1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtOpenMP.h" 23 #include "clang/Basic/PrettyStackTrace.h" 24 using namespace clang; 25 using namespace CodeGen; 26 using namespace llvm::omp; 27 28 namespace { 29 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 30 /// for captured expressions. 31 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 32 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 33 for (const auto *C : S.clauses()) { 34 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 35 if (const auto *PreInit = 36 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 37 for (const auto *I : PreInit->decls()) { 38 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 39 CGF.EmitVarDecl(cast<VarDecl>(*I)); 40 } else { 41 CodeGenFunction::AutoVarEmission Emission = 42 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 43 CGF.EmitAutoVarCleanups(Emission); 44 } 45 } 46 } 47 } 48 } 49 } 50 CodeGenFunction::OMPPrivateScope InlinedShareds; 51 52 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 53 return CGF.LambdaCaptureFields.lookup(VD) || 54 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 55 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 56 } 57 58 public: 59 OMPLexicalScope( 60 CodeGenFunction &CGF, const OMPExecutableDirective &S, 61 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 62 const bool EmitPreInitStmt = true) 63 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 64 InlinedShareds(CGF) { 65 if (EmitPreInitStmt) 66 emitPreInitStmt(CGF, S); 67 if (!CapturedRegion.hasValue()) 68 return; 69 assert(S.hasAssociatedStmt() && 70 "Expected associated statement for inlined directive."); 71 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 72 for (const auto &C : CS->captures()) { 73 if (C.capturesVariable() || C.capturesVariableByCopy()) { 74 auto *VD = C.getCapturedVar(); 75 assert(VD == VD->getCanonicalDecl() && 76 "Canonical decl must be captured."); 77 DeclRefExpr DRE( 78 CGF.getContext(), const_cast<VarDecl *>(VD), 79 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 80 InlinedShareds.isGlobalVarCaptured(VD)), 81 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 82 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 83 return CGF.EmitLValue(&DRE).getAddress(CGF); 84 }); 85 } 86 } 87 (void)InlinedShareds.Privatize(); 88 } 89 }; 90 91 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 92 /// for captured expressions. 93 class OMPParallelScope final : public OMPLexicalScope { 94 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 95 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 96 return !(isOpenMPTargetExecutionDirective(Kind) || 97 isOpenMPLoopBoundSharingDirective(Kind)) && 98 isOpenMPParallelDirective(Kind); 99 } 100 101 public: 102 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 103 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 104 EmitPreInitStmt(S)) {} 105 }; 106 107 /// Lexical scope for OpenMP teams construct, that handles correct codegen 108 /// for captured expressions. 109 class OMPTeamsScope final : public OMPLexicalScope { 110 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 111 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 112 return !isOpenMPTargetExecutionDirective(Kind) && 113 isOpenMPTeamsDirective(Kind); 114 } 115 116 public: 117 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 118 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 119 EmitPreInitStmt(S)) {} 120 }; 121 122 /// Private scope for OpenMP loop-based directives, that supports capturing 123 /// of used expression from loop statement. 124 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 125 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 126 CodeGenFunction::OMPMapVars PreCondVars; 127 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 128 for (const auto *E : S.counters()) { 129 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 130 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 131 (void)PreCondVars.setVarAddr( 132 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 133 } 134 // Mark private vars as undefs. 135 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 136 for (const Expr *IRef : C->varlists()) { 137 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 138 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 139 (void)PreCondVars.setVarAddr( 140 CGF, OrigVD, 141 Address(llvm::UndefValue::get( 142 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 143 OrigVD->getType().getNonReferenceType()))), 144 CGF.getContext().getDeclAlign(OrigVD))); 145 } 146 } 147 } 148 (void)PreCondVars.apply(CGF); 149 // Emit init, __range and __end variables for C++ range loops. 150 const Stmt *Body = 151 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 152 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 153 Body = OMPLoopDirective::tryToFindNextInnerLoop( 154 Body, /*TryImperfectlyNestedLoops=*/true); 155 if (auto *For = dyn_cast<ForStmt>(Body)) { 156 Body = For->getBody(); 157 } else { 158 assert(isa<CXXForRangeStmt>(Body) && 159 "Expected canonical for loop or range-based for loop."); 160 auto *CXXFor = cast<CXXForRangeStmt>(Body); 161 if (const Stmt *Init = CXXFor->getInit()) 162 CGF.EmitStmt(Init); 163 CGF.EmitStmt(CXXFor->getRangeStmt()); 164 CGF.EmitStmt(CXXFor->getEndStmt()); 165 Body = CXXFor->getBody(); 166 } 167 } 168 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 169 for (const auto *I : PreInits->decls()) 170 CGF.EmitVarDecl(cast<VarDecl>(*I)); 171 } 172 PreCondVars.restore(CGF); 173 } 174 175 public: 176 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 177 : CodeGenFunction::RunCleanupsScope(CGF) { 178 emitPreInitStmt(CGF, S); 179 } 180 }; 181 182 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 183 CodeGenFunction::OMPPrivateScope InlinedShareds; 184 185 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 186 return CGF.LambdaCaptureFields.lookup(VD) || 187 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 188 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 189 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 190 } 191 192 public: 193 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 194 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 195 InlinedShareds(CGF) { 196 for (const auto *C : S.clauses()) { 197 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 198 if (const auto *PreInit = 199 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 200 for (const auto *I : PreInit->decls()) { 201 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 202 CGF.EmitVarDecl(cast<VarDecl>(*I)); 203 } else { 204 CodeGenFunction::AutoVarEmission Emission = 205 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 206 CGF.EmitAutoVarCleanups(Emission); 207 } 208 } 209 } 210 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 211 for (const Expr *E : UDP->varlists()) { 212 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 213 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 214 CGF.EmitVarDecl(*OED); 215 } 216 } 217 } 218 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 219 CGF.EmitOMPPrivateClause(S, InlinedShareds); 220 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 221 if (const Expr *E = TG->getReductionRef()) 222 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 223 } 224 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 225 while (CS) { 226 for (auto &C : CS->captures()) { 227 if (C.capturesVariable() || C.capturesVariableByCopy()) { 228 auto *VD = C.getCapturedVar(); 229 assert(VD == VD->getCanonicalDecl() && 230 "Canonical decl must be captured."); 231 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 232 isCapturedVar(CGF, VD) || 233 (CGF.CapturedStmtInfo && 234 InlinedShareds.isGlobalVarCaptured(VD)), 235 VD->getType().getNonReferenceType(), VK_LValue, 236 C.getLocation()); 237 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 238 return CGF.EmitLValue(&DRE).getAddress(CGF); 239 }); 240 } 241 } 242 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 243 } 244 (void)InlinedShareds.Privatize(); 245 } 246 }; 247 248 } // namespace 249 250 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 251 const OMPExecutableDirective &S, 252 const RegionCodeGenTy &CodeGen); 253 254 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 255 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 256 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 257 OrigVD = OrigVD->getCanonicalDecl(); 258 bool IsCaptured = 259 LambdaCaptureFields.lookup(OrigVD) || 260 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 261 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 262 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 263 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 264 return EmitLValue(&DRE); 265 } 266 } 267 return EmitLValue(E); 268 } 269 270 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 271 ASTContext &C = getContext(); 272 llvm::Value *Size = nullptr; 273 auto SizeInChars = C.getTypeSizeInChars(Ty); 274 if (SizeInChars.isZero()) { 275 // getTypeSizeInChars() returns 0 for a VLA. 276 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 277 VlaSizePair VlaSize = getVLASize(VAT); 278 Ty = VlaSize.Type; 279 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 280 : VlaSize.NumElts; 281 } 282 SizeInChars = C.getTypeSizeInChars(Ty); 283 if (SizeInChars.isZero()) 284 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 285 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 286 } 287 return CGM.getSize(SizeInChars); 288 } 289 290 void CodeGenFunction::GenerateOpenMPCapturedVars( 291 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 292 const RecordDecl *RD = S.getCapturedRecordDecl(); 293 auto CurField = RD->field_begin(); 294 auto CurCap = S.captures().begin(); 295 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 296 E = S.capture_init_end(); 297 I != E; ++I, ++CurField, ++CurCap) { 298 if (CurField->hasCapturedVLAType()) { 299 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 300 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 301 CapturedVars.push_back(Val); 302 } else if (CurCap->capturesThis()) { 303 CapturedVars.push_back(CXXThisValue); 304 } else if (CurCap->capturesVariableByCopy()) { 305 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 306 307 // If the field is not a pointer, we need to save the actual value 308 // and load it as a void pointer. 309 if (!CurField->getType()->isAnyPointerType()) { 310 ASTContext &Ctx = getContext(); 311 Address DstAddr = CreateMemTemp( 312 Ctx.getUIntPtrType(), 313 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 314 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 315 316 llvm::Value *SrcAddrVal = EmitScalarConversion( 317 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 318 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 319 LValue SrcLV = 320 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 321 322 // Store the value using the source type pointer. 323 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 324 325 // Load the value using the destination type pointer. 326 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 327 } 328 CapturedVars.push_back(CV); 329 } else { 330 assert(CurCap->capturesVariable() && "Expected capture by reference."); 331 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 332 } 333 } 334 } 335 336 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 337 QualType DstType, StringRef Name, 338 LValue AddrLV) { 339 ASTContext &Ctx = CGF.getContext(); 340 341 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 342 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 343 Ctx.getPointerType(DstType), Loc); 344 Address TmpAddr = 345 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 346 .getAddress(CGF); 347 return TmpAddr; 348 } 349 350 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 351 if (T->isLValueReferenceType()) 352 return C.getLValueReferenceType( 353 getCanonicalParamType(C, T.getNonReferenceType()), 354 /*SpelledAsLValue=*/false); 355 if (T->isPointerType()) 356 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 357 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 358 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 359 return getCanonicalParamType(C, VLA->getElementType()); 360 if (!A->isVariablyModifiedType()) 361 return C.getCanonicalType(T); 362 } 363 return C.getCanonicalParamType(T); 364 } 365 366 namespace { 367 /// Contains required data for proper outlined function codegen. 368 struct FunctionOptions { 369 /// Captured statement for which the function is generated. 370 const CapturedStmt *S = nullptr; 371 /// true if cast to/from UIntPtr is required for variables captured by 372 /// value. 373 const bool UIntPtrCastRequired = true; 374 /// true if only casted arguments must be registered as local args or VLA 375 /// sizes. 376 const bool RegisterCastedArgsOnly = false; 377 /// Name of the generated function. 378 const StringRef FunctionName; 379 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 380 bool RegisterCastedArgsOnly, 381 StringRef FunctionName) 382 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 383 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 384 FunctionName(FunctionName) {} 385 }; 386 } 387 388 static llvm::Function *emitOutlinedFunctionPrologue( 389 CodeGenFunction &CGF, FunctionArgList &Args, 390 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 391 &LocalAddrs, 392 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 393 &VLASizes, 394 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 395 const CapturedDecl *CD = FO.S->getCapturedDecl(); 396 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 397 assert(CD->hasBody() && "missing CapturedDecl body"); 398 399 CXXThisValue = nullptr; 400 // Build the argument list. 401 CodeGenModule &CGM = CGF.CGM; 402 ASTContext &Ctx = CGM.getContext(); 403 FunctionArgList TargetArgs; 404 Args.append(CD->param_begin(), 405 std::next(CD->param_begin(), CD->getContextParamPosition())); 406 TargetArgs.append( 407 CD->param_begin(), 408 std::next(CD->param_begin(), CD->getContextParamPosition())); 409 auto I = FO.S->captures().begin(); 410 FunctionDecl *DebugFunctionDecl = nullptr; 411 if (!FO.UIntPtrCastRequired) { 412 FunctionProtoType::ExtProtoInfo EPI; 413 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 414 DebugFunctionDecl = FunctionDecl::Create( 415 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 416 SourceLocation(), DeclarationName(), FunctionTy, 417 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 418 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 419 } 420 for (const FieldDecl *FD : RD->fields()) { 421 QualType ArgType = FD->getType(); 422 IdentifierInfo *II = nullptr; 423 VarDecl *CapVar = nullptr; 424 425 // If this is a capture by copy and the type is not a pointer, the outlined 426 // function argument type should be uintptr and the value properly casted to 427 // uintptr. This is necessary given that the runtime library is only able to 428 // deal with pointers. We can pass in the same way the VLA type sizes to the 429 // outlined function. 430 if (FO.UIntPtrCastRequired && 431 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 432 I->capturesVariableArrayType())) 433 ArgType = Ctx.getUIntPtrType(); 434 435 if (I->capturesVariable() || I->capturesVariableByCopy()) { 436 CapVar = I->getCapturedVar(); 437 II = CapVar->getIdentifier(); 438 } else if (I->capturesThis()) { 439 II = &Ctx.Idents.get("this"); 440 } else { 441 assert(I->capturesVariableArrayType()); 442 II = &Ctx.Idents.get("vla"); 443 } 444 if (ArgType->isVariablyModifiedType()) 445 ArgType = getCanonicalParamType(Ctx, ArgType); 446 VarDecl *Arg; 447 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 448 Arg = ParmVarDecl::Create( 449 Ctx, DebugFunctionDecl, 450 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 451 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 452 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 453 } else { 454 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 455 II, ArgType, ImplicitParamDecl::Other); 456 } 457 Args.emplace_back(Arg); 458 // Do not cast arguments if we emit function with non-original types. 459 TargetArgs.emplace_back( 460 FO.UIntPtrCastRequired 461 ? Arg 462 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 463 ++I; 464 } 465 Args.append( 466 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 467 CD->param_end()); 468 TargetArgs.append( 469 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 470 CD->param_end()); 471 472 // Create the function declaration. 473 const CGFunctionInfo &FuncInfo = 474 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 475 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 476 477 auto *F = 478 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 479 FO.FunctionName, &CGM.getModule()); 480 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 481 if (CD->isNothrow()) 482 F->setDoesNotThrow(); 483 F->setDoesNotRecurse(); 484 485 // Generate the function. 486 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 487 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 488 unsigned Cnt = CD->getContextParamPosition(); 489 I = FO.S->captures().begin(); 490 for (const FieldDecl *FD : RD->fields()) { 491 // Do not map arguments if we emit function with non-original types. 492 Address LocalAddr(Address::invalid()); 493 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 494 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 495 TargetArgs[Cnt]); 496 } else { 497 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 498 } 499 // If we are capturing a pointer by copy we don't need to do anything, just 500 // use the value that we get from the arguments. 501 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 502 const VarDecl *CurVD = I->getCapturedVar(); 503 if (!FO.RegisterCastedArgsOnly) 504 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 505 ++Cnt; 506 ++I; 507 continue; 508 } 509 510 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 511 AlignmentSource::Decl); 512 if (FD->hasCapturedVLAType()) { 513 if (FO.UIntPtrCastRequired) { 514 ArgLVal = CGF.MakeAddrLValue( 515 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 516 Args[Cnt]->getName(), ArgLVal), 517 FD->getType(), AlignmentSource::Decl); 518 } 519 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 520 const VariableArrayType *VAT = FD->getCapturedVLAType(); 521 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 522 } else if (I->capturesVariable()) { 523 const VarDecl *Var = I->getCapturedVar(); 524 QualType VarTy = Var->getType(); 525 Address ArgAddr = ArgLVal.getAddress(CGF); 526 if (ArgLVal.getType()->isLValueReferenceType()) { 527 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 528 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 529 assert(ArgLVal.getType()->isPointerType()); 530 ArgAddr = CGF.EmitLoadOfPointer( 531 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 532 } 533 if (!FO.RegisterCastedArgsOnly) { 534 LocalAddrs.insert( 535 {Args[Cnt], 536 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 537 } 538 } else if (I->capturesVariableByCopy()) { 539 assert(!FD->getType()->isAnyPointerType() && 540 "Not expecting a captured pointer."); 541 const VarDecl *Var = I->getCapturedVar(); 542 LocalAddrs.insert({Args[Cnt], 543 {Var, FO.UIntPtrCastRequired 544 ? castValueFromUintptr( 545 CGF, I->getLocation(), FD->getType(), 546 Args[Cnt]->getName(), ArgLVal) 547 : ArgLVal.getAddress(CGF)}}); 548 } else { 549 // If 'this' is captured, load it into CXXThisValue. 550 assert(I->capturesThis()); 551 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 552 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 553 } 554 ++Cnt; 555 ++I; 556 } 557 558 return F; 559 } 560 561 llvm::Function * 562 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 563 assert( 564 CapturedStmtInfo && 565 "CapturedStmtInfo should be set when generating the captured function"); 566 const CapturedDecl *CD = S.getCapturedDecl(); 567 // Build the argument list. 568 bool NeedWrapperFunction = 569 getDebugInfo() && 570 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 571 FunctionArgList Args; 572 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 573 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 574 SmallString<256> Buffer; 575 llvm::raw_svector_ostream Out(Buffer); 576 Out << CapturedStmtInfo->getHelperName(); 577 if (NeedWrapperFunction) 578 Out << "_debug__"; 579 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 580 Out.str()); 581 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 582 VLASizes, CXXThisValue, FO); 583 CodeGenFunction::OMPPrivateScope LocalScope(*this); 584 for (const auto &LocalAddrPair : LocalAddrs) { 585 if (LocalAddrPair.second.first) { 586 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 587 return LocalAddrPair.second.second; 588 }); 589 } 590 } 591 (void)LocalScope.Privatize(); 592 for (const auto &VLASizePair : VLASizes) 593 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 594 PGO.assignRegionCounters(GlobalDecl(CD), F); 595 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 596 (void)LocalScope.ForceCleanup(); 597 FinishFunction(CD->getBodyRBrace()); 598 if (!NeedWrapperFunction) 599 return F; 600 601 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 602 /*RegisterCastedArgsOnly=*/true, 603 CapturedStmtInfo->getHelperName()); 604 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 605 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 606 Args.clear(); 607 LocalAddrs.clear(); 608 VLASizes.clear(); 609 llvm::Function *WrapperF = 610 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 611 WrapperCGF.CXXThisValue, WrapperFO); 612 llvm::SmallVector<llvm::Value *, 4> CallArgs; 613 for (const auto *Arg : Args) { 614 llvm::Value *CallArg; 615 auto I = LocalAddrs.find(Arg); 616 if (I != LocalAddrs.end()) { 617 LValue LV = WrapperCGF.MakeAddrLValue( 618 I->second.second, 619 I->second.first ? I->second.first->getType() : Arg->getType(), 620 AlignmentSource::Decl); 621 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 622 } else { 623 auto EI = VLASizes.find(Arg); 624 if (EI != VLASizes.end()) { 625 CallArg = EI->second.second; 626 } else { 627 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 628 Arg->getType(), 629 AlignmentSource::Decl); 630 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 631 } 632 } 633 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 634 } 635 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 636 F, CallArgs); 637 WrapperCGF.FinishFunction(); 638 return WrapperF; 639 } 640 641 //===----------------------------------------------------------------------===// 642 // OpenMP Directive Emission 643 //===----------------------------------------------------------------------===// 644 void CodeGenFunction::EmitOMPAggregateAssign( 645 Address DestAddr, Address SrcAddr, QualType OriginalType, 646 const llvm::function_ref<void(Address, Address)> CopyGen) { 647 // Perform element-by-element initialization. 648 QualType ElementTy; 649 650 // Drill down to the base element type on both arrays. 651 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 652 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 653 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 654 655 llvm::Value *SrcBegin = SrcAddr.getPointer(); 656 llvm::Value *DestBegin = DestAddr.getPointer(); 657 // Cast from pointer to array type to pointer to single element. 658 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 659 // The basic structure here is a while-do loop. 660 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 661 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 662 llvm::Value *IsEmpty = 663 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 664 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 665 666 // Enter the loop body, making that address the current address. 667 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 668 EmitBlock(BodyBB); 669 670 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 671 672 llvm::PHINode *SrcElementPHI = 673 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 674 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 675 Address SrcElementCurrent = 676 Address(SrcElementPHI, 677 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 678 679 llvm::PHINode *DestElementPHI = 680 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 681 DestElementPHI->addIncoming(DestBegin, EntryBB); 682 Address DestElementCurrent = 683 Address(DestElementPHI, 684 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 685 686 // Emit copy. 687 CopyGen(DestElementCurrent, SrcElementCurrent); 688 689 // Shift the address forward by one element. 690 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 691 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 692 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 693 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 694 // Check whether we've reached the end. 695 llvm::Value *Done = 696 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 697 Builder.CreateCondBr(Done, DoneBB, BodyBB); 698 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 699 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 700 701 // Done. 702 EmitBlock(DoneBB, /*IsFinished=*/true); 703 } 704 705 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 706 Address SrcAddr, const VarDecl *DestVD, 707 const VarDecl *SrcVD, const Expr *Copy) { 708 if (OriginalType->isArrayType()) { 709 const auto *BO = dyn_cast<BinaryOperator>(Copy); 710 if (BO && BO->getOpcode() == BO_Assign) { 711 // Perform simple memcpy for simple copying. 