1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "llvm/Frontend/OpenMP/OMPConstants.h"
28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/Support/AtomicOrdering.h"
32 using namespace clang;
33 using namespace CodeGen;
34 using namespace llvm::omp;
35 
36 static const VarDecl *getBaseDecl(const Expr *Ref);
37 
38 namespace {
39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
40 /// for captured expressions.
41 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
42   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
43     for (const auto *C : S.clauses()) {
44       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
45         if (const auto *PreInit =
46                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
47           for (const auto *I : PreInit->decls()) {
48             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
49               CGF.EmitVarDecl(cast<VarDecl>(*I));
50             } else {
51               CodeGenFunction::AutoVarEmission Emission =
52                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
53               CGF.EmitAutoVarCleanups(Emission);
54             }
55           }
56         }
57       }
58     }
59   }
60   CodeGenFunction::OMPPrivateScope InlinedShareds;
61 
62   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
63     return CGF.LambdaCaptureFields.lookup(VD) ||
64            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
65            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
66             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
67   }
68 
69 public:
70   OMPLexicalScope(
71       CodeGenFunction &CGF, const OMPExecutableDirective &S,
72       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
73       const bool EmitPreInitStmt = true)
74       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
75         InlinedShareds(CGF) {
76     if (EmitPreInitStmt)
77       emitPreInitStmt(CGF, S);
78     if (!CapturedRegion.hasValue())
79       return;
80     assert(S.hasAssociatedStmt() &&
81            "Expected associated statement for inlined directive.");
82     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
83     for (const auto &C : CS->captures()) {
84       if (C.capturesVariable() || C.capturesVariableByCopy()) {
85         auto *VD = C.getCapturedVar();
86         assert(VD == VD->getCanonicalDecl() &&
87                "Canonical decl must be captured.");
88         DeclRefExpr DRE(
89             CGF.getContext(), const_cast<VarDecl *>(VD),
90             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
91                                        InlinedShareds.isGlobalVarCaptured(VD)),
92             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
93         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
94           return CGF.EmitLValue(&DRE).getAddress(CGF);
95         });
96       }
97     }
98     (void)InlinedShareds.Privatize();
99   }
100 };
101 
102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
103 /// for captured expressions.
104 class OMPParallelScope final : public OMPLexicalScope {
105   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
106     OpenMPDirectiveKind Kind = S.getDirectiveKind();
107     return !(isOpenMPTargetExecutionDirective(Kind) ||
108              isOpenMPLoopBoundSharingDirective(Kind)) &&
109            isOpenMPParallelDirective(Kind);
110   }
111 
112 public:
113   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
114       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
115                         EmitPreInitStmt(S)) {}
116 };
117 
118 /// Lexical scope for OpenMP teams construct, that handles correct codegen
119 /// for captured expressions.
120 class OMPTeamsScope final : public OMPLexicalScope {
121   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
122     OpenMPDirectiveKind Kind = S.getDirectiveKind();
123     return !isOpenMPTargetExecutionDirective(Kind) &&
124            isOpenMPTeamsDirective(Kind);
125   }
126 
127 public:
128   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
129       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
130                         EmitPreInitStmt(S)) {}
131 };
132 
133 /// Private scope for OpenMP loop-based directives, that supports capturing
134 /// of used expression from loop statement.
135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
136   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) {
137     const DeclStmt *PreInits;
138     CodeGenFunction::OMPMapVars PreCondVars;
139     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
140       llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
141       for (const auto *E : LD->counters()) {
142         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
143         EmittedAsPrivate.insert(VD->getCanonicalDecl());
144         (void)PreCondVars.setVarAddr(
145             CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
146       }
147       // Mark private vars as undefs.
148       for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) {
149         for (const Expr *IRef : C->varlists()) {
150           const auto *OrigVD =
151               cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
152           if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
153             (void)PreCondVars.setVarAddr(
154                 CGF, OrigVD,
155                 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem(
156                             CGF.getContext().getPointerType(
157                                 OrigVD->getType().getNonReferenceType()))),
158                         CGF.getContext().getDeclAlign(OrigVD)));
159           }
160         }
161       }
162       (void)PreCondVars.apply(CGF);
163       // Emit init, __range and __end variables for C++ range loops.
164       (void)OMPLoopBasedDirective::doForAllLoops(
165           LD->getInnermostCapturedStmt()->getCapturedStmt(),
166           /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(),
167           [&CGF](unsigned Cnt, const Stmt *CurStmt) {
168             if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) {
169               if (const Stmt *Init = CXXFor->getInit())
170                 CGF.EmitStmt(Init);
171               CGF.EmitStmt(CXXFor->getRangeStmt());
172               CGF.EmitStmt(CXXFor->getEndStmt());
173             }
174             return false;
175           });
176       PreInits = cast_or_null<DeclStmt>(LD->getPreInits());
177     } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) {
178       PreInits = cast_or_null<DeclStmt>(Tile->getPreInits());
179     } else {
180       llvm_unreachable("Unknown loop-based directive kind.");
181     }
182     if (PreInits) {
183       for (const auto *I : PreInits->decls())
184         CGF.EmitVarDecl(cast<VarDecl>(*I));
185     }
186     PreCondVars.restore(CGF);
187   }
188 
189 public:
190   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S)
191       : CodeGenFunction::RunCleanupsScope(CGF) {
192     emitPreInitStmt(CGF, S);
193   }
194 };
195 
196 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
197   CodeGenFunction::OMPPrivateScope InlinedShareds;
198 
199   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
200     return CGF.LambdaCaptureFields.lookup(VD) ||
201            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
202            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
203             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
204   }
205 
206 public:
207   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
208       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
209         InlinedShareds(CGF) {
210     for (const auto *C : S.clauses()) {
211       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
212         if (const auto *PreInit =
213                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
214           for (const auto *I : PreInit->decls()) {
215             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
216               CGF.EmitVarDecl(cast<VarDecl>(*I));
217             } else {
218               CodeGenFunction::AutoVarEmission Emission =
219                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
220               CGF.EmitAutoVarCleanups(Emission);
221             }
222           }
223         }
224       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
225         for (const Expr *E : UDP->varlists()) {
226           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
227           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
228             CGF.EmitVarDecl(*OED);
229         }
230       } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) {
231         for (const Expr *E : UDP->varlists()) {
232           const Decl *D = getBaseDecl(E);
233           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
234             CGF.EmitVarDecl(*OED);
235         }
236       }
237     }
238     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
239       CGF.EmitOMPPrivateClause(S, InlinedShareds);
240     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
241       if (const Expr *E = TG->getReductionRef())
242         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
243     }
244     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
245     while (CS) {
246       for (auto &C : CS->captures()) {
247         if (C.capturesVariable() || C.capturesVariableByCopy()) {
248           auto *VD = C.getCapturedVar();
249           assert(VD == VD->getCanonicalDecl() &&
250                  "Canonical decl must be captured.");
251           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
252                           isCapturedVar(CGF, VD) ||
253                               (CGF.CapturedStmtInfo &&
254                                InlinedShareds.isGlobalVarCaptured(VD)),
255                           VD->getType().getNonReferenceType(), VK_LValue,
256                           C.getLocation());
257           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
258             return CGF.EmitLValue(&DRE).getAddress(CGF);
259           });
260         }
261       }
262       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
263     }
264     (void)InlinedShareds.Privatize();
265   }
266 };
267 
268 } // namespace
269 
270 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
271                                          const OMPExecutableDirective &S,
272                                          const RegionCodeGenTy &CodeGen);
273 
274 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
275   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
276     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
277       OrigVD = OrigVD->getCanonicalDecl();
278       bool IsCaptured =
279           LambdaCaptureFields.lookup(OrigVD) ||
280           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
281           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
282       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
283                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
284       return EmitLValue(&DRE);
285     }
286   }
287   return EmitLValue(E);
288 }
289 
290 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
291   ASTContext &C = getContext();
292   llvm::Value *Size = nullptr;
293   auto SizeInChars = C.getTypeSizeInChars(Ty);
294   if (SizeInChars.isZero()) {
295     // getTypeSizeInChars() returns 0 for a VLA.
296     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
297       VlaSizePair VlaSize = getVLASize(VAT);
298       Ty = VlaSize.Type;
299       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
300                   : VlaSize.NumElts;
301     }
302     SizeInChars = C.getTypeSizeInChars(Ty);
303     if (SizeInChars.isZero())
304       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
305     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
306   }
307   return CGM.getSize(SizeInChars);
308 }
309 
310 void CodeGenFunction::GenerateOpenMPCapturedVars(
311     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
312   const RecordDecl *RD = S.getCapturedRecordDecl();
313   auto CurField = RD->field_begin();
314   auto CurCap = S.captures().begin();
315   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
316                                                  E = S.capture_init_end();
317        I != E; ++I, ++CurField, ++CurCap) {
318     if (CurField->hasCapturedVLAType()) {
319       const VariableArrayType *VAT = CurField->getCapturedVLAType();
320       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
321       CapturedVars.push_back(Val);
322     } else if (CurCap->capturesThis()) {
323       CapturedVars.push_back(CXXThisValue);
324     } else if (CurCap->capturesVariableByCopy()) {
325       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
326 
327       // If the field is not a pointer, we need to save the actual value
328       // and load it as a void pointer.
329       if (!CurField->getType()->isAnyPointerType()) {
330         ASTContext &Ctx = getContext();
331         Address DstAddr = CreateMemTemp(
332             Ctx.getUIntPtrType(),
333             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
334         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
335 
336         llvm::Value *SrcAddrVal = EmitScalarConversion(
337             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
338             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
339         LValue SrcLV =
340             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
341 
342         // Store the value using the source type pointer.
343         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
344 
345         // Load the value using the destination type pointer.
346         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
347       }
348       CapturedVars.push_back(CV);
349     } else {
350       assert(CurCap->capturesVariable() && "Expected capture by reference.");
351       CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer());
352     }
353   }
354 }
355 
356 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
357                                     QualType DstType, StringRef Name,
358                                     LValue AddrLV) {
359   ASTContext &Ctx = CGF.getContext();
360 
361   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
362       AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(),
363       Ctx.getPointerType(DstType), Loc);
364   Address TmpAddr =
365       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
366           .getAddress(CGF);
367   return TmpAddr;
368 }
369 
370 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
371   if (T->isLValueReferenceType())
372     return C.getLValueReferenceType(
373         getCanonicalParamType(C, T.getNonReferenceType()),
374         /*SpelledAsLValue=*/false);
375   if (T->isPointerType())
376     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
377   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
378     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
379       return getCanonicalParamType(C, VLA->getElementType());
380     if (!A->isVariablyModifiedType())
381       return C.getCanonicalType(T);
382   }
383   return C.getCanonicalParamType(T);
384 }
385 
386 namespace {
387 /// Contains required data for proper outlined function codegen.
388 struct FunctionOptions {
389   /// Captured statement for which the function is generated.
390   const CapturedStmt *S = nullptr;
391   /// true if cast to/from  UIntPtr is required for variables captured by
392   /// value.
393   const bool UIntPtrCastRequired = true;
394   /// true if only casted arguments must be registered as local args or VLA
395   /// sizes.
396   const bool RegisterCastedArgsOnly = false;
397   /// Name of the generated function.
398   const StringRef FunctionName;
399   /// Location of the non-debug version of the outlined function.
400   SourceLocation Loc;
401   explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
402                            bool RegisterCastedArgsOnly, StringRef FunctionName,
403                            SourceLocation Loc)
404       : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
405         RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
406         FunctionName(FunctionName), Loc(Loc) {}
407 };
408 } // namespace
409 
410 static llvm::Function *emitOutlinedFunctionPrologue(
411     CodeGenFunction &CGF, FunctionArgList &Args,
412     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
413         &LocalAddrs,
414     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
415         &VLASizes,
416     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
417   const CapturedDecl *CD = FO.S->getCapturedDecl();
418   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
419   assert(CD->hasBody() && "missing CapturedDecl body");
420 
421   CXXThisValue = nullptr;
422   // Build the argument list.
423   CodeGenModule &CGM = CGF.CGM;
424   ASTContext &Ctx = CGM.getContext();
425   FunctionArgList TargetArgs;
426   Args.append(CD->param_begin(),
427               std::next(CD->param_begin(), CD->getContextParamPosition()));
428   TargetArgs.append(
429       CD->param_begin(),
430       std::next(CD->param_begin(), CD->getContextParamPosition()));
431   auto I = FO.S->captures().begin();
432   FunctionDecl *DebugFunctionDecl = nullptr;
433   if (!FO.UIntPtrCastRequired) {
434     FunctionProtoType::ExtProtoInfo EPI;
435     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
436     DebugFunctionDecl = FunctionDecl::Create(
437         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
438         SourceLocation(), DeclarationName(), FunctionTy,
439         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
440         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
441   }
442   for (const FieldDecl *FD : RD->fields()) {
443     QualType ArgType = FD->getType();
444     IdentifierInfo *II = nullptr;
445     VarDecl *CapVar = nullptr;
446 
447     // If this is a capture by copy and the type is not a pointer, the outlined
448     // function argument type should be uintptr and the value properly casted to
449     // uintptr. This is necessary given that the runtime library is only able to
450     // deal with pointers. We can pass in the same way the VLA type sizes to the
451     // outlined function.
452     if (FO.UIntPtrCastRequired &&
453         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
454          I->capturesVariableArrayType()))
455       ArgType = Ctx.getUIntPtrType();
456 
457     if (I->capturesVariable() || I->capturesVariableByCopy()) {
458       CapVar = I->getCapturedVar();
459       II = CapVar->getIdentifier();
460     } else if (I->capturesThis()) {
461       II = &Ctx.Idents.get("this");
462     } else {
463       assert(I->capturesVariableArrayType());
464       II = &Ctx.Idents.get("vla");
465     }
466     if (ArgType->isVariablyModifiedType())
467       ArgType = getCanonicalParamType(Ctx, ArgType);
468     VarDecl *Arg;
469     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
470       Arg = ParmVarDecl::Create(
471           Ctx, DebugFunctionDecl,
472           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
473           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
474           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
475     } else {
476       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
477                                       II, ArgType, ImplicitParamDecl::Other);
478     }
479     Args.emplace_back(Arg);
480     // Do not cast arguments if we emit function with non-original types.
481     TargetArgs.emplace_back(
482         FO.UIntPtrCastRequired
483             ? Arg
484             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
485     ++I;
486   }
487   Args.append(
488       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
489       CD->param_end());
490   TargetArgs.append(
491       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
492       CD->param_end());
493 
494   // Create the function declaration.
495   const CGFunctionInfo &FuncInfo =
496       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
497   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
498 
499   auto *F =
500       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
501                              FO.FunctionName, &CGM.getModule());
502   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
503   if (CD->isNothrow())
504     F->setDoesNotThrow();
505   F->setDoesNotRecurse();
506 
507   // Generate the function.
508   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
509                     FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(),
510                     FO.UIntPtrCastRequired ? FO.Loc
511                                            : CD->getBody()->getBeginLoc());
512   unsigned Cnt = CD->getContextParamPosition();
513   I = FO.S->captures().begin();
514   for (const FieldDecl *FD : RD->fields()) {
515     // Do not map arguments if we emit function with non-original types.
516     Address LocalAddr(Address::invalid());
517     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
518       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
519                                                              TargetArgs[Cnt]);
520     } else {
521       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
522     }
523     // If we are capturing a pointer by copy we don't need to do anything, just
524     // use the value that we get from the arguments.
525     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
526       const VarDecl *CurVD = I->getCapturedVar();
527       if (!FO.RegisterCastedArgsOnly)
528         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
529       ++Cnt;
530       ++I;
531       continue;
532     }
533 
534     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
535                                         AlignmentSource::Decl);
536     if (FD->hasCapturedVLAType()) {
537       if (FO.UIntPtrCastRequired) {
538         ArgLVal = CGF.MakeAddrLValue(
539             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
540                                  Args[Cnt]->getName(), ArgLVal),
541             FD->getType(), AlignmentSource::Decl);
542       }
543       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
544       const VariableArrayType *VAT = FD->getCapturedVLAType();
545       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
546     } else if (I->capturesVariable()) {
547       const VarDecl *Var = I->getCapturedVar();
548       QualType VarTy = Var->getType();
549       Address ArgAddr = ArgLVal.getAddress(CGF);
550       if (ArgLVal.getType()->isLValueReferenceType()) {
551         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
552       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
553         assert(ArgLVal.getType()->isPointerType());
554         ArgAddr = CGF.EmitLoadOfPointer(
555             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
556       }
557       if (!FO.RegisterCastedArgsOnly) {
558         LocalAddrs.insert(
559             {Args[Cnt],
560              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
561       }
562     } else if (I->capturesVariableByCopy()) {
563       assert(!FD->getType()->isAnyPointerType() &&
564              "Not expecting a captured pointer.");
565       const VarDecl *Var = I->getCapturedVar();
566       LocalAddrs.insert({Args[Cnt],
567                          {Var, FO.UIntPtrCastRequired
568                                    ? castValueFromUintptr(
569                                          CGF, I->getLocation(), FD->getType(),
570                                          Args[Cnt]->getName(), ArgLVal)
571                                    : ArgLVal.getAddress(CGF)}});
572     } else {
573       // If 'this' is captured, load it into CXXThisValue.
574       assert(I->capturesThis());
575       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
576       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}});
577     }
578     ++Cnt;
579     ++I;
580   }
581 
582   return F;
583 }
584 
585 llvm::Function *
586 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
587                                                     SourceLocation Loc) {
588   assert(
589       CapturedStmtInfo &&
590       "CapturedStmtInfo should be set when generating the captured function");
591   const CapturedDecl *CD = S.getCapturedDecl();
592   // Build the argument list.
593   bool NeedWrapperFunction =
594       getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo();
595   FunctionArgList Args;
596   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
597   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
598   SmallString<256> Buffer;
599   llvm::raw_svector_ostream Out(Buffer);
600   Out << CapturedStmtInfo->getHelperName();
601   if (NeedWrapperFunction)
602     Out << "_debug__";
603   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
604                      Out.str(), Loc);
605   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
606                                                    VLASizes, CXXThisValue, FO);
607   CodeGenFunction::OMPPrivateScope LocalScope(*this);
608   for (const auto &LocalAddrPair : LocalAddrs) {
609     if (LocalAddrPair.second.first) {
610       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
611         return LocalAddrPair.second.second;
612       });
613     }
614   }
615   (void)LocalScope.Privatize();
616   for (const auto &VLASizePair : VLASizes)
617     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
618   PGO.assignRegionCounters(GlobalDecl(CD), F);
619   CapturedStmtInfo->EmitBody(*this, CD->getBody());
620   (void)LocalScope.ForceCleanup();
621   FinishFunction(CD->getBodyRBrace());
622   if (!NeedWrapperFunction)
623     return F;
624 
625   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
626                             /*RegisterCastedArgsOnly=*/true,
627                             CapturedStmtInfo->getHelperName(), Loc);
628   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
629   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
630   Args.clear();
631   LocalAddrs.clear();
632   VLASizes.clear();
633   llvm::Function *WrapperF =
634       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
635                                    WrapperCGF.CXXThisValue, WrapperFO);
636   llvm::SmallVector<llvm::Value *, 4> CallArgs;
637   auto *PI = F->arg_begin();
638   for (const auto *Arg : Args) {
639     llvm::Value *CallArg;
640     auto I = LocalAddrs.find(Arg);
641     if (I != LocalAddrs.end()) {
642       LValue LV = WrapperCGF.MakeAddrLValue(
643           I->second.second,
644           I->second.first ? I->second.first->getType() : Arg->getType(),
645           AlignmentSource::Decl);
646       if (LV.getType()->isAnyComplexType())
647         LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
648             LV.getAddress(WrapperCGF),
649             PI->getType()->getPointerTo(
650                 LV.getAddress(WrapperCGF).getAddressSpace())));
651       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
652     } else {
653       auto EI = VLASizes.find(Arg);
654       if (EI != VLASizes.end()) {
655         CallArg = EI->second.second;
656       } else {
657         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
658                                               Arg->getType(),
659                                               AlignmentSource::Decl);
660         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
661       }
662     }
663     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
664     ++PI;
665   }
666   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs);
667   WrapperCGF.FinishFunction();
668   return WrapperF;
669 }
670 
671 //===----------------------------------------------------------------------===//
672 //                              OpenMP Directive Emission
673 //===----------------------------------------------------------------------===//
674 void CodeGenFunction::EmitOMPAggregateAssign(
675     Address DestAddr, Address SrcAddr, QualType OriginalType,
676     const llvm::function_ref<void(Address, Address)> CopyGen) {
677   // Perform element-by-element initialization.
678   QualType ElementTy;
679 
680   // Drill down to the base element type on both arrays.
681   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
682   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
683   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
684 
685   llvm::Value *SrcBegin = SrcAddr.getPointer();
686   llvm::Value *DestBegin = DestAddr.getPointer();
687   // Cast from pointer to array type to pointer to single element.
688   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
689   // The basic structure here is a while-do loop.
690   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
691   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
692   llvm::Value *IsEmpty =
693       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
694   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
695 
696   // Enter the loop body, making that address the current address.
697   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
698   EmitBlock(BodyBB);
699 
700   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
701 
702   llvm::PHINode *SrcElementPHI =
703     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
704   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
705   Address SrcElementCurrent =
706       Address(SrcElementPHI,
707               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
708 
709   llvm::PHINode *DestElementPHI =
710     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
711   DestElementPHI->addIncoming(DestBegin, EntryBB);
712   Address DestElementCurrent =
713     Address(DestElementPHI,
714             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
715 
716   // Emit copy.
717   CopyGen(DestElementCurrent, SrcElementCurrent);
718 
719   // Shift the address forward by one element.
720   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
721       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
722   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
723       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
724   // Check whether we've reached the end.
725   llvm::Value *Done =
726       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
727   Builder.CreateCondBr(Done, DoneBB, BodyBB);
728   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
729   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
730 
731   // Done.
732   EmitBlock(DoneBB, /*IsFinished=*/true);
733 }
734 
735 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
736                                   Address SrcAddr, const VarDecl *DestVD,
737                                   const VarDecl *SrcVD, const Expr *Copy) {
738   if (OriginalType->isArrayType()) {
739     const auto *BO = dyn_cast<BinaryOperator>(Copy);
740     if (BO && BO->getOpcode() == BO_Assign) {
741       // Perform simple memcpy for simple copying.
742       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
743       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
744       EmitAggregateAssign(Dest, Src, OriginalType);
745     } else {
746       // For arrays with complex element types perform element by element
747       // copying.
748       EmitOMPAggregateAssign(
749           DestAddr, SrcAddr, OriginalType,
750           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
751             // Working with the single array element, so have to remap
752             // destination and source variables to corresponding array
753             // elements.
754             CodeGenFunction::OMPPrivateScope Remap(*this);
755             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
756             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
757             (void)Remap.Privatize();
758             EmitIgnoredExpr(Copy);
759           });
760     }
761   } else {
762     // Remap pseudo source variable to private copy.
763     CodeGenFunction::OMPPrivateScope Remap(*this);
764     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
765     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
766     (void)Remap.Privatize();
767     // Emit copying of the whole variable.
768     EmitIgnoredExpr(Copy);
769   }
770 }
771 
772 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
773                                                 OMPPrivateScope &PrivateScope) {
774   if (!HaveInsertPoint())
775     return false;
776   bool DeviceConstTarget =
777       getLangOpts().OpenMPIsDevice &&
778       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
779   bool FirstprivateIsLastprivate = false;
780   llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates;
781   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
782     for (const auto *D : C->varlists())
783       Lastprivates.try_emplace(
784           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(),
785           C->getKind());
786   }
787   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
788   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
789   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
790   // Force emission of the firstprivate copy if the directive does not emit
791   // outlined function, like omp for, omp simd, omp distribute etc.
792   bool MustEmitFirstprivateCopy =
793       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
794   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
795     const auto *IRef = C->varlist_begin();
796     const auto *InitsRef = C->inits().begin();
797     for (const Expr *IInit : C->private_copies()) {
798       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
799       bool ThisFirstprivateIsLastprivate =
800           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
801       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
802       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
803       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
804           !FD->getType()->isReferenceType() &&
805           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
806         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
807         ++IRef;
808         ++InitsRef;
809         continue;
810       }
811       // Do not emit copy for firstprivate constant variables in target regions,
812       // captured by reference.
813       if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
814           FD && FD->getType()->isReferenceType() &&
815           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
816         (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
817                                                                     OrigVD);
818         ++IRef;
819         ++InitsRef;
820         continue;
821       }
822       FirstprivateIsLastprivate =
823           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
824       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
825         const auto *VDInit =
826             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
827         bool IsRegistered;
828         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
829                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
830                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
831         LValue OriginalLVal;
832         if (!FD) {
833           // Check if the firstprivate variable is just a constant value.
834           ConstantEmission CE = tryEmitAsConstant(&DRE);
835           if (CE && !CE.isReference()) {
836             // Constant value, no need to create a copy.
837             ++IRef;
838             ++InitsRef;
839             continue;
840           }
841           if (CE && CE.isReference()) {
842             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
843           } else {
844             assert(!CE && "Expected non-constant firstprivate.");
845             OriginalLVal = EmitLValue(&DRE);
846           }
847         } else {
848           OriginalLVal = EmitLValue(&DRE);
849         }
850         QualType Type = VD->getType();
851         if (Type->isArrayType()) {
852           // Emit VarDecl with copy init for arrays.
853           // Get the address of the original variable captured in current
854           // captured region.
855           IsRegistered = PrivateScope.addPrivate(
856               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
857                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
858                 const Expr *Init = VD->getInit();
859                 if (!isa<CXXConstructExpr>(Init) ||
860                     isTrivialInitializer(Init)) {
861                   // Perform simple memcpy.
862                   LValue Dest =
863                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
864                   EmitAggregateAssign(Dest, OriginalLVal, Type);
865                 } else {
866                   EmitOMPAggregateAssign(
867                       Emission.getAllocatedAddress(),
868                       OriginalLVal.getAddress(*this), Type,
869                       [this, VDInit, Init](Address DestElement,
870                                            Address SrcElement) {
871                         // Clean up any temporaries needed by the
872                         // initialization.
873                         RunCleanupsScope InitScope(*this);
874                         // Emit initialization for single element.
875                         setAddrOfLocalVar(VDInit, SrcElement);
876                         EmitAnyExprToMem(Init, DestElement,
877                                          Init->getType().getQualifiers(),
878                                          /*IsInitializer*/ false);
879                         LocalDeclMap.erase(VDInit);
880                       });
881                 }
882                 EmitAutoVarCleanups(Emission);
883                 return Emission.getAllocatedAddress();
884               });
885         } else {
886           Address OriginalAddr = OriginalLVal.getAddress(*this);
887           IsRegistered =
888               PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD,
889                                                ThisFirstprivateIsLastprivate,
890                                                OrigVD, &Lastprivates, IRef]() {
891                 // Emit private VarDecl with copy init.
892                 // Remap temp VDInit variable to the address of the original
893                 // variable (for proper handling of captured global variables).
894                 setAddrOfLocalVar(VDInit, OriginalAddr);
895                 EmitDecl(*VD);
896                 LocalDeclMap.erase(VDInit);
897                 if (ThisFirstprivateIsLastprivate &&
898                     Lastprivates[OrigVD->getCanonicalDecl()] ==
899                         OMPC_LASTPRIVATE_conditional) {
900                   // Create/init special variable for lastprivate conditionals.
901                   Address VDAddr =
902                       CGM.getOpenMPRuntime().emitLastprivateConditionalInit(
903                           *this, OrigVD);
904                   llvm::Value *V = EmitLoadOfScalar(
905                       MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(),
906                                      AlignmentSource::Decl),
907                       (*IRef)->getExprLoc());
908                   EmitStoreOfScalar(V,
909                                     MakeAddrLValue(VDAddr, (*IRef)->getType(),
910                                                    AlignmentSource::Decl));
911                   LocalDeclMap.erase(VD);
912                   setAddrOfLocalVar(VD, VDAddr);
913                   return VDAddr;
914                 }
915                 return GetAddrOfLocalVar(VD);
916               });
917         }
918         assert(IsRegistered &&
919                "firstprivate var already registered as private");
920         // Silence the warning about unused variable.
