1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope( 57 CodeGenFunction &CGF, const OMPExecutableDirective &S, 58 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 59 const bool EmitPreInitStmt = true) 60 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 61 InlinedShareds(CGF) { 62 if (EmitPreInitStmt) 63 emitPreInitStmt(CGF, S); 64 if (!CapturedRegion.hasValue()) 65 return; 66 assert(S.hasAssociatedStmt() && 67 "Expected associated statement for inlined directive."); 68 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 69 for (auto &C : CS->captures()) { 70 if (C.capturesVariable() || C.capturesVariableByCopy()) { 71 auto *VD = C.getCapturedVar(); 72 assert(VD == VD->getCanonicalDecl() && 73 "Canonical decl must be captured."); 74 DeclRefExpr DRE( 75 const_cast<VarDecl *>(VD), 76 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 77 InlinedShareds.isGlobalVarCaptured(VD)), 78 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 79 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 80 return CGF.EmitLValue(&DRE).getAddress(); 81 }); 82 } 83 } 84 (void)InlinedShareds.Privatize(); 85 } 86 }; 87 88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 89 /// for captured expressions. 90 class OMPParallelScope final : public OMPLexicalScope { 91 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 92 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 93 return !(isOpenMPTargetExecutionDirective(Kind) || 94 isOpenMPLoopBoundSharingDirective(Kind)) && 95 isOpenMPParallelDirective(Kind); 96 } 97 98 public: 99 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 100 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 101 EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 116 EmitPreInitStmt(S)) {} 117 }; 118 119 /// Private scope for OpenMP loop-based directives, that supports capturing 120 /// of used expression from loop statement. 121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 122 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 123 CodeGenFunction::OMPMapVars PreCondVars; 124 for (auto *E : S.counters()) { 125 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 126 (void)PreCondVars.setVarAddr( 127 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 128 } 129 (void)PreCondVars.apply(CGF); 130 if (auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 131 for (const auto *I : PreInits->decls()) 132 CGF.EmitVarDecl(cast<VarDecl>(*I)); 133 } 134 PreCondVars.restore(CGF); 135 } 136 137 public: 138 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 139 : CodeGenFunction::RunCleanupsScope(CGF) { 140 emitPreInitStmt(CGF, S); 141 } 142 }; 143 144 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 145 CodeGenFunction::OMPPrivateScope InlinedShareds; 146 147 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 148 return CGF.LambdaCaptureFields.lookup(VD) || 149 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 150 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 151 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 152 } 153 154 public: 155 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 156 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 157 InlinedShareds(CGF) { 158 for (const auto *C : S.clauses()) { 159 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 160 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 auto &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 238 auto VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } else 248 Size = CGM.getSize(SizeInChars); 249 return Size; 250 } 251 252 void CodeGenFunction::GenerateOpenMPCapturedVars( 253 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 254 const RecordDecl *RD = S.getCapturedRecordDecl(); 255 auto CurField = RD->field_begin(); 256 auto CurCap = S.captures().begin(); 257 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 258 E = S.capture_init_end(); 259 I != E; ++I, ++CurField, ++CurCap) { 260 if (CurField->hasCapturedVLAType()) { 261 auto VAT = CurField->getCapturedVLAType(); 262 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 263 CapturedVars.push_back(Val); 264 } else if (CurCap->capturesThis()) 265 CapturedVars.push_back(CXXThisValue); 266 else if (CurCap->capturesVariableByCopy()) { 267 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 268 269 // If the field is not a pointer, we need to save the actual value 270 // and load it as a void pointer. 271 if (!CurField->getType()->isAnyPointerType()) { 272 auto &Ctx = getContext(); 273 auto DstAddr = CreateMemTemp( 274 Ctx.getUIntPtrType(), 275 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 276 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 277 278 auto *SrcAddrVal = EmitScalarConversion( 279 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 280 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 281 LValue SrcLV = 282 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 283 284 // Store the value using the source type pointer. 285 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 286 287 // Load the value using the destination type pointer. 288 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 289 } 290 CapturedVars.push_back(CV); 291 } else { 292 assert(CurCap->capturesVariable() && "Expected capture by reference."); 293 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 294 } 295 } 296 } 297 298 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 299 QualType DstType, StringRef Name, 300 LValue AddrLV, 301 bool isReferenceType = false) { 302 ASTContext &Ctx = CGF.getContext(); 303 304 auto *CastedPtr = CGF.EmitScalarConversion(AddrLV.getAddress().getPointer(), 305 Ctx.getUIntPtrType(), 306 Ctx.getPointerType(DstType), Loc); 307 auto TmpAddr = 308 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 309 .getAddress(); 310 311 // If we are dealing with references we need to return the address of the 312 // reference instead of the reference of the value. 313 if (isReferenceType) { 314 QualType RefType = Ctx.getLValueReferenceType(DstType); 315 auto *RefVal = TmpAddr.getPointer(); 316 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 317 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 318 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 319 } 320 321 return TmpAddr; 322 } 323 324 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 325 if (T->isLValueReferenceType()) { 326 return C.getLValueReferenceType( 327 getCanonicalParamType(C, T.getNonReferenceType()), 328 /*SpelledAsLValue=*/false); 329 } 330 if (T->isPointerType()) 331 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 332 if (auto *A = T->getAsArrayTypeUnsafe()) { 333 if (auto *VLA = dyn_cast<VariableArrayType>(A)) 334 return getCanonicalParamType(C, VLA->getElementType()); 335 else if (!A->isVariablyModifiedType()) 336 return C.getCanonicalType(T); 337 } 338 return C.getCanonicalParamType(T); 339 } 340 341 namespace { 342 /// Contains required data for proper outlined function codegen. 343 struct FunctionOptions { 344 /// Captured statement for which the function is generated. 345 const CapturedStmt *S = nullptr; 346 /// true if cast to/from UIntPtr is required for variables captured by 347 /// value. 348 const bool UIntPtrCastRequired = true; 349 /// true if only casted arguments must be registered as local args or VLA 350 /// sizes. 351 const bool RegisterCastedArgsOnly = false; 352 /// Name of the generated function. 353 const StringRef FunctionName; 354 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 355 bool RegisterCastedArgsOnly, 356 StringRef FunctionName) 357 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 358 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 359 FunctionName(FunctionName) {} 360 }; 361 } 362 363 static llvm::Function *emitOutlinedFunctionPrologue( 364 CodeGenFunction &CGF, FunctionArgList &Args, 365 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 366 &LocalAddrs, 367 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 368 &VLASizes, 369 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 370 const CapturedDecl *CD = FO.S->getCapturedDecl(); 371 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 372 assert(CD->hasBody() && "missing CapturedDecl body"); 373 374 CXXThisValue = nullptr; 375 // Build the argument list. 376 CodeGenModule &CGM = CGF.CGM; 377 ASTContext &Ctx = CGM.getContext(); 378 FunctionArgList TargetArgs; 379 Args.append(CD->param_begin(), 380 std::next(CD->param_begin(), CD->getContextParamPosition())); 381 TargetArgs.append( 382 CD->param_begin(), 383 std::next(CD->param_begin(), CD->getContextParamPosition())); 384 auto I = FO.S->captures().begin(); 385 FunctionDecl *DebugFunctionDecl = nullptr; 386 if (!FO.UIntPtrCastRequired) { 387 FunctionProtoType::ExtProtoInfo EPI; 388 DebugFunctionDecl = FunctionDecl::Create( 389 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(), 390 SourceLocation(), DeclarationName(), Ctx.VoidTy, 391 Ctx.getTrivialTypeSourceInfo( 392 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 393 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 394 } 395 for (auto *FD : RD->fields()) { 396 QualType ArgType = FD->getType(); 397 IdentifierInfo *II = nullptr; 398 VarDecl *CapVar = nullptr; 399 400 // If this is a capture by copy and the type is not a pointer, the outlined 401 // function argument type should be uintptr and the value properly casted to 402 // uintptr. This is necessary given that the runtime library is only able to 403 // deal with pointers. We can pass in the same way the VLA type sizes to the 404 // outlined function. 405 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 406 I->capturesVariableArrayType()) { 407 if (FO.UIntPtrCastRequired) 408 ArgType = Ctx.getUIntPtrType(); 409 } 410 411 if (I->capturesVariable() || I->capturesVariableByCopy()) { 412 CapVar = I->getCapturedVar(); 413 II = CapVar->getIdentifier(); 414 } else if (I->capturesThis()) 415 II = &Ctx.Idents.get("this"); 416 else { 417 assert(I->capturesVariableArrayType()); 418 II = &Ctx.Idents.get("vla"); 419 } 420 if (ArgType->isVariablyModifiedType()) 421 ArgType = getCanonicalParamType(Ctx, ArgType); 422 VarDecl *Arg; 423 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 424 Arg = ParmVarDecl::Create( 425 Ctx, DebugFunctionDecl, 426 CapVar ? CapVar->getLocStart() : FD->getLocStart(), 427 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 428 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 429 } else { 430 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 431 II, ArgType, ImplicitParamDecl::Other); 432 } 433 Args.emplace_back(Arg); 434 // Do not cast arguments if we emit function with non-original types. 435 TargetArgs.emplace_back( 436 FO.UIntPtrCastRequired 437 ? Arg 438 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 439 ++I; 440 } 441 Args.append( 442 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 443 CD->param_end()); 444 TargetArgs.append( 445 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 446 CD->param_end()); 447 448 // Create the function declaration. 449 const CGFunctionInfo &FuncInfo = 450 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 451 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 452 453 llvm::Function *F = 454 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 455 FO.FunctionName, &CGM.getModule()); 456 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 457 if (CD->isNothrow()) 458 F->setDoesNotThrow(); 459 460 // Generate the function. 461 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 462 FO.S->getLocStart(), CD->getBody()->getLocStart()); 463 unsigned Cnt = CD->getContextParamPosition(); 464 I = FO.S->captures().begin(); 465 for (auto *FD : RD->fields()) { 466 // Do not map arguments if we emit function with non-original types. 467 Address LocalAddr(Address::invalid()); 468 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 469 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 470 TargetArgs[Cnt]); 471 } else { 472 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 473 } 474 // If we are capturing a pointer by copy we don't need to do anything, just 475 // use the value that we get from the arguments. 476 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 477 const VarDecl *CurVD = I->getCapturedVar(); 478 // If the variable is a reference we need to materialize it here. 479 if (CurVD->getType()->isReferenceType()) { 480 Address RefAddr = CGF.CreateMemTemp( 481 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 482 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 483 /*Volatile=*/false, CurVD->getType()); 484 LocalAddr = RefAddr; 485 } 486 if (!FO.RegisterCastedArgsOnly) 487 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 488 ++Cnt; 489 ++I; 490 continue; 491 } 492 493 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 494 AlignmentSource::Decl); 495 if (FD->hasCapturedVLAType()) { 496 if (FO.UIntPtrCastRequired) { 497 ArgLVal = CGF.MakeAddrLValue( 498 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 499 Args[Cnt]->getName(), ArgLVal), 500 FD->getType(), AlignmentSource::Decl); 501 } 502 auto *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 503 auto VAT = FD->getCapturedVLAType(); 504 VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}}); 505 } else if (I->capturesVariable()) { 506 auto *Var = I->getCapturedVar(); 507 QualType VarTy = Var->getType(); 508 Address ArgAddr = ArgLVal.getAddress(); 509 if (!VarTy->isReferenceType()) { 510 if (ArgLVal.getType()->isLValueReferenceType()) { 511 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 512 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 513 assert(ArgLVal.getType()->isPointerType()); 514 ArgAddr = CGF.EmitLoadOfPointer( 515 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 516 } 517 } 518 if (!FO.RegisterCastedArgsOnly) { 519 LocalAddrs.insert( 520 {Args[Cnt], 521 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 522 } 523 } else if (I->capturesVariableByCopy()) { 524 assert(!FD->getType()->isAnyPointerType() && 525 "Not expecting a captured pointer."); 526 auto *Var = I->getCapturedVar(); 527 QualType VarTy = Var->getType(); 528 LocalAddrs.insert( 529 {Args[Cnt], 530 {Var, FO.UIntPtrCastRequired 531 ? castValueFromUintptr(CGF, I->getLocation(), 532 FD->getType(), Args[Cnt]->getName(), 533 ArgLVal, VarTy->isReferenceType()) 534 : ArgLVal.getAddress()}}); 535 } else { 536 // If 'this' is captured, load it into CXXThisValue. 537 assert(I->capturesThis()); 538 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 539 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 540 } 541 ++Cnt; 542 ++I; 543 } 544 545 return F; 546 } 547 548 llvm::Function * 549 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 550 assert( 551 CapturedStmtInfo && 552 "CapturedStmtInfo should be set when generating the captured function"); 553 const CapturedDecl *CD = S.getCapturedDecl(); 554 // Build the argument list. 555 bool NeedWrapperFunction = 556 getDebugInfo() && 557 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 558 FunctionArgList Args; 559 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 560 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 561 SmallString<256> Buffer; 562 llvm::raw_svector_ostream Out(Buffer); 563 Out << CapturedStmtInfo->getHelperName(); 564 if (NeedWrapperFunction) 565 Out << "_debug__"; 566 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 567 Out.str()); 568 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 569 VLASizes, CXXThisValue, FO); 570 for (const auto &LocalAddrPair : LocalAddrs) { 571 if (LocalAddrPair.second.first) { 572 setAddrOfLocalVar(LocalAddrPair.second.first, 573 LocalAddrPair.second.second); 574 } 575 } 576 for (const auto &VLASizePair : VLASizes) 577 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 578 PGO.assignRegionCounters(GlobalDecl(CD), F); 579 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 580 FinishFunction(CD->getBodyRBrace()); 581 if (!NeedWrapperFunction) 582 return F; 583 584 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 585 /*RegisterCastedArgsOnly=*/true, 586 CapturedStmtInfo->getHelperName()); 587 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 588 Args.clear(); 589 LocalAddrs.clear(); 590 VLASizes.clear(); 591 llvm::Function *WrapperF = 592 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 593 WrapperCGF.CXXThisValue, WrapperFO); 594 llvm::SmallVector<llvm::Value *, 4> CallArgs; 595 for (const auto *Arg : Args) { 596 llvm::Value *CallArg; 597 auto I = LocalAddrs.find(Arg); 598 if (I != LocalAddrs.end()) { 599 LValue LV = WrapperCGF.MakeAddrLValue( 600 I->second.second, 601 I->second.first ? I->second.first->getType() : Arg->getType(), 602 AlignmentSource::Decl); 603 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart()); 604 } else { 605 auto EI = VLASizes.find(Arg); 606 if (EI != VLASizes.end()) 607 CallArg = EI->second.second; 608 else { 609 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 610 Arg->getType(), 611 AlignmentSource::Decl); 612 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart()); 613 } 614 } 615 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 616 } 617 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(), 618 F, CallArgs); 619 WrapperCGF.FinishFunction(); 620 return WrapperF; 621 } 622 623 //===----------------------------------------------------------------------===// 624 // OpenMP Directive Emission 625 //===----------------------------------------------------------------------===// 626 void CodeGenFunction::EmitOMPAggregateAssign( 627 Address DestAddr, Address SrcAddr, QualType OriginalType, 628 const llvm::function_ref<void(Address, Address)> &CopyGen) { 629 // Perform element-by-element initialization. 630 QualType ElementTy; 631 632 // Drill down to the base element type on both arrays. 633 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 634 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 635 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 636 637 auto SrcBegin = SrcAddr.getPointer(); 638 auto DestBegin = DestAddr.getPointer(); 639 // Cast from pointer to array type to pointer to single element. 640 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 641 // The basic structure here is a while-do loop. 642 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 643 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 644 auto IsEmpty = 645 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 646 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 647 648 // Enter the loop body, making that address the current address. 649 auto EntryBB = Builder.GetInsertBlock(); 650 EmitBlock(BodyBB); 651 652 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 653 654 llvm::PHINode *SrcElementPHI = 655 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 656 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 657 Address SrcElementCurrent = 658 Address(SrcElementPHI, 659 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 660 661 llvm::PHINode *DestElementPHI = 662 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 663 DestElementPHI->addIncoming(DestBegin, EntryBB); 664 Address DestElementCurrent = 665 Address(DestElementPHI, 666 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 667 668 // Emit copy. 669 CopyGen(DestElementCurrent, SrcElementCurrent); 670 671 // Shift the address forward by one element. 672 auto DestElementNext = Builder.CreateConstGEP1_32( 673 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 674 auto SrcElementNext = Builder.CreateConstGEP1_32( 675 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 676 // Check whether we've reached the end. 677 auto Done = 678 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 679 Builder.CreateCondBr(Done, DoneBB, BodyBB); 680 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 681 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 682 683 // Done. 684 EmitBlock(DoneBB, /*IsFinished=*/true); 685 } 686 687 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 688 Address SrcAddr, const VarDecl *DestVD, 689 const VarDecl *SrcVD, const Expr *Copy) { 690 if (OriginalType->isArrayType()) { 691 auto *BO = dyn_cast<BinaryOperator>(Copy); 692 if (BO && BO->getOpcode() == BO_Assign) { 693 // Perform simple memcpy for simple copying. 694 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 695 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 696 EmitAggregateAssign(Dest, Src, OriginalType); 697 } else { 698 // For arrays with complex element types perform element by element 699 // copying. 700 EmitOMPAggregateAssign( 701 DestAddr, SrcAddr, OriginalType, 702 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 703 // Working with the single array element, so have to remap 704 // destination and source variables to corresponding array 705 // elements. 706 CodeGenFunction::OMPPrivateScope Remap(*this); 707 Remap.addPrivate(DestVD, [DestElement]() -> Address { 708 return DestElement; 709 }); 710 Remap.addPrivate( 711 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 712 (void)Remap.Privatize(); 713 EmitIgnoredExpr(Copy); 714 }); 715 } 716 } else { 717 // Remap pseudo source variable to private copy. 718 CodeGenFunction::OMPPrivateScope Remap(*this); 719 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 720 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 721 (void)Remap.Privatize(); 722 // Emit copying of the whole variable. 