }
342 
343 //===----------------------------------------------------------------------===//
344 //                              OpenMP Directive Emission
345 //===----------------------------------------------------------------------===//
346 void CodeGenFunction::EmitOMPAggregateAssign(
347     Address DestAddr, Address SrcAddr, QualType OriginalType,
348     const llvm::function_ref<void(Address, Address)> &CopyGen) {
349   // Perform element-by-element initialization.
350   QualType ElementTy;
351 
352   // Drill down to the base element type on both arrays.
353   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
354   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
355   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
356 
357   auto SrcBegin = SrcAddr.getPointer();
358   auto DestBegin = DestAddr.getPointer();
359   // Cast from pointer to array type to pointer to single element.
360   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
361   // The basic structure here is a while-do loop.
362   auto BodyBB = createBasicBlock("omp.arraycpy.body");
363   auto DoneBB = createBasicBlock("omp.arraycpy.done");
364   auto IsEmpty =
365       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
366   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
367 
368   // Enter the loop body, making that address the current address.
369   auto EntryBB = Builder.GetInsertBlock();
370   EmitBlock(BodyBB);
371 
372   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
373 
374   llvm::PHINode *SrcElementPHI =
375     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
376   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
377   Address SrcElementCurrent =
378       Address(SrcElementPHI,
379               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
380 
381   llvm::PHINode *DestElementPHI =
382     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
383   DestElementPHI->addIncoming(DestBegin, EntryBB);
384   Address DestElementCurrent =
385     Address(DestElementPHI,
386             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
387 
388   // Emit copy.
389   CopyGen(DestElementCurrent, SrcElementCurrent);
390 
391   // Shift the address forward by one element.
392   auto DestElementNext = Builder.CreateConstGEP1_32(
393       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
394   auto SrcElementNext = Builder.CreateConstGEP1_32(
395       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
396   // Check whether we've reached the end.
397   auto Done =
398       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
399   Builder.CreateCondBr(Done, DoneBB, BodyBB);
400   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
401   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
402 
403   // Done.
404   EmitBlock(DoneBB, /*IsFinished=*/true);
405 }
406 
407 /// Check if the combiner is a call to UDR combiner and if it is so return the
408 /// UDR decl used for reduction.
409 static const OMPDeclareReductionDecl *
410 getReductionInit(const Expr *ReductionOp) {
411   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
412     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
413       if (auto *DRE =
414               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
415         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
416           return DRD;
417   return nullptr;
418 }
419 
420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
421                                              const OMPDeclareReductionDecl *DRD,
422                                              const Expr *InitOp,
423                                              Address Private, Address Original,
424                                              QualType Ty) {
425   if (DRD->getInitializer()) {
426     std::pair<llvm::Function *, llvm::Function *> Reduction =
427         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
428     auto *CE = cast<CallExpr>(InitOp);
429     auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
430     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
431     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
432     auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
433     auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
434     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
435     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
436                             [=]() -> Address { return Private; });
437     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
438                             [=]() -> Address { return Original; });
439     (void)PrivateScope.Privatize();
440     RValue Func = RValue::get(Reduction.second);
441     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
442     CGF.EmitIgnoredExpr(InitOp);
443   } else {
444     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
445     auto *GV = new llvm::GlobalVariable(
446         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
447         llvm::GlobalValue::PrivateLinkage, Init, ".init");
448     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
449     RValue InitRVal;
450     switch (CGF.getEvaluationKind(Ty)) {
451     case TEK_Scalar:
452       InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation());
453       break;
454     case TEK_Complex:
455       InitRVal =
456           RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation()));
457       break;
458     case TEK_Aggregate:
459       InitRVal = RValue::getAggregate(LV.getAddress());
460       break;
461     }
462     OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue);
463     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
464     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
465                          /*IsInitializer=*/false);
466   }
467 }
468 
469 /// \brief Emit initialization of arrays of complex types.
470 /// \param DestAddr Address of the array.
471 /// \param Type Type of array.
472 /// \param Init Initial expression of array.
473 /// \param SrcAddr Address of the original array.
474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
475                                  QualType Type, const Expr *Init,
476                                  Address SrcAddr = Address::invalid()) {
477   auto *DRD = getReductionInit(Init);
478   // Perform element-by-element initialization.
479   QualType ElementTy;
480 
481   // Drill down to the base element type on both arrays.
482   auto ArrayTy = Type->getAsArrayTypeUnsafe();
483   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
484   DestAddr =
485       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
486   if (DRD)
487     SrcAddr =
488         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
489 
490   llvm::Value *SrcBegin = nullptr;
491   if (DRD)
492     SrcBegin = SrcAddr.getPointer();
493   auto DestBegin = DestAddr.getPointer();
494   // Cast from pointer to array type to pointer to single element.
495   auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
496   // The basic structure here is a while-do loop.
497   auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
498   auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
499   auto IsEmpty =
500       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
501   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
502 
503   // Enter the loop body, making that address the current address.
504   auto EntryBB = CGF.Builder.GetInsertBlock();
505   CGF.EmitBlock(BodyBB);
506 
507   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
508 
509   llvm::PHINode *SrcElementPHI = nullptr;
510   Address SrcElementCurrent = Address::invalid();
511   if (DRD) {
512     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
513                                           "omp.arraycpy.srcElementPast");
514     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
515     SrcElementCurrent =
516         Address(SrcElementPHI,
517                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
518   }
519   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
520       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
521   DestElementPHI->addIncoming(DestBegin, EntryBB);
522   Address DestElementCurrent =
523       Address(DestElementPHI,
524               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
525 
526   // Emit copy.
527   {
528     CodeGenFunction::RunCleanupsScope InitScope(CGF);
529     if (DRD && (DRD->getInitializer() || !Init)) {
530       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
531                                        SrcElementCurrent, ElementTy);
532     } else
533       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
534                            /*IsInitializer=*/false);
535   }
536 
537   if (DRD) {
538     // Shift the address forward by one element.
539     auto SrcElementNext = CGF.Builder.CreateConstGEP1_32(
540         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
541     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
542   }
543 
544   // Shift the address forward by one element.
545   auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
546       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
547   // Check whether we've reached the end.
548   auto Done =
549       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
550   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
551   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
552 
553   // Done.
554   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
555 }
556 
557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
558                                   Address SrcAddr, const VarDecl *DestVD,
559                                   const VarDecl *SrcVD, const Expr *Copy) {
560   if (OriginalType->isArrayType()) {
561     auto *BO = dyn_cast<BinaryOperator>(Copy);
562     if (BO && BO->getOpcode() == BO_Assign) {
563       // Perform simple memcpy for simple copying.
564       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
565     } else {
566       // For arrays with complex element types perform element by element
567       // copying.
568       EmitOMPAggregateAssign(
569           DestAddr, SrcAddr, OriginalType,
570           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
571             // Working with the single array element, so have to remap
572             // destination and source variables to corresponding array
573             // elements.
574             CodeGenFunction::OMPPrivateScope Remap(*this);
575             Remap.addPrivate(DestVD, [DestElement]() -> Address {
576               return DestElement;
577             });
578             Remap.addPrivate(
579                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
580             (void)Remap.Privatize();
581             EmitIgnoredExpr(Copy);
582           });
583     }
584   } else {
585     // Remap pseudo source variable to private copy.
586     CodeGenFunction::OMPPrivateScope Remap(*this);
587     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
588     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
589     (void)Remap.Privatize();
590     // Emit copying of the whole variable.
591     EmitIgnoredExpr(Copy);
592   }
593 }
594 
595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
596                                                 OMPPrivateScope &PrivateScope) {
597   if (!HaveInsertPoint())
598     return false;
599   bool FirstprivateIsLastprivate = false;
600   llvm::DenseSet<const VarDecl *> Lastprivates;
601   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
602     for (const auto *D : C->varlists())
603       Lastprivates.insert(
604           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
605   }
606   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
607   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
608   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
609     auto IRef = C->varlist_begin();
610     auto InitsRef = C->inits().begin();
611     for (auto IInit : C->private_copies()) {
612       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
613       bool ThisFirstprivateIsLastprivate =
614           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
615       auto *CapFD = CapturesInfo.lookup(OrigVD);
616       auto *FD = CapturedStmtInfo->lookup(OrigVD);
617       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
618           !FD->getType()->isReferenceType()) {
619         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
620         ++IRef;
621         ++InitsRef;
622         continue;
623       }
624       FirstprivateIsLastprivate =
625           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
626       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
627         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
628         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
629         bool IsRegistered;
630         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
631                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
632                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
633         Address OriginalAddr = EmitLValue(&DRE).getAddress();
634         QualType Type = VD->getType();
635         if (Type->isArrayType()) {
636           // Emit VarDecl with copy init for arrays.
637           // Get the address of the original variable captured in current
638           // captured region.
639           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
640             auto Emission = EmitAutoVarAlloca(*VD);
641             auto *Init = VD->getInit();
642             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
643               // Perform simple memcpy.
644               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
645                                   Type);
646             } else {
647               EmitOMPAggregateAssign(
648                   Emission.getAllocatedAddress(), OriginalAddr, Type,
649                   [this, VDInit, Init](Address DestElement,
650                                        Address SrcElement) {
651                     // Clean up any temporaries needed by the initialization.
652                     RunCleanupsScope InitScope(*this);
653                     // Emit initialization for single element.
654                     setAddrOfLocalVar(VDInit, SrcElement);
655                     EmitAnyExprToMem(Init, DestElement,
656                                      Init->getType().getQualifiers(),
657                                      /*IsInitializer*/ false);
658                     LocalDeclMap.erase(VDInit);
659                   });
660             }
661             EmitAutoVarCleanups(Emission);
662             return Emission.getAllocatedAddress();
663           });
664         } else {
665           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
666             // Emit private VarDecl with copy init.
667             // Remap temp VDInit variable to the address of the original
668             // variable
669             // (for proper handling of captured global variables).
670             setAddrOfLocalVar(VDInit, OriginalAddr);
671             EmitDecl(*VD);
672             LocalDeclMap.erase(VDInit);
673             return GetAddrOfLocalVar(VD);
674           });
675         }
676         assert(IsRegistered &&
677                "firstprivate var already registered as private");
678         // Silence the warning about unused variable.
679         (void)IsRegistered;
680       }
681       ++IRef;
682       ++InitsRef;
683     }
684   }
685   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
686 }
687 
688 void CodeGenFunction::EmitOMPPrivateClause(
689     const OMPExecutableDirective &D,
690     CodeGenFunction::OMPPrivateScope &PrivateScope) {
691   if (!HaveInsertPoint())
692     return;
693   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
694   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
695     auto IRef = C->varlist_begin();
696     for (auto IInit : C->private_copies()) {
697       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
698       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
699         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
700         bool IsRegistered =
701             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
702               // Emit private VarDecl with copy init.
703               EmitDecl(*VD);
704               return GetAddrOfLocalVar(VD);
705             });
706         assert(IsRegistered && "private var already registered as private");
707         // Silence the warning about unused variable.
708         (void)IsRegistered;
709       }
710       ++IRef;
711     }
712   }
713 }
714 
715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
716   if (!HaveInsertPoint())
717     return false;
718   // threadprivate_var1 = master_threadprivate_var1;
719   // operator=(threadprivate_var2, master_threadprivate_var2);
720   // ...
721   // __kmpc_barrier(&loc, global_tid);
722   llvm::DenseSet<const VarDecl *> CopiedVars;
723   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
724   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
725     auto IRef = C->varlist_begin();
726     auto ISrcRef = C->source_exprs().begin();
727     auto IDestRef = C->destination_exprs().begin();
728     for (auto *AssignOp : C->assignment_ops()) {
729       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
730       QualType Type = VD->getType();
731       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
732         // Get the address of the master variable. If we are emitting code with
733         // TLS support, the address is passed from the master as field in the
734         // captured declaration.
735         Address MasterAddr = Address::invalid();
736         if (getLangOpts().OpenMPUseTLS &&
737             getContext().getTargetInfo().isTLSSupported()) {
738           assert(CapturedStmtInfo->lookup(VD) &&
739                  "Copyin threadprivates should have been captured!");
740           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
741                           VK_LValue, (*IRef)->getExprLoc());
742           MasterAddr = EmitLValue(&DRE).getAddress();
743           LocalDeclMap.erase(VD);
744         } else {
745           MasterAddr =
746             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
747                                         : CGM.GetAddrOfGlobal(VD),
748                     getContext().getDeclAlign(VD));
749         }
750         // Get the address of the threadprivate variable.
751         Address PrivateAddr = EmitLValue(*IRef).getAddress();
752         if (CopiedVars.size() == 1) {
753           // At first check if current thread is a master thread. If it is, no
754           // need to copy data.
755           CopyBegin = createBasicBlock("copyin.not.master");
756           CopyEnd = createBasicBlock("copyin.not.master.end");
757           Builder.CreateCondBr(
758               Builder.CreateICmpNE(
759                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
760                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
761               CopyBegin, CopyEnd);
762           EmitBlock(CopyBegin);
763         }
764         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
765         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
766         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
767       }
768       ++IRef;
769       ++ISrcRef;
770       ++IDestRef;
771     }
772   }
773   if (CopyEnd) {
774     // Exit out of copying procedure for non-master thread.
775     EmitBlock(CopyEnd, /*IsFinished=*/true);
776     return true;
777   }
778   return false;
779 }
780 
781 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
782     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
783   if (!HaveInsertPoint())
784     return false;
785   bool HasAtLeastOneLastprivate = false;
786   llvm::DenseSet<const VarDecl *> SIMDLCVs;
787   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
788     auto *LoopDirective = cast<OMPLoopDirective>(&D);
789     for (auto *C : LoopDirective->counters()) {
790       SIMDLCVs.insert(
791           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
792     }
793   }
794   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
795   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
796     HasAtLeastOneLastprivate = true;
797     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
798       break;
799     auto IRef = C->varlist_begin();
800     auto IDestRef = C->destination_exprs().begin();
801     for (auto *IInit : C->private_copies()) {
802       // Keep the address of the original variable for future update at the end
803       // of the loop.