921         (void)IsRegistered;
922       }
923       ++IRef;
924       ++InitsRef;
925     }
926   }
927   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
928 }
929 
930 void CodeGenFunction::EmitOMPPrivateClause(
931     const OMPExecutableDirective &D,
932     CodeGenFunction::OMPPrivateScope &PrivateScope) {
933   if (!HaveInsertPoint())
934     return;
935   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
936   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
937     auto IRef = C->varlist_begin();
938     for (const Expr *IInit : C->private_copies()) {
939       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
940       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
941         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
942         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
943           // Emit private VarDecl with copy init.
944           EmitDecl(*VD);
945           return GetAddrOfLocalVar(VD);
946         });
947         assert(IsRegistered && "private var already registered as private");
948         // Silence the warning about unused variable.
949         (void)IsRegistered;
950       }
951       ++IRef;
952     }
953   }
954 }
955 
956 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
957   if (!HaveInsertPoint())
958     return false;
959   // threadprivate_var1 = master_threadprivate_var1;
960   // operator=(threadprivate_var2, master_threadprivate_var2);
961   // ...
962   // __kmpc_barrier(&loc, global_tid);
963   llvm::DenseSet<const VarDecl *> CopiedVars;
964   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
965   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
966     auto IRef = C->varlist_begin();
967     auto ISrcRef = C->source_exprs().begin();
968     auto IDestRef = C->destination_exprs().begin();
969     for (const Expr *AssignOp : C->assignment_ops()) {
970       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
971       QualType Type = VD->getType();
972       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
973         // Get the address of the master variable. If we are emitting code with
974         // TLS support, the address is passed from the master as field in the
975         // captured declaration.
976         Address MasterAddr = Address::invalid();
977         if (getLangOpts().OpenMPUseTLS &&
978             getContext().getTargetInfo().isTLSSupported()) {
979           assert(CapturedStmtInfo->lookup(VD) &&
980                  "Copyin threadprivates should have been captured!");
981           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
982                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
983           MasterAddr = EmitLValue(&DRE).getAddress(*this);
984           LocalDeclMap.erase(VD);
985         } else {
986           MasterAddr =
987             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
988                                         : CGM.GetAddrOfGlobal(VD),
989                     getContext().getDeclAlign(VD));
990         }
991         // Get the address of the threadprivate variable.
992         Address PrivateAddr = EmitLValue(*IRef).getAddress(*this);
993         if (CopiedVars.size() == 1) {
994           // At first check if current thread is a master thread. If it is, no
995           // need to copy data.
996           CopyBegin = createBasicBlock("copyin.not.master");
997           CopyEnd = createBasicBlock("copyin.not.master.end");
998           Builder.CreateCondBr(
999               Builder.CreateICmpNE(
1000                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
1001                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
1002                                          CGM.IntPtrTy)),
1003               CopyBegin, CopyEnd);
1004           EmitBlock(CopyBegin);
1005         }
1006         const auto *SrcVD =
1007             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1008         const auto *DestVD =
1009             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1010         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
1011       }
1012       ++IRef;
1013       ++ISrcRef;
1014       ++IDestRef;
1015     }
1016   }
1017   if (CopyEnd) {
1018     // Exit out of copying procedure for non-master thread.
1019     EmitBlock(CopyEnd, /*IsFinished=*/true);
1020     return true;
1021   }
1022   return false;
1023 }
1024 
1025 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
1026     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
1027   if (!HaveInsertPoint())
1028     return false;
1029   bool HasAtLeastOneLastprivate = false;
1030   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1031   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1032     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1033     for (const Expr *C : LoopDirective->counters()) {
1034       SIMDLCVs.insert(
1035           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1036     }
1037   }
1038   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1039   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1040     HasAtLeastOneLastprivate = true;
1041     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
1042         !getLangOpts().OpenMPSimd)
1043       break;
1044     const auto *IRef = C->varlist_begin();
1045     const auto *IDestRef = C->destination_exprs().begin();
1046     for (const Expr *IInit : C->private_copies()) {
1047       // Keep the address of the original variable for future update at the end
1048       // of the loop.
1049       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1050       // Taskloops do not require additional initialization, it is done in
1051       // runtime support library.
1052       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
1053         const auto *DestVD =
1054             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1055         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1056           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1057                           /*RefersToEnclosingVariableOrCapture=*/
1058                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1059                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1060           return EmitLValue(&DRE).getAddress(*this);
1061         });
1062         // Check if the variable is also a firstprivate: in this case IInit is
1063         // not generated. Initialization of this variable will happen in codegen
1064         // for 'firstprivate' clause.
1065         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1066           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1067           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C,
1068                                                                OrigVD]() {
1069             if (C->getKind() == OMPC_LASTPRIVATE_conditional) {
1070               Address VDAddr =
1071                   CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this,
1072                                                                         OrigVD);
1073               setAddrOfLocalVar(VD, VDAddr);
1074               return VDAddr;
1075             }
1076             // Emit private VarDecl with copy init.
1077             EmitDecl(*VD);
1078             return GetAddrOfLocalVar(VD);
1079           });
1080           assert(IsRegistered &&
1081                  "lastprivate var already registered as private");
1082           (void)IsRegistered;
1083         }
1084       }
1085       ++IRef;
1086       ++IDestRef;
1087     }
1088   }
1089   return HasAtLeastOneLastprivate;
1090 }
1091 
1092 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1093     const OMPExecutableDirective &D, bool NoFinals,
1094     llvm::Value *IsLastIterCond) {
1095   if (!HaveInsertPoint())
1096     return;
1097   // Emit following code:
1098   // if (<IsLastIterCond>) {
1099   //   orig_var1 = private_orig_var1;
1100   //   ...
1101   //   orig_varn = private_orig_varn;
1102   // }
1103   llvm::BasicBlock *ThenBB = nullptr;
1104   llvm::BasicBlock *DoneBB = nullptr;
1105   if (IsLastIterCond) {
1106     // Emit implicit barrier if at least one lastprivate conditional is found
1107     // and this is not a simd mode.
1108     if (!getLangOpts().OpenMPSimd &&
1109         llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(),
1110                      [](const OMPLastprivateClause *C) {
1111                        return C->getKind() == OMPC_LASTPRIVATE_conditional;
1112                      })) {
1113       CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(),
1114                                              OMPD_unknown,
1115                                              /*EmitChecks=*/false,
1116                                              /*ForceSimpleCall=*/true);
1117     }
1118     ThenBB = createBasicBlock(".omp.lastprivate.then");
1119     DoneBB = createBasicBlock(".omp.lastprivate.done");
1120     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1121     EmitBlock(ThenBB);
1122   }
1123   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1124   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1125   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1126     auto IC = LoopDirective->counters().begin();
1127     for (const Expr *F : LoopDirective->finals()) {
1128       const auto *D =
1129           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1130       if (NoFinals)
1131         AlreadyEmittedVars.insert(D);
1132       else
1133         LoopCountersAndUpdates[D] = F;
1134       ++IC;
1135     }
1136   }
1137   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1138     auto IRef = C->varlist_begin();
1139     auto ISrcRef = C->source_exprs().begin();
1140     auto IDestRef = C->destination_exprs().begin();
1141     for (const Expr *AssignOp : C->assignment_ops()) {
1142       const auto *PrivateVD =
1143           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1144       QualType Type = PrivateVD->getType();
1145       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1146       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1147         // If lastprivate variable is a loop control variable for loop-based
1148         // directive, update its value before copyin back to original
1149         // variable.
1150         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1151           EmitIgnoredExpr(FinalExpr);
1152         const auto *SrcVD =
1153             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1154         const auto *DestVD =
1155             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1156         // Get the address of the private variable.
1157         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1158         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1159           PrivateAddr =
1160               Address(Builder.CreateLoad(PrivateAddr),
1161                       CGM.getNaturalTypeAlignment(RefTy->getPointeeType()));
1162         // Store the last value to the private copy in the last iteration.
1163         if (C->getKind() == OMPC_LASTPRIVATE_conditional)
1164           CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate(
1165               *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD,
1166               (*IRef)->getExprLoc());
1167         // Get the address of the original variable.
1168         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1169         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1170       }
1171       ++IRef;
1172       ++ISrcRef;
1173       ++IDestRef;
1174     }
1175     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1176       EmitIgnoredExpr(PostUpdate);
1177   }
1178   if (IsLastIterCond)
1179     EmitBlock(DoneBB, /*IsFinished=*/true);
1180 }
1181 
1182 void CodeGenFunction::EmitOMPReductionClauseInit(
1183     const OMPExecutableDirective &D,
1184     CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) {
1185   if (!HaveInsertPoint())
1186     return;
1187   SmallVector<const Expr *, 4> Shareds;
1188   SmallVector<const Expr *, 4> Privates;
1189   SmallVector<const Expr *, 4> ReductionOps;
1190   SmallVector<const Expr *, 4> LHSs;
1191   SmallVector<const Expr *, 4> RHSs;
1192   OMPTaskDataTy Data;
1193   SmallVector<const Expr *, 4> TaskLHSs;
1194   SmallVector<const Expr *, 4> TaskRHSs;
1195   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1196     if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan))
1197       continue;
1198     Shareds.append(C->varlist_begin(), C->varlist_end());
1199     Privates.append(C->privates().begin(), C->privates().end());
1200     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1201     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1202     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1203     if (C->getModifier() == OMPC_REDUCTION_task) {
1204       Data.ReductionVars.append(C->privates().begin(), C->privates().end());
1205       Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
1206       Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
1207       Data.ReductionOps.append(C->reduction_ops().begin(),
1208                                C->reduction_ops().end());
1209       TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1210       TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1211     }
1212   }
1213   ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
1214   unsigned Count = 0;
1215   auto *ILHS = LHSs.begin();
1216   auto *IRHS = RHSs.begin();
1217   auto *IPriv = Privates.begin();
1218   for (const Expr *IRef : Shareds) {
1219     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1220     // Emit private VarDecl with reduction init.
1221     RedCG.emitSharedOrigLValue(*this, Count);
1222     RedCG.emitAggregateType(*this, Count);
1223     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1224     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1225                              RedCG.getSharedLValue(Count),
1226                              [&Emission](CodeGenFunction &CGF) {
1227                                CGF.EmitAutoVarInit(Emission);
1228                                return true;
1229                              });
1230     EmitAutoVarCleanups(Emission);
1231     Address BaseAddr = RedCG.adjustPrivateAddress(
1232         *this, Count, Emission.getAllocatedAddress());
1233     bool IsRegistered = PrivateScope.addPrivate(
1234         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1235     assert(IsRegistered && "private var already registered as private");
1236     // Silence the warning about unused variable.
1237     (void)IsRegistered;
1238 
1239     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1240     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1241     QualType Type = PrivateVD->getType();
1242     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1243     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1244       // Store the address of the original variable associated with the LHS
1245       // implicit variable.
1246       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1247         return RedCG.getSharedLValue(Count).getAddress(*this);
1248       });
1249       PrivateScope.addPrivate(
1250           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1251     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1252                isa<ArraySubscriptExpr>(IRef)) {
1253       // Store the address of the original variable associated with the LHS
1254       // implicit variable.
1255       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1256         return RedCG.getSharedLValue(Count).getAddress(*this);
1257       });
1258       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1259         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1260                                             ConvertTypeForMem(RHSVD->getType()),
1261                                             "rhs.begin");
1262       });
1263     } else {
1264       QualType Type = PrivateVD->getType();
1265       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1266       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this);
1267       // Store the address of the original variable associated with the LHS
1268       // implicit variable.
1269       if (IsArray) {
1270         OriginalAddr = Builder.CreateElementBitCast(
1271             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1272       }
1273       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1274       PrivateScope.addPrivate(
1275           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1276             return IsArray
1277                        ? Builder.CreateElementBitCast(
1278                              GetAddrOfLocalVar(PrivateVD),
1279                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1280                        : GetAddrOfLocalVar(PrivateVD);
1281           });
1282     }
1283     ++ILHS;
1284     ++IRHS;
1285     ++IPriv;
1286     ++Count;
1287   }
1288   if (!Data.ReductionVars.empty()) {
1289     Data.IsReductionWithTaskMod = true;
1290     Data.IsWorksharingReduction =
1291         isOpenMPWorksharingDirective(D.getDirectiveKind());
1292     llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit(
1293         *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data);
1294     const Expr *TaskRedRef = nullptr;
1295     switch (D.getDirectiveKind()) {
1296     case OMPD_parallel:
1297       TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr();
1298       break;
1299     case OMPD_for:
1300       TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr();
1301       break;
1302     case OMPD_sections:
1303       TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr();
1304       break;
1305     case OMPD_parallel_for:
1306       TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr();
1307       break;
1308     case OMPD_parallel_master:
1309       TaskRedRef =
1310           cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr();
1311       break;
1312     case OMPD_parallel_sections:
1313       TaskRedRef =
1314           cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr();
1315       break;
1316     case OMPD_target_parallel:
1317       TaskRedRef =
1318           cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr();
1319       break;
1320     case OMPD_target_parallel_for:
1321       TaskRedRef =
1322           cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr();
1323       break;
1324     case OMPD_distribute_parallel_for:
1325       TaskRedRef =
1326           cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr();
1327       break;
1328     case OMPD_teams_distribute_parallel_for:
1329       TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D)
1330                        .getTaskReductionRefExpr();
1331       break;
1332     case OMPD_target_teams_distribute_parallel_for:
1333       TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D)
1334                        .getTaskReductionRefExpr();
1335       break;
1336     case OMPD_simd:
1337     case OMPD_for_simd:
1338     case OMPD_section:
1339     case OMPD_single:
1340     case OMPD_master:
1341     case OMPD_critical:
1342     case OMPD_parallel_for_simd:
1343     case OMPD_task:
1344     case OMPD_taskyield:
1345     case OMPD_barrier:
1346     case OMPD_taskwait:
1347     case OMPD_taskgroup:
1348     case OMPD_flush:
1349     case OMPD_depobj:
1350     case OMPD_scan:
1351     case OMPD_ordered:
1352     case OMPD_atomic:
1353     case OMPD_teams:
1354     case OMPD_target:
1355     case OMPD_cancellation_point:
1356     case OMPD_cancel:
1357     case OMPD_target_data:
1358     case OMPD_target_enter_data:
1359     case OMPD_target_exit_data:
1360     case OMPD_taskloop:
1361     case OMPD_taskloop_simd:
1362     case OMPD_master_taskloop:
1363     case OMPD_master_taskloop_simd:
1364     case OMPD_parallel_master_taskloop:
1365     case OMPD_parallel_master_taskloop_simd:
1366     case OMPD_distribute:
1367     case OMPD_target_update:
1368     case OMPD_distribute_parallel_for_simd:
1369     case OMPD_distribute_simd:
1370     case OMPD_target_parallel_for_simd:
1371     case OMPD_target_simd:
1372     case OMPD_teams_distribute:
1373     case OMPD_teams_distribute_simd:
1374     case OMPD_teams_distribute_parallel_for_simd:
1375     case OMPD_target_teams:
1376     case OMPD_target_teams_distribute:
1377     case OMPD_target_teams_distribute_parallel_for_simd:
1378     case OMPD_target_teams_distribute_simd:
1379     case OMPD_declare_target:
1380     case OMPD_end_declare_target:
1381     case OMPD_threadprivate:
1382     case OMPD_allocate:
1383     case OMPD_declare_reduction:
1384     case OMPD_declare_mapper:
1385     case OMPD_declare_simd:
1386     case OMPD_requires:
1387     case OMPD_declare_variant:
1388     case OMPD_begin_declare_variant:
1389     case OMPD_end_declare_variant:
1390     case OMPD_unknown:
1391     default:
1392       llvm_unreachable("Enexpected directive with task reductions.");
1393     }
1394 
1395     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl());
1396     EmitVarDecl(*VD);
1397     EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD),
1398                       /*Volatile=*/false, TaskRedRef->getType());
1399   }
1400 }
1401 
1402 void CodeGenFunction::EmitOMPReductionClauseFinal(
1403     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1404   if (!HaveInsertPoint())
1405     return;
1406   llvm::SmallVector<const Expr *, 8> Privates;
1407   llvm::SmallVector<const Expr *, 8> LHSExprs;
1408   llvm::SmallVector<const Expr *, 8> RHSExprs;
1409   llvm::SmallVector<const Expr *, 8> ReductionOps;
1410   bool HasAtLeastOneReduction = false;
1411   bool IsReductionWithTaskMod = false;
1412   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1413     // Do not emit for inscan reductions.
1414     if (C->getModifier() == OMPC_REDUCTION_inscan)
1415       continue;
1416     HasAtLeastOneReduction = true;
1417     Privates.append(C->privates().begin(), C->privates().end());
1418     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1419     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1420     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1421     IsReductionWithTaskMod =
1422         IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task;
1423   }
1424   if (HasAtLeastOneReduction) {
1425     if (IsReductionWithTaskMod) {
1426       CGM.getOpenMPRuntime().emitTaskReductionFini(
1427           *this, D.getBeginLoc(),
1428           isOpenMPWorksharingDirective(D.getDirectiveKind()));
1429     }
1430     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1431                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1432                       ReductionKind == OMPD_simd;
1433     bool SimpleReduction = ReductionKind == OMPD_simd;
1434     // Emit nowait reduction if nowait clause is present or directive is a
1435     // parallel directive (it always has implicit barrier).
1436     CGM.getOpenMPRuntime().emitReduction(
1437         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1438         {WithNowait, SimpleReduction, ReductionKind});
1439   }
1440 }
1441 
1442 static void emitPostUpdateForReductionClause(
1443     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1444     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1445   if (!CGF.HaveInsertPoint())
1446     return;
1447   llvm::BasicBlock *DoneBB = nullptr;
1448   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1449     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1450       if (!DoneBB) {
1451         if (llvm::Value *Cond = CondGen(CGF)) {
1452           // If the first post-update expression is found, emit conditional
1453           // block if it was requested.
1454           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1455           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1456           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1457           CGF.EmitBlock(ThenBB);
1458         }
1459       }
1460       CGF.EmitIgnoredExpr(PostUpdate);
1461     }
1462   }
1463   if (DoneBB)
1464     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1465 }
1466 
1467 namespace {
1468 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1469 /// parallel function. This is necessary for combined constructs such as
1470 /// 'distribute parallel for'
1471 typedef llvm::function_ref<void(CodeGenFunction &,
1472                                 const OMPExecutableDirective &,
1473                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1474     CodeGenBoundParametersTy;
1475 } // anonymous namespace
1476 
1477 static void
1478 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF,
1479                                      const OMPExecutableDirective &S) {
1480   if (CGF.getLangOpts().OpenMP < 50)
1481     return;
1482   llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls;
1483   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
1484     for (const Expr *Ref : C->varlists()) {
1485       if (!Ref->getType()->isScalarType())
1486         continue;
1487       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1488       if (!DRE)
1489         continue;
1490       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1491       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1492     }
1493   }
1494   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
1495     for (const Expr *Ref : C->varlists()) {
1496       if (!Ref->getType()->isScalarType())
1497         continue;
1498       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1499       if (!DRE)
1500         continue;
1501       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1502       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1503     }
1504   }
1505   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
1506     for (const Expr *Ref : C->varlists()) {
1507       if (!Ref->getType()->isScalarType())
1508         continue;
1509       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1510       if (!DRE)
1511         continue;
1512       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1513       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1514     }
1515   }
1516   // Privates should ne analyzed since they are not captured at all.
1517   // Task reductions may be skipped - tasks are ignored.
1518   // Firstprivates do not return value but may be passed by reference - no need
1519   // to check for updated lastprivate conditional.
1520   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
1521     for (const Expr *Ref : C->varlists()) {
1522       if (!Ref->getType()->isScalarType())
1523         continue;
1524       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1525       if (!DRE)
1526         continue;
1527       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1528     }
1529   }
1530   CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional(
1531       CGF, S, PrivateDecls);
1532 }
1533 
1534 static void emitCommonOMPParallelDirective(
1535     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1536     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1537     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1538   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1539   llvm::Function *OutlinedFn =
1540       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1541           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1542   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1543     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1544     llvm::Value *NumThreads =
1545         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1546                            /*IgnoreResultAssign=*/true);
1547     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1548         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1549   }
1550   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1551     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1552     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1553         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1554   }
1555   const Expr *IfCond = nullptr;
1556   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1557     if (C->getNameModifier() == OMPD_unknown ||
1558         C->getNameModifier() == OMPD_parallel) {
1559       IfCond = C->getCondition();
1560       break;
1561     }
1562   }
1563 
1564   OMPParallelScope Scope(CGF, S);
1565   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1566   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1567   // lower and upper bounds with the pragma 'for' chunking mechanism.
1568   // The following lambda takes care of appending the lower and upper bound
1569   // parameters when necessary
1570   CodeGenBoundParameters(CGF, S, CapturedVars);
1571   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1572   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1573                                               CapturedVars, IfCond);
1574 }
1575 
1576 static bool isAllocatableDecl(const VarDecl *VD) {
1577   const VarDecl *CVD = VD->getCanonicalDecl();
1578   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
1579     return false;
1580   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1581   // Use the default allocation.
1582   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
1583             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
1584            !AA->getAllocator());
1585 }
1586 
1587 static void emitEmptyBoundParameters(CodeGenFunction &,
1588                                      const OMPExecutableDirective &,
1589                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1590 
1591 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable(
1592     CodeGenFunction &CGF, const VarDecl *VD) {
1593   CodeGenModule &CGM = CGF.CGM;
1594   auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1595 
1596   if (!VD)
1597     return Address::invalid();
1598   const VarDecl *CVD = VD->getCanonicalDecl();
1599   if (!isAllocatableDecl(CVD))
1600     return Address::invalid();
1601   llvm::Value *Size;
1602   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
1603   if (CVD->getType()->isVariablyModifiedType()) {
1604     Size = CGF.getTypeSize(CVD->getType());
1605     // Align the size: ((size + align - 1) / align) * align
1606     Size = CGF.Builder.CreateNUWAdd(
1607         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
1608     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
1609     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
1610   } else {
1611     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
1612     Size = CGM.getSize(Sz.alignTo(Align));
1613   }
1614 
1615   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1616   assert(AA->getAllocator() &&
1617          "Expected allocator expression for non-default allocator.");
1618   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
1619   // According to the standard, the original allocator type is a enum (integer).
1620   // Convert to pointer type, if required.
1621   if (Allocator->getType()->isIntegerTy())
1622     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
1623   else if (Allocator->getType()->isPointerTy())
1624     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
1625                                                                 CGM.VoidPtrTy);
1626 
1627   llvm::Value *Addr = OMPBuilder.createOMPAlloc(
1628       CGF.Builder, Size, Allocator,
1629       getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", "."));
1630   llvm::CallInst *FreeCI =
1631       OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator);
1632 
1633   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI);
1634   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1635       Addr,
1636       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
1637       getNameWithSeparators({CVD->getName(), ".addr"}, ".", "."));
1638   return Address(Addr, Align);
1639 }
1640 
1641 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
1642     CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr,
1643     SourceLocation Loc) {
1644   CodeGenModule &CGM = CGF.CGM;
1645   if (CGM.getLangOpts().OpenMPUseTLS &&
1646       CGM.getContext().getTargetInfo().isTLSSupported())
1647     return VDAddr;
1648 
1649   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1650 
1651   llvm::Type *VarTy = VDAddr.getElementType();
1652   llvm::Value *Data =
1653       CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy);
1654   llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy));
1655   std::string Suffix = getNameWithSeparators({"cache", ""});
1656   llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix);
1657 
1658   llvm::CallInst *ThreadPrivateCacheCall =
1659       OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName);
1660 
1661   return Address(ThreadPrivateCacheCall, VDAddr.getAlignment());
1662 }
1663 
1664 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators(
1665     ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) {
1666   SmallString<128> Buffer;
1667   llvm::raw_svector_ostream OS(Buffer);
1668   StringRef Sep = FirstSeparator;
1669   for (StringRef Part : Parts) {
1670     OS << Sep << Part;
1671     Sep = Separator;
1672   }
1673   return OS.str().str();
1674 }
1675 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1676   if (CGM.getLangOpts().OpenMPIRBuilder) {
1677     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1678     // Check if we have any if clause associated with the directive.
1679     llvm::Value *IfCond = nullptr;
1680     if (const auto *C = S.getSingleClause<OMPIfClause>())
1681       IfCond = EmitScalarExpr(C->getCondition(),
1682                               /*IgnoreResultAssign=*/true);
1683 
1684     llvm::Value *NumThreads = nullptr;
1685     if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>())
1686       NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(),
1687                                   /*IgnoreResultAssign=*/true);
1688 
1689     ProcBindKind ProcBind = OMP_PROC_BIND_default;
1690     if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>())
1691       ProcBind = ProcBindClause->getProcBindKind();
1692 
1693     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1694 
1695     // The cleanup callback that finalizes all variabels at the given location,
1696     // thus calls destructors etc.
1697     auto FiniCB = [this](InsertPointTy IP) {
1698       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
1699     };
1700 
1701     // Privatization callback that performs appropriate action for
1702     // shared/private/firstprivate/lastprivate/copyin/... variables.
1703     //
1704     // TODO: This defaults to shared right now.
1705     auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1706                      llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
1707       // The next line is appropriate only for variables (Val) with the
1708       // data-sharing attribute "shared".
1709       ReplVal = &Val;
1710 
1711       return CodeGenIP;
1712     };
1713 
1714     const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1715     const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt();
1716 
1717     auto BodyGenCB = [ParallelRegionBodyStmt,
1718                       this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1719                             llvm::BasicBlock &ContinuationBB) {
1720       OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP,
1721                                                       ContinuationBB);
1722       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt,
1723                                              CodeGenIP, ContinuationBB);
1724     };
1725 
1726     CGCapturedStmtInfo CGSI(*CS, CR_OpenMP);
1727     CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
1728     llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
1729         AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
1730     Builder.restoreIP(
1731         OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB,
1732                                   IfCond, NumThreads, ProcBind, S.hasCancel()));
1733     return;
1734   }
1735 
1736   // Emit parallel region as a standalone region.
1737   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1738     Action.Enter(CGF);
1739     OMPPrivateScope PrivateScope(CGF);
1740     bool Copyins = CGF.EmitOMPCopyinClause(S);
1741     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1742     if (Copyins) {
1743       // Emit implicit barrier to synchronize threads and avoid data races on
1744       // propagation master's thread values of threadprivate variables to local
1745       // instances of that variables of all other implicit threads.
1746       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1747           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1748           /*ForceSimpleCall=*/true);
1749     }
1750     CGF.EmitOMPPrivateClause(S, PrivateScope);
1751     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1752     (void)PrivateScope.Privatize();
1753     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1754     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1755   };
1756   {
1757     auto LPCRegion =
1758         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
1759     emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1760                                    emitEmptyBoundParameters);
1761     emitPostUpdateForReductionClause(*this, S,
1762                                      [](CodeGenFunction &) { return nullptr; });
1763   }
1764   // Check for outer lastprivate conditional update.
1765   checkForLastprivateConditionalUpdate(*this, S);
1766 }
1767 
1768 namespace {
1769 /// RAII to handle scopes for loop transformation directives.
1770 class OMPTransformDirectiveScopeRAII {
1771   OMPLoopScope *Scope = nullptr;
1772   CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr;
1773   CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr;
1774 
1775 public:
1776   OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) {
1777     if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) {
1778       Scope = new OMPLoopScope(CGF, *Dir);
1779       CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP);
1780       CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI);
1781     }
1782   }
1783   ~OMPTransformDirectiveScopeRAII() {
1784     if (!Scope)
1785       return;
1786     delete CapInfoRAII;
1787     delete CGSI;
1788     delete Scope;
1789   }
1790 };
1791 } // namespace
1792 
1793 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
1794                      int MaxLevel, int Level = 0) {
1795   assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
1796   const Stmt *SimplifiedS = S->IgnoreContainers();
1797   if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
1798     PrettyStackTraceLoc CrashInfo(
1799         CGF.getContext().getSourceManager(), CS->getLBracLoc(),
1800         "LLVM IR generation of compound statement ('{}')");
1801 
1802     // Keep track of the current cleanup stack depth, including debug scopes.
