1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 26 /// for captured expressions. 27 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 28 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 29 for (const auto *C : S.clauses()) { 30 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 31 if (const auto *PreInit = 32 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 33 for (const auto *I : PreInit->decls()) { 34 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 35 CGF.EmitVarDecl(cast<VarDecl>(*I)); 36 } else { 37 CodeGenFunction::AutoVarEmission Emission = 38 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 39 CGF.EmitAutoVarCleanups(Emission); 40 } 41 } 42 } 43 } 44 } 45 } 46 CodeGenFunction::OMPPrivateScope InlinedShareds; 47 48 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 49 return CGF.LambdaCaptureFields.lookup(VD) || 50 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 51 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 52 } 53 54 public: 55 OMPLexicalScope( 56 CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 58 const bool EmitPreInitStmt = true) 59 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 60 InlinedShareds(CGF) { 61 if (EmitPreInitStmt) 62 emitPreInitStmt(CGF, S); 63 if (!CapturedRegion.hasValue()) 64 return; 65 assert(S.hasAssociatedStmt() && 66 "Expected associated statement for inlined directive."); 67 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 68 for (const auto &C : CS->captures()) { 69 if (C.capturesVariable() || C.capturesVariableByCopy()) { 70 auto *VD = C.getCapturedVar(); 71 assert(VD == VD->getCanonicalDecl() && 72 "Canonical decl must be captured."); 73 DeclRefExpr DRE( 74 CGF.getContext(), const_cast<VarDecl *>(VD), 75 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 76 InlinedShareds.isGlobalVarCaptured(VD)), 77 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 78 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 79 return CGF.EmitLValue(&DRE).getAddress(); 80 }); 81 } 82 } 83 (void)InlinedShareds.Privatize(); 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 100 EmitPreInitStmt(S)) {} 101 }; 102 103 /// Lexical scope for OpenMP teams construct, that handles correct codegen 104 /// for captured expressions. 105 class OMPTeamsScope final : public OMPLexicalScope { 106 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 107 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 108 return !isOpenMPTargetExecutionDirective(Kind) && 109 isOpenMPTeamsDirective(Kind); 110 } 111 112 public: 113 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Private scope for OpenMP loop-based directives, that supports capturing 119 /// of used expression from loop statement. 120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 121 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 122 CodeGenFunction::OMPMapVars PreCondVars; 123 for (const auto *E : S.counters()) { 124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 125 (void)PreCondVars.setVarAddr( 126 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 127 } 128 (void)PreCondVars.apply(CGF); 129 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 130 for (const auto *I : PreInits->decls()) 131 CGF.EmitVarDecl(cast<VarDecl>(*I)); 132 } 133 PreCondVars.restore(CGF); 134 } 135 136 public: 137 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 138 : CodeGenFunction::RunCleanupsScope(CGF) { 139 emitPreInitStmt(CGF, S); 140 } 141 }; 142 143 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 144 CodeGenFunction::OMPPrivateScope InlinedShareds; 145 146 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 147 return CGF.LambdaCaptureFields.lookup(VD) || 148 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 149 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 150 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 151 } 152 153 public: 154 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 155 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 156 InlinedShareds(CGF) { 157 for (const auto *C : S.clauses()) { 158 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 159 if (const auto *PreInit = 160 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 } else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 ASTContext &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 238 VlaSizePair VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } 248 return CGM.getSize(SizeInChars); 249 } 250 251 void CodeGenFunction::GenerateOpenMPCapturedVars( 252 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 253 const RecordDecl *RD = S.getCapturedRecordDecl(); 254 auto CurField = RD->field_begin(); 255 auto CurCap = S.captures().begin(); 256 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 257 E = S.capture_init_end(); 258 I != E; ++I, ++CurField, ++CurCap) { 259 if (CurField->hasCapturedVLAType()) { 260 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 261 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 262 CapturedVars.push_back(Val); 263 } else if (CurCap->capturesThis()) { 264 CapturedVars.push_back(CXXThisValue); 265 } else if (CurCap->capturesVariableByCopy()) { 266 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 267 268 // If the field is not a pointer, we need to save the actual value 269 // and load it as a void pointer. 270 if (!CurField->getType()->isAnyPointerType()) { 271 ASTContext &Ctx = getContext(); 272 Address DstAddr = CreateMemTemp( 273 Ctx.getUIntPtrType(), 274 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 275 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 276 277 llvm::Value *SrcAddrVal = EmitScalarConversion( 278 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 279 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 280 LValue SrcLV = 281 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 282 283 // Store the value using the source type pointer. 284 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 285 286 // Load the value using the destination type pointer. 287 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 288 } 289 CapturedVars.push_back(CV); 290 } else { 291 assert(CurCap->capturesVariable() && "Expected capture by reference."); 292 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 293 } 294 } 295 } 296 297 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 298 QualType DstType, StringRef Name, 299 LValue AddrLV, 300 bool isReferenceType = false) { 301 ASTContext &Ctx = CGF.getContext(); 302 303 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 304 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 305 Ctx.getPointerType(DstType), Loc); 306 Address TmpAddr = 307 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 308 .getAddress(); 309 310 // If we are dealing with references we need to return the address of the 311 // reference instead of the reference of the value. 312 if (isReferenceType) { 313 QualType RefType = Ctx.getLValueReferenceType(DstType); 314 llvm::Value *RefVal = TmpAddr.getPointer(); 315 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 316 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 317 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 318 } 319 320 return TmpAddr; 321 } 322 323 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 324 if (T->isLValueReferenceType()) 325 return C.getLValueReferenceType( 326 getCanonicalParamType(C, T.getNonReferenceType()), 327 /*SpelledAsLValue=*/false); 328 if (T->isPointerType()) 329 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 330 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 331 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 332 return getCanonicalParamType(C, VLA->getElementType()); 333 if (!A->isVariablyModifiedType()) 334 return C.getCanonicalType(T); 335 } 336 return C.getCanonicalParamType(T); 337 } 338 339 namespace { 340 /// Contains required data for proper outlined function codegen. 341 struct FunctionOptions { 342 /// Captured statement for which the function is generated. 343 const CapturedStmt *S = nullptr; 344 /// true if cast to/from UIntPtr is required for variables captured by 345 /// value. 346 const bool UIntPtrCastRequired = true; 347 /// true if only casted arguments must be registered as local args or VLA 348 /// sizes. 349 const bool RegisterCastedArgsOnly = false; 350 /// Name of the generated function. 351 const StringRef FunctionName; 352 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 353 bool RegisterCastedArgsOnly, 354 StringRef FunctionName) 355 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 356 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 357 FunctionName(FunctionName) {} 358 }; 359 } 360 361 static llvm::Function *emitOutlinedFunctionPrologue( 362 CodeGenFunction &CGF, FunctionArgList &Args, 363 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 364 &LocalAddrs, 365 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 366 &VLASizes, 367 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 368 const CapturedDecl *CD = FO.S->getCapturedDecl(); 369 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 370 assert(CD->hasBody() && "missing CapturedDecl body"); 371 372 CXXThisValue = nullptr; 373 // Build the argument list. 374 CodeGenModule &CGM = CGF.CGM; 375 ASTContext &Ctx = CGM.getContext(); 376 FunctionArgList TargetArgs; 377 Args.append(CD->param_begin(), 378 std::next(CD->param_begin(), CD->getContextParamPosition())); 379 TargetArgs.append( 380 CD->param_begin(), 381 std::next(CD->param_begin(), CD->getContextParamPosition())); 382 auto I = FO.S->captures().begin(); 383 FunctionDecl *DebugFunctionDecl = nullptr; 384 if (!FO.UIntPtrCastRequired) { 385 FunctionProtoType::ExtProtoInfo EPI; 386 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 387 DebugFunctionDecl = FunctionDecl::Create( 388 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 389 SourceLocation(), DeclarationName(), FunctionTy, 390 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 391 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 392 } 393 for (const FieldDecl *FD : RD->fields()) { 394 QualType ArgType = FD->getType(); 395 IdentifierInfo *II = nullptr; 396 VarDecl *CapVar = nullptr; 397 398 // If this is a capture by copy and the type is not a pointer, the outlined 399 // function argument type should be uintptr and the value properly casted to 400 // uintptr. This is necessary given that the runtime library is only able to 401 // deal with pointers. We can pass in the same way the VLA type sizes to the 402 // outlined function. 403 if (FO.UIntPtrCastRequired && 404 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 405 I->capturesVariableArrayType())) 406 ArgType = Ctx.getUIntPtrType(); 407 408 if (I->capturesVariable() || I->capturesVariableByCopy()) { 409 CapVar = I->getCapturedVar(); 410 II = CapVar->getIdentifier(); 411 } else if (I->capturesThis()) { 412 II = &Ctx.Idents.get("this"); 413 } else { 414 assert(I->capturesVariableArrayType()); 415 II = &Ctx.Idents.get("vla"); 416 } 417 if (ArgType->isVariablyModifiedType()) 418 ArgType = getCanonicalParamType(Ctx, ArgType); 419 VarDecl *Arg; 420 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 421 Arg = ParmVarDecl::Create( 422 Ctx, DebugFunctionDecl, 423 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 424 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 425 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 426 } else { 427 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 428 II, ArgType, ImplicitParamDecl::Other); 429 } 430 Args.emplace_back(Arg); 431 // Do not cast arguments if we emit function with non-original types. 432 TargetArgs.emplace_back( 433 FO.UIntPtrCastRequired 434 ? Arg 435 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 436 ++I; 437 } 438 Args.append( 439 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 440 CD->param_end()); 441 TargetArgs.append( 442 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 443 CD->param_end()); 444 445 // Create the function declaration. 446 const CGFunctionInfo &FuncInfo = 447 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 448 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 449 450 auto *F = 451 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 452 FO.FunctionName, &CGM.getModule()); 453 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 454 if (CD->isNothrow()) 455 F->setDoesNotThrow(); 456 F->setDoesNotRecurse(); 457 458 // Generate the function. 459 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 460 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 461 unsigned Cnt = CD->getContextParamPosition(); 462 I = FO.S->captures().begin(); 463 for (const FieldDecl *FD : RD->fields()) { 464 // Do not map arguments if we emit function with non-original types. 465 Address LocalAddr(Address::invalid()); 466 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 467 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 468 TargetArgs[Cnt]); 469 } else { 470 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 471 } 472 // If we are capturing a pointer by copy we don't need to do anything, just 473 // use the value that we get from the arguments. 474 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 475 const VarDecl *CurVD = I->getCapturedVar(); 476 // If the variable is a reference we need to materialize it here. 477 if (CurVD->getType()->isReferenceType()) { 478 Address RefAddr = CGF.CreateMemTemp( 479 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 480 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 481 /*Volatile=*/false, CurVD->getType()); 482 LocalAddr = RefAddr; 483 } 484 if (!FO.RegisterCastedArgsOnly) 485 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 486 ++Cnt; 487 ++I; 488 continue; 489 } 490 491 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 492 AlignmentSource::Decl); 493 if (FD->hasCapturedVLAType()) { 494 if (FO.UIntPtrCastRequired) { 495 ArgLVal = CGF.MakeAddrLValue( 496 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 497 Args[Cnt]->getName(), ArgLVal), 498 FD->getType(), AlignmentSource::Decl); 499 } 500 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 501 const VariableArrayType *VAT = FD->getCapturedVLAType(); 502 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 503 } else if (I->capturesVariable()) { 504 const VarDecl *Var = I->getCapturedVar(); 505 QualType VarTy = Var->getType(); 506 Address ArgAddr = ArgLVal.getAddress(); 507 if (!VarTy->isReferenceType()) { 508 if (ArgLVal.getType()->isLValueReferenceType()) { 509 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 510 } else if (!VarTy->isVariablyModifiedType() || 511 !VarTy->isPointerType()) { 512 assert(ArgLVal.getType()->isPointerType()); 513 ArgAddr = CGF.EmitLoadOfPointer( 514 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 515 } 516 } 517 if (!FO.RegisterCastedArgsOnly) { 518 LocalAddrs.insert( 519 {Args[Cnt], 520 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 521 } 522 } else if (I->capturesVariableByCopy()) { 523 assert(!FD->getType()->isAnyPointerType() && 524 "Not expecting a captured pointer."); 525 const VarDecl *Var = I->getCapturedVar(); 526 QualType VarTy = Var->getType(); 527 LocalAddrs.insert( 528 {Args[Cnt], 529 {Var, FO.UIntPtrCastRequired 530 ? castValueFromUintptr(CGF, I->getLocation(), 531 FD->getType(), Args[Cnt]->getName(), 532 ArgLVal, VarTy->isReferenceType()) 533 : ArgLVal.getAddress()}}); 534 } else { 535 // If 'this' is captured, load it into CXXThisValue. 536 assert(I->capturesThis()); 537 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 538 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 539 } 540 ++Cnt; 541 ++I; 542 } 543 544 return F; 545 } 546 547 llvm::Function * 548 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 549 assert( 550 CapturedStmtInfo && 551 "CapturedStmtInfo should be set when generating the captured function"); 552 const CapturedDecl *CD = S.getCapturedDecl(); 553 // Build the argument list. 554 bool NeedWrapperFunction = 555 getDebugInfo() && 556 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 557 FunctionArgList Args; 558 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 559 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 560 SmallString<256> Buffer; 561 llvm::raw_svector_ostream Out(Buffer); 562 Out << CapturedStmtInfo->getHelperName(); 563 if (NeedWrapperFunction) 564 Out << "_debug__"; 565 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 566 Out.str()); 567 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 568 VLASizes, CXXThisValue, FO); 569 for (const auto &LocalAddrPair : LocalAddrs) { 570 if (LocalAddrPair.second.first) { 571 setAddrOfLocalVar(LocalAddrPair.second.first, 572 LocalAddrPair.second.second); 573 } 574 } 575 for (const auto &VLASizePair : VLASizes) 576 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 577 PGO.assignRegionCounters(GlobalDecl(CD), F); 578 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 579 FinishFunction(CD->getBodyRBrace()); 580 if (!NeedWrapperFunction) 581 return F; 582 583 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 584 /*RegisterCastedArgsOnly=*/true, 585 CapturedStmtInfo->getHelperName()); 586 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 587 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 588 Args.clear(); 589 LocalAddrs.clear(); 590 VLASizes.clear(); 591 llvm::Function *WrapperF = 592 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 593 WrapperCGF.CXXThisValue, WrapperFO); 594 llvm::SmallVector<llvm::Value *, 4> CallArgs; 595 for (const auto *Arg : Args) { 596 llvm::Value *CallArg; 597 auto I = LocalAddrs.find(Arg); 598 if (I != LocalAddrs.end()) { 599 LValue LV = WrapperCGF.MakeAddrLValue( 600 I->second.second, 601 I->second.first ? I->second.first->getType() : Arg->getType(), 602 AlignmentSource::Decl); 603 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 604 } else { 605 auto EI = VLASizes.find(Arg); 606 if (EI != VLASizes.end()) { 607 CallArg = EI->second.second; 608 } else { 609 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 610 Arg->getType(), 611 AlignmentSource::Decl); 612 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 613 } 614 } 615 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 616 } 617 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 618 F, CallArgs); 619 WrapperCGF.FinishFunction(); 620 return WrapperF; 621 } 622 623 //===----------------------------------------------------------------------===// 624 // OpenMP Directive Emission 625 //===----------------------------------------------------------------------===// 626 void CodeGenFunction::EmitOMPAggregateAssign( 627 Address DestAddr, Address SrcAddr, QualType OriginalType, 628 const llvm::function_ref<void(Address, Address)> CopyGen) { 629 // Perform element-by-element initialization. 630 QualType ElementTy; 631 632 // Drill down to the base element type on both arrays. 633 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 634 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 635 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 636 637 llvm::Value *SrcBegin = SrcAddr.getPointer(); 638 llvm::Value *DestBegin = DestAddr.getPointer(); 639 // Cast from pointer to array type to pointer to single element. 640 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 641 // The basic structure here is a while-do loop. 642 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 643 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 644 llvm::Value *IsEmpty = 645 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 646 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 647 648 // Enter the loop body, making that address the current address. 649 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 650 EmitBlock(BodyBB); 651 652 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 653 654 llvm::PHINode *SrcElementPHI = 655 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 656 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 657 Address SrcElementCurrent = 658 Address(SrcElementPHI, 659 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 660 661 llvm::PHINode *DestElementPHI = 662 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 663 DestElementPHI->addIncoming(DestBegin, EntryBB); 664 Address DestElementCurrent = 665 Address(DestElementPHI, 666 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 667 668 // Emit copy. 669 CopyGen(DestElementCurrent, SrcElementCurrent); 670 671 // Shift the address forward by one element. 672 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 673 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 674 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 675 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 676 // Check whether we've reached the end. 677 llvm::Value *Done = 678 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 679 Builder.CreateCondBr(Done, DoneBB, BodyBB); 680 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 681 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 682 683 // Done. 684 EmitBlock(DoneBB, /*IsFinished=*/true); 685 } 686 687 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 688 Address SrcAddr, const VarDecl *DestVD, 689 const VarDecl *SrcVD, const Expr *Copy) { 690 if (OriginalType->isArrayType()) { 691 const auto *BO = dyn_cast<BinaryOperator>(Copy); 692 if (BO && BO->getOpcode() == BO_Assign) { 693 // Perform simple memcpy for simple copying. 694 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 695 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 696 EmitAggregateAssign(Dest, Src, OriginalType); 697 } else { 698 // For arrays with complex element types perform element by element 699 // copying. 700 EmitOMPAggregateAssign( 701 DestAddr, SrcAddr, OriginalType, 702 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 703 // Working with the single array element, so have to remap 704 // destination and source variables to corresponding array 705 // elements. 706 CodeGenFunction::OMPPrivateScope Remap(*this); 707 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 708 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 709 (void)Remap.Privatize(); 710 EmitIgnoredExpr(Copy); 711 }); 712 } 713 } else { 714 // Remap pseudo source variable to private copy. 715 CodeGenFunction::OMPPrivateScope Remap(*this); 716 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 717 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 718 (void)Remap.Privatize(); 719 // Emit copying of the whole variable. 720 EmitIgnoredExpr(Copy); 721 } 722 } 723 724 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 725 OMPPrivateScope &PrivateScope) { 726 if (!HaveInsertPoint()) 727 return false; 728 bool FirstprivateIsLastprivate = false; 729 llvm::DenseSet<const VarDecl *> Lastprivates; 730 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 731 for (const auto *D : C->varlists()) 732 Lastprivates.insert( 733 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 734 } 735 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 736 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 737 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 738 // Force emission of the firstprivate copy if the directive does not emit 739 // outlined function, like omp for, omp simd, omp distribute etc. 740 bool MustEmitFirstprivateCopy = 741 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 742 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 743 auto IRef = C->varlist_begin(); 744 auto InitsRef = C->inits().begin(); 745 for (const Expr *IInit : C->private_copies()) { 746 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 747 bool ThisFirstprivateIsLastprivate = 748 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 749 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 750 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 751 !FD->getType()->isReferenceType()) { 752 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 753 ++IRef; 754 ++InitsRef; 755 continue; 756 } 757 FirstprivateIsLastprivate = 758 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 759 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 760 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 761 const auto *VDInit = 762 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 763 bool IsRegistered; 764 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 765 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 766 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 767 LValue OriginalLVal = EmitLValue(&DRE); 768 QualType Type = VD->getType(); 769 if (Type->isArrayType()) { 770 // Emit VarDecl with copy init for arrays. 