723 EmitIgnoredExpr(Copy); 724 } 725 } 726 727 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 728 OMPPrivateScope &PrivateScope) { 729 if (!HaveInsertPoint()) 730 return false; 731 bool FirstprivateIsLastprivate = false; 732 llvm::DenseSet<const VarDecl *> Lastprivates; 733 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 734 for (const auto *D : C->varlists()) 735 Lastprivates.insert( 736 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 737 } 738 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 739 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 740 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 741 // Force emission of the firstprivate copy if the directive does not emit 742 // outlined function, like omp for, omp simd, omp distribute etc. 743 bool MustEmitFirstprivateCopy = 744 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 745 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 746 auto IRef = C->varlist_begin(); 747 auto InitsRef = C->inits().begin(); 748 for (auto IInit : C->private_copies()) { 749 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 750 bool ThisFirstprivateIsLastprivate = 751 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 752 auto *FD = CapturedStmtInfo->lookup(OrigVD); 753 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 754 !FD->getType()->isReferenceType()) { 755 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 756 ++IRef; 757 ++InitsRef; 758 continue; 759 } 760 FirstprivateIsLastprivate = 761 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 762 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 763 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 764 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 765 bool IsRegistered; 766 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 767 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 768 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 769 LValue OriginalLVal = EmitLValue(&DRE); 770 Address OriginalAddr = OriginalLVal.getAddress(); 771 QualType Type = VD->getType(); 772 if (Type->isArrayType()) { 773 // Emit VarDecl with copy init for arrays. 774 // Get the address of the original variable captured in current 775 // captured region. 776 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 777 auto Emission = EmitAutoVarAlloca(*VD); 778 auto *Init = VD->getInit(); 779 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 780 // Perform simple memcpy. 781 LValue Dest = MakeAddrLValue(Emission.getAllocatedAddress(), 782 Type); 783 EmitAggregateAssign(Dest, OriginalLVal, Type); 784 } else { 785 EmitOMPAggregateAssign( 786 Emission.getAllocatedAddress(), OriginalAddr, Type, 787 [this, VDInit, Init](Address DestElement, 788 Address SrcElement) { 789 // Clean up any temporaries needed by the initialization. 790 RunCleanupsScope InitScope(*this); 791 // Emit initialization for single element. 792 setAddrOfLocalVar(VDInit, SrcElement); 793 EmitAnyExprToMem(Init, DestElement, 794 Init->getType().getQualifiers(), 795 /*IsInitializer*/ false); 796 LocalDeclMap.erase(VDInit); 797 }); 798 } 799 EmitAutoVarCleanups(Emission); 800 return Emission.getAllocatedAddress(); 801 }); 802 } else { 803 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 804 // Emit private VarDecl with copy init. 805 // Remap temp VDInit variable to the address of the original 806 // variable 807 // (for proper handling of captured global variables). 808 setAddrOfLocalVar(VDInit, OriginalAddr); 809 EmitDecl(*VD); 810 LocalDeclMap.erase(VDInit); 811 return GetAddrOfLocalVar(VD); 812 }); 813 } 814 assert(IsRegistered && 815 "firstprivate var already registered as private"); 816 // Silence the warning about unused variable. 817 (void)IsRegistered; 818 } 819 ++IRef; 820 ++InitsRef; 821 } 822 } 823 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 824 } 825 826 void CodeGenFunction::EmitOMPPrivateClause( 827 const OMPExecutableDirective &D, 828 CodeGenFunction::OMPPrivateScope &PrivateScope) { 829 if (!HaveInsertPoint()) 830 return; 831 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 832 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 833 auto IRef = C->varlist_begin(); 834 for (auto IInit : C->private_copies()) { 835 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 836 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 837 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 838 bool IsRegistered = 839 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 840 // Emit private VarDecl with copy init. 841 EmitDecl(*VD); 842 return GetAddrOfLocalVar(VD); 843 }); 844 assert(IsRegistered && "private var already registered as private"); 845 // Silence the warning about unused variable. 846 (void)IsRegistered; 847 } 848 ++IRef; 849 } 850 } 851 } 852 853 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 854 if (!HaveInsertPoint()) 855 return false; 856 // threadprivate_var1 = master_threadprivate_var1; 857 // operator=(threadprivate_var2, master_threadprivate_var2); 858 // ... 859 // __kmpc_barrier(&loc, global_tid); 860 llvm::DenseSet<const VarDecl *> CopiedVars; 861 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 862 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 863 auto IRef = C->varlist_begin(); 864 auto ISrcRef = C->source_exprs().begin(); 865 auto IDestRef = C->destination_exprs().begin(); 866 for (auto *AssignOp : C->assignment_ops()) { 867 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 868 QualType Type = VD->getType(); 869 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 870 // Get the address of the master variable. If we are emitting code with 871 // TLS support, the address is passed from the master as field in the 872 // captured declaration. 873 Address MasterAddr = Address::invalid(); 874 if (getLangOpts().OpenMPUseTLS && 875 getContext().getTargetInfo().isTLSSupported()) { 876 assert(CapturedStmtInfo->lookup(VD) && 877 "Copyin threadprivates should have been captured!"); 878 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 879 VK_LValue, (*IRef)->getExprLoc()); 880 MasterAddr = EmitLValue(&DRE).getAddress(); 881 LocalDeclMap.erase(VD); 882 } else { 883 MasterAddr = 884 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 885 : CGM.GetAddrOfGlobal(VD), 886 getContext().getDeclAlign(VD)); 887 } 888 // Get the address of the threadprivate variable. 889 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 890 if (CopiedVars.size() == 1) { 891 // At first check if current thread is a master thread. If it is, no 892 // need to copy data. 893 CopyBegin = createBasicBlock("copyin.not.master"); 894 CopyEnd = createBasicBlock("copyin.not.master.end"); 895 Builder.CreateCondBr( 896 Builder.CreateICmpNE( 897 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 898 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 899 CopyBegin, CopyEnd); 900 EmitBlock(CopyBegin); 901 } 902 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 903 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 904 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 905 } 906 ++IRef; 907 ++ISrcRef; 908 ++IDestRef; 909 } 910 } 911 if (CopyEnd) { 912 // Exit out of copying procedure for non-master thread. 913 EmitBlock(CopyEnd, /*IsFinished=*/true); 914 return true; 915 } 916 return false; 917 } 918 919 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 920 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 921 if (!HaveInsertPoint()) 922 return false; 923 bool HasAtLeastOneLastprivate = false; 924 llvm::DenseSet<const VarDecl *> SIMDLCVs; 925 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 926 auto *LoopDirective = cast<OMPLoopDirective>(&D); 927 for (auto *C : LoopDirective->counters()) { 928 SIMDLCVs.insert( 929 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 930 } 931 } 932 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 933 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 934 HasAtLeastOneLastprivate = true; 935 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 936 !getLangOpts().OpenMPSimd) 937 break; 938 auto IRef = C->varlist_begin(); 939 auto IDestRef = C->destination_exprs().begin(); 940 for (auto *IInit : C->private_copies()) { 941 // Keep the address of the original variable for future update at the end 942 // of the loop. 943 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 944 // Taskloops do not require additional initialization, it is done in 945 // runtime support library. 946 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 947 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 948 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 949 DeclRefExpr DRE( 950 const_cast<VarDecl *>(OrigVD), 951 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 952 OrigVD) != nullptr, 953 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 954 return EmitLValue(&DRE).getAddress(); 955 }); 956 // Check if the variable is also a firstprivate: in this case IInit is 957 // not generated. Initialization of this variable will happen in codegen 958 // for 'firstprivate' clause. 959 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 960 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 961 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 962 // Emit private VarDecl with copy init. 963 EmitDecl(*VD); 964 return GetAddrOfLocalVar(VD); 965 }); 966 assert(IsRegistered && 967 "lastprivate var already registered as private"); 968 (void)IsRegistered; 969 } 970 } 971 ++IRef; 972 ++IDestRef; 973 } 974 } 975 return HasAtLeastOneLastprivate; 976 } 977 978 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 979 const OMPExecutableDirective &D, bool NoFinals, 980 llvm::Value *IsLastIterCond) { 981 if (!HaveInsertPoint()) 982 return; 983 // Emit following code: 984 // if (<IsLastIterCond>) { 985 // orig_var1 = private_orig_var1; 986 // ... 987 // orig_varn = private_orig_varn; 988 // } 989 llvm::BasicBlock *ThenBB = nullptr; 990 llvm::BasicBlock *DoneBB = nullptr; 991 if (IsLastIterCond) { 992 ThenBB = createBasicBlock(".omp.lastprivate.then"); 993 DoneBB = createBasicBlock(".omp.lastprivate.done"); 994 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 995 EmitBlock(ThenBB); 996 } 997 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 998 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 999 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1000 auto IC = LoopDirective->counters().begin(); 1001 for (auto F : LoopDirective->finals()) { 1002 auto *D = 1003 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1004 if (NoFinals) 1005 AlreadyEmittedVars.insert(D); 1006 else 1007 LoopCountersAndUpdates[D] = F; 1008 ++IC; 1009 } 1010 } 1011 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1012 auto IRef = C->varlist_begin(); 1013 auto ISrcRef = C->source_exprs().begin(); 1014 auto IDestRef = C->destination_exprs().begin(); 1015 for (auto *AssignOp : C->assignment_ops()) { 1016 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1017 QualType Type = PrivateVD->getType(); 1018 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1019 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1020 // If lastprivate variable is a loop control variable for loop-based 1021 // directive, update its value before copyin back to original 1022 // variable. 1023 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1024 EmitIgnoredExpr(FinalExpr); 1025 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1026 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1027 // Get the address of the original variable. 1028 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1029 // Get the address of the private variable. 1030 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1031 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1032 PrivateAddr = 1033 Address(Builder.CreateLoad(PrivateAddr), 1034 getNaturalTypeAlignment(RefTy->getPointeeType())); 1035 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1036 } 1037 ++IRef; 1038 ++ISrcRef; 1039 ++IDestRef; 1040 } 1041 if (auto *PostUpdate = C->getPostUpdateExpr()) 1042 EmitIgnoredExpr(PostUpdate); 1043 } 1044 if (IsLastIterCond) 1045 EmitBlock(DoneBB, /*IsFinished=*/true); 1046 } 1047 1048 void CodeGenFunction::EmitOMPReductionClauseInit( 1049 const OMPExecutableDirective &D, 1050 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1051 if (!HaveInsertPoint()) 1052 return; 1053 SmallVector<const Expr *, 4> Shareds; 1054 SmallVector<const Expr *, 4> Privates; 1055 SmallVector<const Expr *, 4> ReductionOps; 1056 SmallVector<const Expr *, 4> LHSs; 1057 SmallVector<const Expr *, 4> RHSs; 1058 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1059 auto IPriv = C->privates().begin(); 1060 auto IRed = C->reduction_ops().begin(); 1061 auto ILHS = C->lhs_exprs().begin(); 1062 auto IRHS = C->rhs_exprs().begin(); 1063 for (const auto *Ref : C->varlists()) { 1064 Shareds.emplace_back(Ref); 1065 Privates.emplace_back(*IPriv); 1066 ReductionOps.emplace_back(*IRed); 1067 LHSs.emplace_back(*ILHS); 1068 RHSs.emplace_back(*IRHS); 1069 std::advance(IPriv, 1); 1070 std::advance(IRed, 1); 1071 std::advance(ILHS, 1); 1072 std::advance(IRHS, 1); 1073 } 1074 } 1075 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1076 unsigned Count = 0; 1077 auto ILHS = LHSs.begin(); 1078 auto IRHS = RHSs.begin(); 1079 auto IPriv = Privates.begin(); 1080 for (const auto *IRef : Shareds) { 1081 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1082 // Emit private VarDecl with reduction init. 1083 RedCG.emitSharedLValue(*this, Count); 1084 RedCG.emitAggregateType(*this, Count); 1085 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1086 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1087 RedCG.getSharedLValue(Count), 1088 [&Emission](CodeGenFunction &CGF) { 1089 CGF.EmitAutoVarInit(Emission); 1090 return true; 1091 }); 1092 EmitAutoVarCleanups(Emission); 1093 Address BaseAddr = RedCG.adjustPrivateAddress( 1094 *this, Count, Emission.getAllocatedAddress()); 1095 bool IsRegistered = PrivateScope.addPrivate( 1096 RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; }); 1097 assert(IsRegistered && "private var already registered as private"); 1098 // Silence the warning about unused variable. 1099 (void)IsRegistered; 1100 1101 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1102 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1103 QualType Type = PrivateVD->getType(); 1104 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1105 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1106 // Store the address of the original variable associated with the LHS 1107 // implicit variable. 1108 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1109 return RedCG.getSharedLValue(Count).getAddress(); 1110 }); 1111 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1112 return GetAddrOfLocalVar(PrivateVD); 1113 }); 1114 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1115 isa<ArraySubscriptExpr>(IRef)) { 1116 // Store the address of the original variable associated with the LHS 1117 // implicit variable. 1118 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1119 return RedCG.getSharedLValue(Count).getAddress(); 1120 }); 1121 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1122 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1123 ConvertTypeForMem(RHSVD->getType()), 1124 "rhs.begin"); 1125 }); 1126 } else { 1127 QualType Type = PrivateVD->getType(); 1128 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1129 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1130 // Store the address of the original variable associated with the LHS 1131 // implicit variable. 1132 if (IsArray) { 1133 OriginalAddr = Builder.CreateElementBitCast( 1134 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1135 } 1136 PrivateScope.addPrivate( 1137 LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; }); 1138 PrivateScope.addPrivate( 1139 RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address { 1140 return IsArray 1141 ? Builder.CreateElementBitCast( 1142 GetAddrOfLocalVar(PrivateVD), 1143 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1144 : GetAddrOfLocalVar(PrivateVD); 1145 }); 1146 } 1147 ++ILHS; 1148 ++IRHS; 1149 ++IPriv; 1150 ++Count; 1151 } 1152 } 1153 1154 void CodeGenFunction::EmitOMPReductionClauseFinal( 1155 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1156 if (!HaveInsertPoint()) 1157 return; 1158 llvm::SmallVector<const Expr *, 8> Privates; 1159 llvm::SmallVector<const Expr *, 8> LHSExprs; 1160 llvm::SmallVector<const Expr *, 8> RHSExprs; 1161 llvm::SmallVector<const Expr *, 8> ReductionOps; 1162 bool HasAtLeastOneReduction = false; 1163 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1164 HasAtLeastOneReduction = true; 1165 Privates.append(C->privates().begin(), C->privates().end()); 1166 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1167 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1168 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1169 } 1170 if (HasAtLeastOneReduction) { 1171 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1172 isOpenMPParallelDirective(D.getDirectiveKind()) || 1173 ReductionKind == OMPD_simd; 1174 bool SimpleReduction = ReductionKind == OMPD_simd; 1175 // Emit nowait reduction if nowait clause is present or directive is a 1176 // parallel directive (it always has implicit barrier). 1177 CGM.getOpenMPRuntime().emitReduction( 1178 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1179 {WithNowait, SimpleReduction, ReductionKind}); 1180 } 1181 } 1182 1183 static void emitPostUpdateForReductionClause( 1184 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1185 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1186 if (!CGF.HaveInsertPoint()) 1187 return; 1188 llvm::BasicBlock *DoneBB = nullptr; 1189 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1190 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1191 if (!DoneBB) { 1192 if (auto *Cond = CondGen(CGF)) { 1193 // If the first post-update expression is found, emit conditional 1194 // block if it was requested. 1195 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1196 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1197 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1198 CGF.EmitBlock(ThenBB); 1199 } 1200 } 1201 CGF.EmitIgnoredExpr(PostUpdate); 1202 } 1203 } 1204 if (DoneBB) 1205 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1206 } 1207 1208 namespace { 1209 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1210 /// parallel function. This is necessary for combined constructs such as 1211 /// 'distribute parallel for' 1212 typedef llvm::function_ref<void(CodeGenFunction &, 1213 const OMPExecutableDirective &, 1214 llvm::SmallVectorImpl<llvm::Value *> &)> 1215 CodeGenBoundParametersTy; 1216 } // anonymous namespace 1217 1218 static void emitCommonOMPParallelDirective( 1219 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1220 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1221 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1222 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1223 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1224 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1225 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1226 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1227 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1228 /*IgnoreResultAssign*/ true); 1229 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1230 CGF, NumThreads, NumThreadsClause->getLocStart()); 1231 } 1232 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1233 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1234 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1235 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1236 } 1237 const Expr *IfCond = nullptr; 1238 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1239 if (C->getNameModifier() == OMPD_unknown || 1240 C->getNameModifier() == OMPD_parallel) { 1241 IfCond = C->getCondition(); 1242 break; 1243 } 1244 } 1245 1246 OMPParallelScope Scope(CGF, S); 1247 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1248 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1249 // lower and upper bounds with the pragma 'for' chunking mechanism. 1250 // The following lambda takes care of appending the lower and upper bound 1251 // parameters when necessary 1252 CodeGenBoundParameters(CGF, S, CapturedVars); 1253 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1254 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1255 CapturedVars, IfCond); 1256 } 1257 1258 static void emitEmptyBoundParameters(CodeGenFunction &, 1259 const OMPExecutableDirective &, 1260 llvm::SmallVectorImpl<llvm::Value *> &) {} 1261 1262 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1263 // Emit parallel region as a standalone region. 1264 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1265 OMPPrivateScope PrivateScope(CGF); 1266 bool Copyins = CGF.EmitOMPCopyinClause(S); 1267 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1268 if (Copyins) { 1269 // Emit implicit barrier to synchronize threads and avoid data races on 1270 // propagation master's thread values of threadprivate variables to local 1271 // instances of that variables of all other implicit threads. 1272 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1273 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1274 /*ForceSimpleCall=*/true); 1275 } 1276 CGF.EmitOMPPrivateClause(S, PrivateScope); 1277 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1278 (void)PrivateScope.Privatize(); 1279 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1280 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1281 }; 1282 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1283 emitEmptyBoundParameters); 1284 emitPostUpdateForReductionClause( 1285 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1286 } 1287 1288 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1289 JumpDest LoopExit) { 1290 RunCleanupsScope BodyScope(*this); 1291 // Update counters values on current iteration. 1292 for (auto I : D.updates()) { 1293 EmitIgnoredExpr(I); 1294 } 1295 // Update the linear variables. 1296 // In distribute directives only loop counters may be marked as linear, no 1297 // need to generate the code for them. 1298 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1299 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1300 for (auto *U : C->updates()) 1301 EmitIgnoredExpr(U); 1302 } 1303 } 1304 1305 // On a continue in the body, jump to the end. 1306 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1307 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1308 // Emit loop body. 1309 EmitStmt(D.getBody()); 1310 // The end (updates/cleanups). 1311 EmitBlock(Continue.getBlock()); 1312 BreakContinueStack.pop_back(); 1313 } 1314 1315 void CodeGenFunction::EmitOMPInnerLoop( 1316 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1317 const Expr *IncExpr, 1318 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1319 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1320 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1321 1322 // Start the loop with a block that tests the condition. 