1803     CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
1804     for (const Stmt *CurStmt : CS->body())
1805       emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
1806     return;
1807   }
1808   if (SimplifiedS == NextLoop) {
1809     OMPTransformDirectiveScopeRAII PossiblyTransformDirectiveScope(CGF,
1810                                                                    SimplifiedS);
1811     if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS))
1812       SimplifiedS = Dir->getTransformedStmt();
1813     if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS))
1814       SimplifiedS = CanonLoop->getLoopStmt();
1815     if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
1816       S = For->getBody();
1817     } else {
1818       assert(isa<CXXForRangeStmt>(SimplifiedS) &&
1819              "Expected canonical for loop or range-based for loop.");
1820       const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
1821       CGF.EmitStmt(CXXFor->getLoopVarStmt());
1822       S = CXXFor->getBody();
1823     }
1824     if (Level + 1 < MaxLevel) {
1825       NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
1826           S, /*TryImperfectlyNestedLoops=*/true);
1827       emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
1828       return;
1829     }
1830   }
1831   CGF.EmitStmt(S);
1832 }
1833 
1834 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1835                                       JumpDest LoopExit) {
1836   RunCleanupsScope BodyScope(*this);
1837   // Update counters values on current iteration.
1838   for (const Expr *UE : D.updates())
1839     EmitIgnoredExpr(UE);
1840   // Update the linear variables.
1841   // In distribute directives only loop counters may be marked as linear, no
1842   // need to generate the code for them.
1843   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1844     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1845       for (const Expr *UE : C->updates())
1846         EmitIgnoredExpr(UE);
1847     }
1848   }
1849 
1850   // On a continue in the body, jump to the end.
1851   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1852   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1853   for (const Expr *E : D.finals_conditions()) {
1854     if (!E)
1855       continue;
1856     // Check that loop counter in non-rectangular nest fits into the iteration
1857     // space.
1858     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1859     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1860                          getProfileCount(D.getBody()));
1861     EmitBlock(NextBB);
1862   }
1863 
1864   OMPPrivateScope InscanScope(*this);
1865   EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true);
1866   bool IsInscanRegion = InscanScope.Privatize();
1867   if (IsInscanRegion) {
1868     // Need to remember the block before and after scan directive
1869     // to dispatch them correctly depending on the clause used in
1870     // this directive, inclusive or exclusive. For inclusive scan the natural
1871     // order of the blocks is used, for exclusive clause the blocks must be
1872     // executed in reverse order.
1873     OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb");
1874     OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb");
1875     // No need to allocate inscan exit block, in simd mode it is selected in the
1876     // codegen for the scan directive.
1877     if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd)
1878       OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb");
1879     OMPScanDispatch = createBasicBlock("omp.inscan.dispatch");
1880     EmitBranch(OMPScanDispatch);
1881     EmitBlock(OMPBeforeScanBlock);
1882   }
1883 
1884   // Emit loop variables for C++ range loops.
1885   const Stmt *Body =
1886       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1887   // Emit loop body.
1888   emitBody(*this, Body,
1889            OMPLoopBasedDirective::tryToFindNextInnerLoop(
1890                Body, /*TryImperfectlyNestedLoops=*/true),
1891            D.getLoopsNumber());
1892 
1893   // Jump to the dispatcher at the end of the loop body.
1894   if (IsInscanRegion)
1895     EmitBranch(OMPScanExitBlock);
1896 
1897   // The end (updates/cleanups).
1898   EmitBlock(Continue.getBlock());
1899   BreakContinueStack.pop_back();
1900 }
1901 
1902 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>;
1903 
1904 /// Emit a captured statement and return the function as well as its captured
1905 /// closure context.
1906 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF,
1907                                              const CapturedStmt *S) {
1908   LValue CapStruct = ParentCGF.InitCapturedStruct(*S);
1909   CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true);
1910   std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI =
1911       std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S);
1912   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get());
1913   llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S);
1914 
1915   return {F, CapStruct.getPointer(ParentCGF)};
1916 }
1917 
1918 /// Emit a call to a previously captured closure.
1919 static llvm::CallInst *
1920 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap,
1921                      llvm::ArrayRef<llvm::Value *> Args) {
1922   // Append the closure context to the argument.
1923   SmallVector<llvm::Value *> EffectiveArgs;
1924   EffectiveArgs.reserve(Args.size() + 1);
1925   llvm::append_range(EffectiveArgs, Args);
1926   EffectiveArgs.push_back(Cap.second);
1927 
1928   return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs);
1929 }
1930 
1931 llvm::CanonicalLoopInfo *
1932 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) {
1933   assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented");
1934 
1935   EmitStmt(S);
1936   assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops");
1937 
1938   // The last added loop is the outermost one.
1939   return OMPLoopNestStack.back();
1940 }
1941 
1942 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) {
1943   const Stmt *SyntacticalLoop = S->getLoopStmt();
1944   if (!getLangOpts().OpenMPIRBuilder) {
1945     // Ignore if OpenMPIRBuilder is not enabled.
1946     EmitStmt(SyntacticalLoop);
1947     return;
1948   }
1949 
1950   LexicalScope ForScope(*this, S->getSourceRange());
1951 
1952   // Emit init statements. The Distance/LoopVar funcs may reference variable
1953   // declarations they contain.
1954   const Stmt *BodyStmt;
1955   if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) {
1956     if (const Stmt *InitStmt = For->getInit())
1957       EmitStmt(InitStmt);
1958     BodyStmt = For->getBody();
1959   } else if (const auto *RangeFor =
1960                  dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) {
1961     if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt())
1962       EmitStmt(RangeStmt);
1963     if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt())
1964       EmitStmt(BeginStmt);
1965     if (const DeclStmt *EndStmt = RangeFor->getEndStmt())
1966       EmitStmt(EndStmt);
1967     if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt())
1968       EmitStmt(LoopVarStmt);
1969     BodyStmt = RangeFor->getBody();
1970   } else
1971     llvm_unreachable("Expected for-stmt or range-based for-stmt");
1972 
1973   // Emit closure for later use. By-value captures will be captured here.
1974   const CapturedStmt *DistanceFunc = S->getDistanceFunc();
1975   EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc);
1976   const CapturedStmt *LoopVarFunc = S->getLoopVarFunc();
1977   EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc);
1978 
1979   // Call the distance function to get the number of iterations of the loop to
1980   // come.
1981   QualType LogicalTy = DistanceFunc->getCapturedDecl()
1982                            ->getParam(0)
1983                            ->getType()
1984                            .getNonReferenceType();
1985   Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr");
1986   emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()});
1987   llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count");
1988 
1989   // Emit the loop structure.
1990   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1991   auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP,
1992                            llvm::Value *IndVar) {
1993     Builder.restoreIP(CodeGenIP);
1994 
1995     // Emit the loop body: Convert the logical iteration number to the loop
1996     // variable and emit the body.
1997     const DeclRefExpr *LoopVarRef = S->getLoopVarRef();
1998     LValue LCVal = EmitLValue(LoopVarRef);
1999     Address LoopVarAddress = LCVal.getAddress(*this);
2000     emitCapturedStmtCall(*this, LoopVarClosure,
2001                          {LoopVarAddress.getPointer(), IndVar});
2002 
2003     RunCleanupsScope BodyScope(*this);
2004     EmitStmt(BodyStmt);
2005   };
2006   llvm::CanonicalLoopInfo *CL =
2007       OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal);
2008 
2009   // Finish up the loop.
2010   Builder.restoreIP(CL->getAfterIP());
2011   ForScope.ForceCleanup();
2012 
2013   // Remember the CanonicalLoopInfo for parent AST nodes consuming it.
2014   OMPLoopNestStack.push_back(CL);
2015 }
2016 
2017 void CodeGenFunction::EmitOMPInnerLoop(
2018     const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond,
2019     const Expr *IncExpr,
2020     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
2021     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
2022   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
2023 
2024   // Start the loop with a block that tests the condition.
2025   auto CondBlock = createBasicBlock("omp.inner.for.cond");
2026   EmitBlock(CondBlock);
2027   const SourceRange R = S.getSourceRange();
2028 
2029   // If attributes are attached, push to the basic block with them.
2030   const auto &OMPED = cast<OMPExecutableDirective>(S);
2031   const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt();
2032   const Stmt *SS = ICS->getCapturedStmt();
2033   const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS);
2034   OMPLoopNestStack.clear();
2035   if (AS)
2036     LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(),
2037                    AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()),
2038                    SourceLocToDebugLoc(R.getEnd()));
2039   else
2040     LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2041                    SourceLocToDebugLoc(R.getEnd()));
2042 
2043   // If there are any cleanups between here and the loop-exit scope,
2044   // create a block to stage a loop exit along.
2045   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2046   if (RequiresCleanup)
2047     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
2048 
2049   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
2050 
2051   // Emit condition.
2052   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
2053   if (ExitBlock != LoopExit.getBlock()) {
2054     EmitBlock(ExitBlock);
2055     EmitBranchThroughCleanup(LoopExit);
2056   }
2057 
2058   EmitBlock(LoopBody);
2059   incrementProfileCounter(&S);
2060 
2061   // Create a block for the increment.
2062   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
2063   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2064 
2065   BodyGen(*this);
2066 
2067   // Emit "IV = IV + 1" and a back-edge to the condition block.
2068   EmitBlock(Continue.getBlock());
2069   EmitIgnoredExpr(IncExpr);
2070   PostIncGen(*this);
2071   BreakContinueStack.pop_back();
2072   EmitBranch(CondBlock);
2073   LoopStack.pop();
2074   // Emit the fall-through block.
2075   EmitBlock(LoopExit.getBlock());
2076 }
2077 
2078 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
2079   if (!HaveInsertPoint())
2080     return false;
2081   // Emit inits for the linear variables.
2082   bool HasLinears = false;
2083   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2084     for (const Expr *Init : C->inits()) {
2085       HasLinears = true;
2086       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
2087       if (const auto *Ref =
2088               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
2089         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
2090         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
2091         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2092                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
2093                         VD->getInit()->getType(), VK_LValue,
2094                         VD->getInit()->getExprLoc());
2095         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
2096                                                 VD->getType()),
2097                        /*capturedByInit=*/false);
2098         EmitAutoVarCleanups(Emission);
2099       } else {
2100         EmitVarDecl(*VD);
2101       }
2102     }
2103     // Emit the linear steps for the linear clauses.
2104     // If a step is not constant, it is pre-calculated before the loop.
2105     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
2106       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
2107         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
2108         // Emit calculation of the linear step.
2109         EmitIgnoredExpr(CS);
2110       }
2111   }
2112   return HasLinears;
2113 }
2114 
2115 void CodeGenFunction::EmitOMPLinearClauseFinal(
2116     const OMPLoopDirective &D,
2117     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2118   if (!HaveInsertPoint())
2119     return;
2120   llvm::BasicBlock *DoneBB = nullptr;
2121   // Emit the final values of the linear variables.
2122   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2123     auto IC = C->varlist_begin();
2124     for (const Expr *F : C->finals()) {
2125       if (!DoneBB) {
2126         if (llvm::Value *Cond = CondGen(*this)) {
2127           // If the first post-update expression is found, emit conditional
2128           // block if it was requested.
2129           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
2130           DoneBB = createBasicBlock(".omp.linear.pu.done");
2131           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2132           EmitBlock(ThenBB);
2133         }
2134       }
2135       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
2136       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2137                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
2138                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
2139       Address OrigAddr = EmitLValue(&DRE).getAddress(*this);
2140       CodeGenFunction::OMPPrivateScope VarScope(*this);
2141       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2142       (void)VarScope.Privatize();
2143       EmitIgnoredExpr(F);
2144       ++IC;
2145     }
2146     if (const Expr *PostUpdate = C->getPostUpdateExpr())
2147       EmitIgnoredExpr(PostUpdate);
2148   }
2149   if (DoneBB)
2150     EmitBlock(DoneBB, /*IsFinished=*/true);
2151 }
2152 
2153 static void emitAlignedClause(CodeGenFunction &CGF,
2154                               const OMPExecutableDirective &D) {
2155   if (!CGF.HaveInsertPoint())
2156     return;
2157   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
2158     llvm::APInt ClauseAlignment(64, 0);
2159     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
2160       auto *AlignmentCI =
2161           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
2162       ClauseAlignment = AlignmentCI->getValue();
2163     }
2164     for (const Expr *E : Clause->varlists()) {
2165       llvm::APInt Alignment(ClauseAlignment);
2166       if (Alignment == 0) {
2167         // OpenMP [2.8.1, Description]
2168         // If no optional parameter is specified, implementation-defined default
2169         // alignments for SIMD instructions on the target platforms are assumed.
2170         Alignment =
2171             CGF.getContext()
2172                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2173                     E->getType()->getPointeeType()))
2174                 .getQuantity();
2175       }
2176       assert((Alignment == 0 || Alignment.isPowerOf2()) &&
2177              "alignment is not power of 2");
2178       if (Alignment != 0) {
2179         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
2180         CGF.emitAlignmentAssumption(
2181             PtrValue, E, /*No second loc needed*/ SourceLocation(),
2182             llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
2183       }
2184     }
2185   }
2186 }
2187 
2188 void CodeGenFunction::EmitOMPPrivateLoopCounters(
2189     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
2190   if (!HaveInsertPoint())
2191     return;
2192   auto I = S.private_counters().begin();
2193   for (const Expr *E : S.counters()) {
2194     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2195     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
2196     // Emit var without initialization.
2197     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
2198     EmitAutoVarCleanups(VarEmission);
2199     LocalDeclMap.erase(PrivateVD);
2200     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
2201       return VarEmission.getAllocatedAddress();
2202     });
2203     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
2204         VD->hasGlobalStorage()) {
2205       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
2206         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
2207                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
2208                         E->getType(), VK_LValue, E->getExprLoc());
2209         return EmitLValue(&DRE).getAddress(*this);
2210       });
2211     } else {
2212       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
2213         return VarEmission.getAllocatedAddress();
2214       });
2215     }
2216     ++I;
2217   }
2218   // Privatize extra loop counters used in loops for ordered(n) clauses.
2219   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
2220     if (!C->getNumForLoops())
2221       continue;
2222     for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size();
2223          I < E; ++I) {
2224       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
2225       const auto *VD = cast<VarDecl>(DRE->getDecl());
2226       // Override only those variables that can be captured to avoid re-emission
2227       // of the variables declared within the loops.
2228       if (DRE->refersToEnclosingVariableOrCapture()) {
2229         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
2230           return CreateMemTemp(DRE->getType(), VD->getName());
2231         });
2232       }
2233     }
2234   }
2235 }
2236 
2237 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
2238                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
2239                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
2240   if (!CGF.HaveInsertPoint())
2241     return;
2242   {
2243     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
2244     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
2245     (void)PreCondScope.Privatize();
2246     // Get initial values of real counters.
2247     for (const Expr *I : S.inits()) {
2248       CGF.EmitIgnoredExpr(I);
2249     }
2250   }
2251   // Create temp loop control variables with their init values to support
2252   // non-rectangular loops.
2253   CodeGenFunction::OMPMapVars PreCondVars;
2254   for (const Expr * E: S.dependent_counters()) {
2255     if (!E)
2256       continue;
2257     assert(!E->getType().getNonReferenceType()->isRecordType() &&
2258            "dependent counter must not be an iterator.");
2259     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2260     Address CounterAddr =
2261         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
2262     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
2263   }
2264   (void)PreCondVars.apply(CGF);
2265   for (const Expr *E : S.dependent_inits()) {
2266     if (!E)
2267       continue;
2268     CGF.EmitIgnoredExpr(E);
2269   }
2270   // Check that loop is executed at least one time.
2271   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
2272   PreCondVars.restore(CGF);
2273 }
2274 
2275 void CodeGenFunction::EmitOMPLinearClause(
2276     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
2277   if (!HaveInsertPoint())
2278     return;
2279   llvm::DenseSet<const VarDecl *> SIMDLCVs;
2280   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
2281     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
2282     for (const Expr *C : LoopDirective->counters()) {
2283       SIMDLCVs.insert(
2284           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
2285     }
2286   }
2287   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2288     auto CurPrivate = C->privates().begin();
2289     for (const Expr *E : C->varlists()) {
2290       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2291       const auto *PrivateVD =
2292           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
2293       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
2294         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
2295           // Emit private VarDecl with copy init.
2296           EmitVarDecl(*PrivateVD);
2297           return GetAddrOfLocalVar(PrivateVD);
2298         });
2299         assert(IsRegistered && "linear var already registered as private");
2300         // Silence the warning about unused variable.
2301         (void)IsRegistered;
2302       } else {
2303         EmitVarDecl(*PrivateVD);
2304       }
2305       ++CurPrivate;
2306     }
2307   }
2308 }
2309 
2310 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
2311                                      const OMPExecutableDirective &D,
2312                                      bool IsMonotonic) {
2313   if (!CGF.HaveInsertPoint())
2314     return;
2315   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
2316     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
2317                                  /*ignoreResult=*/true);
2318     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2319     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2320     // In presence of finite 'safelen', it may be unsafe to mark all
2321     // the memory instructions parallel, because loop-carried
2322     // dependences of 'safelen' iterations are possible.
2323     if (!IsMonotonic)
2324       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
2325   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
2326     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
2327                                  /*ignoreResult=*/true);
2328     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2329     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2330     // In presence of finite 'safelen', it may be unsafe to mark all
2331     // the memory instructions parallel, because loop-carried
2332     // dependences of 'safelen' iterations are possible.
2333     CGF.LoopStack.setParallel(/*Enable=*/false);
2334   }
2335 }
2336 
2337 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
2338                                       bool IsMonotonic) {
2339   // Walk clauses and process safelen/lastprivate.
2340   LoopStack.setParallel(!IsMonotonic);
2341   LoopStack.setVectorizeEnable();
2342   emitSimdlenSafelenClause(*this, D, IsMonotonic);
2343   if (const auto *C = D.getSingleClause<OMPOrderClause>())
2344     if (C->getKind() == OMPC_ORDER_concurrent)
2345       LoopStack.setParallel(/*Enable=*/true);
2346   if ((D.getDirectiveKind() == OMPD_simd ||
2347        (getLangOpts().OpenMPSimd &&
2348         isOpenMPSimdDirective(D.getDirectiveKind()))) &&
2349       llvm::any_of(D.getClausesOfKind<OMPReductionClause>(),
2350                    [](const OMPReductionClause *C) {
2351                      return C->getModifier() == OMPC_REDUCTION_inscan;
2352                    }))
2353     // Disable parallel access in case of prefix sum.
2354     LoopStack.setParallel(/*Enable=*/false);
2355 }
2356 
2357 void CodeGenFunction::EmitOMPSimdFinal(
2358     const OMPLoopDirective &D,
2359     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2360   if (!HaveInsertPoint())
2361     return;
2362   llvm::BasicBlock *DoneBB = nullptr;
2363   auto IC = D.counters().begin();
2364   auto IPC = D.private_counters().begin();
2365   for (const Expr *F : D.finals()) {
2366     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
2367     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
2368     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
2369     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
2370         OrigVD->hasGlobalStorage() || CED) {
2371       if (!DoneBB) {
2372         if (llvm::Value *Cond = CondGen(*this)) {
2373           // If the first post-update expression is found, emit conditional
2374           // block if it was requested.
2375           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
2376           DoneBB = createBasicBlock(".omp.final.done");
2377           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2378           EmitBlock(ThenBB);
2379         }
2380       }
2381       Address OrigAddr = Address::invalid();
2382       if (CED) {
2383         OrigAddr =
2384             EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this);
2385       } else {
2386         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
2387                         /*RefersToEnclosingVariableOrCapture=*/false,
2388                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
2389         OrigAddr = EmitLValue(&DRE).getAddress(*this);
2390       }
2391       OMPPrivateScope VarScope(*this);
2392       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2393       (void)VarScope.Privatize();
2394       EmitIgnoredExpr(F);
2395     }
2396     ++IC;
2397     ++IPC;
2398   }
2399   if (DoneBB)
2400     EmitBlock(DoneBB, /*IsFinished=*/true);
2401 }
2402 
2403 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
2404                                          const OMPLoopDirective &S,
2405                                          CodeGenFunction::JumpDest LoopExit) {
2406   CGF.EmitOMPLoopBody(S, LoopExit);
2407   CGF.EmitStopPoint(&S);
2408 }
2409 
2410 /// Emit a helper variable and return corresponding lvalue.
2411 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
2412                                const DeclRefExpr *Helper) {
2413   auto VDecl = cast<VarDecl>(Helper->getDecl());
2414   CGF.EmitVarDecl(*VDecl);
2415   return CGF.EmitLValue(Helper);
2416 }
2417 
2418 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S,
2419                                const RegionCodeGenTy &SimdInitGen,
2420                                const RegionCodeGenTy &BodyCodeGen) {
2421   auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF,
2422                                                     PrePostActionTy &) {
2423     CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S);
2424     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2425     SimdInitGen(CGF);
2426 
2427     BodyCodeGen(CGF);
2428   };
2429   auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
2430     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2431     CGF.LoopStack.setVectorizeEnable(/*Enable=*/false);
2432 
2433     BodyCodeGen(CGF);
2434   };
2435   const Expr *IfCond = nullptr;
2436   if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2437     for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2438       if (CGF.getLangOpts().OpenMP >= 50 &&
2439           (C->getNameModifier() == OMPD_unknown ||
2440            C->getNameModifier() == OMPD_simd)) {
2441         IfCond = C->getCondition();
2442         break;
2443       }
2444     }
2445   }
2446   if (IfCond) {
2447     CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2448   } else {
2449     RegionCodeGenTy ThenRCG(ThenGen);
2450     ThenRCG(CGF);
2451   }
2452 }
2453 
2454 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
2455                               PrePostActionTy &Action) {
2456   Action.Enter(CGF);
2457   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
2458          "Expected simd directive");
2459   OMPLoopScope PreInitScope(CGF, S);
2460   // if (PreCond) {
2461   //   for (IV in 0..LastIteration) BODY;
2462   //   <Final counter/linear vars updates>;
2463   // }
2464   //
2465   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
2466       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
2467       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
2468     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2469     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2470   }
2471 
2472   // Emit: if (PreCond) - begin.
2473   // If the condition constant folds and can be elided, avoid emitting the
2474   // whole loop.
2475   bool CondConstant;
2476   llvm::BasicBlock *ContBlock = nullptr;
2477   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2478     if (!CondConstant)
2479       return;
2480   } else {
2481     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
2482     ContBlock = CGF.createBasicBlock("simd.if.end");
2483     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
2484                 CGF.getProfileCount(&S));
2485     CGF.EmitBlock(ThenBlock);
2486     CGF.incrementProfileCounter(&S);
2487   }
2488 
2489   // Emit the loop iteration variable.
2490   const Expr *IVExpr = S.getIterationVariable();
2491   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
2492   CGF.EmitVarDecl(*IVDecl);
2493   CGF.EmitIgnoredExpr(S.getInit());
2494 
2495   // Emit the iterations count variable.
2496   // If it is not a variable, Sema decided to calculate iterations count on
2497   // each iteration (e.g., it is foldable into a constant).
2498   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2499     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2500     // Emit calculation of the iterations count.
2501     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
2502   }
2503 
2504   emitAlignedClause(CGF, S);
2505   (void)CGF.EmitOMPLinearClauseInit(S);
2506   {
2507     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2508     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
2509     CGF.EmitOMPLinearClause(S, LoopScope);
2510     CGF.EmitOMPPrivateClause(S, LoopScope);
2511     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2512     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
2513         CGF, S, CGF.EmitLValue(S.getIterationVariable()));
2514     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2515     (void)LoopScope.Privatize();
2516     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2517       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2518 
2519     emitCommonSimdLoop(
2520         CGF, S,
2521         [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2522           CGF.EmitOMPSimdInit(S);
2523         },
2524         [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2525           CGF.EmitOMPInnerLoop(
2526               S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
2527               [&S](CodeGenFunction &CGF) {
2528                 emitOMPLoopBodyWithStopPoint(CGF, S,
2529                                              CodeGenFunction::JumpDest());
2530               },
2531               [](CodeGenFunction &) {});
2532         });
2533     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
2534     // Emit final copy of the lastprivate variables at the end of loops.
2535     if (HasLastprivateClause)
2536       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
2537     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
2538     emitPostUpdateForReductionClause(CGF, S,
2539                                      [](CodeGenFunction &) { return nullptr; });
2540   }
2541   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
2542   // Emit: if (PreCond) - end.
2543   if (ContBlock) {
2544     CGF.EmitBranch(ContBlock);
2545     CGF.EmitBlock(ContBlock, true);
2546   }
2547 }
2548 
2549 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
2550   ParentLoopDirectiveForScanRegion ScanRegion(*this, S);
2551   OMPFirstScanLoop = true;
2552   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2553     emitOMPSimdRegion(CGF, S, Action);
2554   };
2555   {
2556     auto LPCRegion =
2557         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2558     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2559     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2560   }
2561   // Check for outer lastprivate conditional update.
2562   checkForLastprivateConditionalUpdate(*this, S);
2563 }
2564 
2565 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) {
2566   // Emit the de-sugared statement.
2567   OMPTransformDirectiveScopeRAII TileScope(*this, &S);
2568   EmitStmt(S.getTransformedStmt());
2569 }
2570 
2571 void CodeGenFunction::EmitOMPOuterLoop(
2572     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
2573     CodeGenFunction::OMPPrivateScope &LoopScope,
2574     const CodeGenFunction::OMPLoopArguments &LoopArgs,
2575     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
2576     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
2577   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2578 
2579   const Expr *IVExpr = S.getIterationVariable();
2580   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2581   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2582 
2583   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
2584 
2585   // Start the loop with a block that tests the condition.
2586   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
2587   EmitBlock(CondBlock);
2588   const SourceRange R = S.getSourceRange();
2589   OMPLoopNestStack.clear();
2590   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2591                  SourceLocToDebugLoc(R.getEnd()));
2592 
2593   llvm::Value *BoolCondVal = nullptr;
2594   if (!DynamicOrOrdered) {
2595     // UB = min(UB, GlobalUB) or
2596     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
2597     // 'distribute parallel for')
2598     EmitIgnoredExpr(LoopArgs.EUB);
2599     // IV = LB
2600     EmitIgnoredExpr(LoopArgs.Init);
2601     // IV < UB
2602     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
2603   } else {
2604     BoolCondVal =
2605         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
2606                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
2607   }
2608 
2609   // If there are any cleanups between here and the loop-exit scope,
2610   // create a block to stage a loop exit along.
2611   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2612   if (LoopScope.requiresCleanups())
2613     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
2614 
2615   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
2616   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
2617   if (ExitBlock != LoopExit.getBlock()) {
2618     EmitBlock(ExitBlock);
2619     EmitBranchThroughCleanup(LoopExit);
2620   }
2621   EmitBlock(LoopBody);
2622 
2623   // Emit "IV = LB" (in case of static schedule, we have already calculated new
2624   // LB for loop condition and emitted it above).
2625   if (DynamicOrOrdered)
2626     EmitIgnoredExpr(LoopArgs.Init);
2627 
2628   // Create a block for the increment.
2629   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
2630   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2631 
2632   emitCommonSimdLoop(
2633       *this, S,
2634       [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
2635         // Generate !llvm.loop.parallel metadata for loads and stores for loops
2636         // with dynamic/guided scheduling and without ordered clause.