771 // Get the address of the original variable captured in current 772 // captured region. 773 IsRegistered = PrivateScope.addPrivate( 774 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 775 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 776 const Expr *Init = VD->getInit(); 777 if (!isa<CXXConstructExpr>(Init) || 778 isTrivialInitializer(Init)) { 779 // Perform simple memcpy. 780 LValue Dest = 781 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 782 EmitAggregateAssign(Dest, OriginalLVal, Type); 783 } else { 784 EmitOMPAggregateAssign( 785 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 786 Type, 787 [this, VDInit, Init](Address DestElement, 788 Address SrcElement) { 789 // Clean up any temporaries needed by the 790 // initialization. 791 RunCleanupsScope InitScope(*this); 792 // Emit initialization for single element. 793 setAddrOfLocalVar(VDInit, SrcElement); 794 EmitAnyExprToMem(Init, DestElement, 795 Init->getType().getQualifiers(), 796 /*IsInitializer*/ false); 797 LocalDeclMap.erase(VDInit); 798 }); 799 } 800 EmitAutoVarCleanups(Emission); 801 return Emission.getAllocatedAddress(); 802 }); 803 } else { 804 Address OriginalAddr = OriginalLVal.getAddress(); 805 IsRegistered = PrivateScope.addPrivate( 806 OrigVD, [this, VDInit, OriginalAddr, VD]() { 807 // Emit private VarDecl with copy init. 808 // Remap temp VDInit variable to the address of the original 809 // variable (for proper handling of captured global variables). 810 setAddrOfLocalVar(VDInit, OriginalAddr); 811 EmitDecl(*VD); 812 LocalDeclMap.erase(VDInit); 813 return GetAddrOfLocalVar(VD); 814 }); 815 } 816 assert(IsRegistered && 817 "firstprivate var already registered as private"); 818 // Silence the warning about unused variable. 819 (void)IsRegistered; 820 } 821 ++IRef; 822 ++InitsRef; 823 } 824 } 825 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 826 } 827 828 void CodeGenFunction::EmitOMPPrivateClause( 829 const OMPExecutableDirective &D, 830 CodeGenFunction::OMPPrivateScope &PrivateScope) { 831 if (!HaveInsertPoint()) 832 return; 833 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 834 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 835 auto IRef = C->varlist_begin(); 836 for (const Expr *IInit : C->private_copies()) { 837 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 838 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 839 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 840 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 841 // Emit private VarDecl with copy init. 842 EmitDecl(*VD); 843 return GetAddrOfLocalVar(VD); 844 }); 845 assert(IsRegistered && "private var already registered as private"); 846 // Silence the warning about unused variable. 847 (void)IsRegistered; 848 } 849 ++IRef; 850 } 851 } 852 } 853 854 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 855 if (!HaveInsertPoint()) 856 return false; 857 // threadprivate_var1 = master_threadprivate_var1; 858 // operator=(threadprivate_var2, master_threadprivate_var2); 859 // ... 860 // __kmpc_barrier(&loc, global_tid); 861 llvm::DenseSet<const VarDecl *> CopiedVars; 862 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 863 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 864 auto IRef = C->varlist_begin(); 865 auto ISrcRef = C->source_exprs().begin(); 866 auto IDestRef = C->destination_exprs().begin(); 867 for (const Expr *AssignOp : C->assignment_ops()) { 868 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 869 QualType Type = VD->getType(); 870 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 871 // Get the address of the master variable. If we are emitting code with 872 // TLS support, the address is passed from the master as field in the 873 // captured declaration. 874 Address MasterAddr = Address::invalid(); 875 if (getLangOpts().OpenMPUseTLS && 876 getContext().getTargetInfo().isTLSSupported()) { 877 assert(CapturedStmtInfo->lookup(VD) && 878 "Copyin threadprivates should have been captured!"); 879 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 880 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 881 MasterAddr = EmitLValue(&DRE).getAddress(); 882 LocalDeclMap.erase(VD); 883 } else { 884 MasterAddr = 885 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 886 : CGM.GetAddrOfGlobal(VD), 887 getContext().getDeclAlign(VD)); 888 } 889 // Get the address of the threadprivate variable. 890 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 891 if (CopiedVars.size() == 1) { 892 // At first check if current thread is a master thread. If it is, no 893 // need to copy data. 894 CopyBegin = createBasicBlock("copyin.not.master"); 895 CopyEnd = createBasicBlock("copyin.not.master.end"); 896 Builder.CreateCondBr( 897 Builder.CreateICmpNE( 898 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 899 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 900 CGM.IntPtrTy)), 901 CopyBegin, CopyEnd); 902 EmitBlock(CopyBegin); 903 } 904 const auto *SrcVD = 905 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 906 const auto *DestVD = 907 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 908 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 909 } 910 ++IRef; 911 ++ISrcRef; 912 ++IDestRef; 913 } 914 } 915 if (CopyEnd) { 916 // Exit out of copying procedure for non-master thread. 917 EmitBlock(CopyEnd, /*IsFinished=*/true); 918 return true; 919 } 920 return false; 921 } 922 923 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 924 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 925 if (!HaveInsertPoint()) 926 return false; 927 bool HasAtLeastOneLastprivate = false; 928 llvm::DenseSet<const VarDecl *> SIMDLCVs; 929 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 930 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 931 for (const Expr *C : LoopDirective->counters()) { 932 SIMDLCVs.insert( 933 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 934 } 935 } 936 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 937 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 938 HasAtLeastOneLastprivate = true; 939 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 940 !getLangOpts().OpenMPSimd) 941 break; 942 auto IRef = C->varlist_begin(); 943 auto IDestRef = C->destination_exprs().begin(); 944 for (const Expr *IInit : C->private_copies()) { 945 // Keep the address of the original variable for future update at the end 946 // of the loop. 947 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 948 // Taskloops do not require additional initialization, it is done in 949 // runtime support library. 950 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 951 const auto *DestVD = 952 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 953 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 954 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 955 /*RefersToEnclosingVariableOrCapture=*/ 956 CapturedStmtInfo->lookup(OrigVD) != nullptr, 957 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 958 return EmitLValue(&DRE).getAddress(); 959 }); 960 // Check if the variable is also a firstprivate: in this case IInit is 961 // not generated. Initialization of this variable will happen in codegen 962 // for 'firstprivate' clause. 963 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 964 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 965 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 966 // Emit private VarDecl with copy init. 967 EmitDecl(*VD); 968 return GetAddrOfLocalVar(VD); 969 }); 970 assert(IsRegistered && 971 "lastprivate var already registered as private"); 972 (void)IsRegistered; 973 } 974 } 975 ++IRef; 976 ++IDestRef; 977 } 978 } 979 return HasAtLeastOneLastprivate; 980 } 981 982 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 983 const OMPExecutableDirective &D, bool NoFinals, 984 llvm::Value *IsLastIterCond) { 985 if (!HaveInsertPoint()) 986 return; 987 // Emit following code: 988 // if (<IsLastIterCond>) { 989 // orig_var1 = private_orig_var1; 990 // ... 991 // orig_varn = private_orig_varn; 992 // } 993 llvm::BasicBlock *ThenBB = nullptr; 994 llvm::BasicBlock *DoneBB = nullptr; 995 if (IsLastIterCond) { 996 ThenBB = createBasicBlock(".omp.lastprivate.then"); 997 DoneBB = createBasicBlock(".omp.lastprivate.done"); 998 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 999 EmitBlock(ThenBB); 1000 } 1001 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1002 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1003 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1004 auto IC = LoopDirective->counters().begin(); 1005 for (const Expr *F : LoopDirective->finals()) { 1006 const auto *D = 1007 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1008 if (NoFinals) 1009 AlreadyEmittedVars.insert(D); 1010 else 1011 LoopCountersAndUpdates[D] = F; 1012 ++IC; 1013 } 1014 } 1015 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1016 auto IRef = C->varlist_begin(); 1017 auto ISrcRef = C->source_exprs().begin(); 1018 auto IDestRef = C->destination_exprs().begin(); 1019 for (const Expr *AssignOp : C->assignment_ops()) { 1020 const auto *PrivateVD = 1021 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1022 QualType Type = PrivateVD->getType(); 1023 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1024 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1025 // If lastprivate variable is a loop control variable for loop-based 1026 // directive, update its value before copyin back to original 1027 // variable. 1028 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1029 EmitIgnoredExpr(FinalExpr); 1030 const auto *SrcVD = 1031 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1032 const auto *DestVD = 1033 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1034 // Get the address of the original variable. 1035 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1036 // Get the address of the private variable. 1037 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1038 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1039 PrivateAddr = 1040 Address(Builder.CreateLoad(PrivateAddr), 1041 getNaturalTypeAlignment(RefTy->getPointeeType())); 1042 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1043 } 1044 ++IRef; 1045 ++ISrcRef; 1046 ++IDestRef; 1047 } 1048 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1049 EmitIgnoredExpr(PostUpdate); 1050 } 1051 if (IsLastIterCond) 1052 EmitBlock(DoneBB, /*IsFinished=*/true); 1053 } 1054 1055 void CodeGenFunction::EmitOMPReductionClauseInit( 1056 const OMPExecutableDirective &D, 1057 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1058 if (!HaveInsertPoint()) 1059 return; 1060 SmallVector<const Expr *, 4> Shareds; 1061 SmallVector<const Expr *, 4> Privates; 1062 SmallVector<const Expr *, 4> ReductionOps; 1063 SmallVector<const Expr *, 4> LHSs; 1064 SmallVector<const Expr *, 4> RHSs; 1065 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1066 auto IPriv = C->privates().begin(); 1067 auto IRed = C->reduction_ops().begin(); 1068 auto ILHS = C->lhs_exprs().begin(); 1069 auto IRHS = C->rhs_exprs().begin(); 1070 for (const Expr *Ref : C->varlists()) { 1071 Shareds.emplace_back(Ref); 1072 Privates.emplace_back(*IPriv); 1073 ReductionOps.emplace_back(*IRed); 1074 LHSs.emplace_back(*ILHS); 1075 RHSs.emplace_back(*IRHS); 1076 std::advance(IPriv, 1); 1077 std::advance(IRed, 1); 1078 std::advance(ILHS, 1); 1079 std::advance(IRHS, 1); 1080 } 1081 } 1082 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1083 unsigned Count = 0; 1084 auto ILHS = LHSs.begin(); 1085 auto IRHS = RHSs.begin(); 1086 auto IPriv = Privates.begin(); 1087 for (const Expr *IRef : Shareds) { 1088 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1089 // Emit private VarDecl with reduction init. 1090 RedCG.emitSharedLValue(*this, Count); 1091 RedCG.emitAggregateType(*this, Count); 1092 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1093 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1094 RedCG.getSharedLValue(Count), 1095 [&Emission](CodeGenFunction &CGF) { 1096 CGF.EmitAutoVarInit(Emission); 1097 return true; 1098 }); 1099 EmitAutoVarCleanups(Emission); 1100 Address BaseAddr = RedCG.adjustPrivateAddress( 1101 *this, Count, Emission.getAllocatedAddress()); 1102 bool IsRegistered = PrivateScope.addPrivate( 1103 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1104 assert(IsRegistered && "private var already registered as private"); 1105 // Silence the warning about unused variable. 1106 (void)IsRegistered; 1107 1108 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1109 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1110 QualType Type = PrivateVD->getType(); 1111 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1112 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1113 // Store the address of the original variable associated with the LHS 1114 // implicit variable. 1115 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1116 return RedCG.getSharedLValue(Count).getAddress(); 1117 }); 1118 PrivateScope.addPrivate( 1119 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1120 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1121 isa<ArraySubscriptExpr>(IRef)) { 1122 // Store the address of the original variable associated with the LHS 1123 // implicit variable. 1124 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1125 return RedCG.getSharedLValue(Count).getAddress(); 1126 }); 1127 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1128 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1129 ConvertTypeForMem(RHSVD->getType()), 1130 "rhs.begin"); 1131 }); 1132 } else { 1133 QualType Type = PrivateVD->getType(); 1134 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1135 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1136 // Store the address of the original variable associated with the LHS 1137 // implicit variable. 1138 if (IsArray) { 1139 OriginalAddr = Builder.CreateElementBitCast( 1140 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1141 } 1142 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1143 PrivateScope.addPrivate( 1144 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1145 return IsArray 1146 ? Builder.CreateElementBitCast( 1147 GetAddrOfLocalVar(PrivateVD), 1148 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1149 : GetAddrOfLocalVar(PrivateVD); 1150 }); 1151 } 1152 ++ILHS; 1153 ++IRHS; 1154 ++IPriv; 1155 ++Count; 1156 } 1157 } 1158 1159 void CodeGenFunction::EmitOMPReductionClauseFinal( 1160 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1161 if (!HaveInsertPoint()) 1162 return; 1163 llvm::SmallVector<const Expr *, 8> Privates; 1164 llvm::SmallVector<const Expr *, 8> LHSExprs; 1165 llvm::SmallVector<const Expr *, 8> RHSExprs; 1166 llvm::SmallVector<const Expr *, 8> ReductionOps; 1167 bool HasAtLeastOneReduction = false; 1168 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1169 HasAtLeastOneReduction = true; 1170 Privates.append(C->privates().begin(), C->privates().end()); 1171 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1172 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1173 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1174 } 1175 if (HasAtLeastOneReduction) { 1176 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1177 isOpenMPParallelDirective(D.getDirectiveKind()) || 1178 ReductionKind == OMPD_simd; 1179 bool SimpleReduction = ReductionKind == OMPD_simd; 1180 // Emit nowait reduction if nowait clause is present or directive is a 1181 // parallel directive (it always has implicit barrier). 1182 CGM.getOpenMPRuntime().emitReduction( 1183 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1184 {WithNowait, SimpleReduction, ReductionKind}); 1185 } 1186 } 1187 1188 static void emitPostUpdateForReductionClause( 1189 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1190 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1191 if (!CGF.HaveInsertPoint()) 1192 return; 1193 llvm::BasicBlock *DoneBB = nullptr; 1194 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1195 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1196 if (!DoneBB) { 1197 if (llvm::Value *Cond = CondGen(CGF)) { 1198 // If the first post-update expression is found, emit conditional 1199 // block if it was requested. 1200 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1201 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1202 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1203 CGF.EmitBlock(ThenBB); 1204 } 1205 } 1206 CGF.EmitIgnoredExpr(PostUpdate); 1207 } 1208 } 1209 if (DoneBB) 1210 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1211 } 1212 1213 namespace { 1214 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1215 /// parallel function. This is necessary for combined constructs such as 1216 /// 'distribute parallel for' 1217 typedef llvm::function_ref<void(CodeGenFunction &, 1218 const OMPExecutableDirective &, 1219 llvm::SmallVectorImpl<llvm::Value *> &)> 1220 CodeGenBoundParametersTy; 1221 } // anonymous namespace 1222 1223 static void emitCommonOMPParallelDirective( 1224 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1225 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1226 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1227 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1228 llvm::Function *OutlinedFn = 1229 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1230 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1231 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1232 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1233 llvm::Value *NumThreads = 1234 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1235 /*IgnoreResultAssign=*/true); 1236 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1237 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1238 } 1239 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1240 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1241 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1242 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1243 } 1244 const Expr *IfCond = nullptr; 1245 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1246 if (C->getNameModifier() == OMPD_unknown || 1247 C->getNameModifier() == OMPD_parallel) { 1248 IfCond = C->getCondition(); 1249 break; 1250 } 1251 } 1252 1253 OMPParallelScope Scope(CGF, S); 1254 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1255 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1256 // lower and upper bounds with the pragma 'for' chunking mechanism. 1257 // The following lambda takes care of appending the lower and upper bound 1258 // parameters when necessary 1259 CodeGenBoundParameters(CGF, S, CapturedVars); 1260 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1261 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1262 CapturedVars, IfCond); 1263 } 1264 1265 static void emitEmptyBoundParameters(CodeGenFunction &, 1266 const OMPExecutableDirective &, 1267 llvm::SmallVectorImpl<llvm::Value *> &) {} 1268 1269 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1270 // Emit parallel region as a standalone region. 1271 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1272 Action.Enter(CGF); 1273 OMPPrivateScope PrivateScope(CGF); 1274 bool Copyins = CGF.EmitOMPCopyinClause(S); 1275 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1276 if (Copyins) { 1277 // Emit implicit barrier to synchronize threads and avoid data races on 1278 // propagation master's thread values of threadprivate variables to local 1279 // instances of that variables of all other implicit threads. 1280 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1281 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1282 /*ForceSimpleCall=*/true); 1283 } 1284 CGF.EmitOMPPrivateClause(S, PrivateScope); 1285 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1286 (void)PrivateScope.Privatize(); 1287 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1288 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1289 }; 1290 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1291 emitEmptyBoundParameters); 1292 emitPostUpdateForReductionClause(*this, S, 1293 [](CodeGenFunction &) { return nullptr; }); 1294 } 1295 1296 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1297 JumpDest LoopExit) { 1298 RunCleanupsScope BodyScope(*this); 1299 // Update counters values on current iteration. 1300 for (const Expr *UE : D.updates()) 1301 EmitIgnoredExpr(UE); 1302 // Update the linear variables. 1303 // In distribute directives only loop counters may be marked as linear, no 1304 // need to generate the code for them. 1305 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1306 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1307 for (const Expr *UE : C->updates()) 1308 EmitIgnoredExpr(UE); 1309 } 1310 } 1311 1312 // On a continue in the body, jump to the end. 1313 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1314 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1315 // Emit loop body. 1316 EmitStmt(D.getBody()); 1317 // The end (updates/cleanups). 1318 EmitBlock(Continue.getBlock()); 1319 BreakContinueStack.pop_back(); 1320 } 1321 1322 void CodeGenFunction::EmitOMPInnerLoop( 1323 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1324 const Expr *IncExpr, 1325 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1326 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1327 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1328 1329 // Start the loop with a block that tests the condition. 1330 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1331 EmitBlock(CondBlock); 1332 const SourceRange R = S.getSourceRange(); 1333 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1334 SourceLocToDebugLoc(R.getEnd())); 1335 1336 // If there are any cleanups between here and the loop-exit scope, 1337 // create a block to stage a loop exit along. 1338 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1339 if (RequiresCleanup) 1340 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1341 1342 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1343 1344 // Emit condition. 1345 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1346 if (ExitBlock != LoopExit.getBlock()) { 1347 EmitBlock(ExitBlock); 1348 EmitBranchThroughCleanup(LoopExit); 1349 } 1350 1351 EmitBlock(LoopBody); 1352 incrementProfileCounter(&S); 1353 1354 // Create a block for the increment. 1355 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1356 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1357 1358 BodyGen(*this); 1359 1360 // Emit "IV = IV + 1" and a back-edge to the condition block. 1361 EmitBlock(Continue.getBlock()); 1362 EmitIgnoredExpr(IncExpr); 1363 PostIncGen(*this); 1364 BreakContinueStack.pop_back(); 1365 EmitBranch(CondBlock); 1366 LoopStack.pop(); 1367 // Emit the fall-through block. 1368 EmitBlock(LoopExit.getBlock()); 1369 } 1370 1371 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1372 if (!HaveInsertPoint()) 1373 return false; 1374 // Emit inits for the linear variables. 