1323 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1324 EmitBlock(CondBlock); 1325 const SourceRange &R = S.getSourceRange(); 1326 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1327 SourceLocToDebugLoc(R.getEnd())); 1328 1329 // If there are any cleanups between here and the loop-exit scope, 1330 // create a block to stage a loop exit along. 1331 auto ExitBlock = LoopExit.getBlock(); 1332 if (RequiresCleanup) 1333 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1334 1335 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1336 1337 // Emit condition. 1338 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1339 if (ExitBlock != LoopExit.getBlock()) { 1340 EmitBlock(ExitBlock); 1341 EmitBranchThroughCleanup(LoopExit); 1342 } 1343 1344 EmitBlock(LoopBody); 1345 incrementProfileCounter(&S); 1346 1347 // Create a block for the increment. 1348 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1349 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1350 1351 BodyGen(*this); 1352 1353 // Emit "IV = IV + 1" and a back-edge to the condition block. 1354 EmitBlock(Continue.getBlock()); 1355 EmitIgnoredExpr(IncExpr); 1356 PostIncGen(*this); 1357 BreakContinueStack.pop_back(); 1358 EmitBranch(CondBlock); 1359 LoopStack.pop(); 1360 // Emit the fall-through block. 1361 EmitBlock(LoopExit.getBlock()); 1362 } 1363 1364 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1365 if (!HaveInsertPoint()) 1366 return false; 1367 // Emit inits for the linear variables. 1368 bool HasLinears = false; 1369 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1370 for (auto *Init : C->inits()) { 1371 HasLinears = true; 1372 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1373 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1374 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1375 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1376 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1377 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1378 VD->getInit()->getType(), VK_LValue, 1379 VD->getInit()->getExprLoc()); 1380 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1381 VD->getType()), 1382 /*capturedByInit=*/false); 1383 EmitAutoVarCleanups(Emission); 1384 } else 1385 EmitVarDecl(*VD); 1386 } 1387 // Emit the linear steps for the linear clauses. 1388 // If a step is not constant, it is pre-calculated before the loop. 1389 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1390 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1391 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1392 // Emit calculation of the linear step. 1393 EmitIgnoredExpr(CS); 1394 } 1395 } 1396 return HasLinears; 1397 } 1398 1399 void CodeGenFunction::EmitOMPLinearClauseFinal( 1400 const OMPLoopDirective &D, 1401 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1402 if (!HaveInsertPoint()) 1403 return; 1404 llvm::BasicBlock *DoneBB = nullptr; 1405 // Emit the final values of the linear variables. 1406 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1407 auto IC = C->varlist_begin(); 1408 for (auto *F : C->finals()) { 1409 if (!DoneBB) { 1410 if (auto *Cond = CondGen(*this)) { 1411 // If the first post-update expression is found, emit conditional 1412 // block if it was requested. 1413 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1414 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1415 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1416 EmitBlock(ThenBB); 1417 } 1418 } 1419 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1420 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1421 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1422 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1423 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1424 CodeGenFunction::OMPPrivateScope VarScope(*this); 1425 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1426 (void)VarScope.Privatize(); 1427 EmitIgnoredExpr(F); 1428 ++IC; 1429 } 1430 if (auto *PostUpdate = C->getPostUpdateExpr()) 1431 EmitIgnoredExpr(PostUpdate); 1432 } 1433 if (DoneBB) 1434 EmitBlock(DoneBB, /*IsFinished=*/true); 1435 } 1436 1437 static void emitAlignedClause(CodeGenFunction &CGF, 1438 const OMPExecutableDirective &D) { 1439 if (!CGF.HaveInsertPoint()) 1440 return; 1441 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1442 unsigned ClauseAlignment = 0; 1443 if (auto AlignmentExpr = Clause->getAlignment()) { 1444 auto AlignmentCI = 1445 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1446 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1447 } 1448 for (auto E : Clause->varlists()) { 1449 unsigned Alignment = ClauseAlignment; 1450 if (Alignment == 0) { 1451 // OpenMP [2.8.1, Description] 1452 // If no optional parameter is specified, implementation-defined default 1453 // alignments for SIMD instructions on the target platforms are assumed. 1454 Alignment = 1455 CGF.getContext() 1456 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1457 E->getType()->getPointeeType())) 1458 .getQuantity(); 1459 } 1460 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1461 "alignment is not power of 2"); 1462 if (Alignment != 0) { 1463 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1464 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1465 } 1466 } 1467 } 1468 } 1469 1470 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1471 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1472 if (!HaveInsertPoint()) 1473 return; 1474 auto I = S.private_counters().begin(); 1475 for (auto *E : S.counters()) { 1476 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1477 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1478 // Emit var without initialization. 1479 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1480 EmitAutoVarCleanups(VarEmission); 1481 LocalDeclMap.erase(PrivateVD); 1482 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1483 return VarEmission.getAllocatedAddress(); 1484 }); 1485 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1486 VD->hasGlobalStorage()) { 1487 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1488 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1489 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1490 E->getType(), VK_LValue, E->getExprLoc()); 1491 return EmitLValue(&DRE).getAddress(); 1492 }); 1493 } else { 1494 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1495 return VarEmission.getAllocatedAddress(); 1496 }); 1497 } 1498 ++I; 1499 } 1500 } 1501 1502 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1503 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1504 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1505 if (!CGF.HaveInsertPoint()) 1506 return; 1507 { 1508 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1509 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1510 (void)PreCondScope.Privatize(); 1511 // Get initial values of real counters. 1512 for (auto I : S.inits()) { 1513 CGF.EmitIgnoredExpr(I); 1514 } 1515 } 1516 // Check that loop is executed at least one time. 1517 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1518 } 1519 1520 void CodeGenFunction::EmitOMPLinearClause( 1521 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1522 if (!HaveInsertPoint()) 1523 return; 1524 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1525 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1526 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1527 for (auto *C : LoopDirective->counters()) { 1528 SIMDLCVs.insert( 1529 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1530 } 1531 } 1532 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1533 auto CurPrivate = C->privates().begin(); 1534 for (auto *E : C->varlists()) { 1535 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1536 auto *PrivateVD = 1537 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1538 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1539 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1540 // Emit private VarDecl with copy init. 1541 EmitVarDecl(*PrivateVD); 1542 return GetAddrOfLocalVar(PrivateVD); 1543 }); 1544 assert(IsRegistered && "linear var already registered as private"); 1545 // Silence the warning about unused variable. 1546 (void)IsRegistered; 1547 } else 1548 EmitVarDecl(*PrivateVD); 1549 ++CurPrivate; 1550 } 1551 } 1552 } 1553 1554 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1555 const OMPExecutableDirective &D, 1556 bool IsMonotonic) { 1557 if (!CGF.HaveInsertPoint()) 1558 return; 1559 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1560 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1561 /*ignoreResult=*/true); 1562 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1563 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1564 // In presence of finite 'safelen', it may be unsafe to mark all 1565 // the memory instructions parallel, because loop-carried 1566 // dependences of 'safelen' iterations are possible. 1567 if (!IsMonotonic) 1568 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1569 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1570 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1571 /*ignoreResult=*/true); 1572 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1573 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1574 // In presence of finite 'safelen', it may be unsafe to mark all 1575 // the memory instructions parallel, because loop-carried 1576 // dependences of 'safelen' iterations are possible. 1577 CGF.LoopStack.setParallel(false); 1578 } 1579 } 1580 1581 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1582 bool IsMonotonic) { 1583 // Walk clauses and process safelen/lastprivate. 1584 LoopStack.setParallel(!IsMonotonic); 1585 LoopStack.setVectorizeEnable(true); 1586 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1587 } 1588 1589 void CodeGenFunction::EmitOMPSimdFinal( 1590 const OMPLoopDirective &D, 1591 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1592 if (!HaveInsertPoint()) 1593 return; 1594 llvm::BasicBlock *DoneBB = nullptr; 1595 auto IC = D.counters().begin(); 1596 auto IPC = D.private_counters().begin(); 1597 for (auto F : D.finals()) { 1598 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1599 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1600 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1601 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1602 OrigVD->hasGlobalStorage() || CED) { 1603 if (!DoneBB) { 1604 if (auto *Cond = CondGen(*this)) { 1605 // If the first post-update expression is found, emit conditional 1606 // block if it was requested. 1607 auto *ThenBB = createBasicBlock(".omp.final.then"); 1608 DoneBB = createBasicBlock(".omp.final.done"); 1609 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1610 EmitBlock(ThenBB); 1611 } 1612 } 1613 Address OrigAddr = Address::invalid(); 1614 if (CED) { 1615 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1616 } else { 1617 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1618 /*RefersToEnclosingVariableOrCapture=*/false, 1619 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1620 OrigAddr = EmitLValue(&DRE).getAddress(); 1621 } 1622 OMPPrivateScope VarScope(*this); 1623 VarScope.addPrivate(OrigVD, 1624 [OrigAddr]() -> Address { return OrigAddr; }); 1625 (void)VarScope.Privatize(); 1626 EmitIgnoredExpr(F); 1627 } 1628 ++IC; 1629 ++IPC; 1630 } 1631 if (DoneBB) 1632 EmitBlock(DoneBB, /*IsFinished=*/true); 1633 } 1634 1635 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1636 const OMPLoopDirective &S, 1637 CodeGenFunction::JumpDest LoopExit) { 1638 CGF.EmitOMPLoopBody(S, LoopExit); 1639 CGF.EmitStopPoint(&S); 1640 } 1641 1642 /// Emit a helper variable and return corresponding lvalue. 1643 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1644 const DeclRefExpr *Helper) { 1645 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1646 CGF.EmitVarDecl(*VDecl); 1647 return CGF.EmitLValue(Helper); 1648 } 1649 1650 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1651 PrePostActionTy &Action) { 1652 Action.Enter(CGF); 1653 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1654 "Expected simd directive"); 1655 OMPLoopScope PreInitScope(CGF, S); 1656 // if (PreCond) { 1657 // for (IV in 0..LastIteration) BODY; 1658 // <Final counter/linear vars updates>; 1659 // } 1660 // 1661 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1662 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1663 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1664 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1665 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1666 } 1667 1668 // Emit: if (PreCond) - begin. 1669 // If the condition constant folds and can be elided, avoid emitting the 1670 // whole loop. 1671 bool CondConstant; 1672 llvm::BasicBlock *ContBlock = nullptr; 1673 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1674 if (!CondConstant) 1675 return; 1676 } else { 1677 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1678 ContBlock = CGF.createBasicBlock("simd.if.end"); 1679 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1680 CGF.getProfileCount(&S)); 1681 CGF.EmitBlock(ThenBlock); 1682 CGF.incrementProfileCounter(&S); 1683 } 1684 1685 // Emit the loop iteration variable. 1686 const Expr *IVExpr = S.getIterationVariable(); 1687 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1688 CGF.EmitVarDecl(*IVDecl); 1689 CGF.EmitIgnoredExpr(S.getInit()); 1690 1691 // Emit the iterations count variable. 1692 // If it is not a variable, Sema decided to calculate iterations count on 1693 // each iteration (e.g., it is foldable into a constant). 1694 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1695 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1696 // Emit calculation of the iterations count. 1697 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1698 } 1699 1700 CGF.EmitOMPSimdInit(S); 1701 1702 emitAlignedClause(CGF, S); 1703 (void)CGF.EmitOMPLinearClauseInit(S); 1704 { 1705 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1706 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1707 CGF.EmitOMPLinearClause(S, LoopScope); 1708 CGF.EmitOMPPrivateClause(S, LoopScope); 1709 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1710 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1711 (void)LoopScope.Privatize(); 1712 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1713 S.getInc(), 1714 [&S](CodeGenFunction &CGF) { 1715 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1716 CGF.EmitStopPoint(&S); 1717 }, 1718 [](CodeGenFunction &) {}); 1719 CGF.EmitOMPSimdFinal( 1720 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1721 // Emit final copy of the lastprivate variables at the end of loops. 1722 if (HasLastprivateClause) 1723 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1724 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1725 emitPostUpdateForReductionClause( 1726 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1727 } 1728 CGF.EmitOMPLinearClauseFinal( 1729 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1730 // Emit: if (PreCond) - end. 1731 if (ContBlock) { 1732 CGF.EmitBranch(ContBlock); 1733 CGF.EmitBlock(ContBlock, true); 1734 } 1735 } 1736 1737 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1738 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1739 emitOMPSimdRegion(CGF, S, Action); 1740 }; 1741 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1742 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1743 } 1744 1745 void CodeGenFunction::EmitOMPOuterLoop( 1746 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1747 CodeGenFunction::OMPPrivateScope &LoopScope, 1748 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1749 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1750 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1751 auto &RT = CGM.getOpenMPRuntime(); 1752 1753 const Expr *IVExpr = S.getIterationVariable(); 1754 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1755 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1756 1757 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1758 1759 // Start the loop with a block that tests the condition. 1760 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1761 EmitBlock(CondBlock); 1762 const SourceRange &R = S.getSourceRange(); 1763 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1764 SourceLocToDebugLoc(R.getEnd())); 1765 1766 llvm::Value *BoolCondVal = nullptr; 1767 if (!DynamicOrOrdered) { 1768 // UB = min(UB, GlobalUB) or 1769 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1770 // 'distribute parallel for') 1771 EmitIgnoredExpr(LoopArgs.EUB); 1772 // IV = LB 1773 EmitIgnoredExpr(LoopArgs.Init); 1774 // IV < UB 1775 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1776 } else { 1777 BoolCondVal = 1778 RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL, 1779 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1780 } 1781 1782 // If there are any cleanups between here and the loop-exit scope, 1783 // create a block to stage a loop exit along. 1784 auto ExitBlock = LoopExit.getBlock(); 1785 if (LoopScope.requiresCleanups()) 1786 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1787 1788 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1789 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1790 if (ExitBlock != LoopExit.getBlock()) { 1791 EmitBlock(ExitBlock); 1792 EmitBranchThroughCleanup(LoopExit); 1793 } 1794 EmitBlock(LoopBody); 1795 1796 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1797 // LB for loop condition and emitted it above). 1798 if (DynamicOrOrdered) 1799 EmitIgnoredExpr(LoopArgs.Init); 1800 1801 // Create a block for the increment. 1802 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1803 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1804 1805 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1806 // with dynamic/guided scheduling and without ordered clause. 1807 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1808 LoopStack.setParallel(!IsMonotonic); 1809 else 1810 EmitOMPSimdInit(S, IsMonotonic); 1811 1812 SourceLocation Loc = S.getLocStart(); 1813 1814 // when 'distribute' is not combined with a 'for': 1815 // while (idx <= UB) { BODY; ++idx; } 1816 // when 'distribute' is combined with a 'for' 1817 // (e.g. 'distribute parallel for') 1818 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1819 EmitOMPInnerLoop( 1820 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1821 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1822 CodeGenLoop(CGF, S, LoopExit); 1823 }, 1824 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1825 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1826 }); 1827 1828 EmitBlock(Continue.getBlock()); 1829 BreakContinueStack.pop_back(); 1830 if (!DynamicOrOrdered) { 1831 // Emit "LB = LB + Stride", "UB = UB + Stride". 1832 EmitIgnoredExpr(LoopArgs.NextLB); 1833 EmitIgnoredExpr(LoopArgs.NextUB); 1834 } 1835 1836 EmitBranch(CondBlock); 1837 LoopStack.pop(); 1838 // Emit the fall-through block. 1839 EmitBlock(LoopExit.getBlock()); 1840 1841 // Tell the runtime we are done. 1842 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1843 if (!DynamicOrOrdered) 1844 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 1845 S.getDirectiveKind()); 1846 }; 1847 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1848 } 1849 1850 void CodeGenFunction::EmitOMPForOuterLoop( 1851 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1852 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1853 const OMPLoopArguments &LoopArgs, 1854 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1855 auto &RT = CGM.getOpenMPRuntime(); 1856 1857 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1858 const bool DynamicOrOrdered = 1859 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1860 1861 assert((Ordered || 1862 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1863 LoopArgs.Chunk != nullptr)) && 1864 "static non-chunked schedule does not need outer loop"); 1865 1866 // Emit outer loop. 1867 // 1868 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1869 // When schedule(dynamic,chunk_size) is specified, the iterations are 1870 // distributed to threads in the team in chunks as the threads request them. 1871 // Each thread executes a chunk of iterations, then requests another chunk, 1872 // until no chunks remain to be distributed. Each chunk contains chunk_size 1873 // iterations, except for the last chunk to be distributed, which may have 1874 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1875 // 1876 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1877 // to threads in the team in chunks as the executing threads request them. 1878 // Each thread executes a chunk of iterations, then requests another chunk, 1879 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1880 // each chunk is proportional to the number of unassigned iterations divided 1881 // by the number of threads in the team, decreasing to 1. For a chunk_size 1882 // with value k (greater than 1), the size of each chunk is determined in the 1883 // same way, with the restriction that the chunks do not contain fewer than k 1884 // iterations (except for the last chunk to be assigned, which may have fewer 1885 // than k iterations). 1886 // 1887 // When schedule(auto) is specified, the decision regarding scheduling is 1888 // delegated to the compiler and/or runtime system. The programmer gives the 1889 // implementation the freedom to choose any possible mapping of iterations to 1890 // threads in the team. 1891 // 1892 // When schedule(runtime) is specified, the decision regarding scheduling is 1893 // deferred until run time, and the schedule and chunk size are taken from the 1894 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1895 // implementation defined 1896 // 1897 // while(__kmpc_dispatch_next(&LB, &UB)) { 1898 // idx = LB; 1899 // while (idx <= UB) { BODY; ++idx; 1900 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1901 // } // inner loop 1902 // } 1903 // 1904 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1905 // When schedule(static, chunk_size) is specified, iterations are divided into 1906 // chunks of size chunk_size, and the chunks are assigned to the threads in 1907 // the team in a round-robin fashion in the order of the thread number. 