804       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
805       // Taskloops do not require additional initialization, it is done in
806       // runtime support library.
807       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
808         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
809         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
810           DeclRefExpr DRE(
811               const_cast<VarDecl *>(OrigVD),
812               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
813                   OrigVD) != nullptr,
814               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
815           return EmitLValue(&DRE).getAddress();
816         });
817         // Check if the variable is also a firstprivate: in this case IInit is
818         // not generated. Initialization of this variable will happen in codegen
819         // for 'firstprivate' clause.
820         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
821           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
822           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
823             // Emit private VarDecl with copy init.
824             EmitDecl(*VD);
825             return GetAddrOfLocalVar(VD);
826           });
827           assert(IsRegistered &&
828                  "lastprivate var already registered as private");
829           (void)IsRegistered;
830         }
831       }
832       ++IRef;
833       ++IDestRef;
834     }
835   }
836   return HasAtLeastOneLastprivate;
837 }
838 
839 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
840     const OMPExecutableDirective &D, bool NoFinals,
841     llvm::Value *IsLastIterCond) {
842   if (!HaveInsertPoint())
843     return;
844   // Emit following code:
845   // if (<IsLastIterCond>) {
846   //   orig_var1 = private_orig_var1;
847   //   ...
848   //   orig_varn = private_orig_varn;
849   // }
850   llvm::BasicBlock *ThenBB = nullptr;
851   llvm::BasicBlock *DoneBB = nullptr;
852   if (IsLastIterCond) {
853     ThenBB = createBasicBlock(".omp.lastprivate.then");
854     DoneBB = createBasicBlock(".omp.lastprivate.done");
855     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
856     EmitBlock(ThenBB);
857   }
858   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
859   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
860   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
861     auto IC = LoopDirective->counters().begin();
862     for (auto F : LoopDirective->finals()) {
863       auto *D =
864           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
865       if (NoFinals)
866         AlreadyEmittedVars.insert(D);
867       else
868         LoopCountersAndUpdates[D] = F;
869       ++IC;
870     }
871   }
872   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
873     auto IRef = C->varlist_begin();
874     auto ISrcRef = C->source_exprs().begin();
875     auto IDestRef = C->destination_exprs().begin();
876     for (auto *AssignOp : C->assignment_ops()) {
877       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
878       QualType Type = PrivateVD->getType();
879       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
880       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
881         // If lastprivate variable is a loop control variable for loop-based
882         // directive, update its value before copyin back to original
883         // variable.
884         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
885           EmitIgnoredExpr(FinalExpr);
886         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
887         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
888         // Get the address of the original variable.
889         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
890         // Get the address of the private variable.
891         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
892         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
893           PrivateAddr =
894               Address(Builder.CreateLoad(PrivateAddr),
895                       getNaturalTypeAlignment(RefTy->getPointeeType()));
896         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
897       }
898       ++IRef;
899       ++ISrcRef;
900       ++IDestRef;
901     }
902     if (auto *PostUpdate = C->getPostUpdateExpr())
903       EmitIgnoredExpr(PostUpdate);
904   }
905   if (IsLastIterCond)
906     EmitBlock(DoneBB, /*IsFinished=*/true);
907 }
908 
909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
910                           LValue BaseLV, llvm::Value *Addr) {
911   Address Tmp = Address::invalid();
912   Address TopTmp = Address::invalid();
913   Address MostTopTmp = Address::invalid();
914   BaseTy = BaseTy.getNonReferenceType();
915   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
916          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
917     Tmp = CGF.CreateMemTemp(BaseTy);
918     if (TopTmp.isValid())
919       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
920     else
921       MostTopTmp = Tmp;
922     TopTmp = Tmp;
923     BaseTy = BaseTy->getPointeeType();
924   }
925   llvm::Type *Ty = BaseLV.getPointer()->getType();
926   if (Tmp.isValid())
927     Ty = Tmp.getElementType();
928   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
929   if (Tmp.isValid()) {
930     CGF.Builder.CreateStore(Addr, Tmp);
931     return MostTopTmp;
932   }
933   return Address(Addr, BaseLV.getAlignment());
934 }
935 
936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
937                           LValue BaseLV) {
938   BaseTy = BaseTy.getNonReferenceType();
939   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
940          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
941     if (auto *PtrTy = BaseTy->getAs<PointerType>())
942       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
943     else {
944       BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
945                                              BaseTy->castAs<ReferenceType>());
946     }
947     BaseTy = BaseTy->getPointeeType();
948   }
949   return CGF.MakeAddrLValue(
950       Address(
951           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
952               BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
953           BaseLV.getAlignment()),
954       BaseLV.getType(), BaseLV.getAlignmentSource());
955 }
956 
957 void CodeGenFunction::EmitOMPReductionClauseInit(
958     const OMPExecutableDirective &D,
959     CodeGenFunction::OMPPrivateScope &PrivateScope) {
960   if (!HaveInsertPoint())
961     return;
962   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
963     auto ILHS = C->lhs_exprs().begin();
964     auto IRHS = C->rhs_exprs().begin();
965     auto IPriv = C->privates().begin();
966     auto IRed = C->reduction_ops().begin();
967     for (auto IRef : C->varlists()) {
968       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
969       auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
970       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
971       auto *DRD = getReductionInit(*IRed);
972       if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
973         auto *Base = OASE->getBase()->IgnoreParenImpCasts();
974         while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
975           Base = TempOASE->getBase()->IgnoreParenImpCasts();
976         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
977           Base = TempASE->getBase()->IgnoreParenImpCasts();
978         auto *DE = cast<DeclRefExpr>(Base);
979         auto *OrigVD = cast<VarDecl>(DE->getDecl());
980         auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
981         auto OASELValueUB =
982             EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
983         auto OriginalBaseLValue = EmitLValue(DE);
984         LValue BaseLValue =
985             loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
986                         OriginalBaseLValue);
987         // Store the address of the original variable associated with the LHS
988         // implicit variable.
989         PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
990           return OASELValueLB.getAddress();
991         });
992         // Emit reduction copy.
993         bool IsRegistered = PrivateScope.addPrivate(
994             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
995                      OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address {
996               // Emit VarDecl with copy init for arrays.
997               // Get the address of the original variable captured in current
998               // captured region.
999               auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
1000                                                  OASELValueLB.getPointer());
1001               Size = Builder.CreateNUWAdd(
1002                   Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1003               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1004                   *this, cast<OpaqueValueExpr>(
1005                              getContext()
1006                                  .getAsVariableArrayType(PrivateVD->getType())
1007                                  ->getSizeExpr()),
1008                   RValue::get(Size));
1009               EmitVariablyModifiedType(PrivateVD->getType());
1010               auto Emission = EmitAutoVarAlloca(*PrivateVD);
1011               auto Addr = Emission.getAllocatedAddress();
1012               auto *Init = PrivateVD->getInit();
1013               EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1014                                    DRD ? *IRed : Init,
1015                                    OASELValueLB.getAddress());
1016               EmitAutoVarCleanups(Emission);
1017               // Emit private VarDecl with reduction init.
1018               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1019                                                    OASELValueLB.getPointer());
1020               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1021               return castToBase(*this, OrigVD->getType(),
1022                                 OASELValueLB.getType(), OriginalBaseLValue,
1023                                 Ptr);
1024             });
1025         assert(IsRegistered && "private var already registered as private");
1026         // Silence the warning about unused variable.
1027         (void)IsRegistered;
1028         PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1029           return GetAddrOfLocalVar(PrivateVD);
1030         });
1031       } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
1032         auto *Base = ASE->getBase()->IgnoreParenImpCasts();
1033         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1034           Base = TempASE->getBase()->IgnoreParenImpCasts();
1035         auto *DE = cast<DeclRefExpr>(Base);
1036         auto *OrigVD = cast<VarDecl>(DE->getDecl());
1037         auto ASELValue = EmitLValue(ASE);
1038         auto OriginalBaseLValue = EmitLValue(DE);
1039         LValue BaseLValue = loadToBegin(
1040             *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
1041         // Store the address of the original variable associated with the LHS
1042         // implicit variable.
1043         PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
1044           return ASELValue.getAddress();
1045         });
1046         // Emit reduction copy.
1047         bool IsRegistered = PrivateScope.addPrivate(
1048             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
1049                      OriginalBaseLValue, DRD, IRed]() -> Address {
1050               // Emit private VarDecl with reduction init.
1051               AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1052               auto Addr = Emission.getAllocatedAddress();
1053               if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1054                 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1055                                                  ASELValue.getAddress(),
1056                                                  ASELValue.getType());
1057               } else
1058                 EmitAutoVarInit(Emission);
1059               EmitAutoVarCleanups(Emission);
1060               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1061                                                    ASELValue.getPointer());
1062               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1063               return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
1064                                 OriginalBaseLValue, Ptr);
1065             });
1066         assert(IsRegistered && "private var already registered as private");
1067         // Silence the warning about unused variable.
1068         (void)IsRegistered;
1069         PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1070           return Builder.CreateElementBitCast(
1071               GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
1072               "rhs.begin");
1073         });
1074       } else {
1075         auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
1076         QualType Type = PrivateVD->getType();
1077         if (getContext().getAsArrayType(Type)) {
1078           // Store the address of the original variable associated with the LHS
1079           // implicit variable.
1080           DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1081                           CapturedStmtInfo->lookup(OrigVD) != nullptr,
1082                           IRef->getType(), VK_LValue, IRef->getExprLoc());
1083           Address OriginalAddr = EmitLValue(&DRE).getAddress();
1084           PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr,
1085                                           LHSVD]() -> Address {
1086             OriginalAddr = Builder.CreateElementBitCast(
1087                 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1088             return OriginalAddr;
1089           });
1090           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
1091             if (Type->isVariablyModifiedType()) {
1092               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1093                   *this, cast<OpaqueValueExpr>(
1094                              getContext()
1095                                  .getAsVariableArrayType(PrivateVD->getType())
1096                                  ->getSizeExpr()),
1097                   RValue::get(
1098                       getTypeSize(OrigVD->getType().getNonReferenceType())));
1099               EmitVariablyModifiedType(Type);
1100             }
1101             auto Emission = EmitAutoVarAlloca(*PrivateVD);
1102             auto Addr = Emission.getAllocatedAddress();
1103             auto *Init = PrivateVD->getInit();
1104             EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1105                                  DRD ? *IRed : Init, OriginalAddr);
1106             EmitAutoVarCleanups(Emission);
1107             return Emission.getAllocatedAddress();
1108           });
1109           assert(IsRegistered && "private var already registered as private");
1110           // Silence the warning about unused variable.
1111           (void)IsRegistered;
1112           PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1113             return Builder.CreateElementBitCast(
1114                 GetAddrOfLocalVar(PrivateVD),
1115                 ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
1116           });
1117         } else {
1118           // Store the address of the original variable associated with the LHS
1119           // implicit variable.
1120           Address OriginalAddr = Address::invalid();
1121           PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef,
1122                                           &OriginalAddr]() -> Address {
1123             DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1124                             CapturedStmtInfo->lookup(OrigVD) != nullptr,
1125                             IRef->getType(), VK_LValue, IRef->getExprLoc());
1126             OriginalAddr = EmitLValue(&DRE).getAddress();
1127             return OriginalAddr;
1128           });
1129           // Emit reduction copy.
1130           bool IsRegistered = PrivateScope.addPrivate(
1131               OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address {
1132                 // Emit private VarDecl with reduction init.
1133                 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1134                 auto Addr = Emission.getAllocatedAddress();
1135                 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1136                   emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1137                                                    OriginalAddr,
1138                                                    PrivateVD->getType());
1139                 } else
1140                   EmitAutoVarInit(Emission);
1141                 EmitAutoVarCleanups(Emission);
1142                 return Addr;
1143               });
1144           assert(IsRegistered && "private var already registered as private");
1145           // Silence the warning about unused variable.
1146           (void)IsRegistered;
1147           PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1148             return GetAddrOfLocalVar(PrivateVD);
1149           });
1150         }
1151       }
1152       ++ILHS;
1153       ++IRHS;
1154       ++IPriv;
1155       ++IRed;
1156     }
1157   }
1158 }
1159 
1160 void CodeGenFunction::EmitOMPReductionClauseFinal(
1161     const OMPExecutableDirective &D) {
1162   if (!HaveInsertPoint())
1163     return;
1164   llvm::SmallVector<const Expr *, 8> Privates;
1165   llvm::SmallVector<const Expr *, 8> LHSExprs;
1166   llvm::SmallVector<const Expr *, 8> RHSExprs;
1167   llvm::SmallVector<const Expr *, 8> ReductionOps;
1168   bool HasAtLeastOneReduction = false;
1169   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1170     HasAtLeastOneReduction = true;
1171     Privates.append(C->privates().begin(), C->privates().end());
1172     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1173     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1174     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1175   }
1176   if (HasAtLeastOneReduction) {
1177     // Emit nowait reduction if nowait clause is present or directive is a
1178     // parallel directive (it always has implicit barrier).
1179     CGM.getOpenMPRuntime().emitReduction(
1180         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1181         D.getSingleClause<OMPNowaitClause>() ||
1182             isOpenMPParallelDirective(D.getDirectiveKind()) ||
1183             D.getDirectiveKind() == OMPD_simd,
1184         D.getDirectiveKind() == OMPD_simd);
1185   }
1186 }
1187 
1188 static void emitPostUpdateForReductionClause(
1189     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1190     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1191   if (!CGF.HaveInsertPoint())
1192     return;
1193   llvm::BasicBlock *DoneBB = nullptr;
1194   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1195     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1196       if (!DoneBB) {
1197         if (auto *Cond = CondGen(CGF)) {
1198           // If the first post-update expression is found, emit conditional
1199           // block if it was requested.