712 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 713 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 714 EmitAggregateAssign(Dest, Src, OriginalType); 715 } else { 716 // For arrays with complex element types perform element by element 717 // copying. 718 EmitOMPAggregateAssign( 719 DestAddr, SrcAddr, OriginalType, 720 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 721 // Working with the single array element, so have to remap 722 // destination and source variables to corresponding array 723 // elements. 724 CodeGenFunction::OMPPrivateScope Remap(*this); 725 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 726 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 727 (void)Remap.Privatize(); 728 EmitIgnoredExpr(Copy); 729 }); 730 } 731 } else { 732 // Remap pseudo source variable to private copy. 733 CodeGenFunction::OMPPrivateScope Remap(*this); 734 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 735 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 736 (void)Remap.Privatize(); 737 // Emit copying of the whole variable. 738 EmitIgnoredExpr(Copy); 739 } 740 } 741 742 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 743 OMPPrivateScope &PrivateScope) { 744 if (!HaveInsertPoint()) 745 return false; 746 bool DeviceConstTarget = 747 getLangOpts().OpenMPIsDevice && 748 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 749 bool FirstprivateIsLastprivate = false; 750 llvm::DenseSet<const VarDecl *> Lastprivates; 751 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 752 for (const auto *D : C->varlists()) 753 Lastprivates.insert( 754 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 755 } 756 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 757 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 758 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 759 // Force emission of the firstprivate copy if the directive does not emit 760 // outlined function, like omp for, omp simd, omp distribute etc. 761 bool MustEmitFirstprivateCopy = 762 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 763 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 764 auto IRef = C->varlist_begin(); 765 auto InitsRef = C->inits().begin(); 766 for (const Expr *IInit : C->private_copies()) { 767 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 768 bool ThisFirstprivateIsLastprivate = 769 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 770 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 771 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 772 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 773 !FD->getType()->isReferenceType() && 774 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 775 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 776 ++IRef; 777 ++InitsRef; 778 continue; 779 } 780 // Do not emit copy for firstprivate constant variables in target regions, 781 // captured by reference. 782 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 783 FD && FD->getType()->isReferenceType() && 784 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 785 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 786 OrigVD); 787 ++IRef; 788 ++InitsRef; 789 continue; 790 } 791 FirstprivateIsLastprivate = 792 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 793 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 794 const auto *VDInit = 795 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 796 bool IsRegistered; 797 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 798 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 799 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 800 LValue OriginalLVal; 801 if (!FD) { 802 // Check if the firstprivate variable is just a constant value. 803 ConstantEmission CE = tryEmitAsConstant(&DRE); 804 if (CE && !CE.isReference()) { 805 // Constant value, no need to create a copy. 806 ++IRef; 807 ++InitsRef; 808 continue; 809 } 810 if (CE && CE.isReference()) { 811 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 812 } else { 813 assert(!CE && "Expected non-constant firstprivate."); 814 OriginalLVal = EmitLValue(&DRE); 815 } 816 } else { 817 OriginalLVal = EmitLValue(&DRE); 818 } 819 QualType Type = VD->getType(); 820 if (Type->isArrayType()) { 821 // Emit VarDecl with copy init for arrays. 822 // Get the address of the original variable captured in current 823 // captured region. 824 IsRegistered = PrivateScope.addPrivate( 825 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 826 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 827 const Expr *Init = VD->getInit(); 828 if (!isa<CXXConstructExpr>(Init) || 829 isTrivialInitializer(Init)) { 830 // Perform simple memcpy. 831 LValue Dest = 832 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 833 EmitAggregateAssign(Dest, OriginalLVal, Type); 834 } else { 835 EmitOMPAggregateAssign( 836 Emission.getAllocatedAddress(), 837 OriginalLVal.getAddress(*this), Type, 838 [this, VDInit, Init](Address DestElement, 839 Address SrcElement) { 840 // Clean up any temporaries needed by the 841 // initialization. 842 RunCleanupsScope InitScope(*this); 843 // Emit initialization for single element. 844 setAddrOfLocalVar(VDInit, SrcElement); 845 EmitAnyExprToMem(Init, DestElement, 846 Init->getType().getQualifiers(), 847 /*IsInitializer*/ false); 848 LocalDeclMap.erase(VDInit); 849 }); 850 } 851 EmitAutoVarCleanups(Emission); 852 return Emission.getAllocatedAddress(); 853 }); 854 } else { 855 Address OriginalAddr = OriginalLVal.getAddress(*this); 856 IsRegistered = PrivateScope.addPrivate( 857 OrigVD, [this, VDInit, OriginalAddr, VD]() { 858 // Emit private VarDecl with copy init. 859 // Remap temp VDInit variable to the address of the original 860 // variable (for proper handling of captured global variables). 861 setAddrOfLocalVar(VDInit, OriginalAddr); 862 EmitDecl(*VD); 863 LocalDeclMap.erase(VDInit); 864 return GetAddrOfLocalVar(VD); 865 }); 866 } 867 assert(IsRegistered && 868 "firstprivate var already registered as private"); 869 // Silence the warning about unused variable. 870 (void)IsRegistered; 871 } 872 ++IRef; 873 ++InitsRef; 874 } 875 } 876 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 877 } 878 879 void CodeGenFunction::EmitOMPPrivateClause( 880 const OMPExecutableDirective &D, 881 CodeGenFunction::OMPPrivateScope &PrivateScope) { 882 if (!HaveInsertPoint()) 883 return; 884 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 885 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 886 auto IRef = C->varlist_begin(); 887 for (const Expr *IInit : C->private_copies()) { 888 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 889 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 890 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 891 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 892 // Emit private VarDecl with copy init. 893 EmitDecl(*VD); 894 return GetAddrOfLocalVar(VD); 895 }); 896 assert(IsRegistered && "private var already registered as private"); 897 // Silence the warning about unused variable. 898 (void)IsRegistered; 899 } 900 ++IRef; 901 } 902 } 903 } 904 905 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 906 if (!HaveInsertPoint()) 907 return false; 908 // threadprivate_var1 = master_threadprivate_var1; 909 // operator=(threadprivate_var2, master_threadprivate_var2); 910 // ... 911 // __kmpc_barrier(&loc, global_tid); 912 llvm::DenseSet<const VarDecl *> CopiedVars; 913 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 914 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 915 auto IRef = C->varlist_begin(); 916 auto ISrcRef = C->source_exprs().begin(); 917 auto IDestRef = C->destination_exprs().begin(); 918 for (const Expr *AssignOp : C->assignment_ops()) { 919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 920 QualType Type = VD->getType(); 921 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 922 // Get the address of the master variable. If we are emitting code with 923 // TLS support, the address is passed from the master as field in the 924 // captured declaration. 925 Address MasterAddr = Address::invalid(); 926 if (getLangOpts().OpenMPUseTLS && 927 getContext().getTargetInfo().isTLSSupported()) { 928 assert(CapturedStmtInfo->lookup(VD) && 929 "Copyin threadprivates should have been captured!"); 930 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 931 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 932 MasterAddr = EmitLValue(&DRE).getAddress(*this); 933 LocalDeclMap.erase(VD); 934 } else { 935 MasterAddr = 936 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 937 : CGM.GetAddrOfGlobal(VD), 938 getContext().getDeclAlign(VD)); 939 } 940 // Get the address of the threadprivate variable. 941 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 942 if (CopiedVars.size() == 1) { 943 // At first check if current thread is a master thread. If it is, no 944 // need to copy data. 945 CopyBegin = createBasicBlock("copyin.not.master"); 946 CopyEnd = createBasicBlock("copyin.not.master.end"); 947 Builder.CreateCondBr( 948 Builder.CreateICmpNE( 949 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 950 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 951 CGM.IntPtrTy)), 952 CopyBegin, CopyEnd); 953 EmitBlock(CopyBegin); 954 } 955 const auto *SrcVD = 956 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 957 const auto *DestVD = 958 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 959 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 960 } 961 ++IRef; 962 ++ISrcRef; 963 ++IDestRef; 964 } 965 } 966 if (CopyEnd) { 967 // Exit out of copying procedure for non-master thread. 968 EmitBlock(CopyEnd, /*IsFinished=*/true); 969 return true; 970 } 971 return false; 972 } 973 974 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 975 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 976 if (!HaveInsertPoint()) 977 return false; 978 bool HasAtLeastOneLastprivate = false; 979 llvm::DenseSet<const VarDecl *> SIMDLCVs; 980 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 981 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 982 for (const Expr *C : LoopDirective->counters()) { 983 SIMDLCVs.insert( 984 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 985 } 986 } 987 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 988 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 989 HasAtLeastOneLastprivate = true; 990 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 991 !getLangOpts().OpenMPSimd) 992 break; 993 auto IRef = C->varlist_begin(); 994 auto IDestRef = C->destination_exprs().begin(); 995 for (const Expr *IInit : C->private_copies()) { 996 // Keep the address of the original variable for future update at the end 997 // of the loop. 998 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 999 // Taskloops do not require additional initialization, it is done in 1000 // runtime support library. 1001 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1002 const auto *DestVD = 1003 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1004 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1005 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1006 /*RefersToEnclosingVariableOrCapture=*/ 1007 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1008 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1009 return EmitLValue(&DRE).getAddress(*this); 1010 }); 1011 // Check if the variable is also a firstprivate: in this case IInit is 1012 // not generated. Initialization of this variable will happen in codegen 1013 // for 'firstprivate' clause. 1014 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1015 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1016 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 1017 // Emit private VarDecl with copy init. 1018 EmitDecl(*VD); 1019 return GetAddrOfLocalVar(VD); 1020 }); 1021 assert(IsRegistered && 1022 "lastprivate var already registered as private"); 1023 (void)IsRegistered; 1024 } 1025 } 1026 ++IRef; 1027 ++IDestRef; 1028 } 1029 } 1030 return HasAtLeastOneLastprivate; 1031 } 1032 1033 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1034 const OMPExecutableDirective &D, bool NoFinals, 1035 llvm::Value *IsLastIterCond) { 1036 if (!HaveInsertPoint()) 1037 return; 1038 // Emit following code: 1039 // if (<IsLastIterCond>) { 1040 // orig_var1 = private_orig_var1; 1041 // ... 1042 // orig_varn = private_orig_varn; 1043 // } 1044 llvm::BasicBlock *ThenBB = nullptr; 1045 llvm::BasicBlock *DoneBB = nullptr; 1046 if (IsLastIterCond) { 1047 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1048 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1049 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1050 EmitBlock(ThenBB); 1051 } 1052 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1053 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1054 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1055 auto IC = LoopDirective->counters().begin(); 1056 for (const Expr *F : LoopDirective->finals()) { 1057 const auto *D = 1058 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1059 if (NoFinals) 1060 AlreadyEmittedVars.insert(D); 1061 else 1062 LoopCountersAndUpdates[D] = F; 1063 ++IC; 1064 } 1065 } 1066 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1067 auto IRef = C->varlist_begin(); 1068 auto ISrcRef = C->source_exprs().begin(); 1069 auto IDestRef = C->destination_exprs().begin(); 1070 for (const Expr *AssignOp : C->assignment_ops()) { 1071 const auto *PrivateVD = 1072 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1073 QualType Type = PrivateVD->getType(); 1074 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1075 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1076 // If lastprivate variable is a loop control variable for loop-based 1077 // directive, update its value before copyin back to original 1078 // variable. 1079 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1080 EmitIgnoredExpr(FinalExpr); 1081 const auto *SrcVD = 1082 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1083 const auto *DestVD = 1084 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1085 // Get the address of the original variable. 1086 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1087 // Get the address of the private variable. 1088 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1089 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1090 PrivateAddr = 1091 Address(Builder.CreateLoad(PrivateAddr), 1092 getNaturalTypeAlignment(RefTy->getPointeeType())); 1093 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1094 } 1095 ++IRef; 1096 ++ISrcRef; 1097 ++IDestRef; 1098 } 1099 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1100 EmitIgnoredExpr(PostUpdate); 1101 } 1102 if (IsLastIterCond) 1103 EmitBlock(DoneBB, /*IsFinished=*/true); 1104 } 1105 1106 void CodeGenFunction::EmitOMPReductionClauseInit( 1107 const OMPExecutableDirective &D, 1108 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1109 if (!HaveInsertPoint()) 1110 return; 1111 SmallVector<const Expr *, 4> Shareds; 1112 SmallVector<const Expr *, 4> Privates; 1113 SmallVector<const Expr *, 4> ReductionOps; 1114 SmallVector<const Expr *, 4> LHSs; 1115 SmallVector<const Expr *, 4> RHSs; 1116 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1117 auto IPriv = C->privates().begin(); 1118 auto IRed = C->reduction_ops().begin(); 1119 auto ILHS = C->lhs_exprs().begin(); 1120 auto IRHS = C->rhs_exprs().begin(); 1121 for (const Expr *Ref : C->varlists()) { 1122 Shareds.emplace_back(Ref); 1123 Privates.emplace_back(*IPriv); 1124 ReductionOps.emplace_back(*IRed); 1125 LHSs.emplace_back(*ILHS); 1126 RHSs.emplace_back(*IRHS); 1127 std::advance(IPriv, 1); 1128 std::advance(IRed, 1); 1129 std::advance(ILHS, 1); 1130 std::advance(IRHS, 1); 1131 } 1132 } 1133 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1134 unsigned Count = 0; 1135 auto ILHS = LHSs.begin(); 1136 auto IRHS = RHSs.begin(); 1137 auto IPriv = Privates.begin(); 1138 for (const Expr *IRef : Shareds) { 1139 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1140 // Emit private VarDecl with reduction init. 1141 RedCG.emitSharedLValue(*this, Count); 1142 RedCG.emitAggregateType(*this, Count); 1143 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1144 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1145 RedCG.getSharedLValue(Count), 1146 [&Emission](CodeGenFunction &CGF) { 1147 CGF.EmitAutoVarInit(Emission); 1148 return true; 1149 }); 1150 EmitAutoVarCleanups(Emission); 1151 Address BaseAddr = RedCG.adjustPrivateAddress( 1152 *this, Count, Emission.getAllocatedAddress()); 1153 bool IsRegistered = PrivateScope.addPrivate( 1154 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1155 assert(IsRegistered && "private var already registered as private"); 1156 // Silence the warning about unused variable. 1157 (void)IsRegistered; 1158 1159 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1160 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1161 QualType Type = PrivateVD->getType(); 1162 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1163 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1164 // Store the address of the original variable associated with the LHS 1165 // implicit variable. 1166 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1167 return RedCG.getSharedLValue(Count).getAddress(*this); 1168 }); 1169 PrivateScope.addPrivate( 1170 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1171 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1172 isa<ArraySubscriptExpr>(IRef)) { 1173 // Store the address of the original variable associated with the LHS 1174 // implicit variable. 1175 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1176 return RedCG.getSharedLValue(Count).getAddress(*this); 1177 }); 1178 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1179 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1180 ConvertTypeForMem(RHSVD->getType()), 1181 "rhs.begin"); 1182 }); 1183 } else { 1184 QualType Type = PrivateVD->getType(); 1185 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1186 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1187 // Store the address of the original variable associated with the LHS 1188 // implicit variable. 1189 if (IsArray) { 1190 OriginalAddr = Builder.CreateElementBitCast( 1191 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1192 } 1193 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1194 PrivateScope.addPrivate( 1195 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1196 return IsArray 1197 ? Builder.CreateElementBitCast( 1198 GetAddrOfLocalVar(PrivateVD), 1199 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1200 : GetAddrOfLocalVar(PrivateVD); 1201 }); 1202 } 1203 ++ILHS; 1204 ++IRHS; 1205 ++IPriv; 1206 ++Count; 1207 } 1208 } 1209 1210 void CodeGenFunction::EmitOMPReductionClauseFinal( 1211 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1212 if (!HaveInsertPoint()) 1213 return; 1214 llvm::SmallVector<const Expr *, 8> Privates; 1215 llvm::SmallVector<const Expr *, 8> LHSExprs; 1216 llvm::SmallVector<const Expr *, 8> RHSExprs; 1217 llvm::SmallVector<const Expr *, 8> ReductionOps; 1218 bool HasAtLeastOneReduction = false; 1219 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1220 HasAtLeastOneReduction = true; 1221 Privates.append(C->privates().begin(), C->privates().end()); 1222 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1223 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1224 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1225 } 1226 if (HasAtLeastOneReduction) { 1227 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1228 isOpenMPParallelDirective(D.getDirectiveKind()) || 1229 ReductionKind == OMPD_simd; 1230 bool SimpleReduction = ReductionKind == OMPD_simd; 1231 // Emit nowait reduction if nowait clause is present or directive is a 1232 // parallel directive (it always has implicit barrier). 1233 CGM.getOpenMPRuntime().emitReduction( 1234 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1235 {WithNowait, SimpleReduction, ReductionKind}); 1236 } 1237 } 1238 1239 static void emitPostUpdateForReductionClause( 1240 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1241 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1242 if (!CGF.HaveInsertPoint()) 1243 return; 1244 llvm::BasicBlock *DoneBB = nullptr; 1245 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1246 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1247 if (!DoneBB) { 1248 if (llvm::Value *Cond = CondGen(CGF)) { 1249 // If the first post-update expression is found, emit conditional 1250 // block if it was requested. 1251 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1252 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1253 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1254 CGF.EmitBlock(ThenBB); 1255 } 1256 } 1257 CGF.EmitIgnoredExpr(PostUpdate); 1258 } 1259 } 1260 if (DoneBB) 1261 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1262 } 1263 1264 namespace { 1265 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1266 /// parallel function. This is necessary for combined constructs such as 1267 /// 'distribute parallel for' 1268 typedef llvm::function_ref<void(CodeGenFunction &, 1269 const OMPExecutableDirective &, 1270 llvm::SmallVectorImpl<llvm::Value *> &)> 1271 CodeGenBoundParametersTy; 1272 } // anonymous namespace 1273 1274 static void emitCommonOMPParallelDirective( 1275 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1276 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1277 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1278 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1279 llvm::Function *OutlinedFn = 1280 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1281 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1282 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1283 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1284 llvm::Value *NumThreads = 1285 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1286 /*IgnoreResultAssign=*/true); 1287 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1288 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1289 } 1290 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1291 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1292 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1293 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1294 } 1295 const Expr *IfCond = nullptr; 1296 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1297 if (C->getNameModifier() == OMPD_unknown || 1298 C->getNameModifier() == OMPD_parallel) { 1299 IfCond = C->getCondition(); 1300 break; 1301 } 1302 } 1303 1304 OMPParallelScope Scope(CGF, S); 1305 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1306 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1307 // lower and upper bounds with the pragma 'for' chunking mechanism. 1308 // The following lambda takes care of appending the lower and upper bound 1309 // parameters when necessary 1310 CodeGenBoundParameters(CGF, S, CapturedVars); 1311 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1312 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1313 CapturedVars, IfCond); 1314 } 1315 1316 static void emitEmptyBoundParameters(CodeGenFunction &, 1317 const OMPExecutableDirective &, 1318 llvm::SmallVectorImpl<llvm::Value *> &) {} 1319 1320 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1321 // Emit parallel region as a standalone region. 1322 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1323 Action.Enter(CGF); 1324 OMPPrivateScope PrivateScope(CGF); 1325 bool Copyins = CGF.EmitOMPCopyinClause(S); 1326 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1327 if (Copyins) { 1328 // Emit implicit barrier to synchronize threads and avoid data races on 1329 // propagation master's thread values of threadprivate variables to local 1330 // instances of that variables of all other implicit threads. 1331 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1332 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1333 /*ForceSimpleCall=*/true); 1334 } 1335 CGF.EmitOMPPrivateClause(S, PrivateScope); 1336 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1337 (void)PrivateScope.Privatize(); 1338 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1339 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1340 }; 1341 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1342 emitEmptyBoundParameters); 1343 emitPostUpdateForReductionClause(*this, S, 1344 [](CodeGenFunction &) { return nullptr; }); 1345 } 1346 1347 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1348 int MaxLevel, int Level = 0) { 1349 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1350 const Stmt *SimplifiedS = S->IgnoreContainers(); 1351 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1352 PrettyStackTraceLoc CrashInfo( 1353 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1354 "LLVM IR generation of compound statement ('{}')"); 1355 1356 // Keep track of the current cleanup stack depth, including debug scopes. 1357 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1358 for (const Stmt *CurStmt : CS->body()) 1359 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1360 return; 1361 } 1362 if (SimplifiedS == NextLoop) { 1363 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1364 S = For->getBody(); 1365 } else { 1366 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1367 "Expected canonical for loop or range-based for loop."); 1368 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1369 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1370 S = CXXFor->getBody(); 1371 } 1372 if (Level + 1 < MaxLevel) { 1373 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1374 S, /*TryImperfectlyNestedLoops=*/true); 1375 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1376 return; 1377 } 1378 } 1379 CGF.EmitStmt(S); 1380 } 1381 1382 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1383 JumpDest LoopExit) { 1384 RunCleanupsScope BodyScope(*this); 1385 // Update counters values on current iteration. 