1908 // 1909 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1910 // while (idx <= UB) { BODY; ++idx; } // inner loop 1911 // LB = LB + ST; 1912 // UB = UB + ST; 1913 // } 1914 // 1915 1916 const Expr *IVExpr = S.getIterationVariable(); 1917 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1918 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1919 1920 if (DynamicOrOrdered) { 1921 auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1922 llvm::Value *LBVal = DispatchBounds.first; 1923 llvm::Value *UBVal = DispatchBounds.second; 1924 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1925 LoopArgs.Chunk}; 1926 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1927 IVSigned, Ordered, DipatchRTInputValues); 1928 } else { 1929 CGOpenMPRuntime::StaticRTInput StaticInit( 1930 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1931 LoopArgs.ST, LoopArgs.Chunk); 1932 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 1933 ScheduleKind, StaticInit); 1934 } 1935 1936 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1937 const unsigned IVSize, 1938 const bool IVSigned) { 1939 if (Ordered) { 1940 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1941 IVSigned); 1942 } 1943 }; 1944 1945 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1946 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1947 OuterLoopArgs.IncExpr = S.getInc(); 1948 OuterLoopArgs.Init = S.getInit(); 1949 OuterLoopArgs.Cond = S.getCond(); 1950 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1951 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1952 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1953 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1954 } 1955 1956 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1957 const unsigned IVSize, const bool IVSigned) {} 1958 1959 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1960 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1961 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1962 const CodeGenLoopTy &CodeGenLoopContent) { 1963 1964 auto &RT = CGM.getOpenMPRuntime(); 1965 1966 // Emit outer loop. 1967 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1968 // dynamic 1969 // 1970 1971 const Expr *IVExpr = S.getIterationVariable(); 1972 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1973 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1974 1975 CGOpenMPRuntime::StaticRTInput StaticInit( 1976 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 1977 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 1978 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit); 1979 1980 // for combined 'distribute' and 'for' the increment expression of distribute 1981 // is store in DistInc. For 'distribute' alone, it is in Inc. 1982 Expr *IncExpr; 1983 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 1984 IncExpr = S.getDistInc(); 1985 else 1986 IncExpr = S.getInc(); 1987 1988 // this routine is shared by 'omp distribute parallel for' and 1989 // 'omp distribute': select the right EUB expression depending on the 1990 // directive 1991 OMPLoopArguments OuterLoopArgs; 1992 OuterLoopArgs.LB = LoopArgs.LB; 1993 OuterLoopArgs.UB = LoopArgs.UB; 1994 OuterLoopArgs.ST = LoopArgs.ST; 1995 OuterLoopArgs.IL = LoopArgs.IL; 1996 OuterLoopArgs.Chunk = LoopArgs.Chunk; 1997 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1998 ? S.getCombinedEnsureUpperBound() 1999 : S.getEnsureUpperBound(); 2000 OuterLoopArgs.IncExpr = IncExpr; 2001 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2002 ? S.getCombinedInit() 2003 : S.getInit(); 2004 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2005 ? S.getCombinedCond() 2006 : S.getCond(); 2007 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2008 ? S.getCombinedNextLowerBound() 2009 : S.getNextLowerBound(); 2010 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2011 ? S.getCombinedNextUpperBound() 2012 : S.getNextUpperBound(); 2013 2014 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2015 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2016 emitEmptyOrdered); 2017 } 2018 2019 static std::pair<LValue, LValue> 2020 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2021 const OMPExecutableDirective &S) { 2022 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2023 LValue LB = 2024 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2025 LValue UB = 2026 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2027 2028 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2029 // parallel for') we need to use the 'distribute' 2030 // chunk lower and upper bounds rather than the whole loop iteration 2031 // space. These are parameters to the outlined function for 'parallel' 2032 // and we copy the bounds of the previous schedule into the 2033 // the current ones. 2034 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2035 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2036 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2037 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2038 PrevLBVal = CGF.EmitScalarConversion( 2039 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2040 LS.getIterationVariable()->getType(), 2041 LS.getPrevLowerBoundVariable()->getExprLoc()); 2042 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2043 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2044 PrevUBVal = CGF.EmitScalarConversion( 2045 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2046 LS.getIterationVariable()->getType(), 2047 LS.getPrevUpperBoundVariable()->getExprLoc()); 2048 2049 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2050 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2051 2052 return {LB, UB}; 2053 } 2054 2055 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2056 /// we need to use the LB and UB expressions generated by the worksharing 2057 /// code generation support, whereas in non combined situations we would 2058 /// just emit 0 and the LastIteration expression 2059 /// This function is necessary due to the difference of the LB and UB 2060 /// types for the RT emission routines for 'for_static_init' and 2061 /// 'for_dispatch_init' 2062 static std::pair<llvm::Value *, llvm::Value *> 2063 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2064 const OMPExecutableDirective &S, 2065 Address LB, Address UB) { 2066 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2067 const Expr *IVExpr = LS.getIterationVariable(); 2068 // when implementing a dynamic schedule for a 'for' combined with a 2069 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2070 // is not normalized as each team only executes its own assigned 2071 // distribute chunk 2072 QualType IteratorTy = IVExpr->getType(); 2073 llvm::Value *LBVal = 2074 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getLocStart()); 2075 llvm::Value *UBVal = 2076 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getLocStart()); 2077 return {LBVal, UBVal}; 2078 } 2079 2080 static void emitDistributeParallelForDistributeInnerBoundParams( 2081 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2082 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2083 const auto &Dir = cast<OMPLoopDirective>(S); 2084 LValue LB = 2085 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2086 auto LBCast = CGF.Builder.CreateIntCast( 2087 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2088 CapturedVars.push_back(LBCast); 2089 LValue UB = 2090 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2091 2092 auto UBCast = CGF.Builder.CreateIntCast( 2093 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2094 CapturedVars.push_back(UBCast); 2095 } 2096 2097 static void 2098 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2099 const OMPLoopDirective &S, 2100 CodeGenFunction::JumpDest LoopExit) { 2101 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2102 PrePostActionTy &) { 2103 bool HasCancel = false; 2104 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2105 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2106 HasCancel = D->hasCancel(); 2107 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2108 HasCancel = D->hasCancel(); 2109 else if (const auto *D = 2110 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2111 HasCancel = D->hasCancel(); 2112 } 2113 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2114 HasCancel); 2115 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2116 emitDistributeParallelForInnerBounds, 2117 emitDistributeParallelForDispatchBounds); 2118 }; 2119 2120 emitCommonOMPParallelDirective( 2121 CGF, S, 2122 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2123 CGInlinedWorksharingLoop, 2124 emitDistributeParallelForDistributeInnerBoundParams); 2125 } 2126 2127 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2128 const OMPDistributeParallelForDirective &S) { 2129 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2130 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2131 S.getDistInc()); 2132 }; 2133 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2134 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2135 } 2136 2137 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2138 const OMPDistributeParallelForSimdDirective &S) { 2139 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2140 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2141 S.getDistInc()); 2142 }; 2143 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2144 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2145 } 2146 2147 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2148 const OMPDistributeSimdDirective &S) { 2149 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2150 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2151 }; 2152 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2153 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2154 } 2155 2156 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2157 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2158 // Emit SPMD target parallel for region as a standalone region. 2159 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2160 emitOMPSimdRegion(CGF, S, Action); 2161 }; 2162 llvm::Function *Fn; 2163 llvm::Constant *Addr; 2164 // Emit target region as a standalone region. 2165 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2166 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2167 assert(Fn && Addr && "Target device function emission failed."); 2168 } 2169 2170 void CodeGenFunction::EmitOMPTargetSimdDirective( 2171 const OMPTargetSimdDirective &S) { 2172 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2173 emitOMPSimdRegion(CGF, S, Action); 2174 }; 2175 emitCommonOMPTargetDirective(*this, S, CodeGen); 2176 } 2177 2178 namespace { 2179 struct ScheduleKindModifiersTy { 2180 OpenMPScheduleClauseKind Kind; 2181 OpenMPScheduleClauseModifier M1; 2182 OpenMPScheduleClauseModifier M2; 2183 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2184 OpenMPScheduleClauseModifier M1, 2185 OpenMPScheduleClauseModifier M2) 2186 : Kind(Kind), M1(M1), M2(M2) {} 2187 }; 2188 } // namespace 2189 2190 bool CodeGenFunction::EmitOMPWorksharingLoop( 2191 const OMPLoopDirective &S, Expr *EUB, 2192 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2193 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2194 // Emit the loop iteration variable. 2195 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2196 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2197 EmitVarDecl(*IVDecl); 2198 2199 // Emit the iterations count variable. 2200 // If it is not a variable, Sema decided to calculate iterations count on each 2201 // iteration (e.g., it is foldable into a constant). 2202 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2203 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2204 // Emit calculation of the iterations count. 2205 EmitIgnoredExpr(S.getCalcLastIteration()); 2206 } 2207 2208 auto &RT = CGM.getOpenMPRuntime(); 2209 2210 bool HasLastprivateClause; 2211 // Check pre-condition. 2212 { 2213 OMPLoopScope PreInitScope(*this, S); 2214 // Skip the entire loop if we don't meet the precondition. 2215 // If the condition constant folds and can be elided, avoid emitting the 2216 // whole loop. 2217 bool CondConstant; 2218 llvm::BasicBlock *ContBlock = nullptr; 2219 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2220 if (!CondConstant) 2221 return false; 2222 } else { 2223 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2224 ContBlock = createBasicBlock("omp.precond.end"); 2225 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2226 getProfileCount(&S)); 2227 EmitBlock(ThenBlock); 2228 incrementProfileCounter(&S); 2229 } 2230 2231 RunCleanupsScope DoacrossCleanupScope(*this); 2232 bool Ordered = false; 2233 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2234 if (OrderedClause->getNumForLoops()) 2235 RT.emitDoacrossInit(*this, S); 2236 else 2237 Ordered = true; 2238 } 2239 2240 llvm::DenseSet<const Expr *> EmittedFinals; 2241 emitAlignedClause(*this, S); 2242 bool HasLinears = EmitOMPLinearClauseInit(S); 2243 // Emit helper vars inits. 2244 2245 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2246 LValue LB = Bounds.first; 2247 LValue UB = Bounds.second; 2248 LValue ST = 2249 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2250 LValue IL = 2251 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2252 2253 // Emit 'then' code. 2254 { 2255 OMPPrivateScope LoopScope(*this); 2256 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2257 // Emit implicit barrier to synchronize threads and avoid data races on 2258 // initialization of firstprivate variables and post-update of 2259 // lastprivate variables. 2260 CGM.getOpenMPRuntime().emitBarrierCall( 2261 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2262 /*ForceSimpleCall=*/true); 2263 } 2264 EmitOMPPrivateClause(S, LoopScope); 2265 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2266 EmitOMPReductionClauseInit(S, LoopScope); 2267 EmitOMPPrivateLoopCounters(S, LoopScope); 2268 EmitOMPLinearClause(S, LoopScope); 2269 (void)LoopScope.Privatize(); 2270 2271 // Detect the loop schedule kind and chunk. 2272 llvm::Value *Chunk = nullptr; 2273 OpenMPScheduleTy ScheduleKind; 2274 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2275 ScheduleKind.Schedule = C->getScheduleKind(); 2276 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2277 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2278 if (const auto *Ch = C->getChunkSize()) { 2279 Chunk = EmitScalarExpr(Ch); 2280 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2281 S.getIterationVariable()->getType(), 2282 S.getLocStart()); 2283 } 2284 } 2285 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2286 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2287 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2288 // If the static schedule kind is specified or if the ordered clause is 2289 // specified, and if no monotonic modifier is specified, the effect will 2290 // be as if the monotonic modifier was specified. 2291 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2292 /* Chunked */ Chunk != nullptr) && 2293 !Ordered) { 2294 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2295 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2296 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2297 // When no chunk_size is specified, the iteration space is divided into 2298 // chunks that are approximately equal in size, and at most one chunk is 2299 // distributed to each thread. Note that the size of the chunks is 2300 // unspecified in this case. 2301 CGOpenMPRuntime::StaticRTInput StaticInit( 2302 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2303 UB.getAddress(), ST.getAddress()); 2304 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 2305 ScheduleKind, StaticInit); 2306 auto LoopExit = 2307 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2308 // UB = min(UB, GlobalUB); 2309 EmitIgnoredExpr(S.getEnsureUpperBound()); 2310 // IV = LB; 2311 EmitIgnoredExpr(S.getInit()); 2312 // while (idx <= UB) { BODY; ++idx; } 2313 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2314 S.getInc(), 2315 [&S, LoopExit](CodeGenFunction &CGF) { 2316 CGF.EmitOMPLoopBody(S, LoopExit); 2317 CGF.EmitStopPoint(&S); 2318 }, 2319 [](CodeGenFunction &) {}); 2320 EmitBlock(LoopExit.getBlock()); 2321 // Tell the runtime we are done. 2322 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2323 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2324 S.getDirectiveKind()); 2325 }; 2326 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2327 } else { 2328 const bool IsMonotonic = 2329 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2330 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2331 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2332 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2333 // Emit the outer loop, which requests its work chunk [LB..UB] from 2334 // runtime and runs the inner loop to process it. 2335 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2336 ST.getAddress(), IL.getAddress(), 2337 Chunk, EUB); 2338 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2339 LoopArguments, CGDispatchBounds); 2340 } 2341 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2342 EmitOMPSimdFinal(S, 2343 [&](CodeGenFunction &CGF) -> llvm::Value * { 2344 return CGF.Builder.CreateIsNotNull( 2345 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2346 }); 2347 } 2348 EmitOMPReductionClauseFinal( 2349 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2350 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2351 : /*Parallel only*/ OMPD_parallel); 2352 // Emit post-update of the reduction variables if IsLastIter != 0. 2353 emitPostUpdateForReductionClause( 2354 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2355 return CGF.Builder.CreateIsNotNull( 2356 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2357 }); 2358 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2359 if (HasLastprivateClause) 2360 EmitOMPLastprivateClauseFinal( 2361 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2362 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2363 } 2364 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2365 return CGF.Builder.CreateIsNotNull( 2366 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2367 }); 2368 DoacrossCleanupScope.ForceCleanup(); 2369 // We're now done with the loop, so jump to the continuation block. 2370 if (ContBlock) { 2371 EmitBranch(ContBlock); 2372 EmitBlock(ContBlock, true); 2373 } 2374 } 2375 return HasLastprivateClause; 2376 } 2377 2378 /// The following two functions generate expressions for the loop lower 2379 /// and upper bounds in case of static and dynamic (dispatch) schedule 2380 /// of the associated 'for' or 'distribute' loop. 2381 static std::pair<LValue, LValue> 2382 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2383 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2384 LValue LB = 2385 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2386 LValue UB = 2387 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2388 return {LB, UB}; 2389 } 2390 2391 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2392 /// consider the lower and upper bound expressions generated by the 2393 /// worksharing loop support, but we use 0 and the iteration space size as 2394 /// constants 2395 static std::pair<llvm::Value *, llvm::Value *> 2396 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2397 Address LB, Address UB) { 2398 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2399 const Expr *IVExpr = LS.getIterationVariable(); 2400 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2401 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2402 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2403 return {LBVal, UBVal}; 2404 } 2405 2406 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2407 bool HasLastprivates = false; 2408 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2409 PrePostActionTy &) { 2410 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2411 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2412 emitForLoopBounds, 2413 emitDispatchForLoopBounds); 2414 }; 2415 { 2416 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2417 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2418 S.hasCancel()); 2419 } 2420 2421 // Emit an implicit barrier at the end. 2422 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2423 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2424 } 2425 } 2426 2427 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2428 bool HasLastprivates = false; 2429 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2430 PrePostActionTy &) { 2431 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2432 emitForLoopBounds, 2433 emitDispatchForLoopBounds); 2434 }; 2435 { 2436 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2437 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2438 } 2439 2440 // Emit an implicit barrier at the end. 2441 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2442 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2443 } 2444 } 2445 2446 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2447 const Twine &Name, 2448 llvm::Value *Init = nullptr) { 2449 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2450 if (Init) 2451 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2452 return LVal; 2453 } 2454 2455 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2456 const Stmt *Stmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2457 const auto *CS = dyn_cast<CompoundStmt>(Stmt); 2458 bool HasLastprivates = false; 2459 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2460 PrePostActionTy &) { 2461 auto &C = CGF.CGM.getContext(); 2462 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2463 // Emit helper vars inits. 