1375 bool HasLinears = false; 1376 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1377 for (const Expr *Init : C->inits()) { 1378 HasLinears = true; 1379 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1380 if (const auto *Ref = 1381 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1382 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1383 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1384 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1385 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1386 VD->getInit()->getType(), VK_LValue, 1387 VD->getInit()->getExprLoc()); 1388 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1389 VD->getType()), 1390 /*capturedByInit=*/false); 1391 EmitAutoVarCleanups(Emission); 1392 } else { 1393 EmitVarDecl(*VD); 1394 } 1395 } 1396 // Emit the linear steps for the linear clauses. 1397 // If a step is not constant, it is pre-calculated before the loop. 1398 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1399 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1400 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1401 // Emit calculation of the linear step. 1402 EmitIgnoredExpr(CS); 1403 } 1404 } 1405 return HasLinears; 1406 } 1407 1408 void CodeGenFunction::EmitOMPLinearClauseFinal( 1409 const OMPLoopDirective &D, 1410 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1411 if (!HaveInsertPoint()) 1412 return; 1413 llvm::BasicBlock *DoneBB = nullptr; 1414 // Emit the final values of the linear variables. 1415 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1416 auto IC = C->varlist_begin(); 1417 for (const Expr *F : C->finals()) { 1418 if (!DoneBB) { 1419 if (llvm::Value *Cond = CondGen(*this)) { 1420 // If the first post-update expression is found, emit conditional 1421 // block if it was requested. 1422 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1423 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1424 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1425 EmitBlock(ThenBB); 1426 } 1427 } 1428 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1429 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1430 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1431 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1432 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1433 CodeGenFunction::OMPPrivateScope VarScope(*this); 1434 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1435 (void)VarScope.Privatize(); 1436 EmitIgnoredExpr(F); 1437 ++IC; 1438 } 1439 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1440 EmitIgnoredExpr(PostUpdate); 1441 } 1442 if (DoneBB) 1443 EmitBlock(DoneBB, /*IsFinished=*/true); 1444 } 1445 1446 static void emitAlignedClause(CodeGenFunction &CGF, 1447 const OMPExecutableDirective &D) { 1448 if (!CGF.HaveInsertPoint()) 1449 return; 1450 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1451 unsigned ClauseAlignment = 0; 1452 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1453 auto *AlignmentCI = 1454 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1455 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1456 } 1457 for (const Expr *E : Clause->varlists()) { 1458 unsigned Alignment = ClauseAlignment; 1459 if (Alignment == 0) { 1460 // OpenMP [2.8.1, Description] 1461 // If no optional parameter is specified, implementation-defined default 1462 // alignments for SIMD instructions on the target platforms are assumed. 1463 Alignment = 1464 CGF.getContext() 1465 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1466 E->getType()->getPointeeType())) 1467 .getQuantity(); 1468 } 1469 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1470 "alignment is not power of 2"); 1471 if (Alignment != 0) { 1472 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1473 CGF.EmitAlignmentAssumption( 1474 PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment); 1475 } 1476 } 1477 } 1478 } 1479 1480 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1481 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1482 if (!HaveInsertPoint()) 1483 return; 1484 auto I = S.private_counters().begin(); 1485 for (const Expr *E : S.counters()) { 1486 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1487 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1488 // Emit var without initialization. 1489 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1490 EmitAutoVarCleanups(VarEmission); 1491 LocalDeclMap.erase(PrivateVD); 1492 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1493 return VarEmission.getAllocatedAddress(); 1494 }); 1495 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1496 VD->hasGlobalStorage()) { 1497 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1498 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1499 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1500 E->getType(), VK_LValue, E->getExprLoc()); 1501 return EmitLValue(&DRE).getAddress(); 1502 }); 1503 } else { 1504 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1505 return VarEmission.getAllocatedAddress(); 1506 }); 1507 } 1508 ++I; 1509 } 1510 // Privatize extra loop counters used in loops for ordered(n) clauses. 1511 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1512 if (!C->getNumForLoops()) 1513 continue; 1514 for (unsigned I = S.getCollapsedNumber(), 1515 E = C->getLoopNumIterations().size(); 1516 I < E; ++I) { 1517 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1518 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1519 // Override only those variables that are really emitted already. 1520 if (LocalDeclMap.count(VD)) { 1521 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1522 return CreateMemTemp(DRE->getType(), VD->getName()); 1523 }); 1524 } 1525 } 1526 } 1527 } 1528 1529 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1530 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1531 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1532 if (!CGF.HaveInsertPoint()) 1533 return; 1534 { 1535 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1536 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1537 (void)PreCondScope.Privatize(); 1538 // Get initial values of real counters. 1539 for (const Expr *I : S.inits()) { 1540 CGF.EmitIgnoredExpr(I); 1541 } 1542 } 1543 // Check that loop is executed at least one time. 1544 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1545 } 1546 1547 void CodeGenFunction::EmitOMPLinearClause( 1548 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1549 if (!HaveInsertPoint()) 1550 return; 1551 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1552 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1553 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1554 for (const Expr *C : LoopDirective->counters()) { 1555 SIMDLCVs.insert( 1556 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1557 } 1558 } 1559 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1560 auto CurPrivate = C->privates().begin(); 1561 for (const Expr *E : C->varlists()) { 1562 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1563 const auto *PrivateVD = 1564 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1565 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1566 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1567 // Emit private VarDecl with copy init. 1568 EmitVarDecl(*PrivateVD); 1569 return GetAddrOfLocalVar(PrivateVD); 1570 }); 1571 assert(IsRegistered && "linear var already registered as private"); 1572 // Silence the warning about unused variable. 1573 (void)IsRegistered; 1574 } else { 1575 EmitVarDecl(*PrivateVD); 1576 } 1577 ++CurPrivate; 1578 } 1579 } 1580 } 1581 1582 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1583 const OMPExecutableDirective &D, 1584 bool IsMonotonic) { 1585 if (!CGF.HaveInsertPoint()) 1586 return; 1587 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1588 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1589 /*ignoreResult=*/true); 1590 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1591 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1592 // In presence of finite 'safelen', it may be unsafe to mark all 1593 // the memory instructions parallel, because loop-carried 1594 // dependences of 'safelen' iterations are possible. 1595 if (!IsMonotonic) 1596 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1597 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1598 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1599 /*ignoreResult=*/true); 1600 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1601 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1602 // In presence of finite 'safelen', it may be unsafe to mark all 1603 // the memory instructions parallel, because loop-carried 1604 // dependences of 'safelen' iterations are possible. 1605 CGF.LoopStack.setParallel(/*Enable=*/false); 1606 } 1607 } 1608 1609 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1610 bool IsMonotonic) { 1611 // Walk clauses and process safelen/lastprivate. 1612 LoopStack.setParallel(!IsMonotonic); 1613 LoopStack.setVectorizeEnable(); 1614 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1615 } 1616 1617 void CodeGenFunction::EmitOMPSimdFinal( 1618 const OMPLoopDirective &D, 1619 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1620 if (!HaveInsertPoint()) 1621 return; 1622 llvm::BasicBlock *DoneBB = nullptr; 1623 auto IC = D.counters().begin(); 1624 auto IPC = D.private_counters().begin(); 1625 for (const Expr *F : D.finals()) { 1626 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1627 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1628 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1629 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1630 OrigVD->hasGlobalStorage() || CED) { 1631 if (!DoneBB) { 1632 if (llvm::Value *Cond = CondGen(*this)) { 1633 // If the first post-update expression is found, emit conditional 1634 // block if it was requested. 1635 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1636 DoneBB = createBasicBlock(".omp.final.done"); 1637 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1638 EmitBlock(ThenBB); 1639 } 1640 } 1641 Address OrigAddr = Address::invalid(); 1642 if (CED) { 1643 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1644 } else { 1645 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1646 /*RefersToEnclosingVariableOrCapture=*/false, 1647 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1648 OrigAddr = EmitLValue(&DRE).getAddress(); 1649 } 1650 OMPPrivateScope VarScope(*this); 1651 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1652 (void)VarScope.Privatize(); 1653 EmitIgnoredExpr(F); 1654 } 1655 ++IC; 1656 ++IPC; 1657 } 1658 if (DoneBB) 1659 EmitBlock(DoneBB, /*IsFinished=*/true); 1660 } 1661 1662 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1663 const OMPLoopDirective &S, 1664 CodeGenFunction::JumpDest LoopExit) { 1665 CGF.EmitOMPLoopBody(S, LoopExit); 1666 CGF.EmitStopPoint(&S); 1667 } 1668 1669 /// Emit a helper variable and return corresponding lvalue. 1670 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1671 const DeclRefExpr *Helper) { 1672 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1673 CGF.EmitVarDecl(*VDecl); 1674 return CGF.EmitLValue(Helper); 1675 } 1676 1677 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1678 PrePostActionTy &Action) { 1679 Action.Enter(CGF); 1680 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1681 "Expected simd directive"); 1682 OMPLoopScope PreInitScope(CGF, S); 1683 // if (PreCond) { 1684 // for (IV in 0..LastIteration) BODY; 1685 // <Final counter/linear vars updates>; 1686 // } 1687 // 1688 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1689 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1690 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1691 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1692 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1693 } 1694 1695 // Emit: if (PreCond) - begin. 1696 // If the condition constant folds and can be elided, avoid emitting the 1697 // whole loop. 1698 bool CondConstant; 1699 llvm::BasicBlock *ContBlock = nullptr; 1700 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1701 if (!CondConstant) 1702 return; 1703 } else { 1704 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1705 ContBlock = CGF.createBasicBlock("simd.if.end"); 1706 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1707 CGF.getProfileCount(&S)); 1708 CGF.EmitBlock(ThenBlock); 1709 CGF.incrementProfileCounter(&S); 1710 } 1711 1712 // Emit the loop iteration variable. 1713 const Expr *IVExpr = S.getIterationVariable(); 1714 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1715 CGF.EmitVarDecl(*IVDecl); 1716 CGF.EmitIgnoredExpr(S.getInit()); 1717 1718 // Emit the iterations count variable. 1719 // If it is not a variable, Sema decided to calculate iterations count on 1720 // each iteration (e.g., it is foldable into a constant). 1721 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1722 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1723 // Emit calculation of the iterations count. 1724 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1725 } 1726 1727 CGF.EmitOMPSimdInit(S); 1728 1729 emitAlignedClause(CGF, S); 1730 (void)CGF.EmitOMPLinearClauseInit(S); 1731 { 1732 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1733 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1734 CGF.EmitOMPLinearClause(S, LoopScope); 1735 CGF.EmitOMPPrivateClause(S, LoopScope); 1736 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1737 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1738 (void)LoopScope.Privatize(); 1739 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1740 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1741 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1742 S.getInc(), 1743 [&S](CodeGenFunction &CGF) { 1744 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1745 CGF.EmitStopPoint(&S); 1746 }, 1747 [](CodeGenFunction &) {}); 1748 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1749 // Emit final copy of the lastprivate variables at the end of loops. 1750 if (HasLastprivateClause) 1751 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1752 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1753 emitPostUpdateForReductionClause(CGF, S, 1754 [](CodeGenFunction &) { return nullptr; }); 1755 } 1756 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1757 // Emit: if (PreCond) - end. 1758 if (ContBlock) { 1759 CGF.EmitBranch(ContBlock); 1760 CGF.EmitBlock(ContBlock, true); 1761 } 1762 } 1763 1764 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1765 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1766 emitOMPSimdRegion(CGF, S, Action); 1767 }; 1768 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1769 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1770 } 1771 1772 void CodeGenFunction::EmitOMPOuterLoop( 1773 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1774 CodeGenFunction::OMPPrivateScope &LoopScope, 1775 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1776 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1777 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1778 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1779 1780 const Expr *IVExpr = S.getIterationVariable(); 1781 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1782 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1783 1784 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1785 1786 // Start the loop with a block that tests the condition. 1787 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1788 EmitBlock(CondBlock); 1789 const SourceRange R = S.getSourceRange(); 1790 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1791 SourceLocToDebugLoc(R.getEnd())); 1792 1793 llvm::Value *BoolCondVal = nullptr; 1794 if (!DynamicOrOrdered) { 1795 // UB = min(UB, GlobalUB) or 1796 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1797 // 'distribute parallel for') 1798 EmitIgnoredExpr(LoopArgs.EUB); 1799 // IV = LB 1800 EmitIgnoredExpr(LoopArgs.Init); 1801 // IV < UB 1802 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1803 } else { 1804 BoolCondVal = 1805 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1806 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1807 } 1808 1809 // If there are any cleanups between here and the loop-exit scope, 1810 // create a block to stage a loop exit along. 1811 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1812 if (LoopScope.requiresCleanups()) 1813 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1814 1815 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1816 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1817 if (ExitBlock != LoopExit.getBlock()) { 1818 EmitBlock(ExitBlock); 1819 EmitBranchThroughCleanup(LoopExit); 1820 } 1821 EmitBlock(LoopBody); 1822 1823 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1824 // LB for loop condition and emitted it above). 1825 if (DynamicOrOrdered) 1826 EmitIgnoredExpr(LoopArgs.Init); 1827 1828 // Create a block for the increment. 1829 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1830 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1831 1832 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1833 // with dynamic/guided scheduling and without ordered clause. 1834 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1835 LoopStack.setParallel(!IsMonotonic); 1836 else 1837 EmitOMPSimdInit(S, IsMonotonic); 1838 1839 SourceLocation Loc = S.getBeginLoc(); 1840 1841 // when 'distribute' is not combined with a 'for': 1842 // while (idx <= UB) { BODY; ++idx; } 1843 // when 'distribute' is combined with a 'for' 1844 // (e.g. 'distribute parallel for') 1845 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1846 EmitOMPInnerLoop( 1847 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1848 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1849 CodeGenLoop(CGF, S, LoopExit); 1850 }, 1851 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1852 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1853 }); 1854 1855 EmitBlock(Continue.getBlock()); 1856 BreakContinueStack.pop_back(); 1857 if (!DynamicOrOrdered) { 1858 // Emit "LB = LB + Stride", "UB = UB + Stride". 1859 EmitIgnoredExpr(LoopArgs.NextLB); 1860 EmitIgnoredExpr(LoopArgs.NextUB); 1861 } 1862 1863 EmitBranch(CondBlock); 1864 LoopStack.pop(); 1865 // Emit the fall-through block. 1866 EmitBlock(LoopExit.getBlock()); 1867 1868 // Tell the runtime we are done. 1869 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1870 if (!DynamicOrOrdered) 1871 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1872 S.getDirectiveKind()); 1873 }; 1874 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1875 } 1876 1877 void CodeGenFunction::EmitOMPForOuterLoop( 1878 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1879 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1880 const OMPLoopArguments &LoopArgs, 1881 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1882 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1883 1884 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1885 const bool DynamicOrOrdered = 1886 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1887 1888 assert((Ordered || 1889 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1890 LoopArgs.Chunk != nullptr)) && 1891 "static non-chunked schedule does not need outer loop"); 1892 1893 // Emit outer loop. 1894 // 1895 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1896 // When schedule(dynamic,chunk_size) is specified, the iterations are 1897 // distributed to threads in the team in chunks as the threads request them. 1898 // Each thread executes a chunk of iterations, then requests another chunk, 1899 // until no chunks remain to be distributed. Each chunk contains chunk_size 1900 // iterations, except for the last chunk to be distributed, which may have 1901 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1902 // 1903 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1904 // to threads in the team in chunks as the executing threads request them. 1905 // Each thread executes a chunk of iterations, then requests another chunk, 1906 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1907 // each chunk is proportional to the number of unassigned iterations divided 1908 // by the number of threads in the team, decreasing to 1. For a chunk_size 1909 // with value k (greater than 1), the size of each chunk is determined in the 1910 // same way, with the restriction that the chunks do not contain fewer than k 1911 // iterations (except for the last chunk to be assigned, which may have fewer 1912 // than k iterations). 1913 // 1914 // When schedule(auto) is specified, the decision regarding scheduling is 1915 // delegated to the compiler and/or runtime system. The programmer gives the 1916 // implementation the freedom to choose any possible mapping of iterations to 1917 // threads in the team. 1918 // 1919 // When schedule(runtime) is specified, the decision regarding scheduling is 1920 // deferred until run time, and the schedule and chunk size are taken from the 1921 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1922 // implementation defined 1923 // 1924 // while(__kmpc_dispatch_next(&LB, &UB)) { 1925 // idx = LB; 1926 // while (idx <= UB) { BODY; ++idx; 1927 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1928 // } // inner loop 1929 // } 1930 // 1931 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1932 // When schedule(static, chunk_size) is specified, iterations are divided into 1933 // chunks of size chunk_size, and the chunks are assigned to the threads in 1934 // the team in a round-robin fashion in the order of the thread number. 