1386 for (const Expr *UE : D.updates()) 1387 EmitIgnoredExpr(UE); 1388 // Update the linear variables. 1389 // In distribute directives only loop counters may be marked as linear, no 1390 // need to generate the code for them. 1391 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1392 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1393 for (const Expr *UE : C->updates()) 1394 EmitIgnoredExpr(UE); 1395 } 1396 } 1397 1398 // On a continue in the body, jump to the end. 1399 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1400 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1401 for (const Expr *E : D.finals_conditions()) { 1402 if (!E) 1403 continue; 1404 // Check that loop counter in non-rectangular nest fits into the iteration 1405 // space. 1406 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1407 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1408 getProfileCount(D.getBody())); 1409 EmitBlock(NextBB); 1410 } 1411 // Emit loop variables for C++ range loops. 1412 const Stmt *Body = 1413 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1414 // Emit loop body. 1415 emitBody(*this, Body, 1416 OMPLoopDirective::tryToFindNextInnerLoop( 1417 Body, /*TryImperfectlyNestedLoops=*/true), 1418 D.getCollapsedNumber()); 1419 1420 // The end (updates/cleanups). 1421 EmitBlock(Continue.getBlock()); 1422 BreakContinueStack.pop_back(); 1423 } 1424 1425 void CodeGenFunction::EmitOMPInnerLoop( 1426 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1427 const Expr *IncExpr, 1428 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1429 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1430 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1431 1432 // Start the loop with a block that tests the condition. 1433 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1434 EmitBlock(CondBlock); 1435 const SourceRange R = S.getSourceRange(); 1436 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1437 SourceLocToDebugLoc(R.getEnd())); 1438 1439 // If there are any cleanups between here and the loop-exit scope, 1440 // create a block to stage a loop exit along. 1441 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1442 if (RequiresCleanup) 1443 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1444 1445 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1446 1447 // Emit condition. 1448 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1449 if (ExitBlock != LoopExit.getBlock()) { 1450 EmitBlock(ExitBlock); 1451 EmitBranchThroughCleanup(LoopExit); 1452 } 1453 1454 EmitBlock(LoopBody); 1455 incrementProfileCounter(&S); 1456 1457 // Create a block for the increment. 1458 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1459 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1460 1461 BodyGen(*this); 1462 1463 // Emit "IV = IV + 1" and a back-edge to the condition block. 1464 EmitBlock(Continue.getBlock()); 1465 EmitIgnoredExpr(IncExpr); 1466 PostIncGen(*this); 1467 BreakContinueStack.pop_back(); 1468 EmitBranch(CondBlock); 1469 LoopStack.pop(); 1470 // Emit the fall-through block. 1471 EmitBlock(LoopExit.getBlock()); 1472 } 1473 1474 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1475 if (!HaveInsertPoint()) 1476 return false; 1477 // Emit inits for the linear variables. 1478 bool HasLinears = false; 1479 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1480 for (const Expr *Init : C->inits()) { 1481 HasLinears = true; 1482 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1483 if (const auto *Ref = 1484 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1485 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1486 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1487 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1488 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1489 VD->getInit()->getType(), VK_LValue, 1490 VD->getInit()->getExprLoc()); 1491 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1492 VD->getType()), 1493 /*capturedByInit=*/false); 1494 EmitAutoVarCleanups(Emission); 1495 } else { 1496 EmitVarDecl(*VD); 1497 } 1498 } 1499 // Emit the linear steps for the linear clauses. 1500 // If a step is not constant, it is pre-calculated before the loop. 1501 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1502 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1503 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1504 // Emit calculation of the linear step. 1505 EmitIgnoredExpr(CS); 1506 } 1507 } 1508 return HasLinears; 1509 } 1510 1511 void CodeGenFunction::EmitOMPLinearClauseFinal( 1512 const OMPLoopDirective &D, 1513 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1514 if (!HaveInsertPoint()) 1515 return; 1516 llvm::BasicBlock *DoneBB = nullptr; 1517 // Emit the final values of the linear variables. 1518 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1519 auto IC = C->varlist_begin(); 1520 for (const Expr *F : C->finals()) { 1521 if (!DoneBB) { 1522 if (llvm::Value *Cond = CondGen(*this)) { 1523 // If the first post-update expression is found, emit conditional 1524 // block if it was requested. 1525 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1526 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1527 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1528 EmitBlock(ThenBB); 1529 } 1530 } 1531 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1532 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1533 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1534 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1535 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1536 CodeGenFunction::OMPPrivateScope VarScope(*this); 1537 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1538 (void)VarScope.Privatize(); 1539 EmitIgnoredExpr(F); 1540 ++IC; 1541 } 1542 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1543 EmitIgnoredExpr(PostUpdate); 1544 } 1545 if (DoneBB) 1546 EmitBlock(DoneBB, /*IsFinished=*/true); 1547 } 1548 1549 static void emitAlignedClause(CodeGenFunction &CGF, 1550 const OMPExecutableDirective &D) { 1551 if (!CGF.HaveInsertPoint()) 1552 return; 1553 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1554 llvm::APInt ClauseAlignment(64, 0); 1555 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1556 auto *AlignmentCI = 1557 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1558 ClauseAlignment = AlignmentCI->getValue(); 1559 } 1560 for (const Expr *E : Clause->varlists()) { 1561 llvm::APInt Alignment(ClauseAlignment); 1562 if (Alignment == 0) { 1563 // OpenMP [2.8.1, Description] 1564 // If no optional parameter is specified, implementation-defined default 1565 // alignments for SIMD instructions on the target platforms are assumed. 1566 Alignment = 1567 CGF.getContext() 1568 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1569 E->getType()->getPointeeType())) 1570 .getQuantity(); 1571 } 1572 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1573 "alignment is not power of 2"); 1574 if (Alignment != 0) { 1575 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1576 CGF.EmitAlignmentAssumption( 1577 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1578 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1579 } 1580 } 1581 } 1582 } 1583 1584 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1585 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1586 if (!HaveInsertPoint()) 1587 return; 1588 auto I = S.private_counters().begin(); 1589 for (const Expr *E : S.counters()) { 1590 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1591 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1592 // Emit var without initialization. 1593 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1594 EmitAutoVarCleanups(VarEmission); 1595 LocalDeclMap.erase(PrivateVD); 1596 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1597 return VarEmission.getAllocatedAddress(); 1598 }); 1599 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1600 VD->hasGlobalStorage()) { 1601 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1602 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1603 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1604 E->getType(), VK_LValue, E->getExprLoc()); 1605 return EmitLValue(&DRE).getAddress(*this); 1606 }); 1607 } else { 1608 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1609 return VarEmission.getAllocatedAddress(); 1610 }); 1611 } 1612 ++I; 1613 } 1614 // Privatize extra loop counters used in loops for ordered(n) clauses. 1615 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1616 if (!C->getNumForLoops()) 1617 continue; 1618 for (unsigned I = S.getCollapsedNumber(), 1619 E = C->getLoopNumIterations().size(); 1620 I < E; ++I) { 1621 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1622 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1623 // Override only those variables that can be captured to avoid re-emission 1624 // of the variables declared within the loops. 1625 if (DRE->refersToEnclosingVariableOrCapture()) { 1626 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1627 return CreateMemTemp(DRE->getType(), VD->getName()); 1628 }); 1629 } 1630 } 1631 } 1632 } 1633 1634 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1635 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1636 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1637 if (!CGF.HaveInsertPoint()) 1638 return; 1639 { 1640 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1641 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1642 (void)PreCondScope.Privatize(); 1643 // Get initial values of real counters. 1644 for (const Expr *I : S.inits()) { 1645 CGF.EmitIgnoredExpr(I); 1646 } 1647 } 1648 // Create temp loop control variables with their init values to support 1649 // non-rectangular loops. 1650 CodeGenFunction::OMPMapVars PreCondVars; 1651 for (const Expr * E: S.dependent_counters()) { 1652 if (!E) 1653 continue; 1654 assert(!E->getType().getNonReferenceType()->isRecordType() && 1655 "dependent counter must not be an iterator."); 1656 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1657 Address CounterAddr = 1658 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1659 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1660 } 1661 (void)PreCondVars.apply(CGF); 1662 for (const Expr *E : S.dependent_inits()) { 1663 if (!E) 1664 continue; 1665 CGF.EmitIgnoredExpr(E); 1666 } 1667 // Check that loop is executed at least one time. 1668 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1669 PreCondVars.restore(CGF); 1670 } 1671 1672 void CodeGenFunction::EmitOMPLinearClause( 1673 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1674 if (!HaveInsertPoint()) 1675 return; 1676 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1677 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1678 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1679 for (const Expr *C : LoopDirective->counters()) { 1680 SIMDLCVs.insert( 1681 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1682 } 1683 } 1684 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1685 auto CurPrivate = C->privates().begin(); 1686 for (const Expr *E : C->varlists()) { 1687 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1688 const auto *PrivateVD = 1689 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1690 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1691 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1692 // Emit private VarDecl with copy init. 1693 EmitVarDecl(*PrivateVD); 1694 return GetAddrOfLocalVar(PrivateVD); 1695 }); 1696 assert(IsRegistered && "linear var already registered as private"); 1697 // Silence the warning about unused variable. 1698 (void)IsRegistered; 1699 } else { 1700 EmitVarDecl(*PrivateVD); 1701 } 1702 ++CurPrivate; 1703 } 1704 } 1705 } 1706 1707 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1708 const OMPExecutableDirective &D, 1709 bool IsMonotonic) { 1710 if (!CGF.HaveInsertPoint()) 1711 return; 1712 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1713 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1714 /*ignoreResult=*/true); 1715 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1716 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1717 // In presence of finite 'safelen', it may be unsafe to mark all 1718 // the memory instructions parallel, because loop-carried 1719 // dependences of 'safelen' iterations are possible. 1720 if (!IsMonotonic) 1721 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1722 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1723 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1724 /*ignoreResult=*/true); 1725 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1726 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1727 // In presence of finite 'safelen', it may be unsafe to mark all 1728 // the memory instructions parallel, because loop-carried 1729 // dependences of 'safelen' iterations are possible. 1730 CGF.LoopStack.setParallel(/*Enable=*/false); 1731 } 1732 } 1733 1734 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1735 bool IsMonotonic) { 1736 // Walk clauses and process safelen/lastprivate. 1737 LoopStack.setParallel(!IsMonotonic); 1738 LoopStack.setVectorizeEnable(); 1739 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1740 } 1741 1742 void CodeGenFunction::EmitOMPSimdFinal( 1743 const OMPLoopDirective &D, 1744 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1745 if (!HaveInsertPoint()) 1746 return; 1747 llvm::BasicBlock *DoneBB = nullptr; 1748 auto IC = D.counters().begin(); 1749 auto IPC = D.private_counters().begin(); 1750 for (const Expr *F : D.finals()) { 1751 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1752 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1753 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1754 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1755 OrigVD->hasGlobalStorage() || CED) { 1756 if (!DoneBB) { 1757 if (llvm::Value *Cond = CondGen(*this)) { 1758 // If the first post-update expression is found, emit conditional 1759 // block if it was requested. 1760 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1761 DoneBB = createBasicBlock(".omp.final.done"); 1762 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1763 EmitBlock(ThenBB); 1764 } 1765 } 1766 Address OrigAddr = Address::invalid(); 1767 if (CED) { 1768 OrigAddr = 1769 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 1770 } else { 1771 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1772 /*RefersToEnclosingVariableOrCapture=*/false, 1773 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1774 OrigAddr = EmitLValue(&DRE).getAddress(*this); 1775 } 1776 OMPPrivateScope VarScope(*this); 1777 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1778 (void)VarScope.Privatize(); 1779 EmitIgnoredExpr(F); 1780 } 1781 ++IC; 1782 ++IPC; 1783 } 1784 if (DoneBB) 1785 EmitBlock(DoneBB, /*IsFinished=*/true); 1786 } 1787 1788 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1789 const OMPLoopDirective &S, 1790 CodeGenFunction::JumpDest LoopExit) { 1791 CGF.EmitOMPLoopBody(S, LoopExit); 1792 CGF.EmitStopPoint(&S); 1793 } 1794 1795 /// Emit a helper variable and return corresponding lvalue. 1796 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1797 const DeclRefExpr *Helper) { 1798 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1799 CGF.EmitVarDecl(*VDecl); 1800 return CGF.EmitLValue(Helper); 1801 } 1802 1803 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 1804 const RegionCodeGenTy &SimdInitGen, 1805 const RegionCodeGenTy &BodyCodeGen) { 1806 auto &&ThenGen = [&SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 1807 PrePostActionTy &) { 1808 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1809 SimdInitGen(CGF); 1810 1811 BodyCodeGen(CGF); 1812 }; 1813 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 1814 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1815 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 1816 1817 BodyCodeGen(CGF); 1818 }; 1819 const Expr *IfCond = nullptr; 1820 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1821 if (CGF.getLangOpts().OpenMP >= 50 && 1822 (C->getNameModifier() == OMPD_unknown || 1823 C->getNameModifier() == OMPD_simd)) { 1824 IfCond = C->getCondition(); 1825 break; 1826 } 1827 } 1828 if (IfCond) { 1829 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 1830 } else { 1831 RegionCodeGenTy ThenRCG(ThenGen); 1832 ThenRCG(CGF); 1833 } 1834 } 1835 1836 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1837 PrePostActionTy &Action) { 1838 Action.Enter(CGF); 1839 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1840 "Expected simd directive"); 1841 OMPLoopScope PreInitScope(CGF, S); 1842 // if (PreCond) { 1843 // for (IV in 0..LastIteration) BODY; 1844 // <Final counter/linear vars updates>; 1845 // } 1846 // 1847 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1848 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1849 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1850 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1851 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1852 } 1853 1854 // Emit: if (PreCond) - begin. 1855 // If the condition constant folds and can be elided, avoid emitting the 1856 // whole loop. 1857 bool CondConstant; 1858 llvm::BasicBlock *ContBlock = nullptr; 1859 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1860 if (!CondConstant) 1861 return; 1862 } else { 1863 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1864 ContBlock = CGF.createBasicBlock("simd.if.end"); 1865 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1866 CGF.getProfileCount(&S)); 1867 CGF.EmitBlock(ThenBlock); 1868 CGF.incrementProfileCounter(&S); 1869 } 1870 1871 // Emit the loop iteration variable. 1872 const Expr *IVExpr = S.getIterationVariable(); 1873 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1874 CGF.EmitVarDecl(*IVDecl); 1875 CGF.EmitIgnoredExpr(S.getInit()); 1876 1877 // Emit the iterations count variable. 1878 // If it is not a variable, Sema decided to calculate iterations count on 1879 // each iteration (e.g., it is foldable into a constant). 1880 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1881 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1882 // Emit calculation of the iterations count. 1883 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1884 } 1885 1886 emitAlignedClause(CGF, S); 1887 (void)CGF.EmitOMPLinearClauseInit(S); 1888 { 1889 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1890 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1891 CGF.EmitOMPLinearClause(S, LoopScope); 1892 CGF.EmitOMPPrivateClause(S, LoopScope); 1893 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1894 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1895 (void)LoopScope.Privatize(); 1896 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1897 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1898 1899 emitCommonSimdLoop( 1900 CGF, S, 1901 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1902 CGF.EmitOMPSimdInit(S); 1903 }, 1904 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 1905 CGF.EmitOMPInnerLoop( 1906 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1907 [&S](CodeGenFunction &CGF) { 1908 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1909 CGF.EmitStopPoint(&S); 1910 }, 1911 [](CodeGenFunction &) {}); 1912 }); 1913 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1914 // Emit final copy of the lastprivate variables at the end of loops. 1915 if (HasLastprivateClause) 1916 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1917 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1918 emitPostUpdateForReductionClause(CGF, S, 1919 [](CodeGenFunction &) { return nullptr; }); 1920 } 1921 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1922 // Emit: if (PreCond) - end. 1923 if (ContBlock) { 1924 CGF.EmitBranch(ContBlock); 1925 CGF.EmitBlock(ContBlock, true); 1926 } 1927 } 1928 1929 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1930 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1931 emitOMPSimdRegion(CGF, S, Action); 1932 }; 1933 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1934 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1935 } 1936 1937 void CodeGenFunction::EmitOMPOuterLoop( 1938 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1939 CodeGenFunction::OMPPrivateScope &LoopScope, 1940 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1941 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1942 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1943 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1944 1945 const Expr *IVExpr = S.getIterationVariable(); 1946 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1947 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1948 1949 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1950 1951 // Start the loop with a block that tests the condition. 1952 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1953 EmitBlock(CondBlock); 1954 const SourceRange R = S.getSourceRange(); 1955 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1956 SourceLocToDebugLoc(R.getEnd())); 1957 1958 llvm::Value *BoolCondVal = nullptr; 1959 if (!DynamicOrOrdered) { 1960 // UB = min(UB, GlobalUB) or 1961 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1962 // 'distribute parallel for') 1963 EmitIgnoredExpr(LoopArgs.EUB); 1964 // IV = LB 1965 EmitIgnoredExpr(LoopArgs.Init); 1966 // IV < UB 1967 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1968 } else { 1969 BoolCondVal = 1970 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1971 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1972 } 1973 1974 // If there are any cleanups between here and the loop-exit scope, 1975 // create a block to stage a loop exit along. 1976 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1977 if (LoopScope.requiresCleanups()) 1978 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1979 1980 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1981 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1982 if (ExitBlock != LoopExit.getBlock()) { 1983 EmitBlock(ExitBlock); 1984 EmitBranchThroughCleanup(LoopExit); 1985 } 1986 EmitBlock(LoopBody); 1987 1988 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1989 // LB for loop condition and emitted it above). 1990 if (DynamicOrOrdered) 1991 EmitIgnoredExpr(LoopArgs.Init); 1992 1993 // Create a block for the increment. 1994 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1995 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1996 1997 emitCommonSimdLoop( 1998 *this, S, 1999 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2000 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2001 // with dynamic/guided scheduling and without ordered clause. 2002 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 2003 CGF.LoopStack.setParallel(!IsMonotonic); 2004 else 2005 CGF.EmitOMPSimdInit(S, IsMonotonic); 2006 }, 2007 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2008 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2009 SourceLocation Loc = S.getBeginLoc(); 2010 // when 'distribute' is not combined with a 'for': 2011 // while (idx <= UB) { BODY; ++idx; } 2012 // when 'distribute' is combined with a 'for' 2013 // (e.g. 'distribute parallel for') 2014 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2015 CGF.EmitOMPInnerLoop( 2016 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2017 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2018 CodeGenLoop(CGF, S, LoopExit); 2019 }, 2020 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2021 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2022 }); 2023 }); 2024 2025 EmitBlock(Continue.getBlock()); 2026 BreakContinueStack.pop_back(); 2027 if (!DynamicOrOrdered) { 2028 // Emit "LB = LB + Stride", "UB = UB + Stride". 2029 EmitIgnoredExpr(LoopArgs.NextLB); 2030 EmitIgnoredExpr(LoopArgs.NextUB); 2031 } 2032 2033 EmitBranch(CondBlock); 2034 LoopStack.pop(); 2035 // Emit the fall-through block. 2036 EmitBlock(LoopExit.getBlock()); 2037 2038 // Tell the runtime we are done. 2039 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2040 if (!DynamicOrOrdered) 2041 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2042 S.getDirectiveKind()); 2043 }; 2044 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2045 } 2046 2047 void CodeGenFunction::EmitOMPForOuterLoop( 2048 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2049 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2050 const OMPLoopArguments &LoopArgs, 2051 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2052 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2053 2054 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2055 const bool DynamicOrOrdered = 2056 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2057 2058 assert((Ordered || 2059 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2060 LoopArgs.Chunk != nullptr)) && 2061 "static non-chunked schedule does not need outer loop"); 2062 2063 // Emit outer loop. 2064 // 2065 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2066 // When schedule(dynamic,chunk_size) is specified, the iterations are 2067 // distributed to threads in the team in chunks as the threads request them. 2068 // Each thread executes a chunk of iterations, then requests another chunk, 2069 // until no chunks remain to be distributed. Each chunk contains chunk_size 2070 // iterations, except for the last chunk to be distributed, which may have 2071 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2072 // 2073 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2074 // to threads in the team in chunks as the executing threads request them. 2075 // Each thread executes a chunk of iterations, then requests another chunk, 2076 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2077 // each chunk is proportional to the number of unassigned iterations divided 2078 // by the number of threads in the team, decreasing to 1. For a chunk_size 2079 // with value k (greater than 1), the size of each chunk is determined in the 2080 // same way, with the restriction that the chunks do not contain fewer than k 2081 // iterations (except for the last chunk to be assigned, which may have fewer 2082 // than k iterations). 