2637         if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2638           CGF.LoopStack.setParallel(!IsMonotonic);
2639           if (const auto *C = S.getSingleClause<OMPOrderClause>())
2640             if (C->getKind() == OMPC_ORDER_concurrent)
2641               CGF.LoopStack.setParallel(/*Enable=*/true);
2642         } else {
2643           CGF.EmitOMPSimdInit(S, IsMonotonic);
2644         }
2645       },
2646       [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered,
2647        &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2648         SourceLocation Loc = S.getBeginLoc();
2649         // when 'distribute' is not combined with a 'for':
2650         // while (idx <= UB) { BODY; ++idx; }
2651         // when 'distribute' is combined with a 'for'
2652         // (e.g. 'distribute parallel for')
2653         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
2654         CGF.EmitOMPInnerLoop(
2655             S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
2656             [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
2657               CodeGenLoop(CGF, S, LoopExit);
2658             },
2659             [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
2660               CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
2661             });
2662       });
2663 
2664   EmitBlock(Continue.getBlock());
2665   BreakContinueStack.pop_back();
2666   if (!DynamicOrOrdered) {
2667     // Emit "LB = LB + Stride", "UB = UB + Stride".
2668     EmitIgnoredExpr(LoopArgs.NextLB);
2669     EmitIgnoredExpr(LoopArgs.NextUB);
2670   }
2671 
2672   EmitBranch(CondBlock);
2673   OMPLoopNestStack.clear();
2674   LoopStack.pop();
2675   // Emit the fall-through block.
2676   EmitBlock(LoopExit.getBlock());
2677 
2678   // Tell the runtime we are done.
2679   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
2680     if (!DynamicOrOrdered)
2681       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2682                                                      S.getDirectiveKind());
2683   };
2684   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2685 }
2686 
2687 void CodeGenFunction::EmitOMPForOuterLoop(
2688     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
2689     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2690     const OMPLoopArguments &LoopArgs,
2691     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2692   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2693 
2694   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
2695   const bool DynamicOrOrdered =
2696       Ordered || RT.isDynamic(ScheduleKind.Schedule);
2697 
2698   assert((Ordered ||
2699           !RT.isStaticNonchunked(ScheduleKind.Schedule,
2700                                  LoopArgs.Chunk != nullptr)) &&
2701          "static non-chunked schedule does not need outer loop");
2702 
2703   // Emit outer loop.
2704   //
2705   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2706   // When schedule(dynamic,chunk_size) is specified, the iterations are
2707   // distributed to threads in the team in chunks as the threads request them.
2708   // Each thread executes a chunk of iterations, then requests another chunk,
2709   // until no chunks remain to be distributed. Each chunk contains chunk_size
2710   // iterations, except for the last chunk to be distributed, which may have
2711   // fewer iterations. When no chunk_size is specified, it defaults to 1.
2712   //
2713   // When schedule(guided,chunk_size) is specified, the iterations are assigned
2714   // to threads in the team in chunks as the executing threads request them.
2715   // Each thread executes a chunk of iterations, then requests another chunk,
2716   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
2717   // each chunk is proportional to the number of unassigned iterations divided
2718   // by the number of threads in the team, decreasing to 1. For a chunk_size
2719   // with value k (greater than 1), the size of each chunk is determined in the
2720   // same way, with the restriction that the chunks do not contain fewer than k
2721   // iterations (except for the last chunk to be assigned, which may have fewer
2722   // than k iterations).
2723   //
2724   // When schedule(auto) is specified, the decision regarding scheduling is
2725   // delegated to the compiler and/or runtime system. The programmer gives the
2726   // implementation the freedom to choose any possible mapping of iterations to
2727   // threads in the team.
2728   //
2729   // When schedule(runtime) is specified, the decision regarding scheduling is
2730   // deferred until run time, and the schedule and chunk size are taken from the
2731   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2732   // implementation defined
2733   //
2734   // while(__kmpc_dispatch_next(&LB, &UB)) {
2735   //   idx = LB;
2736   //   while (idx <= UB) { BODY; ++idx;
2737   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2738   //   } // inner loop
2739   // }
2740   //
2741   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2742   // When schedule(static, chunk_size) is specified, iterations are divided into
2743   // chunks of size chunk_size, and the chunks are assigned to the threads in
2744   // the team in a round-robin fashion in the order of the thread number.
2745   //
2746   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2747   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2748   //   LB = LB + ST;
2749   //   UB = UB + ST;
2750   // }
2751   //
2752 
2753   const Expr *IVExpr = S.getIterationVariable();
2754   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2755   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2756 
2757   if (DynamicOrOrdered) {
2758     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2759         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2760     llvm::Value *LBVal = DispatchBounds.first;
2761     llvm::Value *UBVal = DispatchBounds.second;
2762     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2763                                                              LoopArgs.Chunk};
2764     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2765                            IVSigned, Ordered, DipatchRTInputValues);
2766   } else {
2767     CGOpenMPRuntime::StaticRTInput StaticInit(
2768         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2769         LoopArgs.ST, LoopArgs.Chunk);
2770     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2771                          ScheduleKind, StaticInit);
2772   }
2773 
2774   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2775                                     const unsigned IVSize,
2776                                     const bool IVSigned) {
2777     if (Ordered) {
2778       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2779                                                             IVSigned);
2780     }
2781   };
2782 
2783   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2784                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2785   OuterLoopArgs.IncExpr = S.getInc();
2786   OuterLoopArgs.Init = S.getInit();
2787   OuterLoopArgs.Cond = S.getCond();
2788   OuterLoopArgs.NextLB = S.getNextLowerBound();
2789   OuterLoopArgs.NextUB = S.getNextUpperBound();
2790   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2791                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2792 }
2793 
2794 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2795                              const unsigned IVSize, const bool IVSigned) {}
2796 
2797 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2798     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2799     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2800     const CodeGenLoopTy &CodeGenLoopContent) {
2801 
2802   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2803 
2804   // Emit outer loop.
2805   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2806   // dynamic
2807   //
2808 
2809   const Expr *IVExpr = S.getIterationVariable();
2810   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2811   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2812 
2813   CGOpenMPRuntime::StaticRTInput StaticInit(
2814       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2815       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2816   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2817 
2818   // for combined 'distribute' and 'for' the increment expression of distribute
2819   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2820   Expr *IncExpr;
2821   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2822     IncExpr = S.getDistInc();
2823   else
2824     IncExpr = S.getInc();
2825 
2826   // this routine is shared by 'omp distribute parallel for' and
2827   // 'omp distribute': select the right EUB expression depending on the
2828   // directive
2829   OMPLoopArguments OuterLoopArgs;
2830   OuterLoopArgs.LB = LoopArgs.LB;
2831   OuterLoopArgs.UB = LoopArgs.UB;
2832   OuterLoopArgs.ST = LoopArgs.ST;
2833   OuterLoopArgs.IL = LoopArgs.IL;
2834   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2835   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2836                           ? S.getCombinedEnsureUpperBound()
2837                           : S.getEnsureUpperBound();
2838   OuterLoopArgs.IncExpr = IncExpr;
2839   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2840                            ? S.getCombinedInit()
2841                            : S.getInit();
2842   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2843                            ? S.getCombinedCond()
2844                            : S.getCond();
2845   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2846                              ? S.getCombinedNextLowerBound()
2847                              : S.getNextLowerBound();
2848   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2849                              ? S.getCombinedNextUpperBound()
2850                              : S.getNextUpperBound();
2851 
2852   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2853                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2854                    emitEmptyOrdered);
2855 }
2856 
2857 static std::pair<LValue, LValue>
2858 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2859                                      const OMPExecutableDirective &S) {
2860   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2861   LValue LB =
2862       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2863   LValue UB =
2864       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2865 
2866   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2867   // parallel for') we need to use the 'distribute'
2868   // chunk lower and upper bounds rather than the whole loop iteration
2869   // space. These are parameters to the outlined function for 'parallel'
2870   // and we copy the bounds of the previous schedule into the
2871   // the current ones.
2872   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2873   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2874   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2875       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2876   PrevLBVal = CGF.EmitScalarConversion(
2877       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2878       LS.getIterationVariable()->getType(),
2879       LS.getPrevLowerBoundVariable()->getExprLoc());
2880   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2881       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2882   PrevUBVal = CGF.EmitScalarConversion(
2883       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2884       LS.getIterationVariable()->getType(),
2885       LS.getPrevUpperBoundVariable()->getExprLoc());
2886 
2887   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2888   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2889 
2890   return {LB, UB};
2891 }
2892 
2893 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2894 /// we need to use the LB and UB expressions generated by the worksharing
2895 /// code generation support, whereas in non combined situations we would
2896 /// just emit 0 and the LastIteration expression
2897 /// This function is necessary due to the difference of the LB and UB
2898 /// types for the RT emission routines for 'for_static_init' and
2899 /// 'for_dispatch_init'
2900 static std::pair<llvm::Value *, llvm::Value *>
2901 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2902                                         const OMPExecutableDirective &S,
2903                                         Address LB, Address UB) {
2904   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2905   const Expr *IVExpr = LS.getIterationVariable();
2906   // when implementing a dynamic schedule for a 'for' combined with a
2907   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2908   // is not normalized as each team only executes its own assigned
2909   // distribute chunk
2910   QualType IteratorTy = IVExpr->getType();
2911   llvm::Value *LBVal =
2912       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2913   llvm::Value *UBVal =
2914       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2915   return {LBVal, UBVal};
2916 }
2917 
2918 static void emitDistributeParallelForDistributeInnerBoundParams(
2919     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2920     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2921   const auto &Dir = cast<OMPLoopDirective>(S);
2922   LValue LB =
2923       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2924   llvm::Value *LBCast =
2925       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)),
2926                                 CGF.SizeTy, /*isSigned=*/false);
2927   CapturedVars.push_back(LBCast);
2928   LValue UB =
2929       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2930 
2931   llvm::Value *UBCast =
2932       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)),
2933                                 CGF.SizeTy, /*isSigned=*/false);
2934   CapturedVars.push_back(UBCast);
2935 }
2936 
2937 static void
2938 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2939                                  const OMPLoopDirective &S,
2940                                  CodeGenFunction::JumpDest LoopExit) {
2941   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2942                                          PrePostActionTy &Action) {
2943     Action.Enter(CGF);
2944     bool HasCancel = false;
2945     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2946       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2947         HasCancel = D->hasCancel();
2948       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2949         HasCancel = D->hasCancel();
2950       else if (const auto *D =
2951                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2952         HasCancel = D->hasCancel();
2953     }
2954     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2955                                                      HasCancel);
2956     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2957                                emitDistributeParallelForInnerBounds,
2958                                emitDistributeParallelForDispatchBounds);
2959   };
2960 
2961   emitCommonOMPParallelDirective(
2962       CGF, S,
2963       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2964       CGInlinedWorksharingLoop,
2965       emitDistributeParallelForDistributeInnerBoundParams);
2966 }
2967 
2968 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2969     const OMPDistributeParallelForDirective &S) {
2970   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2971     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2972                               S.getDistInc());
2973   };
2974   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2975   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2976 }
2977 
2978 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2979     const OMPDistributeParallelForSimdDirective &S) {
2980   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2981     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2982                               S.getDistInc());
2983   };
2984   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2985   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2986 }
2987 
2988 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2989     const OMPDistributeSimdDirective &S) {
2990   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2991     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2992   };
2993   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2994   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2995 }
2996 
2997 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2998     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2999   // Emit SPMD target parallel for region as a standalone region.
3000   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3001     emitOMPSimdRegion(CGF, S, Action);
3002   };
3003   llvm::Function *Fn;
3004   llvm::Constant *Addr;
3005   // Emit target region as a standalone region.
3006   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3007       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3008   assert(Fn && Addr && "Target device function emission failed.");
3009 }
3010 
3011 void CodeGenFunction::EmitOMPTargetSimdDirective(
3012     const OMPTargetSimdDirective &S) {
3013   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3014     emitOMPSimdRegion(CGF, S, Action);
3015   };
3016   emitCommonOMPTargetDirective(*this, S, CodeGen);
3017 }
3018 
3019 namespace {
3020   struct ScheduleKindModifiersTy {
3021     OpenMPScheduleClauseKind Kind;
3022     OpenMPScheduleClauseModifier M1;
3023     OpenMPScheduleClauseModifier M2;
3024     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
3025                             OpenMPScheduleClauseModifier M1,
3026                             OpenMPScheduleClauseModifier M2)
3027         : Kind(Kind), M1(M1), M2(M2) {}
3028   };
3029 } // namespace
3030 
3031 bool CodeGenFunction::EmitOMPWorksharingLoop(
3032     const OMPLoopDirective &S, Expr *EUB,
3033     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3034     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
3035   // Emit the loop iteration variable.
3036   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3037   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3038   EmitVarDecl(*IVDecl);
3039 
3040   // Emit the iterations count variable.
3041   // If it is not a variable, Sema decided to calculate iterations count on each
3042   // iteration (e.g., it is foldable into a constant).
3043   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3044     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3045     // Emit calculation of the iterations count.
3046     EmitIgnoredExpr(S.getCalcLastIteration());
3047   }
3048 
3049   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3050 
3051   bool HasLastprivateClause;
3052   // Check pre-condition.
3053   {
3054     OMPLoopScope PreInitScope(*this, S);
3055     // Skip the entire loop if we don't meet the precondition.
3056     // If the condition constant folds and can be elided, avoid emitting the
3057     // whole loop.
3058     bool CondConstant;
3059     llvm::BasicBlock *ContBlock = nullptr;
3060     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3061       if (!CondConstant)
3062         return false;
3063     } else {
3064       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3065       ContBlock = createBasicBlock("omp.precond.end");
3066       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3067                   getProfileCount(&S));
3068       EmitBlock(ThenBlock);
3069       incrementProfileCounter(&S);
3070     }
3071 
3072     RunCleanupsScope DoacrossCleanupScope(*this);
3073     bool Ordered = false;
3074     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
3075       if (OrderedClause->getNumForLoops())
3076         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
3077       else
3078         Ordered = true;
3079     }
3080 
3081     llvm::DenseSet<const Expr *> EmittedFinals;
3082     emitAlignedClause(*this, S);
3083     bool HasLinears = EmitOMPLinearClauseInit(S);
3084     // Emit helper vars inits.
3085 
3086     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
3087     LValue LB = Bounds.first;
3088     LValue UB = Bounds.second;
3089     LValue ST =
3090         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3091     LValue IL =
3092         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3093 
3094     // Emit 'then' code.
3095     {
3096       OMPPrivateScope LoopScope(*this);
3097       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
3098         // Emit implicit barrier to synchronize threads and avoid data races on
3099         // initialization of firstprivate variables and post-update of
3100         // lastprivate variables.
3101         CGM.getOpenMPRuntime().emitBarrierCall(
3102             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3103             /*ForceSimpleCall=*/true);
3104       }
3105       EmitOMPPrivateClause(S, LoopScope);
3106       CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
3107           *this, S, EmitLValue(S.getIterationVariable()));
3108       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3109       EmitOMPReductionClauseInit(S, LoopScope);
3110       EmitOMPPrivateLoopCounters(S, LoopScope);
3111       EmitOMPLinearClause(S, LoopScope);
3112       (void)LoopScope.Privatize();
3113       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3114         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3115 
3116       // Detect the loop schedule kind and chunk.
3117       const Expr *ChunkExpr = nullptr;
3118       OpenMPScheduleTy ScheduleKind;
3119       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
3120         ScheduleKind.Schedule = C->getScheduleKind();
3121         ScheduleKind.M1 = C->getFirstScheduleModifier();
3122         ScheduleKind.M2 = C->getSecondScheduleModifier();
3123         ChunkExpr = C->getChunkSize();
3124       } else {
3125         // Default behaviour for schedule clause.
3126         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
3127             *this, S, ScheduleKind.Schedule, ChunkExpr);
3128       }
3129       bool HasChunkSizeOne = false;
3130       llvm::Value *Chunk = nullptr;
3131       if (ChunkExpr) {
3132         Chunk = EmitScalarExpr(ChunkExpr);
3133         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
3134                                      S.getIterationVariable()->getType(),
3135                                      S.getBeginLoc());
3136         Expr::EvalResult Result;
3137         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
3138           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
3139           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
3140         }
3141       }
3142       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3143       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3144       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
3145       // If the static schedule kind is specified or if the ordered clause is
3146       // specified, and if no monotonic modifier is specified, the effect will
3147       // be as if the monotonic modifier was specified.
3148       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
3149           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
3150           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3151       bool IsMonotonic =
3152           Ordered ||
3153           ((ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
3154             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) &&
3155            !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
3156              ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) ||
3157           ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
3158           ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
3159       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
3160                                  /* Chunked */ Chunk != nullptr) ||
3161            StaticChunkedOne) &&
3162           !Ordered) {
3163         JumpDest LoopExit =
3164             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3165         emitCommonSimdLoop(
3166             *this, S,
3167             [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
3168               if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3169                 CGF.EmitOMPSimdInit(S, IsMonotonic);
3170               } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) {
3171                 if (C->getKind() == OMPC_ORDER_concurrent)
3172                   CGF.LoopStack.setParallel(/*Enable=*/true);
3173               }
3174             },
3175             [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk,
3176              &S, ScheduleKind, LoopExit,
3177              &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
3178               // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
3179               // When no chunk_size is specified, the iteration space is divided
3180               // into chunks that are approximately equal in size, and at most
3181               // one chunk is distributed to each thread. Note that the size of
3182               // the chunks is unspecified in this case.
3183               CGOpenMPRuntime::StaticRTInput StaticInit(
3184                   IVSize, IVSigned, Ordered, IL.getAddress(CGF),
3185                   LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF),
3186                   StaticChunkedOne ? Chunk : nullptr);
3187               CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3188                   CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind,
3189                   StaticInit);
3190               // UB = min(UB, GlobalUB);
3191               if (!StaticChunkedOne)
3192                 CGF.EmitIgnoredExpr(S.getEnsureUpperBound());
3193               // IV = LB;
3194               CGF.EmitIgnoredExpr(S.getInit());
3195               // For unchunked static schedule generate:
3196               //
3197               // while (idx <= UB) {
3198               //   BODY;
3199               //   ++idx;
3200               // }
3201               //
3202               // For static schedule with chunk one:
3203               //
3204               // while (IV <= PrevUB) {
3205               //   BODY;
3206               //   IV += ST;
3207               // }
3208               CGF.EmitOMPInnerLoop(
3209                   S, LoopScope.requiresCleanups(),
3210                   StaticChunkedOne ? S.getCombinedParForInDistCond()
3211                                    : S.getCond(),
3212                   StaticChunkedOne ? S.getDistInc() : S.getInc(),
3213                   [&S, LoopExit](CodeGenFunction &CGF) {
3214                     emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit);
3215                   },
3216                   [](CodeGenFunction &) {});
3217             });
3218         EmitBlock(LoopExit.getBlock());
3219         // Tell the runtime we are done.
3220         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3221           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3222                                                          S.getDirectiveKind());
3223         };
3224         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
3225       } else {
3226         // Emit the outer loop, which requests its work chunk [LB..UB] from
3227         // runtime and runs the inner loop to process it.
3228         const OMPLoopArguments LoopArguments(
3229             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
3230             IL.getAddress(*this), Chunk, EUB);
3231         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
3232                             LoopArguments, CGDispatchBounds);
3233       }
3234       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3235         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3236           return CGF.Builder.CreateIsNotNull(
3237               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3238         });
3239       }
3240       EmitOMPReductionClauseFinal(
3241           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
3242                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
3243                  : /*Parallel only*/ OMPD_parallel);
3244       // Emit post-update of the reduction variables if IsLastIter != 0.
3245       emitPostUpdateForReductionClause(
3246           *this, S, [IL, &S](CodeGenFunction &CGF) {
3247             return CGF.Builder.CreateIsNotNull(
3248                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3249           });
3250       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3251       if (HasLastprivateClause)
3252         EmitOMPLastprivateClauseFinal(
3253             S, isOpenMPSimdDirective(S.getDirectiveKind()),
3254             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3255     }
3256     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
3257       return CGF.Builder.CreateIsNotNull(
3258           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3259     });
3260     DoacrossCleanupScope.ForceCleanup();
3261     // We're now done with the loop, so jump to the continuation block.
3262     if (ContBlock) {
3263       EmitBranch(ContBlock);
3264       EmitBlock(ContBlock, /*IsFinished=*/true);
3265     }
3266   }
3267   return HasLastprivateClause;
3268 }
3269 
3270 /// The following two functions generate expressions for the loop lower
3271 /// and upper bounds in case of static and dynamic (dispatch) schedule
3272 /// of the associated 'for' or 'distribute' loop.
3273 static std::pair<LValue, LValue>
3274 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3275   const auto &LS = cast<OMPLoopDirective>(S);
3276   LValue LB =
3277       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
3278   LValue UB =
3279       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
3280   return {LB, UB};
3281 }
3282 
3283 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
3284 /// consider the lower and upper bound expressions generated by the
3285 /// worksharing loop support, but we use 0 and the iteration space size as
3286 /// constants
3287 static std::pair<llvm::Value *, llvm::Value *>
3288 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
3289                           Address LB, Address UB) {
3290   const auto &LS = cast<OMPLoopDirective>(S);
3291   const Expr *IVExpr = LS.getIterationVariable();
3292   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
3293   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
3294   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
3295   return {LBVal, UBVal};
3296 }
3297 
3298 /// Emits the code for the directive with inscan reductions.
3299 /// The code is the following:
3300 /// \code
3301 /// size num_iters = <num_iters>;
3302 /// <type> buffer[num_iters];
3303 /// #pragma omp ...
3304 /// for (i: 0..<num_iters>) {
3305 ///   <input phase>;
3306 ///   buffer[i] = red;
3307 /// }
3308 /// for (int k = 0; k != ceil(log2(num_iters)); ++k)
3309 /// for (size cnt = last_iter; cnt >= pow(2, k); --k)
3310 ///   buffer[i] op= buffer[i-pow(2,k)];
3311 /// #pragma omp ...
3312 /// for (0..<num_iters>) {
3313 ///   red = InclusiveScan ? buffer[i] : buffer[i-1];
3314 ///   <scan phase>;
3315 /// }
3316 /// \endcode
3317 static void emitScanBasedDirective(
3318     CodeGenFunction &CGF, const OMPLoopDirective &S,
3319     llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen,
3320     llvm::function_ref<void(CodeGenFunction &)> FirstGen,
3321     llvm::function_ref<void(CodeGenFunction &)> SecondGen) {
3322   llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
3323       NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
3324   SmallVector<const Expr *, 4> Shareds;
3325   SmallVector<const Expr *, 4> Privates;
3326   SmallVector<const Expr *, 4> ReductionOps;
3327   SmallVector<const Expr *, 4> LHSs;
3328   SmallVector<const Expr *, 4> RHSs;
3329   SmallVector<const Expr *, 4> CopyOps;
3330   SmallVector<const Expr *, 4> CopyArrayTemps;
3331   SmallVector<const Expr *, 4> CopyArrayElems;
3332   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
3333     assert(C->getModifier() == OMPC_REDUCTION_inscan &&
3334            "Only inscan reductions are expected.");
3335     Shareds.append(C->varlist_begin(), C->varlist_end());
3336     Privates.append(C->privates().begin(), C->privates().end());
3337     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
3338     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
3339     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
3340     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
3341     CopyArrayTemps.append(C->copy_array_temps().begin(),
3342                           C->copy_array_temps().end());
3343     CopyArrayElems.append(C->copy_array_elems().begin(),
3344                           C->copy_array_elems().end());
3345   }
3346   {
3347     // Emit buffers for each reduction variables.
3348     // ReductionCodeGen is required to emit correctly the code for array
3349     // reductions.
3350     ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
3351     unsigned Count = 0;
3352     auto *ITA = CopyArrayTemps.begin();
3353     for (const Expr *IRef : Privates) {
3354       const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
3355       // Emit variably modified arrays, used for arrays/array sections
3356       // reductions.
3357       if (PrivateVD->getType()->isVariablyModifiedType()) {
3358         RedCG.emitSharedOrigLValue(CGF, Count);
3359         RedCG.emitAggregateType(CGF, Count);
3360       }
3361       CodeGenFunction::OpaqueValueMapping DimMapping(
3362           CGF,
3363           cast<OpaqueValueExpr>(
3364               cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe())
3365                   ->getSizeExpr()),
3366           RValue::get(OMPScanNumIterations));
3367       // Emit temp buffer.
3368       CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl()));
3369       ++ITA;
3370       ++Count;
3371     }
3372   }
3373   CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S);
3374   {
3375     // Emit loop with input phase:
3376     // #pragma omp ...
3377     // for (i: 0..<num_iters>) {
3378     //   <input phase>;
3379     //   buffer[i] = red;
3380     // }
3381     CGF.OMPFirstScanLoop = true;
3382     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3383     FirstGen(CGF);
3384   }
3385   // Emit prefix reduction:
3386   // for (int k = 0; k <= ceil(log2(n)); ++k)
3387   llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock();
3388   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body");
3389   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit");
3390   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy);
3391   llvm::Value *Arg =
3392       CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy);
3393   llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg);
3394   F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy);
3395   LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal);
3396   LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy);
3397   llvm::Value *NMin1 = CGF.Builder.CreateNUWSub(
3398       OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1));
3399   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc());
3400   CGF.EmitBlock(LoopBB);
3401   auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2);
3402   // size pow2k = 1;
3403   auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3404   Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB);
3405   Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB);
3406   // for (size i = n - 1; i >= 2 ^ k; --i)
3407   //   tmp[i] op= tmp[i-pow2k];
3408   llvm::BasicBlock *InnerLoopBB =
3409       CGF.createBasicBlock("omp.inner.log.scan.body");
3410   llvm::BasicBlock *InnerExitBB =
3411       CGF.createBasicBlock("omp.inner.log.scan.exit");
3412   llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K);
3413   CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3414   CGF.EmitBlock(InnerLoopBB);
3415   auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3416   IVal->addIncoming(NMin1, LoopBB);
3417   {
3418     CodeGenFunction::OMPPrivateScope PrivScope(CGF);
3419     auto *ILHS = LHSs.begin();
3420     auto *IRHS = RHSs.begin();
3421     for (const Expr *CopyArrayElem : CopyArrayElems) {
3422       const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
3423       const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
3424       Address LHSAddr = Address::invalid();
3425       {
3426         CodeGenFunction::OpaqueValueMapping IdxMapping(
3427             CGF,
3428             cast<OpaqueValueExpr>(
3429                 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3430             RValue::get(IVal));
3431         LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3432       }
3433       PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; });
3434       Address RHSAddr = Address::invalid();
3435       {
3436         llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K);
3437         CodeGenFunction::OpaqueValueMapping IdxMapping(
3438             CGF,
3439             cast<OpaqueValueExpr>(
3440                 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3441             RValue::get(OffsetIVal));
3442         RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3443       }
3444       PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; });
3445       ++ILHS;
3446       ++IRHS;
3447     }
3448     PrivScope.Privatize();
3449     CGF.CGM.getOpenMPRuntime().emitReduction(
3450         CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
3451         {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown});
3452   }
3453   llvm::Value *NextIVal =
3454       CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1));
3455   IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock());
3456   CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K);
3457   CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3458   CGF.EmitBlock(InnerExitBB);
3459   llvm::Value *Next =
3460       CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1));
3461   Counter->addIncoming(Next, CGF.Builder.GetInsertBlock());
3462   // pow2k <<= 1;
3463   llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true);
3464   Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock());
3465   llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal);
3466   CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB);
3467   auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc());
3468   CGF.EmitBlock(ExitBB);
3469 
3470   CGF.OMPFirstScanLoop = false;
3471   SecondGen(CGF);
3472 }
3473 
3474 static bool emitWorksharingDirective(CodeGenFunction &CGF,
3475                                      const OMPLoopDirective &S,
3476                                      bool HasCancel) {
3477   bool HasLastprivates;
3478   if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
3479                    [](const OMPReductionClause *C) {
3480                      return C->getModifier() == OMPC_REDUCTION_inscan;
3481                    })) {
3482     const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
3483       CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3484       OMPLoopScope LoopScope(CGF, S);
3485       return CGF.EmitScalarExpr(S.getNumIterations());
3486     };
3487     const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) {
3488       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3489           CGF, S.getDirectiveKind(), HasCancel);
3490       (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3491                                        emitForLoopBounds,
3492                                        emitDispatchForLoopBounds);
3493       // Emit an implicit barrier at the end.