1200           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1201           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1202           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1203           CGF.EmitBlock(ThenBB);
1204         }
1205       }
1206       CGF.EmitIgnoredExpr(PostUpdate);
1207     }
1208   }
1209   if (DoneBB)
1210     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1211 }
1212 
1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
1214                                            const OMPExecutableDirective &S,
1215                                            OpenMPDirectiveKind InnermostKind,
1216                                            const RegionCodeGenTy &CodeGen) {
1217   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1218   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
1219       emitParallelOrTeamsOutlinedFunction(S,
1220           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1221   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1222     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1223     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1224                                          /*IgnoreResultAssign*/ true);
1225     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1226         CGF, NumThreads, NumThreadsClause->getLocStart());
1227   }
1228   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1229     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1230     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1231         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1232   }
1233   const Expr *IfCond = nullptr;
1234   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1235     if (C->getNameModifier() == OMPD_unknown ||
1236         C->getNameModifier() == OMPD_parallel) {
1237       IfCond = C->getCondition();
1238       break;
1239     }
1240   }
1241 
1242   OMPLexicalScope Scope(CGF, S);
1243   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1244   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1245   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1246                                               CapturedVars, IfCond);
1247 }
1248 
1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1250   // Emit parallel region as a standalone region.
1251   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1252     OMPPrivateScope PrivateScope(CGF);
1253     bool Copyins = CGF.EmitOMPCopyinClause(S);
1254     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1255     if (Copyins) {
1256       // Emit implicit barrier to synchronize threads and avoid data races on
1257       // propagation master's thread values of threadprivate variables to local
1258       // instances of that variables of all other implicit threads.
1259       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1260           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1261           /*ForceSimpleCall=*/true);
1262     }
1263     CGF.EmitOMPPrivateClause(S, PrivateScope);
1264     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1265     (void)PrivateScope.Privatize();
1266     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1267     CGF.EmitOMPReductionClauseFinal(S);
1268   };
1269   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
1270   emitPostUpdateForReductionClause(
1271       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1272 }
1273 
1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1275                                       JumpDest LoopExit) {
1276   RunCleanupsScope BodyScope(*this);
1277   // Update counters values on current iteration.
1278   for (auto I : D.updates()) {
1279     EmitIgnoredExpr(I);
1280   }
1281   // Update the linear variables.
1282   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1283     for (auto *U : C->updates())
1284       EmitIgnoredExpr(U);
1285   }
1286 
1287   // On a continue in the body, jump to the end.
1288   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1289   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1290   // Emit loop body.
1291   EmitStmt(D.getBody());
1292   // The end (updates/cleanups).
1293   EmitBlock(Continue.getBlock());
1294   BreakContinueStack.pop_back();
1295 }
1296 
1297 void CodeGenFunction::EmitOMPInnerLoop(
1298     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1299     const Expr *IncExpr,
1300     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1301     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1302   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1303 
1304   // Start the loop with a block that tests the condition.
1305   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1306   EmitBlock(CondBlock);
1307   const SourceRange &R = S.getSourceRange();
1308   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1309                  SourceLocToDebugLoc(R.getEnd()));
1310 
1311   // If there are any cleanups between here and the loop-exit scope,
1312   // create a block to stage a loop exit along.
1313   auto ExitBlock = LoopExit.getBlock();
1314   if (RequiresCleanup)
1315     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1316 
1317   auto LoopBody = createBasicBlock("omp.inner.for.body");
1318 
1319   // Emit condition.
1320   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1321   if (ExitBlock != LoopExit.getBlock()) {
1322     EmitBlock(ExitBlock);
1323     EmitBranchThroughCleanup(LoopExit);
1324   }
1325 
1326   EmitBlock(LoopBody);
1327   incrementProfileCounter(&S);
1328 
1329   // Create a block for the increment.
1330   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1331   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1332 
1333   BodyGen(*this);
1334 
1335   // Emit "IV = IV + 1" and a back-edge to the condition block.
1336   EmitBlock(Continue.getBlock());
1337   EmitIgnoredExpr(IncExpr);
1338   PostIncGen(*this);
1339   BreakContinueStack.pop_back();
1340   EmitBranch(CondBlock);
1341   LoopStack.pop();
1342   // Emit the fall-through block.
1343   EmitBlock(LoopExit.getBlock());
1344 }
1345 
1346 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1347   if (!HaveInsertPoint())
1348     return;
1349   // Emit inits for the linear variables.
1350   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1351     for (auto *Init : C->inits()) {
1352       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1353       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1354         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1355         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1356         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1357                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1358                         VD->getInit()->getType(), VK_LValue,
1359                         VD->getInit()->getExprLoc());
1360         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1361                                                 VD->getType()),
1362                        /*capturedByInit=*/false);
1363         EmitAutoVarCleanups(Emission);
1364       } else
1365         EmitVarDecl(*VD);
1366     }
1367     // Emit the linear steps for the linear clauses.
1368     // If a step is not constant, it is pre-calculated before the loop.
1369     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1370       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1371         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1372         // Emit calculation of the linear step.
1373         EmitIgnoredExpr(CS);
1374       }
1375   }
1376 }
1377 
1378 void CodeGenFunction::EmitOMPLinearClauseFinal(
1379     const OMPLoopDirective &D,
1380     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1381   if (!HaveInsertPoint())
1382     return;
1383   llvm::BasicBlock *DoneBB = nullptr;
1384   // Emit the final values of the linear variables.
1385   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1386     auto IC = C->varlist_begin();
1387     for (auto *F : C->finals()) {
1388       if (!DoneBB) {
1389         if (auto *Cond = CondGen(*this)) {
1390           // If the first post-update expression is found, emit conditional
1391           // block if it was requested.
1392           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1393           DoneBB = createBasicBlock(".omp.linear.pu.done");
1394           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1395           EmitBlock(ThenBB);
1396         }
1397       }
1398       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1399       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1400                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1401                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1402       Address OrigAddr = EmitLValue(&DRE).getAddress();
1403       CodeGenFunction::OMPPrivateScope VarScope(*this);
1404       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1405       (void)VarScope.Privatize();
1406       EmitIgnoredExpr(F);
1407       ++IC;
1408     }
1409     if (auto *PostUpdate = C->getPostUpdateExpr())
1410       EmitIgnoredExpr(PostUpdate);
1411   }
1412   if (DoneBB)
1413     EmitBlock(DoneBB, /*IsFinished=*/true);
1414 }
1415 
1416 static void emitAlignedClause(CodeGenFunction &CGF,
1417                               const OMPExecutableDirective &D) {
1418   if (!CGF.HaveInsertPoint())
1419     return;
1420   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1421     unsigned ClauseAlignment = 0;
1422     if (auto AlignmentExpr = Clause->getAlignment()) {
1423       auto AlignmentCI =
1424           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1425       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1426     }
1427     for (auto E : Clause->varlists()) {
1428       unsigned Alignment = ClauseAlignment;
1429       if (Alignment == 0) {
1430         // OpenMP [2.8.1, Description]
1431         // If no optional parameter is specified, implementation-defined default
1432         // alignments for SIMD instructions on the target platforms are assumed.
1433         Alignment =
1434             CGF.getContext()
1435                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1436                     E->getType()->getPointeeType()))
1437                 .getQuantity();
1438       }
1439       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1440              "alignment is not power of 2");
1441       if (Alignment != 0) {
1442         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1443         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1444       }
1445     }
1446   }
1447 }
1448 
1449 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1450     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1451   if (!HaveInsertPoint())
1452     return;
1453   auto I = S.private_counters().begin();
1454   for (auto *E : S.counters()) {
1455     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1456     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1457     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1458       // Emit var without initialization.
1459       if (!LocalDeclMap.count(PrivateVD)) {
1460         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1461         EmitAutoVarCleanups(VarEmission);
1462       }
1463       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1464                       /*RefersToEnclosingVariableOrCapture=*/false,
1465                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1466       return EmitLValue(&DRE).getAddress();
1467     });
1468     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1469         VD->hasGlobalStorage()) {
1470       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1471         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1472                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1473                         E->getType(), VK_LValue, E->getExprLoc());
1474         return EmitLValue(&DRE).getAddress();
1475       });
1476     }
1477     ++I;
1478   }
1479 }
1480 
1481 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1482                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1483                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1484   if (!CGF.HaveInsertPoint())
1485     return;
1486   {
1487     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1488     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1489     (void)PreCondScope.Privatize();
1490     // Get initial values of real counters.
1491     for (auto I : S.inits()) {
1492       CGF.EmitIgnoredExpr(I);
1493     }
1494   }
1495   // Check that loop is executed at least one time.
1496   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1497 }
1498 
1499 void CodeGenFunction::EmitOMPLinearClause(
1500     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1501   if (!HaveInsertPoint())
1502     return;
1503   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1504   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1505     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1506     for (auto *C : LoopDirective->counters()) {
1507       SIMDLCVs.insert(
1508           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1509     }
1510   }
1511   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1512     auto CurPrivate = C->privates().begin();
1513     for (auto *E : C->varlists()) {
1514       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1515       auto *PrivateVD =
1516           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1517       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1518         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1519           // Emit private VarDecl with copy init.
1520           EmitVarDecl(*PrivateVD);
1521           return GetAddrOfLocalVar(PrivateVD);
1522         });
1523         assert(IsRegistered && "linear var already registered as private");
1524         // Silence the warning about unused variable.
1525         (void)IsRegistered;
1526       } else
1527         EmitVarDecl(*PrivateVD);
1528       ++CurPrivate;
1529     }
1530   }
1531 }
1532 
1533 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1534                                      const OMPExecutableDirective &D,
1535                                      bool IsMonotonic) {
1536   if (!CGF.HaveInsertPoint())
1537     return;
1538   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1539     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1540                                  /*ignoreResult=*/true);
1541     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1542     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1543     // In presence of finite 'safelen', it may be unsafe to mark all
1544     // the memory instructions parallel, because loop-carried
1545     // dependences of 'safelen' iterations are possible.
1546     if (!IsMonotonic)
1547       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1548   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1549     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1550                                  /*ignoreResult=*/true);
1551     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1552     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1553     // In presence of finite 'safelen', it may be unsafe to mark all
1554     // the memory instructions parallel, because loop-carried
1555     // dependences of 'safelen' iterations are possible.
1556     CGF.LoopStack.setParallel(false);
1557   }
1558 }
1559 
1560 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1561                                       bool IsMonotonic) {
1562   // Walk clauses and process safelen/lastprivate.
1563   LoopStack.setParallel(!IsMonotonic);
1564   LoopStack.setVectorizeEnable(true);
1565   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1566 }
1567 
1568 void CodeGenFunction::EmitOMPSimdFinal(
1569     const OMPLoopDirective &D,
1570     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1571   if (!HaveInsertPoint())
1572     return;
1573   llvm::BasicBlock *DoneBB = nullptr;
1574   auto IC = D.counters().begin();
1575   auto IPC = D.private_counters().begin();
1576   for (auto F : D.finals()) {
1577     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1578     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1579     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1580     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1581         OrigVD->hasGlobalStorage() || CED) {
1582       if (!DoneBB) {
1583         if (auto *Cond = CondGen(*this)) {
1584           // If the first post-update expression is found, emit conditional
1585           // block if it was requested.
1586           auto *ThenBB = createBasicBlock(".omp.final.then");
1587           DoneBB = createBasicBlock(".omp.final.done");
1588           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1589           EmitBlock(ThenBB);
1590         }
1591       }
1592       Address OrigAddr = Address::invalid();
1593       if (CED)
1594         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1595       else {
1596         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1597                         /*RefersToEnclosingVariableOrCapture=*/false,
1598                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1599         OrigAddr = EmitLValue(&DRE).getAddress();
1600       }
1601       OMPPrivateScope VarScope(*this);
1602       VarScope.addPrivate(OrigVD,
1603                           [OrigAddr]() -> Address { return OrigAddr; });
1604       (void)VarScope.Privatize();
1605       EmitIgnoredExpr(F);
1606     }
1607     ++IC;
1608     ++IPC;
1609   }
1610   if (DoneBB)
1611     EmitBlock(DoneBB, /*IsFinished=*/true);
1612 }
1613 
1614 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1615   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1616     OMPLoopScope PreInitScope(CGF, S);
1617     // if (PreCond) {
1618     //   for (IV in 0..LastIteration) BODY;
1619     //   <Final counter/linear vars updates>;
1620     // }
1621     //
1622 
1623     // Emit: if (PreCond) - begin.
1624     // If the condition constant folds and can be elided, avoid emitting the
1625     // whole loop.
1626     bool CondConstant;
1627     llvm::BasicBlock *ContBlock = nullptr;
1628     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1629       if (!CondConstant)
1630         return;
1631     } else {
1632       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1633       ContBlock = CGF.createBasicBlock("simd.if.end");
1634       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1635                   CGF.getProfileCount(&S));
1636       CGF.EmitBlock(ThenBlock);
1637       CGF.incrementProfileCounter(&S);
1638     }
1639 
1640     // Emit the loop iteration variable.
1641     const Expr *IVExpr = S.getIterationVariable();
1642     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1643     CGF.EmitVarDecl(*IVDecl);
1644     CGF.EmitIgnoredExpr(S.getInit());
1645 
1646     // Emit the iterations count variable.
1647     // If it is not a variable, Sema decided to calculate iterations count on
1648     // each iteration (e.g., it is foldable into a constant).
1649     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1650       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1651       // Emit calculation of the iterations count.