2464 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2465 CGF.Builder.getInt32(0)); 2466 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2467 : CGF.Builder.getInt32(0); 2468 LValue UB = 2469 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2470 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2471 CGF.Builder.getInt32(1)); 2472 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2473 CGF.Builder.getInt32(0)); 2474 // Loop counter. 2475 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2476 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2477 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2478 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2479 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2480 // Generate condition for loop. 2481 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2482 OK_Ordinary, S.getLocStart(), FPOptions()); 2483 // Increment for loop counter. 2484 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2485 S.getLocStart(), true); 2486 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2487 // Iterate through all sections and emit a switch construct: 2488 // switch (IV) { 2489 // case 0: 2490 // <SectionStmt[0]>; 2491 // break; 2492 // ... 2493 // case <NumSection> - 1: 2494 // <SectionStmt[<NumSection> - 1]>; 2495 // break; 2496 // } 2497 // .omp.sections.exit: 2498 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2499 auto *SwitchStmt = 2500 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getLocStart()), 2501 ExitBB, CS == nullptr ? 1 : CS->size()); 2502 if (CS) { 2503 unsigned CaseNumber = 0; 2504 for (auto *SubStmt : CS->children()) { 2505 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2506 CGF.EmitBlock(CaseBB); 2507 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2508 CGF.EmitStmt(SubStmt); 2509 CGF.EmitBranch(ExitBB); 2510 ++CaseNumber; 2511 } 2512 } else { 2513 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2514 CGF.EmitBlock(CaseBB); 2515 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2516 CGF.EmitStmt(Stmt); 2517 CGF.EmitBranch(ExitBB); 2518 } 2519 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2520 }; 2521 2522 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2523 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2524 // Emit implicit barrier to synchronize threads and avoid data races on 2525 // initialization of firstprivate variables and post-update of lastprivate 2526 // variables. 2527 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2528 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2529 /*ForceSimpleCall=*/true); 2530 } 2531 CGF.EmitOMPPrivateClause(S, LoopScope); 2532 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2533 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2534 (void)LoopScope.Privatize(); 2535 2536 // Emit static non-chunked loop. 2537 OpenMPScheduleTy ScheduleKind; 2538 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2539 CGOpenMPRuntime::StaticRTInput StaticInit( 2540 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2541 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2542 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2543 CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2544 // UB = min(UB, GlobalUB); 2545 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2546 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2547 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2548 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2549 // IV = LB; 2550 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2551 // while (idx <= UB) { BODY; ++idx; } 2552 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2553 [](CodeGenFunction &) {}); 2554 // Tell the runtime we are done. 2555 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2556 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2557 S.getDirectiveKind()); 2558 }; 2559 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2560 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2561 // Emit post-update of the reduction variables if IsLastIter != 0. 2562 emitPostUpdateForReductionClause( 2563 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2564 return CGF.Builder.CreateIsNotNull( 2565 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2566 }); 2567 2568 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2569 if (HasLastprivates) 2570 CGF.EmitOMPLastprivateClauseFinal( 2571 S, /*NoFinals=*/false, 2572 CGF.Builder.CreateIsNotNull( 2573 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2574 }; 2575 2576 bool HasCancel = false; 2577 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2578 HasCancel = OSD->hasCancel(); 2579 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2580 HasCancel = OPSD->hasCancel(); 2581 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2582 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2583 HasCancel); 2584 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2585 // clause. Otherwise the barrier will be generated by the codegen for the 2586 // directive. 2587 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2588 // Emit implicit barrier to synchronize threads and avoid data races on 2589 // initialization of firstprivate variables. 2590 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2591 OMPD_unknown); 2592 } 2593 } 2594 2595 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2596 { 2597 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2598 EmitSections(S); 2599 } 2600 // Emit an implicit barrier at the end. 2601 if (!S.getSingleClause<OMPNowaitClause>()) { 2602 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2603 OMPD_sections); 2604 } 2605 } 2606 2607 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2608 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2609 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2610 }; 2611 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2612 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2613 S.hasCancel()); 2614 } 2615 2616 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2617 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2618 llvm::SmallVector<const Expr *, 8> DestExprs; 2619 llvm::SmallVector<const Expr *, 8> SrcExprs; 2620 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2621 // Check if there are any 'copyprivate' clauses associated with this 2622 // 'single' construct. 2623 // Build a list of copyprivate variables along with helper expressions 2624 // (<source>, <destination>, <destination>=<source> expressions) 2625 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2626 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2627 DestExprs.append(C->destination_exprs().begin(), 2628 C->destination_exprs().end()); 2629 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2630 AssignmentOps.append(C->assignment_ops().begin(), 2631 C->assignment_ops().end()); 2632 } 2633 // Emit code for 'single' region along with 'copyprivate' clauses 2634 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2635 Action.Enter(CGF); 2636 OMPPrivateScope SingleScope(CGF); 2637 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2638 CGF.EmitOMPPrivateClause(S, SingleScope); 2639 (void)SingleScope.Privatize(); 2640 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2641 }; 2642 { 2643 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2644 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2645 CopyprivateVars, DestExprs, 2646 SrcExprs, AssignmentOps); 2647 } 2648 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2649 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2650 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2651 CGM.getOpenMPRuntime().emitBarrierCall( 2652 *this, S.getLocStart(), 2653 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2654 } 2655 } 2656 2657 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2658 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2659 Action.Enter(CGF); 2660 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2661 }; 2662 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2663 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2664 } 2665 2666 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2667 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2668 Action.Enter(CGF); 2669 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2670 }; 2671 Expr *Hint = nullptr; 2672 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2673 Hint = HintClause->getHint(); 2674 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2675 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2676 S.getDirectiveName().getAsString(), 2677 CodeGen, S.getLocStart(), Hint); 2678 } 2679 2680 void CodeGenFunction::EmitOMPParallelForDirective( 2681 const OMPParallelForDirective &S) { 2682 // Emit directive as a combined directive that consists of two implicit 2683 // directives: 'parallel' with 'for' directive. 2684 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2685 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2686 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2687 emitDispatchForLoopBounds); 2688 }; 2689 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2690 emitEmptyBoundParameters); 2691 } 2692 2693 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2694 const OMPParallelForSimdDirective &S) { 2695 // Emit directive as a combined directive that consists of two implicit 2696 // directives: 'parallel' with 'for' directive. 2697 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2698 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2699 emitDispatchForLoopBounds); 2700 }; 2701 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2702 emitEmptyBoundParameters); 2703 } 2704 2705 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2706 const OMPParallelSectionsDirective &S) { 2707 // Emit directive as a combined directive that consists of two implicit 2708 // directives: 'parallel' with 'sections' directive. 2709 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2710 CGF.EmitSections(S); 2711 }; 2712 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2713 emitEmptyBoundParameters); 2714 } 2715 2716 void CodeGenFunction::EmitOMPTaskBasedDirective( 2717 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2718 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2719 OMPTaskDataTy &Data) { 2720 // Emit outlined function for task construct. 2721 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2722 auto *I = CS->getCapturedDecl()->param_begin(); 2723 auto *PartId = std::next(I); 2724 auto *TaskT = std::next(I, 4); 2725 // Check if the task is final 2726 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2727 // If the condition constant folds and can be elided, try to avoid emitting 2728 // the condition and the dead arm of the if/else. 2729 auto *Cond = Clause->getCondition(); 2730 bool CondConstant; 2731 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2732 Data.Final.setInt(CondConstant); 2733 else 2734 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2735 } else { 2736 // By default the task is not final. 2737 Data.Final.setInt(/*IntVal=*/false); 2738 } 2739 // Check if the task has 'priority' clause. 2740 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2741 auto *Prio = Clause->getPriority(); 2742 Data.Priority.setInt(/*IntVal=*/true); 2743 Data.Priority.setPointer(EmitScalarConversion( 2744 EmitScalarExpr(Prio), Prio->getType(), 2745 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2746 Prio->getExprLoc())); 2747 } 2748 // The first function argument for tasks is a thread id, the second one is a 2749 // part id (0 for tied tasks, >=0 for untied task). 2750 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2751 // Get list of private variables. 2752 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2753 auto IRef = C->varlist_begin(); 2754 for (auto *IInit : C->private_copies()) { 2755 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2756 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2757 Data.PrivateVars.push_back(*IRef); 2758 Data.PrivateCopies.push_back(IInit); 2759 } 2760 ++IRef; 2761 } 2762 } 2763 EmittedAsPrivate.clear(); 2764 // Get list of firstprivate variables. 2765 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2766 auto IRef = C->varlist_begin(); 2767 auto IElemInitRef = C->inits().begin(); 2768 for (auto *IInit : C->private_copies()) { 2769 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2770 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2771 Data.FirstprivateVars.push_back(*IRef); 2772 Data.FirstprivateCopies.push_back(IInit); 2773 Data.FirstprivateInits.push_back(*IElemInitRef); 2774 } 2775 ++IRef; 2776 ++IElemInitRef; 2777 } 2778 } 2779 // Get list of lastprivate variables (for taskloops). 2780 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2781 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2782 auto IRef = C->varlist_begin(); 2783 auto ID = C->destination_exprs().begin(); 2784 for (auto *IInit : C->private_copies()) { 2785 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2786 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2787 Data.LastprivateVars.push_back(*IRef); 2788 Data.LastprivateCopies.push_back(IInit); 2789 } 2790 LastprivateDstsOrigs.insert( 2791 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2792 cast<DeclRefExpr>(*IRef)}); 2793 ++IRef; 2794 ++ID; 2795 } 2796 } 2797 SmallVector<const Expr *, 4> LHSs; 2798 SmallVector<const Expr *, 4> RHSs; 2799 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2800 auto IPriv = C->privates().begin(); 2801 auto IRed = C->reduction_ops().begin(); 2802 auto ILHS = C->lhs_exprs().begin(); 2803 auto IRHS = C->rhs_exprs().begin(); 2804 for (const auto *Ref : C->varlists()) { 2805 Data.ReductionVars.emplace_back(Ref); 2806 Data.ReductionCopies.emplace_back(*IPriv); 2807 Data.ReductionOps.emplace_back(*IRed); 2808 LHSs.emplace_back(*ILHS); 2809 RHSs.emplace_back(*IRHS); 2810 std::advance(IPriv, 1); 2811 std::advance(IRed, 1); 2812 std::advance(ILHS, 1); 2813 std::advance(IRHS, 1); 2814 } 2815 } 2816 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2817 *this, S.getLocStart(), LHSs, RHSs, Data); 2818 // Build list of dependences. 2819 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2820 for (auto *IRef : C->varlists()) 2821 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2822 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2823 CapturedRegion](CodeGenFunction &CGF, 2824 PrePostActionTy &Action) { 2825 // Set proper addresses for generated private copies. 2826 OMPPrivateScope Scope(CGF); 2827 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2828 !Data.LastprivateVars.empty()) { 2829 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2830 auto *CopyFn = CGF.Builder.CreateLoad( 2831 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2832 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2833 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2834 // Map privates. 2835 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2836 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2837 CallArgs.push_back(PrivatesPtr); 2838 for (auto *E : Data.PrivateVars) { 2839 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2840 Address PrivatePtr = CGF.CreateMemTemp( 2841 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2842 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2843 CallArgs.push_back(PrivatePtr.getPointer()); 2844 } 2845 for (auto *E : Data.FirstprivateVars) { 2846 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2847 Address PrivatePtr = 2848 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2849 ".firstpriv.ptr.addr"); 2850 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2851 CallArgs.push_back(PrivatePtr.getPointer()); 2852 } 2853 for (auto *E : Data.LastprivateVars) { 2854 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2855 Address PrivatePtr = 2856 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2857 ".lastpriv.ptr.addr"); 2858 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2859 CallArgs.push_back(PrivatePtr.getPointer()); 2860 } 2861 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 2862 CopyFn, CallArgs); 2863 for (auto &&Pair : LastprivateDstsOrigs) { 2864 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2865 DeclRefExpr DRE( 2866 const_cast<VarDecl *>(OrigVD), 2867 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2868 OrigVD) != nullptr, 2869 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2870 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2871 return CGF.EmitLValue(&DRE).getAddress(); 2872 }); 2873 } 2874 for (auto &&Pair : PrivatePtrs) { 2875 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2876 CGF.getContext().getDeclAlign(Pair.first)); 2877 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2878 } 2879 } 2880 if (Data.Reductions) { 2881 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2882 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2883 Data.ReductionOps); 2884 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2885 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2886 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2887 RedCG.emitSharedLValue(CGF, Cnt); 2888 RedCG.emitAggregateType(CGF, Cnt); 2889 // FIXME: This must removed once the runtime library is fixed. 2890 // Emit required threadprivate variables for 2891 // initilizer/combiner/finalizer. 2892 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2893 RedCG, Cnt); 2894 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2895 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2896 Replacement = 2897 Address(CGF.EmitScalarConversion( 2898 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2899 CGF.getContext().getPointerType( 2900 Data.ReductionCopies[Cnt]->getType()), 2901 Data.ReductionCopies[Cnt]->getExprLoc()), 2902 Replacement.getAlignment()); 2903 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2904 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2905 [Replacement]() { return Replacement; }); 2906 } 2907 } 2908 // Privatize all private variables except for in_reduction items. 2909 (void)Scope.Privatize(); 2910 SmallVector<const Expr *, 4> InRedVars; 2911 SmallVector<const Expr *, 4> InRedPrivs; 2912 SmallVector<const Expr *, 4> InRedOps; 2913 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2914 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2915 auto IPriv = C->privates().begin(); 2916 auto IRed = C->reduction_ops().begin(); 2917 auto ITD = C->taskgroup_descriptors().begin(); 2918 for (const auto *Ref : C->varlists()) { 2919 InRedVars.emplace_back(Ref); 2920 InRedPrivs.emplace_back(*IPriv); 2921 InRedOps.emplace_back(*IRed); 2922 TaskgroupDescriptors.emplace_back(*ITD); 2923 std::advance(IPriv, 1); 2924 std::advance(IRed, 1); 2925 std::advance(ITD, 1); 2926 } 2927 } 2928 // Privatize in_reduction items here, because taskgroup descriptors must be 2929 // privatized earlier. 2930 OMPPrivateScope InRedScope(CGF); 2931 if (!InRedVars.empty()) { 2932 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2933 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2934 RedCG.emitSharedLValue(CGF, Cnt); 2935 RedCG.emitAggregateType(CGF, Cnt); 2936 // The taskgroup descriptor variable is always implicit firstprivate and 2937 // privatized already during procoessing of the firstprivates. 2938 // FIXME: This must removed once the runtime library is fixed. 2939 // Emit required threadprivate variables for 2940 // initilizer/combiner/finalizer. 2941 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2942 RedCG, Cnt); 2943 llvm::Value *ReductionsPtr = 2944 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 2945 TaskgroupDescriptors[Cnt]->getExprLoc()); 2946 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2947 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2948 Replacement = Address( 2949 CGF.EmitScalarConversion( 2950 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2951 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2952 InRedPrivs[Cnt]->getExprLoc()), 2953 Replacement.getAlignment()); 2954 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2955 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2956 [Replacement]() { return Replacement; }); 2957 } 2958 } 2959 (void)InRedScope.Privatize(); 2960 2961 Action.Enter(CGF); 2962 BodyGen(CGF); 2963 }; 2964 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2965 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2966 Data.NumberOfParts); 2967 OMPLexicalScope Scope(*this, S); 2968 TaskGen(*this, OutlinedFn, Data); 2969 } 2970 2971 static ImplicitParamDecl * 2972 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 2973 QualType Ty, CapturedDecl *CD, 2974 SourceLocation Loc) { 2975 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 2976 ImplicitParamDecl::Other); 2977 auto *OrigRef = DeclRefExpr::Create( 2978 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 2979 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 2980 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 2981 ImplicitParamDecl::Other); 2982 auto *PrivateRef = DeclRefExpr::Create( 2983 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 2984 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 2985 QualType ElemType = C.getBaseElementType(Ty); 2986 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 2987 ImplicitParamDecl::Other); 2988 auto *InitRef = DeclRefExpr::Create( 2989 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 2990 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 2991 PrivateVD->setInitStyle(VarDecl::CInit); 2992 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 2993 InitRef, /*BasePath=*/nullptr, 2994 VK_RValue)); 2995 Data.FirstprivateVars.emplace_back(OrigRef); 2996 Data.FirstprivateCopies.emplace_back(PrivateRef); 2997 Data.FirstprivateInits.emplace_back(InitRef); 2998 return OrigVD; 2999 } 3000 3001 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3002 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3003 OMPTargetDataInfo &InputInfo) { 3004 // Emit outlined function for task construct. 3005 auto CS = S.getCapturedStmt(OMPD_task); 3006 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3007 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3008 auto *I = CS->getCapturedDecl()->param_begin(); 3009 auto *PartId = std::next(I); 3010 auto *TaskT = std::next(I, 4); 3011 OMPTaskDataTy Data; 3012 // The task is not final. 