2083 // 2084 // When schedule(auto) is specified, the decision regarding scheduling is 2085 // delegated to the compiler and/or runtime system. The programmer gives the 2086 // implementation the freedom to choose any possible mapping of iterations to 2087 // threads in the team. 2088 // 2089 // When schedule(runtime) is specified, the decision regarding scheduling is 2090 // deferred until run time, and the schedule and chunk size are taken from the 2091 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2092 // implementation defined 2093 // 2094 // while(__kmpc_dispatch_next(&LB, &UB)) { 2095 // idx = LB; 2096 // while (idx <= UB) { BODY; ++idx; 2097 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2098 // } // inner loop 2099 // } 2100 // 2101 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2102 // When schedule(static, chunk_size) is specified, iterations are divided into 2103 // chunks of size chunk_size, and the chunks are assigned to the threads in 2104 // the team in a round-robin fashion in the order of the thread number. 2105 // 2106 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2107 // while (idx <= UB) { BODY; ++idx; } // inner loop 2108 // LB = LB + ST; 2109 // UB = UB + ST; 2110 // } 2111 // 2112 2113 const Expr *IVExpr = S.getIterationVariable(); 2114 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2115 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2116 2117 if (DynamicOrOrdered) { 2118 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2119 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2120 llvm::Value *LBVal = DispatchBounds.first; 2121 llvm::Value *UBVal = DispatchBounds.second; 2122 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2123 LoopArgs.Chunk}; 2124 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2125 IVSigned, Ordered, DipatchRTInputValues); 2126 } else { 2127 CGOpenMPRuntime::StaticRTInput StaticInit( 2128 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2129 LoopArgs.ST, LoopArgs.Chunk); 2130 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2131 ScheduleKind, StaticInit); 2132 } 2133 2134 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2135 const unsigned IVSize, 2136 const bool IVSigned) { 2137 if (Ordered) { 2138 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2139 IVSigned); 2140 } 2141 }; 2142 2143 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2144 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2145 OuterLoopArgs.IncExpr = S.getInc(); 2146 OuterLoopArgs.Init = S.getInit(); 2147 OuterLoopArgs.Cond = S.getCond(); 2148 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2149 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2150 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2151 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2152 } 2153 2154 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2155 const unsigned IVSize, const bool IVSigned) {} 2156 2157 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2158 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2159 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2160 const CodeGenLoopTy &CodeGenLoopContent) { 2161 2162 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2163 2164 // Emit outer loop. 2165 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2166 // dynamic 2167 // 2168 2169 const Expr *IVExpr = S.getIterationVariable(); 2170 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2171 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2172 2173 CGOpenMPRuntime::StaticRTInput StaticInit( 2174 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2175 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2176 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2177 2178 // for combined 'distribute' and 'for' the increment expression of distribute 2179 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2180 Expr *IncExpr; 2181 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2182 IncExpr = S.getDistInc(); 2183 else 2184 IncExpr = S.getInc(); 2185 2186 // this routine is shared by 'omp distribute parallel for' and 2187 // 'omp distribute': select the right EUB expression depending on the 2188 // directive 2189 OMPLoopArguments OuterLoopArgs; 2190 OuterLoopArgs.LB = LoopArgs.LB; 2191 OuterLoopArgs.UB = LoopArgs.UB; 2192 OuterLoopArgs.ST = LoopArgs.ST; 2193 OuterLoopArgs.IL = LoopArgs.IL; 2194 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2195 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2196 ? S.getCombinedEnsureUpperBound() 2197 : S.getEnsureUpperBound(); 2198 OuterLoopArgs.IncExpr = IncExpr; 2199 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2200 ? S.getCombinedInit() 2201 : S.getInit(); 2202 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2203 ? S.getCombinedCond() 2204 : S.getCond(); 2205 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2206 ? S.getCombinedNextLowerBound() 2207 : S.getNextLowerBound(); 2208 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2209 ? S.getCombinedNextUpperBound() 2210 : S.getNextUpperBound(); 2211 2212 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2213 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2214 emitEmptyOrdered); 2215 } 2216 2217 static std::pair<LValue, LValue> 2218 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2219 const OMPExecutableDirective &S) { 2220 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2221 LValue LB = 2222 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2223 LValue UB = 2224 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2225 2226 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2227 // parallel for') we need to use the 'distribute' 2228 // chunk lower and upper bounds rather than the whole loop iteration 2229 // space. These are parameters to the outlined function for 'parallel' 2230 // and we copy the bounds of the previous schedule into the 2231 // the current ones. 2232 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2233 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2234 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2235 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2236 PrevLBVal = CGF.EmitScalarConversion( 2237 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2238 LS.getIterationVariable()->getType(), 2239 LS.getPrevLowerBoundVariable()->getExprLoc()); 2240 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2241 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2242 PrevUBVal = CGF.EmitScalarConversion( 2243 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2244 LS.getIterationVariable()->getType(), 2245 LS.getPrevUpperBoundVariable()->getExprLoc()); 2246 2247 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2248 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2249 2250 return {LB, UB}; 2251 } 2252 2253 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2254 /// we need to use the LB and UB expressions generated by the worksharing 2255 /// code generation support, whereas in non combined situations we would 2256 /// just emit 0 and the LastIteration expression 2257 /// This function is necessary due to the difference of the LB and UB 2258 /// types for the RT emission routines for 'for_static_init' and 2259 /// 'for_dispatch_init' 2260 static std::pair<llvm::Value *, llvm::Value *> 2261 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2262 const OMPExecutableDirective &S, 2263 Address LB, Address UB) { 2264 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2265 const Expr *IVExpr = LS.getIterationVariable(); 2266 // when implementing a dynamic schedule for a 'for' combined with a 2267 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2268 // is not normalized as each team only executes its own assigned 2269 // distribute chunk 2270 QualType IteratorTy = IVExpr->getType(); 2271 llvm::Value *LBVal = 2272 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2273 llvm::Value *UBVal = 2274 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2275 return {LBVal, UBVal}; 2276 } 2277 2278 static void emitDistributeParallelForDistributeInnerBoundParams( 2279 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2280 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2281 const auto &Dir = cast<OMPLoopDirective>(S); 2282 LValue LB = 2283 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2284 llvm::Value *LBCast = 2285 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2286 CGF.SizeTy, /*isSigned=*/false); 2287 CapturedVars.push_back(LBCast); 2288 LValue UB = 2289 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2290 2291 llvm::Value *UBCast = 2292 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2293 CGF.SizeTy, /*isSigned=*/false); 2294 CapturedVars.push_back(UBCast); 2295 } 2296 2297 static void 2298 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2299 const OMPLoopDirective &S, 2300 CodeGenFunction::JumpDest LoopExit) { 2301 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2302 PrePostActionTy &Action) { 2303 Action.Enter(CGF); 2304 bool HasCancel = false; 2305 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2306 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2307 HasCancel = D->hasCancel(); 2308 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2309 HasCancel = D->hasCancel(); 2310 else if (const auto *D = 2311 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2312 HasCancel = D->hasCancel(); 2313 } 2314 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2315 HasCancel); 2316 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2317 emitDistributeParallelForInnerBounds, 2318 emitDistributeParallelForDispatchBounds); 2319 }; 2320 2321 emitCommonOMPParallelDirective( 2322 CGF, S, 2323 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2324 CGInlinedWorksharingLoop, 2325 emitDistributeParallelForDistributeInnerBoundParams); 2326 } 2327 2328 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2329 const OMPDistributeParallelForDirective &S) { 2330 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2331 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2332 S.getDistInc()); 2333 }; 2334 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2335 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2336 } 2337 2338 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2339 const OMPDistributeParallelForSimdDirective &S) { 2340 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2341 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2342 S.getDistInc()); 2343 }; 2344 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2345 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2346 } 2347 2348 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2349 const OMPDistributeSimdDirective &S) { 2350 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2351 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2352 }; 2353 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2354 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2355 } 2356 2357 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2358 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2359 // Emit SPMD target parallel for region as a standalone region. 2360 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2361 emitOMPSimdRegion(CGF, S, Action); 2362 }; 2363 llvm::Function *Fn; 2364 llvm::Constant *Addr; 2365 // Emit target region as a standalone region. 2366 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2367 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2368 assert(Fn && Addr && "Target device function emission failed."); 2369 } 2370 2371 void CodeGenFunction::EmitOMPTargetSimdDirective( 2372 const OMPTargetSimdDirective &S) { 2373 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2374 emitOMPSimdRegion(CGF, S, Action); 2375 }; 2376 emitCommonOMPTargetDirective(*this, S, CodeGen); 2377 } 2378 2379 namespace { 2380 struct ScheduleKindModifiersTy { 2381 OpenMPScheduleClauseKind Kind; 2382 OpenMPScheduleClauseModifier M1; 2383 OpenMPScheduleClauseModifier M2; 2384 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2385 OpenMPScheduleClauseModifier M1, 2386 OpenMPScheduleClauseModifier M2) 2387 : Kind(Kind), M1(M1), M2(M2) {} 2388 }; 2389 } // namespace 2390 2391 bool CodeGenFunction::EmitOMPWorksharingLoop( 2392 const OMPLoopDirective &S, Expr *EUB, 2393 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2394 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2395 // Emit the loop iteration variable. 2396 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2397 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2398 EmitVarDecl(*IVDecl); 2399 2400 // Emit the iterations count variable. 2401 // If it is not a variable, Sema decided to calculate iterations count on each 2402 // iteration (e.g., it is foldable into a constant). 2403 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2404 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2405 // Emit calculation of the iterations count. 2406 EmitIgnoredExpr(S.getCalcLastIteration()); 2407 } 2408 2409 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2410 2411 bool HasLastprivateClause; 2412 // Check pre-condition. 2413 { 2414 OMPLoopScope PreInitScope(*this, S); 2415 // Skip the entire loop if we don't meet the precondition. 2416 // If the condition constant folds and can be elided, avoid emitting the 2417 // whole loop. 2418 bool CondConstant; 2419 llvm::BasicBlock *ContBlock = nullptr; 2420 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2421 if (!CondConstant) 2422 return false; 2423 } else { 2424 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2425 ContBlock = createBasicBlock("omp.precond.end"); 2426 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2427 getProfileCount(&S)); 2428 EmitBlock(ThenBlock); 2429 incrementProfileCounter(&S); 2430 } 2431 2432 RunCleanupsScope DoacrossCleanupScope(*this); 2433 bool Ordered = false; 2434 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2435 if (OrderedClause->getNumForLoops()) 2436 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2437 else 2438 Ordered = true; 2439 } 2440 2441 llvm::DenseSet<const Expr *> EmittedFinals; 2442 emitAlignedClause(*this, S); 2443 bool HasLinears = EmitOMPLinearClauseInit(S); 2444 // Emit helper vars inits. 2445 2446 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2447 LValue LB = Bounds.first; 2448 LValue UB = Bounds.second; 2449 LValue ST = 2450 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2451 LValue IL = 2452 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2453 2454 // Emit 'then' code. 2455 { 2456 OMPPrivateScope LoopScope(*this); 2457 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2458 // Emit implicit barrier to synchronize threads and avoid data races on 2459 // initialization of firstprivate variables and post-update of 2460 // lastprivate variables. 2461 CGM.getOpenMPRuntime().emitBarrierCall( 2462 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2463 /*ForceSimpleCall=*/true); 2464 } 2465 EmitOMPPrivateClause(S, LoopScope); 2466 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2467 EmitOMPReductionClauseInit(S, LoopScope); 2468 EmitOMPPrivateLoopCounters(S, LoopScope); 2469 EmitOMPLinearClause(S, LoopScope); 2470 (void)LoopScope.Privatize(); 2471 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2472 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2473 2474 // Detect the loop schedule kind and chunk. 2475 const Expr *ChunkExpr = nullptr; 2476 OpenMPScheduleTy ScheduleKind; 2477 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2478 ScheduleKind.Schedule = C->getScheduleKind(); 2479 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2480 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2481 ChunkExpr = C->getChunkSize(); 2482 } else { 2483 // Default behaviour for schedule clause. 2484 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2485 *this, S, ScheduleKind.Schedule, ChunkExpr); 2486 } 2487 bool HasChunkSizeOne = false; 2488 llvm::Value *Chunk = nullptr; 2489 if (ChunkExpr) { 2490 Chunk = EmitScalarExpr(ChunkExpr); 2491 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2492 S.getIterationVariable()->getType(), 2493 S.getBeginLoc()); 2494 Expr::EvalResult Result; 2495 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2496 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2497 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2498 } 2499 } 2500 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2501 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2502 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2503 // If the static schedule kind is specified or if the ordered clause is 2504 // specified, and if no monotonic modifier is specified, the effect will 2505 // be as if the monotonic modifier was specified. 2506 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2507 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2508 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2509 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2510 /* Chunked */ Chunk != nullptr) || 2511 StaticChunkedOne) && 2512 !Ordered) { 2513 JumpDest LoopExit = 2514 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2515 emitCommonSimdLoop( 2516 *this, S, 2517 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2518 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2519 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2520 }, 2521 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2522 &S, ScheduleKind, LoopExit, 2523 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2524 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2525 // When no chunk_size is specified, the iteration space is divided 2526 // into chunks that are approximately equal in size, and at most 2527 // one chunk is distributed to each thread. Note that the size of 2528 // the chunks is unspecified in this case. 2529 CGOpenMPRuntime::StaticRTInput StaticInit( 2530 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2531 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2532 StaticChunkedOne ? Chunk : nullptr); 2533 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2534 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2535 StaticInit); 2536 // UB = min(UB, GlobalUB); 2537 if (!StaticChunkedOne) 2538 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2539 // IV = LB; 2540 CGF.EmitIgnoredExpr(S.getInit()); 2541 // For unchunked static schedule generate: 2542 // 2543 // while (idx <= UB) { 2544 // BODY; 2545 // ++idx; 2546 // } 2547 // 2548 // For static schedule with chunk one: 2549 // 2550 // while (IV <= PrevUB) { 2551 // BODY; 2552 // IV += ST; 2553 // } 2554 CGF.EmitOMPInnerLoop( 2555 S, LoopScope.requiresCleanups(), 2556 StaticChunkedOne ? S.getCombinedParForInDistCond() 2557 : S.getCond(), 2558 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2559 [&S, LoopExit](CodeGenFunction &CGF) { 2560 CGF.EmitOMPLoopBody(S, LoopExit); 2561 CGF.EmitStopPoint(&S); 2562 }, 2563 [](CodeGenFunction &) {}); 2564 }); 2565 EmitBlock(LoopExit.getBlock()); 2566 // Tell the runtime we are done. 2567 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2568 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2569 S.getDirectiveKind()); 2570 }; 2571 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2572 } else { 2573 const bool IsMonotonic = 2574 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2575 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2576 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2577 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2578 // Emit the outer loop, which requests its work chunk [LB..UB] from 2579 // runtime and runs the inner loop to process it. 2580 const OMPLoopArguments LoopArguments( 2581 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2582 IL.getAddress(*this), Chunk, EUB); 2583 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2584 LoopArguments, CGDispatchBounds); 2585 } 2586 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2587 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2588 return CGF.Builder.CreateIsNotNull( 2589 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2590 }); 2591 } 2592 EmitOMPReductionClauseFinal( 2593 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2594 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2595 : /*Parallel only*/ OMPD_parallel); 2596 // Emit post-update of the reduction variables if IsLastIter != 0. 2597 emitPostUpdateForReductionClause( 2598 *this, S, [IL, &S](CodeGenFunction &CGF) { 2599 return CGF.Builder.CreateIsNotNull( 2600 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2601 }); 2602 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2603 if (HasLastprivateClause) 2604 EmitOMPLastprivateClauseFinal( 2605 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2606 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2607 } 2608 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2609 return CGF.Builder.CreateIsNotNull( 2610 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2611 }); 2612 DoacrossCleanupScope.ForceCleanup(); 2613 // We're now done with the loop, so jump to the continuation block. 2614 if (ContBlock) { 2615 EmitBranch(ContBlock); 2616 EmitBlock(ContBlock, /*IsFinished=*/true); 2617 } 2618 } 2619 return HasLastprivateClause; 2620 } 2621 2622 /// The following two functions generate expressions for the loop lower 2623 /// and upper bounds in case of static and dynamic (dispatch) schedule 2624 /// of the associated 'for' or 'distribute' loop. 2625 static std::pair<LValue, LValue> 2626 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2627 const auto &LS = cast<OMPLoopDirective>(S); 2628 LValue LB = 2629 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2630 LValue UB = 2631 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2632 return {LB, UB}; 2633 } 2634 2635 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2636 /// consider the lower and upper bound expressions generated by the 2637 /// worksharing loop support, but we use 0 and the iteration space size as 2638 /// constants 2639 static std::pair<llvm::Value *, llvm::Value *> 2640 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2641 Address LB, Address UB) { 2642 const auto &LS = cast<OMPLoopDirective>(S); 2643 const Expr *IVExpr = LS.getIterationVariable(); 2644 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2645 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2646 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2647 return {LBVal, UBVal}; 2648 } 2649 2650 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2651 bool HasLastprivates = false; 2652 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2653 PrePostActionTy &) { 2654 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2655 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2656 emitForLoopBounds, 2657 emitDispatchForLoopBounds); 2658 }; 2659 { 2660 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2661 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2662 S.hasCancel()); 2663 } 2664 2665 // Emit an implicit barrier at the end. 2666 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2667 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2668 } 2669 2670 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2671 bool HasLastprivates = false; 2672 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2673 PrePostActionTy &) { 2674 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2675 emitForLoopBounds, 2676 emitDispatchForLoopBounds); 2677 }; 2678 { 2679 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2680 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2681 } 2682 2683 // Emit an implicit barrier at the end. 2684 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2685 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2686 } 2687 2688 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2689 const Twine &Name, 2690 llvm::Value *Init = nullptr) { 2691 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2692 if (Init) 2693 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2694 return LVal; 2695 } 2696 2697 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2698 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2699 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2700 bool HasLastprivates = false; 2701 auto &&CodeGen = [&S, CapturedStmt, CS, 2702 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2703 ASTContext &C = CGF.getContext(); 2704 QualType KmpInt32Ty = 2705 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2706 // Emit helper vars inits. 2707 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2708 CGF.Builder.getInt32(0)); 2709 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2710 ? CGF.Builder.getInt32(CS->size() - 1) 2711 : CGF.Builder.getInt32(0); 2712 LValue UB = 2713 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2714 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2715 CGF.Builder.getInt32(1)); 2716 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2717 CGF.Builder.getInt32(0)); 2718 // Loop counter. 