1652       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1653     }
1654 
1655     CGF.EmitOMPSimdInit(S);
1656 
1657     emitAlignedClause(CGF, S);
1658     CGF.EmitOMPLinearClauseInit(S);
1659     {
1660       OMPPrivateScope LoopScope(CGF);
1661       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1662       CGF.EmitOMPLinearClause(S, LoopScope);
1663       CGF.EmitOMPPrivateClause(S, LoopScope);
1664       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1665       bool HasLastprivateClause =
1666           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1667       (void)LoopScope.Privatize();
1668       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1669                            S.getInc(),
1670                            [&S](CodeGenFunction &CGF) {
1671                              CGF.EmitOMPLoopBody(S, JumpDest());
1672                              CGF.EmitStopPoint(&S);
1673                            },
1674                            [](CodeGenFunction &) {});
1675       CGF.EmitOMPSimdFinal(
1676           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1677       // Emit final copy of the lastprivate variables at the end of loops.
1678       if (HasLastprivateClause)
1679         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1680       CGF.EmitOMPReductionClauseFinal(S);
1681       emitPostUpdateForReductionClause(
1682           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1683     }
1684     CGF.EmitOMPLinearClauseFinal(
1685         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1686     // Emit: if (PreCond) - end.
1687     if (ContBlock) {
1688       CGF.EmitBranch(ContBlock);
1689       CGF.EmitBlock(ContBlock, true);
1690     }
1691   };
1692   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1693   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1694 }
1695 
1696 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
1697     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1698     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1699   auto &RT = CGM.getOpenMPRuntime();
1700 
1701   const Expr *IVExpr = S.getIterationVariable();
1702   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1703   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1704 
1705   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1706 
1707   // Start the loop with a block that tests the condition.
1708   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1709   EmitBlock(CondBlock);
1710   const SourceRange &R = S.getSourceRange();
1711   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1712                  SourceLocToDebugLoc(R.getEnd()));
1713 
1714   llvm::Value *BoolCondVal = nullptr;
1715   if (!DynamicOrOrdered) {
1716     // UB = min(UB, GlobalUB)
1717     EmitIgnoredExpr(S.getEnsureUpperBound());
1718     // IV = LB
1719     EmitIgnoredExpr(S.getInit());
1720     // IV < UB
1721     BoolCondVal = EvaluateExprAsBool(S.getCond());
1722   } else {
1723     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL,
1724                                  LB, UB, ST);
1725   }
1726 
1727   // If there are any cleanups between here and the loop-exit scope,
1728   // create a block to stage a loop exit along.
1729   auto ExitBlock = LoopExit.getBlock();
1730   if (LoopScope.requiresCleanups())
1731     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1732 
1733   auto LoopBody = createBasicBlock("omp.dispatch.body");
1734   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1735   if (ExitBlock != LoopExit.getBlock()) {
1736     EmitBlock(ExitBlock);
1737     EmitBranchThroughCleanup(LoopExit);
1738   }
1739   EmitBlock(LoopBody);
1740 
1741   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1742   // LB for loop condition and emitted it above).
1743   if (DynamicOrOrdered)
1744     EmitIgnoredExpr(S.getInit());
1745 
1746   // Create a block for the increment.
1747   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1748   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1749 
1750   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1751   // with dynamic/guided scheduling and without ordered clause.
1752   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1753     LoopStack.setParallel(!IsMonotonic);
1754   else
1755     EmitOMPSimdInit(S, IsMonotonic);
1756 
1757   SourceLocation Loc = S.getLocStart();
1758   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1759                    [&S, LoopExit](CodeGenFunction &CGF) {
1760                      CGF.EmitOMPLoopBody(S, LoopExit);
1761                      CGF.EmitStopPoint(&S);
1762                    },
1763                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1764                      if (Ordered) {
1765                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1766                            CGF, Loc, IVSize, IVSigned);
1767                      }
1768                    });
1769 
1770   EmitBlock(Continue.getBlock());
1771   BreakContinueStack.pop_back();
1772   if (!DynamicOrOrdered) {
1773     // Emit "LB = LB + Stride", "UB = UB + Stride".
1774     EmitIgnoredExpr(S.getNextLowerBound());
1775     EmitIgnoredExpr(S.getNextUpperBound());
1776   }
1777 
1778   EmitBranch(CondBlock);
1779   LoopStack.pop();
1780   // Emit the fall-through block.
1781   EmitBlock(LoopExit.getBlock());
1782 
1783   // Tell the runtime we are done.
1784   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1785     if (!DynamicOrOrdered)
1786       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd());
1787   };
1788   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1789 }
1790 
1791 void CodeGenFunction::EmitOMPForOuterLoop(
1792     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1793     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1794     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1795   auto &RT = CGM.getOpenMPRuntime();
1796 
1797   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1798   const bool DynamicOrOrdered =
1799       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1800 
1801   assert((Ordered ||
1802           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1803                                  /*Chunked=*/Chunk != nullptr)) &&
1804          "static non-chunked schedule does not need outer loop");
1805 
1806   // Emit outer loop.
1807   //
1808   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1809   // When schedule(dynamic,chunk_size) is specified, the iterations are
1810   // distributed to threads in the team in chunks as the threads request them.
1811   // Each thread executes a chunk of iterations, then requests another chunk,
1812   // until no chunks remain to be distributed. Each chunk contains chunk_size
1813   // iterations, except for the last chunk to be distributed, which may have
1814   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1815   //
1816   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1817   // to threads in the team in chunks as the executing threads request them.
1818   // Each thread executes a chunk of iterations, then requests another chunk,
1819   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1820   // each chunk is proportional to the number of unassigned iterations divided
1821   // by the number of threads in the team, decreasing to 1. For a chunk_size
1822   // with value k (greater than 1), the size of each chunk is determined in the
1823   // same way, with the restriction that the chunks do not contain fewer than k
1824   // iterations (except for the last chunk to be assigned, which may have fewer
1825   // than k iterations).
1826   //
1827   // When schedule(auto) is specified, the decision regarding scheduling is
1828   // delegated to the compiler and/or runtime system. The programmer gives the
1829   // implementation the freedom to choose any possible mapping of iterations to
1830   // threads in the team.
1831   //
1832   // When schedule(runtime) is specified, the decision regarding scheduling is
1833   // deferred until run time, and the schedule and chunk size are taken from the
1834   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1835   // implementation defined
1836   //
1837   // while(__kmpc_dispatch_next(&LB, &UB)) {
1838   //   idx = LB;
1839   //   while (idx <= UB) { BODY; ++idx;
1840   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1841   //   } // inner loop
1842   // }
1843   //
1844   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1845   // When schedule(static, chunk_size) is specified, iterations are divided into
1846   // chunks of size chunk_size, and the chunks are assigned to the threads in
1847   // the team in a round-robin fashion in the order of the thread number.
1848   //
1849   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1850   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1851   //   LB = LB + ST;
1852   //   UB = UB + ST;
1853   // }
1854   //
1855 
1856   const Expr *IVExpr = S.getIterationVariable();
1857   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1858   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1859 
1860   if (DynamicOrOrdered) {
1861     llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
1862     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1863                            IVSigned, Ordered, UBVal, Chunk);
1864   } else {
1865     RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1866                          Ordered, IL, LB, UB, ST, Chunk);
1867   }
1868 
1869   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB,
1870                    ST, IL, Chunk);
1871 }
1872 
1873 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1874     OpenMPDistScheduleClauseKind ScheduleKind,
1875     const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
1876     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1877 
1878   auto &RT = CGM.getOpenMPRuntime();
1879 
1880   // Emit outer loop.
1881   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1882   // dynamic
1883   //
1884 
1885   const Expr *IVExpr = S.getIterationVariable();
1886   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1887   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1888 
1889   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
1890                               IVSize, IVSigned, /* Ordered = */ false,
1891                               IL, LB, UB, ST, Chunk);
1892 
1893   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false,
1894                    S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk);
1895 }
1896 
1897 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1898     const OMPDistributeParallelForDirective &S) {
1899   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1900   CGM.getOpenMPRuntime().emitInlinedDirective(
1901       *this, OMPD_distribute_parallel_for,
1902       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1903         OMPLoopScope PreInitScope(CGF, S);
1904         OMPCancelStackRAII CancelRegion(CGF, OMPD_distribute_parallel_for,
1905                                         /*HasCancel=*/false);
1906         CGF.EmitStmt(
1907             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1908       });
1909 }
1910 
1911 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1912     const OMPDistributeParallelForSimdDirective &S) {
1913   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1914   CGM.getOpenMPRuntime().emitInlinedDirective(
1915       *this, OMPD_distribute_parallel_for_simd,
1916       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1917         OMPLoopScope PreInitScope(CGF, S);
1918         CGF.EmitStmt(
1919             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1920       });
1921 }
1922 
1923 void CodeGenFunction::EmitOMPDistributeSimdDirective(
1924     const OMPDistributeSimdDirective &S) {
1925   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1926   CGM.getOpenMPRuntime().emitInlinedDirective(
1927       *this, OMPD_distribute_simd,
1928       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1929         OMPLoopScope PreInitScope(CGF, S);
1930         CGF.EmitStmt(
1931             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1932       });
1933 }
1934 
1935 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
1936     const OMPTargetParallelForSimdDirective &S) {
1937   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1938   CGM.getOpenMPRuntime().emitInlinedDirective(
1939       *this, OMPD_target_parallel_for_simd,
1940       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1941         OMPLoopScope PreInitScope(CGF, S);
1942         CGF.EmitStmt(
1943             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1944       });
1945 }
1946 
1947 void CodeGenFunction::EmitOMPTargetSimdDirective(
1948     const OMPTargetSimdDirective &S) {
1949   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1950   CGM.getOpenMPRuntime().emitInlinedDirective(
1951       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1952         OMPLoopScope PreInitScope(CGF, S);
1953         CGF.EmitStmt(
1954             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1955       });
1956 }
1957 
1958 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
1959     const OMPTeamsDistributeDirective &S) {
1960   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1961   CGM.getOpenMPRuntime().emitInlinedDirective(
1962       *this, OMPD_teams_distribute,
1963       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1964         OMPLoopScope PreInitScope(CGF, S);
1965         CGF.EmitStmt(
1966             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1967       });
1968 }
1969 
1970 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
1971     const OMPTeamsDistributeSimdDirective &S) {
1972   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1973   CGM.getOpenMPRuntime().emitInlinedDirective(
1974       *this, OMPD_teams_distribute_simd,
1975       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1976         OMPLoopScope PreInitScope(CGF, S);
1977         CGF.EmitStmt(
1978             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1979       });
1980 }
1981 
1982 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
1983     const OMPTeamsDistributeParallelForSimdDirective &S) {
1984   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1985   CGM.getOpenMPRuntime().emitInlinedDirective(
1986       *this, OMPD_teams_distribute_parallel_for_simd,
1987       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1988         OMPLoopScope PreInitScope(CGF, S);
1989         CGF.EmitStmt(
1990             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1991       });
1992 }
1993 
1994 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
1995     const OMPTeamsDistributeParallelForDirective &S) {
1996   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1997   CGM.getOpenMPRuntime().emitInlinedDirective(
1998       *this, OMPD_teams_distribute_parallel_for,
1999       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2000         OMPLoopScope PreInitScope(CGF, S);
2001         CGF.EmitStmt(
2002             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2003       });
2004 }
2005 
2006 /// \brief Emit a helper variable and return corresponding lvalue.
2007 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
2008                                const DeclRefExpr *Helper) {
2009   auto VDecl = cast<VarDecl>(Helper->getDecl());
2010   CGF.EmitVarDecl(*VDecl);
2011   return CGF.EmitLValue(Helper);
2012 }
2013 
2014 namespace {
2015   struct ScheduleKindModifiersTy {
2016     OpenMPScheduleClauseKind Kind;
2017     OpenMPScheduleClauseModifier M1;
2018     OpenMPScheduleClauseModifier M2;
2019     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2020                             OpenMPScheduleClauseModifier M1,
2021                             OpenMPScheduleClauseModifier M2)
2022         : Kind(Kind), M1(M1), M2(M2) {}
2023   };
2024 } // namespace
2025 
2026 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
2027   // Emit the loop iteration variable.
2028   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2029   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2030   EmitVarDecl(*IVDecl);
2031 
2032   // Emit the iterations count variable.
2033   // If it is not a variable, Sema decided to calculate iterations count on each
2034   // iteration (e.g., it is foldable into a constant).
2035   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2036     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2037     // Emit calculation of the iterations count.
2038     EmitIgnoredExpr(S.getCalcLastIteration());
2039   }
2040 
2041   auto &RT = CGM.getOpenMPRuntime();
2042 
2043   bool HasLastprivateClause;
2044   // Check pre-condition.
2045   {
2046     OMPLoopScope PreInitScope(*this, S);
2047     // Skip the entire loop if we don't meet the precondition.
2048     // If the condition constant folds and can be elided, avoid emitting the
2049     // whole loop.
2050     bool CondConstant;
2051     llvm::BasicBlock *ContBlock = nullptr;
2052     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2053       if (!CondConstant)
2054         return false;
2055     } else {
2056       auto *ThenBlock = createBasicBlock("omp.precond.then");
2057       ContBlock = createBasicBlock("omp.precond.end");
2058       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2059                   getProfileCount(&S));
2060       EmitBlock(ThenBlock);
2061       incrementProfileCounter(&S);
2062     }
2063 
2064     bool Ordered = false;
2065     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2066       if (OrderedClause->getNumForLoops())
2067         RT.emitDoacrossInit(*this, S);
2068       else
2069         Ordered = true;
2070     }
2071 
2072     llvm::DenseSet<const Expr *> EmittedFinals;
2073     emitAlignedClause(*this, S);
2074     EmitOMPLinearClauseInit(S);
2075     // Emit helper vars inits.