3013 Data.Final.setInt(/*IntVal=*/false); 3014 // Get list of firstprivate variables. 3015 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3016 auto IRef = C->varlist_begin(); 3017 auto IElemInitRef = C->inits().begin(); 3018 for (auto *IInit : C->private_copies()) { 3019 Data.FirstprivateVars.push_back(*IRef); 3020 Data.FirstprivateCopies.push_back(IInit); 3021 Data.FirstprivateInits.push_back(*IElemInitRef); 3022 ++IRef; 3023 ++IElemInitRef; 3024 } 3025 } 3026 OMPPrivateScope TargetScope(*this); 3027 VarDecl *BPVD = nullptr; 3028 VarDecl *PVD = nullptr; 3029 VarDecl *SVD = nullptr; 3030 if (InputInfo.NumberOfTargetItems > 0) { 3031 auto *CD = CapturedDecl::Create( 3032 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3033 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3034 QualType BaseAndPointersType = getContext().getConstantArrayType( 3035 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3036 /*IndexTypeQuals=*/0); 3037 BPVD = createImplicitFirstprivateForType( 3038 getContext(), Data, BaseAndPointersType, CD, S.getLocStart()); 3039 PVD = createImplicitFirstprivateForType( 3040 getContext(), Data, BaseAndPointersType, CD, S.getLocStart()); 3041 QualType SizesType = getContext().getConstantArrayType( 3042 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3043 /*IndexTypeQuals=*/0); 3044 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3045 S.getLocStart()); 3046 TargetScope.addPrivate( 3047 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3048 TargetScope.addPrivate(PVD, 3049 [&InputInfo]() { return InputInfo.PointersArray; }); 3050 TargetScope.addPrivate(SVD, 3051 [&InputInfo]() { return InputInfo.SizesArray; }); 3052 } 3053 (void)TargetScope.Privatize(); 3054 // Build list of dependences. 3055 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3056 for (auto *IRef : C->varlists()) 3057 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 3058 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3059 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3060 // Set proper addresses for generated private copies. 3061 OMPPrivateScope Scope(CGF); 3062 if (!Data.FirstprivateVars.empty()) { 3063 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3064 auto *CopyFn = CGF.Builder.CreateLoad( 3065 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 3066 auto *PrivatesPtr = CGF.Builder.CreateLoad( 3067 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 3068 // Map privates. 3069 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3070 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3071 CallArgs.push_back(PrivatesPtr); 3072 for (auto *E : Data.FirstprivateVars) { 3073 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3074 Address PrivatePtr = 3075 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3076 ".firstpriv.ptr.addr"); 3077 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 3078 CallArgs.push_back(PrivatePtr.getPointer()); 3079 } 3080 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3081 CopyFn, CallArgs); 3082 for (auto &&Pair : PrivatePtrs) { 3083 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3084 CGF.getContext().getDeclAlign(Pair.first)); 3085 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3086 } 3087 } 3088 // Privatize all private variables except for in_reduction items. 3089 (void)Scope.Privatize(); 3090 if (InputInfo.NumberOfTargetItems > 0) { 3091 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3092 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3093 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3094 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3095 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3096 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3097 } 3098 3099 Action.Enter(CGF); 3100 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3101 BodyGen(CGF); 3102 }; 3103 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3104 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3105 Data.NumberOfParts); 3106 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3107 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3108 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3109 SourceLocation()); 3110 3111 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), S, OutlinedFn, 3112 SharedsTy, CapturedStruct, &IfCond, Data); 3113 } 3114 3115 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3116 // Emit outlined function for task construct. 3117 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3118 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3119 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3120 const Expr *IfCond = nullptr; 3121 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3122 if (C->getNameModifier() == OMPD_unknown || 3123 C->getNameModifier() == OMPD_task) { 3124 IfCond = C->getCondition(); 3125 break; 3126 } 3127 } 3128 3129 OMPTaskDataTy Data; 3130 // Check if we should emit tied or untied task. 3131 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3132 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3133 CGF.EmitStmt(CS->getCapturedStmt()); 3134 }; 3135 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3136 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3137 const OMPTaskDataTy &Data) { 3138 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 3139 SharedsTy, CapturedStruct, IfCond, 3140 Data); 3141 }; 3142 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3143 } 3144 3145 void CodeGenFunction::EmitOMPTaskyieldDirective( 3146 const OMPTaskyieldDirective &S) { 3147 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 3148 } 3149 3150 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3151 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 3152 } 3153 3154 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3155 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 3156 } 3157 3158 void CodeGenFunction::EmitOMPTaskgroupDirective( 3159 const OMPTaskgroupDirective &S) { 3160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3161 Action.Enter(CGF); 3162 if (const Expr *E = S.getReductionRef()) { 3163 SmallVector<const Expr *, 4> LHSs; 3164 SmallVector<const Expr *, 4> RHSs; 3165 OMPTaskDataTy Data; 3166 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3167 auto IPriv = C->privates().begin(); 3168 auto IRed = C->reduction_ops().begin(); 3169 auto ILHS = C->lhs_exprs().begin(); 3170 auto IRHS = C->rhs_exprs().begin(); 3171 for (const auto *Ref : C->varlists()) { 3172 Data.ReductionVars.emplace_back(Ref); 3173 Data.ReductionCopies.emplace_back(*IPriv); 3174 Data.ReductionOps.emplace_back(*IRed); 3175 LHSs.emplace_back(*ILHS); 3176 RHSs.emplace_back(*IRHS); 3177 std::advance(IPriv, 1); 3178 std::advance(IRed, 1); 3179 std::advance(ILHS, 1); 3180 std::advance(IRHS, 1); 3181 } 3182 } 3183 llvm::Value *ReductionDesc = 3184 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(), 3185 LHSs, RHSs, Data); 3186 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3187 CGF.EmitVarDecl(*VD); 3188 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3189 /*Volatile=*/false, E->getType()); 3190 } 3191 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3192 }; 3193 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3194 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 3195 } 3196 3197 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3198 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 3199 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 3200 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3201 FlushClause->varlist_end()); 3202 } 3203 return llvm::None; 3204 }(), S.getLocStart()); 3205 } 3206 3207 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3208 const CodeGenLoopTy &CodeGenLoop, 3209 Expr *IncExpr) { 3210 // Emit the loop iteration variable. 3211 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3212 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3213 EmitVarDecl(*IVDecl); 3214 3215 // Emit the iterations count variable. 3216 // If it is not a variable, Sema decided to calculate iterations count on each 3217 // iteration (e.g., it is foldable into a constant). 3218 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3219 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3220 // Emit calculation of the iterations count. 3221 EmitIgnoredExpr(S.getCalcLastIteration()); 3222 } 3223 3224 auto &RT = CGM.getOpenMPRuntime(); 3225 3226 bool HasLastprivateClause = false; 3227 // Check pre-condition. 3228 { 3229 OMPLoopScope PreInitScope(*this, S); 3230 // Skip the entire loop if we don't meet the precondition. 3231 // If the condition constant folds and can be elided, avoid emitting the 3232 // whole loop. 3233 bool CondConstant; 3234 llvm::BasicBlock *ContBlock = nullptr; 3235 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3236 if (!CondConstant) 3237 return; 3238 } else { 3239 auto *ThenBlock = createBasicBlock("omp.precond.then"); 3240 ContBlock = createBasicBlock("omp.precond.end"); 3241 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3242 getProfileCount(&S)); 3243 EmitBlock(ThenBlock); 3244 incrementProfileCounter(&S); 3245 } 3246 3247 emitAlignedClause(*this, S); 3248 // Emit 'then' code. 3249 { 3250 // Emit helper vars inits. 3251 3252 LValue LB = EmitOMPHelperVar( 3253 *this, cast<DeclRefExpr>( 3254 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3255 ? S.getCombinedLowerBoundVariable() 3256 : S.getLowerBoundVariable()))); 3257 LValue UB = EmitOMPHelperVar( 3258 *this, cast<DeclRefExpr>( 3259 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3260 ? S.getCombinedUpperBoundVariable() 3261 : S.getUpperBoundVariable()))); 3262 LValue ST = 3263 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3264 LValue IL = 3265 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3266 3267 OMPPrivateScope LoopScope(*this); 3268 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3269 // Emit implicit barrier to synchronize threads and avoid data races 3270 // on initialization of firstprivate variables and post-update of 3271 // lastprivate variables. 3272 CGM.getOpenMPRuntime().emitBarrierCall( 3273 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 3274 /*ForceSimpleCall=*/true); 3275 } 3276 EmitOMPPrivateClause(S, LoopScope); 3277 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3278 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3279 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3280 EmitOMPReductionClauseInit(S, LoopScope); 3281 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3282 EmitOMPPrivateLoopCounters(S, LoopScope); 3283 (void)LoopScope.Privatize(); 3284 3285 // Detect the distribute schedule kind and chunk. 3286 llvm::Value *Chunk = nullptr; 3287 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3288 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3289 ScheduleKind = C->getDistScheduleKind(); 3290 if (const auto *Ch = C->getChunkSize()) { 3291 Chunk = EmitScalarExpr(Ch); 3292 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3293 S.getIterationVariable()->getType(), 3294 S.getLocStart()); 3295 } 3296 } 3297 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3298 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3299 3300 // OpenMP [2.10.8, distribute Construct, Description] 3301 // If dist_schedule is specified, kind must be static. If specified, 3302 // iterations are divided into chunks of size chunk_size, chunks are 3303 // assigned to the teams of the league in a round-robin fashion in the 3304 // order of the team number. When no chunk_size is specified, the 3305 // iteration space is divided into chunks that are approximately equal 3306 // in size, and at most one chunk is distributed to each team of the 3307 // league. The size of the chunks is unspecified in this case. 3308 if (RT.isStaticNonchunked(ScheduleKind, 3309 /* Chunked */ Chunk != nullptr)) { 3310 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3311 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3312 CGOpenMPRuntime::StaticRTInput StaticInit( 3313 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3314 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3315 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 3316 StaticInit); 3317 auto LoopExit = 3318 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3319 // UB = min(UB, GlobalUB); 3320 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3321 ? S.getCombinedEnsureUpperBound() 3322 : S.getEnsureUpperBound()); 3323 // IV = LB; 3324 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3325 ? S.getCombinedInit() 3326 : S.getInit()); 3327 3328 Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3329 ? S.getCombinedCond() 3330 : S.getCond(); 3331 3332 // for distribute alone, codegen 3333 // while (idx <= UB) { BODY; ++idx; } 3334 // when combined with 'for' (e.g. as in 'distribute parallel for') 3335 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3336 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3337 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3338 CodeGenLoop(CGF, S, LoopExit); 3339 }, 3340 [](CodeGenFunction &) {}); 3341 EmitBlock(LoopExit.getBlock()); 3342 // Tell the runtime we are done. 3343 RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind()); 3344 } else { 3345 // Emit the outer loop, which requests its work chunk [LB..UB] from 3346 // runtime and runs the inner loop to process it. 3347 const OMPLoopArguments LoopArguments = { 3348 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3349 Chunk}; 3350 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3351 CodeGenLoop); 3352 } 3353 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3354 EmitOMPSimdFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3355 return CGF.Builder.CreateIsNotNull( 3356 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3357 }); 3358 } 3359 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3360 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3361 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3362 OpenMPDirectiveKind ReductionKind = OMPD_unknown; 3363 if (isOpenMPParallelDirective(S.getDirectiveKind()) && 3364 isOpenMPSimdDirective(S.getDirectiveKind())) { 3365 ReductionKind = OMPD_parallel_for_simd; 3366 } else if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3367 ReductionKind = OMPD_parallel_for; 3368 } else if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3369 ReductionKind = OMPD_simd; 3370 } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) && 3371 S.hasClausesOfKind<OMPReductionClause>()) { 3372 llvm_unreachable( 3373 "No reduction clauses is allowed in distribute directive."); 3374 } 3375 EmitOMPReductionClauseFinal(S, ReductionKind); 3376 // Emit post-update of the reduction variables if IsLastIter != 0. 3377 emitPostUpdateForReductionClause( 3378 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3379 return CGF.Builder.CreateIsNotNull( 3380 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3381 }); 3382 } 3383 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3384 if (HasLastprivateClause) { 3385 EmitOMPLastprivateClauseFinal( 3386 S, /*NoFinals=*/false, 3387 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 3388 } 3389 } 3390 3391 // We're now done with the loop, so jump to the continuation block. 3392 if (ContBlock) { 3393 EmitBranch(ContBlock); 3394 EmitBlock(ContBlock, true); 3395 } 3396 } 3397 } 3398 3399 void CodeGenFunction::EmitOMPDistributeDirective( 3400 const OMPDistributeDirective &S) { 3401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3402 3403 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3404 }; 3405 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3406 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3407 } 3408 3409 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3410 const CapturedStmt *S) { 3411 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3412 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3413 CGF.CapturedStmtInfo = &CapStmtInfo; 3414 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3415 Fn->addFnAttr(llvm::Attribute::NoInline); 3416 return Fn; 3417 } 3418 3419 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3420 if (S.hasClausesOfKind<OMPDependClause>()) { 3421 assert(!S.getAssociatedStmt() && 3422 "No associated statement must be in ordered depend construct."); 3423 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3424 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3425 return; 3426 } 3427 auto *C = S.getSingleClause<OMPSIMDClause>(); 3428 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3429 PrePostActionTy &Action) { 3430 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3431 if (C) { 3432 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3433 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3434 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3435 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3436 OutlinedFn, CapturedVars); 3437 } else { 3438 Action.Enter(CGF); 3439 CGF.EmitStmt(CS->getCapturedStmt()); 3440 } 3441 }; 3442 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3443 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 3444 } 3445 3446 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3447 QualType SrcType, QualType DestType, 3448 SourceLocation Loc) { 3449 assert(CGF.hasScalarEvaluationKind(DestType) && 3450 "DestType must have scalar evaluation kind."); 3451 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3452 return Val.isScalar() 3453 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 3454 Loc) 3455 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 3456 DestType, Loc); 3457 } 3458 3459 static CodeGenFunction::ComplexPairTy 3460 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3461 QualType DestType, SourceLocation Loc) { 3462 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3463 "DestType must have complex evaluation kind."); 3464 CodeGenFunction::ComplexPairTy ComplexVal; 3465 if (Val.isScalar()) { 3466 // Convert the input element to the element type of the complex. 3467 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3468 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3469 DestElementType, Loc); 3470 ComplexVal = CodeGenFunction::ComplexPairTy( 3471 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3472 } else { 3473 assert(Val.isComplex() && "Must be a scalar or complex."); 3474 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3475 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3476 ComplexVal.first = CGF.EmitScalarConversion( 3477 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3478 ComplexVal.second = CGF.EmitScalarConversion( 3479 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3480 } 3481 return ComplexVal; 3482 } 3483 3484 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3485 LValue LVal, RValue RVal) { 3486 if (LVal.isGlobalReg()) { 3487 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3488 } else { 3489 CGF.EmitAtomicStore(RVal, LVal, 3490 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3491 : llvm::AtomicOrdering::Monotonic, 3492 LVal.isVolatile(), /*IsInit=*/false); 3493 } 3494 } 3495 3496 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3497 QualType RValTy, SourceLocation Loc) { 3498 switch (getEvaluationKind(LVal.getType())) { 3499 case TEK_Scalar: 3500 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3501 *this, RVal, RValTy, LVal.getType(), Loc)), 3502 LVal); 3503 break; 3504 case TEK_Complex: 3505 EmitStoreOfComplex( 3506 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3507 /*isInit=*/false); 3508 break; 3509 case TEK_Aggregate: 3510 llvm_unreachable("Must be a scalar or complex."); 3511 } 3512 } 3513 3514 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3515 const Expr *X, const Expr *V, 3516 SourceLocation Loc) { 3517 // v = x; 3518 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3519 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3520 LValue XLValue = CGF.EmitLValue(X); 3521 LValue VLValue = CGF.EmitLValue(V); 3522 RValue Res = XLValue.isGlobalReg() 3523 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3524 : CGF.EmitAtomicLoad( 3525 XLValue, Loc, 3526 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3527 : llvm::AtomicOrdering::Monotonic, 3528 XLValue.isVolatile()); 3529 // OpenMP, 2.12.6, atomic Construct 3530 // Any atomic construct with a seq_cst clause forces the atomically 3531 // performed operation to include an implicit flush operation without a 3532 // list. 3533 if (IsSeqCst) 3534 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3535 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3536 } 3537 3538 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3539 const Expr *X, const Expr *E, 3540 SourceLocation Loc) { 3541 // x = expr; 3542 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3543 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3544 // OpenMP, 2.12.6, atomic Construct 3545 // Any atomic construct with a seq_cst clause forces the atomically 3546 // performed operation to include an implicit flush operation without a 3547 // list. 3548 if (IsSeqCst) 3549 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3550 } 3551 3552 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3553 RValue Update, 3554 BinaryOperatorKind BO, 3555 llvm::AtomicOrdering AO, 3556 bool IsXLHSInRHSPart) { 3557 auto &Context = CGF.CGM.getContext(); 3558 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3559 // expression is simple and atomic is allowed for the given type for the 3560 // target platform. 