2719 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2720 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2721 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2722 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2723 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2724 // Generate condition for loop. 2725 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2726 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2727 // Increment for loop counter. 2728 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2729 S.getBeginLoc(), true); 2730 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2731 // Iterate through all sections and emit a switch construct: 2732 // switch (IV) { 2733 // case 0: 2734 // <SectionStmt[0]>; 2735 // break; 2736 // ... 2737 // case <NumSection> - 1: 2738 // <SectionStmt[<NumSection> - 1]>; 2739 // break; 2740 // } 2741 // .omp.sections.exit: 2742 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2743 llvm::SwitchInst *SwitchStmt = 2744 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2745 ExitBB, CS == nullptr ? 1 : CS->size()); 2746 if (CS) { 2747 unsigned CaseNumber = 0; 2748 for (const Stmt *SubStmt : CS->children()) { 2749 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2750 CGF.EmitBlock(CaseBB); 2751 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2752 CGF.EmitStmt(SubStmt); 2753 CGF.EmitBranch(ExitBB); 2754 ++CaseNumber; 2755 } 2756 } else { 2757 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2758 CGF.EmitBlock(CaseBB); 2759 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2760 CGF.EmitStmt(CapturedStmt); 2761 CGF.EmitBranch(ExitBB); 2762 } 2763 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2764 }; 2765 2766 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2767 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2768 // Emit implicit barrier to synchronize threads and avoid data races on 2769 // initialization of firstprivate variables and post-update of lastprivate 2770 // variables. 2771 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2772 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2773 /*ForceSimpleCall=*/true); 2774 } 2775 CGF.EmitOMPPrivateClause(S, LoopScope); 2776 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2777 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2778 (void)LoopScope.Privatize(); 2779 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2780 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2781 2782 // Emit static non-chunked loop. 2783 OpenMPScheduleTy ScheduleKind; 2784 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2785 CGOpenMPRuntime::StaticRTInput StaticInit( 2786 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 2787 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 2788 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2789 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2790 // UB = min(UB, GlobalUB); 2791 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2792 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2793 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2794 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2795 // IV = LB; 2796 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2797 // while (idx <= UB) { BODY; ++idx; } 2798 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2799 [](CodeGenFunction &) {}); 2800 // Tell the runtime we are done. 2801 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2802 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2803 S.getDirectiveKind()); 2804 }; 2805 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2806 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2807 // Emit post-update of the reduction variables if IsLastIter != 0. 2808 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2809 return CGF.Builder.CreateIsNotNull( 2810 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2811 }); 2812 2813 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2814 if (HasLastprivates) 2815 CGF.EmitOMPLastprivateClauseFinal( 2816 S, /*NoFinals=*/false, 2817 CGF.Builder.CreateIsNotNull( 2818 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2819 }; 2820 2821 bool HasCancel = false; 2822 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2823 HasCancel = OSD->hasCancel(); 2824 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2825 HasCancel = OPSD->hasCancel(); 2826 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2827 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2828 HasCancel); 2829 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2830 // clause. Otherwise the barrier will be generated by the codegen for the 2831 // directive. 2832 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2833 // Emit implicit barrier to synchronize threads and avoid data races on 2834 // initialization of firstprivate variables. 2835 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2836 OMPD_unknown); 2837 } 2838 } 2839 2840 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2841 { 2842 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2843 EmitSections(S); 2844 } 2845 // Emit an implicit barrier at the end. 2846 if (!S.getSingleClause<OMPNowaitClause>()) { 2847 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2848 OMPD_sections); 2849 } 2850 } 2851 2852 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2853 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2854 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2855 }; 2856 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2857 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2858 S.hasCancel()); 2859 } 2860 2861 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2862 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2863 llvm::SmallVector<const Expr *, 8> DestExprs; 2864 llvm::SmallVector<const Expr *, 8> SrcExprs; 2865 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2866 // Check if there are any 'copyprivate' clauses associated with this 2867 // 'single' construct. 2868 // Build a list of copyprivate variables along with helper expressions 2869 // (<source>, <destination>, <destination>=<source> expressions) 2870 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2871 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2872 DestExprs.append(C->destination_exprs().begin(), 2873 C->destination_exprs().end()); 2874 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2875 AssignmentOps.append(C->assignment_ops().begin(), 2876 C->assignment_ops().end()); 2877 } 2878 // Emit code for 'single' region along with 'copyprivate' clauses 2879 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2880 Action.Enter(CGF); 2881 OMPPrivateScope SingleScope(CGF); 2882 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2883 CGF.EmitOMPPrivateClause(S, SingleScope); 2884 (void)SingleScope.Privatize(); 2885 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2886 }; 2887 { 2888 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2889 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2890 CopyprivateVars, DestExprs, 2891 SrcExprs, AssignmentOps); 2892 } 2893 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2894 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2895 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2896 CGM.getOpenMPRuntime().emitBarrierCall( 2897 *this, S.getBeginLoc(), 2898 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2899 } 2900 } 2901 2902 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2903 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2904 Action.Enter(CGF); 2905 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2906 }; 2907 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 2908 } 2909 2910 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2911 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2912 emitMaster(*this, S); 2913 } 2914 2915 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2916 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2917 Action.Enter(CGF); 2918 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2919 }; 2920 const Expr *Hint = nullptr; 2921 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2922 Hint = HintClause->getHint(); 2923 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2924 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2925 S.getDirectiveName().getAsString(), 2926 CodeGen, S.getBeginLoc(), Hint); 2927 } 2928 2929 void CodeGenFunction::EmitOMPParallelForDirective( 2930 const OMPParallelForDirective &S) { 2931 // Emit directive as a combined directive that consists of two implicit 2932 // directives: 'parallel' with 'for' directive. 2933 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2934 Action.Enter(CGF); 2935 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2936 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2937 emitDispatchForLoopBounds); 2938 }; 2939 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2940 emitEmptyBoundParameters); 2941 } 2942 2943 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2944 const OMPParallelForSimdDirective &S) { 2945 // Emit directive as a combined directive that consists of two implicit 2946 // directives: 'parallel' with 'for' directive. 2947 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2948 Action.Enter(CGF); 2949 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2950 emitDispatchForLoopBounds); 2951 }; 2952 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2953 emitEmptyBoundParameters); 2954 } 2955 2956 void CodeGenFunction::EmitOMPParallelMasterDirective( 2957 const OMPParallelMasterDirective &S) { 2958 // Emit directive as a combined directive that consists of two implicit 2959 // directives: 'parallel' with 'master' directive. 2960 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2961 Action.Enter(CGF); 2962 OMPPrivateScope PrivateScope(CGF); 2963 bool Copyins = CGF.EmitOMPCopyinClause(S); 2964 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 2965 if (Copyins) { 2966 // Emit implicit barrier to synchronize threads and avoid data races on 2967 // propagation master's thread values of threadprivate variables to local 2968 // instances of that variables of all other implicit threads. 2969 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2970 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2971 /*ForceSimpleCall=*/true); 2972 } 2973 CGF.EmitOMPPrivateClause(S, PrivateScope); 2974 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 2975 (void)PrivateScope.Privatize(); 2976 emitMaster(CGF, S); 2977 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2978 }; 2979 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 2980 emitEmptyBoundParameters); 2981 emitPostUpdateForReductionClause(*this, S, 2982 [](CodeGenFunction &) { return nullptr; }); 2983 } 2984 2985 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2986 const OMPParallelSectionsDirective &S) { 2987 // Emit directive as a combined directive that consists of two implicit 2988 // directives: 'parallel' with 'sections' directive. 2989 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2990 Action.Enter(CGF); 2991 CGF.EmitSections(S); 2992 }; 2993 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2994 emitEmptyBoundParameters); 2995 } 2996 2997 void CodeGenFunction::EmitOMPTaskBasedDirective( 2998 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2999 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3000 OMPTaskDataTy &Data) { 3001 // Emit outlined function for task construct. 3002 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3003 auto I = CS->getCapturedDecl()->param_begin(); 3004 auto PartId = std::next(I); 3005 auto TaskT = std::next(I, 4); 3006 // Check if the task is final 3007 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3008 // If the condition constant folds and can be elided, try to avoid emitting 3009 // the condition and the dead arm of the if/else. 3010 const Expr *Cond = Clause->getCondition(); 3011 bool CondConstant; 3012 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3013 Data.Final.setInt(CondConstant); 3014 else 3015 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3016 } else { 3017 // By default the task is not final. 3018 Data.Final.setInt(/*IntVal=*/false); 3019 } 3020 // Check if the task has 'priority' clause. 3021 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3022 const Expr *Prio = Clause->getPriority(); 3023 Data.Priority.setInt(/*IntVal=*/true); 3024 Data.Priority.setPointer(EmitScalarConversion( 3025 EmitScalarExpr(Prio), Prio->getType(), 3026 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3027 Prio->getExprLoc())); 3028 } 3029 // The first function argument for tasks is a thread id, the second one is a 3030 // part id (0 for tied tasks, >=0 for untied task). 3031 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3032 // Get list of private variables. 3033 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3034 auto IRef = C->varlist_begin(); 3035 for (const Expr *IInit : C->private_copies()) { 3036 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3037 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3038 Data.PrivateVars.push_back(*IRef); 3039 Data.PrivateCopies.push_back(IInit); 3040 } 3041 ++IRef; 3042 } 3043 } 3044 EmittedAsPrivate.clear(); 3045 // Get list of firstprivate variables. 3046 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3047 auto IRef = C->varlist_begin(); 3048 auto IElemInitRef = C->inits().begin(); 3049 for (const Expr *IInit : C->private_copies()) { 3050 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3051 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3052 Data.FirstprivateVars.push_back(*IRef); 3053 Data.FirstprivateCopies.push_back(IInit); 3054 Data.FirstprivateInits.push_back(*IElemInitRef); 3055 } 3056 ++IRef; 3057 ++IElemInitRef; 3058 } 3059 } 3060 // Get list of lastprivate variables (for taskloops). 3061 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3062 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3063 auto IRef = C->varlist_begin(); 3064 auto ID = C->destination_exprs().begin(); 3065 for (const Expr *IInit : C->private_copies()) { 3066 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3067 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3068 Data.LastprivateVars.push_back(*IRef); 3069 Data.LastprivateCopies.push_back(IInit); 3070 } 3071 LastprivateDstsOrigs.insert( 3072 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3073 cast<DeclRefExpr>(*IRef)}); 3074 ++IRef; 3075 ++ID; 3076 } 3077 } 3078 SmallVector<const Expr *, 4> LHSs; 3079 SmallVector<const Expr *, 4> RHSs; 3080 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3081 auto IPriv = C->privates().begin(); 3082 auto IRed = C->reduction_ops().begin(); 3083 auto ILHS = C->lhs_exprs().begin(); 3084 auto IRHS = C->rhs_exprs().begin(); 3085 for (const Expr *Ref : C->varlists()) { 3086 Data.ReductionVars.emplace_back(Ref); 3087 Data.ReductionCopies.emplace_back(*IPriv); 3088 Data.ReductionOps.emplace_back(*IRed); 3089 LHSs.emplace_back(*ILHS); 3090 RHSs.emplace_back(*IRHS); 3091 std::advance(IPriv, 1); 3092 std::advance(IRed, 1); 3093 std::advance(ILHS, 1); 3094 std::advance(IRHS, 1); 3095 } 3096 } 3097 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3098 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3099 // Build list of dependences. 3100 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3101 for (const Expr *IRef : C->varlists()) 3102 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3103 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3104 CapturedRegion](CodeGenFunction &CGF, 3105 PrePostActionTy &Action) { 3106 // Set proper addresses for generated private copies. 3107 OMPPrivateScope Scope(CGF); 3108 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3109 !Data.LastprivateVars.empty()) { 3110 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3111 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3112 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3113 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3114 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3115 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3116 CS->getCapturedDecl()->getParam(PrivatesParam))); 3117 // Map privates. 3118 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3119 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3120 CallArgs.push_back(PrivatesPtr); 3121 for (const Expr *E : Data.PrivateVars) { 3122 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3123 Address PrivatePtr = CGF.CreateMemTemp( 3124 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3125 PrivatePtrs.emplace_back(VD, PrivatePtr); 3126 CallArgs.push_back(PrivatePtr.getPointer()); 3127 } 3128 for (const Expr *E : Data.FirstprivateVars) { 3129 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3130 Address PrivatePtr = 3131 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3132 ".firstpriv.ptr.addr"); 3133 PrivatePtrs.emplace_back(VD, PrivatePtr); 3134 CallArgs.push_back(PrivatePtr.getPointer()); 3135 } 3136 for (const Expr *E : Data.LastprivateVars) { 3137 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3138 Address PrivatePtr = 3139 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3140 ".lastpriv.ptr.addr"); 3141 PrivatePtrs.emplace_back(VD, PrivatePtr); 3142 CallArgs.push_back(PrivatePtr.getPointer()); 3143 } 3144 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3145 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3146 for (const auto &Pair : LastprivateDstsOrigs) { 3147 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3148 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3149 /*RefersToEnclosingVariableOrCapture=*/ 3150 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3151 Pair.second->getType(), VK_LValue, 3152 Pair.second->getExprLoc()); 3153 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3154 return CGF.EmitLValue(&DRE).getAddress(CGF); 3155 }); 3156 } 3157 for (const auto &Pair : PrivatePtrs) { 3158 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3159 CGF.getContext().getDeclAlign(Pair.first)); 3160 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3161 } 3162 } 3163 if (Data.Reductions) { 3164 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3165 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3166 Data.ReductionOps); 3167 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3168 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3169 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3170 RedCG.emitSharedLValue(CGF, Cnt); 3171 RedCG.emitAggregateType(CGF, Cnt); 3172 // FIXME: This must removed once the runtime library is fixed. 3173 // Emit required threadprivate variables for 3174 // initializer/combiner/finalizer. 3175 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3176 RedCG, Cnt); 3177 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3178 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3179 Replacement = 3180 Address(CGF.EmitScalarConversion( 3181 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3182 CGF.getContext().getPointerType( 3183 Data.ReductionCopies[Cnt]->getType()), 3184 Data.ReductionCopies[Cnt]->getExprLoc()), 3185 Replacement.getAlignment()); 3186 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3187 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3188 [Replacement]() { return Replacement; }); 3189 } 3190 } 3191 // Privatize all private variables except for in_reduction items. 3192 (void)Scope.Privatize(); 3193 SmallVector<const Expr *, 4> InRedVars; 3194 SmallVector<const Expr *, 4> InRedPrivs; 3195 SmallVector<const Expr *, 4> InRedOps; 3196 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3197 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3198 auto IPriv = C->privates().begin(); 3199 auto IRed = C->reduction_ops().begin(); 3200 auto ITD = C->taskgroup_descriptors().begin(); 3201 for (const Expr *Ref : C->varlists()) { 3202 InRedVars.emplace_back(Ref); 3203 InRedPrivs.emplace_back(*IPriv); 3204 InRedOps.emplace_back(*IRed); 3205 TaskgroupDescriptors.emplace_back(*ITD); 3206 std::advance(IPriv, 1); 3207 std::advance(IRed, 1); 3208 std::advance(ITD, 1); 3209 } 3210 } 3211 // Privatize in_reduction items here, because taskgroup descriptors must be 3212 // privatized earlier. 3213 OMPPrivateScope InRedScope(CGF); 3214 if (!InRedVars.empty()) { 3215 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3216 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3217 RedCG.emitSharedLValue(CGF, Cnt); 3218 RedCG.emitAggregateType(CGF, Cnt); 3219 // The taskgroup descriptor variable is always implicit firstprivate and 3220 // privatized already during processing of the firstprivates. 3221 // FIXME: This must removed once the runtime library is fixed. 3222 // Emit required threadprivate variables for 3223 // initializer/combiner/finalizer. 3224 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3225 RedCG, Cnt); 3226 llvm::Value *ReductionsPtr = 3227 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3228 TaskgroupDescriptors[Cnt]->getExprLoc()); 3229 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3230 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3231 Replacement = Address( 3232 CGF.EmitScalarConversion( 3233 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3234 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3235 InRedPrivs[Cnt]->getExprLoc()), 3236 Replacement.getAlignment()); 3237 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3238 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3239 [Replacement]() { return Replacement; }); 3240 } 3241 } 3242 (void)InRedScope.Privatize(); 3243 3244 Action.Enter(CGF); 3245 BodyGen(CGF); 3246 }; 3247 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3248 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3249 Data.NumberOfParts); 3250 OMPLexicalScope Scope(*this, S, llvm::None, 3251 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3252 !isOpenMPSimdDirective(S.getDirectiveKind())); 3253 TaskGen(*this, OutlinedFn, Data); 3254 } 3255 3256 static ImplicitParamDecl * 3257 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3258 QualType Ty, CapturedDecl *CD, 3259 SourceLocation Loc) { 3260 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3261 ImplicitParamDecl::Other); 3262 auto *OrigRef = DeclRefExpr::Create( 3263 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3264 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3265 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3266 ImplicitParamDecl::Other); 3267 auto *PrivateRef = DeclRefExpr::Create( 3268 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3269 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3270 QualType ElemType = C.getBaseElementType(Ty); 3271 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3272 ImplicitParamDecl::Other); 3273 auto *InitRef = DeclRefExpr::Create( 3274 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3275 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3276 PrivateVD->setInitStyle(VarDecl::CInit); 3277 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3278 InitRef, /*BasePath=*/nullptr, 3279 VK_RValue)); 3280 Data.FirstprivateVars.emplace_back(OrigRef); 3281 Data.FirstprivateCopies.emplace_back(PrivateRef); 3282 Data.FirstprivateInits.emplace_back(InitRef); 3283 return OrigVD; 3284 } 3285 3286 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3287 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3288 OMPTargetDataInfo &InputInfo) { 3289 // Emit outlined function for task construct. 3290 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3291 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3292 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3293 auto I = CS->getCapturedDecl()->param_begin(); 3294 auto PartId = std::next(I); 3295 auto TaskT = std::next(I, 4); 3296 OMPTaskDataTy Data; 3297 // The task is not final. 3298 Data.Final.setInt(/*IntVal=*/false); 3299 // Get list of firstprivate variables. 3300 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3301 auto IRef = C->varlist_begin(); 3302 auto IElemInitRef = C->inits().begin(); 3303 for (auto *IInit : C->private_copies()) { 3304 Data.FirstprivateVars.push_back(*IRef); 3305 Data.FirstprivateCopies.push_back(IInit); 3306 Data.FirstprivateInits.push_back(*IElemInitRef); 3307 ++IRef; 3308 ++IElemInitRef; 3309 } 3310 } 3311 OMPPrivateScope TargetScope(*this); 3312 VarDecl *BPVD = nullptr; 3313 VarDecl *PVD = nullptr; 3314 VarDecl *SVD = nullptr; 3315 if (InputInfo.NumberOfTargetItems > 0) { 3316 auto *CD = CapturedDecl::Create( 3317 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3318 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3319 QualType BaseAndPointersType = getContext().getConstantArrayType( 3320 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3321 /*IndexTypeQuals=*/0); 3322 BPVD = createImplicitFirstprivateForType( 3323 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3324 PVD = createImplicitFirstprivateForType( 3325 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3326 QualType SizesType = getContext().getConstantArrayType( 3327 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3328 ArrSize, nullptr, ArrayType::Normal, 3329 /*IndexTypeQuals=*/0); 3330 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3331 S.getBeginLoc()); 3332 TargetScope.addPrivate( 3333 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3334 TargetScope.addPrivate(PVD, 3335 [&InputInfo]() { return InputInfo.PointersArray; }); 3336 TargetScope.addPrivate(SVD, 3337 [&InputInfo]() { return InputInfo.SizesArray; }); 3338 } 3339 (void)TargetScope.Privatize(); 3340 // Build list of dependences. 