2076     LValue LB =
2077         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2078     LValue UB =
2079         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2080     LValue ST =
2081         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2082     LValue IL =
2083         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2084 
2085     // Emit 'then' code.
2086     {
2087       OMPPrivateScope LoopScope(*this);
2088       if (EmitOMPFirstprivateClause(S, LoopScope)) {
2089         // Emit implicit barrier to synchronize threads and avoid data races on
2090         // initialization of firstprivate variables and post-update of
2091         // lastprivate variables.
2092         CGM.getOpenMPRuntime().emitBarrierCall(
2093             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2094             /*ForceSimpleCall=*/true);
2095       }
2096       EmitOMPPrivateClause(S, LoopScope);
2097       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2098       EmitOMPReductionClauseInit(S, LoopScope);
2099       EmitOMPPrivateLoopCounters(S, LoopScope);
2100       EmitOMPLinearClause(S, LoopScope);
2101       (void)LoopScope.Privatize();
2102 
2103       // Detect the loop schedule kind and chunk.
2104       llvm::Value *Chunk = nullptr;
2105       OpenMPScheduleTy ScheduleKind;
2106       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2107         ScheduleKind.Schedule = C->getScheduleKind();
2108         ScheduleKind.M1 = C->getFirstScheduleModifier();
2109         ScheduleKind.M2 = C->getSecondScheduleModifier();
2110         if (const auto *Ch = C->getChunkSize()) {
2111           Chunk = EmitScalarExpr(Ch);
2112           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2113                                        S.getIterationVariable()->getType(),
2114                                        S.getLocStart());
2115         }
2116       }
2117       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2118       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2119       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2120       // If the static schedule kind is specified or if the ordered clause is
2121       // specified, and if no monotonic modifier is specified, the effect will
2122       // be as if the monotonic modifier was specified.
2123       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2124                                 /* Chunked */ Chunk != nullptr) &&
2125           !Ordered) {
2126         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2127           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2128         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2129         // When no chunk_size is specified, the iteration space is divided into
2130         // chunks that are approximately equal in size, and at most one chunk is
2131         // distributed to each thread. Note that the size of the chunks is
2132         // unspecified in this case.
2133         RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
2134                              IVSize, IVSigned, Ordered,
2135                              IL.getAddress(), LB.getAddress(),
2136                              UB.getAddress(), ST.getAddress());
2137         auto LoopExit =
2138             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2139         // UB = min(UB, GlobalUB);
2140         EmitIgnoredExpr(S.getEnsureUpperBound());
2141         // IV = LB;
2142         EmitIgnoredExpr(S.getInit());
2143         // while (idx <= UB) { BODY; ++idx; }
2144         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2145                          S.getInc(),
2146                          [&S, LoopExit](CodeGenFunction &CGF) {
2147                            CGF.EmitOMPLoopBody(S, LoopExit);
2148                            CGF.EmitStopPoint(&S);
2149                          },
2150                          [](CodeGenFunction &) {});
2151         EmitBlock(LoopExit.getBlock());
2152         // Tell the runtime we are done.
2153         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2154           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd());
2155         };
2156         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2157       } else {
2158         const bool IsMonotonic =
2159             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2160             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2161             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2162             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2163         // Emit the outer loop, which requests its work chunk [LB..UB] from
2164         // runtime and runs the inner loop to process it.
2165         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2166                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2167                             IL.getAddress(), Chunk);
2168       }
2169       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2170         EmitOMPSimdFinal(S,
2171                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2172                            return CGF.Builder.CreateIsNotNull(
2173                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2174                          });
2175       }
2176       EmitOMPReductionClauseFinal(S);
2177       // Emit post-update of the reduction variables if IsLastIter != 0.
2178       emitPostUpdateForReductionClause(
2179           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2180             return CGF.Builder.CreateIsNotNull(
2181                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2182           });
2183       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2184       if (HasLastprivateClause)
2185         EmitOMPLastprivateClauseFinal(
2186             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2187             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2188     }
2189     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2190       return CGF.Builder.CreateIsNotNull(
2191           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2192     });
2193     // We're now done with the loop, so jump to the continuation block.
2194     if (ContBlock) {
2195       EmitBranch(ContBlock);
2196       EmitBlock(ContBlock, true);
2197     }
2198   }
2199   return HasLastprivateClause;
2200 }
2201 
2202 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2203   bool HasLastprivates = false;
2204   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2205                                           PrePostActionTy &) {
2206     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2207     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2208   };
2209   {
2210     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2211     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2212                                                 S.hasCancel());
2213   }
2214 
2215   // Emit an implicit barrier at the end.
2216   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2217     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2218   }
2219 }
2220 
2221 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2222   bool HasLastprivates = false;
2223   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2224                                           PrePostActionTy &) {
2225     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2226   };
2227   {
2228     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2229     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2230   }
2231 
2232   // Emit an implicit barrier at the end.
2233   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2234     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2235   }
2236 }
2237 
2238 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2239                                 const Twine &Name,
2240                                 llvm::Value *Init = nullptr) {
2241   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2242   if (Init)
2243     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2244   return LVal;
2245 }
2246 
2247 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2248   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2249   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2250   bool HasLastprivates = false;
2251   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2252                                                     PrePostActionTy &) {
2253     auto &C = CGF.CGM.getContext();
2254     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2255     // Emit helper vars inits.
2256     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2257                                   CGF.Builder.getInt32(0));
2258     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2259                                       : CGF.Builder.getInt32(0);
2260     LValue UB =
2261         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2262     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2263                                   CGF.Builder.getInt32(1));
2264     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2265                                   CGF.Builder.getInt32(0));
2266     // Loop counter.
2267     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2268     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2269     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2270     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2271     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2272     // Generate condition for loop.
2273     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2274                         OK_Ordinary, S.getLocStart(),
2275                         /*fpContractable=*/false);
2276     // Increment for loop counter.
2277     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2278                       S.getLocStart());
2279     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2280       // Iterate through all sections and emit a switch construct:
2281       // switch (IV) {
2282       //   case 0:
2283       //     <SectionStmt[0]>;
2284       //     break;
2285       // ...
2286       //   case <NumSection> - 1:
2287       //     <SectionStmt[<NumSection> - 1]>;
2288       //     break;
2289       // }
2290       // .omp.sections.exit:
2291       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2292       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2293           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2294           CS == nullptr ? 1 : CS->size());
2295       if (CS) {
2296         unsigned CaseNumber = 0;
2297         for (auto *SubStmt : CS->children()) {
2298           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2299           CGF.EmitBlock(CaseBB);
2300           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2301           CGF.EmitStmt(SubStmt);
2302           CGF.EmitBranch(ExitBB);
2303           ++CaseNumber;
2304         }
2305       } else {
2306         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2307         CGF.EmitBlock(CaseBB);
2308         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2309         CGF.EmitStmt(Stmt);
2310         CGF.EmitBranch(ExitBB);
2311       }
2312       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2313     };
2314 
2315     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2316     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2317       // Emit implicit barrier to synchronize threads and avoid data races on
2318       // initialization of firstprivate variables and post-update of lastprivate
2319       // variables.
2320       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2321           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2322           /*ForceSimpleCall=*/true);
2323     }
2324     CGF.EmitOMPPrivateClause(S, LoopScope);
2325     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2326     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2327     (void)LoopScope.Privatize();
2328 
2329     // Emit static non-chunked loop.
2330     OpenMPScheduleTy ScheduleKind;
2331     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2332     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2333         CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32,
2334         /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
2335         UB.getAddress(), ST.getAddress());
2336     // UB = min(UB, GlobalUB);
2337     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2338     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2339         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2340     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2341     // IV = LB;
2342     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2343     // while (idx <= UB) { BODY; ++idx; }
2344     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2345                          [](CodeGenFunction &) {});
2346     // Tell the runtime we are done.
2347     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2348       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd());
2349     };
2350     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2351     CGF.EmitOMPReductionClauseFinal(S);
2352     // Emit post-update of the reduction variables if IsLastIter != 0.
2353     emitPostUpdateForReductionClause(
2354         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2355           return CGF.Builder.CreateIsNotNull(
2356               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2357         });
2358 
2359     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2360     if (HasLastprivates)
2361       CGF.EmitOMPLastprivateClauseFinal(
2362           S, /*NoFinals=*/false,
2363           CGF.Builder.CreateIsNotNull(
2364               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2365   };
2366 
2367   bool HasCancel = false;
2368   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2369     HasCancel = OSD->hasCancel();
2370   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2371     HasCancel = OPSD->hasCancel();
2372   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2373   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2374                                               HasCancel);
2375   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2376   // clause. Otherwise the barrier will be generated by the codegen for the
2377   // directive.
2378   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2379     // Emit implicit barrier to synchronize threads and avoid data races on
2380     // initialization of firstprivate variables.
2381     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2382                                            OMPD_unknown);
2383   }
2384 }
2385 
2386 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2387   {
2388     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2389     EmitSections(S);
2390   }
2391   // Emit an implicit barrier at the end.
2392   if (!S.getSingleClause<OMPNowaitClause>()) {
2393     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2394                                            OMPD_sections);
2395   }
2396 }
2397 
2398 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2399   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2400     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2401   };
2402   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2403   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2404                                               S.hasCancel());
2405 }
2406 
2407 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2408   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2409   llvm::SmallVector<const Expr *, 8> DestExprs;
2410   llvm::SmallVector<const Expr *, 8> SrcExprs;
2411   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2412   // Check if there are any 'copyprivate' clauses associated with this
2413   // 'single' construct.
2414   // Build a list of copyprivate variables along with helper expressions
2415   // (<source>, <destination>, <destination>=<source> expressions)
2416   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2417     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2418     DestExprs.append(C->destination_exprs().begin(),
2419                      C->destination_exprs().end());
2420     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2421     AssignmentOps.append(C->assignment_ops().begin(),
2422                          C->assignment_ops().end());
2423   }
2424   // Emit code for 'single' region along with 'copyprivate' clauses
2425   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2426     Action.Enter(CGF);
2427     OMPPrivateScope SingleScope(CGF);
2428     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2429     CGF.EmitOMPPrivateClause(S, SingleScope);
2430     (void)SingleScope.Privatize();
2431     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2432   };
2433   {
2434     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2435     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2436                                             CopyprivateVars, DestExprs,
2437                                             SrcExprs, AssignmentOps);
2438   }
2439   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2440   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2441   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2442     CGM.getOpenMPRuntime().emitBarrierCall(
2443         *this, S.getLocStart(),
2444         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2445   }
2446 }
2447 
2448 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2449   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2450     Action.Enter(CGF);
2451     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2452   };
2453   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2454   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2455 }
2456 
2457 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2458   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2459     Action.Enter(CGF);
2460     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2461   };
2462   Expr *Hint = nullptr;
2463   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2464     Hint = HintClause->getHint();
2465   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2466   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2467                                             S.getDirectiveName().getAsString(),
2468                                             CodeGen, S.getLocStart(), Hint);
2469 }
2470 
2471 void CodeGenFunction::EmitOMPParallelForDirective(
2472     const OMPParallelForDirective &S) {
2473   // Emit directive as a combined directive that consists of two implicit
2474   // directives: 'parallel' with 'for' directive.
2475   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2476     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2477     CGF.EmitOMPWorksharingLoop(S);
2478   };
2479   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
2480 }
2481 
2482 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2483     const OMPParallelForSimdDirective &S) {
2484   // Emit directive as a combined directive that consists of two implicit
2485   // directives: 'parallel' with 'for' directive.
2486   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2487     CGF.EmitOMPWorksharingLoop(S);
2488   };
2489   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
2490 }
2491 
2492 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2493     const OMPParallelSectionsDirective &S) {
2494   // Emit directive as a combined directive that consists of two implicit
2495   // directives: 'parallel' with 'sections' directive.
2496   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2497     CGF.EmitSections(S);
2498   };
2499   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
2500 }
2501 
2502 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2503                                                 const RegionCodeGenTy &BodyGen,
2504                                                 const TaskGenTy &TaskGen,
2505                                                 OMPTaskDataTy &Data) {
2506   // Emit outlined function for task construct.
2507   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2508   auto *I = CS->getCapturedDecl()->param_begin();
2509   auto *PartId = std::next(I);
2510   auto *TaskT = std::next(I, 4);
2511   // Check if the task is final
2512   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2513     // If the condition constant folds and can be elided, try to avoid emitting
2514     // the condition and the dead arm of the if/else.
2515     auto *Cond = Clause->getCondition();
2516     bool CondConstant;
2517     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2518       Data.Final.setInt(CondConstant);
2519     else
2520       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2521   } else {
2522     // By default the task is not final.
2523     Data.Final.setInt(/*IntVal=*/false);
2524   }
2525   // Check if the task has 'priority' clause.
2526   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2527     auto *Prio = Clause->getPriority();
2528     Data.Priority.setInt(/*IntVal=*/true);
2529     Data.Priority.setPointer(EmitScalarConversion(
2530         EmitScalarExpr(Prio), Prio->getType(),
2531         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2532         Prio->getExprLoc()));
2533   }
2534   // The first function argument for tasks is a thread id, the second one is a
2535   // part id (0 for tied tasks, >=0 for untied task).
2536   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2537   // Get list of private variables.
2538   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2539     auto IRef = C->varlist_begin();
2540     for (auto *IInit : C->private_copies()) {
2541       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2542       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2543         Data.PrivateVars.push_back(*IRef);
2544         Data.PrivateCopies.push_back(IInit);
2545       }
2546       ++IRef;
2547     }
2548   }
2549   EmittedAsPrivate.clear();
2550   // Get list of firstprivate variables.