3494       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(),
3495                                                  OMPD_for);
3496     };
3497     const auto &&SecondGen = [&S, HasCancel,
3498                               &HasLastprivates](CodeGenFunction &CGF) {
3499       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3500           CGF, S.getDirectiveKind(), HasCancel);
3501       HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3502                                                    emitForLoopBounds,
3503                                                    emitDispatchForLoopBounds);
3504     };
3505     emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen);
3506   } else {
3507     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
3508                                                      HasCancel);
3509     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3510                                                  emitForLoopBounds,
3511                                                  emitDispatchForLoopBounds);
3512   }
3513   return HasLastprivates;
3514 }
3515 
3516 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) {
3517   if (S.hasCancel())
3518     return false;
3519   for (OMPClause *C : S.clauses())
3520     if (!isa<OMPNowaitClause>(C))
3521       return false;
3522 
3523   return true;
3524 }
3525 
3526 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
3527   bool HasLastprivates = false;
3528   bool UseOMPIRBuilder =
3529       CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S);
3530   auto &&CodeGen = [this, &S, &HasLastprivates,
3531                     UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) {
3532     // Use the OpenMPIRBuilder if enabled.
3533     if (UseOMPIRBuilder) {
3534       // Emit the associated statement and get its loop representation.
3535       const Stmt *Inner = S.getRawStmt();
3536       llvm::CanonicalLoopInfo *CLI =
3537           EmitOMPCollapsedCanonicalLoopNest(Inner, 1);
3538 
3539       bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>();
3540       llvm::OpenMPIRBuilder &OMPBuilder =
3541           CGM.getOpenMPRuntime().getOMPBuilder();
3542       llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
3543           AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
3544       OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier);
3545       return;
3546     }
3547 
3548     HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel());
3549   };
3550   {
3551     auto LPCRegion =
3552         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3553     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3554     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
3555                                                 S.hasCancel());
3556   }
3557 
3558   if (!UseOMPIRBuilder) {
3559     // Emit an implicit barrier at the end.
3560     if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3561       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3562   }
3563   // Check for outer lastprivate conditional update.
3564   checkForLastprivateConditionalUpdate(*this, S);
3565 }
3566 
3567 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
3568   bool HasLastprivates = false;
3569   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
3570                                           PrePostActionTy &) {
3571     HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3572   };
3573   {
3574     auto LPCRegion =
3575         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3576     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3577     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
3578   }
3579 
3580   // Emit an implicit barrier at the end.
3581   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3582     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3583   // Check for outer lastprivate conditional update.
3584   checkForLastprivateConditionalUpdate(*this, S);
3585 }
3586 
3587 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
3588                                 const Twine &Name,
3589                                 llvm::Value *Init = nullptr) {
3590   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
3591   if (Init)
3592     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
3593   return LVal;
3594 }
3595 
3596 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
3597   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
3598   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
3599   bool HasLastprivates = false;
3600   auto &&CodeGen = [&S, CapturedStmt, CS,
3601                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
3602     const ASTContext &C = CGF.getContext();
3603     QualType KmpInt32Ty =
3604         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3605     // Emit helper vars inits.
3606     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
3607                                   CGF.Builder.getInt32(0));
3608     llvm::ConstantInt *GlobalUBVal = CS != nullptr
3609                                          ? CGF.Builder.getInt32(CS->size() - 1)
3610                                          : CGF.Builder.getInt32(0);
3611     LValue UB =
3612         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
3613     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
3614                                   CGF.Builder.getInt32(1));
3615     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
3616                                   CGF.Builder.getInt32(0));
3617     // Loop counter.
3618     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
3619     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3620     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
3621     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3622     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
3623     // Generate condition for loop.
3624     BinaryOperator *Cond = BinaryOperator::Create(
3625         C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary,
3626         S.getBeginLoc(), FPOptionsOverride());
3627     // Increment for loop counter.
3628     UnaryOperator *Inc = UnaryOperator::Create(
3629         C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
3630         S.getBeginLoc(), true, FPOptionsOverride());
3631     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
3632       // Iterate through all sections and emit a switch construct:
3633       // switch (IV) {
3634       //   case 0:
3635       //     <SectionStmt[0]>;
3636       //     break;
3637       // ...
3638       //   case <NumSection> - 1:
3639       //     <SectionStmt[<NumSection> - 1]>;
3640       //     break;
3641       // }
3642       // .omp.sections.exit:
3643       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
3644       llvm::SwitchInst *SwitchStmt =
3645           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
3646                                    ExitBB, CS == nullptr ? 1 : CS->size());
3647       if (CS) {
3648         unsigned CaseNumber = 0;
3649         for (const Stmt *SubStmt : CS->children()) {
3650           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
3651           CGF.EmitBlock(CaseBB);
3652           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
3653           CGF.EmitStmt(SubStmt);
3654           CGF.EmitBranch(ExitBB);
3655           ++CaseNumber;
3656         }
3657       } else {
3658         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
3659         CGF.EmitBlock(CaseBB);
3660         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
3661         CGF.EmitStmt(CapturedStmt);
3662         CGF.EmitBranch(ExitBB);
3663       }
3664       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3665     };
3666 
3667     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
3668     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
3669       // Emit implicit barrier to synchronize threads and avoid data races on
3670       // initialization of firstprivate variables and post-update of lastprivate
3671       // variables.
3672       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3673           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3674           /*ForceSimpleCall=*/true);
3675     }
3676     CGF.EmitOMPPrivateClause(S, LoopScope);
3677     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV);
3678     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3679     CGF.EmitOMPReductionClauseInit(S, LoopScope);
3680     (void)LoopScope.Privatize();
3681     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3682       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
3683 
3684     // Emit static non-chunked loop.
3685     OpenMPScheduleTy ScheduleKind;
3686     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
3687     CGOpenMPRuntime::StaticRTInput StaticInit(
3688         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF),
3689         LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF));
3690     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3691         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
3692     // UB = min(UB, GlobalUB);
3693     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
3694     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
3695         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
3696     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
3697     // IV = LB;
3698     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
3699     // while (idx <= UB) { BODY; ++idx; }
3700     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen,
3701                          [](CodeGenFunction &) {});
3702     // Tell the runtime we are done.
3703     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3704       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3705                                                      S.getDirectiveKind());
3706     };
3707     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
3708     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3709     // Emit post-update of the reduction variables if IsLastIter != 0.
3710     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
3711       return CGF.Builder.CreateIsNotNull(
3712           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3713     });
3714 
3715     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3716     if (HasLastprivates)
3717       CGF.EmitOMPLastprivateClauseFinal(
3718           S, /*NoFinals=*/false,
3719           CGF.Builder.CreateIsNotNull(
3720               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
3721   };
3722 
3723   bool HasCancel = false;
3724   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
3725     HasCancel = OSD->hasCancel();
3726   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
3727     HasCancel = OPSD->hasCancel();
3728   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
3729   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
3730                                               HasCancel);
3731   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
3732   // clause. Otherwise the barrier will be generated by the codegen for the
3733   // directive.
3734   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
3735     // Emit implicit barrier to synchronize threads and avoid data races on
3736     // initialization of firstprivate variables.
3737     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3738                                            OMPD_unknown);
3739   }
3740 }
3741 
3742 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
3743   {
3744     auto LPCRegion =
3745         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3746     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3747     EmitSections(S);
3748   }
3749   // Emit an implicit barrier at the end.
3750   if (!S.getSingleClause<OMPNowaitClause>()) {
3751     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3752                                            OMPD_sections);
3753   }
3754   // Check for outer lastprivate conditional update.
3755   checkForLastprivateConditionalUpdate(*this, S);
3756 }
3757 
3758 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
3759   LexicalScope Scope(*this, S.getSourceRange());
3760   EmitStopPoint(&S);
3761   EmitStmt(S.getAssociatedStmt());
3762 }
3763 
3764 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
3765   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
3766   llvm::SmallVector<const Expr *, 8> DestExprs;
3767   llvm::SmallVector<const Expr *, 8> SrcExprs;
3768   llvm::SmallVector<const Expr *, 8> AssignmentOps;
3769   // Check if there are any 'copyprivate' clauses associated with this
3770   // 'single' construct.
3771   // Build a list of copyprivate variables along with helper expressions
3772   // (<source>, <destination>, <destination>=<source> expressions)
3773   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
3774     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
3775     DestExprs.append(C->destination_exprs().begin(),
3776                      C->destination_exprs().end());
3777     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
3778     AssignmentOps.append(C->assignment_ops().begin(),
3779                          C->assignment_ops().end());
3780   }
3781   // Emit code for 'single' region along with 'copyprivate' clauses
3782   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3783     Action.Enter(CGF);
3784     OMPPrivateScope SingleScope(CGF);
3785     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
3786     CGF.EmitOMPPrivateClause(S, SingleScope);
3787     (void)SingleScope.Privatize();
3788     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3789   };
3790   {
3791     auto LPCRegion =
3792         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3793     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3794     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
3795                                             CopyprivateVars, DestExprs,
3796                                             SrcExprs, AssignmentOps);
3797   }
3798   // Emit an implicit barrier at the end (to avoid data race on firstprivate
3799   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
3800   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
3801     CGM.getOpenMPRuntime().emitBarrierCall(
3802         *this, S.getBeginLoc(),
3803         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
3804   }
3805   // Check for outer lastprivate conditional update.
3806   checkForLastprivateConditionalUpdate(*this, S);
3807 }
3808 
3809 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3810   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3811     Action.Enter(CGF);
3812     CGF.EmitStmt(S.getRawStmt());
3813   };
3814   CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
3815 }
3816 
3817 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
3818   if (CGM.getLangOpts().OpenMPIRBuilder) {
3819     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3820     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3821 
3822     const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt();
3823 
3824     auto FiniCB = [this](InsertPointTy IP) {
3825       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3826     };
3827 
3828     auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP,
3829                                                   InsertPointTy CodeGenIP,
3830                                                   llvm::BasicBlock &FiniBB) {
3831       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3832       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt,
3833                                              CodeGenIP, FiniBB);
3834     };
3835 
3836     LexicalScope Scope(*this, S.getSourceRange());
3837     EmitStopPoint(&S);
3838     Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB));
3839 
3840     return;
3841   }
3842   LexicalScope Scope(*this, S.getSourceRange());
3843   EmitStopPoint(&S);
3844   emitMaster(*this, S);
3845 }
3846 
3847 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
3848   if (CGM.getLangOpts().OpenMPIRBuilder) {
3849     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3850     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3851 
3852     const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt();
3853     const Expr *Hint = nullptr;
3854     if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3855       Hint = HintClause->getHint();
3856 
3857     // TODO: This is slightly different from what's currently being done in
3858     // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything
3859     // about typing is final.
3860     llvm::Value *HintInst = nullptr;
3861     if (Hint)
3862       HintInst =
3863           Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false);
3864 
3865     auto FiniCB = [this](InsertPointTy IP) {
3866       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3867     };
3868 
3869     auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP,
3870                                                     InsertPointTy CodeGenIP,
3871                                                     llvm::BasicBlock &FiniBB) {
3872       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3873       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt,
3874                                              CodeGenIP, FiniBB);
3875     };
3876 
3877     LexicalScope Scope(*this, S.getSourceRange());
3878     EmitStopPoint(&S);
3879     Builder.restoreIP(OMPBuilder.createCritical(
3880         Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(),
3881         HintInst));
3882 
3883     return;
3884   }
3885 
3886   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3887     Action.Enter(CGF);
3888     CGF.EmitStmt(S.getAssociatedStmt());
3889   };
3890   const Expr *Hint = nullptr;
3891   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3892     Hint = HintClause->getHint();
3893   LexicalScope Scope(*this, S.getSourceRange());
3894   EmitStopPoint(&S);
3895   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
3896                                             S.getDirectiveName().getAsString(),
3897                                             CodeGen, S.getBeginLoc(), Hint);
3898 }
3899 
3900 void CodeGenFunction::EmitOMPParallelForDirective(
3901     const OMPParallelForDirective &S) {
3902   // Emit directive as a combined directive that consists of two implicit
3903   // directives: 'parallel' with 'for' directive.
3904   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3905     Action.Enter(CGF);
3906     (void)emitWorksharingDirective(CGF, S, S.hasCancel());
3907   };
3908   {
3909     auto LPCRegion =
3910         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3911     emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
3912                                    emitEmptyBoundParameters);
3913   }
3914   // Check for outer lastprivate conditional update.
3915   checkForLastprivateConditionalUpdate(*this, S);
3916 }
3917 
3918 void CodeGenFunction::EmitOMPParallelForSimdDirective(
3919     const OMPParallelForSimdDirective &S) {
3920   // Emit directive as a combined directive that consists of two implicit
3921   // directives: 'parallel' with 'for' directive.
3922   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3923     Action.Enter(CGF);
3924     (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3925   };
3926   {
3927     auto LPCRegion =
3928         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3929     emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen,
3930                                    emitEmptyBoundParameters);
3931   }
3932   // Check for outer lastprivate conditional update.
3933   checkForLastprivateConditionalUpdate(*this, S);
3934 }
3935 
3936 void CodeGenFunction::EmitOMPParallelMasterDirective(
3937     const OMPParallelMasterDirective &S) {
3938   // Emit directive as a combined directive that consists of two implicit
3939   // directives: 'parallel' with 'master' directive.
3940   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3941     Action.Enter(CGF);
3942     OMPPrivateScope PrivateScope(CGF);
3943     bool Copyins = CGF.EmitOMPCopyinClause(S);
3944     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3945     if (Copyins) {
3946       // Emit implicit barrier to synchronize threads and avoid data races on
3947       // propagation master's thread values of threadprivate variables to local
3948       // instances of that variables of all other implicit threads.
3949       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3950           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3951           /*ForceSimpleCall=*/true);
3952     }
3953     CGF.EmitOMPPrivateClause(S, PrivateScope);
3954     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
3955     (void)PrivateScope.Privatize();
3956     emitMaster(CGF, S);
3957     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3958   };
3959   {
3960     auto LPCRegion =
3961         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3962     emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen,
3963                                    emitEmptyBoundParameters);
3964     emitPostUpdateForReductionClause(*this, S,
3965                                      [](CodeGenFunction &) { return nullptr; });
3966   }
3967   // Check for outer lastprivate conditional update.
3968   checkForLastprivateConditionalUpdate(*this, S);
3969 }
3970 
3971 void CodeGenFunction::EmitOMPParallelSectionsDirective(
3972     const OMPParallelSectionsDirective &S) {
3973   // Emit directive as a combined directive that consists of two implicit
3974   // directives: 'parallel' with 'sections' directive.
3975   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3976     Action.Enter(CGF);
3977     CGF.EmitSections(S);
3978   };
3979   {
3980     auto LPCRegion =
3981         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3982     emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
3983                                    emitEmptyBoundParameters);
3984   }
3985   // Check for outer lastprivate conditional update.
3986   checkForLastprivateConditionalUpdate(*this, S);
3987 }
3988 
3989 namespace {
3990 /// Get the list of variables declared in the context of the untied tasks.
3991 class CheckVarsEscapingUntiedTaskDeclContext final
3992     : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> {
3993   llvm::SmallVector<const VarDecl *, 4> PrivateDecls;
3994 
3995 public:
3996   explicit CheckVarsEscapingUntiedTaskDeclContext() = default;
3997   virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default;
3998   void VisitDeclStmt(const DeclStmt *S) {
3999     if (!S)
4000       return;
4001     // Need to privatize only local vars, static locals can be processed as is.
4002     for (const Decl *D : S->decls()) {
4003       if (const auto *VD = dyn_cast_or_null<VarDecl>(D))
4004         if (VD->hasLocalStorage())
4005           PrivateDecls.push_back(VD);
4006     }
4007   }
4008   void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; }
4009   void VisitCapturedStmt(const CapturedStmt *) { return; }
4010   void VisitLambdaExpr(const LambdaExpr *) { return; }
4011   void VisitBlockExpr(const BlockExpr *) { return; }
4012   void VisitStmt(const Stmt *S) {
4013     if (!S)
4014       return;
4015     for (const Stmt *Child : S->children())
4016       if (Child)
4017         Visit(Child);
4018   }
4019 
4020   /// Swaps list of vars with the provided one.
4021   ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; }
4022 };
4023 } // anonymous namespace
4024 
4025 void CodeGenFunction::EmitOMPTaskBasedDirective(
4026     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
4027     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
4028     OMPTaskDataTy &Data) {
4029   // Emit outlined function for task construct.
4030   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
4031   auto I = CS->getCapturedDecl()->param_begin();
4032   auto PartId = std::next(I);
4033   auto TaskT = std::next(I, 4);
4034   // Check if the task is final
4035   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
4036     // If the condition constant folds and can be elided, try to avoid emitting
4037     // the condition and the dead arm of the if/else.
4038     const Expr *Cond = Clause->getCondition();
4039     bool CondConstant;
4040     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
4041       Data.Final.setInt(CondConstant);
4042     else
4043       Data.Final.setPointer(EvaluateExprAsBool(Cond));
4044   } else {
4045     // By default the task is not final.
4046     Data.Final.setInt(/*IntVal=*/false);
4047   }
4048   // Check if the task has 'priority' clause.
4049   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
4050     const Expr *Prio = Clause->getPriority();
4051     Data.Priority.setInt(/*IntVal=*/true);
4052     Data.Priority.setPointer(EmitScalarConversion(
4053         EmitScalarExpr(Prio), Prio->getType(),
4054         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
4055         Prio->getExprLoc()));
4056   }
4057   // The first function argument for tasks is a thread id, the second one is a
4058   // part id (0 for tied tasks, >=0 for untied task).
4059   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
4060   // Get list of private variables.
4061   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
4062     auto IRef = C->varlist_begin();
4063     for (const Expr *IInit : C->private_copies()) {
4064       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4065       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4066         Data.PrivateVars.push_back(*IRef);
4067         Data.PrivateCopies.push_back(IInit);
4068       }
4069       ++IRef;
4070     }
4071   }
4072   EmittedAsPrivate.clear();
4073   // Get list of firstprivate variables.
4074   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4075     auto IRef = C->varlist_begin();
4076     auto IElemInitRef = C->inits().begin();
4077     for (const Expr *IInit : C->private_copies()) {
4078       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4079       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4080         Data.FirstprivateVars.push_back(*IRef);
4081         Data.FirstprivateCopies.push_back(IInit);
4082         Data.FirstprivateInits.push_back(*IElemInitRef);
4083       }
4084       ++IRef;
4085       ++IElemInitRef;
4086     }
4087   }
4088   // Get list of lastprivate variables (for taskloops).
4089   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
4090   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
4091     auto IRef = C->varlist_begin();
4092     auto ID = C->destination_exprs().begin();
4093     for (const Expr *IInit : C->private_copies()) {
4094       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4095       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4096         Data.LastprivateVars.push_back(*IRef);
4097         Data.LastprivateCopies.push_back(IInit);
4098       }
4099       LastprivateDstsOrigs.insert(
4100           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
4101            cast<DeclRefExpr>(*IRef)});
4102       ++IRef;
4103       ++ID;
4104     }
4105   }
4106   SmallVector<const Expr *, 4> LHSs;
4107   SmallVector<const Expr *, 4> RHSs;
4108   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
4109     Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4110     Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4111     Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4112     Data.ReductionOps.append(C->reduction_ops().begin(),
4113                              C->reduction_ops().end());
4114     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4115     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4116   }
4117   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
4118       *this, S.getBeginLoc(), LHSs, RHSs, Data);
4119   // Build list of dependences.
4120   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4121     OMPTaskDataTy::DependData &DD =
4122         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4123     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4124   }
4125   // Get list of local vars for untied tasks.
4126   if (!Data.Tied) {
4127     CheckVarsEscapingUntiedTaskDeclContext Checker;
4128     Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt());
4129     Data.PrivateLocals.append(Checker.getPrivateDecls().begin(),
4130                               Checker.getPrivateDecls().end());
4131   }
4132   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
4133                     CapturedRegion](CodeGenFunction &CGF,
4134                                     PrePostActionTy &Action) {
4135     llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, std::pair<Address, Address>>
4136         UntiedLocalVars;
4137     // Set proper addresses for generated private copies.
4138     OMPPrivateScope Scope(CGF);
4139     llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs;
4140     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
4141         !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) {
4142       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
4143           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
4144       enum { PrivatesParam = 2, CopyFnParam = 3 };
4145       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4146           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4147       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4148           CS->getCapturedDecl()->getParam(PrivatesParam)));
4149       // Map privates.
4150       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4151       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4152       CallArgs.push_back(PrivatesPtr);
4153       for (const Expr *E : Data.PrivateVars) {
4154         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4155         Address PrivatePtr = CGF.CreateMemTemp(
4156             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
4157         PrivatePtrs.emplace_back(VD, PrivatePtr);
4158         CallArgs.push_back(PrivatePtr.getPointer());
4159       }
4160       for (const Expr *E : Data.FirstprivateVars) {
4161         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4162         Address PrivatePtr =
4163             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4164                               ".firstpriv.ptr.addr");
4165         PrivatePtrs.emplace_back(VD, PrivatePtr);
4166         FirstprivatePtrs.emplace_back(VD, PrivatePtr);
4167         CallArgs.push_back(PrivatePtr.getPointer());
4168       }
4169       for (const Expr *E : Data.LastprivateVars) {
4170         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4171         Address PrivatePtr =
4172             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4173                               ".lastpriv.ptr.addr");
4174         PrivatePtrs.emplace_back(VD, PrivatePtr);
4175         CallArgs.push_back(PrivatePtr.getPointer());
4176       }
4177       for (const VarDecl *VD : Data.PrivateLocals) {
4178         QualType Ty = VD->getType().getNonReferenceType();
4179         if (VD->getType()->isLValueReferenceType())
4180           Ty = CGF.getContext().getPointerType(Ty);
4181         if (isAllocatableDecl(VD))
4182           Ty = CGF.getContext().getPointerType(Ty);
4183         Address PrivatePtr = CGF.CreateMemTemp(
4184             CGF.getContext().getPointerType(Ty), ".local.ptr.addr");
4185         UntiedLocalVars.try_emplace(VD, PrivatePtr, Address::invalid());
4186         CallArgs.push_back(PrivatePtr.getPointer());
4187       }
4188       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4189           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4190       for (const auto &Pair : LastprivateDstsOrigs) {
4191         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
4192         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
4193                         /*RefersToEnclosingVariableOrCapture=*/
4194                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
4195                         Pair.second->getType(), VK_LValue,
4196                         Pair.second->getExprLoc());
4197         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
4198           return CGF.EmitLValue(&DRE).getAddress(CGF);
4199         });
4200       }
4201       for (const auto &Pair : PrivatePtrs) {
4202         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4203                             CGF.getContext().getDeclAlign(Pair.first));
4204         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4205       }
4206       // Adjust mapping for internal locals by mapping actual memory instead of
4207       // a pointer to this memory.
4208       for (auto &Pair : UntiedLocalVars) {
4209         if (isAllocatableDecl(Pair.first)) {
4210           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4211           Address Replacement(Ptr, CGF.getPointerAlign());
4212           Pair.getSecond().first = Replacement;
4213           Ptr = CGF.Builder.CreateLoad(Replacement);
4214           Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4215           Pair.getSecond().second = Replacement;
4216         } else {
4217           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4218           Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4219           Pair.getSecond().first = Replacement;
4220         }
4221       }
4222     }
4223     if (Data.Reductions) {
4224       OMPPrivateScope FirstprivateScope(CGF);
4225       for (const auto &Pair : FirstprivatePtrs) {
4226         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4227                             CGF.getContext().getDeclAlign(Pair.first));
4228         FirstprivateScope.addPrivate(Pair.first,
4229                                      [Replacement]() { return Replacement; });
4230       }
4231       (void)FirstprivateScope.Privatize();
4232       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
4233       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars,
4234                              Data.ReductionCopies, Data.ReductionOps);
4235       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
4236           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
4237       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
4238         RedCG.emitSharedOrigLValue(CGF, Cnt);
4239         RedCG.emitAggregateType(CGF, Cnt);
4240         // FIXME: This must removed once the runtime library is fixed.
4241         // Emit required threadprivate variables for
4242         // initializer/combiner/finalizer.
4243         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4244                                                            RedCG, Cnt);
4245         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4246             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4247         Replacement =
4248             Address(CGF.EmitScalarConversion(
4249                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4250                         CGF.getContext().getPointerType(
4251                             Data.ReductionCopies[Cnt]->getType()),
4252                         Data.ReductionCopies[Cnt]->getExprLoc()),
4253                     Replacement.getAlignment());
4254         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4255         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
4256                          [Replacement]() { return Replacement; });
4257       }
4258     }
4259     // Privatize all private variables except for in_reduction items.
4260     (void)Scope.Privatize();
4261     SmallVector<const Expr *, 4> InRedVars;
4262     SmallVector<const Expr *, 4> InRedPrivs;
4263     SmallVector<const Expr *, 4> InRedOps;
4264     SmallVector<const Expr *, 4> TaskgroupDescriptors;
4265     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
4266       auto IPriv = C->privates().begin();
4267       auto IRed = C->reduction_ops().begin();
4268       auto ITD = C->taskgroup_descriptors().begin();
4269       for (const Expr *Ref : C->varlists()) {
4270         InRedVars.emplace_back(Ref);
4271         InRedPrivs.emplace_back(*IPriv);
4272         InRedOps.emplace_back(*IRed);
4273         TaskgroupDescriptors.emplace_back(*ITD);
4274         std::advance(IPriv, 1);
4275         std::advance(IRed, 1);
4276         std::advance(ITD, 1);
4277       }
4278     }
4279     // Privatize in_reduction items here, because taskgroup descriptors must be
4280     // privatized earlier.
4281     OMPPrivateScope InRedScope(CGF);
4282     if (!InRedVars.empty()) {
4283       ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps);
4284       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
4285         RedCG.emitSharedOrigLValue(CGF, Cnt);
4286         RedCG.emitAggregateType(CGF, Cnt);
4287         // The taskgroup descriptor variable is always implicit firstprivate and
4288         // privatized already during processing of the firstprivates.
4289         // FIXME: This must removed once the runtime library is fixed.
4290         // Emit required threadprivate variables for
4291         // initializer/combiner/finalizer.
4292         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4293                                                            RedCG, Cnt);
4294         llvm::Value *ReductionsPtr;
4295         if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) {
4296           ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr),
4297                                                TRExpr->getExprLoc());
4298         } else {
4299           ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4300         }
4301         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4302             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4303         Replacement = Address(
4304             CGF.EmitScalarConversion(
4305                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4306                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
4307                 InRedPrivs[Cnt]->getExprLoc()),
4308             Replacement.getAlignment());
4309         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4310         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
4311                               [Replacement]() { return Replacement; });
4312       }
4313     }
4314     (void)InRedScope.Privatize();
4315 
4316     CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF,
4317                                                              UntiedLocalVars);
4318     Action.Enter(CGF);
4319     BodyGen(CGF);
4320   };
4321   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4322       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
4323       Data.NumberOfParts);
4324   OMPLexicalScope Scope(*this, S, llvm::None,
4325                         !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4326                             !isOpenMPSimdDirective(S.getDirectiveKind()));
4327   TaskGen(*this, OutlinedFn, Data);
4328 }
4329 
4330 static ImplicitParamDecl *
4331 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
4332                                   QualType Ty, CapturedDecl *CD,
4333                                   SourceLocation Loc) {
4334   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4335                                            ImplicitParamDecl::Other);
4336   auto *OrigRef = DeclRefExpr::Create(
4337       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
4338       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4339   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4340                                               ImplicitParamDecl::Other);
4341   auto *PrivateRef = DeclRefExpr::Create(
4342       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
4343       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4344   QualType ElemType = C.getBaseElementType(Ty);
4345   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
4346                                            ImplicitParamDecl::Other);
4347   auto *InitRef = DeclRefExpr::Create(
4348       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
4349       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
4350   PrivateVD->setInitStyle(VarDecl::CInit);
4351   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
4352                                               InitRef, /*BasePath=*/nullptr,
4353                                               VK_RValue, FPOptionsOverride()));
4354   Data.FirstprivateVars.emplace_back(OrigRef);
4355   Data.FirstprivateCopies.emplace_back(PrivateRef);
4356   Data.FirstprivateInits.emplace_back(InitRef);
4357   return OrigVD;
4358 }
4359 
4360 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
4361     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
4362     OMPTargetDataInfo &InputInfo) {
4363   // Emit outlined function for task construct.