3341 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3342 for (const Expr *IRef : C->varlists()) 3343 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3344 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3345 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3346 // Set proper addresses for generated private copies. 3347 OMPPrivateScope Scope(CGF); 3348 if (!Data.FirstprivateVars.empty()) { 3349 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3350 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3351 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3352 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3353 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3354 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3355 CS->getCapturedDecl()->getParam(PrivatesParam))); 3356 // Map privates. 3357 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3358 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3359 CallArgs.push_back(PrivatesPtr); 3360 for (const Expr *E : Data.FirstprivateVars) { 3361 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3362 Address PrivatePtr = 3363 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3364 ".firstpriv.ptr.addr"); 3365 PrivatePtrs.emplace_back(VD, PrivatePtr); 3366 CallArgs.push_back(PrivatePtr.getPointer()); 3367 } 3368 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3369 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3370 for (const auto &Pair : PrivatePtrs) { 3371 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3372 CGF.getContext().getDeclAlign(Pair.first)); 3373 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3374 } 3375 } 3376 // Privatize all private variables except for in_reduction items. 3377 (void)Scope.Privatize(); 3378 if (InputInfo.NumberOfTargetItems > 0) { 3379 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3380 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3381 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3382 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3383 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3384 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3385 } 3386 3387 Action.Enter(CGF); 3388 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3389 BodyGen(CGF); 3390 }; 3391 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3392 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3393 Data.NumberOfParts); 3394 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3395 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3396 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3397 SourceLocation()); 3398 3399 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3400 SharedsTy, CapturedStruct, &IfCond, Data); 3401 } 3402 3403 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3404 // Emit outlined function for task construct. 3405 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3406 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3407 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3408 const Expr *IfCond = nullptr; 3409 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3410 if (C->getNameModifier() == OMPD_unknown || 3411 C->getNameModifier() == OMPD_task) { 3412 IfCond = C->getCondition(); 3413 break; 3414 } 3415 } 3416 3417 OMPTaskDataTy Data; 3418 // Check if we should emit tied or untied task. 3419 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3420 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3421 CGF.EmitStmt(CS->getCapturedStmt()); 3422 }; 3423 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3424 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3425 const OMPTaskDataTy &Data) { 3426 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3427 SharedsTy, CapturedStruct, IfCond, 3428 Data); 3429 }; 3430 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3431 } 3432 3433 void CodeGenFunction::EmitOMPTaskyieldDirective( 3434 const OMPTaskyieldDirective &S) { 3435 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3436 } 3437 3438 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3439 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3440 } 3441 3442 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3443 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3444 } 3445 3446 void CodeGenFunction::EmitOMPTaskgroupDirective( 3447 const OMPTaskgroupDirective &S) { 3448 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3449 Action.Enter(CGF); 3450 if (const Expr *E = S.getReductionRef()) { 3451 SmallVector<const Expr *, 4> LHSs; 3452 SmallVector<const Expr *, 4> RHSs; 3453 OMPTaskDataTy Data; 3454 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3455 auto IPriv = C->privates().begin(); 3456 auto IRed = C->reduction_ops().begin(); 3457 auto ILHS = C->lhs_exprs().begin(); 3458 auto IRHS = C->rhs_exprs().begin(); 3459 for (const Expr *Ref : C->varlists()) { 3460 Data.ReductionVars.emplace_back(Ref); 3461 Data.ReductionCopies.emplace_back(*IPriv); 3462 Data.ReductionOps.emplace_back(*IRed); 3463 LHSs.emplace_back(*ILHS); 3464 RHSs.emplace_back(*IRHS); 3465 std::advance(IPriv, 1); 3466 std::advance(IRed, 1); 3467 std::advance(ILHS, 1); 3468 std::advance(IRHS, 1); 3469 } 3470 } 3471 llvm::Value *ReductionDesc = 3472 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3473 LHSs, RHSs, Data); 3474 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3475 CGF.EmitVarDecl(*VD); 3476 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3477 /*Volatile=*/false, E->getType()); 3478 } 3479 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3480 }; 3481 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3482 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3483 } 3484 3485 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3486 CGM.getOpenMPRuntime().emitFlush( 3487 *this, 3488 [&S]() -> ArrayRef<const Expr *> { 3489 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3490 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3491 FlushClause->varlist_end()); 3492 return llvm::None; 3493 }(), 3494 S.getBeginLoc()); 3495 } 3496 3497 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3498 const CodeGenLoopTy &CodeGenLoop, 3499 Expr *IncExpr) { 3500 // Emit the loop iteration variable. 3501 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3502 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3503 EmitVarDecl(*IVDecl); 3504 3505 // Emit the iterations count variable. 3506 // If it is not a variable, Sema decided to calculate iterations count on each 3507 // iteration (e.g., it is foldable into a constant). 3508 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3509 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3510 // Emit calculation of the iterations count. 3511 EmitIgnoredExpr(S.getCalcLastIteration()); 3512 } 3513 3514 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3515 3516 bool HasLastprivateClause = false; 3517 // Check pre-condition. 3518 { 3519 OMPLoopScope PreInitScope(*this, S); 3520 // Skip the entire loop if we don't meet the precondition. 3521 // If the condition constant folds and can be elided, avoid emitting the 3522 // whole loop. 3523 bool CondConstant; 3524 llvm::BasicBlock *ContBlock = nullptr; 3525 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3526 if (!CondConstant) 3527 return; 3528 } else { 3529 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3530 ContBlock = createBasicBlock("omp.precond.end"); 3531 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3532 getProfileCount(&S)); 3533 EmitBlock(ThenBlock); 3534 incrementProfileCounter(&S); 3535 } 3536 3537 emitAlignedClause(*this, S); 3538 // Emit 'then' code. 3539 { 3540 // Emit helper vars inits. 3541 3542 LValue LB = EmitOMPHelperVar( 3543 *this, cast<DeclRefExpr>( 3544 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3545 ? S.getCombinedLowerBoundVariable() 3546 : S.getLowerBoundVariable()))); 3547 LValue UB = EmitOMPHelperVar( 3548 *this, cast<DeclRefExpr>( 3549 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3550 ? S.getCombinedUpperBoundVariable() 3551 : S.getUpperBoundVariable()))); 3552 LValue ST = 3553 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3554 LValue IL = 3555 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3556 3557 OMPPrivateScope LoopScope(*this); 3558 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3559 // Emit implicit barrier to synchronize threads and avoid data races 3560 // on initialization of firstprivate variables and post-update of 3561 // lastprivate variables. 3562 CGM.getOpenMPRuntime().emitBarrierCall( 3563 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3564 /*ForceSimpleCall=*/true); 3565 } 3566 EmitOMPPrivateClause(S, LoopScope); 3567 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3568 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3569 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3570 EmitOMPReductionClauseInit(S, LoopScope); 3571 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3572 EmitOMPPrivateLoopCounters(S, LoopScope); 3573 (void)LoopScope.Privatize(); 3574 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3575 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3576 3577 // Detect the distribute schedule kind and chunk. 3578 llvm::Value *Chunk = nullptr; 3579 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3580 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3581 ScheduleKind = C->getDistScheduleKind(); 3582 if (const Expr *Ch = C->getChunkSize()) { 3583 Chunk = EmitScalarExpr(Ch); 3584 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3585 S.getIterationVariable()->getType(), 3586 S.getBeginLoc()); 3587 } 3588 } else { 3589 // Default behaviour for dist_schedule clause. 3590 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3591 *this, S, ScheduleKind, Chunk); 3592 } 3593 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3594 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3595 3596 // OpenMP [2.10.8, distribute Construct, Description] 3597 // If dist_schedule is specified, kind must be static. If specified, 3598 // iterations are divided into chunks of size chunk_size, chunks are 3599 // assigned to the teams of the league in a round-robin fashion in the 3600 // order of the team number. When no chunk_size is specified, the 3601 // iteration space is divided into chunks that are approximately equal 3602 // in size, and at most one chunk is distributed to each team of the 3603 // league. The size of the chunks is unspecified in this case. 3604 bool StaticChunked = RT.isStaticChunked( 3605 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3606 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3607 if (RT.isStaticNonchunked(ScheduleKind, 3608 /* Chunked */ Chunk != nullptr) || 3609 StaticChunked) { 3610 CGOpenMPRuntime::StaticRTInput StaticInit( 3611 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 3612 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3613 StaticChunked ? Chunk : nullptr); 3614 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3615 StaticInit); 3616 JumpDest LoopExit = 3617 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3618 // UB = min(UB, GlobalUB); 3619 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3620 ? S.getCombinedEnsureUpperBound() 3621 : S.getEnsureUpperBound()); 3622 // IV = LB; 3623 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3624 ? S.getCombinedInit() 3625 : S.getInit()); 3626 3627 const Expr *Cond = 3628 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3629 ? S.getCombinedCond() 3630 : S.getCond(); 3631 3632 if (StaticChunked) 3633 Cond = S.getCombinedDistCond(); 3634 3635 // For static unchunked schedules generate: 3636 // 3637 // 1. For distribute alone, codegen 3638 // while (idx <= UB) { 3639 // BODY; 3640 // ++idx; 3641 // } 3642 // 3643 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3644 // while (idx <= UB) { 3645 // <CodeGen rest of pragma>(LB, UB); 3646 // idx += ST; 3647 // } 3648 // 3649 // For static chunk one schedule generate: 3650 // 3651 // while (IV <= GlobalUB) { 3652 // <CodeGen rest of pragma>(LB, UB); 3653 // LB += ST; 3654 // UB += ST; 3655 // UB = min(UB, GlobalUB); 3656 // IV = LB; 3657 // } 3658 // 3659 emitCommonSimdLoop( 3660 *this, S, 3661 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3662 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3663 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3664 }, 3665 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 3666 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 3667 CGF.EmitOMPInnerLoop( 3668 S, LoopScope.requiresCleanups(), Cond, IncExpr, 3669 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3670 CodeGenLoop(CGF, S, LoopExit); 3671 }, 3672 [&S, StaticChunked](CodeGenFunction &CGF) { 3673 if (StaticChunked) { 3674 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3675 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3676 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3677 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3678 } 3679 }); 3680 }); 3681 EmitBlock(LoopExit.getBlock()); 3682 // Tell the runtime we are done. 3683 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3684 } else { 3685 // Emit the outer loop, which requests its work chunk [LB..UB] from 3686 // runtime and runs the inner loop to process it. 3687 const OMPLoopArguments LoopArguments = { 3688 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3689 IL.getAddress(*this), Chunk}; 3690 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3691 CodeGenLoop); 3692 } 3693 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3694 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3695 return CGF.Builder.CreateIsNotNull( 3696 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3697 }); 3698 } 3699 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3700 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3701 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3702 EmitOMPReductionClauseFinal(S, OMPD_simd); 3703 // Emit post-update of the reduction variables if IsLastIter != 0. 3704 emitPostUpdateForReductionClause( 3705 *this, S, [IL, &S](CodeGenFunction &CGF) { 3706 return CGF.Builder.CreateIsNotNull( 3707 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3708 }); 3709 } 3710 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3711 if (HasLastprivateClause) { 3712 EmitOMPLastprivateClauseFinal( 3713 S, /*NoFinals=*/false, 3714 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3715 } 3716 } 3717 3718 // We're now done with the loop, so jump to the continuation block. 3719 if (ContBlock) { 3720 EmitBranch(ContBlock); 3721 EmitBlock(ContBlock, true); 3722 } 3723 } 3724 } 3725 3726 void CodeGenFunction::EmitOMPDistributeDirective( 3727 const OMPDistributeDirective &S) { 3728 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3729 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3730 }; 3731 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3732 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3733 } 3734 3735 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3736 const CapturedStmt *S) { 3737 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3738 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3739 CGF.CapturedStmtInfo = &CapStmtInfo; 3740 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3741 Fn->setDoesNotRecurse(); 3742 return Fn; 3743 } 3744 3745 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3746 if (S.hasClausesOfKind<OMPDependClause>()) { 3747 assert(!S.getAssociatedStmt() && 3748 "No associated statement must be in ordered depend construct."); 3749 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3750 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3751 return; 3752 } 3753 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3754 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3755 PrePostActionTy &Action) { 3756 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3757 if (C) { 3758 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3759 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3760 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3761 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3762 OutlinedFn, CapturedVars); 3763 } else { 3764 Action.Enter(CGF); 3765 CGF.EmitStmt(CS->getCapturedStmt()); 3766 } 3767 }; 3768 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3769 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3770 } 3771 3772 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3773 QualType SrcType, QualType DestType, 3774 SourceLocation Loc) { 3775 assert(CGF.hasScalarEvaluationKind(DestType) && 3776 "DestType must have scalar evaluation kind."); 3777 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3778 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3779 DestType, Loc) 3780 : CGF.EmitComplexToScalarConversion( 3781 Val.getComplexVal(), SrcType, DestType, Loc); 3782 } 3783 3784 static CodeGenFunction::ComplexPairTy 3785 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3786 QualType DestType, SourceLocation Loc) { 3787 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3788 "DestType must have complex evaluation kind."); 3789 CodeGenFunction::ComplexPairTy ComplexVal; 3790 if (Val.isScalar()) { 3791 // Convert the input element to the element type of the complex. 3792 QualType DestElementType = 3793 DestType->castAs<ComplexType>()->getElementType(); 3794 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3795 Val.getScalarVal(), SrcType, DestElementType, Loc); 3796 ComplexVal = CodeGenFunction::ComplexPairTy( 3797 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3798 } else { 3799 assert(Val.isComplex() && "Must be a scalar or complex."); 3800 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3801 QualType DestElementType = 3802 DestType->castAs<ComplexType>()->getElementType(); 3803 ComplexVal.first = CGF.EmitScalarConversion( 3804 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3805 ComplexVal.second = CGF.EmitScalarConversion( 3806 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3807 } 3808 return ComplexVal; 3809 } 3810 3811 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3812 LValue LVal, RValue RVal) { 3813 if (LVal.isGlobalReg()) { 3814 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3815 } else { 3816 CGF.EmitAtomicStore(RVal, LVal, 3817 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3818 : llvm::AtomicOrdering::Monotonic, 3819 LVal.isVolatile(), /*isInit=*/false); 3820 } 3821 } 3822 3823 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3824 QualType RValTy, SourceLocation Loc) { 3825 switch (getEvaluationKind(LVal.getType())) { 3826 case TEK_Scalar: 3827 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3828 *this, RVal, RValTy, LVal.getType(), Loc)), 3829 LVal); 3830 break; 3831 case TEK_Complex: 3832 EmitStoreOfComplex( 3833 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3834 /*isInit=*/false); 3835 break; 3836 case TEK_Aggregate: 3837 llvm_unreachable("Must be a scalar or complex."); 3838 } 3839 } 3840 3841 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3842 const Expr *X, const Expr *V, 3843 SourceLocation Loc) { 3844 // v = x; 3845 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3846 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3847 LValue XLValue = CGF.EmitLValue(X); 3848 LValue VLValue = CGF.EmitLValue(V); 3849 RValue Res = XLValue.isGlobalReg() 3850 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3851 : CGF.EmitAtomicLoad( 3852 XLValue, Loc, 3853 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3854 : llvm::AtomicOrdering::Monotonic, 3855 XLValue.isVolatile()); 3856 // OpenMP, 2.12.6, atomic Construct 3857 // Any atomic construct with a seq_cst clause forces the atomically 3858 // performed operation to include an implicit flush operation without a 3859 // list. 3860 if (IsSeqCst) 3861 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3862 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3863 } 3864 3865 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3866 const Expr *X, const Expr *E, 3867 SourceLocation Loc) { 3868 // x = expr; 3869 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3870 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3871 // OpenMP, 2.12.6, atomic Construct 3872 // Any atomic construct with a seq_cst clause forces the atomically 3873 // performed operation to include an implicit flush operation without a 3874 // list. 3875 if (IsSeqCst) 3876 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3877 } 3878 3879 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3880 RValue Update, 3881 BinaryOperatorKind BO, 3882 llvm::AtomicOrdering AO, 3883 bool IsXLHSInRHSPart) { 3884 ASTContext &Context = CGF.getContext(); 3885 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3886 // expression is simple and atomic is allowed for the given type for the 3887 // target platform. 3888 if (BO == BO_Comma || !Update.isScalar() || 3889 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 3890 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3891 (Update.getScalarVal()->getType() != 3892 X.getAddress(CGF).getElementType())) || 3893 !X.getAddress(CGF).getElementType()->isIntegerTy() || 3894 !Context.getTargetInfo().hasBuiltinAtomic( 3895 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3896 return std::make_pair(false, RValue::get(nullptr)); 3897 3898 llvm::AtomicRMWInst::BinOp RMWOp; 3899 switch (BO) { 3900 case BO_Add: 3901 RMWOp = llvm::AtomicRMWInst::Add; 3902 break; 3903 case BO_Sub: 3904 if (!IsXLHSInRHSPart) 3905 return std::make_pair(false, RValue::get(nullptr)); 3906 RMWOp = llvm::AtomicRMWInst::Sub; 3907 break; 3908 case BO_And: 3909 RMWOp = llvm::AtomicRMWInst::And; 3910 break; 3911 case BO_Or: 3912 RMWOp = llvm::AtomicRMWInst::Or; 3913 break; 3914 case BO_Xor: 3915 RMWOp = llvm::AtomicRMWInst::Xor; 3916 break; 3917 case BO_LT: 3918 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3919 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3920 : llvm::AtomicRMWInst::Max) 3921 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3922 : llvm::AtomicRMWInst::UMax); 3923 break; 3924 case BO_GT: 3925 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3926 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3927 : llvm::AtomicRMWInst::Min) 3928 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3929 : llvm::AtomicRMWInst::UMin); 3930 break; 3931 case BO_Assign: 3932 RMWOp = llvm::AtomicRMWInst::Xchg; 3933 break; 3934 case BO_Mul: 3935 case BO_Div: 3936 case BO_Rem: 3937 case BO_Shl: 3938 case BO_Shr: 3939 case BO_LAnd: 3940 case BO_LOr: 3941 return std::make_pair(false, RValue::get(nullptr)); 3942 case BO_PtrMemD: 3943 case BO_PtrMemI: 3944 case BO_LE: 3945 case BO_GE: 3946 case BO_EQ: 3947 case BO_NE: 3948 case BO_Cmp: 3949 case BO_AddAssign: 3950 case BO_SubAssign: 3951 case BO_AndAssign: 3952 case BO_OrAssign: 3953 case BO_XorAssign: 3954 case BO_MulAssign: 3955 case BO_DivAssign: 3956 case BO_RemAssign: 3957 case BO_ShlAssign: 3958 case BO_ShrAssign: 3959 case BO_Comma: 3960 llvm_unreachable("Unsupported atomic update operation"); 3961 } 3962 llvm::Value *UpdateVal = Update.getScalarVal(); 3963 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3964 UpdateVal = CGF.Builder.CreateIntCast( 3965 IC, X.getAddress(CGF).getElementType(), 3966 X.getType()->hasSignedIntegerRepresentation()); 3967 } 3968 llvm::Value *Res = 3969 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 3970 return std::make_pair(true, RValue::get(Res)); 3971 } 3972 3973 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3974 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3975 llvm::AtomicOrdering AO, SourceLocation Loc, 3976 const llvm::function_ref<RValue(RValue)> CommonGen) { 3977 // Update expressions are allowed to have the following forms: 3978 // x binop= expr; -> xrval + expr; 3979 // x++, ++x -> xrval + 1; 3980 // x--, --x -> xrval - 1; 3981 // x = x binop expr; -> xrval binop expr 3982 // x = expr Op x; - > expr binop xrval; 3983 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3984 if (!Res.first) { 3985 if (X.isGlobalReg()) { 3986 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3987 // 'xrval'. 3988 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3989 } else { 3990 // Perform compare-and-swap procedure. 