2551   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2552     auto IRef = C->varlist_begin();
2553     auto IElemInitRef = C->inits().begin();
2554     for (auto *IInit : C->private_copies()) {
2555       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2556       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2557         Data.FirstprivateVars.push_back(*IRef);
2558         Data.FirstprivateCopies.push_back(IInit);
2559         Data.FirstprivateInits.push_back(*IElemInitRef);
2560       }
2561       ++IRef;
2562       ++IElemInitRef;
2563     }
2564   }
2565   // Get list of lastprivate variables (for taskloops).
2566   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2567   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2568     auto IRef = C->varlist_begin();
2569     auto ID = C->destination_exprs().begin();
2570     for (auto *IInit : C->private_copies()) {
2571       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2572       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2573         Data.LastprivateVars.push_back(*IRef);
2574         Data.LastprivateCopies.push_back(IInit);
2575       }
2576       LastprivateDstsOrigs.insert(
2577           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2578            cast<DeclRefExpr>(*IRef)});
2579       ++IRef;
2580       ++ID;
2581     }
2582   }
2583   // Build list of dependences.
2584   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2585     for (auto *IRef : C->varlists())
2586       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2587   auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs](
2588       CodeGenFunction &CGF, PrePostActionTy &Action) {
2589     // Set proper addresses for generated private copies.
2590     OMPPrivateScope Scope(CGF);
2591     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2592         !Data.LastprivateVars.empty()) {
2593       auto *CopyFn = CGF.Builder.CreateLoad(
2594           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2595       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2596           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2597       // Map privates.
2598       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2599       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2600       CallArgs.push_back(PrivatesPtr);
2601       for (auto *E : Data.PrivateVars) {
2602         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2603         Address PrivatePtr = CGF.CreateMemTemp(
2604             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2605         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2606         CallArgs.push_back(PrivatePtr.getPointer());
2607       }
2608       for (auto *E : Data.FirstprivateVars) {
2609         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2610         Address PrivatePtr =
2611             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2612                               ".firstpriv.ptr.addr");
2613         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2614         CallArgs.push_back(PrivatePtr.getPointer());
2615       }
2616       for (auto *E : Data.LastprivateVars) {
2617         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2618         Address PrivatePtr =
2619             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2620                               ".lastpriv.ptr.addr");
2621         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2622         CallArgs.push_back(PrivatePtr.getPointer());
2623       }
2624       CGF.EmitRuntimeCall(CopyFn, CallArgs);
2625       for (auto &&Pair : LastprivateDstsOrigs) {
2626         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2627         DeclRefExpr DRE(
2628             const_cast<VarDecl *>(OrigVD),
2629             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2630                 OrigVD) != nullptr,
2631             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2632         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2633           return CGF.EmitLValue(&DRE).getAddress();
2634         });
2635       }
2636       for (auto &&Pair : PrivatePtrs) {
2637         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2638                             CGF.getContext().getDeclAlign(Pair.first));
2639         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2640       }
2641     }
2642     (void)Scope.Privatize();
2643 
2644     Action.Enter(CGF);
2645     BodyGen(CGF);
2646   };
2647   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2648       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2649       Data.NumberOfParts);
2650   OMPLexicalScope Scope(*this, S);
2651   TaskGen(*this, OutlinedFn, Data);
2652 }
2653 
2654 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2655   // Emit outlined function for task construct.
2656   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2657   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2658   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2659   const Expr *IfCond = nullptr;
2660   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2661     if (C->getNameModifier() == OMPD_unknown ||
2662         C->getNameModifier() == OMPD_task) {
2663       IfCond = C->getCondition();
2664       break;
2665     }
2666   }
2667 
2668   OMPTaskDataTy Data;
2669   // Check if we should emit tied or untied task.
2670   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2671   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2672     CGF.EmitStmt(CS->getCapturedStmt());
2673   };
2674   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2675                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2676                             const OMPTaskDataTy &Data) {
2677     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2678                                             SharedsTy, CapturedStruct, IfCond,
2679                                             Data);
2680   };
2681   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2682 }
2683 
2684 void CodeGenFunction::EmitOMPTaskyieldDirective(
2685     const OMPTaskyieldDirective &S) {
2686   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2687 }
2688 
2689 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2690   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2691 }
2692 
2693 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2694   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2695 }
2696 
2697 void CodeGenFunction::EmitOMPTaskgroupDirective(
2698     const OMPTaskgroupDirective &S) {
2699   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2700     Action.Enter(CGF);
2701     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2702   };
2703   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2704   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
2705 }
2706 
2707 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
2708   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
2709     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
2710       return llvm::makeArrayRef(FlushClause->varlist_begin(),
2711                                 FlushClause->varlist_end());
2712     }
2713     return llvm::None;
2714   }(), S.getLocStart());
2715 }
2716 
2717 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) {
2718   // Emit the loop iteration variable.
2719   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2720   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2721   EmitVarDecl(*IVDecl);
2722 
2723   // Emit the iterations count variable.
2724   // If it is not a variable, Sema decided to calculate iterations count on each
2725   // iteration (e.g., it is foldable into a constant).
2726   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2727     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2728     // Emit calculation of the iterations count.
2729     EmitIgnoredExpr(S.getCalcLastIteration());
2730   }
2731 
2732   auto &RT = CGM.getOpenMPRuntime();
2733 
2734   // Check pre-condition.
2735   {
2736     OMPLoopScope PreInitScope(*this, S);
2737     // Skip the entire loop if we don't meet the precondition.
2738     // If the condition constant folds and can be elided, avoid emitting the
2739     // whole loop.
2740     bool CondConstant;
2741     llvm::BasicBlock *ContBlock = nullptr;
2742     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2743       if (!CondConstant)
2744         return;
2745     } else {
2746       auto *ThenBlock = createBasicBlock("omp.precond.then");
2747       ContBlock = createBasicBlock("omp.precond.end");
2748       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2749                   getProfileCount(&S));
2750       EmitBlock(ThenBlock);
2751       incrementProfileCounter(&S);
2752     }
2753 
2754     // Emit 'then' code.
2755     {
2756       // Emit helper vars inits.
2757       LValue LB =
2758           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2759       LValue UB =
2760           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2761       LValue ST =
2762           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2763       LValue IL =
2764           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2765 
2766       OMPPrivateScope LoopScope(*this);
2767       EmitOMPPrivateLoopCounters(S, LoopScope);
2768       (void)LoopScope.Privatize();
2769 
2770       // Detect the distribute schedule kind and chunk.
2771       llvm::Value *Chunk = nullptr;
2772       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
2773       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
2774         ScheduleKind = C->getDistScheduleKind();
2775         if (const auto *Ch = C->getChunkSize()) {
2776           Chunk = EmitScalarExpr(Ch);
2777           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2778           S.getIterationVariable()->getType(),
2779           S.getLocStart());
2780         }
2781       }
2782       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2783       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2784 
2785       // OpenMP [2.10.8, distribute Construct, Description]
2786       // If dist_schedule is specified, kind must be static. If specified,
2787       // iterations are divided into chunks of size chunk_size, chunks are
2788       // assigned to the teams of the league in a round-robin fashion in the
2789       // order of the team number. When no chunk_size is specified, the
2790       // iteration space is divided into chunks that are approximately equal
2791       // in size, and at most one chunk is distributed to each team of the
2792       // league. The size of the chunks is unspecified in this case.
2793       if (RT.isStaticNonchunked(ScheduleKind,
2794                                 /* Chunked */ Chunk != nullptr)) {
2795         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
2796                              IVSize, IVSigned, /* Ordered = */ false,
2797                              IL.getAddress(), LB.getAddress(),
2798                              UB.getAddress(), ST.getAddress());
2799         auto LoopExit =
2800             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2801         // UB = min(UB, GlobalUB);
2802         EmitIgnoredExpr(S.getEnsureUpperBound());
2803         // IV = LB;
2804         EmitIgnoredExpr(S.getInit());
2805         // while (idx <= UB) { BODY; ++idx; }
2806         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2807                          S.getInc(),
2808                          [&S, LoopExit](CodeGenFunction &CGF) {
2809                            CGF.EmitOMPLoopBody(S, LoopExit);
2810                            CGF.EmitStopPoint(&S);
2811                          },
2812                          [](CodeGenFunction &) {});
2813         EmitBlock(LoopExit.getBlock());
2814         // Tell the runtime we are done.
2815         RT.emitForStaticFinish(*this, S.getLocStart());
2816       } else {
2817         // Emit the outer loop, which requests its work chunk [LB..UB] from
2818         // runtime and runs the inner loop to process it.
2819         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope,
2820                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2821                             IL.getAddress(), Chunk);
2822       }
2823     }
2824 
2825     // We're now done with the loop, so jump to the continuation block.
2826     if (ContBlock) {
2827       EmitBranch(ContBlock);
2828       EmitBlock(ContBlock, true);
2829     }
2830   }
2831 }
2832 
2833 void CodeGenFunction::EmitOMPDistributeDirective(
2834     const OMPDistributeDirective &S) {
2835   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2836     CGF.EmitOMPDistributeLoop(S);
2837   };
2838   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2839   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
2840                                               false);
2841 }
2842 
2843 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
2844                                                    const CapturedStmt *S) {
2845   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
2846   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
2847   CGF.CapturedStmtInfo = &CapStmtInfo;
2848   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
2849   Fn->addFnAttr(llvm::Attribute::NoInline);
2850   return Fn;
2851 }
2852 
2853 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
2854   if (!S.getAssociatedStmt()) {
2855     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
2856       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
2857     return;
2858   }
2859   auto *C = S.getSingleClause<OMPSIMDClause>();
2860   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
2861                                  PrePostActionTy &Action) {
2862     if (C) {
2863       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2864       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
2865       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
2866       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
2867       CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
2868     } else {
2869       Action.Enter(CGF);
2870       CGF.EmitStmt(
2871           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2872     }
2873   };
2874   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2875   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
2876 }
2877 
2878 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
2879                                          QualType SrcType, QualType DestType,
2880                                          SourceLocation Loc) {
2881   assert(CGF.hasScalarEvaluationKind(DestType) &&
2882          "DestType must have scalar evaluation kind.");
2883   assert(!Val.isAggregate() && "Must be a scalar or complex.");
2884   return Val.isScalar()
2885              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
2886                                         Loc)
2887              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
2888                                                  DestType, Loc);
2889 }
2890 
2891 static CodeGenFunction::ComplexPairTy
2892 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
2893                       QualType DestType, SourceLocation Loc) {
2894   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
2895          "DestType must have complex evaluation kind.");
2896   CodeGenFunction::ComplexPairTy ComplexVal;
2897   if (Val.isScalar()) {
2898     // Convert the input element to the element type of the complex.
2899     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2900     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
2901                                               DestElementType, Loc);
2902     ComplexVal = CodeGenFunction::ComplexPairTy(
2903         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
2904   } else {
2905     assert(Val.isComplex() && "Must be a scalar or complex.");
2906     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
2907     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2908     ComplexVal.first = CGF.EmitScalarConversion(
2909         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
2910     ComplexVal.second = CGF.EmitScalarConversion(
2911         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
2912   }
2913   return ComplexVal;
2914 }
2915 
2916 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
2917                                   LValue LVal, RValue RVal) {
2918   if (LVal.isGlobalReg()) {
2919     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
2920   } else {
2921     CGF.EmitAtomicStore(RVal, LVal,
2922                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2923                                  : llvm::AtomicOrdering::Monotonic,
2924                         LVal.isVolatile(), /*IsInit=*/false);
2925   }
2926 }
2927 
2928 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
2929                                          QualType RValTy, SourceLocation Loc) {
2930   switch (getEvaluationKind(LVal.getType())) {
2931   case TEK_Scalar:
2932     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
2933                                *this, RVal, RValTy, LVal.getType(), Loc)),
2934                            LVal);
2935     break;
2936   case TEK_Complex:
2937     EmitStoreOfComplex(
2938         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
2939         /*isInit=*/false);
2940     break;
2941   case TEK_Aggregate:
2942     llvm_unreachable("Must be a scalar or complex.");
2943   }
2944 }
2945 
2946 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
2947                                   const Expr *X, const Expr *V,
2948                                   SourceLocation Loc) {
2949   // v = x;
2950   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
2951   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
2952   LValue XLValue = CGF.EmitLValue(X);
2953   LValue VLValue = CGF.EmitLValue(V);
2954   RValue Res = XLValue.isGlobalReg()
2955                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
2956                    : CGF.EmitAtomicLoad(
2957                          XLValue, Loc,
2958                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2959                                   : llvm::AtomicOrdering::Monotonic,
2960                          XLValue.isVolatile());
2961   // OpenMP, 2.12.6, atomic Construct
2962   // Any atomic construct with a seq_cst clause forces the atomically
2963   // performed operation to include an implicit flush operation without a
2964   // list.
2965   if (IsSeqCst)
2966     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2967   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
2968 }
2969 
2970 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
2971                                    const Expr *X, const Expr *E,
2972                                    SourceLocation Loc) {
2973   // x = expr;
2974   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
2975   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
2976   // OpenMP, 2.12.6, atomic Construct
2977   // Any atomic construct with a seq_cst clause forces the atomically
2978   // performed operation to include an implicit flush operation without a
2979   // list.
2980   if (IsSeqCst)
2981     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2982 }
2983 
2984 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
2985                                                 RValue Update,
2986                                                 BinaryOperatorKind BO,
2987                                                 llvm::AtomicOrdering AO,
2988                                                 bool IsXLHSInRHSPart) {
2989   auto &Context = CGF.CGM.getContext();
2990   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
2991   // expression is simple and atomic is allowed for the given type for the
2992   // target platform.