4364   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4365   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4366   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4367   auto I = CS->getCapturedDecl()->param_begin();
4368   auto PartId = std::next(I);
4369   auto TaskT = std::next(I, 4);
4370   OMPTaskDataTy Data;
4371   // The task is not final.
4372   Data.Final.setInt(/*IntVal=*/false);
4373   // Get list of firstprivate variables.
4374   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4375     auto IRef = C->varlist_begin();
4376     auto IElemInitRef = C->inits().begin();
4377     for (auto *IInit : C->private_copies()) {
4378       Data.FirstprivateVars.push_back(*IRef);
4379       Data.FirstprivateCopies.push_back(IInit);
4380       Data.FirstprivateInits.push_back(*IElemInitRef);
4381       ++IRef;
4382       ++IElemInitRef;
4383     }
4384   }
4385   OMPPrivateScope TargetScope(*this);
4386   VarDecl *BPVD = nullptr;
4387   VarDecl *PVD = nullptr;
4388   VarDecl *SVD = nullptr;
4389   VarDecl *MVD = nullptr;
4390   if (InputInfo.NumberOfTargetItems > 0) {
4391     auto *CD = CapturedDecl::Create(
4392         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
4393     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
4394     QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType(
4395         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
4396         /*IndexTypeQuals=*/0);
4397     BPVD = createImplicitFirstprivateForType(
4398         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4399     PVD = createImplicitFirstprivateForType(
4400         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4401     QualType SizesType = getContext().getConstantArrayType(
4402         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
4403         ArrSize, nullptr, ArrayType::Normal,
4404         /*IndexTypeQuals=*/0);
4405     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
4406                                             S.getBeginLoc());
4407     TargetScope.addPrivate(
4408         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
4409     TargetScope.addPrivate(PVD,
4410                            [&InputInfo]() { return InputInfo.PointersArray; });
4411     TargetScope.addPrivate(SVD,
4412                            [&InputInfo]() { return InputInfo.SizesArray; });
4413     // If there is no user-defined mapper, the mapper array will be nullptr. In
4414     // this case, we don't need to privatize it.
4415     if (!dyn_cast_or_null<llvm::ConstantPointerNull>(
4416             InputInfo.MappersArray.getPointer())) {
4417       MVD = createImplicitFirstprivateForType(
4418           getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4419       TargetScope.addPrivate(MVD,
4420                              [&InputInfo]() { return InputInfo.MappersArray; });
4421     }
4422   }
4423   (void)TargetScope.Privatize();
4424   // Build list of dependences.
4425   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4426     OMPTaskDataTy::DependData &DD =
4427         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4428     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4429   }
4430   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD,
4431                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
4432     // Set proper addresses for generated private copies.
4433     OMPPrivateScope Scope(CGF);
4434     if (!Data.FirstprivateVars.empty()) {
4435       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
4436           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
4437       enum { PrivatesParam = 2, CopyFnParam = 3 };
4438       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4439           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4440       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4441           CS->getCapturedDecl()->getParam(PrivatesParam)));
4442       // Map privates.
4443       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4444       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4445       CallArgs.push_back(PrivatesPtr);
4446       for (const Expr *E : Data.FirstprivateVars) {
4447         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4448         Address PrivatePtr =
4449             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4450                               ".firstpriv.ptr.addr");
4451         PrivatePtrs.emplace_back(VD, PrivatePtr);
4452         CallArgs.push_back(PrivatePtr.getPointer());
4453       }
4454       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4455           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4456       for (const auto &Pair : PrivatePtrs) {
4457         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4458                             CGF.getContext().getDeclAlign(Pair.first));
4459         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4460       }
4461     }
4462     // Privatize all private variables except for in_reduction items.
4463     (void)Scope.Privatize();
4464     if (InputInfo.NumberOfTargetItems > 0) {
4465       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
4466           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
4467       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
4468           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
4469       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
4470           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
4471       // If MVD is nullptr, the mapper array is not privatized
4472       if (MVD)
4473         InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP(
4474             CGF.GetAddrOfLocalVar(MVD), /*Index=*/0);
4475     }
4476 
4477     Action.Enter(CGF);
4478     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
4479     BodyGen(CGF);
4480   };
4481   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4482       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
4483       Data.NumberOfParts);
4484   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
4485   IntegerLiteral IfCond(getContext(), TrueOrFalse,
4486                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4487                         SourceLocation());
4488 
4489   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
4490                                       SharedsTy, CapturedStruct, &IfCond, Data);
4491 }
4492 
4493 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
4494   // Emit outlined function for task construct.
4495   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4496   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4497   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4498   const Expr *IfCond = nullptr;
4499   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4500     if (C->getNameModifier() == OMPD_unknown ||
4501         C->getNameModifier() == OMPD_task) {
4502       IfCond = C->getCondition();
4503       break;
4504     }
4505   }
4506 
4507   OMPTaskDataTy Data;
4508   // Check if we should emit tied or untied task.
4509   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
4510   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
4511     CGF.EmitStmt(CS->getCapturedStmt());
4512   };
4513   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4514                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
4515                             const OMPTaskDataTy &Data) {
4516     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
4517                                             SharedsTy, CapturedStruct, IfCond,
4518                                             Data);
4519   };
4520   auto LPCRegion =
4521       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4522   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
4523 }
4524 
4525 void CodeGenFunction::EmitOMPTaskyieldDirective(
4526     const OMPTaskyieldDirective &S) {
4527   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
4528 }
4529 
4530 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
4531   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
4532 }
4533 
4534 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
4535   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
4536 }
4537 
4538 void CodeGenFunction::EmitOMPTaskgroupDirective(
4539     const OMPTaskgroupDirective &S) {
4540   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4541     Action.Enter(CGF);
4542     if (const Expr *E = S.getReductionRef()) {
4543       SmallVector<const Expr *, 4> LHSs;
4544       SmallVector<const Expr *, 4> RHSs;
4545       OMPTaskDataTy Data;
4546       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
4547         Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4548         Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4549         Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4550         Data.ReductionOps.append(C->reduction_ops().begin(),
4551                                  C->reduction_ops().end());
4552         LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4553         RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4554       }
4555       llvm::Value *ReductionDesc =
4556           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
4557                                                            LHSs, RHSs, Data);
4558       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4559       CGF.EmitVarDecl(*VD);
4560       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
4561                             /*Volatile=*/false, E->getType());
4562     }
4563     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4564   };
4565   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4566   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
4567 }
4568 
4569 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
4570   llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>()
4571                                 ? llvm::AtomicOrdering::NotAtomic
4572                                 : llvm::AtomicOrdering::AcquireRelease;
4573   CGM.getOpenMPRuntime().emitFlush(
4574       *this,
4575       [&S]() -> ArrayRef<const Expr *> {
4576         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
4577           return llvm::makeArrayRef(FlushClause->varlist_begin(),
4578                                     FlushClause->varlist_end());
4579         return llvm::None;
4580       }(),
4581       S.getBeginLoc(), AO);
4582 }
4583 
4584 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) {
4585   const auto *DO = S.getSingleClause<OMPDepobjClause>();
4586   LValue DOLVal = EmitLValue(DO->getDepobj());
4587   if (const auto *DC = S.getSingleClause<OMPDependClause>()) {
4588     OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(),
4589                                            DC->getModifier());
4590     Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end());
4591     Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause(
4592         *this, Dependencies, DC->getBeginLoc());
4593     EmitStoreOfScalar(DepAddr.getPointer(), DOLVal);
4594     return;
4595   }
4596   if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) {
4597     CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc());
4598     return;
4599   }
4600   if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) {
4601     CGM.getOpenMPRuntime().emitUpdateClause(
4602         *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc());
4603     return;
4604   }
4605 }
4606 
4607 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) {
4608   if (!OMPParentLoopDirectiveForScan)
4609     return;
4610   const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan;
4611   bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>();
4612   SmallVector<const Expr *, 4> Shareds;
4613   SmallVector<const Expr *, 4> Privates;
4614   SmallVector<const Expr *, 4> LHSs;
4615   SmallVector<const Expr *, 4> RHSs;
4616   SmallVector<const Expr *, 4> ReductionOps;
4617   SmallVector<const Expr *, 4> CopyOps;
4618   SmallVector<const Expr *, 4> CopyArrayTemps;
4619   SmallVector<const Expr *, 4> CopyArrayElems;
4620   for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) {
4621     if (C->getModifier() != OMPC_REDUCTION_inscan)
4622       continue;
4623     Shareds.append(C->varlist_begin(), C->varlist_end());
4624     Privates.append(C->privates().begin(), C->privates().end());
4625     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4626     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4627     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
4628     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
4629     CopyArrayTemps.append(C->copy_array_temps().begin(),
4630                           C->copy_array_temps().end());
4631     CopyArrayElems.append(C->copy_array_elems().begin(),
4632                           C->copy_array_elems().end());
4633   }
4634   if (ParentDir.getDirectiveKind() == OMPD_simd ||
4635       (getLangOpts().OpenMPSimd &&
4636        isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) {
4637     // For simd directive and simd-based directives in simd only mode, use the
4638     // following codegen:
4639     // int x = 0;
4640     // #pragma omp simd reduction(inscan, +: x)
4641     // for (..) {
4642     //   <first part>
4643     //   #pragma omp scan inclusive(x)
4644     //   <second part>
4645     //  }
4646     // is transformed to:
4647     // int x = 0;
4648     // for (..) {
4649     //   int x_priv = 0;
4650     //   <first part>
4651     //   x = x_priv + x;
4652     //   x_priv = x;
4653     //   <second part>
4654     // }
4655     // and
4656     // int x = 0;
4657     // #pragma omp simd reduction(inscan, +: x)
4658     // for (..) {
4659     //   <first part>
4660     //   #pragma omp scan exclusive(x)
4661     //   <second part>
4662     // }
4663     // to
4664     // int x = 0;
4665     // for (..) {
4666     //   int x_priv = 0;
4667     //   <second part>
4668     //   int temp = x;
4669     //   x = x_priv + x;
4670     //   x_priv = temp;
4671     //   <first part>
4672     // }
4673     llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce");
4674     EmitBranch(IsInclusive
4675                    ? OMPScanReduce
4676                    : BreakContinueStack.back().ContinueBlock.getBlock());
4677     EmitBlock(OMPScanDispatch);
4678     {
4679       // New scope for correct construction/destruction of temp variables for
4680       // exclusive scan.
4681       LexicalScope Scope(*this, S.getSourceRange());
4682       EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock);
4683       EmitBlock(OMPScanReduce);
4684       if (!IsInclusive) {
4685         // Create temp var and copy LHS value to this temp value.
4686         // TMP = LHS;
4687         for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4688           const Expr *PrivateExpr = Privates[I];
4689           const Expr *TempExpr = CopyArrayTemps[I];
4690           EmitAutoVarDecl(
4691               *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl()));
4692           LValue DestLVal = EmitLValue(TempExpr);
4693           LValue SrcLVal = EmitLValue(LHSs[I]);
4694           EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4695                       SrcLVal.getAddress(*this),
4696                       cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4697                       cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4698                       CopyOps[I]);
4699         }
4700       }
4701       CGM.getOpenMPRuntime().emitReduction(
4702           *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
4703           {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd});
4704       for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4705         const Expr *PrivateExpr = Privates[I];
4706         LValue DestLVal;
4707         LValue SrcLVal;
4708         if (IsInclusive) {
4709           DestLVal = EmitLValue(RHSs[I]);
4710           SrcLVal = EmitLValue(LHSs[I]);
4711         } else {
4712           const Expr *TempExpr = CopyArrayTemps[I];
4713           DestLVal = EmitLValue(RHSs[I]);
4714           SrcLVal = EmitLValue(TempExpr);
4715         }
4716         EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4717                     SrcLVal.getAddress(*this),
4718                     cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4719                     cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4720                     CopyOps[I]);
4721       }
4722     }
4723     EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock);
4724     OMPScanExitBlock = IsInclusive
4725                            ? BreakContinueStack.back().ContinueBlock.getBlock()
4726                            : OMPScanReduce;
4727     EmitBlock(OMPAfterScanBlock);
4728     return;
4729   }
4730   if (!IsInclusive) {
4731     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4732     EmitBlock(OMPScanExitBlock);
4733   }
4734   if (OMPFirstScanLoop) {
4735     // Emit buffer[i] = red; at the end of the input phase.
4736     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4737                              .getIterationVariable()
4738                              ->IgnoreParenImpCasts();
4739     LValue IdxLVal = EmitLValue(IVExpr);
4740     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4741     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4742     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4743       const Expr *PrivateExpr = Privates[I];
4744       const Expr *OrigExpr = Shareds[I];
4745       const Expr *CopyArrayElem = CopyArrayElems[I];
4746       OpaqueValueMapping IdxMapping(
4747           *this,
4748           cast<OpaqueValueExpr>(
4749               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4750           RValue::get(IdxVal));
4751       LValue DestLVal = EmitLValue(CopyArrayElem);
4752       LValue SrcLVal = EmitLValue(OrigExpr);
4753       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4754                   SrcLVal.getAddress(*this),
4755                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4756                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4757                   CopyOps[I]);
4758     }
4759   }
4760   EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4761   if (IsInclusive) {
4762     EmitBlock(OMPScanExitBlock);
4763     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4764   }
4765   EmitBlock(OMPScanDispatch);
4766   if (!OMPFirstScanLoop) {
4767     // Emit red = buffer[i]; at the entrance to the scan phase.
4768     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4769                              .getIterationVariable()
4770                              ->IgnoreParenImpCasts();
4771     LValue IdxLVal = EmitLValue(IVExpr);
4772     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4773     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4774     llvm::BasicBlock *ExclusiveExitBB = nullptr;
4775     if (!IsInclusive) {
4776       llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec");
4777       ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit");
4778       llvm::Value *Cmp = Builder.CreateIsNull(IdxVal);
4779       Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB);
4780       EmitBlock(ContBB);
4781       // Use idx - 1 iteration for exclusive scan.
4782       IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1));
4783     }
4784     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4785       const Expr *PrivateExpr = Privates[I];
4786       const Expr *OrigExpr = Shareds[I];
4787       const Expr *CopyArrayElem = CopyArrayElems[I];
4788       OpaqueValueMapping IdxMapping(
4789           *this,
4790           cast<OpaqueValueExpr>(
4791               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4792           RValue::get(IdxVal));
4793       LValue SrcLVal = EmitLValue(CopyArrayElem);
4794       LValue DestLVal = EmitLValue(OrigExpr);
4795       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4796                   SrcLVal.getAddress(*this),
4797                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4798                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4799                   CopyOps[I]);
4800     }
4801     if (!IsInclusive) {
4802       EmitBlock(ExclusiveExitBB);
4803     }
4804   }
4805   EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock
4806                                                : OMPAfterScanBlock);
4807   EmitBlock(OMPAfterScanBlock);
4808 }
4809 
4810 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
4811                                             const CodeGenLoopTy &CodeGenLoop,
4812                                             Expr *IncExpr) {
4813   // Emit the loop iteration variable.
4814   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
4815   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
4816   EmitVarDecl(*IVDecl);
4817 
4818   // Emit the iterations count variable.
4819   // If it is not a variable, Sema decided to calculate iterations count on each
4820   // iteration (e.g., it is foldable into a constant).
4821   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4822     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4823     // Emit calculation of the iterations count.
4824     EmitIgnoredExpr(S.getCalcLastIteration());
4825   }
4826 
4827   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
4828 
4829   bool HasLastprivateClause = false;
4830   // Check pre-condition.
4831   {
4832     OMPLoopScope PreInitScope(*this, S);
4833     // Skip the entire loop if we don't meet the precondition.
4834     // If the condition constant folds and can be elided, avoid emitting the
4835     // whole loop.
4836     bool CondConstant;
4837     llvm::BasicBlock *ContBlock = nullptr;
4838     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4839       if (!CondConstant)
4840         return;
4841     } else {
4842       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
4843       ContBlock = createBasicBlock("omp.precond.end");
4844       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
4845                   getProfileCount(&S));
4846       EmitBlock(ThenBlock);
4847       incrementProfileCounter(&S);
4848     }
4849 
4850     emitAlignedClause(*this, S);
4851     // Emit 'then' code.
4852     {
4853       // Emit helper vars inits.
4854 
4855       LValue LB = EmitOMPHelperVar(
4856           *this, cast<DeclRefExpr>(
4857                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4858                           ? S.getCombinedLowerBoundVariable()
4859                           : S.getLowerBoundVariable())));
4860       LValue UB = EmitOMPHelperVar(
4861           *this, cast<DeclRefExpr>(
4862                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4863                           ? S.getCombinedUpperBoundVariable()
4864                           : S.getUpperBoundVariable())));
4865       LValue ST =
4866           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
4867       LValue IL =
4868           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
4869 
4870       OMPPrivateScope LoopScope(*this);
4871       if (EmitOMPFirstprivateClause(S, LoopScope)) {
4872         // Emit implicit barrier to synchronize threads and avoid data races
4873         // on initialization of firstprivate variables and post-update of
4874         // lastprivate variables.
4875         CGM.getOpenMPRuntime().emitBarrierCall(
4876             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
4877             /*ForceSimpleCall=*/true);
4878       }
4879       EmitOMPPrivateClause(S, LoopScope);
4880       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
4881           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4882           !isOpenMPTeamsDirective(S.getDirectiveKind()))
4883         EmitOMPReductionClauseInit(S, LoopScope);
4884       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
4885       EmitOMPPrivateLoopCounters(S, LoopScope);
4886       (void)LoopScope.Privatize();
4887       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4888         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
4889 
4890       // Detect the distribute schedule kind and chunk.
4891       llvm::Value *Chunk = nullptr;
4892       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
4893       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
4894         ScheduleKind = C->getDistScheduleKind();
4895         if (const Expr *Ch = C->getChunkSize()) {
4896           Chunk = EmitScalarExpr(Ch);
4897           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
4898                                        S.getIterationVariable()->getType(),
4899                                        S.getBeginLoc());
4900         }
4901       } else {
4902         // Default behaviour for dist_schedule clause.
4903         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
4904             *this, S, ScheduleKind, Chunk);
4905       }
4906       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
4907       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
4908 
4909       // OpenMP [2.10.8, distribute Construct, Description]
4910       // If dist_schedule is specified, kind must be static. If specified,
4911       // iterations are divided into chunks of size chunk_size, chunks are
4912       // assigned to the teams of the league in a round-robin fashion in the
4913       // order of the team number. When no chunk_size is specified, the
4914       // iteration space is divided into chunks that are approximately equal
4915       // in size, and at most one chunk is distributed to each team of the
4916       // league. The size of the chunks is unspecified in this case.
4917       bool StaticChunked = RT.isStaticChunked(
4918           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
4919           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
4920       if (RT.isStaticNonchunked(ScheduleKind,
4921                                 /* Chunked */ Chunk != nullptr) ||
4922           StaticChunked) {
4923         CGOpenMPRuntime::StaticRTInput StaticInit(
4924             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this),
4925             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
4926             StaticChunked ? Chunk : nullptr);
4927         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
4928                                     StaticInit);
4929         JumpDest LoopExit =
4930             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
4931         // UB = min(UB, GlobalUB);
4932         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4933                             ? S.getCombinedEnsureUpperBound()
4934                             : S.getEnsureUpperBound());
4935         // IV = LB;
4936         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4937                             ? S.getCombinedInit()
4938                             : S.getInit());
4939 
4940         const Expr *Cond =
4941             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4942                 ? S.getCombinedCond()
4943                 : S.getCond();
4944 
4945         if (StaticChunked)
4946           Cond = S.getCombinedDistCond();
4947 
4948         // For static unchunked schedules generate:
4949         //
4950         //  1. For distribute alone, codegen
4951         //    while (idx <= UB) {
4952         //      BODY;
4953         //      ++idx;
4954         //    }
4955         //
4956         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
4957         //    while (idx <= UB) {
4958         //      <CodeGen rest of pragma>(LB, UB);
4959         //      idx += ST;
4960         //    }
4961         //
4962         // For static chunk one schedule generate:
4963         //
4964         // while (IV <= GlobalUB) {
4965         //   <CodeGen rest of pragma>(LB, UB);
4966         //   LB += ST;
4967         //   UB += ST;
4968         //   UB = min(UB, GlobalUB);
4969         //   IV = LB;
4970         // }
4971         //
4972         emitCommonSimdLoop(
4973             *this, S,
4974             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4975               if (isOpenMPSimdDirective(S.getDirectiveKind()))
4976                 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true);
4977             },
4978             [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop,
4979              StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) {
4980               CGF.EmitOMPInnerLoop(
4981                   S, LoopScope.requiresCleanups(), Cond, IncExpr,
4982                   [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
4983                     CodeGenLoop(CGF, S, LoopExit);
4984                   },
4985                   [&S, StaticChunked](CodeGenFunction &CGF) {
4986                     if (StaticChunked) {
4987                       CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
4988                       CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
4989                       CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
4990                       CGF.EmitIgnoredExpr(S.getCombinedInit());
4991                     }
4992                   });
4993             });
4994         EmitBlock(LoopExit.getBlock());
4995         // Tell the runtime we are done.
4996         RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind());
4997       } else {
4998         // Emit the outer loop, which requests its work chunk [LB..UB] from
4999         // runtime and runs the inner loop to process it.
5000         const OMPLoopArguments LoopArguments = {
5001             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
5002             IL.getAddress(*this), Chunk};
5003         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
5004                                    CodeGenLoop);
5005       }
5006       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
5007         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
5008           return CGF.Builder.CreateIsNotNull(
5009               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5010         });
5011       }
5012       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
5013           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
5014           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
5015         EmitOMPReductionClauseFinal(S, OMPD_simd);
5016         // Emit post-update of the reduction variables if IsLastIter != 0.
5017         emitPostUpdateForReductionClause(
5018             *this, S, [IL, &S](CodeGenFunction &CGF) {
5019               return CGF.Builder.CreateIsNotNull(
5020                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5021             });
5022       }
5023       // Emit final copy of the lastprivate variables if IsLastIter != 0.
5024       if (HasLastprivateClause) {
5025         EmitOMPLastprivateClauseFinal(
5026             S, /*NoFinals=*/false,
5027             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
5028       }
5029     }
5030 
5031     // We're now done with the loop, so jump to the continuation block.
5032     if (ContBlock) {
5033       EmitBranch(ContBlock);
5034       EmitBlock(ContBlock, true);
5035     }
5036   }
5037 }
5038 
5039 void CodeGenFunction::EmitOMPDistributeDirective(
5040     const OMPDistributeDirective &S) {
5041   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5042     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5043   };
5044   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5045   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
5046 }
5047 
5048 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
5049                                                    const CapturedStmt *S,
5050                                                    SourceLocation Loc) {
5051   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
5052   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
5053   CGF.CapturedStmtInfo = &CapStmtInfo;
5054   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc);
5055   Fn->setDoesNotRecurse();
5056   return Fn;
5057 }
5058 
5059 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
5060   if (S.hasClausesOfKind<OMPDependClause>()) {
5061     assert(!S.hasAssociatedStmt() &&
5062            "No associated statement must be in ordered depend construct.");
5063     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
5064       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
5065     return;
5066   }
5067   const auto *C = S.getSingleClause<OMPSIMDClause>();
5068   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
5069                                  PrePostActionTy &Action) {
5070     const CapturedStmt *CS = S.getInnermostCapturedStmt();
5071     if (C) {
5072       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5073       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5074       llvm::Function *OutlinedFn =
5075           emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc());
5076       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
5077                                                       OutlinedFn, CapturedVars);
5078     } else {
5079       Action.Enter(CGF);
5080       CGF.EmitStmt(CS->getCapturedStmt());
5081     }
5082   };
5083   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5084   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
5085 }
5086 
5087 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
5088                                          QualType SrcType, QualType DestType,
5089                                          SourceLocation Loc) {
5090   assert(CGF.hasScalarEvaluationKind(DestType) &&
5091          "DestType must have scalar evaluation kind.");
5092   assert(!Val.isAggregate() && "Must be a scalar or complex.");
5093   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
5094                                                    DestType, Loc)
5095                         : CGF.EmitComplexToScalarConversion(
5096                               Val.getComplexVal(), SrcType, DestType, Loc);
5097 }
5098 
5099 static CodeGenFunction::ComplexPairTy
5100 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
5101                       QualType DestType, SourceLocation Loc) {
5102   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
5103          "DestType must have complex evaluation kind.");
5104   CodeGenFunction::ComplexPairTy ComplexVal;
5105   if (Val.isScalar()) {
5106     // Convert the input element to the element type of the complex.
5107     QualType DestElementType =
5108         DestType->castAs<ComplexType>()->getElementType();
5109     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
5110         Val.getScalarVal(), SrcType, DestElementType, Loc);
5111     ComplexVal = CodeGenFunction::ComplexPairTy(
5112         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
5113   } else {
5114     assert(Val.isComplex() && "Must be a scalar or complex.");
5115     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
5116     QualType DestElementType =
5117         DestType->castAs<ComplexType>()->getElementType();
5118     ComplexVal.first = CGF.EmitScalarConversion(
5119         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
5120     ComplexVal.second = CGF.EmitScalarConversion(
5121         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
5122   }
5123   return ComplexVal;
5124 }
5125 
5126 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5127                                   LValue LVal, RValue RVal) {
5128   if (LVal.isGlobalReg())
5129     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
5130   else
5131     CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false);
5132 }
5133 
5134 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF,
5135                                    llvm::AtomicOrdering AO, LValue LVal,
5136                                    SourceLocation Loc) {
5137   if (LVal.isGlobalReg())
5138     return CGF.EmitLoadOfLValue(LVal, Loc);
5139   return CGF.EmitAtomicLoad(
5140       LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO),
5141       LVal.isVolatile());
5142 }
5143 
5144 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
5145                                          QualType RValTy, SourceLocation Loc) {
5146   switch (getEvaluationKind(LVal.getType())) {
5147   case TEK_Scalar:
5148     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
5149                                *this, RVal, RValTy, LVal.getType(), Loc)),
5150                            LVal);
5151     break;
5152   case TEK_Complex:
5153     EmitStoreOfComplex(
5154         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
5155         /*isInit=*/false);
5156     break;
5157   case TEK_Aggregate:
5158     llvm_unreachable("Must be a scalar or complex.");
5159   }
5160 }
5161 
5162 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5163                                   const Expr *X, const Expr *V,
5164                                   SourceLocation Loc) {
5165   // v = x;
5166   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
5167   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
5168   LValue XLValue = CGF.EmitLValue(X);
5169   LValue VLValue = CGF.EmitLValue(V);
5170   RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc);
5171   // OpenMP, 2.17.7, atomic Construct
5172   // If the read or capture clause is specified and the acquire, acq_rel, or
5173   // seq_cst clause is specified then the strong flush on exit from the atomic
5174   // operation is also an acquire flush.
5175   switch (AO) {
5176   case llvm::AtomicOrdering::Acquire:
5177   case llvm::AtomicOrdering::AcquireRelease:
5178   case llvm::AtomicOrdering::SequentiallyConsistent:
5179     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5180                                          llvm::AtomicOrdering::Acquire);
5181     break;
5182   case llvm::AtomicOrdering::Monotonic:
5183   case llvm::AtomicOrdering::Release:
5184     break;
5185   case llvm::AtomicOrdering::NotAtomic:
5186   case llvm::AtomicOrdering::Unordered:
5187     llvm_unreachable("Unexpected ordering.");
5188   }
5189   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
5190   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5191 }
5192 
5193 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF,
5194                                    llvm::AtomicOrdering AO, const Expr *X,
5195                                    const Expr *E, SourceLocation Loc) {
5196   // x = expr;
5197   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
5198   emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
5199   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5200   // OpenMP, 2.17.7, atomic Construct
5201   // If the write, update, or capture clause is specified and the release,
5202   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5203   // the atomic operation is also a release flush.