1935 // 1936 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1937 // while (idx <= UB) { BODY; ++idx; } // inner loop 1938 // LB = LB + ST; 1939 // UB = UB + ST; 1940 // } 1941 // 1942 1943 const Expr *IVExpr = S.getIterationVariable(); 1944 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1945 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1946 1947 if (DynamicOrOrdered) { 1948 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1949 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1950 llvm::Value *LBVal = DispatchBounds.first; 1951 llvm::Value *UBVal = DispatchBounds.second; 1952 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1953 LoopArgs.Chunk}; 1954 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1955 IVSigned, Ordered, DipatchRTInputValues); 1956 } else { 1957 CGOpenMPRuntime::StaticRTInput StaticInit( 1958 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1959 LoopArgs.ST, LoopArgs.Chunk); 1960 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1961 ScheduleKind, StaticInit); 1962 } 1963 1964 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1965 const unsigned IVSize, 1966 const bool IVSigned) { 1967 if (Ordered) { 1968 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1969 IVSigned); 1970 } 1971 }; 1972 1973 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1974 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1975 OuterLoopArgs.IncExpr = S.getInc(); 1976 OuterLoopArgs.Init = S.getInit(); 1977 OuterLoopArgs.Cond = S.getCond(); 1978 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1979 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1980 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1981 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1982 } 1983 1984 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1985 const unsigned IVSize, const bool IVSigned) {} 1986 1987 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1988 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1989 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1990 const CodeGenLoopTy &CodeGenLoopContent) { 1991 1992 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1993 1994 // Emit outer loop. 1995 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1996 // dynamic 1997 // 1998 1999 const Expr *IVExpr = S.getIterationVariable(); 2000 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2001 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2002 2003 CGOpenMPRuntime::StaticRTInput StaticInit( 2004 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2005 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2006 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2007 2008 // for combined 'distribute' and 'for' the increment expression of distribute 2009 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2010 Expr *IncExpr; 2011 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2012 IncExpr = S.getDistInc(); 2013 else 2014 IncExpr = S.getInc(); 2015 2016 // this routine is shared by 'omp distribute parallel for' and 2017 // 'omp distribute': select the right EUB expression depending on the 2018 // directive 2019 OMPLoopArguments OuterLoopArgs; 2020 OuterLoopArgs.LB = LoopArgs.LB; 2021 OuterLoopArgs.UB = LoopArgs.UB; 2022 OuterLoopArgs.ST = LoopArgs.ST; 2023 OuterLoopArgs.IL = LoopArgs.IL; 2024 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2025 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2026 ? S.getCombinedEnsureUpperBound() 2027 : S.getEnsureUpperBound(); 2028 OuterLoopArgs.IncExpr = IncExpr; 2029 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2030 ? S.getCombinedInit() 2031 : S.getInit(); 2032 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2033 ? S.getCombinedCond() 2034 : S.getCond(); 2035 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2036 ? S.getCombinedNextLowerBound() 2037 : S.getNextLowerBound(); 2038 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2039 ? S.getCombinedNextUpperBound() 2040 : S.getNextUpperBound(); 2041 2042 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2043 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2044 emitEmptyOrdered); 2045 } 2046 2047 static std::pair<LValue, LValue> 2048 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2049 const OMPExecutableDirective &S) { 2050 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2051 LValue LB = 2052 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2053 LValue UB = 2054 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2055 2056 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2057 // parallel for') we need to use the 'distribute' 2058 // chunk lower and upper bounds rather than the whole loop iteration 2059 // space. These are parameters to the outlined function for 'parallel' 2060 // and we copy the bounds of the previous schedule into the 2061 // the current ones. 2062 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2063 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2064 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2065 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2066 PrevLBVal = CGF.EmitScalarConversion( 2067 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2068 LS.getIterationVariable()->getType(), 2069 LS.getPrevLowerBoundVariable()->getExprLoc()); 2070 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2071 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2072 PrevUBVal = CGF.EmitScalarConversion( 2073 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2074 LS.getIterationVariable()->getType(), 2075 LS.getPrevUpperBoundVariable()->getExprLoc()); 2076 2077 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2078 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2079 2080 return {LB, UB}; 2081 } 2082 2083 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2084 /// we need to use the LB and UB expressions generated by the worksharing 2085 /// code generation support, whereas in non combined situations we would 2086 /// just emit 0 and the LastIteration expression 2087 /// This function is necessary due to the difference of the LB and UB 2088 /// types for the RT emission routines for 'for_static_init' and 2089 /// 'for_dispatch_init' 2090 static std::pair<llvm::Value *, llvm::Value *> 2091 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2092 const OMPExecutableDirective &S, 2093 Address LB, Address UB) { 2094 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2095 const Expr *IVExpr = LS.getIterationVariable(); 2096 // when implementing a dynamic schedule for a 'for' combined with a 2097 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2098 // is not normalized as each team only executes its own assigned 2099 // distribute chunk 2100 QualType IteratorTy = IVExpr->getType(); 2101 llvm::Value *LBVal = 2102 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2103 llvm::Value *UBVal = 2104 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2105 return {LBVal, UBVal}; 2106 } 2107 2108 static void emitDistributeParallelForDistributeInnerBoundParams( 2109 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2110 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2111 const auto &Dir = cast<OMPLoopDirective>(S); 2112 LValue LB = 2113 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2114 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2115 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2116 CapturedVars.push_back(LBCast); 2117 LValue UB = 2118 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2119 2120 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2121 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2122 CapturedVars.push_back(UBCast); 2123 } 2124 2125 static void 2126 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2127 const OMPLoopDirective &S, 2128 CodeGenFunction::JumpDest LoopExit) { 2129 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2130 PrePostActionTy &Action) { 2131 Action.Enter(CGF); 2132 bool HasCancel = false; 2133 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2134 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2135 HasCancel = D->hasCancel(); 2136 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2137 HasCancel = D->hasCancel(); 2138 else if (const auto *D = 2139 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2140 HasCancel = D->hasCancel(); 2141 } 2142 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2143 HasCancel); 2144 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2145 emitDistributeParallelForInnerBounds, 2146 emitDistributeParallelForDispatchBounds); 2147 }; 2148 2149 emitCommonOMPParallelDirective( 2150 CGF, S, 2151 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2152 CGInlinedWorksharingLoop, 2153 emitDistributeParallelForDistributeInnerBoundParams); 2154 } 2155 2156 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2157 const OMPDistributeParallelForDirective &S) { 2158 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2159 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2160 S.getDistInc()); 2161 }; 2162 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2163 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2164 } 2165 2166 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2167 const OMPDistributeParallelForSimdDirective &S) { 2168 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2169 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2170 S.getDistInc()); 2171 }; 2172 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2173 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2174 } 2175 2176 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2177 const OMPDistributeSimdDirective &S) { 2178 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2179 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2180 }; 2181 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2182 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2183 } 2184 2185 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2186 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2187 // Emit SPMD target parallel for region as a standalone region. 2188 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2189 emitOMPSimdRegion(CGF, S, Action); 2190 }; 2191 llvm::Function *Fn; 2192 llvm::Constant *Addr; 2193 // Emit target region as a standalone region. 2194 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2195 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2196 assert(Fn && Addr && "Target device function emission failed."); 2197 } 2198 2199 void CodeGenFunction::EmitOMPTargetSimdDirective( 2200 const OMPTargetSimdDirective &S) { 2201 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2202 emitOMPSimdRegion(CGF, S, Action); 2203 }; 2204 emitCommonOMPTargetDirective(*this, S, CodeGen); 2205 } 2206 2207 namespace { 2208 struct ScheduleKindModifiersTy { 2209 OpenMPScheduleClauseKind Kind; 2210 OpenMPScheduleClauseModifier M1; 2211 OpenMPScheduleClauseModifier M2; 2212 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2213 OpenMPScheduleClauseModifier M1, 2214 OpenMPScheduleClauseModifier M2) 2215 : Kind(Kind), M1(M1), M2(M2) {} 2216 }; 2217 } // namespace 2218 2219 bool CodeGenFunction::EmitOMPWorksharingLoop( 2220 const OMPLoopDirective &S, Expr *EUB, 2221 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2222 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2223 // Emit the loop iteration variable. 2224 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2225 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2226 EmitVarDecl(*IVDecl); 2227 2228 // Emit the iterations count variable. 2229 // If it is not a variable, Sema decided to calculate iterations count on each 2230 // iteration (e.g., it is foldable into a constant). 2231 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2232 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2233 // Emit calculation of the iterations count. 2234 EmitIgnoredExpr(S.getCalcLastIteration()); 2235 } 2236 2237 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2238 2239 bool HasLastprivateClause; 2240 // Check pre-condition. 2241 { 2242 OMPLoopScope PreInitScope(*this, S); 2243 // Skip the entire loop if we don't meet the precondition. 2244 // If the condition constant folds and can be elided, avoid emitting the 2245 // whole loop. 2246 bool CondConstant; 2247 llvm::BasicBlock *ContBlock = nullptr; 2248 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2249 if (!CondConstant) 2250 return false; 2251 } else { 2252 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2253 ContBlock = createBasicBlock("omp.precond.end"); 2254 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2255 getProfileCount(&S)); 2256 EmitBlock(ThenBlock); 2257 incrementProfileCounter(&S); 2258 } 2259 2260 RunCleanupsScope DoacrossCleanupScope(*this); 2261 bool Ordered = false; 2262 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2263 if (OrderedClause->getNumForLoops()) 2264 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2265 else 2266 Ordered = true; 2267 } 2268 2269 llvm::DenseSet<const Expr *> EmittedFinals; 2270 emitAlignedClause(*this, S); 2271 bool HasLinears = EmitOMPLinearClauseInit(S); 2272 // Emit helper vars inits. 2273 2274 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2275 LValue LB = Bounds.first; 2276 LValue UB = Bounds.second; 2277 LValue ST = 2278 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2279 LValue IL = 2280 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2281 2282 // Emit 'then' code. 2283 { 2284 OMPPrivateScope LoopScope(*this); 2285 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2286 // Emit implicit barrier to synchronize threads and avoid data races on 2287 // initialization of firstprivate variables and post-update of 2288 // lastprivate variables. 2289 CGM.getOpenMPRuntime().emitBarrierCall( 2290 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2291 /*ForceSimpleCall=*/true); 2292 } 2293 EmitOMPPrivateClause(S, LoopScope); 2294 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2295 EmitOMPReductionClauseInit(S, LoopScope); 2296 EmitOMPPrivateLoopCounters(S, LoopScope); 2297 EmitOMPLinearClause(S, LoopScope); 2298 (void)LoopScope.Privatize(); 2299 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2300 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2301 2302 // Detect the loop schedule kind and chunk. 2303 const Expr *ChunkExpr = nullptr; 2304 OpenMPScheduleTy ScheduleKind; 2305 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2306 ScheduleKind.Schedule = C->getScheduleKind(); 2307 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2308 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2309 ChunkExpr = C->getChunkSize(); 2310 } else { 2311 // Default behaviour for schedule clause. 2312 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2313 *this, S, ScheduleKind.Schedule, ChunkExpr); 2314 } 2315 bool HasChunkSizeOne = false; 2316 llvm::Value *Chunk = nullptr; 2317 if (ChunkExpr) { 2318 Chunk = EmitScalarExpr(ChunkExpr); 2319 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2320 S.getIterationVariable()->getType(), 2321 S.getBeginLoc()); 2322 Expr::EvalResult Result; 2323 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2324 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2325 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2326 } 2327 } 2328 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2329 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2330 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2331 // If the static schedule kind is specified or if the ordered clause is 2332 // specified, and if no monotonic modifier is specified, the effect will 2333 // be as if the monotonic modifier was specified. 2334 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2335 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2336 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2337 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2338 /* Chunked */ Chunk != nullptr) || 2339 StaticChunkedOne) && 2340 !Ordered) { 2341 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2342 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2343 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2344 // When no chunk_size is specified, the iteration space is divided into 2345 // chunks that are approximately equal in size, and at most one chunk is 2346 // distributed to each thread. Note that the size of the chunks is 2347 // unspecified in this case. 2348 CGOpenMPRuntime::StaticRTInput StaticInit( 2349 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2350 UB.getAddress(), ST.getAddress(), 2351 StaticChunkedOne ? Chunk : nullptr); 2352 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2353 ScheduleKind, StaticInit); 2354 JumpDest LoopExit = 2355 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2356 // UB = min(UB, GlobalUB); 2357 if (!StaticChunkedOne) 2358 EmitIgnoredExpr(S.getEnsureUpperBound()); 2359 // IV = LB; 2360 EmitIgnoredExpr(S.getInit()); 2361 // For unchunked static schedule generate: 2362 // 2363 // while (idx <= UB) { 2364 // BODY; 2365 // ++idx; 2366 // } 2367 // 2368 // For static schedule with chunk one: 2369 // 2370 // while (IV <= PrevUB) { 2371 // BODY; 2372 // IV += ST; 2373 // } 2374 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2375 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2376 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2377 [&S, LoopExit](CodeGenFunction &CGF) { 2378 CGF.EmitOMPLoopBody(S, LoopExit); 2379 CGF.EmitStopPoint(&S); 2380 }, 2381 [](CodeGenFunction &) {}); 2382 EmitBlock(LoopExit.getBlock()); 2383 // Tell the runtime we are done. 2384 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2385 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2386 S.getDirectiveKind()); 2387 }; 2388 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2389 } else { 2390 const bool IsMonotonic = 2391 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2392 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2393 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2394 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2395 // Emit the outer loop, which requests its work chunk [LB..UB] from 2396 // runtime and runs the inner loop to process it. 2397 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2398 ST.getAddress(), IL.getAddress(), 2399 Chunk, EUB); 2400 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2401 LoopArguments, CGDispatchBounds); 2402 } 2403 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2404 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2405 return CGF.Builder.CreateIsNotNull( 2406 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2407 }); 2408 } 2409 EmitOMPReductionClauseFinal( 2410 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2411 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2412 : /*Parallel only*/ OMPD_parallel); 2413 // Emit post-update of the reduction variables if IsLastIter != 0. 2414 emitPostUpdateForReductionClause( 2415 *this, S, [IL, &S](CodeGenFunction &CGF) { 2416 return CGF.Builder.CreateIsNotNull( 2417 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2418 }); 2419 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2420 if (HasLastprivateClause) 2421 EmitOMPLastprivateClauseFinal( 2422 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2423 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2424 } 2425 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2426 return CGF.Builder.CreateIsNotNull( 2427 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2428 }); 2429 DoacrossCleanupScope.ForceCleanup(); 2430 // We're now done with the loop, so jump to the continuation block. 2431 if (ContBlock) { 2432 EmitBranch(ContBlock); 2433 EmitBlock(ContBlock, /*IsFinished=*/true); 2434 } 2435 } 2436 return HasLastprivateClause; 2437 } 2438 2439 /// The following two functions generate expressions for the loop lower 2440 /// and upper bounds in case of static and dynamic (dispatch) schedule 2441 /// of the associated 'for' or 'distribute' loop. 2442 static std::pair<LValue, LValue> 2443 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2444 const auto &LS = cast<OMPLoopDirective>(S); 2445 LValue LB = 2446 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2447 LValue UB = 2448 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2449 return {LB, UB}; 2450 } 2451 2452 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2453 /// consider the lower and upper bound expressions generated by the 2454 /// worksharing loop support, but we use 0 and the iteration space size as 2455 /// constants 2456 static std::pair<llvm::Value *, llvm::Value *> 2457 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2458 Address LB, Address UB) { 2459 const auto &LS = cast<OMPLoopDirective>(S); 2460 const Expr *IVExpr = LS.getIterationVariable(); 2461 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2462 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2463 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2464 return {LBVal, UBVal}; 2465 } 2466 2467 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2468 bool HasLastprivates = false; 2469 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2470 PrePostActionTy &) { 2471 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2472 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2473 emitForLoopBounds, 2474 emitDispatchForLoopBounds); 2475 }; 2476 { 2477 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2478 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2479 S.hasCancel()); 2480 } 2481 2482 // Emit an implicit barrier at the end. 2483 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2484 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2485 } 2486 2487 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2488 bool HasLastprivates = false; 2489 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2490 PrePostActionTy &) { 2491 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2492 emitForLoopBounds, 2493 emitDispatchForLoopBounds); 2494 }; 2495 { 2496 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2497 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2498 } 2499 2500 // Emit an implicit barrier at the end. 2501 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2502 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2503 } 2504 2505 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2506 const Twine &Name, 2507 llvm::Value *Init = nullptr) { 2508 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2509 if (Init) 2510 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2511 return LVal; 2512 } 2513 2514 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2515 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2516 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2517 bool HasLastprivates = false; 2518 auto &&CodeGen = [&S, CapturedStmt, CS, 2519 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2520 ASTContext &C = CGF.getContext(); 2521 QualType KmpInt32Ty = 2522 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2523 // Emit helper vars inits. 2524 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2525 CGF.Builder.getInt32(0)); 2526 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2527 ? CGF.Builder.getInt32(CS->size() - 1) 2528 : CGF.Builder.getInt32(0); 2529 LValue UB = 2530 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2531 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2532 CGF.Builder.getInt32(1)); 2533 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2534 CGF.Builder.getInt32(0)); 2535 // Loop counter. 2536 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2537 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2538 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2539 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2540 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2541 // Generate condition for loop. 2542 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2543 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2544 // Increment for loop counter. 2545 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2546 S.getBeginLoc(), true); 2547 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2548 // Iterate through all sections and emit a switch construct: 2549 // switch (IV) { 2550 // case 0: 2551 // <SectionStmt[0]>; 2552 // break; 2553 // ... 2554 // case <NumSection> - 1: 2555 // <SectionStmt[<NumSection> - 1]>; 2556 // break; 2557 // } 2558 // .omp.sections.exit: 2559 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2560 llvm::SwitchInst *SwitchStmt = 2561 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2562 ExitBB, CS == nullptr ? 1 : CS->size()); 2563 if (CS) { 2564 unsigned CaseNumber = 0; 2565 for (const Stmt *SubStmt : CS->children()) { 2566 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2567 CGF.EmitBlock(CaseBB); 2568 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2569 CGF.EmitStmt(SubStmt); 2570 CGF.EmitBranch(ExitBB); 2571 ++CaseNumber; 2572 } 2573 } else { 2574 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2575 CGF.EmitBlock(CaseBB); 2576 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2577 CGF.EmitStmt(CapturedStmt); 2578 CGF.EmitBranch(ExitBB); 2579 } 2580 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2581 }; 2582 2583 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2584 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2585 // Emit implicit barrier to synchronize threads and avoid data races on 2586 // initialization of firstprivate variables and post-update of lastprivate 2587 // variables. 