3561 if (BO == BO_Comma || !Update.isScalar() || 3562 !Update.getScalarVal()->getType()->isIntegerTy() || 3563 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3564 (Update.getScalarVal()->getType() != 3565 X.getAddress().getElementType())) || 3566 !X.getAddress().getElementType()->isIntegerTy() || 3567 !Context.getTargetInfo().hasBuiltinAtomic( 3568 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3569 return std::make_pair(false, RValue::get(nullptr)); 3570 3571 llvm::AtomicRMWInst::BinOp RMWOp; 3572 switch (BO) { 3573 case BO_Add: 3574 RMWOp = llvm::AtomicRMWInst::Add; 3575 break; 3576 case BO_Sub: 3577 if (!IsXLHSInRHSPart) 3578 return std::make_pair(false, RValue::get(nullptr)); 3579 RMWOp = llvm::AtomicRMWInst::Sub; 3580 break; 3581 case BO_And: 3582 RMWOp = llvm::AtomicRMWInst::And; 3583 break; 3584 case BO_Or: 3585 RMWOp = llvm::AtomicRMWInst::Or; 3586 break; 3587 case BO_Xor: 3588 RMWOp = llvm::AtomicRMWInst::Xor; 3589 break; 3590 case BO_LT: 3591 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3592 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3593 : llvm::AtomicRMWInst::Max) 3594 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3595 : llvm::AtomicRMWInst::UMax); 3596 break; 3597 case BO_GT: 3598 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3599 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3600 : llvm::AtomicRMWInst::Min) 3601 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3602 : llvm::AtomicRMWInst::UMin); 3603 break; 3604 case BO_Assign: 3605 RMWOp = llvm::AtomicRMWInst::Xchg; 3606 break; 3607 case BO_Mul: 3608 case BO_Div: 3609 case BO_Rem: 3610 case BO_Shl: 3611 case BO_Shr: 3612 case BO_LAnd: 3613 case BO_LOr: 3614 return std::make_pair(false, RValue::get(nullptr)); 3615 case BO_PtrMemD: 3616 case BO_PtrMemI: 3617 case BO_LE: 3618 case BO_GE: 3619 case BO_EQ: 3620 case BO_NE: 3621 case BO_Cmp: 3622 case BO_AddAssign: 3623 case BO_SubAssign: 3624 case BO_AndAssign: 3625 case BO_OrAssign: 3626 case BO_XorAssign: 3627 case BO_MulAssign: 3628 case BO_DivAssign: 3629 case BO_RemAssign: 3630 case BO_ShlAssign: 3631 case BO_ShrAssign: 3632 case BO_Comma: 3633 llvm_unreachable("Unsupported atomic update operation"); 3634 } 3635 auto *UpdateVal = Update.getScalarVal(); 3636 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3637 UpdateVal = CGF.Builder.CreateIntCast( 3638 IC, X.getAddress().getElementType(), 3639 X.getType()->hasSignedIntegerRepresentation()); 3640 } 3641 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3642 return std::make_pair(true, RValue::get(Res)); 3643 } 3644 3645 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3646 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3647 llvm::AtomicOrdering AO, SourceLocation Loc, 3648 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3649 // Update expressions are allowed to have the following forms: 3650 // x binop= expr; -> xrval + expr; 3651 // x++, ++x -> xrval + 1; 3652 // x--, --x -> xrval - 1; 3653 // x = x binop expr; -> xrval binop expr 3654 // x = expr Op x; - > expr binop xrval; 3655 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3656 if (!Res.first) { 3657 if (X.isGlobalReg()) { 3658 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3659 // 'xrval'. 3660 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3661 } else { 3662 // Perform compare-and-swap procedure. 3663 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3664 } 3665 } 3666 return Res; 3667 } 3668 3669 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3670 const Expr *X, const Expr *E, 3671 const Expr *UE, bool IsXLHSInRHSPart, 3672 SourceLocation Loc) { 3673 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3674 "Update expr in 'atomic update' must be a binary operator."); 3675 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3676 // Update expressions are allowed to have the following forms: 3677 // x binop= expr; -> xrval + expr; 3678 // x++, ++x -> xrval + 1; 3679 // x--, --x -> xrval - 1; 3680 // x = x binop expr; -> xrval binop expr 3681 // x = expr Op x; - > expr binop xrval; 3682 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3683 LValue XLValue = CGF.EmitLValue(X); 3684 RValue ExprRValue = CGF.EmitAnyExpr(E); 3685 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3686 : llvm::AtomicOrdering::Monotonic; 3687 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3688 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3689 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3690 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3691 auto Gen = 3692 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3693 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3694 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3695 return CGF.EmitAnyExpr(UE); 3696 }; 3697 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3698 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3699 // OpenMP, 2.12.6, atomic Construct 3700 // Any atomic construct with a seq_cst clause forces the atomically 3701 // performed operation to include an implicit flush operation without a 3702 // list. 3703 if (IsSeqCst) 3704 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3705 } 3706 3707 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3708 QualType SourceType, QualType ResType, 3709 SourceLocation Loc) { 3710 switch (CGF.getEvaluationKind(ResType)) { 3711 case TEK_Scalar: 3712 return RValue::get( 3713 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3714 case TEK_Complex: { 3715 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3716 return RValue::getComplex(Res.first, Res.second); 3717 } 3718 case TEK_Aggregate: 3719 break; 3720 } 3721 llvm_unreachable("Must be a scalar or complex."); 3722 } 3723 3724 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3725 bool IsPostfixUpdate, const Expr *V, 3726 const Expr *X, const Expr *E, 3727 const Expr *UE, bool IsXLHSInRHSPart, 3728 SourceLocation Loc) { 3729 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3730 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3731 RValue NewVVal; 3732 LValue VLValue = CGF.EmitLValue(V); 3733 LValue XLValue = CGF.EmitLValue(X); 3734 RValue ExprRValue = CGF.EmitAnyExpr(E); 3735 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3736 : llvm::AtomicOrdering::Monotonic; 3737 QualType NewVValType; 3738 if (UE) { 3739 // 'x' is updated with some additional value. 3740 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3741 "Update expr in 'atomic capture' must be a binary operator."); 3742 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3743 // Update expressions are allowed to have the following forms: 3744 // x binop= expr; -> xrval + expr; 3745 // x++, ++x -> xrval + 1; 3746 // x--, --x -> xrval - 1; 3747 // x = x binop expr; -> xrval binop expr 3748 // x = expr Op x; - > expr binop xrval; 3749 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3750 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3751 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3752 NewVValType = XRValExpr->getType(); 3753 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3754 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3755 IsPostfixUpdate](RValue XRValue) -> RValue { 3756 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3757 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3758 RValue Res = CGF.EmitAnyExpr(UE); 3759 NewVVal = IsPostfixUpdate ? XRValue : Res; 3760 return Res; 3761 }; 3762 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3763 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3764 if (Res.first) { 3765 // 'atomicrmw' instruction was generated. 3766 if (IsPostfixUpdate) { 3767 // Use old value from 'atomicrmw'. 3768 NewVVal = Res.second; 3769 } else { 3770 // 'atomicrmw' does not provide new value, so evaluate it using old 3771 // value of 'x'. 3772 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3773 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3774 NewVVal = CGF.EmitAnyExpr(UE); 3775 } 3776 } 3777 } else { 3778 // 'x' is simply rewritten with some 'expr'. 3779 NewVValType = X->getType().getNonReferenceType(); 3780 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3781 X->getType().getNonReferenceType(), Loc); 3782 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3783 NewVVal = XRValue; 3784 return ExprRValue; 3785 }; 3786 // Try to perform atomicrmw xchg, otherwise simple exchange. 3787 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3788 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3789 Loc, Gen); 3790 if (Res.first) { 3791 // 'atomicrmw' instruction was generated. 3792 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3793 } 3794 } 3795 // Emit post-update store to 'v' of old/new 'x' value. 3796 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3797 // OpenMP, 2.12.6, atomic Construct 3798 // Any atomic construct with a seq_cst clause forces the atomically 3799 // performed operation to include an implicit flush operation without a 3800 // list. 3801 if (IsSeqCst) 3802 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3803 } 3804 3805 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3806 bool IsSeqCst, bool IsPostfixUpdate, 3807 const Expr *X, const Expr *V, const Expr *E, 3808 const Expr *UE, bool IsXLHSInRHSPart, 3809 SourceLocation Loc) { 3810 switch (Kind) { 3811 case OMPC_read: 3812 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3813 break; 3814 case OMPC_write: 3815 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3816 break; 3817 case OMPC_unknown: 3818 case OMPC_update: 3819 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3820 break; 3821 case OMPC_capture: 3822 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3823 IsXLHSInRHSPart, Loc); 3824 break; 3825 case OMPC_if: 3826 case OMPC_final: 3827 case OMPC_num_threads: 3828 case OMPC_private: 3829 case OMPC_firstprivate: 3830 case OMPC_lastprivate: 3831 case OMPC_reduction: 3832 case OMPC_task_reduction: 3833 case OMPC_in_reduction: 3834 case OMPC_safelen: 3835 case OMPC_simdlen: 3836 case OMPC_collapse: 3837 case OMPC_default: 3838 case OMPC_seq_cst: 3839 case OMPC_shared: 3840 case OMPC_linear: 3841 case OMPC_aligned: 3842 case OMPC_copyin: 3843 case OMPC_copyprivate: 3844 case OMPC_flush: 3845 case OMPC_proc_bind: 3846 case OMPC_schedule: 3847 case OMPC_ordered: 3848 case OMPC_nowait: 3849 case OMPC_untied: 3850 case OMPC_threadprivate: 3851 case OMPC_depend: 3852 case OMPC_mergeable: 3853 case OMPC_device: 3854 case OMPC_threads: 3855 case OMPC_simd: 3856 case OMPC_map: 3857 case OMPC_num_teams: 3858 case OMPC_thread_limit: 3859 case OMPC_priority: 3860 case OMPC_grainsize: 3861 case OMPC_nogroup: 3862 case OMPC_num_tasks: 3863 case OMPC_hint: 3864 case OMPC_dist_schedule: 3865 case OMPC_defaultmap: 3866 case OMPC_uniform: 3867 case OMPC_to: 3868 case OMPC_from: 3869 case OMPC_use_device_ptr: 3870 case OMPC_is_device_ptr: 3871 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3872 } 3873 } 3874 3875 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3876 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3877 OpenMPClauseKind Kind = OMPC_unknown; 3878 for (auto *C : S.clauses()) { 3879 // Find first clause (skip seq_cst clause, if it is first). 3880 if (C->getClauseKind() != OMPC_seq_cst) { 3881 Kind = C->getClauseKind(); 3882 break; 3883 } 3884 } 3885 3886 const auto *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3887 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3888 enterFullExpression(EWC); 3889 } 3890 // Processing for statements under 'atomic capture'. 3891 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3892 for (const auto *C : Compound->body()) { 3893 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3894 enterFullExpression(EWC); 3895 } 3896 } 3897 } 3898 3899 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3900 PrePostActionTy &) { 3901 CGF.EmitStopPoint(CS); 3902 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3903 S.getV(), S.getExpr(), S.getUpdateExpr(), 3904 S.isXLHSInRHSPart(), S.getLocStart()); 3905 }; 3906 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3907 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3908 } 3909 3910 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3911 const OMPExecutableDirective &S, 3912 const RegionCodeGenTy &CodeGen) { 3913 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3914 CodeGenModule &CGM = CGF.CGM; 3915 3916 llvm::Function *Fn = nullptr; 3917 llvm::Constant *FnID = nullptr; 3918 3919 const Expr *IfCond = nullptr; 3920 // Check for the at most one if clause associated with the target region. 3921 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3922 if (C->getNameModifier() == OMPD_unknown || 3923 C->getNameModifier() == OMPD_target) { 3924 IfCond = C->getCondition(); 3925 break; 3926 } 3927 } 3928 3929 // Check if we have any device clause associated with the directive. 3930 const Expr *Device = nullptr; 3931 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3932 Device = C->getDevice(); 3933 } 3934 3935 // Check if we have an if clause whose conditional always evaluates to false 3936 // or if we do not have any targets specified. If so the target region is not 3937 // an offload entry point. 3938 bool IsOffloadEntry = true; 3939 if (IfCond) { 3940 bool Val; 3941 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3942 IsOffloadEntry = false; 3943 } 3944 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3945 IsOffloadEntry = false; 3946 3947 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3948 StringRef ParentName; 3949 // In case we have Ctors/Dtors we use the complete type variant to produce 3950 // the mangling of the device outlined kernel. 3951 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3952 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3953 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3954 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3955 else 3956 ParentName = 3957 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3958 3959 // Emit target region as a standalone region. 3960 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3961 IsOffloadEntry, CodeGen); 3962 OMPLexicalScope Scope(CGF, S, OMPD_task); 3963 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 3964 } 3965 3966 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3967 PrePostActionTy &Action) { 3968 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3969 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3970 CGF.EmitOMPPrivateClause(S, PrivateScope); 3971 (void)PrivateScope.Privatize(); 3972 3973 Action.Enter(CGF); 3974 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 3975 } 3976 3977 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3978 StringRef ParentName, 3979 const OMPTargetDirective &S) { 3980 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3981 emitTargetRegion(CGF, S, Action); 3982 }; 3983 llvm::Function *Fn; 3984 llvm::Constant *Addr; 3985 // Emit target region as a standalone region. 3986 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3987 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3988 assert(Fn && Addr && "Target device function emission failed."); 3989 } 3990 3991 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3992 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3993 emitTargetRegion(CGF, S, Action); 3994 }; 3995 emitCommonOMPTargetDirective(*this, S, CodeGen); 3996 } 3997 3998 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3999 const OMPExecutableDirective &S, 4000 OpenMPDirectiveKind InnermostKind, 4001 const RegionCodeGenTy &CodeGen) { 4002 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4003 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4004 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4005 4006 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 4007 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 4008 if (NT || TL) { 4009 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 4010 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 4011 4012 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4013 S.getLocStart()); 4014 } 4015 4016 OMPTeamsScope Scope(CGF, S); 4017 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4018 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4019 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 4020 CapturedVars); 4021 } 4022 4023 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4024 // Emit teams region as a standalone region. 4025 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4026 OMPPrivateScope PrivateScope(CGF); 4027 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4028 CGF.EmitOMPPrivateClause(S, PrivateScope); 4029 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4030 (void)PrivateScope.Privatize(); 4031 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4032 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4033 }; 4034 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4035 emitPostUpdateForReductionClause( 4036 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4037 } 4038 4039 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4040 const OMPTargetTeamsDirective &S) { 4041 auto *CS = S.getCapturedStmt(OMPD_teams); 4042 Action.Enter(CGF); 4043 // Emit teams region as a standalone region. 4044 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4045 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4046 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4047 CGF.EmitOMPPrivateClause(S, PrivateScope); 4048 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4049 (void)PrivateScope.Privatize(); 4050 Action.Enter(CGF); 4051 CGF.EmitStmt(CS->getCapturedStmt()); 4052 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4053 }; 4054 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4055 emitPostUpdateForReductionClause( 4056 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4057 } 4058 4059 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4060 CodeGenModule &CGM, StringRef ParentName, 4061 const OMPTargetTeamsDirective &S) { 4062 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4063 emitTargetTeamsRegion(CGF, Action, S); 4064 }; 4065 llvm::Function *Fn; 4066 llvm::Constant *Addr; 4067 // Emit target region as a standalone region. 4068 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4069 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4070 assert(Fn && Addr && "Target device function emission failed."); 4071 } 4072 4073 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4074 const OMPTargetTeamsDirective &S) { 4075 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4076 emitTargetTeamsRegion(CGF, Action, S); 4077 }; 4078 emitCommonOMPTargetDirective(*this, S, CodeGen); 4079 } 4080 4081 static void 4082 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4083 const OMPTargetTeamsDistributeDirective &S) { 4084 Action.Enter(CGF); 4085 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4086 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4087 }; 4088 4089 // Emit teams region as a standalone region. 4090 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4091 PrePostActionTy &) { 4092 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4093 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4094 (void)PrivateScope.Privatize(); 4095 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4096 CodeGenDistribute); 4097 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4098 }; 4099 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4100 emitPostUpdateForReductionClause(CGF, S, 4101 [](CodeGenFunction &) { return nullptr; }); 4102 } 4103 4104 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4105 CodeGenModule &CGM, StringRef ParentName, 4106 const OMPTargetTeamsDistributeDirective &S) { 4107 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4108 emitTargetTeamsDistributeRegion(CGF, Action, S); 4109 }; 4110 llvm::Function *Fn; 4111 llvm::Constant *Addr; 4112 // Emit target region as a standalone region. 4113 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4114 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4115 assert(Fn && Addr && "Target device function emission failed."); 4116 } 4117 4118 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4119 const OMPTargetTeamsDistributeDirective &S) { 4120 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4121 emitTargetTeamsDistributeRegion(CGF, Action, S); 4122 }; 4123 emitCommonOMPTargetDirective(*this, S, CodeGen); 4124 } 4125 4126 static void emitTargetTeamsDistributeSimdRegion( 4127 CodeGenFunction &CGF, PrePostActionTy &Action, 4128 const OMPTargetTeamsDistributeSimdDirective &S) { 4129 Action.Enter(CGF); 4130 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4131 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4132 }; 4133 4134 // Emit teams region as a standalone region. 4135 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4136 PrePostActionTy &) { 4137 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4138 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4139 (void)PrivateScope.Privatize(); 4140 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4141 CodeGenDistribute); 4142 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4143 }; 4144 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4145 emitPostUpdateForReductionClause(CGF, S, 4146 [](CodeGenFunction &) { return nullptr; }); 4147 } 4148 4149 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4150 CodeGenModule &CGM, StringRef ParentName, 4151 const OMPTargetTeamsDistributeSimdDirective &S) { 4152 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4153 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4154 }; 4155 llvm::Function *Fn; 4156 llvm::Constant *Addr; 4157 // Emit target region as a standalone region. 4158 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4159 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4160 assert(Fn && Addr && "Target device function emission failed."); 4161 } 4162 4163 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4164 const OMPTargetTeamsDistributeSimdDirective &S) { 4165 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4166 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4167 }; 4168 emitCommonOMPTargetDirective(*this, S, CodeGen); 4169 } 4170 4171 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4172 const OMPTeamsDistributeDirective &S) { 4173 4174 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4175 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4176 }; 4177 4178 // Emit teams region as a standalone region. 