5204   switch (AO) {
5205   case llvm::AtomicOrdering::Release:
5206   case llvm::AtomicOrdering::AcquireRelease:
5207   case llvm::AtomicOrdering::SequentiallyConsistent:
5208     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5209                                          llvm::AtomicOrdering::Release);
5210     break;
5211   case llvm::AtomicOrdering::Acquire:
5212   case llvm::AtomicOrdering::Monotonic:
5213     break;
5214   case llvm::AtomicOrdering::NotAtomic:
5215   case llvm::AtomicOrdering::Unordered:
5216     llvm_unreachable("Unexpected ordering.");
5217   }
5218 }
5219 
5220 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
5221                                                 RValue Update,
5222                                                 BinaryOperatorKind BO,
5223                                                 llvm::AtomicOrdering AO,
5224                                                 bool IsXLHSInRHSPart) {
5225   ASTContext &Context = CGF.getContext();
5226   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
5227   // expression is simple and atomic is allowed for the given type for the
5228   // target platform.
5229   if (BO == BO_Comma || !Update.isScalar() ||
5230       !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() ||
5231       (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
5232        (Update.getScalarVal()->getType() !=
5233         X.getAddress(CGF).getElementType())) ||
5234       !X.getAddress(CGF).getElementType()->isIntegerTy() ||
5235       !Context.getTargetInfo().hasBuiltinAtomic(
5236           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
5237     return std::make_pair(false, RValue::get(nullptr));
5238 
5239   llvm::AtomicRMWInst::BinOp RMWOp;
5240   switch (BO) {
5241   case BO_Add:
5242     RMWOp = llvm::AtomicRMWInst::Add;
5243     break;
5244   case BO_Sub:
5245     if (!IsXLHSInRHSPart)
5246       return std::make_pair(false, RValue::get(nullptr));
5247     RMWOp = llvm::AtomicRMWInst::Sub;
5248     break;
5249   case BO_And:
5250     RMWOp = llvm::AtomicRMWInst::And;
5251     break;
5252   case BO_Or:
5253     RMWOp = llvm::AtomicRMWInst::Or;
5254     break;
5255   case BO_Xor:
5256     RMWOp = llvm::AtomicRMWInst::Xor;
5257     break;
5258   case BO_LT:
5259     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5260                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
5261                                    : llvm::AtomicRMWInst::Max)
5262                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
5263                                    : llvm::AtomicRMWInst::UMax);
5264     break;
5265   case BO_GT:
5266     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5267                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
5268                                    : llvm::AtomicRMWInst::Min)
5269                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
5270                                    : llvm::AtomicRMWInst::UMin);
5271     break;
5272   case BO_Assign:
5273     RMWOp = llvm::AtomicRMWInst::Xchg;
5274     break;
5275   case BO_Mul:
5276   case BO_Div:
5277   case BO_Rem:
5278   case BO_Shl:
5279   case BO_Shr:
5280   case BO_LAnd:
5281   case BO_LOr:
5282     return std::make_pair(false, RValue::get(nullptr));
5283   case BO_PtrMemD:
5284   case BO_PtrMemI:
5285   case BO_LE:
5286   case BO_GE:
5287   case BO_EQ:
5288   case BO_NE:
5289   case BO_Cmp:
5290   case BO_AddAssign:
5291   case BO_SubAssign:
5292   case BO_AndAssign:
5293   case BO_OrAssign:
5294   case BO_XorAssign:
5295   case BO_MulAssign:
5296   case BO_DivAssign:
5297   case BO_RemAssign:
5298   case BO_ShlAssign:
5299   case BO_ShrAssign:
5300   case BO_Comma:
5301     llvm_unreachable("Unsupported atomic update operation");
5302   }
5303   llvm::Value *UpdateVal = Update.getScalarVal();
5304   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
5305     UpdateVal = CGF.Builder.CreateIntCast(
5306         IC, X.getAddress(CGF).getElementType(),
5307         X.getType()->hasSignedIntegerRepresentation());
5308   }
5309   llvm::Value *Res =
5310       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO);
5311   return std::make_pair(true, RValue::get(Res));
5312 }
5313 
5314 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
5315     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
5316     llvm::AtomicOrdering AO, SourceLocation Loc,
5317     const llvm::function_ref<RValue(RValue)> CommonGen) {
5318   // Update expressions are allowed to have the following forms:
5319   // x binop= expr; -> xrval + expr;
5320   // x++, ++x -> xrval + 1;
5321   // x--, --x -> xrval - 1;
5322   // x = x binop expr; -> xrval binop expr
5323   // x = expr Op x; - > expr binop xrval;
5324   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
5325   if (!Res.first) {
5326     if (X.isGlobalReg()) {
5327       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
5328       // 'xrval'.
5329       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
5330     } else {
5331       // Perform compare-and-swap procedure.
5332       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
5333     }
5334   }
5335   return Res;
5336 }
5337 
5338 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF,
5339                                     llvm::AtomicOrdering AO, const Expr *X,
5340                                     const Expr *E, const Expr *UE,
5341                                     bool IsXLHSInRHSPart, SourceLocation Loc) {
5342   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5343          "Update expr in 'atomic update' must be a binary operator.");
5344   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5345   // Update expressions are allowed to have the following forms:
5346   // x binop= expr; -> xrval + expr;
5347   // x++, ++x -> xrval + 1;
5348   // x--, --x -> xrval - 1;
5349   // x = x binop expr; -> xrval binop expr
5350   // x = expr Op x; - > expr binop xrval;
5351   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
5352   LValue XLValue = CGF.EmitLValue(X);
5353   RValue ExprRValue = CGF.EmitAnyExpr(E);
5354   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5355   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5356   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5357   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5358   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
5359     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5360     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5361     return CGF.EmitAnyExpr(UE);
5362   };
5363   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
5364       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5365   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5366   // OpenMP, 2.17.7, atomic Construct
5367   // If the write, update, or capture clause is specified and the release,
5368   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5369   // the atomic operation is also a release flush.
5370   switch (AO) {
5371   case llvm::AtomicOrdering::Release:
5372   case llvm::AtomicOrdering::AcquireRelease:
5373   case llvm::AtomicOrdering::SequentiallyConsistent:
5374     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5375                                          llvm::AtomicOrdering::Release);
5376     break;
5377   case llvm::AtomicOrdering::Acquire:
5378   case llvm::AtomicOrdering::Monotonic:
5379     break;
5380   case llvm::AtomicOrdering::NotAtomic:
5381   case llvm::AtomicOrdering::Unordered:
5382     llvm_unreachable("Unexpected ordering.");
5383   }
5384 }
5385 
5386 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
5387                             QualType SourceType, QualType ResType,
5388                             SourceLocation Loc) {
5389   switch (CGF.getEvaluationKind(ResType)) {
5390   case TEK_Scalar:
5391     return RValue::get(
5392         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
5393   case TEK_Complex: {
5394     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
5395     return RValue::getComplex(Res.first, Res.second);
5396   }
5397   case TEK_Aggregate:
5398     break;
5399   }
5400   llvm_unreachable("Must be a scalar or complex.");
5401 }
5402 
5403 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF,
5404                                      llvm::AtomicOrdering AO,
5405                                      bool IsPostfixUpdate, const Expr *V,
5406                                      const Expr *X, const Expr *E,
5407                                      const Expr *UE, bool IsXLHSInRHSPart,
5408                                      SourceLocation Loc) {
5409   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
5410   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
5411   RValue NewVVal;
5412   LValue VLValue = CGF.EmitLValue(V);
5413   LValue XLValue = CGF.EmitLValue(X);
5414   RValue ExprRValue = CGF.EmitAnyExpr(E);
5415   QualType NewVValType;
5416   if (UE) {
5417     // 'x' is updated with some additional value.
5418     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5419            "Update expr in 'atomic capture' must be a binary operator.");
5420     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5421     // Update expressions are allowed to have the following forms:
5422     // x binop= expr; -> xrval + expr;
5423     // x++, ++x -> xrval + 1;
5424     // x--, --x -> xrval - 1;
5425     // x = x binop expr; -> xrval binop expr
5426     // x = expr Op x; - > expr binop xrval;
5427     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5428     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5429     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5430     NewVValType = XRValExpr->getType();
5431     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5432     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
5433                   IsPostfixUpdate](RValue XRValue) {
5434       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5435       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5436       RValue Res = CGF.EmitAnyExpr(UE);
5437       NewVVal = IsPostfixUpdate ? XRValue : Res;
5438       return Res;
5439     };
5440     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5441         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5442     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5443     if (Res.first) {
5444       // 'atomicrmw' instruction was generated.
5445       if (IsPostfixUpdate) {
5446         // Use old value from 'atomicrmw'.
5447         NewVVal = Res.second;
5448       } else {
5449         // 'atomicrmw' does not provide new value, so evaluate it using old
5450         // value of 'x'.
5451         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5452         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
5453         NewVVal = CGF.EmitAnyExpr(UE);
5454       }
5455     }
5456   } else {
5457     // 'x' is simply rewritten with some 'expr'.
5458     NewVValType = X->getType().getNonReferenceType();
5459     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
5460                                X->getType().getNonReferenceType(), Loc);
5461     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
5462       NewVVal = XRValue;
5463       return ExprRValue;
5464     };
5465     // Try to perform atomicrmw xchg, otherwise simple exchange.
5466     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5467         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
5468         Loc, Gen);
5469     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5470     if (Res.first) {
5471       // 'atomicrmw' instruction was generated.
5472       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
5473     }
5474   }
5475   // Emit post-update store to 'v' of old/new 'x' value.
5476   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
5477   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5478   // OpenMP, 2.17.7, atomic Construct
5479   // If the write, update, or capture clause is specified and the release,
5480   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5481   // the atomic operation is also a release flush.
5482   // If the read or capture clause is specified and the acquire, acq_rel, or
5483   // seq_cst clause is specified then the strong flush on exit from the atomic
5484   // operation is also an acquire flush.
5485   switch (AO) {
5486   case llvm::AtomicOrdering::Release:
5487     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5488                                          llvm::AtomicOrdering::Release);
5489     break;
5490   case llvm::AtomicOrdering::Acquire:
5491     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5492                                          llvm::AtomicOrdering::Acquire);
5493     break;
5494   case llvm::AtomicOrdering::AcquireRelease:
5495   case llvm::AtomicOrdering::SequentiallyConsistent:
5496     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5497                                          llvm::AtomicOrdering::AcquireRelease);
5498     break;
5499   case llvm::AtomicOrdering::Monotonic:
5500     break;
5501   case llvm::AtomicOrdering::NotAtomic:
5502   case llvm::AtomicOrdering::Unordered:
5503     llvm_unreachable("Unexpected ordering.");
5504   }
5505 }
5506 
5507 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
5508                               llvm::AtomicOrdering AO, bool IsPostfixUpdate,
5509                               const Expr *X, const Expr *V, const Expr *E,
5510                               const Expr *UE, bool IsXLHSInRHSPart,
5511                               SourceLocation Loc) {
5512   switch (Kind) {
5513   case OMPC_read:
5514     emitOMPAtomicReadExpr(CGF, AO, X, V, Loc);
5515     break;
5516   case OMPC_write:
5517     emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc);
5518     break;
5519   case OMPC_unknown:
5520   case OMPC_update:
5521     emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc);
5522     break;
5523   case OMPC_capture:
5524     emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE,
5525                              IsXLHSInRHSPart, Loc);
5526     break;
5527   case OMPC_if:
5528   case OMPC_final:
5529   case OMPC_num_threads:
5530   case OMPC_private:
5531   case OMPC_firstprivate:
5532   case OMPC_lastprivate:
5533   case OMPC_reduction:
5534   case OMPC_task_reduction:
5535   case OMPC_in_reduction:
5536   case OMPC_safelen:
5537   case OMPC_simdlen:
5538   case OMPC_sizes:
5539   case OMPC_allocator:
5540   case OMPC_allocate:
5541   case OMPC_collapse:
5542   case OMPC_default:
5543   case OMPC_seq_cst:
5544   case OMPC_acq_rel:
5545   case OMPC_acquire:
5546   case OMPC_release:
5547   case OMPC_relaxed:
5548   case OMPC_shared:
5549   case OMPC_linear:
5550   case OMPC_aligned:
5551   case OMPC_copyin:
5552   case OMPC_copyprivate:
5553   case OMPC_flush:
5554   case OMPC_depobj:
5555   case OMPC_proc_bind:
5556   case OMPC_schedule:
5557   case OMPC_ordered:
5558   case OMPC_nowait:
5559   case OMPC_untied:
5560   case OMPC_threadprivate:
5561   case OMPC_depend:
5562   case OMPC_mergeable:
5563   case OMPC_device:
5564   case OMPC_threads:
5565   case OMPC_simd:
5566   case OMPC_map:
5567   case OMPC_num_teams:
5568   case OMPC_thread_limit:
5569   case OMPC_priority:
5570   case OMPC_grainsize:
5571   case OMPC_nogroup:
5572   case OMPC_num_tasks:
5573   case OMPC_hint:
5574   case OMPC_dist_schedule:
5575   case OMPC_defaultmap:
5576   case OMPC_uniform:
5577   case OMPC_to:
5578   case OMPC_from:
5579   case OMPC_use_device_ptr:
5580   case OMPC_use_device_addr:
5581   case OMPC_is_device_ptr:
5582   case OMPC_unified_address:
5583   case OMPC_unified_shared_memory:
5584   case OMPC_reverse_offload:
5585   case OMPC_dynamic_allocators:
5586   case OMPC_atomic_default_mem_order:
5587   case OMPC_device_type:
5588   case OMPC_match:
5589   case OMPC_nontemporal:
5590   case OMPC_order:
5591   case OMPC_destroy:
5592   case OMPC_detach:
5593   case OMPC_inclusive:
5594   case OMPC_exclusive:
5595   case OMPC_uses_allocators:
5596   case OMPC_affinity:
5597   default:
5598     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
5599   }
5600 }
5601 
5602 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
5603   llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic;
5604   bool MemOrderingSpecified = false;
5605   if (S.getSingleClause<OMPSeqCstClause>()) {
5606     AO = llvm::AtomicOrdering::SequentiallyConsistent;
5607     MemOrderingSpecified = true;
5608   } else if (S.getSingleClause<OMPAcqRelClause>()) {
5609     AO = llvm::AtomicOrdering::AcquireRelease;
5610     MemOrderingSpecified = true;
5611   } else if (S.getSingleClause<OMPAcquireClause>()) {
5612     AO = llvm::AtomicOrdering::Acquire;
5613     MemOrderingSpecified = true;
5614   } else if (S.getSingleClause<OMPReleaseClause>()) {
5615     AO = llvm::AtomicOrdering::Release;
5616     MemOrderingSpecified = true;
5617   } else if (S.getSingleClause<OMPRelaxedClause>()) {
5618     AO = llvm::AtomicOrdering::Monotonic;
5619     MemOrderingSpecified = true;
5620   }
5621   OpenMPClauseKind Kind = OMPC_unknown;
5622   for (const OMPClause *C : S.clauses()) {
5623     // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause,
5624     // if it is first).
5625     if (C->getClauseKind() != OMPC_seq_cst &&
5626         C->getClauseKind() != OMPC_acq_rel &&
5627         C->getClauseKind() != OMPC_acquire &&
5628         C->getClauseKind() != OMPC_release &&
5629         C->getClauseKind() != OMPC_relaxed) {
5630       Kind = C->getClauseKind();
5631       break;
5632     }
5633   }
5634   if (!MemOrderingSpecified) {
5635     llvm::AtomicOrdering DefaultOrder =
5636         CGM.getOpenMPRuntime().getDefaultMemoryOrdering();
5637     if (DefaultOrder == llvm::AtomicOrdering::Monotonic ||
5638         DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent ||
5639         (DefaultOrder == llvm::AtomicOrdering::AcquireRelease &&
5640          Kind == OMPC_capture)) {
5641       AO = DefaultOrder;
5642     } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) {
5643       if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) {
5644         AO = llvm::AtomicOrdering::Release;
5645       } else if (Kind == OMPC_read) {
5646         assert(Kind == OMPC_read && "Unexpected atomic kind.");
5647         AO = llvm::AtomicOrdering::Acquire;
5648       }
5649     }
5650   }
5651 
5652   LexicalScope Scope(*this, S.getSourceRange());
5653   EmitStopPoint(S.getAssociatedStmt());
5654   emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(),
5655                     S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(),
5656                     S.getBeginLoc());
5657 }
5658 
5659 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
5660                                          const OMPExecutableDirective &S,
5661                                          const RegionCodeGenTy &CodeGen) {
5662   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
5663   CodeGenModule &CGM = CGF.CGM;
5664 
5665   // On device emit this construct as inlined code.
5666   if (CGM.getLangOpts().OpenMPIsDevice) {
5667     OMPLexicalScope Scope(CGF, S, OMPD_target);
5668     CGM.getOpenMPRuntime().emitInlinedDirective(
5669         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5670           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
5671         });
5672     return;
5673   }
5674 
5675   auto LPCRegion =
5676       CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S);
5677   llvm::Function *Fn = nullptr;
5678   llvm::Constant *FnID = nullptr;
5679 
5680   const Expr *IfCond = nullptr;
5681   // Check for the at most one if clause associated with the target region.
5682   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5683     if (C->getNameModifier() == OMPD_unknown ||
5684         C->getNameModifier() == OMPD_target) {
5685       IfCond = C->getCondition();
5686       break;
5687     }
5688   }
5689 
5690   // Check if we have any device clause associated with the directive.
5691   llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device(
5692       nullptr, OMPC_DEVICE_unknown);
5693   if (auto *C = S.getSingleClause<OMPDeviceClause>())
5694     Device.setPointerAndInt(C->getDevice(), C->getModifier());
5695 
5696   // Check if we have an if clause whose conditional always evaluates to false
5697   // or if we do not have any targets specified. If so the target region is not
5698   // an offload entry point.
5699   bool IsOffloadEntry = true;
5700   if (IfCond) {
5701     bool Val;
5702     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
5703       IsOffloadEntry = false;
5704   }
5705   if (CGM.getLangOpts().OMPTargetTriples.empty())
5706     IsOffloadEntry = false;
5707 
5708   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
5709   StringRef ParentName;
5710   // In case we have Ctors/Dtors we use the complete type variant to produce
5711   // the mangling of the device outlined kernel.
5712   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
5713     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
5714   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
5715     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
5716   else
5717     ParentName =
5718         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
5719 
5720   // Emit target region as a standalone region.
5721   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
5722                                                     IsOffloadEntry, CodeGen);
5723   OMPLexicalScope Scope(CGF, S, OMPD_task);
5724   auto &&SizeEmitter =
5725       [IsOffloadEntry](CodeGenFunction &CGF,
5726                        const OMPLoopDirective &D) -> llvm::Value * {
5727     if (IsOffloadEntry) {
5728       OMPLoopScope(CGF, D);
5729       // Emit calculation of the iterations count.
5730       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
5731       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
5732                                                 /*isSigned=*/false);
5733       return NumIterations;
5734     }
5735     return nullptr;
5736   };
5737   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
5738                                         SizeEmitter);
5739 }
5740 
5741 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
5742                              PrePostActionTy &Action) {
5743   Action.Enter(CGF);
5744   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5745   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5746   CGF.EmitOMPPrivateClause(S, PrivateScope);
5747   (void)PrivateScope.Privatize();
5748   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5749     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5750 
5751   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
5752   CGF.EnsureInsertPoint();
5753 }
5754 
5755 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
5756                                                   StringRef ParentName,
5757                                                   const OMPTargetDirective &S) {
5758   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5759     emitTargetRegion(CGF, S, Action);
5760   };
5761   llvm::Function *Fn;
5762   llvm::Constant *Addr;
5763   // Emit target region as a standalone region.
5764   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5765       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5766   assert(Fn && Addr && "Target device function emission failed.");
5767 }
5768 
5769 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
5770   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5771     emitTargetRegion(CGF, S, Action);
5772   };
5773   emitCommonOMPTargetDirective(*this, S, CodeGen);
5774 }
5775 
5776 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
5777                                         const OMPExecutableDirective &S,
5778                                         OpenMPDirectiveKind InnermostKind,
5779                                         const RegionCodeGenTy &CodeGen) {
5780   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
5781   llvm::Function *OutlinedFn =
5782       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
5783           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
5784 
5785   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
5786   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
5787   if (NT || TL) {
5788     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
5789     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
5790 
5791     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
5792                                                   S.getBeginLoc());
5793   }
5794 
5795   OMPTeamsScope Scope(CGF, S);
5796   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5797   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5798   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
5799                                            CapturedVars);
5800 }
5801 
5802 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
5803   // Emit teams region as a standalone region.
5804   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5805     Action.Enter(CGF);
5806     OMPPrivateScope PrivateScope(CGF);
5807     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5808     CGF.EmitOMPPrivateClause(S, PrivateScope);
5809     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5810     (void)PrivateScope.Privatize();
5811     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
5812     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5813   };
5814   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
5815   emitPostUpdateForReductionClause(*this, S,
5816                                    [](CodeGenFunction &) { return nullptr; });
5817 }
5818 
5819 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
5820                                   const OMPTargetTeamsDirective &S) {
5821   auto *CS = S.getCapturedStmt(OMPD_teams);
5822   Action.Enter(CGF);
5823   // Emit teams region as a standalone region.
5824   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
5825     Action.Enter(CGF);
5826     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5827     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5828     CGF.EmitOMPPrivateClause(S, PrivateScope);
5829     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5830     (void)PrivateScope.Privatize();
5831     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5832       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5833     CGF.EmitStmt(CS->getCapturedStmt());
5834     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5835   };
5836   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
5837   emitPostUpdateForReductionClause(CGF, S,
5838                                    [](CodeGenFunction &) { return nullptr; });
5839 }
5840 
5841 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
5842     CodeGenModule &CGM, StringRef ParentName,
5843     const OMPTargetTeamsDirective &S) {
5844   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5845     emitTargetTeamsRegion(CGF, Action, S);
5846   };
5847   llvm::Function *Fn;
5848   llvm::Constant *Addr;
5849   // Emit target region as a standalone region.
5850   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5851       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5852   assert(Fn && Addr && "Target device function emission failed.");
5853 }
5854 
5855 void CodeGenFunction::EmitOMPTargetTeamsDirective(
5856     const OMPTargetTeamsDirective &S) {
5857   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5858     emitTargetTeamsRegion(CGF, Action, S);
5859   };
5860   emitCommonOMPTargetDirective(*this, S, CodeGen);
5861 }
5862 
5863 static void
5864 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
5865                                 const OMPTargetTeamsDistributeDirective &S) {
5866   Action.Enter(CGF);
5867   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5868     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5869   };
5870 
5871   // Emit teams region as a standalone region.
5872   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5873                                             PrePostActionTy &Action) {
5874     Action.Enter(CGF);
5875     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5876     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5877     (void)PrivateScope.Privatize();
5878     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5879                                                     CodeGenDistribute);
5880     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5881   };
5882   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
5883   emitPostUpdateForReductionClause(CGF, S,
5884                                    [](CodeGenFunction &) { return nullptr; });
5885 }
5886 
5887 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
5888     CodeGenModule &CGM, StringRef ParentName,
5889     const OMPTargetTeamsDistributeDirective &S) {
5890   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5891     emitTargetTeamsDistributeRegion(CGF, Action, S);
5892   };
5893   llvm::Function *Fn;
5894   llvm::Constant *Addr;
5895   // Emit target region as a standalone region.
5896   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5897       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5898   assert(Fn && Addr && "Target device function emission failed.");
5899 }
5900 
5901 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
5902     const OMPTargetTeamsDistributeDirective &S) {
5903   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5904     emitTargetTeamsDistributeRegion(CGF, Action, S);
5905   };
5906   emitCommonOMPTargetDirective(*this, S, CodeGen);
5907 }
5908 
5909 static void emitTargetTeamsDistributeSimdRegion(
5910     CodeGenFunction &CGF, PrePostActionTy &Action,
5911     const OMPTargetTeamsDistributeSimdDirective &S) {
5912   Action.Enter(CGF);
5913   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5914     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5915   };
5916 
5917   // Emit teams region as a standalone region.
5918   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5919                                             PrePostActionTy &Action) {
5920     Action.Enter(CGF);
5921     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5922     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5923     (void)PrivateScope.Privatize();
5924     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5925                                                     CodeGenDistribute);
5926     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5927   };
5928   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
5929   emitPostUpdateForReductionClause(CGF, S,
5930                                    [](CodeGenFunction &) { return nullptr; });
5931 }
5932 
5933 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
5934     CodeGenModule &CGM, StringRef ParentName,
5935     const OMPTargetTeamsDistributeSimdDirective &S) {
5936   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5937     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
5938   };
5939   llvm::Function *Fn;
5940   llvm::Constant *Addr;
5941   // Emit target region as a standalone region.
5942   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5943       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5944   assert(Fn && Addr && "Target device function emission failed.");
5945 }
5946 
5947 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
5948     const OMPTargetTeamsDistributeSimdDirective &S) {
5949   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5950     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
5951   };
5952   emitCommonOMPTargetDirective(*this, S, CodeGen);
5953 }
5954 
5955 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
5956     const OMPTeamsDistributeDirective &S) {
5957 
5958   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5959     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5960   };
5961 
5962   // Emit teams region as a standalone region.
5963   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5964                                             PrePostActionTy &Action) {
5965     Action.Enter(CGF);
5966     OMPPrivateScope PrivateScope(CGF);
5967     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5968     (void)PrivateScope.Privatize();
5969     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5970                                                     CodeGenDistribute);
5971     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5972   };
5973   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
5974   emitPostUpdateForReductionClause(*this, S,
5975                                    [](CodeGenFunction &) { return nullptr; });
5976 }
5977 
5978 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
5979     const OMPTeamsDistributeSimdDirective &S) {
5980   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5981     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5982   };
5983 
5984   // Emit teams region as a standalone region.
5985   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5986                                             PrePostActionTy &Action) {
5987     Action.Enter(CGF);
5988     OMPPrivateScope PrivateScope(CGF);
5989     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5990     (void)PrivateScope.Privatize();
5991     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
5992                                                     CodeGenDistribute);
5993     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5994   };
5995   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
5996   emitPostUpdateForReductionClause(*this, S,
5997                                    [](CodeGenFunction &) { return nullptr; });
5998 }
5999 
6000 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
6001     const OMPTeamsDistributeParallelForDirective &S) {
6002   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6003     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6004                               S.getDistInc());
6005   };
6006 
6007   // Emit teams region as a standalone region.
6008   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6009                                             PrePostActionTy &Action) {
6010     Action.Enter(CGF);
6011     OMPPrivateScope PrivateScope(CGF);
6012     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6013     (void)PrivateScope.Privatize();
6014     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6015                                                     CodeGenDistribute);
6016     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6017   };
6018   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
6019   emitPostUpdateForReductionClause(*this, S,
6020                                    [](CodeGenFunction &) { return nullptr; });
6021 }
6022 
6023 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
6024     const OMPTeamsDistributeParallelForSimdDirective &S) {
6025   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6026     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6027                               S.getDistInc());
6028   };
6029 
6030   // Emit teams region as a standalone region.
6031   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6032                                             PrePostActionTy &Action) {
6033     Action.Enter(CGF);
6034     OMPPrivateScope PrivateScope(CGF);
6035     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6036     (void)PrivateScope.Privatize();
6037     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6038         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6039     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6040   };
6041   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd,
6042                               CodeGen);
6043   emitPostUpdateForReductionClause(*this, S,
6044                                    [](CodeGenFunction &) { return nullptr; });
6045 }
6046 
6047 static void emitTargetTeamsDistributeParallelForRegion(
6048     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
6049     PrePostActionTy &Action) {
6050   Action.Enter(CGF);
6051   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6052     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6053                               S.getDistInc());
6054   };
6055 
6056   // Emit teams region as a standalone region.