2588 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2589 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2590 /*ForceSimpleCall=*/true); 2591 } 2592 CGF.EmitOMPPrivateClause(S, LoopScope); 2593 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2594 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2595 (void)LoopScope.Privatize(); 2596 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2597 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2598 2599 // Emit static non-chunked loop. 2600 OpenMPScheduleTy ScheduleKind; 2601 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2602 CGOpenMPRuntime::StaticRTInput StaticInit( 2603 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2604 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2605 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2606 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2607 // UB = min(UB, GlobalUB); 2608 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2609 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2610 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2611 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2612 // IV = LB; 2613 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2614 // while (idx <= UB) { BODY; ++idx; } 2615 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2616 [](CodeGenFunction &) {}); 2617 // Tell the runtime we are done. 2618 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2619 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2620 S.getDirectiveKind()); 2621 }; 2622 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2623 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2624 // Emit post-update of the reduction variables if IsLastIter != 0. 2625 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2626 return CGF.Builder.CreateIsNotNull( 2627 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2628 }); 2629 2630 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2631 if (HasLastprivates) 2632 CGF.EmitOMPLastprivateClauseFinal( 2633 S, /*NoFinals=*/false, 2634 CGF.Builder.CreateIsNotNull( 2635 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2636 }; 2637 2638 bool HasCancel = false; 2639 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2640 HasCancel = OSD->hasCancel(); 2641 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2642 HasCancel = OPSD->hasCancel(); 2643 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2644 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2645 HasCancel); 2646 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2647 // clause. Otherwise the barrier will be generated by the codegen for the 2648 // directive. 2649 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2650 // Emit implicit barrier to synchronize threads and avoid data races on 2651 // initialization of firstprivate variables. 2652 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2653 OMPD_unknown); 2654 } 2655 } 2656 2657 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2658 { 2659 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2660 EmitSections(S); 2661 } 2662 // Emit an implicit barrier at the end. 2663 if (!S.getSingleClause<OMPNowaitClause>()) { 2664 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2665 OMPD_sections); 2666 } 2667 } 2668 2669 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2670 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2671 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2672 }; 2673 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2674 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2675 S.hasCancel()); 2676 } 2677 2678 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2679 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2680 llvm::SmallVector<const Expr *, 8> DestExprs; 2681 llvm::SmallVector<const Expr *, 8> SrcExprs; 2682 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2683 // Check if there are any 'copyprivate' clauses associated with this 2684 // 'single' construct. 2685 // Build a list of copyprivate variables along with helper expressions 2686 // (<source>, <destination>, <destination>=<source> expressions) 2687 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2688 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2689 DestExprs.append(C->destination_exprs().begin(), 2690 C->destination_exprs().end()); 2691 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2692 AssignmentOps.append(C->assignment_ops().begin(), 2693 C->assignment_ops().end()); 2694 } 2695 // Emit code for 'single' region along with 'copyprivate' clauses 2696 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2697 Action.Enter(CGF); 2698 OMPPrivateScope SingleScope(CGF); 2699 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2700 CGF.EmitOMPPrivateClause(S, SingleScope); 2701 (void)SingleScope.Privatize(); 2702 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2703 }; 2704 { 2705 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2706 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2707 CopyprivateVars, DestExprs, 2708 SrcExprs, AssignmentOps); 2709 } 2710 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2711 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2712 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2713 CGM.getOpenMPRuntime().emitBarrierCall( 2714 *this, S.getBeginLoc(), 2715 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2716 } 2717 } 2718 2719 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2720 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2721 Action.Enter(CGF); 2722 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2723 }; 2724 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2725 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2726 } 2727 2728 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2729 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2730 Action.Enter(CGF); 2731 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2732 }; 2733 const Expr *Hint = nullptr; 2734 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2735 Hint = HintClause->getHint(); 2736 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2737 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2738 S.getDirectiveName().getAsString(), 2739 CodeGen, S.getBeginLoc(), Hint); 2740 } 2741 2742 void CodeGenFunction::EmitOMPParallelForDirective( 2743 const OMPParallelForDirective &S) { 2744 // Emit directive as a combined directive that consists of two implicit 2745 // directives: 'parallel' with 'for' directive. 2746 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2747 Action.Enter(CGF); 2748 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2749 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2750 emitDispatchForLoopBounds); 2751 }; 2752 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2753 emitEmptyBoundParameters); 2754 } 2755 2756 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2757 const OMPParallelForSimdDirective &S) { 2758 // Emit directive as a combined directive that consists of two implicit 2759 // directives: 'parallel' with 'for' directive. 2760 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2761 Action.Enter(CGF); 2762 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2763 emitDispatchForLoopBounds); 2764 }; 2765 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2766 emitEmptyBoundParameters); 2767 } 2768 2769 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2770 const OMPParallelSectionsDirective &S) { 2771 // Emit directive as a combined directive that consists of two implicit 2772 // directives: 'parallel' with 'sections' directive. 2773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2774 Action.Enter(CGF); 2775 CGF.EmitSections(S); 2776 }; 2777 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2778 emitEmptyBoundParameters); 2779 } 2780 2781 void CodeGenFunction::EmitOMPTaskBasedDirective( 2782 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2783 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2784 OMPTaskDataTy &Data) { 2785 // Emit outlined function for task construct. 2786 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2787 auto I = CS->getCapturedDecl()->param_begin(); 2788 auto PartId = std::next(I); 2789 auto TaskT = std::next(I, 4); 2790 // Check if the task is final 2791 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2792 // If the condition constant folds and can be elided, try to avoid emitting 2793 // the condition and the dead arm of the if/else. 2794 const Expr *Cond = Clause->getCondition(); 2795 bool CondConstant; 2796 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2797 Data.Final.setInt(CondConstant); 2798 else 2799 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2800 } else { 2801 // By default the task is not final. 2802 Data.Final.setInt(/*IntVal=*/false); 2803 } 2804 // Check if the task has 'priority' clause. 2805 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2806 const Expr *Prio = Clause->getPriority(); 2807 Data.Priority.setInt(/*IntVal=*/true); 2808 Data.Priority.setPointer(EmitScalarConversion( 2809 EmitScalarExpr(Prio), Prio->getType(), 2810 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2811 Prio->getExprLoc())); 2812 } 2813 // The first function argument for tasks is a thread id, the second one is a 2814 // part id (0 for tied tasks, >=0 for untied task). 2815 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2816 // Get list of private variables. 2817 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2818 auto IRef = C->varlist_begin(); 2819 for (const Expr *IInit : C->private_copies()) { 2820 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2821 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2822 Data.PrivateVars.push_back(*IRef); 2823 Data.PrivateCopies.push_back(IInit); 2824 } 2825 ++IRef; 2826 } 2827 } 2828 EmittedAsPrivate.clear(); 2829 // Get list of firstprivate variables. 2830 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2831 auto IRef = C->varlist_begin(); 2832 auto IElemInitRef = C->inits().begin(); 2833 for (const Expr *IInit : C->private_copies()) { 2834 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2835 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2836 Data.FirstprivateVars.push_back(*IRef); 2837 Data.FirstprivateCopies.push_back(IInit); 2838 Data.FirstprivateInits.push_back(*IElemInitRef); 2839 } 2840 ++IRef; 2841 ++IElemInitRef; 2842 } 2843 } 2844 // Get list of lastprivate variables (for taskloops). 2845 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2846 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2847 auto IRef = C->varlist_begin(); 2848 auto ID = C->destination_exprs().begin(); 2849 for (const Expr *IInit : C->private_copies()) { 2850 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2851 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2852 Data.LastprivateVars.push_back(*IRef); 2853 Data.LastprivateCopies.push_back(IInit); 2854 } 2855 LastprivateDstsOrigs.insert( 2856 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2857 cast<DeclRefExpr>(*IRef)}); 2858 ++IRef; 2859 ++ID; 2860 } 2861 } 2862 SmallVector<const Expr *, 4> LHSs; 2863 SmallVector<const Expr *, 4> RHSs; 2864 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2865 auto IPriv = C->privates().begin(); 2866 auto IRed = C->reduction_ops().begin(); 2867 auto ILHS = C->lhs_exprs().begin(); 2868 auto IRHS = C->rhs_exprs().begin(); 2869 for (const Expr *Ref : C->varlists()) { 2870 Data.ReductionVars.emplace_back(Ref); 2871 Data.ReductionCopies.emplace_back(*IPriv); 2872 Data.ReductionOps.emplace_back(*IRed); 2873 LHSs.emplace_back(*ILHS); 2874 RHSs.emplace_back(*IRHS); 2875 std::advance(IPriv, 1); 2876 std::advance(IRed, 1); 2877 std::advance(ILHS, 1); 2878 std::advance(IRHS, 1); 2879 } 2880 } 2881 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2882 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2883 // Build list of dependences. 2884 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2885 for (const Expr *IRef : C->varlists()) 2886 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2887 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2888 CapturedRegion](CodeGenFunction &CGF, 2889 PrePostActionTy &Action) { 2890 // Set proper addresses for generated private copies. 2891 OMPPrivateScope Scope(CGF); 2892 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2893 !Data.LastprivateVars.empty()) { 2894 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 2895 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 2896 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2897 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2898 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2899 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2900 CS->getCapturedDecl()->getParam(PrivatesParam))); 2901 // Map privates. 2902 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2903 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2904 CallArgs.push_back(PrivatesPtr); 2905 for (const Expr *E : Data.PrivateVars) { 2906 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2907 Address PrivatePtr = CGF.CreateMemTemp( 2908 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2909 PrivatePtrs.emplace_back(VD, PrivatePtr); 2910 CallArgs.push_back(PrivatePtr.getPointer()); 2911 } 2912 for (const Expr *E : Data.FirstprivateVars) { 2913 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2914 Address PrivatePtr = 2915 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2916 ".firstpriv.ptr.addr"); 2917 PrivatePtrs.emplace_back(VD, PrivatePtr); 2918 CallArgs.push_back(PrivatePtr.getPointer()); 2919 } 2920 for (const Expr *E : Data.LastprivateVars) { 2921 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2922 Address PrivatePtr = 2923 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2924 ".lastpriv.ptr.addr"); 2925 PrivatePtrs.emplace_back(VD, PrivatePtr); 2926 CallArgs.push_back(PrivatePtr.getPointer()); 2927 } 2928 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2929 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 2930 for (const auto &Pair : LastprivateDstsOrigs) { 2931 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2932 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2933 /*RefersToEnclosingVariableOrCapture=*/ 2934 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2935 Pair.second->getType(), VK_LValue, 2936 Pair.second->getExprLoc()); 2937 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2938 return CGF.EmitLValue(&DRE).getAddress(); 2939 }); 2940 } 2941 for (const auto &Pair : PrivatePtrs) { 2942 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2943 CGF.getContext().getDeclAlign(Pair.first)); 2944 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2945 } 2946 } 2947 if (Data.Reductions) { 2948 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2949 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2950 Data.ReductionOps); 2951 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2952 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2953 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2954 RedCG.emitSharedLValue(CGF, Cnt); 2955 RedCG.emitAggregateType(CGF, Cnt); 2956 // FIXME: This must removed once the runtime library is fixed. 2957 // Emit required threadprivate variables for 2958 // initializer/combiner/finalizer. 2959 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2960 RedCG, Cnt); 2961 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2962 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2963 Replacement = 2964 Address(CGF.EmitScalarConversion( 2965 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2966 CGF.getContext().getPointerType( 2967 Data.ReductionCopies[Cnt]->getType()), 2968 Data.ReductionCopies[Cnt]->getExprLoc()), 2969 Replacement.getAlignment()); 2970 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2971 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2972 [Replacement]() { return Replacement; }); 2973 } 2974 } 2975 // Privatize all private variables except for in_reduction items. 2976 (void)Scope.Privatize(); 2977 SmallVector<const Expr *, 4> InRedVars; 2978 SmallVector<const Expr *, 4> InRedPrivs; 2979 SmallVector<const Expr *, 4> InRedOps; 2980 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2981 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2982 auto IPriv = C->privates().begin(); 2983 auto IRed = C->reduction_ops().begin(); 2984 auto ITD = C->taskgroup_descriptors().begin(); 2985 for (const Expr *Ref : C->varlists()) { 2986 InRedVars.emplace_back(Ref); 2987 InRedPrivs.emplace_back(*IPriv); 2988 InRedOps.emplace_back(*IRed); 2989 TaskgroupDescriptors.emplace_back(*ITD); 2990 std::advance(IPriv, 1); 2991 std::advance(IRed, 1); 2992 std::advance(ITD, 1); 2993 } 2994 } 2995 // Privatize in_reduction items here, because taskgroup descriptors must be 2996 // privatized earlier. 2997 OMPPrivateScope InRedScope(CGF); 2998 if (!InRedVars.empty()) { 2999 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3000 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3001 RedCG.emitSharedLValue(CGF, Cnt); 3002 RedCG.emitAggregateType(CGF, Cnt); 3003 // The taskgroup descriptor variable is always implicit firstprivate and 3004 // privatized already during processing of the firstprivates. 3005 // FIXME: This must removed once the runtime library is fixed. 3006 // Emit required threadprivate variables for 3007 // initializer/combiner/finalizer. 3008 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3009 RedCG, Cnt); 3010 llvm::Value *ReductionsPtr = 3011 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3012 TaskgroupDescriptors[Cnt]->getExprLoc()); 3013 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3014 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3015 Replacement = Address( 3016 CGF.EmitScalarConversion( 3017 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3018 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3019 InRedPrivs[Cnt]->getExprLoc()), 3020 Replacement.getAlignment()); 3021 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3022 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3023 [Replacement]() { return Replacement; }); 3024 } 3025 } 3026 (void)InRedScope.Privatize(); 3027 3028 Action.Enter(CGF); 3029 BodyGen(CGF); 3030 }; 3031 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3032 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3033 Data.NumberOfParts); 3034 OMPLexicalScope Scope(*this, S); 3035 TaskGen(*this, OutlinedFn, Data); 3036 } 3037 3038 static ImplicitParamDecl * 3039 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3040 QualType Ty, CapturedDecl *CD, 3041 SourceLocation Loc) { 3042 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3043 ImplicitParamDecl::Other); 3044 auto *OrigRef = DeclRefExpr::Create( 3045 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3046 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3047 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3048 ImplicitParamDecl::Other); 3049 auto *PrivateRef = DeclRefExpr::Create( 3050 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3051 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3052 QualType ElemType = C.getBaseElementType(Ty); 3053 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3054 ImplicitParamDecl::Other); 3055 auto *InitRef = DeclRefExpr::Create( 3056 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3057 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3058 PrivateVD->setInitStyle(VarDecl::CInit); 3059 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3060 InitRef, /*BasePath=*/nullptr, 3061 VK_RValue)); 3062 Data.FirstprivateVars.emplace_back(OrigRef); 3063 Data.FirstprivateCopies.emplace_back(PrivateRef); 3064 Data.FirstprivateInits.emplace_back(InitRef); 3065 return OrigVD; 3066 } 3067 3068 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3069 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3070 OMPTargetDataInfo &InputInfo) { 3071 // Emit outlined function for task construct. 3072 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3073 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3074 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3075 auto I = CS->getCapturedDecl()->param_begin(); 3076 auto PartId = std::next(I); 3077 auto TaskT = std::next(I, 4); 3078 OMPTaskDataTy Data; 3079 // The task is not final. 3080 Data.Final.setInt(/*IntVal=*/false); 3081 // Get list of firstprivate variables. 3082 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3083 auto IRef = C->varlist_begin(); 3084 auto IElemInitRef = C->inits().begin(); 3085 for (auto *IInit : C->private_copies()) { 3086 Data.FirstprivateVars.push_back(*IRef); 3087 Data.FirstprivateCopies.push_back(IInit); 3088 Data.FirstprivateInits.push_back(*IElemInitRef); 3089 ++IRef; 3090 ++IElemInitRef; 3091 } 3092 } 3093 OMPPrivateScope TargetScope(*this); 3094 VarDecl *BPVD = nullptr; 3095 VarDecl *PVD = nullptr; 3096 VarDecl *SVD = nullptr; 3097 if (InputInfo.NumberOfTargetItems > 0) { 3098 auto *CD = CapturedDecl::Create( 3099 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3100 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3101 QualType BaseAndPointersType = getContext().getConstantArrayType( 3102 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3103 /*IndexTypeQuals=*/0); 3104 BPVD = createImplicitFirstprivateForType( 3105 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3106 PVD = createImplicitFirstprivateForType( 3107 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3108 QualType SizesType = getContext().getConstantArrayType( 3109 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3110 /*IndexTypeQuals=*/0); 3111 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3112 S.getBeginLoc()); 3113 TargetScope.addPrivate( 3114 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3115 TargetScope.addPrivate(PVD, 3116 [&InputInfo]() { return InputInfo.PointersArray; }); 3117 TargetScope.addPrivate(SVD, 3118 [&InputInfo]() { return InputInfo.SizesArray; }); 3119 } 3120 (void)TargetScope.Privatize(); 3121 // Build list of dependences. 3122 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3123 for (const Expr *IRef : C->varlists()) 3124 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3125 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3126 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3127 // Set proper addresses for generated private copies. 3128 OMPPrivateScope Scope(CGF); 3129 if (!Data.FirstprivateVars.empty()) { 3130 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3131 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3132 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3133 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3134 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3135 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3136 CS->getCapturedDecl()->getParam(PrivatesParam))); 3137 // Map privates. 3138 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3139 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3140 CallArgs.push_back(PrivatesPtr); 3141 for (const Expr *E : Data.FirstprivateVars) { 3142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3143 Address PrivatePtr = 3144 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3145 ".firstpriv.ptr.addr"); 3146 PrivatePtrs.emplace_back(VD, PrivatePtr); 3147 CallArgs.push_back(PrivatePtr.getPointer()); 3148 } 3149 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3150 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3151 for (const auto &Pair : PrivatePtrs) { 3152 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3153 CGF.getContext().getDeclAlign(Pair.first)); 3154 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3155 } 3156 } 3157 // Privatize all private variables except for in_reduction items. 3158 (void)Scope.Privatize(); 3159 if (InputInfo.NumberOfTargetItems > 0) { 3160 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3161 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3162 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3163 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3164 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3165 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3166 } 3167 3168 Action.Enter(CGF); 3169 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3170 BodyGen(CGF); 3171 }; 3172 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3173 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3174 Data.NumberOfParts); 3175 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3176 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3177 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3178 SourceLocation()); 3179 3180 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3181 SharedsTy, CapturedStruct, &IfCond, Data); 3182 } 3183 3184 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3185 // Emit outlined function for task construct. 