2993   if (BO == BO_Comma || !Update.isScalar() ||
2994       !Update.getScalarVal()->getType()->isIntegerTy() ||
2995       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
2996                         (Update.getScalarVal()->getType() !=
2997                          X.getAddress().getElementType())) ||
2998       !X.getAddress().getElementType()->isIntegerTy() ||
2999       !Context.getTargetInfo().hasBuiltinAtomic(
3000           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3001     return std::make_pair(false, RValue::get(nullptr));
3002 
3003   llvm::AtomicRMWInst::BinOp RMWOp;
3004   switch (BO) {
3005   case BO_Add:
3006     RMWOp = llvm::AtomicRMWInst::Add;
3007     break;
3008   case BO_Sub:
3009     if (!IsXLHSInRHSPart)
3010       return std::make_pair(false, RValue::get(nullptr));
3011     RMWOp = llvm::AtomicRMWInst::Sub;
3012     break;
3013   case BO_And:
3014     RMWOp = llvm::AtomicRMWInst::And;
3015     break;
3016   case BO_Or:
3017     RMWOp = llvm::AtomicRMWInst::Or;
3018     break;
3019   case BO_Xor:
3020     RMWOp = llvm::AtomicRMWInst::Xor;
3021     break;
3022   case BO_LT:
3023     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3024                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3025                                    : llvm::AtomicRMWInst::Max)
3026                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3027                                    : llvm::AtomicRMWInst::UMax);
3028     break;
3029   case BO_GT:
3030     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3031                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3032                                    : llvm::AtomicRMWInst::Min)
3033                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3034                                    : llvm::AtomicRMWInst::UMin);
3035     break;
3036   case BO_Assign:
3037     RMWOp = llvm::AtomicRMWInst::Xchg;
3038     break;
3039   case BO_Mul:
3040   case BO_Div:
3041   case BO_Rem:
3042   case BO_Shl:
3043   case BO_Shr:
3044   case BO_LAnd:
3045   case BO_LOr:
3046     return std::make_pair(false, RValue::get(nullptr));
3047   case BO_PtrMemD:
3048   case BO_PtrMemI:
3049   case BO_LE:
3050   case BO_GE:
3051   case BO_EQ:
3052   case BO_NE:
3053   case BO_AddAssign:
3054   case BO_SubAssign:
3055   case BO_AndAssign:
3056   case BO_OrAssign:
3057   case BO_XorAssign:
3058   case BO_MulAssign:
3059   case BO_DivAssign:
3060   case BO_RemAssign:
3061   case BO_ShlAssign:
3062   case BO_ShrAssign:
3063   case BO_Comma:
3064     llvm_unreachable("Unsupported atomic update operation");
3065   }
3066   auto *UpdateVal = Update.getScalarVal();
3067   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3068     UpdateVal = CGF.Builder.CreateIntCast(
3069         IC, X.getAddress().getElementType(),
3070         X.getType()->hasSignedIntegerRepresentation());
3071   }
3072   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3073   return std::make_pair(true, RValue::get(Res));
3074 }
3075 
3076 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3077     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3078     llvm::AtomicOrdering AO, SourceLocation Loc,
3079     const llvm::function_ref<RValue(RValue)> &CommonGen) {
3080   // Update expressions are allowed to have the following forms:
3081   // x binop= expr; -> xrval + expr;
3082   // x++, ++x -> xrval + 1;
3083   // x--, --x -> xrval - 1;
3084   // x = x binop expr; -> xrval binop expr
3085   // x = expr Op x; - > expr binop xrval;
3086   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3087   if (!Res.first) {
3088     if (X.isGlobalReg()) {
3089       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3090       // 'xrval'.
3091       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3092     } else {
3093       // Perform compare-and-swap procedure.
3094       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3095     }
3096   }
3097   return Res;
3098 }
3099 
3100 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3101                                     const Expr *X, const Expr *E,
3102                                     const Expr *UE, bool IsXLHSInRHSPart,
3103                                     SourceLocation Loc) {
3104   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3105          "Update expr in 'atomic update' must be a binary operator.");
3106   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3107   // Update expressions are allowed to have the following forms:
3108   // x binop= expr; -> xrval + expr;
3109   // x++, ++x -> xrval + 1;
3110   // x--, --x -> xrval - 1;
3111   // x = x binop expr; -> xrval binop expr
3112   // x = expr Op x; - > expr binop xrval;
3113   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3114   LValue XLValue = CGF.EmitLValue(X);
3115   RValue ExprRValue = CGF.EmitAnyExpr(E);
3116   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3117                      : llvm::AtomicOrdering::Monotonic;
3118   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3119   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3120   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3121   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3122   auto Gen =
3123       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3124         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3125         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3126         return CGF.EmitAnyExpr(UE);
3127       };
3128   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3129       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3130   // OpenMP, 2.12.6, atomic Construct
3131   // Any atomic construct with a seq_cst clause forces the atomically
3132   // performed operation to include an implicit flush operation without a
3133   // list.
3134   if (IsSeqCst)
3135     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3136 }
3137 
3138 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3139                             QualType SourceType, QualType ResType,
3140                             SourceLocation Loc) {
3141   switch (CGF.getEvaluationKind(ResType)) {
3142   case TEK_Scalar:
3143     return RValue::get(
3144         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3145   case TEK_Complex: {
3146     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3147     return RValue::getComplex(Res.first, Res.second);
3148   }
3149   case TEK_Aggregate:
3150     break;
3151   }
3152   llvm_unreachable("Must be a scalar or complex.");
3153 }
3154 
3155 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3156                                      bool IsPostfixUpdate, const Expr *V,
3157                                      const Expr *X, const Expr *E,
3158                                      const Expr *UE, bool IsXLHSInRHSPart,
3159                                      SourceLocation Loc) {
3160   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3161   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3162   RValue NewVVal;
3163   LValue VLValue = CGF.EmitLValue(V);
3164   LValue XLValue = CGF.EmitLValue(X);
3165   RValue ExprRValue = CGF.EmitAnyExpr(E);
3166   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3167                      : llvm::AtomicOrdering::Monotonic;
3168   QualType NewVValType;
3169   if (UE) {
3170     // 'x' is updated with some additional value.
3171     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3172            "Update expr in 'atomic capture' must be a binary operator.");
3173     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3174     // Update expressions are allowed to have the following forms:
3175     // x binop= expr; -> xrval + expr;
3176     // x++, ++x -> xrval + 1;
3177     // x--, --x -> xrval - 1;
3178     // x = x binop expr; -> xrval binop expr
3179     // x = expr Op x; - > expr binop xrval;
3180     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3181     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3182     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3183     NewVValType = XRValExpr->getType();
3184     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3185     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3186                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
3187       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3188       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3189       RValue Res = CGF.EmitAnyExpr(UE);
3190       NewVVal = IsPostfixUpdate ? XRValue : Res;
3191       return Res;
3192     };
3193     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3194         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3195     if (Res.first) {
3196       // 'atomicrmw' instruction was generated.
3197       if (IsPostfixUpdate) {
3198         // Use old value from 'atomicrmw'.
3199         NewVVal = Res.second;
3200       } else {
3201         // 'atomicrmw' does not provide new value, so evaluate it using old
3202         // value of 'x'.
3203         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3204         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3205         NewVVal = CGF.EmitAnyExpr(UE);
3206       }
3207     }
3208   } else {
3209     // 'x' is simply rewritten with some 'expr'.
3210     NewVValType = X->getType().getNonReferenceType();
3211     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3212                                X->getType().getNonReferenceType(), Loc);
3213     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
3214       NewVVal = XRValue;
3215       return ExprRValue;
3216     };
3217     // Try to perform atomicrmw xchg, otherwise simple exchange.
3218     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3219         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3220         Loc, Gen);
3221     if (Res.first) {
3222       // 'atomicrmw' instruction was generated.
3223       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3224     }
3225   }
3226   // Emit post-update store to 'v' of old/new 'x' value.
3227   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3228   // OpenMP, 2.12.6, atomic Construct
3229   // Any atomic construct with a seq_cst clause forces the atomically
3230   // performed operation to include an implicit flush operation without a
3231   // list.
3232   if (IsSeqCst)
3233     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3234 }
3235 
3236 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3237                               bool IsSeqCst, bool IsPostfixUpdate,
3238                               const Expr *X, const Expr *V, const Expr *E,
3239                               const Expr *UE, bool IsXLHSInRHSPart,
3240                               SourceLocation Loc) {
3241   switch (Kind) {
3242   case OMPC_read:
3243     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3244     break;
3245   case OMPC_write:
3246     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3247     break;
3248   case OMPC_unknown:
3249   case OMPC_update:
3250     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3251     break;
3252   case OMPC_capture:
3253     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3254                              IsXLHSInRHSPart, Loc);
3255     break;
3256   case OMPC_if:
3257   case OMPC_final:
3258   case OMPC_num_threads:
3259   case OMPC_private:
3260   case OMPC_firstprivate:
3261   case OMPC_lastprivate:
3262   case OMPC_reduction:
3263   case OMPC_safelen:
3264   case OMPC_simdlen:
3265   case OMPC_collapse:
3266   case OMPC_default:
3267   case OMPC_seq_cst:
3268   case OMPC_shared:
3269   case OMPC_linear:
3270   case OMPC_aligned:
3271   case OMPC_copyin:
3272   case OMPC_copyprivate:
3273   case OMPC_flush:
3274   case OMPC_proc_bind:
3275   case OMPC_schedule:
3276   case OMPC_ordered:
3277   case OMPC_nowait:
3278   case OMPC_untied:
3279   case OMPC_threadprivate:
3280   case OMPC_depend:
3281   case OMPC_mergeable:
3282   case OMPC_device:
3283   case OMPC_threads:
3284   case OMPC_simd:
3285   case OMPC_map:
3286   case OMPC_num_teams:
3287   case OMPC_thread_limit:
3288   case OMPC_priority:
3289   case OMPC_grainsize:
3290   case OMPC_nogroup:
3291   case OMPC_num_tasks:
3292   case OMPC_hint:
3293   case OMPC_dist_schedule:
3294   case OMPC_defaultmap:
3295   case OMPC_uniform:
3296   case OMPC_to:
3297   case OMPC_from:
3298   case OMPC_use_device_ptr:
3299   case OMPC_is_device_ptr:
3300     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3301   }
3302 }
3303 
3304 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3305   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3306   OpenMPClauseKind Kind = OMPC_unknown;
3307   for (auto *C : S.clauses()) {
3308     // Find first clause (skip seq_cst clause, if it is first).
3309     if (C->getClauseKind() != OMPC_seq_cst) {
3310       Kind = C->getClauseKind();
3311       break;
3312     }
3313   }
3314 
3315   const auto *CS =
3316       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3317   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3318     enterFullExpression(EWC);
3319   }
3320   // Processing for statements under 'atomic capture'.
3321   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3322     for (const auto *C : Compound->body()) {
3323       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3324         enterFullExpression(EWC);
3325       }
3326     }
3327   }
3328 
3329   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3330                                             PrePostActionTy &) {
3331     CGF.EmitStopPoint(CS);
3332     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3333                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3334                       S.isXLHSInRHSPart(), S.getLocStart());
3335   };
3336   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3337   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3338 }
3339 
3340 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/>
3341 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
3342     CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName,
3343     bool IsOffloadEntry) {
3344   llvm::Function *OutlinedFn = nullptr;
3345   llvm::Constant *OutlinedFnID = nullptr;
3346   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3347     OMPPrivateScope PrivateScope(CGF);
3348     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3349     CGF.EmitOMPPrivateClause(S, PrivateScope);
3350     (void)PrivateScope.Privatize();
3351 
3352     Action.Enter(CGF);
3353     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3354   };
3355   // Emit target region as a standalone region.
3356   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3357       S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen);
3358   return std::make_pair(OutlinedFn, OutlinedFnID);
3359 }
3360 
3361 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3362   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3363 
3364   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3365   GenerateOpenMPCapturedVars(CS, CapturedVars);
3366 
3367   llvm::Function *Fn = nullptr;
3368   llvm::Constant *FnID = nullptr;
3369 
3370   // Check if we have any if clause associated with the directive.
3371   const Expr *IfCond = nullptr;
3372 
3373   if (auto *C = S.getSingleClause<OMPIfClause>()) {
3374     IfCond = C->getCondition();
3375   }
3376 
3377   // Check if we have any device clause associated with the directive.
3378   const Expr *Device = nullptr;
3379   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3380     Device = C->getDevice();
3381   }
3382 
3383   // Check if we have an if clause whose conditional always evaluates to false
3384   // or if we do not have any targets specified. If so the target region is not
3385   // an offload entry point.
3386   bool IsOffloadEntry = true;
3387   if (IfCond) {
3388     bool Val;
3389     if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3390       IsOffloadEntry = false;
3391   }
3392   if (CGM.getLangOpts().OMPTargetTriples.empty())
3393     IsOffloadEntry = false;
3394 
3395   assert(CurFuncDecl && "No parent declaration for target region!");
3396   StringRef ParentName;
3397   // In case we have Ctors/Dtors we use the complete type variant to produce
3398   // the mangling of the device outlined kernel.
3399   if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
3400     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3401   else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
3402     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3403   else
3404     ParentName =
3405         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
3406 
3407   std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction(
3408       CGM, S, ParentName, IsOffloadEntry);
3409   OMPLexicalScope Scope(*this, S);
3410   CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
3411                                         CapturedVars);
3412 }
3413 
3414 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3415                                         const OMPExecutableDirective &S,
3416                                         OpenMPDirectiveKind InnermostKind,
3417                                         const RegionCodeGenTy &CodeGen) {
3418   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3419   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
3420       emitParallelOrTeamsOutlinedFunction(S,
3421           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3422 
3423   const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S);
3424   const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>();
3425   const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>();
3426   if (NT || TL) {
3427     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3428     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3429 
3430     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3431                                                   S.getLocStart());
3432   }
3433 
3434   OMPLexicalScope Scope(CGF, S);
3435   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3436   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3437   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3438                                            CapturedVars);
3439 }
3440 
3441 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3442   // Emit parallel region as a standalone region.