6057   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6058                                                  PrePostActionTy &Action) {
6059     Action.Enter(CGF);
6060     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6061     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6062     (void)PrivateScope.Privatize();
6063     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6064         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6065     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6066   };
6067 
6068   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
6069                               CodeGenTeams);
6070   emitPostUpdateForReductionClause(CGF, S,
6071                                    [](CodeGenFunction &) { return nullptr; });
6072 }
6073 
6074 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
6075     CodeGenModule &CGM, StringRef ParentName,
6076     const OMPTargetTeamsDistributeParallelForDirective &S) {
6077   // Emit SPMD target teams distribute parallel for region as a standalone
6078   // region.
6079   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6080     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6081   };
6082   llvm::Function *Fn;
6083   llvm::Constant *Addr;
6084   // Emit target region as a standalone region.
6085   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6086       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6087   assert(Fn && Addr && "Target device function emission failed.");
6088 }
6089 
6090 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
6091     const OMPTargetTeamsDistributeParallelForDirective &S) {
6092   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6093     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6094   };
6095   emitCommonOMPTargetDirective(*this, S, CodeGen);
6096 }
6097 
6098 static void emitTargetTeamsDistributeParallelForSimdRegion(
6099     CodeGenFunction &CGF,
6100     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
6101     PrePostActionTy &Action) {
6102   Action.Enter(CGF);
6103   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6104     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6105                               S.getDistInc());
6106   };
6107 
6108   // Emit teams region as a standalone region.
6109   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6110                                                  PrePostActionTy &Action) {
6111     Action.Enter(CGF);
6112     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6113     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6114     (void)PrivateScope.Privatize();
6115     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6116         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6117     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6118   };
6119 
6120   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
6121                               CodeGenTeams);
6122   emitPostUpdateForReductionClause(CGF, S,
6123                                    [](CodeGenFunction &) { return nullptr; });
6124 }
6125 
6126 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
6127     CodeGenModule &CGM, StringRef ParentName,
6128     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6129   // Emit SPMD target teams distribute parallel for simd region as a standalone
6130   // region.
6131   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6132     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6133   };
6134   llvm::Function *Fn;
6135   llvm::Constant *Addr;
6136   // Emit target region as a standalone region.
6137   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6138       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6139   assert(Fn && Addr && "Target device function emission failed.");
6140 }
6141 
6142 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
6143     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6144   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6145     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6146   };
6147   emitCommonOMPTargetDirective(*this, S, CodeGen);
6148 }
6149 
6150 void CodeGenFunction::EmitOMPCancellationPointDirective(
6151     const OMPCancellationPointDirective &S) {
6152   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
6153                                                    S.getCancelRegion());
6154 }
6155 
6156 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
6157   const Expr *IfCond = nullptr;
6158   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6159     if (C->getNameModifier() == OMPD_unknown ||
6160         C->getNameModifier() == OMPD_cancel) {
6161       IfCond = C->getCondition();
6162       break;
6163     }
6164   }
6165   if (CGM.getLangOpts().OpenMPIRBuilder) {
6166     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
6167     // TODO: This check is necessary as we only generate `omp parallel` through
6168     // the OpenMPIRBuilder for now.
6169     if (S.getCancelRegion() == OMPD_parallel) {
6170       llvm::Value *IfCondition = nullptr;
6171       if (IfCond)
6172         IfCondition = EmitScalarExpr(IfCond,
6173                                      /*IgnoreResultAssign=*/true);
6174       return Builder.restoreIP(
6175           OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion()));
6176     }
6177   }
6178 
6179   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
6180                                         S.getCancelRegion());
6181 }
6182 
6183 CodeGenFunction::JumpDest
6184 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
6185   if (Kind == OMPD_parallel || Kind == OMPD_task ||
6186       Kind == OMPD_target_parallel || Kind == OMPD_taskloop ||
6187       Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop)
6188     return ReturnBlock;
6189   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
6190          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
6191          Kind == OMPD_distribute_parallel_for ||
6192          Kind == OMPD_target_parallel_for ||
6193          Kind == OMPD_teams_distribute_parallel_for ||
6194          Kind == OMPD_target_teams_distribute_parallel_for);
6195   return OMPCancelStack.getExitBlock();
6196 }
6197 
6198 void CodeGenFunction::EmitOMPUseDevicePtrClause(
6199     const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
6200     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6201   auto OrigVarIt = C.varlist_begin();
6202   auto InitIt = C.inits().begin();
6203   for (const Expr *PvtVarIt : C.private_copies()) {
6204     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
6205     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
6206     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
6207 
6208     // In order to identify the right initializer we need to match the
6209     // declaration used by the mapping logic. In some cases we may get
6210     // OMPCapturedExprDecl that refers to the original declaration.
6211     const ValueDecl *MatchingVD = OrigVD;
6212     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6213       // OMPCapturedExprDecl are used to privative fields of the current
6214       // structure.
6215       const auto *ME = cast<MemberExpr>(OED->getInit());
6216       assert(isa<CXXThisExpr>(ME->getBase()) &&
6217              "Base should be the current struct!");
6218       MatchingVD = ME->getMemberDecl();
6219     }
6220 
6221     // If we don't have information about the current list item, move on to
6222     // the next one.
6223     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6224     if (InitAddrIt == CaptureDeviceAddrMap.end())
6225       continue;
6226 
6227     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
6228                                                          InitAddrIt, InitVD,
6229                                                          PvtVD]() {
6230       // Initialize the temporary initialization variable with the address we
6231       // get from the runtime library. We have to cast the source address
6232       // because it is always a void *. References are materialized in the
6233       // privatization scope, so the initialization here disregards the fact
6234       // the original variable is a reference.
6235       QualType AddrQTy =
6236           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
6237       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
6238       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
6239       setAddrOfLocalVar(InitVD, InitAddr);
6240 
6241       // Emit private declaration, it will be initialized by the value we
6242       // declaration we just added to the local declarations map.
6243       EmitDecl(*PvtVD);
6244 
6245       // The initialization variables reached its purpose in the emission
6246       // of the previous declaration, so we don't need it anymore.
6247       LocalDeclMap.erase(InitVD);
6248 
6249       // Return the address of the private variable.
6250       return GetAddrOfLocalVar(PvtVD);
6251     });
6252     assert(IsRegistered && "firstprivate var already registered as private");
6253     // Silence the warning about unused variable.
6254     (void)IsRegistered;
6255 
6256     ++OrigVarIt;
6257     ++InitIt;
6258   }
6259 }
6260 
6261 static const VarDecl *getBaseDecl(const Expr *Ref) {
6262   const Expr *Base = Ref->IgnoreParenImpCasts();
6263   while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base))
6264     Base = OASE->getBase()->IgnoreParenImpCasts();
6265   while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base))
6266     Base = ASE->getBase()->IgnoreParenImpCasts();
6267   return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl());
6268 }
6269 
6270 void CodeGenFunction::EmitOMPUseDeviceAddrClause(
6271     const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
6272     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6273   llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
6274   for (const Expr *Ref : C.varlists()) {
6275     const VarDecl *OrigVD = getBaseDecl(Ref);
6276     if (!Processed.insert(OrigVD).second)
6277       continue;
6278     // In order to identify the right initializer we need to match the
6279     // declaration used by the mapping logic. In some cases we may get
6280     // OMPCapturedExprDecl that refers to the original declaration.
6281     const ValueDecl *MatchingVD = OrigVD;
6282     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6283       // OMPCapturedExprDecl are used to privative fields of the current
6284       // structure.
6285       const auto *ME = cast<MemberExpr>(OED->getInit());
6286       assert(isa<CXXThisExpr>(ME->getBase()) &&
6287              "Base should be the current struct!");
6288       MatchingVD = ME->getMemberDecl();
6289     }
6290 
6291     // If we don't have information about the current list item, move on to
6292     // the next one.
6293     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6294     if (InitAddrIt == CaptureDeviceAddrMap.end())
6295       continue;
6296 
6297     Address PrivAddr = InitAddrIt->getSecond();
6298     // For declrefs and variable length array need to load the pointer for
6299     // correct mapping, since the pointer to the data was passed to the runtime.
6300     if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) ||
6301         MatchingVD->getType()->isArrayType())
6302       PrivAddr =
6303           EmitLoadOfPointer(PrivAddr, getContext()
6304                                           .getPointerType(OrigVD->getType())
6305                                           ->castAs<PointerType>());
6306     llvm::Type *RealTy =
6307         ConvertTypeForMem(OrigVD->getType().getNonReferenceType())
6308             ->getPointerTo();
6309     PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy);
6310 
6311     (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; });
6312   }
6313 }
6314 
6315 // Generate the instructions for '#pragma omp target data' directive.
6316 void CodeGenFunction::EmitOMPTargetDataDirective(
6317     const OMPTargetDataDirective &S) {
6318   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true,
6319                                        /*SeparateBeginEndCalls=*/true);
6320 
6321   // Create a pre/post action to signal the privatization of the device pointer.
6322   // This action can be replaced by the OpenMP runtime code generation to
6323   // deactivate privatization.
6324   bool PrivatizeDevicePointers = false;
6325   class DevicePointerPrivActionTy : public PrePostActionTy {
6326     bool &PrivatizeDevicePointers;
6327 
6328   public:
6329     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
6330         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
6331     void Enter(CodeGenFunction &CGF) override {
6332       PrivatizeDevicePointers = true;
6333     }
6334   };
6335   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
6336 
6337   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
6338                        CodeGenFunction &CGF, PrePostActionTy &Action) {
6339     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6340       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
6341     };
6342 
6343     // Codegen that selects whether to generate the privatization code or not.
6344     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
6345                           &InnermostCodeGen](CodeGenFunction &CGF,
6346                                              PrePostActionTy &Action) {
6347       RegionCodeGenTy RCG(InnermostCodeGen);
6348       PrivatizeDevicePointers = false;
6349 
6350       // Call the pre-action to change the status of PrivatizeDevicePointers if
6351       // needed.
6352       Action.Enter(CGF);
6353 
6354       if (PrivatizeDevicePointers) {
6355         OMPPrivateScope PrivateScope(CGF);
6356         // Emit all instances of the use_device_ptr clause.
6357         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
6358           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
6359                                         Info.CaptureDeviceAddrMap);
6360         for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>())
6361           CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope,
6362                                          Info.CaptureDeviceAddrMap);
6363         (void)PrivateScope.Privatize();
6364         RCG(CGF);
6365       } else {
6366         OMPLexicalScope Scope(CGF, S, OMPD_unknown);
6367         RCG(CGF);
6368       }
6369     };
6370 
6371     // Forward the provided action to the privatization codegen.
6372     RegionCodeGenTy PrivRCG(PrivCodeGen);
6373     PrivRCG.setAction(Action);
6374 
6375     // Notwithstanding the body of the region is emitted as inlined directive,
6376     // we don't use an inline scope as changes in the references inside the
6377     // region are expected to be visible outside, so we do not privative them.
6378     OMPLexicalScope Scope(CGF, S);
6379     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
6380                                                     PrivRCG);
6381   };
6382 
6383   RegionCodeGenTy RCG(CodeGen);
6384 
6385   // If we don't have target devices, don't bother emitting the data mapping
6386   // code.
6387   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
6388     RCG(*this);
6389     return;
6390   }
6391 
6392   // Check if we have any if clause associated with the directive.
6393   const Expr *IfCond = nullptr;
6394   if (const auto *C = S.getSingleClause<OMPIfClause>())
6395     IfCond = C->getCondition();
6396 
6397   // Check if we have any device clause associated with the directive.
6398   const Expr *Device = nullptr;
6399   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6400     Device = C->getDevice();
6401 
6402   // Set the action to signal privatization of device pointers.
6403   RCG.setAction(PrivAction);
6404 
6405   // Emit region code.
6406   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
6407                                              Info);
6408 }
6409 
6410 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
6411     const OMPTargetEnterDataDirective &S) {
6412   // If we don't have target devices, don't bother emitting the data mapping
6413   // code.
6414   if (CGM.getLangOpts().OMPTargetTriples.empty())
6415     return;
6416 
6417   // Check if we have any if clause associated with the directive.
6418   const Expr *IfCond = nullptr;
6419   if (const auto *C = S.getSingleClause<OMPIfClause>())
6420     IfCond = C->getCondition();
6421 
6422   // Check if we have any device clause associated with the directive.
6423   const Expr *Device = nullptr;
6424   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6425     Device = C->getDevice();
6426 
6427   OMPLexicalScope Scope(*this, S, OMPD_task);
6428   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6429 }
6430 
6431 void CodeGenFunction::EmitOMPTargetExitDataDirective(
6432     const OMPTargetExitDataDirective &S) {
6433   // If we don't have target devices, don't bother emitting the data mapping
6434   // code.
6435   if (CGM.getLangOpts().OMPTargetTriples.empty())
6436     return;
6437 
6438   // Check if we have any if clause associated with the directive.
6439   const Expr *IfCond = nullptr;
6440   if (const auto *C = S.getSingleClause<OMPIfClause>())
6441     IfCond = C->getCondition();
6442 
6443   // Check if we have any device clause associated with the directive.
6444   const Expr *Device = nullptr;
6445   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6446     Device = C->getDevice();
6447 
6448   OMPLexicalScope Scope(*this, S, OMPD_task);
6449   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6450 }
6451 
6452 static void emitTargetParallelRegion(CodeGenFunction &CGF,
6453                                      const OMPTargetParallelDirective &S,
6454                                      PrePostActionTy &Action) {
6455   // Get the captured statement associated with the 'parallel' region.
6456   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
6457   Action.Enter(CGF);
6458   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
6459     Action.Enter(CGF);
6460     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6461     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
6462     CGF.EmitOMPPrivateClause(S, PrivateScope);
6463     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6464     (void)PrivateScope.Privatize();
6465     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
6466       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
6467     // TODO: Add support for clauses.
6468     CGF.EmitStmt(CS->getCapturedStmt());
6469     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
6470   };
6471   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
6472                                  emitEmptyBoundParameters);
6473   emitPostUpdateForReductionClause(CGF, S,
6474                                    [](CodeGenFunction &) { return nullptr; });
6475 }
6476 
6477 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
6478     CodeGenModule &CGM, StringRef ParentName,
6479     const OMPTargetParallelDirective &S) {
6480   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6481     emitTargetParallelRegion(CGF, S, Action);
6482   };
6483   llvm::Function *Fn;
6484   llvm::Constant *Addr;
6485   // Emit target region as a standalone region.
6486   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6487       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6488   assert(Fn && Addr && "Target device function emission failed.");
6489 }
6490 
6491 void CodeGenFunction::EmitOMPTargetParallelDirective(
6492     const OMPTargetParallelDirective &S) {
6493   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6494     emitTargetParallelRegion(CGF, S, Action);
6495   };
6496   emitCommonOMPTargetDirective(*this, S, CodeGen);
6497 }
6498 
6499 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
6500                                         const OMPTargetParallelForDirective &S,
6501                                         PrePostActionTy &Action) {
6502   Action.Enter(CGF);
6503   // Emit directive as a combined directive that consists of two implicit
6504   // directives: 'parallel' with 'for' directive.
6505   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6506     Action.Enter(CGF);
6507     CodeGenFunction::OMPCancelStackRAII CancelRegion(
6508         CGF, OMPD_target_parallel_for, S.hasCancel());
6509     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6510                                emitDispatchForLoopBounds);
6511   };
6512   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
6513                                  emitEmptyBoundParameters);
6514 }
6515 
6516 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
6517     CodeGenModule &CGM, StringRef ParentName,
6518     const OMPTargetParallelForDirective &S) {
6519   // Emit SPMD target parallel for region as a standalone region.
6520   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6521     emitTargetParallelForRegion(CGF, S, Action);
6522   };
6523   llvm::Function *Fn;
6524   llvm::Constant *Addr;
6525   // Emit target region as a standalone region.
6526   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6527       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6528   assert(Fn && Addr && "Target device function emission failed.");
6529 }
6530 
6531 void CodeGenFunction::EmitOMPTargetParallelForDirective(
6532     const OMPTargetParallelForDirective &S) {
6533   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6534     emitTargetParallelForRegion(CGF, S, Action);
6535   };
6536   emitCommonOMPTargetDirective(*this, S, CodeGen);
6537 }
6538 
6539 static void
6540 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
6541                                 const OMPTargetParallelForSimdDirective &S,
6542                                 PrePostActionTy &Action) {
6543   Action.Enter(CGF);
6544   // Emit directive as a combined directive that consists of two implicit
6545   // directives: 'parallel' with 'for' directive.
6546   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6547     Action.Enter(CGF);
6548     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6549                                emitDispatchForLoopBounds);
6550   };
6551   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
6552                                  emitEmptyBoundParameters);
6553 }
6554 
6555 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
6556     CodeGenModule &CGM, StringRef ParentName,
6557     const OMPTargetParallelForSimdDirective &S) {
6558   // Emit SPMD target parallel for region as a standalone region.
6559   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6560     emitTargetParallelForSimdRegion(CGF, S, Action);
6561   };
6562   llvm::Function *Fn;
6563   llvm::Constant *Addr;
6564   // Emit target region as a standalone region.
6565   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6566       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6567   assert(Fn && Addr && "Target device function emission failed.");
6568 }
6569 
6570 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
6571     const OMPTargetParallelForSimdDirective &S) {
6572   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6573     emitTargetParallelForSimdRegion(CGF, S, Action);
6574   };
6575   emitCommonOMPTargetDirective(*this, S, CodeGen);
6576 }
6577 
6578 /// Emit a helper variable and return corresponding lvalue.
6579 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
6580                      const ImplicitParamDecl *PVD,
6581                      CodeGenFunction::OMPPrivateScope &Privates) {
6582   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
6583   Privates.addPrivate(VDecl,
6584                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
6585 }
6586 
6587 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
6588   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
6589   // Emit outlined function for task construct.
6590   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
6591   Address CapturedStruct = Address::invalid();
6592   {
6593     OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6594     CapturedStruct = GenerateCapturedStmtArgument(*CS);
6595   }
6596   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
6597   const Expr *IfCond = nullptr;
6598   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6599     if (C->getNameModifier() == OMPD_unknown ||
6600         C->getNameModifier() == OMPD_taskloop) {
6601       IfCond = C->getCondition();
6602       break;
6603     }
6604   }
6605 
6606   OMPTaskDataTy Data;
6607   // Check if taskloop must be emitted without taskgroup.
6608   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
6609   // TODO: Check if we should emit tied or untied task.
6610   Data.Tied = true;
6611   // Set scheduling for taskloop
6612   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
6613     // grainsize clause
6614     Data.Schedule.setInt(/*IntVal=*/false);
6615     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
6616   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
6617     // num_tasks clause
6618     Data.Schedule.setInt(/*IntVal=*/true);
6619     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
6620   }
6621 
6622   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
6623     // if (PreCond) {
6624     //   for (IV in 0..LastIteration) BODY;
6625     //   <Final counter/linear vars updates>;
6626     // }
6627     //
6628 
6629     // Emit: if (PreCond) - begin.
6630     // If the condition constant folds and can be elided, avoid emitting the
6631     // whole loop.
6632     bool CondConstant;
6633     llvm::BasicBlock *ContBlock = nullptr;
6634     OMPLoopScope PreInitScope(CGF, S);
6635     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
6636       if (!CondConstant)
6637         return;
6638     } else {
6639       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
6640       ContBlock = CGF.createBasicBlock("taskloop.if.end");
6641       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
6642                   CGF.getProfileCount(&S));
6643       CGF.EmitBlock(ThenBlock);
6644       CGF.incrementProfileCounter(&S);
6645     }
6646 
6647     (void)CGF.EmitOMPLinearClauseInit(S);
6648 
6649     OMPPrivateScope LoopScope(CGF);
6650     // Emit helper vars inits.
6651     enum { LowerBound = 5, UpperBound, Stride, LastIter };
6652     auto *I = CS->getCapturedDecl()->param_begin();
6653     auto *LBP = std::next(I, LowerBound);
6654     auto *UBP = std::next(I, UpperBound);
6655     auto *STP = std::next(I, Stride);
6656     auto *LIP = std::next(I, LastIter);
6657     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
6658              LoopScope);
6659     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
6660              LoopScope);
6661     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
6662     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
6663              LoopScope);
6664     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
6665     CGF.EmitOMPLinearClause(S, LoopScope);
6666     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
6667     (void)LoopScope.Privatize();
6668     // Emit the loop iteration variable.
6669     const Expr *IVExpr = S.getIterationVariable();
6670     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
6671     CGF.EmitVarDecl(*IVDecl);
6672     CGF.EmitIgnoredExpr(S.getInit());
6673 
6674     // Emit the iterations count variable.
6675     // If it is not a variable, Sema decided to calculate iterations count on
6676     // each iteration (e.g., it is foldable into a constant).
6677     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
6678       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
6679       // Emit calculation of the iterations count.
6680       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
6681     }
6682 
6683     {
6684       OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6685       emitCommonSimdLoop(
6686           CGF, S,
6687           [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6688             if (isOpenMPSimdDirective(S.getDirectiveKind()))
6689               CGF.EmitOMPSimdInit(S);
6690           },
6691           [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
6692             CGF.EmitOMPInnerLoop(
6693                 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
6694                 [&S](CodeGenFunction &CGF) {
6695                   emitOMPLoopBodyWithStopPoint(CGF, S,
6696                                                CodeGenFunction::JumpDest());
6697                 },
6698                 [](CodeGenFunction &) {});
6699           });
6700     }
6701     // Emit: if (PreCond) - end.
6702     if (ContBlock) {
6703       CGF.EmitBranch(ContBlock);
6704       CGF.EmitBlock(ContBlock, true);
6705     }
6706     // Emit final copy of the lastprivate variables if IsLastIter != 0.
6707     if (HasLastprivateClause) {
6708       CGF.EmitOMPLastprivateClauseFinal(
6709           S, isOpenMPSimdDirective(S.getDirectiveKind()),
6710           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
6711               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6712               (*LIP)->getType(), S.getBeginLoc())));
6713     }
6714     CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
6715       return CGF.Builder.CreateIsNotNull(
6716           CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6717                                (*LIP)->getType(), S.getBeginLoc()));
6718     });
6719   };
6720   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
6721                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
6722                             const OMPTaskDataTy &Data) {
6723     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
6724                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
6725       OMPLoopScope PreInitScope(CGF, S);
6726       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
6727                                                   OutlinedFn, SharedsTy,
6728                                                   CapturedStruct, IfCond, Data);
6729     };
6730     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
6731                                                     CodeGen);
6732   };
6733   if (Data.Nogroup) {
6734     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
6735   } else {
6736     CGM.getOpenMPRuntime().emitTaskgroupRegion(
6737         *this,
6738         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
6739                                         PrePostActionTy &Action) {
6740           Action.Enter(CGF);
6741           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
6742                                         Data);
6743         },
6744         S.getBeginLoc());
6745   }
6746 }
6747 
6748 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
6749   auto LPCRegion =
6750       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6751   EmitOMPTaskLoopBasedDirective(S);
6752 }
6753 
6754 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
6755     const OMPTaskLoopSimdDirective &S) {
6756   auto LPCRegion =
6757       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6758   OMPLexicalScope Scope(*this, S);
6759   EmitOMPTaskLoopBasedDirective(S);
6760 }
6761 
6762 void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
6763     const OMPMasterTaskLoopDirective &S) {
6764   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6765     Action.Enter(CGF);
6766     EmitOMPTaskLoopBasedDirective(S);
6767   };
6768   auto LPCRegion =
6769       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6770   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
6771   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
6772 }
6773 
6774 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
6775     const OMPMasterTaskLoopSimdDirective &S) {
6776   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6777     Action.Enter(CGF);
6778     EmitOMPTaskLoopBasedDirective(S);
6779   };
6780   auto LPCRegion =
6781       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6782   OMPLexicalScope Scope(*this, S);
6783   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
6784 }
6785 
6786 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
6787     const OMPParallelMasterTaskLoopDirective &S) {
6788   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6789     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
6790                                   PrePostActionTy &Action) {
6791       Action.Enter(CGF);
6792       CGF.EmitOMPTaskLoopBasedDirective(S);
6793     };
6794     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
6795     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
6796                                             S.getBeginLoc());
6797   };
6798   auto LPCRegion =
6799       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6800   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
6801                                  emitEmptyBoundParameters);
6802 }
6803 
6804 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
6805     const OMPParallelMasterTaskLoopSimdDirective &S) {
6806   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6807     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
6808                                   PrePostActionTy &Action) {
6809       Action.Enter(CGF);
6810       CGF.EmitOMPTaskLoopBasedDirective(S);
6811     };
6812     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
6813     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
6814                                             S.getBeginLoc());
6815   };
6816   auto LPCRegion =
6817       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6818   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
6819                                  emitEmptyBoundParameters);
6820 }
6821 
6822 // Generate the instructions for '#pragma omp target update' directive.
6823 void CodeGenFunction::EmitOMPTargetUpdateDirective(
6824     const OMPTargetUpdateDirective &S) {
6825   // If we don't have target devices, don't bother emitting the data mapping
6826   // code.
6827   if (CGM.getLangOpts().OMPTargetTriples.empty())
6828     return;
6829 
6830   // Check if we have any if clause associated with the directive.
6831   const Expr *IfCond = nullptr;
6832   if (const auto *C = S.getSingleClause<OMPIfClause>())
6833     IfCond = C->getCondition();
6834 
6835   // Check if we have any device clause associated with the directive.
6836   const Expr *Device = nullptr;
6837   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6838     Device = C->getDevice();
6839 
6840   OMPLexicalScope Scope(*this, S, OMPD_task);
6841   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6842 }
6843 
6844 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
6845     const OMPExecutableDirective &D) {
6846   if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) {
6847     EmitOMPScanDirective(*SD);
6848     return;
6849   }
6850   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
6851     return;
6852   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
6853     OMPPrivateScope GlobalsScope(CGF);
6854     if (isOpenMPTaskingDirective(D.getDirectiveKind())) {
6855       // Capture global firstprivates to avoid crash.
6856       for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
6857         for (const Expr *Ref : C->varlists()) {
6858           const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
6859           if (!DRE)
6860             continue;
6861           const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6862           if (!VD || VD->hasLocalStorage())
6863             continue;
6864           if (!CGF.LocalDeclMap.count(VD)) {
6865             LValue GlobLVal = CGF.EmitLValue(Ref);
6866             GlobalsScope.addPrivate(
6867                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
6868           }
6869         }
6870       }
6871     }
6872     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
6873       (void)GlobalsScope.Privatize();
6874       ParentLoopDirectiveForScanRegion ScanRegion(CGF, D);
6875       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
6876     } else {
6877       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
6878         for (const Expr *E : LD->counters()) {
6879           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
6880           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
6881             LValue GlobLVal = CGF.EmitLValue(E);
6882             GlobalsScope.addPrivate(
6883                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
6884           }
6885           if (isa<OMPCapturedExprDecl>(VD)) {
6886             // Emit only those that were not explicitly referenced in clauses.
6887             if (!CGF.LocalDeclMap.count(VD))
6888               CGF.EmitVarDecl(*VD);
6889           }
6890         }
6891         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
6892           if (!C->getNumForLoops())
6893             continue;
6894           for (unsigned I = LD->getLoopsNumber(),
6895                         E = C->getLoopNumIterations().size();
6896                I < E; ++I) {
6897             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
6898                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
6899               // Emit only those that were not explicitly referenced in clauses.
6900               if (!CGF.LocalDeclMap.count(VD))
6901                 CGF.EmitVarDecl(*VD);
6902             }
6903           }
6904         }
6905       }
6906       (void)GlobalsScope.Privatize();
6907       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
6908     }
6909   };
6910   if (D.getDirectiveKind() == OMPD_atomic ||
6911       D.getDirectiveKind() == OMPD_critical ||
6912       D.getDirectiveKind() == OMPD_section ||
6913       D.getDirectiveKind() == OMPD_master) {
6914     EmitStmt(D.getAssociatedStmt());
6915   } else {
6916     auto LPCRegion =
6917         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D);
6918     OMPSimdLexicalScope Scope(*this, D);
6919     CGM.getOpenMPRuntime().emitInlinedDirective(
6920         *this,
6921         isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
6922                                                     : D.getDirectiveKind(),
6923         CodeGen);
6924   }
6925   // Check for outer lastprivate conditional update.
6926   checkForLastprivateConditionalUpdate(*this, D);
6927 }
6928