3186 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3187 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3188 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3189 const Expr *IfCond = nullptr; 3190 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3191 if (C->getNameModifier() == OMPD_unknown || 3192 C->getNameModifier() == OMPD_task) { 3193 IfCond = C->getCondition(); 3194 break; 3195 } 3196 } 3197 3198 OMPTaskDataTy Data; 3199 // Check if we should emit tied or untied task. 3200 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3201 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3202 CGF.EmitStmt(CS->getCapturedStmt()); 3203 }; 3204 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3205 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3206 const OMPTaskDataTy &Data) { 3207 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3208 SharedsTy, CapturedStruct, IfCond, 3209 Data); 3210 }; 3211 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3212 } 3213 3214 void CodeGenFunction::EmitOMPTaskyieldDirective( 3215 const OMPTaskyieldDirective &S) { 3216 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3217 } 3218 3219 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3220 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3221 } 3222 3223 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3224 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3225 } 3226 3227 void CodeGenFunction::EmitOMPTaskgroupDirective( 3228 const OMPTaskgroupDirective &S) { 3229 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3230 Action.Enter(CGF); 3231 if (const Expr *E = S.getReductionRef()) { 3232 SmallVector<const Expr *, 4> LHSs; 3233 SmallVector<const Expr *, 4> RHSs; 3234 OMPTaskDataTy Data; 3235 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3236 auto IPriv = C->privates().begin(); 3237 auto IRed = C->reduction_ops().begin(); 3238 auto ILHS = C->lhs_exprs().begin(); 3239 auto IRHS = C->rhs_exprs().begin(); 3240 for (const Expr *Ref : C->varlists()) { 3241 Data.ReductionVars.emplace_back(Ref); 3242 Data.ReductionCopies.emplace_back(*IPriv); 3243 Data.ReductionOps.emplace_back(*IRed); 3244 LHSs.emplace_back(*ILHS); 3245 RHSs.emplace_back(*IRHS); 3246 std::advance(IPriv, 1); 3247 std::advance(IRed, 1); 3248 std::advance(ILHS, 1); 3249 std::advance(IRHS, 1); 3250 } 3251 } 3252 llvm::Value *ReductionDesc = 3253 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3254 LHSs, RHSs, Data); 3255 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3256 CGF.EmitVarDecl(*VD); 3257 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3258 /*Volatile=*/false, E->getType()); 3259 } 3260 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3261 }; 3262 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3263 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3264 } 3265 3266 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3267 CGM.getOpenMPRuntime().emitFlush( 3268 *this, 3269 [&S]() -> ArrayRef<const Expr *> { 3270 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3271 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3272 FlushClause->varlist_end()); 3273 return llvm::None; 3274 }(), 3275 S.getBeginLoc()); 3276 } 3277 3278 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3279 const CodeGenLoopTy &CodeGenLoop, 3280 Expr *IncExpr) { 3281 // Emit the loop iteration variable. 3282 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3283 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3284 EmitVarDecl(*IVDecl); 3285 3286 // Emit the iterations count variable. 3287 // If it is not a variable, Sema decided to calculate iterations count on each 3288 // iteration (e.g., it is foldable into a constant). 3289 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3290 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3291 // Emit calculation of the iterations count. 3292 EmitIgnoredExpr(S.getCalcLastIteration()); 3293 } 3294 3295 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3296 3297 bool HasLastprivateClause = false; 3298 // Check pre-condition. 3299 { 3300 OMPLoopScope PreInitScope(*this, S); 3301 // Skip the entire loop if we don't meet the precondition. 3302 // If the condition constant folds and can be elided, avoid emitting the 3303 // whole loop. 3304 bool CondConstant; 3305 llvm::BasicBlock *ContBlock = nullptr; 3306 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3307 if (!CondConstant) 3308 return; 3309 } else { 3310 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3311 ContBlock = createBasicBlock("omp.precond.end"); 3312 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3313 getProfileCount(&S)); 3314 EmitBlock(ThenBlock); 3315 incrementProfileCounter(&S); 3316 } 3317 3318 emitAlignedClause(*this, S); 3319 // Emit 'then' code. 3320 { 3321 // Emit helper vars inits. 3322 3323 LValue LB = EmitOMPHelperVar( 3324 *this, cast<DeclRefExpr>( 3325 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3326 ? S.getCombinedLowerBoundVariable() 3327 : S.getLowerBoundVariable()))); 3328 LValue UB = EmitOMPHelperVar( 3329 *this, cast<DeclRefExpr>( 3330 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3331 ? S.getCombinedUpperBoundVariable() 3332 : S.getUpperBoundVariable()))); 3333 LValue ST = 3334 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3335 LValue IL = 3336 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3337 3338 OMPPrivateScope LoopScope(*this); 3339 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3340 // Emit implicit barrier to synchronize threads and avoid data races 3341 // on initialization of firstprivate variables and post-update of 3342 // lastprivate variables. 3343 CGM.getOpenMPRuntime().emitBarrierCall( 3344 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3345 /*ForceSimpleCall=*/true); 3346 } 3347 EmitOMPPrivateClause(S, LoopScope); 3348 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3349 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3350 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3351 EmitOMPReductionClauseInit(S, LoopScope); 3352 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3353 EmitOMPPrivateLoopCounters(S, LoopScope); 3354 (void)LoopScope.Privatize(); 3355 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3356 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3357 3358 // Detect the distribute schedule kind and chunk. 3359 llvm::Value *Chunk = nullptr; 3360 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3361 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3362 ScheduleKind = C->getDistScheduleKind(); 3363 if (const Expr *Ch = C->getChunkSize()) { 3364 Chunk = EmitScalarExpr(Ch); 3365 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3366 S.getIterationVariable()->getType(), 3367 S.getBeginLoc()); 3368 } 3369 } else { 3370 // Default behaviour for dist_schedule clause. 3371 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3372 *this, S, ScheduleKind, Chunk); 3373 } 3374 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3375 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3376 3377 // OpenMP [2.10.8, distribute Construct, Description] 3378 // If dist_schedule is specified, kind must be static. If specified, 3379 // iterations are divided into chunks of size chunk_size, chunks are 3380 // assigned to the teams of the league in a round-robin fashion in the 3381 // order of the team number. When no chunk_size is specified, the 3382 // iteration space is divided into chunks that are approximately equal 3383 // in size, and at most one chunk is distributed to each team of the 3384 // league. The size of the chunks is unspecified in this case. 3385 bool StaticChunked = RT.isStaticChunked( 3386 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3387 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3388 if (RT.isStaticNonchunked(ScheduleKind, 3389 /* Chunked */ Chunk != nullptr) || 3390 StaticChunked) { 3391 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3392 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3393 CGOpenMPRuntime::StaticRTInput StaticInit( 3394 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3395 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3396 StaticChunked ? Chunk : nullptr); 3397 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3398 StaticInit); 3399 JumpDest LoopExit = 3400 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3401 // UB = min(UB, GlobalUB); 3402 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3403 ? S.getCombinedEnsureUpperBound() 3404 : S.getEnsureUpperBound()); 3405 // IV = LB; 3406 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3407 ? S.getCombinedInit() 3408 : S.getInit()); 3409 3410 const Expr *Cond = 3411 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3412 ? S.getCombinedCond() 3413 : S.getCond(); 3414 3415 if (StaticChunked) 3416 Cond = S.getCombinedDistCond(); 3417 3418 // For static unchunked schedules generate: 3419 // 3420 // 1. For distribute alone, codegen 3421 // while (idx <= UB) { 3422 // BODY; 3423 // ++idx; 3424 // } 3425 // 3426 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3427 // while (idx <= UB) { 3428 // <CodeGen rest of pragma>(LB, UB); 3429 // idx += ST; 3430 // } 3431 // 3432 // For static chunk one schedule generate: 3433 // 3434 // while (IV <= GlobalUB) { 3435 // <CodeGen rest of pragma>(LB, UB); 3436 // LB += ST; 3437 // UB += ST; 3438 // UB = min(UB, GlobalUB); 3439 // IV = LB; 3440 // } 3441 // 3442 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3443 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3444 CodeGenLoop(CGF, S, LoopExit); 3445 }, 3446 [&S, StaticChunked](CodeGenFunction &CGF) { 3447 if (StaticChunked) { 3448 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3449 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3450 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3451 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3452 } 3453 }); 3454 EmitBlock(LoopExit.getBlock()); 3455 // Tell the runtime we are done. 3456 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3457 } else { 3458 // Emit the outer loop, which requests its work chunk [LB..UB] from 3459 // runtime and runs the inner loop to process it. 3460 const OMPLoopArguments LoopArguments = { 3461 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3462 Chunk}; 3463 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3464 CodeGenLoop); 3465 } 3466 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3467 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3468 return CGF.Builder.CreateIsNotNull( 3469 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3470 }); 3471 } 3472 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3473 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3474 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3475 EmitOMPReductionClauseFinal(S, OMPD_simd); 3476 // Emit post-update of the reduction variables if IsLastIter != 0. 3477 emitPostUpdateForReductionClause( 3478 *this, S, [IL, &S](CodeGenFunction &CGF) { 3479 return CGF.Builder.CreateIsNotNull( 3480 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3481 }); 3482 } 3483 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3484 if (HasLastprivateClause) { 3485 EmitOMPLastprivateClauseFinal( 3486 S, /*NoFinals=*/false, 3487 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3488 } 3489 } 3490 3491 // We're now done with the loop, so jump to the continuation block. 3492 if (ContBlock) { 3493 EmitBranch(ContBlock); 3494 EmitBlock(ContBlock, true); 3495 } 3496 } 3497 } 3498 3499 void CodeGenFunction::EmitOMPDistributeDirective( 3500 const OMPDistributeDirective &S) { 3501 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3502 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3503 }; 3504 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3505 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3506 } 3507 3508 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3509 const CapturedStmt *S) { 3510 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3511 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3512 CGF.CapturedStmtInfo = &CapStmtInfo; 3513 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3514 Fn->setDoesNotRecurse(); 3515 return Fn; 3516 } 3517 3518 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3519 if (S.hasClausesOfKind<OMPDependClause>()) { 3520 assert(!S.getAssociatedStmt() && 3521 "No associated statement must be in ordered depend construct."); 3522 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3523 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3524 return; 3525 } 3526 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3527 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3528 PrePostActionTy &Action) { 3529 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3530 if (C) { 3531 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3532 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3533 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3534 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3535 OutlinedFn, CapturedVars); 3536 } else { 3537 Action.Enter(CGF); 3538 CGF.EmitStmt(CS->getCapturedStmt()); 3539 } 3540 }; 3541 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3542 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3543 } 3544 3545 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3546 QualType SrcType, QualType DestType, 3547 SourceLocation Loc) { 3548 assert(CGF.hasScalarEvaluationKind(DestType) && 3549 "DestType must have scalar evaluation kind."); 3550 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3551 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3552 DestType, Loc) 3553 : CGF.EmitComplexToScalarConversion( 3554 Val.getComplexVal(), SrcType, DestType, Loc); 3555 } 3556 3557 static CodeGenFunction::ComplexPairTy 3558 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3559 QualType DestType, SourceLocation Loc) { 3560 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3561 "DestType must have complex evaluation kind."); 3562 CodeGenFunction::ComplexPairTy ComplexVal; 3563 if (Val.isScalar()) { 3564 // Convert the input element to the element type of the complex. 3565 QualType DestElementType = 3566 DestType->castAs<ComplexType>()->getElementType(); 3567 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3568 Val.getScalarVal(), SrcType, DestElementType, Loc); 3569 ComplexVal = CodeGenFunction::ComplexPairTy( 3570 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3571 } else { 3572 assert(Val.isComplex() && "Must be a scalar or complex."); 3573 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3574 QualType DestElementType = 3575 DestType->castAs<ComplexType>()->getElementType(); 3576 ComplexVal.first = CGF.EmitScalarConversion( 3577 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3578 ComplexVal.second = CGF.EmitScalarConversion( 3579 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3580 } 3581 return ComplexVal; 3582 } 3583 3584 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3585 LValue LVal, RValue RVal) { 3586 if (LVal.isGlobalReg()) { 3587 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3588 } else { 3589 CGF.EmitAtomicStore(RVal, LVal, 3590 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3591 : llvm::AtomicOrdering::Monotonic, 3592 LVal.isVolatile(), /*IsInit=*/false); 3593 } 3594 } 3595 3596 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3597 QualType RValTy, SourceLocation Loc) { 3598 switch (getEvaluationKind(LVal.getType())) { 3599 case TEK_Scalar: 3600 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3601 *this, RVal, RValTy, LVal.getType(), Loc)), 3602 LVal); 3603 break; 3604 case TEK_Complex: 3605 EmitStoreOfComplex( 3606 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3607 /*isInit=*/false); 3608 break; 3609 case TEK_Aggregate: 3610 llvm_unreachable("Must be a scalar or complex."); 3611 } 3612 } 3613 3614 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3615 const Expr *X, const Expr *V, 3616 SourceLocation Loc) { 3617 // v = x; 3618 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3619 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3620 LValue XLValue = CGF.EmitLValue(X); 3621 LValue VLValue = CGF.EmitLValue(V); 3622 RValue Res = XLValue.isGlobalReg() 3623 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3624 : CGF.EmitAtomicLoad( 3625 XLValue, Loc, 3626 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3627 : llvm::AtomicOrdering::Monotonic, 3628 XLValue.isVolatile()); 3629 // OpenMP, 2.12.6, atomic Construct 3630 // Any atomic construct with a seq_cst clause forces the atomically 3631 // performed operation to include an implicit flush operation without a 3632 // list. 3633 if (IsSeqCst) 3634 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3635 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3636 } 3637 3638 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3639 const Expr *X, const Expr *E, 3640 SourceLocation Loc) { 3641 // x = expr; 3642 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3643 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3644 // OpenMP, 2.12.6, atomic Construct 3645 // Any atomic construct with a seq_cst clause forces the atomically 3646 // performed operation to include an implicit flush operation without a 3647 // list. 3648 if (IsSeqCst) 3649 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3650 } 3651 3652 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3653 RValue Update, 3654 BinaryOperatorKind BO, 3655 llvm::AtomicOrdering AO, 3656 bool IsXLHSInRHSPart) { 3657 ASTContext &Context = CGF.getContext(); 3658 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3659 // expression is simple and atomic is allowed for the given type for the 3660 // target platform. 3661 if (BO == BO_Comma || !Update.isScalar() || 3662 !Update.getScalarVal()->getType()->isIntegerTy() || 3663 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3664 (Update.getScalarVal()->getType() != 3665 X.getAddress().getElementType())) || 3666 !X.getAddress().getElementType()->isIntegerTy() || 3667 !Context.getTargetInfo().hasBuiltinAtomic( 3668 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3669 return std::make_pair(false, RValue::get(nullptr)); 3670 3671 llvm::AtomicRMWInst::BinOp RMWOp; 3672 switch (BO) { 3673 case BO_Add: 3674 RMWOp = llvm::AtomicRMWInst::Add; 3675 break; 3676 case BO_Sub: 3677 if (!IsXLHSInRHSPart) 3678 return std::make_pair(false, RValue::get(nullptr)); 3679 RMWOp = llvm::AtomicRMWInst::Sub; 3680 break; 3681 case BO_And: 3682 RMWOp = llvm::AtomicRMWInst::And; 3683 break; 3684 case BO_Or: 3685 RMWOp = llvm::AtomicRMWInst::Or; 3686 break; 3687 case BO_Xor: 3688 RMWOp = llvm::AtomicRMWInst::Xor; 3689 break; 3690 case BO_LT: 3691 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3692 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3693 : llvm::AtomicRMWInst::Max) 3694 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3695 : llvm::AtomicRMWInst::UMax); 3696 break; 3697 case BO_GT: 3698 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3699 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3700 : llvm::AtomicRMWInst::Min) 3701 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3702 : llvm::AtomicRMWInst::UMin); 3703 break; 3704 case BO_Assign: 3705 RMWOp = llvm::AtomicRMWInst::Xchg; 3706 break; 3707 case BO_Mul: 3708 case BO_Div: 3709 case BO_Rem: 3710 case BO_Shl: 3711 case BO_Shr: 3712 case BO_LAnd: 3713 case BO_LOr: 3714 return std::make_pair(false, RValue::get(nullptr)); 3715 case BO_PtrMemD: 3716 case BO_PtrMemI: 3717 case BO_LE: 3718 case BO_GE: 3719 case BO_EQ: 3720 case BO_NE: 3721 case BO_Cmp: 3722 case BO_AddAssign: 3723 case BO_SubAssign: 3724 case BO_AndAssign: 3725 case BO_OrAssign: 3726 case BO_XorAssign: 3727 case BO_MulAssign: 3728 case BO_DivAssign: 3729 case BO_RemAssign: 3730 case BO_ShlAssign: 3731 case BO_ShrAssign: 3732 case BO_Comma: 3733 llvm_unreachable("Unsupported atomic update operation"); 3734 } 3735 llvm::Value *UpdateVal = Update.getScalarVal(); 3736 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3737 UpdateVal = CGF.Builder.CreateIntCast( 3738 IC, X.getAddress().getElementType(), 3739 X.getType()->hasSignedIntegerRepresentation()); 3740 } 3741 llvm::Value *Res = 3742 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3743 return std::make_pair(true, RValue::get(Res)); 3744 } 3745 3746 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3747 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3748 llvm::AtomicOrdering AO, SourceLocation Loc, 3749 const llvm::function_ref<RValue(RValue)> CommonGen) { 3750 // Update expressions are allowed to have the following forms: 3751 // x binop= expr; -> xrval + expr; 3752 // x++, ++x -> xrval + 1; 3753 // x--, --x -> xrval - 1; 3754 // x = x binop expr; -> xrval binop expr 3755 // x = expr Op x; - > expr binop xrval; 3756 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3757 if (!Res.first) { 3758 if (X.isGlobalReg()) { 3759 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3760 // 'xrval'. 3761 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3762 } else { 3763 // Perform compare-and-swap procedure. 3764 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3765 } 3766 } 3767 return Res; 3768 } 3769 3770 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3771 const Expr *X, const Expr *E, 3772 const Expr *UE, bool IsXLHSInRHSPart, 3773 SourceLocation Loc) { 3774 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3775 "Update expr in 'atomic update' must be a binary operator."); 3776 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3777 // Update expressions are allowed to have the following forms: 3778 // x binop= expr; -> xrval + expr; 3779 // x++, ++x -> xrval + 1; 3780 // x--, --x -> xrval - 1; 3781 // x = x binop expr; -> xrval binop expr 3782 // x = expr Op x; - > expr binop xrval; 3783 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3784 LValue XLValue = CGF.EmitLValue(X); 3785 RValue ExprRValue = CGF.EmitAnyExpr(E); 3786 llvm::AtomicOrdering AO = IsSeqCst 3787 ? llvm::AtomicOrdering::SequentiallyConsistent 3788 : llvm::AtomicOrdering::Monotonic; 3789 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3790 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3791 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3792 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3793 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3794 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3795 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3796 return CGF.EmitAnyExpr(UE); 3797 }; 3798 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3799 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3800 // OpenMP, 2.12.6, atomic Construct 3801 // Any atomic construct with a seq_cst clause forces the atomically 3802 // performed operation to include an implicit flush operation without a 3803 // list. 3804 if (IsSeqCst) 3805 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3806 } 3807 3808 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3809 QualType SourceType, QualType ResType, 3810 SourceLocation Loc) { 3811 switch (CGF.getEvaluationKind(ResType)) { 3812 case TEK_Scalar: 3813 return RValue::get( 3814 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3815 case TEK_Complex: { 3816 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3817 return RValue::getComplex(Res.first, Res.second); 3818 } 3819 case TEK_Aggregate: 3820 break; 3821 } 3822 llvm_unreachable("Must be a scalar or complex."); 3823 } 3824 3825 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3826 bool IsPostfixUpdate, const Expr *V, 3827 const Expr *X, const Expr *E, 3828 const Expr *UE, bool IsXLHSInRHSPart, 3829 SourceLocation Loc) { 3830 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3831 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3832 RValue NewVVal; 3833 LValue VLValue = CGF.EmitLValue(V); 3834 LValue XLValue = CGF.EmitLValue(X); 3835 RValue ExprRValue = CGF.EmitAnyExpr(E); 3836 llvm::AtomicOrdering AO = IsSeqCst 3837 ? llvm::AtomicOrdering::SequentiallyConsistent 3838 : llvm::AtomicOrdering::Monotonic; 3839 QualType NewVValType; 3840 if (UE) { 3841 // 'x' is updated with some additional value. 