3443   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3444     OMPPrivateScope PrivateScope(CGF);
3445     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3446     CGF.EmitOMPPrivateClause(S, PrivateScope);
3447     (void)PrivateScope.Privatize();
3448     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3449   };
3450   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3451 }
3452 
3453 void CodeGenFunction::EmitOMPCancellationPointDirective(
3454     const OMPCancellationPointDirective &S) {
3455   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3456                                                    S.getCancelRegion());
3457 }
3458 
3459 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3460   const Expr *IfCond = nullptr;
3461   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3462     if (C->getNameModifier() == OMPD_unknown ||
3463         C->getNameModifier() == OMPD_cancel) {
3464       IfCond = C->getCondition();
3465       break;
3466     }
3467   }
3468   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3469                                         S.getCancelRegion());
3470 }
3471 
3472 CodeGenFunction::JumpDest
3473 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3474   if (Kind == OMPD_parallel || Kind == OMPD_task ||
3475       Kind == OMPD_target_parallel)
3476     return ReturnBlock;
3477   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3478          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
3479          Kind == OMPD_distribute_parallel_for ||
3480          Kind == OMPD_target_parallel_for);
3481   return OMPCancelStack.getExitBlock();
3482 }
3483 
3484 void CodeGenFunction::EmitOMPUseDevicePtrClause(
3485     const OMPClause &NC, OMPPrivateScope &PrivateScope,
3486     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
3487   const auto &C = cast<OMPUseDevicePtrClause>(NC);
3488   auto OrigVarIt = C.varlist_begin();
3489   auto InitIt = C.inits().begin();
3490   for (auto PvtVarIt : C.private_copies()) {
3491     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
3492     auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
3493     auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
3494 
3495     // In order to identify the right initializer we need to match the
3496     // declaration used by the mapping logic. In some cases we may get
3497     // OMPCapturedExprDecl that refers to the original declaration.
3498     const ValueDecl *MatchingVD = OrigVD;
3499     if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
3500       // OMPCapturedExprDecl are used to privative fields of the current
3501       // structure.
3502       auto *ME = cast<MemberExpr>(OED->getInit());
3503       assert(isa<CXXThisExpr>(ME->getBase()) &&
3504              "Base should be the current struct!");
3505       MatchingVD = ME->getMemberDecl();
3506     }
3507 
3508     // If we don't have information about the current list item, move on to
3509     // the next one.
3510     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
3511     if (InitAddrIt == CaptureDeviceAddrMap.end())
3512       continue;
3513 
3514     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
3515       // Initialize the temporary initialization variable with the address we
3516       // get from the runtime library. We have to cast the source address
3517       // because it is always a void *. References are materialized in the
3518       // privatization scope, so the initialization here disregards the fact
3519       // the original variable is a reference.
3520       QualType AddrQTy =
3521           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
3522       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
3523       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
3524       setAddrOfLocalVar(InitVD, InitAddr);
3525 
3526       // Emit private declaration, it will be initialized by the value we
3527       // declaration we just added to the local declarations map.
3528       EmitDecl(*PvtVD);
3529 
3530       // The initialization variables reached its purpose in the emission
3531       // ofthe previous declaration, so we don't need it anymore.
3532       LocalDeclMap.erase(InitVD);
3533 
3534       // Return the address of the private variable.
3535       return GetAddrOfLocalVar(PvtVD);
3536     });
3537     assert(IsRegistered && "firstprivate var already registered as private");
3538     // Silence the warning about unused variable.
3539     (void)IsRegistered;
3540 
3541     ++OrigVarIt;
3542     ++InitIt;
3543   }
3544 }
3545 
3546 // Generate the instructions for '#pragma omp target data' directive.
3547 void CodeGenFunction::EmitOMPTargetDataDirective(
3548     const OMPTargetDataDirective &S) {
3549   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
3550 
3551   // Create a pre/post action to signal the privatization of the device pointer.
3552   // This action can be replaced by the OpenMP runtime code generation to
3553   // deactivate privatization.
3554   bool PrivatizeDevicePointers = false;
3555   class DevicePointerPrivActionTy : public PrePostActionTy {
3556     bool &PrivatizeDevicePointers;
3557 
3558   public:
3559     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
3560         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
3561     void Enter(CodeGenFunction &CGF) override {
3562       PrivatizeDevicePointers = true;
3563     }
3564   };
3565   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
3566 
3567   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
3568       CodeGenFunction &CGF, PrePostActionTy &Action) {
3569     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3570       CGF.EmitStmt(
3571           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3572     };
3573 
3574     // Codegen that selects wheather to generate the privatization code or not.
3575     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
3576                           &InnermostCodeGen](CodeGenFunction &CGF,
3577                                              PrePostActionTy &Action) {
3578       RegionCodeGenTy RCG(InnermostCodeGen);
3579       PrivatizeDevicePointers = false;
3580 
3581       // Call the pre-action to change the status of PrivatizeDevicePointers if
3582       // needed.
3583       Action.Enter(CGF);
3584 
3585       if (PrivatizeDevicePointers) {
3586         OMPPrivateScope PrivateScope(CGF);
3587         // Emit all instances of the use_device_ptr clause.
3588         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
3589           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
3590                                         Info.CaptureDeviceAddrMap);
3591         (void)PrivateScope.Privatize();
3592         RCG(CGF);
3593       } else
3594         RCG(CGF);
3595     };
3596 
3597     // Forward the provided action to the privatization codegen.
3598     RegionCodeGenTy PrivRCG(PrivCodeGen);
3599     PrivRCG.setAction(Action);
3600 
3601     // Notwithstanding the body of the region is emitted as inlined directive,
3602     // we don't use an inline scope as changes in the references inside the
3603     // region are expected to be visible outside, so we do not privative them.
3604     OMPLexicalScope Scope(CGF, S);
3605     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
3606                                                     PrivRCG);
3607   };
3608 
3609   RegionCodeGenTy RCG(CodeGen);
3610 
3611   // If we don't have target devices, don't bother emitting the data mapping
3612   // code.
3613   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
3614     RCG(*this);
3615     return;
3616   }
3617 
3618   // Check if we have any if clause associated with the directive.
3619   const Expr *IfCond = nullptr;
3620   if (auto *C = S.getSingleClause<OMPIfClause>())
3621     IfCond = C->getCondition();
3622 
3623   // Check if we have any device clause associated with the directive.
3624   const Expr *Device = nullptr;
3625   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3626     Device = C->getDevice();
3627 
3628   // Set the action to signal privatization of device pointers.
3629   RCG.setAction(PrivAction);
3630 
3631   // Emit region code.
3632   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
3633                                              Info);
3634 }
3635 
3636 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
3637     const OMPTargetEnterDataDirective &S) {
3638   // If we don't have target devices, don't bother emitting the data mapping
3639   // code.
3640   if (CGM.getLangOpts().OMPTargetTriples.empty())
3641     return;
3642 
3643   // Check if we have any if clause associated with the directive.
3644   const Expr *IfCond = nullptr;
3645   if (auto *C = S.getSingleClause<OMPIfClause>())
3646     IfCond = C->getCondition();
3647 
3648   // Check if we have any device clause associated with the directive.
3649   const Expr *Device = nullptr;
3650   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3651     Device = C->getDevice();
3652 
3653   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3654 }
3655 
3656 void CodeGenFunction::EmitOMPTargetExitDataDirective(
3657     const OMPTargetExitDataDirective &S) {
3658   // If we don't have target devices, don't bother emitting the data mapping
3659   // code.
3660   if (CGM.getLangOpts().OMPTargetTriples.empty())
3661     return;
3662 
3663   // Check if we have any if clause associated with the directive.
3664   const Expr *IfCond = nullptr;
3665   if (auto *C = S.getSingleClause<OMPIfClause>())
3666     IfCond = C->getCondition();
3667 
3668   // Check if we have any device clause associated with the directive.
3669   const Expr *Device = nullptr;
3670   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3671     Device = C->getDevice();
3672 
3673   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3674 }
3675 
3676 void CodeGenFunction::EmitOMPTargetParallelDirective(
3677     const OMPTargetParallelDirective &S) {
3678   // TODO: codegen for target parallel.
3679 }
3680 
3681 void CodeGenFunction::EmitOMPTargetParallelForDirective(
3682     const OMPTargetParallelForDirective &S) {
3683   // TODO: codegen for target parallel for.
3684 }
3685 
3686 /// Emit a helper variable and return corresponding lvalue.
3687 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
3688                      const ImplicitParamDecl *PVD,
3689                      CodeGenFunction::OMPPrivateScope &Privates) {
3690   auto *VDecl = cast<VarDecl>(Helper->getDecl());
3691   Privates.addPrivate(
3692       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
3693 }
3694 
3695 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
3696   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
3697   // Emit outlined function for task construct.
3698   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3699   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
3700   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3701   const Expr *IfCond = nullptr;
3702   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3703     if (C->getNameModifier() == OMPD_unknown ||
3704         C->getNameModifier() == OMPD_taskloop) {
3705       IfCond = C->getCondition();
3706       break;
3707     }
3708   }
3709 
3710   OMPTaskDataTy Data;
3711   // Check if taskloop must be emitted without taskgroup.
3712   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
3713   // TODO: Check if we should emit tied or untied task.
3714   Data.Tied = true;
3715   // Set scheduling for taskloop
3716   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
3717     // grainsize clause
3718     Data.Schedule.setInt(/*IntVal=*/false);
3719     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
3720   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
3721     // num_tasks clause
3722     Data.Schedule.setInt(/*IntVal=*/true);
3723     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
3724   }
3725 
3726   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
3727     // if (PreCond) {
3728     //   for (IV in 0..LastIteration) BODY;
3729     //   <Final counter/linear vars updates>;
3730     // }
3731     //
3732 
3733     // Emit: if (PreCond) - begin.
3734     // If the condition constant folds and can be elided, avoid emitting the
3735     // whole loop.
3736     bool CondConstant;
3737     llvm::BasicBlock *ContBlock = nullptr;
3738     OMPLoopScope PreInitScope(CGF, S);
3739     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3740       if (!CondConstant)
3741         return;
3742     } else {
3743       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
3744       ContBlock = CGF.createBasicBlock("taskloop.if.end");
3745       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
3746                   CGF.getProfileCount(&S));
3747       CGF.EmitBlock(ThenBlock);
3748       CGF.incrementProfileCounter(&S);
3749     }
3750 
3751     if (isOpenMPSimdDirective(S.getDirectiveKind()))
3752       CGF.EmitOMPSimdInit(S);
3753 
3754     OMPPrivateScope LoopScope(CGF);
3755     // Emit helper vars inits.
3756     enum { LowerBound = 5, UpperBound, Stride, LastIter };
3757     auto *I = CS->getCapturedDecl()->param_begin();
3758     auto *LBP = std::next(I, LowerBound);
3759     auto *UBP = std::next(I, UpperBound);
3760     auto *STP = std::next(I, Stride);
3761     auto *LIP = std::next(I, LastIter);
3762     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
3763              LoopScope);
3764     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
3765              LoopScope);
3766     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
3767     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
3768              LoopScope);
3769     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
3770     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3771     (void)LoopScope.Privatize();
3772     // Emit the loop iteration variable.
3773     const Expr *IVExpr = S.getIterationVariable();
3774     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
3775     CGF.EmitVarDecl(*IVDecl);
3776     CGF.EmitIgnoredExpr(S.getInit());
3777 
3778     // Emit the iterations count variable.
3779     // If it is not a variable, Sema decided to calculate iterations count on
3780     // each iteration (e.g., it is foldable into a constant).
3781     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3782       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3783       // Emit calculation of the iterations count.
3784       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
3785     }
3786 
3787     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
3788                          S.getInc(),
3789                          [&S](CodeGenFunction &CGF) {
3790                            CGF.EmitOMPLoopBody(S, JumpDest());
3791                            CGF.EmitStopPoint(&S);
3792                          },
3793                          [](CodeGenFunction &) {});
3794     // Emit: if (PreCond) - end.
3795     if (ContBlock) {
3796       CGF.EmitBranch(ContBlock);
3797       CGF.EmitBlock(ContBlock, true);
3798     }
3799     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3800     if (HasLastprivateClause) {
3801       CGF.EmitOMPLastprivateClauseFinal(
3802           S, isOpenMPSimdDirective(S.getDirectiveKind()),
3803           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
3804               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
3805               (*LIP)->getType(), S.getLocStart())));
3806     }
3807   };
3808   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3809                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3810                             const OMPTaskDataTy &Data) {
3811     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
3812       OMPLoopScope PreInitScope(CGF, S);
3813       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
3814                                                   OutlinedFn, SharedsTy,
3815                                                   CapturedStruct, IfCond, Data);
3816     };
3817     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
3818                                                     CodeGen);
3819   };
3820   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
3821 }
3822 
3823 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
3824   EmitOMPTaskLoopBasedDirective(S);
3825 }
3826 
3827 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
3828     const OMPTaskLoopSimdDirective &S) {
3829   EmitOMPTaskLoopBasedDirective(S);
3830 }
3831 
3832 // Generate the instructions for '#pragma omp target update' directive.
3833 void CodeGenFunction::EmitOMPTargetUpdateDirective(
3834     const OMPTargetUpdateDirective &S) {
3835   // If we don't have target devices, don't bother emitting the data mapping
3836   // code.
3837   if (CGM.getLangOpts().OMPTargetTriples.empty())
3838     return;
3839 
3840   // Check if we have any if clause associated with the directive.
3841   const Expr *IfCond = nullptr;
3842   if (auto *C = S.getSingleClause<OMPIfClause>())
3843     IfCond = C->getCondition();
3844 
3845   // Check if we have any device clause associated with the directive.
3846   const Expr *Device = nullptr;
3847   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3848     Device = C->getDevice();
3849 
3850   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3851 }
3852