3991 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3992 } 3993 } 3994 return Res; 3995 } 3996 3997 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3998 const Expr *X, const Expr *E, 3999 const Expr *UE, bool IsXLHSInRHSPart, 4000 SourceLocation Loc) { 4001 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4002 "Update expr in 'atomic update' must be a binary operator."); 4003 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4004 // Update expressions are allowed to have the following forms: 4005 // x binop= expr; -> xrval + expr; 4006 // x++, ++x -> xrval + 1; 4007 // x--, --x -> xrval - 1; 4008 // x = x binop expr; -> xrval binop expr 4009 // x = expr Op x; - > expr binop xrval; 4010 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4011 LValue XLValue = CGF.EmitLValue(X); 4012 RValue ExprRValue = CGF.EmitAnyExpr(E); 4013 llvm::AtomicOrdering AO = IsSeqCst 4014 ? llvm::AtomicOrdering::SequentiallyConsistent 4015 : llvm::AtomicOrdering::Monotonic; 4016 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4017 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4018 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4019 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4020 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4021 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4022 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4023 return CGF.EmitAnyExpr(UE); 4024 }; 4025 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4026 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4027 // OpenMP, 2.12.6, atomic Construct 4028 // Any atomic construct with a seq_cst clause forces the atomically 4029 // performed operation to include an implicit flush operation without a 4030 // list. 4031 if (IsSeqCst) 4032 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4033 } 4034 4035 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4036 QualType SourceType, QualType ResType, 4037 SourceLocation Loc) { 4038 switch (CGF.getEvaluationKind(ResType)) { 4039 case TEK_Scalar: 4040 return RValue::get( 4041 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4042 case TEK_Complex: { 4043 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4044 return RValue::getComplex(Res.first, Res.second); 4045 } 4046 case TEK_Aggregate: 4047 break; 4048 } 4049 llvm_unreachable("Must be a scalar or complex."); 4050 } 4051 4052 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 4053 bool IsPostfixUpdate, const Expr *V, 4054 const Expr *X, const Expr *E, 4055 const Expr *UE, bool IsXLHSInRHSPart, 4056 SourceLocation Loc) { 4057 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4058 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4059 RValue NewVVal; 4060 LValue VLValue = CGF.EmitLValue(V); 4061 LValue XLValue = CGF.EmitLValue(X); 4062 RValue ExprRValue = CGF.EmitAnyExpr(E); 4063 llvm::AtomicOrdering AO = IsSeqCst 4064 ? llvm::AtomicOrdering::SequentiallyConsistent 4065 : llvm::AtomicOrdering::Monotonic; 4066 QualType NewVValType; 4067 if (UE) { 4068 // 'x' is updated with some additional value. 4069 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4070 "Update expr in 'atomic capture' must be a binary operator."); 4071 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4072 // Update expressions are allowed to have the following forms: 4073 // x binop= expr; -> xrval + expr; 4074 // x++, ++x -> xrval + 1; 4075 // x--, --x -> xrval - 1; 4076 // x = x binop expr; -> xrval binop expr 4077 // x = expr Op x; - > expr binop xrval; 4078 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4079 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4080 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4081 NewVValType = XRValExpr->getType(); 4082 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4083 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4084 IsPostfixUpdate](RValue XRValue) { 4085 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4086 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4087 RValue Res = CGF.EmitAnyExpr(UE); 4088 NewVVal = IsPostfixUpdate ? XRValue : Res; 4089 return Res; 4090 }; 4091 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4092 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4093 if (Res.first) { 4094 // 'atomicrmw' instruction was generated. 4095 if (IsPostfixUpdate) { 4096 // Use old value from 'atomicrmw'. 4097 NewVVal = Res.second; 4098 } else { 4099 // 'atomicrmw' does not provide new value, so evaluate it using old 4100 // value of 'x'. 4101 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4102 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4103 NewVVal = CGF.EmitAnyExpr(UE); 4104 } 4105 } 4106 } else { 4107 // 'x' is simply rewritten with some 'expr'. 4108 NewVValType = X->getType().getNonReferenceType(); 4109 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4110 X->getType().getNonReferenceType(), Loc); 4111 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4112 NewVVal = XRValue; 4113 return ExprRValue; 4114 }; 4115 // Try to perform atomicrmw xchg, otherwise simple exchange. 4116 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4117 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4118 Loc, Gen); 4119 if (Res.first) { 4120 // 'atomicrmw' instruction was generated. 4121 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4122 } 4123 } 4124 // Emit post-update store to 'v' of old/new 'x' value. 4125 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4126 // OpenMP, 2.12.6, atomic Construct 4127 // Any atomic construct with a seq_cst clause forces the atomically 4128 // performed operation to include an implicit flush operation without a 4129 // list. 4130 if (IsSeqCst) 4131 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4132 } 4133 4134 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4135 bool IsSeqCst, bool IsPostfixUpdate, 4136 const Expr *X, const Expr *V, const Expr *E, 4137 const Expr *UE, bool IsXLHSInRHSPart, 4138 SourceLocation Loc) { 4139 switch (Kind) { 4140 case OMPC_read: 4141 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4142 break; 4143 case OMPC_write: 4144 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4145 break; 4146 case OMPC_unknown: 4147 case OMPC_update: 4148 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4149 break; 4150 case OMPC_capture: 4151 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4152 IsXLHSInRHSPart, Loc); 4153 break; 4154 case OMPC_if: 4155 case OMPC_final: 4156 case OMPC_num_threads: 4157 case OMPC_private: 4158 case OMPC_firstprivate: 4159 case OMPC_lastprivate: 4160 case OMPC_reduction: 4161 case OMPC_task_reduction: 4162 case OMPC_in_reduction: 4163 case OMPC_safelen: 4164 case OMPC_simdlen: 4165 case OMPC_allocator: 4166 case OMPC_allocate: 4167 case OMPC_collapse: 4168 case OMPC_default: 4169 case OMPC_seq_cst: 4170 case OMPC_shared: 4171 case OMPC_linear: 4172 case OMPC_aligned: 4173 case OMPC_copyin: 4174 case OMPC_copyprivate: 4175 case OMPC_flush: 4176 case OMPC_proc_bind: 4177 case OMPC_schedule: 4178 case OMPC_ordered: 4179 case OMPC_nowait: 4180 case OMPC_untied: 4181 case OMPC_threadprivate: 4182 case OMPC_depend: 4183 case OMPC_mergeable: 4184 case OMPC_device: 4185 case OMPC_threads: 4186 case OMPC_simd: 4187 case OMPC_map: 4188 case OMPC_num_teams: 4189 case OMPC_thread_limit: 4190 case OMPC_priority: 4191 case OMPC_grainsize: 4192 case OMPC_nogroup: 4193 case OMPC_num_tasks: 4194 case OMPC_hint: 4195 case OMPC_dist_schedule: 4196 case OMPC_defaultmap: 4197 case OMPC_uniform: 4198 case OMPC_to: 4199 case OMPC_from: 4200 case OMPC_use_device_ptr: 4201 case OMPC_is_device_ptr: 4202 case OMPC_unified_address: 4203 case OMPC_unified_shared_memory: 4204 case OMPC_reverse_offload: 4205 case OMPC_dynamic_allocators: 4206 case OMPC_atomic_default_mem_order: 4207 case OMPC_device_type: 4208 case OMPC_match: 4209 case OMPC_nontemporal: 4210 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4211 } 4212 } 4213 4214 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4215 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4216 OpenMPClauseKind Kind = OMPC_unknown; 4217 for (const OMPClause *C : S.clauses()) { 4218 // Find first clause (skip seq_cst clause, if it is first). 4219 if (C->getClauseKind() != OMPC_seq_cst) { 4220 Kind = C->getClauseKind(); 4221 break; 4222 } 4223 } 4224 4225 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4226 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4227 enterFullExpression(FE); 4228 // Processing for statements under 'atomic capture'. 4229 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4230 for (const Stmt *C : Compound->body()) { 4231 if (const auto *FE = dyn_cast<FullExpr>(C)) 4232 enterFullExpression(FE); 4233 } 4234 } 4235 4236 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4237 PrePostActionTy &) { 4238 CGF.EmitStopPoint(CS); 4239 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4240 S.getV(), S.getExpr(), S.getUpdateExpr(), 4241 S.isXLHSInRHSPart(), S.getBeginLoc()); 4242 }; 4243 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4244 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4245 } 4246 4247 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4248 const OMPExecutableDirective &S, 4249 const RegionCodeGenTy &CodeGen) { 4250 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4251 CodeGenModule &CGM = CGF.CGM; 4252 4253 // On device emit this construct as inlined code. 4254 if (CGM.getLangOpts().OpenMPIsDevice) { 4255 OMPLexicalScope Scope(CGF, S, OMPD_target); 4256 CGM.getOpenMPRuntime().emitInlinedDirective( 4257 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4258 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4259 }); 4260 return; 4261 } 4262 4263 llvm::Function *Fn = nullptr; 4264 llvm::Constant *FnID = nullptr; 4265 4266 const Expr *IfCond = nullptr; 4267 // Check for the at most one if clause associated with the target region. 4268 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4269 if (C->getNameModifier() == OMPD_unknown || 4270 C->getNameModifier() == OMPD_target) { 4271 IfCond = C->getCondition(); 4272 break; 4273 } 4274 } 4275 4276 // Check if we have any device clause associated with the directive. 4277 const Expr *Device = nullptr; 4278 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4279 Device = C->getDevice(); 4280 4281 // Check if we have an if clause whose conditional always evaluates to false 4282 // or if we do not have any targets specified. If so the target region is not 4283 // an offload entry point. 4284 bool IsOffloadEntry = true; 4285 if (IfCond) { 4286 bool Val; 4287 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4288 IsOffloadEntry = false; 4289 } 4290 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4291 IsOffloadEntry = false; 4292 4293 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4294 StringRef ParentName; 4295 // In case we have Ctors/Dtors we use the complete type variant to produce 4296 // the mangling of the device outlined kernel. 4297 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4298 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4299 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4300 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4301 else 4302 ParentName = 4303 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4304 4305 // Emit target region as a standalone region. 4306 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4307 IsOffloadEntry, CodeGen); 4308 OMPLexicalScope Scope(CGF, S, OMPD_task); 4309 auto &&SizeEmitter = 4310 [IsOffloadEntry](CodeGenFunction &CGF, 4311 const OMPLoopDirective &D) -> llvm::Value * { 4312 if (IsOffloadEntry) { 4313 OMPLoopScope(CGF, D); 4314 // Emit calculation of the iterations count. 4315 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4316 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4317 /*isSigned=*/false); 4318 return NumIterations; 4319 } 4320 return nullptr; 4321 }; 4322 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4323 SizeEmitter); 4324 } 4325 4326 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4327 PrePostActionTy &Action) { 4328 Action.Enter(CGF); 4329 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4330 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4331 CGF.EmitOMPPrivateClause(S, PrivateScope); 4332 (void)PrivateScope.Privatize(); 4333 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4334 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4335 4336 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4337 } 4338 4339 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4340 StringRef ParentName, 4341 const OMPTargetDirective &S) { 4342 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4343 emitTargetRegion(CGF, S, Action); 4344 }; 4345 llvm::Function *Fn; 4346 llvm::Constant *Addr; 4347 // Emit target region as a standalone region. 4348 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4349 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4350 assert(Fn && Addr && "Target device function emission failed."); 4351 } 4352 4353 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4354 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4355 emitTargetRegion(CGF, S, Action); 4356 }; 4357 emitCommonOMPTargetDirective(*this, S, CodeGen); 4358 } 4359 4360 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4361 const OMPExecutableDirective &S, 4362 OpenMPDirectiveKind InnermostKind, 4363 const RegionCodeGenTy &CodeGen) { 4364 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4365 llvm::Function *OutlinedFn = 4366 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4367 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4368 4369 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4370 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4371 if (NT || TL) { 4372 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4373 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4374 4375 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4376 S.getBeginLoc()); 4377 } 4378 4379 OMPTeamsScope Scope(CGF, S); 4380 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4381 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4382 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4383 CapturedVars); 4384 } 4385 4386 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4387 // Emit teams region as a standalone region. 4388 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4389 Action.Enter(CGF); 4390 OMPPrivateScope PrivateScope(CGF); 4391 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4392 CGF.EmitOMPPrivateClause(S, PrivateScope); 4393 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4394 (void)PrivateScope.Privatize(); 4395 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4396 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4397 }; 4398 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4399 emitPostUpdateForReductionClause(*this, S, 4400 [](CodeGenFunction &) { return nullptr; }); 4401 } 4402 4403 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4404 const OMPTargetTeamsDirective &S) { 4405 auto *CS = S.getCapturedStmt(OMPD_teams); 4406 Action.Enter(CGF); 4407 // Emit teams region as a standalone region. 4408 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4409 Action.Enter(CGF); 4410 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4411 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4412 CGF.EmitOMPPrivateClause(S, PrivateScope); 4413 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4414 (void)PrivateScope.Privatize(); 4415 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4416 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4417 CGF.EmitStmt(CS->getCapturedStmt()); 4418 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4419 }; 4420 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4421 emitPostUpdateForReductionClause(CGF, S, 4422 [](CodeGenFunction &) { return nullptr; }); 4423 } 4424 4425 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4426 CodeGenModule &CGM, StringRef ParentName, 4427 const OMPTargetTeamsDirective &S) { 4428 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4429 emitTargetTeamsRegion(CGF, Action, S); 4430 }; 4431 llvm::Function *Fn; 4432 llvm::Constant *Addr; 4433 // Emit target region as a standalone region. 4434 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4435 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4436 assert(Fn && Addr && "Target device function emission failed."); 4437 } 4438 4439 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4440 const OMPTargetTeamsDirective &S) { 4441 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4442 emitTargetTeamsRegion(CGF, Action, S); 4443 }; 4444 emitCommonOMPTargetDirective(*this, S, CodeGen); 4445 } 4446 4447 static void 4448 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4449 const OMPTargetTeamsDistributeDirective &S) { 4450 Action.Enter(CGF); 4451 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4452 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4453 }; 4454 4455 // Emit teams region as a standalone region. 4456 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4457 PrePostActionTy &Action) { 4458 Action.Enter(CGF); 4459 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4460 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4461 (void)PrivateScope.Privatize(); 4462 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4463 CodeGenDistribute); 4464 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4465 }; 4466 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4467 emitPostUpdateForReductionClause(CGF, S, 4468 [](CodeGenFunction &) { return nullptr; }); 4469 } 4470 4471 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4472 CodeGenModule &CGM, StringRef ParentName, 4473 const OMPTargetTeamsDistributeDirective &S) { 4474 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4475 emitTargetTeamsDistributeRegion(CGF, Action, S); 4476 }; 4477 llvm::Function *Fn; 4478 llvm::Constant *Addr; 4479 // Emit target region as a standalone region. 4480 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4481 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4482 assert(Fn && Addr && "Target device function emission failed."); 4483 } 4484 4485 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4486 const OMPTargetTeamsDistributeDirective &S) { 4487 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4488 emitTargetTeamsDistributeRegion(CGF, Action, S); 4489 }; 4490 emitCommonOMPTargetDirective(*this, S, CodeGen); 4491 } 4492 4493 static void emitTargetTeamsDistributeSimdRegion( 4494 CodeGenFunction &CGF, PrePostActionTy &Action, 4495 const OMPTargetTeamsDistributeSimdDirective &S) { 4496 Action.Enter(CGF); 4497 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4498 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4499 }; 4500 4501 // Emit teams region as a standalone region. 4502 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4503 PrePostActionTy &Action) { 4504 Action.Enter(CGF); 4505 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4506 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4507 (void)PrivateScope.Privatize(); 4508 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4509 CodeGenDistribute); 4510 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4511 }; 4512 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4513 emitPostUpdateForReductionClause(CGF, S, 4514 [](CodeGenFunction &) { return nullptr; }); 4515 } 4516 4517 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4518 CodeGenModule &CGM, StringRef ParentName, 4519 const OMPTargetTeamsDistributeSimdDirective &S) { 4520 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4521 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4522 }; 4523 llvm::Function *Fn; 4524 llvm::Constant *Addr; 4525 // Emit target region as a standalone region. 4526 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4527 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4528 assert(Fn && Addr && "Target device function emission failed."); 4529 } 4530 4531 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4532 const OMPTargetTeamsDistributeSimdDirective &S) { 4533 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4534 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4535 }; 4536 emitCommonOMPTargetDirective(*this, S, CodeGen); 4537 } 4538 4539 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4540 const OMPTeamsDistributeDirective &S) { 4541 4542 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4543 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4544 }; 4545 4546 // Emit teams region as a standalone region. 4547 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4548 PrePostActionTy &Action) { 4549 Action.Enter(CGF); 4550 OMPPrivateScope PrivateScope(CGF); 4551 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4552 (void)PrivateScope.Privatize(); 4553 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4554 CodeGenDistribute); 4555 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4556 }; 4557 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4558 emitPostUpdateForReductionClause(*this, S, 4559 [](CodeGenFunction &) { return nullptr; }); 4560 } 4561 4562 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4563 const OMPTeamsDistributeSimdDirective &S) { 4564 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4565 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4566 }; 4567 4568 // Emit teams region as a standalone region. 4569 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4570 PrePostActionTy &Action) { 4571 Action.Enter(CGF); 4572 OMPPrivateScope PrivateScope(CGF); 4573 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4574 (void)PrivateScope.Privatize(); 4575 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4576 CodeGenDistribute); 4577 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4578 }; 4579 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4580 emitPostUpdateForReductionClause(*this, S, 4581 [](CodeGenFunction &) { return nullptr; }); 4582 } 4583 4584 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4585 const OMPTeamsDistributeParallelForDirective &S) { 4586 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4587 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4588 S.getDistInc()); 4589 }; 4590 4591 // Emit teams region as a standalone region. 4592 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4593 PrePostActionTy &Action) { 4594 Action.Enter(CGF); 4595 OMPPrivateScope PrivateScope(CGF); 4596 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4597 (void)PrivateScope.Privatize(); 4598 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4599 CodeGenDistribute); 4600 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4601 }; 4602 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4603 emitPostUpdateForReductionClause(*this, S, 4604 [](CodeGenFunction &) { return nullptr; }); 4605 } 4606 4607 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4608 const OMPTeamsDistributeParallelForSimdDirective &S) { 4609 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4610 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4611 S.getDistInc()); 4612 }; 4613 4614 // Emit teams region as a standalone region. 4615 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4616 PrePostActionTy &Action) { 4617 Action.Enter(CGF); 4618 OMPPrivateScope PrivateScope(CGF); 4619 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4620 (void)PrivateScope.Privatize(); 4621 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4622 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4623 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4624 }; 4625 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 4626 CodeGen); 4627 emitPostUpdateForReductionClause(*this, S, 4628 [](CodeGenFunction &) { return nullptr; }); 4629 } 4630 4631 static void emitTargetTeamsDistributeParallelForRegion( 4632 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4633 PrePostActionTy &Action) { 4634 Action.Enter(CGF); 4635 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4636 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4637 S.getDistInc()); 4638 }; 4639 4640 // Emit teams region as a standalone region. 4641 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4642 PrePostActionTy &Action) { 4643 Action.Enter(CGF); 4644 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4645 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4646 (void)PrivateScope.Privatize(); 4647 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4648 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4649 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4650 }; 4651 4652 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4653 CodeGenTeams); 4654 emitPostUpdateForReductionClause(CGF, S, 4655 [](CodeGenFunction &) { return nullptr; }); 4656 } 4657 4658 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4659 CodeGenModule &CGM, StringRef ParentName, 4660 const OMPTargetTeamsDistributeParallelForDirective &S) { 4661 // Emit SPMD target teams distribute parallel for region as a standalone 4662 // region. 4663 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4664 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4665 }; 4666 llvm::Function *Fn; 4667 llvm::Constant *Addr; 4668 // Emit target region as a standalone region. 4669 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4670 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4671 assert(Fn && Addr && "Target device function emission failed."); 4672 } 4673 4674 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4675 const OMPTargetTeamsDistributeParallelForDirective &S) { 4676 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4677 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4678 }; 4679 emitCommonOMPTargetDirective(*this, S, CodeGen); 4680 } 4681 4682 static void emitTargetTeamsDistributeParallelForSimdRegion( 4683 CodeGenFunction &CGF, 4684 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4685 PrePostActionTy &Action) { 4686 Action.Enter(CGF); 4687 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4688 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4689 S.getDistInc()); 4690 }; 4691 4692 // Emit teams region as a standalone region. 4693 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4694 PrePostActionTy &Action) { 4695 Action.Enter(CGF); 4696 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4697 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4698 (void)PrivateScope.Privatize(); 4699 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4700 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4701 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4702 }; 4703 4704 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4705 CodeGenTeams); 4706 emitPostUpdateForReductionClause(CGF, S, 4707 [](CodeGenFunction &) { return nullptr; }); 4708 } 4709 4710 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4711 CodeGenModule &CGM, StringRef ParentName, 4712 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4713 // Emit SPMD target teams distribute parallel for simd region as a standalone 4714 // region. 