3842 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3843 "Update expr in 'atomic capture' must be a binary operator."); 3844 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3845 // Update expressions are allowed to have the following forms: 3846 // x binop= expr; -> xrval + expr; 3847 // x++, ++x -> xrval + 1; 3848 // x--, --x -> xrval - 1; 3849 // x = x binop expr; -> xrval binop expr 3850 // x = expr Op x; - > expr binop xrval; 3851 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3852 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3853 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3854 NewVValType = XRValExpr->getType(); 3855 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3856 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3857 IsPostfixUpdate](RValue XRValue) { 3858 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3859 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3860 RValue Res = CGF.EmitAnyExpr(UE); 3861 NewVVal = IsPostfixUpdate ? XRValue : Res; 3862 return Res; 3863 }; 3864 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3865 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3866 if (Res.first) { 3867 // 'atomicrmw' instruction was generated. 3868 if (IsPostfixUpdate) { 3869 // Use old value from 'atomicrmw'. 3870 NewVVal = Res.second; 3871 } else { 3872 // 'atomicrmw' does not provide new value, so evaluate it using old 3873 // value of 'x'. 3874 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3875 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3876 NewVVal = CGF.EmitAnyExpr(UE); 3877 } 3878 } 3879 } else { 3880 // 'x' is simply rewritten with some 'expr'. 3881 NewVValType = X->getType().getNonReferenceType(); 3882 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3883 X->getType().getNonReferenceType(), Loc); 3884 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3885 NewVVal = XRValue; 3886 return ExprRValue; 3887 }; 3888 // Try to perform atomicrmw xchg, otherwise simple exchange. 3889 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3890 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3891 Loc, Gen); 3892 if (Res.first) { 3893 // 'atomicrmw' instruction was generated. 3894 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3895 } 3896 } 3897 // Emit post-update store to 'v' of old/new 'x' value. 3898 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3899 // OpenMP, 2.12.6, atomic Construct 3900 // Any atomic construct with a seq_cst clause forces the atomically 3901 // performed operation to include an implicit flush operation without a 3902 // list. 3903 if (IsSeqCst) 3904 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3905 } 3906 3907 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3908 bool IsSeqCst, bool IsPostfixUpdate, 3909 const Expr *X, const Expr *V, const Expr *E, 3910 const Expr *UE, bool IsXLHSInRHSPart, 3911 SourceLocation Loc) { 3912 switch (Kind) { 3913 case OMPC_read: 3914 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3915 break; 3916 case OMPC_write: 3917 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3918 break; 3919 case OMPC_unknown: 3920 case OMPC_update: 3921 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3922 break; 3923 case OMPC_capture: 3924 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3925 IsXLHSInRHSPart, Loc); 3926 break; 3927 case OMPC_if: 3928 case OMPC_final: 3929 case OMPC_num_threads: 3930 case OMPC_private: 3931 case OMPC_firstprivate: 3932 case OMPC_lastprivate: 3933 case OMPC_reduction: 3934 case OMPC_task_reduction: 3935 case OMPC_in_reduction: 3936 case OMPC_safelen: 3937 case OMPC_simdlen: 3938 case OMPC_collapse: 3939 case OMPC_default: 3940 case OMPC_seq_cst: 3941 case OMPC_shared: 3942 case OMPC_linear: 3943 case OMPC_aligned: 3944 case OMPC_copyin: 3945 case OMPC_copyprivate: 3946 case OMPC_flush: 3947 case OMPC_proc_bind: 3948 case OMPC_schedule: 3949 case OMPC_ordered: 3950 case OMPC_nowait: 3951 case OMPC_untied: 3952 case OMPC_threadprivate: 3953 case OMPC_depend: 3954 case OMPC_mergeable: 3955 case OMPC_device: 3956 case OMPC_threads: 3957 case OMPC_simd: 3958 case OMPC_map: 3959 case OMPC_num_teams: 3960 case OMPC_thread_limit: 3961 case OMPC_priority: 3962 case OMPC_grainsize: 3963 case OMPC_nogroup: 3964 case OMPC_num_tasks: 3965 case OMPC_hint: 3966 case OMPC_dist_schedule: 3967 case OMPC_defaultmap: 3968 case OMPC_uniform: 3969 case OMPC_to: 3970 case OMPC_from: 3971 case OMPC_use_device_ptr: 3972 case OMPC_is_device_ptr: 3973 case OMPC_unified_address: 3974 case OMPC_unified_shared_memory: 3975 case OMPC_reverse_offload: 3976 case OMPC_dynamic_allocators: 3977 case OMPC_atomic_default_mem_order: 3978 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3979 } 3980 } 3981 3982 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3983 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3984 OpenMPClauseKind Kind = OMPC_unknown; 3985 for (const OMPClause *C : S.clauses()) { 3986 // Find first clause (skip seq_cst clause, if it is first). 3987 if (C->getClauseKind() != OMPC_seq_cst) { 3988 Kind = C->getClauseKind(); 3989 break; 3990 } 3991 } 3992 3993 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3994 if (const auto *FE = dyn_cast<FullExpr>(CS)) 3995 enterFullExpression(FE); 3996 // Processing for statements under 'atomic capture'. 3997 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3998 for (const Stmt *C : Compound->body()) { 3999 if (const auto *FE = dyn_cast<FullExpr>(C)) 4000 enterFullExpression(FE); 4001 } 4002 } 4003 4004 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4005 PrePostActionTy &) { 4006 CGF.EmitStopPoint(CS); 4007 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4008 S.getV(), S.getExpr(), S.getUpdateExpr(), 4009 S.isXLHSInRHSPart(), S.getBeginLoc()); 4010 }; 4011 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4012 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4013 } 4014 4015 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4016 const OMPExecutableDirective &S, 4017 const RegionCodeGenTy &CodeGen) { 4018 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4019 CodeGenModule &CGM = CGF.CGM; 4020 4021 // On device emit this construct as inlined code. 4022 if (CGM.getLangOpts().OpenMPIsDevice) { 4023 OMPLexicalScope Scope(CGF, S, OMPD_target); 4024 CGM.getOpenMPRuntime().emitInlinedDirective( 4025 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4026 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4027 }); 4028 return; 4029 } 4030 4031 llvm::Function *Fn = nullptr; 4032 llvm::Constant *FnID = nullptr; 4033 4034 const Expr *IfCond = nullptr; 4035 // Check for the at most one if clause associated with the target region. 4036 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4037 if (C->getNameModifier() == OMPD_unknown || 4038 C->getNameModifier() == OMPD_target) { 4039 IfCond = C->getCondition(); 4040 break; 4041 } 4042 } 4043 4044 // Check if we have any device clause associated with the directive. 4045 const Expr *Device = nullptr; 4046 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4047 Device = C->getDevice(); 4048 4049 // Check if we have an if clause whose conditional always evaluates to false 4050 // or if we do not have any targets specified. If so the target region is not 4051 // an offload entry point. 4052 bool IsOffloadEntry = true; 4053 if (IfCond) { 4054 bool Val; 4055 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4056 IsOffloadEntry = false; 4057 } 4058 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4059 IsOffloadEntry = false; 4060 4061 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4062 StringRef ParentName; 4063 // In case we have Ctors/Dtors we use the complete type variant to produce 4064 // the mangling of the device outlined kernel. 4065 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4066 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4067 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4068 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4069 else 4070 ParentName = 4071 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4072 4073 // Emit target region as a standalone region. 4074 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4075 IsOffloadEntry, CodeGen); 4076 OMPLexicalScope Scope(CGF, S, OMPD_task); 4077 auto &&SizeEmitter = [](CodeGenFunction &CGF, const OMPLoopDirective &D) { 4078 OMPLoopScope(CGF, D); 4079 // Emit calculation of the iterations count. 4080 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4081 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4082 /*IsSigned=*/false); 4083 return NumIterations; 4084 }; 4085 if (IsOffloadEntry) 4086 CGM.getOpenMPRuntime().emitTargetNumIterationsCall(CGF, S, Device, 4087 SizeEmitter); 4088 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4089 } 4090 4091 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4092 PrePostActionTy &Action) { 4093 Action.Enter(CGF); 4094 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4095 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4096 CGF.EmitOMPPrivateClause(S, PrivateScope); 4097 (void)PrivateScope.Privatize(); 4098 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4099 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4100 4101 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4102 } 4103 4104 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4105 StringRef ParentName, 4106 const OMPTargetDirective &S) { 4107 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4108 emitTargetRegion(CGF, S, Action); 4109 }; 4110 llvm::Function *Fn; 4111 llvm::Constant *Addr; 4112 // Emit target region as a standalone region. 4113 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4114 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4115 assert(Fn && Addr && "Target device function emission failed."); 4116 } 4117 4118 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4119 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4120 emitTargetRegion(CGF, S, Action); 4121 }; 4122 emitCommonOMPTargetDirective(*this, S, CodeGen); 4123 } 4124 4125 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4126 const OMPExecutableDirective &S, 4127 OpenMPDirectiveKind InnermostKind, 4128 const RegionCodeGenTy &CodeGen) { 4129 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4130 llvm::Function *OutlinedFn = 4131 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4132 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4133 4134 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4135 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4136 if (NT || TL) { 4137 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4138 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4139 4140 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4141 S.getBeginLoc()); 4142 } 4143 4144 OMPTeamsScope Scope(CGF, S); 4145 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4146 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4147 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4148 CapturedVars); 4149 } 4150 4151 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4152 // Emit teams region as a standalone region. 4153 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4154 Action.Enter(CGF); 4155 OMPPrivateScope PrivateScope(CGF); 4156 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4157 CGF.EmitOMPPrivateClause(S, PrivateScope); 4158 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4159 (void)PrivateScope.Privatize(); 4160 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4161 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4162 }; 4163 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4164 emitPostUpdateForReductionClause(*this, S, 4165 [](CodeGenFunction &) { return nullptr; }); 4166 } 4167 4168 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4169 const OMPTargetTeamsDirective &S) { 4170 auto *CS = S.getCapturedStmt(OMPD_teams); 4171 Action.Enter(CGF); 4172 // Emit teams region as a standalone region. 4173 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4174 Action.Enter(CGF); 4175 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4176 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4177 CGF.EmitOMPPrivateClause(S, PrivateScope); 4178 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4179 (void)PrivateScope.Privatize(); 4180 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4181 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4182 CGF.EmitStmt(CS->getCapturedStmt()); 4183 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4184 }; 4185 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4186 emitPostUpdateForReductionClause(CGF, S, 4187 [](CodeGenFunction &) { return nullptr; }); 4188 } 4189 4190 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4191 CodeGenModule &CGM, StringRef ParentName, 4192 const OMPTargetTeamsDirective &S) { 4193 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4194 emitTargetTeamsRegion(CGF, Action, S); 4195 }; 4196 llvm::Function *Fn; 4197 llvm::Constant *Addr; 4198 // Emit target region as a standalone region. 4199 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4200 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4201 assert(Fn && Addr && "Target device function emission failed."); 4202 } 4203 4204 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4205 const OMPTargetTeamsDirective &S) { 4206 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4207 emitTargetTeamsRegion(CGF, Action, S); 4208 }; 4209 emitCommonOMPTargetDirective(*this, S, CodeGen); 4210 } 4211 4212 static void 4213 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4214 const OMPTargetTeamsDistributeDirective &S) { 4215 Action.Enter(CGF); 4216 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4217 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4218 }; 4219 4220 // Emit teams region as a standalone region. 4221 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4222 PrePostActionTy &Action) { 4223 Action.Enter(CGF); 4224 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4225 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4226 (void)PrivateScope.Privatize(); 4227 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4228 CodeGenDistribute); 4229 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4230 }; 4231 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4232 emitPostUpdateForReductionClause(CGF, S, 4233 [](CodeGenFunction &) { return nullptr; }); 4234 } 4235 4236 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4237 CodeGenModule &CGM, StringRef ParentName, 4238 const OMPTargetTeamsDistributeDirective &S) { 4239 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4240 emitTargetTeamsDistributeRegion(CGF, Action, S); 4241 }; 4242 llvm::Function *Fn; 4243 llvm::Constant *Addr; 4244 // Emit target region as a standalone region. 4245 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4246 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4247 assert(Fn && Addr && "Target device function emission failed."); 4248 } 4249 4250 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4251 const OMPTargetTeamsDistributeDirective &S) { 4252 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4253 emitTargetTeamsDistributeRegion(CGF, Action, S); 4254 }; 4255 emitCommonOMPTargetDirective(*this, S, CodeGen); 4256 } 4257 4258 static void emitTargetTeamsDistributeSimdRegion( 4259 CodeGenFunction &CGF, PrePostActionTy &Action, 4260 const OMPTargetTeamsDistributeSimdDirective &S) { 4261 Action.Enter(CGF); 4262 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4263 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4264 }; 4265 4266 // Emit teams region as a standalone region. 4267 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4268 PrePostActionTy &Action) { 4269 Action.Enter(CGF); 4270 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4271 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4272 (void)PrivateScope.Privatize(); 4273 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4274 CodeGenDistribute); 4275 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4276 }; 4277 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4278 emitPostUpdateForReductionClause(CGF, S, 4279 [](CodeGenFunction &) { return nullptr; }); 4280 } 4281 4282 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4283 CodeGenModule &CGM, StringRef ParentName, 4284 const OMPTargetTeamsDistributeSimdDirective &S) { 4285 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4286 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4287 }; 4288 llvm::Function *Fn; 4289 llvm::Constant *Addr; 4290 // Emit target region as a standalone region. 4291 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4292 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4293 assert(Fn && Addr && "Target device function emission failed."); 4294 } 4295 4296 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4297 const OMPTargetTeamsDistributeSimdDirective &S) { 4298 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4299 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4300 }; 4301 emitCommonOMPTargetDirective(*this, S, CodeGen); 4302 } 4303 4304 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4305 const OMPTeamsDistributeDirective &S) { 4306 4307 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4308 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4309 }; 4310 4311 // Emit teams region as a standalone region. 4312 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4313 PrePostActionTy &Action) { 4314 Action.Enter(CGF); 4315 OMPPrivateScope PrivateScope(CGF); 4316 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4317 (void)PrivateScope.Privatize(); 4318 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4319 CodeGenDistribute); 4320 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4321 }; 4322 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4323 emitPostUpdateForReductionClause(*this, S, 4324 [](CodeGenFunction &) { return nullptr; }); 4325 } 4326 4327 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4328 const OMPTeamsDistributeSimdDirective &S) { 4329 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4330 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4331 }; 4332 4333 // Emit teams region as a standalone region. 4334 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4335 PrePostActionTy &Action) { 4336 Action.Enter(CGF); 4337 OMPPrivateScope PrivateScope(CGF); 4338 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4339 (void)PrivateScope.Privatize(); 4340 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4341 CodeGenDistribute); 4342 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4343 }; 4344 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4345 emitPostUpdateForReductionClause(*this, S, 4346 [](CodeGenFunction &) { return nullptr; }); 4347 } 4348 4349 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4350 const OMPTeamsDistributeParallelForDirective &S) { 4351 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4352 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4353 S.getDistInc()); 4354 }; 4355 4356 // Emit teams region as a standalone region. 4357 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4358 PrePostActionTy &Action) { 4359 Action.Enter(CGF); 4360 OMPPrivateScope PrivateScope(CGF); 4361 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4362 (void)PrivateScope.Privatize(); 4363 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4364 CodeGenDistribute); 4365 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4366 }; 4367 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4368 emitPostUpdateForReductionClause(*this, S, 4369 [](CodeGenFunction &) { return nullptr; }); 4370 } 4371 4372 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4373 const OMPTeamsDistributeParallelForSimdDirective &S) { 4374 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4375 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4376 S.getDistInc()); 4377 }; 4378 4379 // Emit teams region as a standalone region. 4380 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4381 PrePostActionTy &Action) { 4382 Action.Enter(CGF); 4383 OMPPrivateScope PrivateScope(CGF); 4384 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4385 (void)PrivateScope.Privatize(); 4386 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4387 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4388 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4389 }; 4390 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4391 emitPostUpdateForReductionClause(*this, S, 4392 [](CodeGenFunction &) { return nullptr; }); 4393 } 4394 4395 static void emitTargetTeamsDistributeParallelForRegion( 4396 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4397 PrePostActionTy &Action) { 4398 Action.Enter(CGF); 4399 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4400 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4401 S.getDistInc()); 4402 }; 4403 4404 // Emit teams region as a standalone region. 4405 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4406 PrePostActionTy &Action) { 4407 Action.Enter(CGF); 4408 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4409 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4410 (void)PrivateScope.Privatize(); 4411 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4412 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4413 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4414 }; 4415 4416 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4417 CodeGenTeams); 4418 emitPostUpdateForReductionClause(CGF, S, 4419 [](CodeGenFunction &) { return nullptr; }); 4420 } 4421 4422 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4423 CodeGenModule &CGM, StringRef ParentName, 4424 const OMPTargetTeamsDistributeParallelForDirective &S) { 4425 // Emit SPMD target teams distribute parallel for region as a standalone 4426 // region. 4427 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4428 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4429 }; 4430 llvm::Function *Fn; 4431 llvm::Constant *Addr; 4432 // Emit target region as a standalone region. 4433 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4434 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4435 assert(Fn && Addr && "Target device function emission failed."); 4436 } 4437 4438 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4439 const OMPTargetTeamsDistributeParallelForDirective &S) { 4440 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4441 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4442 }; 4443 emitCommonOMPTargetDirective(*this, S, CodeGen); 4444 } 4445 4446 static void emitTargetTeamsDistributeParallelForSimdRegion( 4447 CodeGenFunction &CGF, 4448 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4449 PrePostActionTy &Action) { 4450 Action.Enter(CGF); 4451 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4452 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4453 S.getDistInc()); 4454 }; 4455 4456 // Emit teams region as a standalone region. 4457 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4458 PrePostActionTy &Action) { 4459 Action.Enter(CGF); 4460 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4461 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4462 (void)PrivateScope.Privatize(); 4463 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4464 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4465 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4466 }; 4467 4468 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4469 CodeGenTeams); 4470 emitPostUpdateForReductionClause(CGF, S, 4471 [](CodeGenFunction &) { return nullptr; }); 4472 } 4473 4474 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4475 CodeGenModule &CGM, StringRef ParentName, 4476 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4477 // Emit SPMD target teams distribute parallel for simd region as a standalone 4478 // region. 4479 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4480 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4481 }; 4482 llvm::Function *Fn; 4483 llvm::Constant *Addr; 4484 // Emit target region as a standalone region. 4485 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4486 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4487 assert(Fn && Addr && "Target device function emission failed."); 4488 } 4489 4490 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4491 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4492 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4493 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4494 }; 4495 emitCommonOMPTargetDirective(*this, S, CodeGen); 4496 } 4497 4498 void CodeGenFunction::EmitOMPCancellationPointDirective( 4499 const OMPCancellationPointDirective &S) { 4500 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4501 S.getCancelRegion()); 4502 } 4503 4504 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4505 const Expr *IfCond = nullptr; 4506 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4507 if (C->getNameModifier() == OMPD_unknown || 4508 C->getNameModifier() == OMPD_cancel) { 4509 IfCond = C->getCondition(); 4510 break; 4511 } 4512 } 4513 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4514 S.getCancelRegion()); 4515 } 4516 4517 CodeGenFunction::JumpDest 4518 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4519 if (Kind == OMPD_parallel || Kind == OMPD_task || 4520 Kind == OMPD_target_parallel) 4521 return ReturnBlock; 4522 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4523 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4524 Kind == OMPD_distribute_parallel_for || 4525 Kind == OMPD_target_parallel_for || 4526 Kind == OMPD_teams_distribute_parallel_for || 4527 Kind == OMPD_target_teams_distribute_parallel_for); 4528 return OMPCancelStack.getExitBlock(); 4529 } 4530 4531 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4532 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4533 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4534 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4535 auto OrigVarIt = C.varlist_begin(); 4536 auto InitIt = C.inits().begin(); 4537 for (const Expr *PvtVarIt : C.private_copies()) { 4538 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4539 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4540 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4541 4542 // In order to identify the right initializer we need to match the 4543 // declaration used by the mapping logic. In some cases we may get 4544 // OMPCapturedExprDecl that refers to the original declaration. 4545 const ValueDecl *MatchingVD = OrigVD; 4546 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4547 // OMPCapturedExprDecl are used to privative fields of the current 4548 // structure. 4549 const auto *ME = cast<MemberExpr>(OED->getInit()); 4550 assert(isa<CXXThisExpr>(ME->getBase()) && 4551 "Base should be the current struct!"); 4552 MatchingVD = ME->getMemberDecl(); 4553 } 4554 4555 // If we don't have information about the current list item, move on to 4556 // the next one. 4557 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4558 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4559 continue; 4560 4561 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4562 InitAddrIt, InitVD, 4563 PvtVD]() { 4564 // Initialize the temporary initialization variable with the address we 4565 // get from the runtime library. We have to cast the source address 4566 // because it is always a void *. References are materialized in the 4567 // privatization scope, so the initialization here disregards the fact 4568 // the original variable is a reference. 4569 QualType AddrQTy = 4570 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4571 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4572 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4573 setAddrOfLocalVar(InitVD, InitAddr); 4574 4575 // Emit private declaration, it will be initialized by the value we 4576 // declaration we just added to the local declarations map. 4577 EmitDecl(*PvtVD); 4578 4579 // The initialization variables reached its purpose in the emission 4580 // of the previous declaration, so we don't need it anymore. 4581 LocalDeclMap.erase(InitVD); 4582 4583 // Return the address of the private variable. 4584 return GetAddrOfLocalVar(PvtVD); 4585 }); 4586 assert(IsRegistered && "firstprivate var already registered as private"); 4587 // Silence the warning about unused variable. 4588 (void)IsRegistered; 4589 4590 ++OrigVarIt; 4591 ++InitIt; 4592 } 4593 } 4594 4595 // Generate the instructions for '#pragma omp target data' directive. 4596 void CodeGenFunction::EmitOMPTargetDataDirective( 4597 const OMPTargetDataDirective &S) { 4598 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4599 4600 // Create a pre/post action to signal the privatization of the device pointer. 4601 // This action can be replaced by the OpenMP runtime code generation to 4602 // deactivate privatization. 4603 bool PrivatizeDevicePointers = false; 4604 class DevicePointerPrivActionTy : public PrePostActionTy { 4605 bool &PrivatizeDevicePointers; 4606 4607 public: 4608 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4609 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4610 void Enter(CodeGenFunction &CGF) override { 4611 PrivatizeDevicePointers = true; 4612 } 4613 }; 4614 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4615 4616 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4617 CodeGenFunction &CGF, PrePostActionTy &Action) { 4618 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4619 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4620 }; 4621 4622 // Codegen that selects whether to generate the privatization code or not. 4623 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4624 &InnermostCodeGen](CodeGenFunction &CGF, 4625 PrePostActionTy &Action) { 4626 RegionCodeGenTy RCG(InnermostCodeGen); 4627 PrivatizeDevicePointers = false; 4628 4629 // Call the pre-action to change the status of PrivatizeDevicePointers if 4630 // needed. 4631 Action.Enter(CGF); 4632 4633 if (PrivatizeDevicePointers) { 4634 OMPPrivateScope PrivateScope(CGF); 4635 // Emit all instances of the use_device_ptr clause. 4636 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4637 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4638 Info.CaptureDeviceAddrMap); 4639 (void)PrivateScope.Privatize(); 4640 RCG(CGF); 4641 } else { 4642 RCG(CGF); 4643 } 4644 }; 4645 4646 // Forward the provided action to the privatization codegen. 4647 RegionCodeGenTy PrivRCG(PrivCodeGen); 4648 PrivRCG.setAction(Action); 4649 4650 // Notwithstanding the body of the region is emitted as inlined directive, 4651 // we don't use an inline scope as changes in the references inside the 4652 // region are expected to be visible outside, so we do not privative them. 4653 OMPLexicalScope Scope(CGF, S); 4654 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4655 PrivRCG); 4656 }; 4657 4658 RegionCodeGenTy RCG(CodeGen); 4659 4660 // If we don't have target devices, don't bother emitting the data mapping 4661 // code. 4662 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4663 RCG(*this); 4664 return; 4665 } 4666 4667 // Check if we have any if clause associated with the directive. 4668 const Expr *IfCond = nullptr; 4669 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4670 IfCond = C->getCondition(); 4671 4672 // Check if we have any device clause associated with the directive. 4673 const Expr *Device = nullptr; 4674 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4675 Device = C->getDevice(); 4676 4677 // Set the action to signal privatization of device pointers. 4678 RCG.setAction(PrivAction); 4679 4680 // Emit region code. 4681 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4682 Info); 4683 } 4684 4685 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4686 const OMPTargetEnterDataDirective &S) { 4687 // If we don't have target devices, don't bother emitting the data mapping 4688 // code. 4689 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4690 return; 4691 4692 // Check if we have any if clause associated with the directive. 4693 const Expr *IfCond = nullptr; 4694 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4695 IfCond = C->getCondition(); 4696 4697 // Check if we have any device clause associated with the directive. 4698 const Expr *Device = nullptr; 4699 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4700 Device = C->getDevice(); 4701 4702 OMPLexicalScope Scope(*this, S, OMPD_task); 4703 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4704 } 4705 4706 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4707 const OMPTargetExitDataDirective &S) { 4708 // If we don't have target devices, don't bother emitting the data mapping 4709 // code. 4710 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4711 return; 4712 4713 // Check if we have any if clause associated with the directive. 4714 const Expr *IfCond = nullptr; 4715 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4716 IfCond = C->getCondition(); 4717 4718 // Check if we have any device clause associated with the directive. 4719 const Expr *Device = nullptr; 4720 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4721 Device = C->getDevice(); 4722 4723 OMPLexicalScope Scope(*this, S, OMPD_task); 4724 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4725 } 4726 4727 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4728 const OMPTargetParallelDirective &S, 4729 PrePostActionTy &Action) { 4730 // Get the captured statement associated with the 'parallel' region. 4731 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4732 Action.Enter(CGF); 4733 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4734 Action.Enter(CGF); 4735 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4736 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4737 CGF.EmitOMPPrivateClause(S, PrivateScope); 4738 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4739 (void)PrivateScope.Privatize(); 4740 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4741 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4742 // TODO: Add support for clauses. 4743 CGF.EmitStmt(CS->getCapturedStmt()); 4744 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4745 }; 4746 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4747 emitEmptyBoundParameters); 4748 emitPostUpdateForReductionClause(CGF, S, 4749 [](CodeGenFunction &) { return nullptr; }); 4750 } 4751 4752 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4753 CodeGenModule &CGM, StringRef ParentName, 4754 const OMPTargetParallelDirective &S) { 4755 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4756 emitTargetParallelRegion(CGF, S, Action); 4757 }; 4758 llvm::Function *Fn; 4759 llvm::Constant *Addr; 4760 // Emit target region as a standalone region. 4761 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4762 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4763 assert(Fn && Addr && "Target device function emission failed."); 4764 } 4765 4766 void CodeGenFunction::EmitOMPTargetParallelDirective( 4767 const OMPTargetParallelDirective &S) { 4768 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4769 emitTargetParallelRegion(CGF, S, Action); 4770 }; 4771 emitCommonOMPTargetDirective(*this, S, CodeGen); 4772 } 4773 4774 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4775 const OMPTargetParallelForDirective &S, 4776 PrePostActionTy &Action) { 4777 Action.Enter(CGF); 4778 // Emit directive as a combined directive that consists of two implicit 4779 // directives: 'parallel' with 'for' directive. 4780 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4781 Action.Enter(CGF); 4782 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4783 CGF, OMPD_target_parallel_for, S.hasCancel()); 4784 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4785 emitDispatchForLoopBounds); 4786 }; 4787 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4788 emitEmptyBoundParameters); 4789 } 4790 4791 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4792 CodeGenModule &CGM, StringRef ParentName, 4793 const OMPTargetParallelForDirective &S) { 4794 // Emit SPMD target parallel for region as a standalone region. 4795 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4796 emitTargetParallelForRegion(CGF, S, Action); 4797 }; 4798 llvm::Function *Fn; 4799 llvm::Constant *Addr; 4800 // Emit target region as a standalone region. 4801 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4802 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4803 assert(Fn && Addr && "Target device function emission failed."); 4804 } 4805 4806 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4807 const OMPTargetParallelForDirective &S) { 4808 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4809 emitTargetParallelForRegion(CGF, S, Action); 4810 }; 4811 emitCommonOMPTargetDirective(*this, S, CodeGen); 4812 } 4813 4814 static void 4815 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4816 const OMPTargetParallelForSimdDirective &S, 4817 PrePostActionTy &Action) { 4818 Action.Enter(CGF); 4819 // Emit directive as a combined directive that consists of two implicit 4820 // directives: 'parallel' with 'for' directive. 4821 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4822 Action.Enter(CGF); 4823 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4824 emitDispatchForLoopBounds); 4825 }; 4826 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4827 emitEmptyBoundParameters); 4828 } 4829 4830 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4831 CodeGenModule &CGM, StringRef ParentName, 4832 const OMPTargetParallelForSimdDirective &S) { 4833 // Emit SPMD target parallel for region as a standalone region. 4834 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4835 emitTargetParallelForSimdRegion(CGF, S, Action); 4836 }; 4837 llvm::Function *Fn; 4838 llvm::Constant *Addr; 4839 // Emit target region as a standalone region. 4840 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4841 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4842 assert(Fn && Addr && "Target device function emission failed."); 4843 } 4844 4845 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4846 const OMPTargetParallelForSimdDirective &S) { 4847 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4848 emitTargetParallelForSimdRegion(CGF, S, Action); 4849 }; 4850 emitCommonOMPTargetDirective(*this, S, CodeGen); 4851 } 4852 4853 /// Emit a helper variable and return corresponding lvalue. 4854 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4855 const ImplicitParamDecl *PVD, 4856 CodeGenFunction::OMPPrivateScope &Privates) { 4857 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4858 Privates.addPrivate(VDecl, 4859 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4860 } 4861 4862 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4863 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4864 // Emit outlined function for task construct. 4865 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4866 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4867 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4868 const Expr *IfCond = nullptr; 4869 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4870 if (C->getNameModifier() == OMPD_unknown || 4871 C->getNameModifier() == OMPD_taskloop) { 4872 IfCond = C->getCondition(); 4873 break; 4874 } 4875 } 4876 4877 OMPTaskDataTy Data; 4878 // Check if taskloop must be emitted without taskgroup. 4879 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4880 // TODO: Check if we should emit tied or untied task. 4881 Data.Tied = true; 4882 // Set scheduling for taskloop 4883 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4884 // grainsize clause 4885 Data.Schedule.setInt(/*IntVal=*/false); 4886 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4887 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4888 // num_tasks clause 4889 Data.Schedule.setInt(/*IntVal=*/true); 4890 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4891 } 4892 4893 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4894 // if (PreCond) { 4895 // for (IV in 0..LastIteration) BODY; 4896 // <Final counter/linear vars updates>; 4897 // } 4898 // 4899 4900 // Emit: if (PreCond) - begin. 4901 // If the condition constant folds and can be elided, avoid emitting the 4902 // whole loop. 4903 bool CondConstant; 4904 llvm::BasicBlock *ContBlock = nullptr; 4905 OMPLoopScope PreInitScope(CGF, S); 4906 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4907 if (!CondConstant) 4908 return; 4909 } else { 4910 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4911 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4912 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4913 CGF.getProfileCount(&S)); 4914 CGF.EmitBlock(ThenBlock); 4915 CGF.incrementProfileCounter(&S); 4916 } 4917 4918 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4919 CGF.EmitOMPSimdInit(S); 4920 4921 OMPPrivateScope LoopScope(CGF); 4922 // Emit helper vars inits. 4923 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4924 auto *I = CS->getCapturedDecl()->param_begin(); 4925 auto *LBP = std::next(I, LowerBound); 4926 auto *UBP = std::next(I, UpperBound); 4927 auto *STP = std::next(I, Stride); 4928 auto *LIP = std::next(I, LastIter); 4929 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4930 LoopScope); 4931 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4932 LoopScope); 4933 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4934 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4935 LoopScope); 4936 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4937 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4938 (void)LoopScope.Privatize(); 4939 // Emit the loop iteration variable. 4940 const Expr *IVExpr = S.getIterationVariable(); 4941 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4942 CGF.EmitVarDecl(*IVDecl); 4943 CGF.EmitIgnoredExpr(S.getInit()); 4944 4945 // Emit the iterations count variable. 4946 // If it is not a variable, Sema decided to calculate iterations count on 4947 // each iteration (e.g., it is foldable into a constant). 4948 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4949 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4950 // Emit calculation of the iterations count. 4951 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4952 } 4953 4954 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4955 S.getInc(), 4956 [&S](CodeGenFunction &CGF) { 4957 CGF.EmitOMPLoopBody(S, JumpDest()); 4958 CGF.EmitStopPoint(&S); 4959 }, 4960 [](CodeGenFunction &) {}); 4961 // Emit: if (PreCond) - end. 4962 if (ContBlock) { 4963 CGF.EmitBranch(ContBlock); 4964 CGF.EmitBlock(ContBlock, true); 4965 } 4966 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4967 if (HasLastprivateClause) { 4968 CGF.EmitOMPLastprivateClauseFinal( 4969 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4970 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4971 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4972 (*LIP)->getType(), S.getBeginLoc()))); 4973 } 4974 }; 4975 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4976 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4977 const OMPTaskDataTy &Data) { 4978 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4979 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4980 OMPLoopScope PreInitScope(CGF, S); 4981 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4982 OutlinedFn, SharedsTy, 4983 CapturedStruct, IfCond, Data); 4984 }; 4985 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4986 CodeGen); 4987 }; 4988 if (Data.Nogroup) { 4989 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4990 } else { 4991 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4992 *this, 4993 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4994 PrePostActionTy &Action) { 4995 Action.Enter(CGF); 4996 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4997 Data); 4998 }, 4999 S.getBeginLoc()); 5000 } 5001 } 5002 5003 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5004 EmitOMPTaskLoopBasedDirective(S); 5005 } 5006 5007 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5008 const OMPTaskLoopSimdDirective &S) { 5009 EmitOMPTaskLoopBasedDirective(S); 5010 } 5011 5012 // Generate the instructions for '#pragma omp target update' directive. 5013 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5014 const OMPTargetUpdateDirective &S) { 5015 // If we don't have target devices, don't bother emitting the data mapping 5016 // code. 5017 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5018 return; 5019 5020 // Check if we have any if clause associated with the directive. 5021 const Expr *IfCond = nullptr; 5022 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5023 IfCond = C->getCondition(); 5024 5025 // Check if we have any device clause associated with the directive. 5026 const Expr *Device = nullptr; 5027 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5028 Device = C->getDevice(); 5029 5030 OMPLexicalScope Scope(*this, S, OMPD_task); 5031 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5032 } 5033 5034 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5035 const OMPExecutableDirective &D) { 5036 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5037 return; 5038 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5039 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5040 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5041 } else { 5042 OMPPrivateScope LoopGlobals(CGF); 5043 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5044 for (const Expr *E : LD->counters()) { 5045 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5046 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5047 LValue GlobLVal = CGF.EmitLValue(E); 5048 LoopGlobals.addPrivate( 5049 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5050 } 5051 if (isa<OMPCapturedExprDecl>(VD)) { 5052 // Emit only those that were not explicitly referenced in clauses. 5053 if (!CGF.LocalDeclMap.count(VD)) 5054 CGF.EmitVarDecl(*VD); 5055 } 5056 } 5057 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5058 if (!C->getNumForLoops()) 5059 continue; 5060 for (unsigned I = LD->getCollapsedNumber(), 5061 E = C->getLoopNumIterations().size(); 5062 I < E; ++I) { 5063 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5064 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5065 // Emit only those that were not explicitly referenced in clauses. 5066 if (!CGF.LocalDeclMap.count(VD)) 5067 CGF.EmitVarDecl(*VD); 5068 } 5069 } 5070 } 5071 } 5072 LoopGlobals.Privatize(); 5073 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5074 } 5075 }; 5076 OMPSimdLexicalScope Scope(*this, D); 5077 CGM.getOpenMPRuntime().emitInlinedDirective( 5078 *this, 5079 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5080 : D.getDirectiveKind(), 5081 CodeGen); 5082 } 5083