4715 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4716 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4717 }; 4718 llvm::Function *Fn; 4719 llvm::Constant *Addr; 4720 // Emit target region as a standalone region. 4721 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4722 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4723 assert(Fn && Addr && "Target device function emission failed."); 4724 } 4725 4726 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4727 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4728 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4729 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4730 }; 4731 emitCommonOMPTargetDirective(*this, S, CodeGen); 4732 } 4733 4734 void CodeGenFunction::EmitOMPCancellationPointDirective( 4735 const OMPCancellationPointDirective &S) { 4736 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4737 S.getCancelRegion()); 4738 } 4739 4740 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4741 const Expr *IfCond = nullptr; 4742 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4743 if (C->getNameModifier() == OMPD_unknown || 4744 C->getNameModifier() == OMPD_cancel) { 4745 IfCond = C->getCondition(); 4746 break; 4747 } 4748 } 4749 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4750 S.getCancelRegion()); 4751 } 4752 4753 CodeGenFunction::JumpDest 4754 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4755 if (Kind == OMPD_parallel || Kind == OMPD_task || 4756 Kind == OMPD_target_parallel) 4757 return ReturnBlock; 4758 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4759 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4760 Kind == OMPD_distribute_parallel_for || 4761 Kind == OMPD_target_parallel_for || 4762 Kind == OMPD_teams_distribute_parallel_for || 4763 Kind == OMPD_target_teams_distribute_parallel_for); 4764 return OMPCancelStack.getExitBlock(); 4765 } 4766 4767 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4768 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4769 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4770 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4771 auto OrigVarIt = C.varlist_begin(); 4772 auto InitIt = C.inits().begin(); 4773 for (const Expr *PvtVarIt : C.private_copies()) { 4774 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4775 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4776 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4777 4778 // In order to identify the right initializer we need to match the 4779 // declaration used by the mapping logic. In some cases we may get 4780 // OMPCapturedExprDecl that refers to the original declaration. 4781 const ValueDecl *MatchingVD = OrigVD; 4782 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4783 // OMPCapturedExprDecl are used to privative fields of the current 4784 // structure. 4785 const auto *ME = cast<MemberExpr>(OED->getInit()); 4786 assert(isa<CXXThisExpr>(ME->getBase()) && 4787 "Base should be the current struct!"); 4788 MatchingVD = ME->getMemberDecl(); 4789 } 4790 4791 // If we don't have information about the current list item, move on to 4792 // the next one. 4793 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4794 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4795 continue; 4796 4797 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4798 InitAddrIt, InitVD, 4799 PvtVD]() { 4800 // Initialize the temporary initialization variable with the address we 4801 // get from the runtime library. We have to cast the source address 4802 // because it is always a void *. References are materialized in the 4803 // privatization scope, so the initialization here disregards the fact 4804 // the original variable is a reference. 4805 QualType AddrQTy = 4806 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4807 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4808 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4809 setAddrOfLocalVar(InitVD, InitAddr); 4810 4811 // Emit private declaration, it will be initialized by the value we 4812 // declaration we just added to the local declarations map. 4813 EmitDecl(*PvtVD); 4814 4815 // The initialization variables reached its purpose in the emission 4816 // of the previous declaration, so we don't need it anymore. 4817 LocalDeclMap.erase(InitVD); 4818 4819 // Return the address of the private variable. 4820 return GetAddrOfLocalVar(PvtVD); 4821 }); 4822 assert(IsRegistered && "firstprivate var already registered as private"); 4823 // Silence the warning about unused variable. 4824 (void)IsRegistered; 4825 4826 ++OrigVarIt; 4827 ++InitIt; 4828 } 4829 } 4830 4831 // Generate the instructions for '#pragma omp target data' directive. 4832 void CodeGenFunction::EmitOMPTargetDataDirective( 4833 const OMPTargetDataDirective &S) { 4834 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4835 4836 // Create a pre/post action to signal the privatization of the device pointer. 4837 // This action can be replaced by the OpenMP runtime code generation to 4838 // deactivate privatization. 4839 bool PrivatizeDevicePointers = false; 4840 class DevicePointerPrivActionTy : public PrePostActionTy { 4841 bool &PrivatizeDevicePointers; 4842 4843 public: 4844 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4845 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4846 void Enter(CodeGenFunction &CGF) override { 4847 PrivatizeDevicePointers = true; 4848 } 4849 }; 4850 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4851 4852 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4853 CodeGenFunction &CGF, PrePostActionTy &Action) { 4854 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4855 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4856 }; 4857 4858 // Codegen that selects whether to generate the privatization code or not. 4859 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4860 &InnermostCodeGen](CodeGenFunction &CGF, 4861 PrePostActionTy &Action) { 4862 RegionCodeGenTy RCG(InnermostCodeGen); 4863 PrivatizeDevicePointers = false; 4864 4865 // Call the pre-action to change the status of PrivatizeDevicePointers if 4866 // needed. 4867 Action.Enter(CGF); 4868 4869 if (PrivatizeDevicePointers) { 4870 OMPPrivateScope PrivateScope(CGF); 4871 // Emit all instances of the use_device_ptr clause. 4872 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4873 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4874 Info.CaptureDeviceAddrMap); 4875 (void)PrivateScope.Privatize(); 4876 RCG(CGF); 4877 } else { 4878 RCG(CGF); 4879 } 4880 }; 4881 4882 // Forward the provided action to the privatization codegen. 4883 RegionCodeGenTy PrivRCG(PrivCodeGen); 4884 PrivRCG.setAction(Action); 4885 4886 // Notwithstanding the body of the region is emitted as inlined directive, 4887 // we don't use an inline scope as changes in the references inside the 4888 // region are expected to be visible outside, so we do not privative them. 4889 OMPLexicalScope Scope(CGF, S); 4890 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4891 PrivRCG); 4892 }; 4893 4894 RegionCodeGenTy RCG(CodeGen); 4895 4896 // If we don't have target devices, don't bother emitting the data mapping 4897 // code. 4898 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4899 RCG(*this); 4900 return; 4901 } 4902 4903 // Check if we have any if clause associated with the directive. 4904 const Expr *IfCond = nullptr; 4905 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4906 IfCond = C->getCondition(); 4907 4908 // Check if we have any device clause associated with the directive. 4909 const Expr *Device = nullptr; 4910 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4911 Device = C->getDevice(); 4912 4913 // Set the action to signal privatization of device pointers. 4914 RCG.setAction(PrivAction); 4915 4916 // Emit region code. 4917 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4918 Info); 4919 } 4920 4921 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4922 const OMPTargetEnterDataDirective &S) { 4923 // If we don't have target devices, don't bother emitting the data mapping 4924 // code. 4925 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4926 return; 4927 4928 // Check if we have any if clause associated with the directive. 4929 const Expr *IfCond = nullptr; 4930 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4931 IfCond = C->getCondition(); 4932 4933 // Check if we have any device clause associated with the directive. 4934 const Expr *Device = nullptr; 4935 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4936 Device = C->getDevice(); 4937 4938 OMPLexicalScope Scope(*this, S, OMPD_task); 4939 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4940 } 4941 4942 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4943 const OMPTargetExitDataDirective &S) { 4944 // If we don't have target devices, don't bother emitting the data mapping 4945 // code. 4946 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4947 return; 4948 4949 // Check if we have any if clause associated with the directive. 4950 const Expr *IfCond = nullptr; 4951 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4952 IfCond = C->getCondition(); 4953 4954 // Check if we have any device clause associated with the directive. 4955 const Expr *Device = nullptr; 4956 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4957 Device = C->getDevice(); 4958 4959 OMPLexicalScope Scope(*this, S, OMPD_task); 4960 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4961 } 4962 4963 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4964 const OMPTargetParallelDirective &S, 4965 PrePostActionTy &Action) { 4966 // Get the captured statement associated with the 'parallel' region. 4967 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4968 Action.Enter(CGF); 4969 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4970 Action.Enter(CGF); 4971 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4972 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4973 CGF.EmitOMPPrivateClause(S, PrivateScope); 4974 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4975 (void)PrivateScope.Privatize(); 4976 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4977 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4978 // TODO: Add support for clauses. 4979 CGF.EmitStmt(CS->getCapturedStmt()); 4980 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4981 }; 4982 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4983 emitEmptyBoundParameters); 4984 emitPostUpdateForReductionClause(CGF, S, 4985 [](CodeGenFunction &) { return nullptr; }); 4986 } 4987 4988 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4989 CodeGenModule &CGM, StringRef ParentName, 4990 const OMPTargetParallelDirective &S) { 4991 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4992 emitTargetParallelRegion(CGF, S, Action); 4993 }; 4994 llvm::Function *Fn; 4995 llvm::Constant *Addr; 4996 // Emit target region as a standalone region. 4997 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4998 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4999 assert(Fn && Addr && "Target device function emission failed."); 5000 } 5001 5002 void CodeGenFunction::EmitOMPTargetParallelDirective( 5003 const OMPTargetParallelDirective &S) { 5004 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5005 emitTargetParallelRegion(CGF, S, Action); 5006 }; 5007 emitCommonOMPTargetDirective(*this, S, CodeGen); 5008 } 5009 5010 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5011 const OMPTargetParallelForDirective &S, 5012 PrePostActionTy &Action) { 5013 Action.Enter(CGF); 5014 // Emit directive as a combined directive that consists of two implicit 5015 // directives: 'parallel' with 'for' directive. 5016 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5017 Action.Enter(CGF); 5018 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5019 CGF, OMPD_target_parallel_for, S.hasCancel()); 5020 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5021 emitDispatchForLoopBounds); 5022 }; 5023 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5024 emitEmptyBoundParameters); 5025 } 5026 5027 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5028 CodeGenModule &CGM, StringRef ParentName, 5029 const OMPTargetParallelForDirective &S) { 5030 // Emit SPMD target parallel for region as a standalone region. 5031 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5032 emitTargetParallelForRegion(CGF, S, Action); 5033 }; 5034 llvm::Function *Fn; 5035 llvm::Constant *Addr; 5036 // Emit target region as a standalone region. 5037 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5038 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5039 assert(Fn && Addr && "Target device function emission failed."); 5040 } 5041 5042 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5043 const OMPTargetParallelForDirective &S) { 5044 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5045 emitTargetParallelForRegion(CGF, S, Action); 5046 }; 5047 emitCommonOMPTargetDirective(*this, S, CodeGen); 5048 } 5049 5050 static void 5051 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5052 const OMPTargetParallelForSimdDirective &S, 5053 PrePostActionTy &Action) { 5054 Action.Enter(CGF); 5055 // Emit directive as a combined directive that consists of two implicit 5056 // directives: 'parallel' with 'for' directive. 5057 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5058 Action.Enter(CGF); 5059 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5060 emitDispatchForLoopBounds); 5061 }; 5062 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5063 emitEmptyBoundParameters); 5064 } 5065 5066 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5067 CodeGenModule &CGM, StringRef ParentName, 5068 const OMPTargetParallelForSimdDirective &S) { 5069 // Emit SPMD target parallel for region as a standalone region. 5070 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5071 emitTargetParallelForSimdRegion(CGF, S, Action); 5072 }; 5073 llvm::Function *Fn; 5074 llvm::Constant *Addr; 5075 // Emit target region as a standalone region. 5076 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5077 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5078 assert(Fn && Addr && "Target device function emission failed."); 5079 } 5080 5081 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5082 const OMPTargetParallelForSimdDirective &S) { 5083 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5084 emitTargetParallelForSimdRegion(CGF, S, Action); 5085 }; 5086 emitCommonOMPTargetDirective(*this, S, CodeGen); 5087 } 5088 5089 /// Emit a helper variable and return corresponding lvalue. 5090 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5091 const ImplicitParamDecl *PVD, 5092 CodeGenFunction::OMPPrivateScope &Privates) { 5093 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5094 Privates.addPrivate(VDecl, 5095 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5096 } 5097 5098 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5099 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5100 // Emit outlined function for task construct. 5101 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5102 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5103 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5104 const Expr *IfCond = nullptr; 5105 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5106 if (C->getNameModifier() == OMPD_unknown || 5107 C->getNameModifier() == OMPD_taskloop) { 5108 IfCond = C->getCondition(); 5109 break; 5110 } 5111 } 5112 5113 OMPTaskDataTy Data; 5114 // Check if taskloop must be emitted without taskgroup. 5115 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5116 // TODO: Check if we should emit tied or untied task. 5117 Data.Tied = true; 5118 // Set scheduling for taskloop 5119 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5120 // grainsize clause 5121 Data.Schedule.setInt(/*IntVal=*/false); 5122 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5123 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5124 // num_tasks clause 5125 Data.Schedule.setInt(/*IntVal=*/true); 5126 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5127 } 5128 5129 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5130 // if (PreCond) { 5131 // for (IV in 0..LastIteration) BODY; 5132 // <Final counter/linear vars updates>; 5133 // } 5134 // 5135 5136 // Emit: if (PreCond) - begin. 5137 // If the condition constant folds and can be elided, avoid emitting the 5138 // whole loop. 5139 bool CondConstant; 5140 llvm::BasicBlock *ContBlock = nullptr; 5141 OMPLoopScope PreInitScope(CGF, S); 5142 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5143 if (!CondConstant) 5144 return; 5145 } else { 5146 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5147 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5148 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5149 CGF.getProfileCount(&S)); 5150 CGF.EmitBlock(ThenBlock); 5151 CGF.incrementProfileCounter(&S); 5152 } 5153 5154 (void)CGF.EmitOMPLinearClauseInit(S); 5155 5156 OMPPrivateScope LoopScope(CGF); 5157 // Emit helper vars inits. 5158 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5159 auto *I = CS->getCapturedDecl()->param_begin(); 5160 auto *LBP = std::next(I, LowerBound); 5161 auto *UBP = std::next(I, UpperBound); 5162 auto *STP = std::next(I, Stride); 5163 auto *LIP = std::next(I, LastIter); 5164 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5165 LoopScope); 5166 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5167 LoopScope); 5168 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5169 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5170 LoopScope); 5171 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5172 CGF.EmitOMPLinearClause(S, LoopScope); 5173 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5174 (void)LoopScope.Privatize(); 5175 // Emit the loop iteration variable. 5176 const Expr *IVExpr = S.getIterationVariable(); 5177 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5178 CGF.EmitVarDecl(*IVDecl); 5179 CGF.EmitIgnoredExpr(S.getInit()); 5180 5181 // Emit the iterations count variable. 5182 // If it is not a variable, Sema decided to calculate iterations count on 5183 // each iteration (e.g., it is foldable into a constant). 5184 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5185 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5186 // Emit calculation of the iterations count. 5187 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5188 } 5189 5190 { 5191 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5192 emitCommonSimdLoop( 5193 CGF, S, 5194 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5195 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5196 CGF.EmitOMPSimdInit(S); 5197 }, 5198 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5199 CGF.EmitOMPInnerLoop( 5200 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5201 [&S](CodeGenFunction &CGF) { 5202 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5203 CGF.EmitStopPoint(&S); 5204 }, 5205 [](CodeGenFunction &) {}); 5206 }); 5207 } 5208 // Emit: if (PreCond) - end. 5209 if (ContBlock) { 5210 CGF.EmitBranch(ContBlock); 5211 CGF.EmitBlock(ContBlock, true); 5212 } 5213 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5214 if (HasLastprivateClause) { 5215 CGF.EmitOMPLastprivateClauseFinal( 5216 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5217 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5218 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5219 (*LIP)->getType(), S.getBeginLoc()))); 5220 } 5221 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5222 return CGF.Builder.CreateIsNotNull( 5223 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5224 (*LIP)->getType(), S.getBeginLoc())); 5225 }); 5226 }; 5227 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5228 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5229 const OMPTaskDataTy &Data) { 5230 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5231 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5232 OMPLoopScope PreInitScope(CGF, S); 5233 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5234 OutlinedFn, SharedsTy, 5235 CapturedStruct, IfCond, Data); 5236 }; 5237 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5238 CodeGen); 5239 }; 5240 if (Data.Nogroup) { 5241 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5242 } else { 5243 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5244 *this, 5245 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5246 PrePostActionTy &Action) { 5247 Action.Enter(CGF); 5248 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5249 Data); 5250 }, 5251 S.getBeginLoc()); 5252 } 5253 } 5254 5255 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5256 EmitOMPTaskLoopBasedDirective(S); 5257 } 5258 5259 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5260 const OMPTaskLoopSimdDirective &S) { 5261 OMPLexicalScope Scope(*this, S); 5262 EmitOMPTaskLoopBasedDirective(S); 5263 } 5264 5265 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5266 const OMPMasterTaskLoopDirective &S) { 5267 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5268 Action.Enter(CGF); 5269 EmitOMPTaskLoopBasedDirective(S); 5270 }; 5271 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5272 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5273 } 5274 5275 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5276 const OMPMasterTaskLoopSimdDirective &S) { 5277 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5278 Action.Enter(CGF); 5279 EmitOMPTaskLoopBasedDirective(S); 5280 }; 5281 OMPLexicalScope Scope(*this, S); 5282 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5283 } 5284 5285 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5286 const OMPParallelMasterTaskLoopDirective &S) { 5287 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5288 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5289 PrePostActionTy &Action) { 5290 Action.Enter(CGF); 5291 CGF.EmitOMPTaskLoopBasedDirective(S); 5292 }; 5293 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5294 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5295 S.getBeginLoc()); 5296 }; 5297 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5298 emitEmptyBoundParameters); 5299 } 5300 5301 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5302 const OMPParallelMasterTaskLoopSimdDirective &S) { 5303 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5304 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5305 PrePostActionTy &Action) { 5306 Action.Enter(CGF); 5307 CGF.EmitOMPTaskLoopBasedDirective(S); 5308 }; 5309 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5310 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5311 S.getBeginLoc()); 5312 }; 5313 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5314 emitEmptyBoundParameters); 5315 } 5316 5317 // Generate the instructions for '#pragma omp target update' directive. 5318 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5319 const OMPTargetUpdateDirective &S) { 5320 // If we don't have target devices, don't bother emitting the data mapping 5321 // code. 5322 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5323 return; 5324 5325 // Check if we have any if clause associated with the directive. 5326 const Expr *IfCond = nullptr; 5327 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5328 IfCond = C->getCondition(); 5329 5330 // Check if we have any device clause associated with the directive. 5331 const Expr *Device = nullptr; 5332 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5333 Device = C->getDevice(); 5334 5335 OMPLexicalScope Scope(*this, S, OMPD_task); 5336 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5337 } 5338 5339 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5340 const OMPExecutableDirective &D) { 5341 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5342 return; 5343 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5344 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5345 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5346 } else { 5347 OMPPrivateScope LoopGlobals(CGF); 5348 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5349 for (const Expr *E : LD->counters()) { 5350 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5351 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5352 LValue GlobLVal = CGF.EmitLValue(E); 5353 LoopGlobals.addPrivate( 5354 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5355 } 5356 if (isa<OMPCapturedExprDecl>(VD)) { 5357 // Emit only those that were not explicitly referenced in clauses. 5358 if (!CGF.LocalDeclMap.count(VD)) 5359 CGF.EmitVarDecl(*VD); 5360 } 5361 } 5362 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5363 if (!C->getNumForLoops()) 5364 continue; 5365 for (unsigned I = LD->getCollapsedNumber(), 5366 E = C->getLoopNumIterations().size(); 5367 I < E; ++I) { 5368 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5369 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5370 // Emit only those that were not explicitly referenced in clauses. 5371 if (!CGF.LocalDeclMap.count(VD)) 5372 CGF.EmitVarDecl(*VD); 5373 } 5374 } 5375 } 5376 } 5377 LoopGlobals.Privatize(); 5378 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5379 } 5380 }; 5381 OMPSimdLexicalScope Scope(*this, D); 5382 CGM.getOpenMPRuntime().emitInlinedDirective( 5383 *this, 5384 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5385 : D.getDirectiveKind(), 5386 CodeGen); 5387 } 5388