4179 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4180 PrePostActionTy &) { 4181 OMPPrivateScope PrivateScope(CGF); 4182 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4183 (void)PrivateScope.Privatize(); 4184 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4185 CodeGenDistribute); 4186 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4187 }; 4188 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4189 emitPostUpdateForReductionClause(*this, S, 4190 [](CodeGenFunction &) { return nullptr; }); 4191 } 4192 4193 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4194 const OMPTeamsDistributeSimdDirective &S) { 4195 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4196 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4197 }; 4198 4199 // Emit teams region as a standalone region. 4200 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4201 PrePostActionTy &) { 4202 OMPPrivateScope PrivateScope(CGF); 4203 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4204 (void)PrivateScope.Privatize(); 4205 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4206 CodeGenDistribute); 4207 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4208 }; 4209 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4210 emitPostUpdateForReductionClause(*this, S, 4211 [](CodeGenFunction &) { return nullptr; }); 4212 } 4213 4214 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4215 const OMPTeamsDistributeParallelForDirective &S) { 4216 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4217 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4218 S.getDistInc()); 4219 }; 4220 4221 // Emit teams region as a standalone region. 4222 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4223 PrePostActionTy &) { 4224 OMPPrivateScope PrivateScope(CGF); 4225 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4226 (void)PrivateScope.Privatize(); 4227 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4228 CodeGenDistribute); 4229 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4230 }; 4231 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4232 emitPostUpdateForReductionClause(*this, S, 4233 [](CodeGenFunction &) { return nullptr; }); 4234 } 4235 4236 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4237 const OMPTeamsDistributeParallelForSimdDirective &S) { 4238 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4239 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4240 S.getDistInc()); 4241 }; 4242 4243 // Emit teams region as a standalone region. 4244 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4245 PrePostActionTy &) { 4246 OMPPrivateScope PrivateScope(CGF); 4247 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4248 (void)PrivateScope.Privatize(); 4249 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4250 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4251 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4252 }; 4253 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4254 emitPostUpdateForReductionClause(*this, S, 4255 [](CodeGenFunction &) { return nullptr; }); 4256 } 4257 4258 static void emitTargetTeamsDistributeParallelForRegion( 4259 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4260 PrePostActionTy &Action) { 4261 Action.Enter(CGF); 4262 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4263 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4264 S.getDistInc()); 4265 }; 4266 4267 // Emit teams region as a standalone region. 4268 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4269 PrePostActionTy &) { 4270 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4271 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4272 (void)PrivateScope.Privatize(); 4273 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4274 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4275 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4276 }; 4277 4278 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4279 CodeGenTeams); 4280 emitPostUpdateForReductionClause(CGF, S, 4281 [](CodeGenFunction &) { return nullptr; }); 4282 } 4283 4284 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4285 CodeGenModule &CGM, StringRef ParentName, 4286 const OMPTargetTeamsDistributeParallelForDirective &S) { 4287 // Emit SPMD target teams distribute parallel for region as a standalone 4288 // region. 4289 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4290 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4291 }; 4292 llvm::Function *Fn; 4293 llvm::Constant *Addr; 4294 // Emit target region as a standalone region. 4295 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4296 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4297 assert(Fn && Addr && "Target device function emission failed."); 4298 } 4299 4300 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4301 const OMPTargetTeamsDistributeParallelForDirective &S) { 4302 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4303 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4304 }; 4305 emitCommonOMPTargetDirective(*this, S, CodeGen); 4306 } 4307 4308 static void emitTargetTeamsDistributeParallelForSimdRegion( 4309 CodeGenFunction &CGF, 4310 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4311 PrePostActionTy &Action) { 4312 Action.Enter(CGF); 4313 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4314 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4315 S.getDistInc()); 4316 }; 4317 4318 // Emit teams region as a standalone region. 4319 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4320 PrePostActionTy &) { 4321 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4322 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4323 (void)PrivateScope.Privatize(); 4324 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4325 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4326 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4327 }; 4328 4329 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4330 CodeGenTeams); 4331 emitPostUpdateForReductionClause(CGF, S, 4332 [](CodeGenFunction &) { return nullptr; }); 4333 } 4334 4335 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4336 CodeGenModule &CGM, StringRef ParentName, 4337 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4338 // Emit SPMD target teams distribute parallel for simd region as a standalone 4339 // region. 4340 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4341 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4342 }; 4343 llvm::Function *Fn; 4344 llvm::Constant *Addr; 4345 // Emit target region as a standalone region. 4346 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4347 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4348 assert(Fn && Addr && "Target device function emission failed."); 4349 } 4350 4351 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4352 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4353 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4354 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4355 }; 4356 emitCommonOMPTargetDirective(*this, S, CodeGen); 4357 } 4358 4359 void CodeGenFunction::EmitOMPCancellationPointDirective( 4360 const OMPCancellationPointDirective &S) { 4361 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 4362 S.getCancelRegion()); 4363 } 4364 4365 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4366 const Expr *IfCond = nullptr; 4367 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4368 if (C->getNameModifier() == OMPD_unknown || 4369 C->getNameModifier() == OMPD_cancel) { 4370 IfCond = C->getCondition(); 4371 break; 4372 } 4373 } 4374 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 4375 S.getCancelRegion()); 4376 } 4377 4378 CodeGenFunction::JumpDest 4379 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4380 if (Kind == OMPD_parallel || Kind == OMPD_task || 4381 Kind == OMPD_target_parallel) 4382 return ReturnBlock; 4383 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4384 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4385 Kind == OMPD_distribute_parallel_for || 4386 Kind == OMPD_target_parallel_for || 4387 Kind == OMPD_teams_distribute_parallel_for || 4388 Kind == OMPD_target_teams_distribute_parallel_for); 4389 return OMPCancelStack.getExitBlock(); 4390 } 4391 4392 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4393 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4394 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4395 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4396 auto OrigVarIt = C.varlist_begin(); 4397 auto InitIt = C.inits().begin(); 4398 for (auto PvtVarIt : C.private_copies()) { 4399 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4400 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4401 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4402 4403 // In order to identify the right initializer we need to match the 4404 // declaration used by the mapping logic. In some cases we may get 4405 // OMPCapturedExprDecl that refers to the original declaration. 4406 const ValueDecl *MatchingVD = OrigVD; 4407 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4408 // OMPCapturedExprDecl are used to privative fields of the current 4409 // structure. 4410 auto *ME = cast<MemberExpr>(OED->getInit()); 4411 assert(isa<CXXThisExpr>(ME->getBase()) && 4412 "Base should be the current struct!"); 4413 MatchingVD = ME->getMemberDecl(); 4414 } 4415 4416 // If we don't have information about the current list item, move on to 4417 // the next one. 4418 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4419 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4420 continue; 4421 4422 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 4423 // Initialize the temporary initialization variable with the address we 4424 // get from the runtime library. We have to cast the source address 4425 // because it is always a void *. References are materialized in the 4426 // privatization scope, so the initialization here disregards the fact 4427 // the original variable is a reference. 4428 QualType AddrQTy = 4429 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4430 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4431 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4432 setAddrOfLocalVar(InitVD, InitAddr); 4433 4434 // Emit private declaration, it will be initialized by the value we 4435 // declaration we just added to the local declarations map. 4436 EmitDecl(*PvtVD); 4437 4438 // The initialization variables reached its purpose in the emission 4439 // ofthe previous declaration, so we don't need it anymore. 4440 LocalDeclMap.erase(InitVD); 4441 4442 // Return the address of the private variable. 4443 return GetAddrOfLocalVar(PvtVD); 4444 }); 4445 assert(IsRegistered && "firstprivate var already registered as private"); 4446 // Silence the warning about unused variable. 4447 (void)IsRegistered; 4448 4449 ++OrigVarIt; 4450 ++InitIt; 4451 } 4452 } 4453 4454 // Generate the instructions for '#pragma omp target data' directive. 4455 void CodeGenFunction::EmitOMPTargetDataDirective( 4456 const OMPTargetDataDirective &S) { 4457 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4458 4459 // Create a pre/post action to signal the privatization of the device pointer. 4460 // This action can be replaced by the OpenMP runtime code generation to 4461 // deactivate privatization. 4462 bool PrivatizeDevicePointers = false; 4463 class DevicePointerPrivActionTy : public PrePostActionTy { 4464 bool &PrivatizeDevicePointers; 4465 4466 public: 4467 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4468 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4469 void Enter(CodeGenFunction &CGF) override { 4470 PrivatizeDevicePointers = true; 4471 } 4472 }; 4473 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4474 4475 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4476 CodeGenFunction &CGF, PrePostActionTy &Action) { 4477 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4478 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4479 }; 4480 4481 // Codegen that selects wheather to generate the privatization code or not. 4482 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4483 &InnermostCodeGen](CodeGenFunction &CGF, 4484 PrePostActionTy &Action) { 4485 RegionCodeGenTy RCG(InnermostCodeGen); 4486 PrivatizeDevicePointers = false; 4487 4488 // Call the pre-action to change the status of PrivatizeDevicePointers if 4489 // needed. 4490 Action.Enter(CGF); 4491 4492 if (PrivatizeDevicePointers) { 4493 OMPPrivateScope PrivateScope(CGF); 4494 // Emit all instances of the use_device_ptr clause. 4495 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4496 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4497 Info.CaptureDeviceAddrMap); 4498 (void)PrivateScope.Privatize(); 4499 RCG(CGF); 4500 } else 4501 RCG(CGF); 4502 }; 4503 4504 // Forward the provided action to the privatization codegen. 4505 RegionCodeGenTy PrivRCG(PrivCodeGen); 4506 PrivRCG.setAction(Action); 4507 4508 // Notwithstanding the body of the region is emitted as inlined directive, 4509 // we don't use an inline scope as changes in the references inside the 4510 // region are expected to be visible outside, so we do not privative them. 4511 OMPLexicalScope Scope(CGF, S); 4512 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4513 PrivRCG); 4514 }; 4515 4516 RegionCodeGenTy RCG(CodeGen); 4517 4518 // If we don't have target devices, don't bother emitting the data mapping 4519 // code. 4520 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4521 RCG(*this); 4522 return; 4523 } 4524 4525 // Check if we have any if clause associated with the directive. 4526 const Expr *IfCond = nullptr; 4527 if (auto *C = S.getSingleClause<OMPIfClause>()) 4528 IfCond = C->getCondition(); 4529 4530 // Check if we have any device clause associated with the directive. 4531 const Expr *Device = nullptr; 4532 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4533 Device = C->getDevice(); 4534 4535 // Set the action to signal privatization of device pointers. 4536 RCG.setAction(PrivAction); 4537 4538 // Emit region code. 4539 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4540 Info); 4541 } 4542 4543 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4544 const OMPTargetEnterDataDirective &S) { 4545 // If we don't have target devices, don't bother emitting the data mapping 4546 // code. 4547 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4548 return; 4549 4550 // Check if we have any if clause associated with the directive. 4551 const Expr *IfCond = nullptr; 4552 if (auto *C = S.getSingleClause<OMPIfClause>()) 4553 IfCond = C->getCondition(); 4554 4555 // Check if we have any device clause associated with the directive. 4556 const Expr *Device = nullptr; 4557 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4558 Device = C->getDevice(); 4559 4560 OMPLexicalScope Scope(*this, S, OMPD_task); 4561 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4562 } 4563 4564 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4565 const OMPTargetExitDataDirective &S) { 4566 // If we don't have target devices, don't bother emitting the data mapping 4567 // code. 4568 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4569 return; 4570 4571 // Check if we have any if clause associated with the directive. 4572 const Expr *IfCond = nullptr; 4573 if (auto *C = S.getSingleClause<OMPIfClause>()) 4574 IfCond = C->getCondition(); 4575 4576 // Check if we have any device clause associated with the directive. 4577 const Expr *Device = nullptr; 4578 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4579 Device = C->getDevice(); 4580 4581 OMPLexicalScope Scope(*this, S, OMPD_task); 4582 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4583 } 4584 4585 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4586 const OMPTargetParallelDirective &S, 4587 PrePostActionTy &Action) { 4588 // Get the captured statement associated with the 'parallel' region. 4589 auto *CS = S.getCapturedStmt(OMPD_parallel); 4590 Action.Enter(CGF); 4591 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) { 4592 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4593 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4594 CGF.EmitOMPPrivateClause(S, PrivateScope); 4595 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4596 (void)PrivateScope.Privatize(); 4597 // TODO: Add support for clauses. 4598 CGF.EmitStmt(CS->getCapturedStmt()); 4599 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4600 }; 4601 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4602 emitEmptyBoundParameters); 4603 emitPostUpdateForReductionClause( 4604 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4605 } 4606 4607 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4608 CodeGenModule &CGM, StringRef ParentName, 4609 const OMPTargetParallelDirective &S) { 4610 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4611 emitTargetParallelRegion(CGF, S, Action); 4612 }; 4613 llvm::Function *Fn; 4614 llvm::Constant *Addr; 4615 // Emit target region as a standalone region. 4616 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4617 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4618 assert(Fn && Addr && "Target device function emission failed."); 4619 } 4620 4621 void CodeGenFunction::EmitOMPTargetParallelDirective( 4622 const OMPTargetParallelDirective &S) { 4623 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4624 emitTargetParallelRegion(CGF, S, Action); 4625 }; 4626 emitCommonOMPTargetDirective(*this, S, CodeGen); 4627 } 4628 4629 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4630 const OMPTargetParallelForDirective &S, 4631 PrePostActionTy &Action) { 4632 Action.Enter(CGF); 4633 // Emit directive as a combined directive that consists of two implicit 4634 // directives: 'parallel' with 'for' directive. 4635 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4636 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4637 CGF, OMPD_target_parallel_for, S.hasCancel()); 4638 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4639 emitDispatchForLoopBounds); 4640 }; 4641 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4642 emitEmptyBoundParameters); 4643 } 4644 4645 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4646 CodeGenModule &CGM, StringRef ParentName, 4647 const OMPTargetParallelForDirective &S) { 4648 // Emit SPMD target parallel for region as a standalone region. 4649 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4650 emitTargetParallelForRegion(CGF, S, Action); 4651 }; 4652 llvm::Function *Fn; 4653 llvm::Constant *Addr; 4654 // Emit target region as a standalone region. 4655 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4656 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4657 assert(Fn && Addr && "Target device function emission failed."); 4658 } 4659 4660 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4661 const OMPTargetParallelForDirective &S) { 4662 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4663 emitTargetParallelForRegion(CGF, S, Action); 4664 }; 4665 emitCommonOMPTargetDirective(*this, S, CodeGen); 4666 } 4667 4668 static void 4669 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4670 const OMPTargetParallelForSimdDirective &S, 4671 PrePostActionTy &Action) { 4672 Action.Enter(CGF); 4673 // Emit directive as a combined directive that consists of two implicit 4674 // directives: 'parallel' with 'for' directive. 4675 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4676 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4677 emitDispatchForLoopBounds); 4678 }; 4679 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4680 emitEmptyBoundParameters); 4681 } 4682 4683 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4684 CodeGenModule &CGM, StringRef ParentName, 4685 const OMPTargetParallelForSimdDirective &S) { 4686 // Emit SPMD target parallel for region as a standalone region. 4687 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4688 emitTargetParallelForSimdRegion(CGF, S, Action); 4689 }; 4690 llvm::Function *Fn; 4691 llvm::Constant *Addr; 4692 // Emit target region as a standalone region. 4693 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4694 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4695 assert(Fn && Addr && "Target device function emission failed."); 4696 } 4697 4698 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4699 const OMPTargetParallelForSimdDirective &S) { 4700 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4701 emitTargetParallelForSimdRegion(CGF, S, Action); 4702 }; 4703 emitCommonOMPTargetDirective(*this, S, CodeGen); 4704 } 4705 4706 /// Emit a helper variable and return corresponding lvalue. 4707 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4708 const ImplicitParamDecl *PVD, 4709 CodeGenFunction::OMPPrivateScope &Privates) { 4710 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4711 Privates.addPrivate( 4712 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 4713 } 4714 4715 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4716 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4717 // Emit outlined function for task construct. 4718 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4719 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 4720 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4721 const Expr *IfCond = nullptr; 4722 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4723 if (C->getNameModifier() == OMPD_unknown || 4724 C->getNameModifier() == OMPD_taskloop) { 4725 IfCond = C->getCondition(); 4726 break; 4727 } 4728 } 4729 4730 OMPTaskDataTy Data; 4731 // Check if taskloop must be emitted without taskgroup. 4732 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4733 // TODO: Check if we should emit tied or untied task. 4734 Data.Tied = true; 4735 // Set scheduling for taskloop 4736 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4737 // grainsize clause 4738 Data.Schedule.setInt(/*IntVal=*/false); 4739 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4740 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4741 // num_tasks clause 4742 Data.Schedule.setInt(/*IntVal=*/true); 4743 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4744 } 4745 4746 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4747 // if (PreCond) { 4748 // for (IV in 0..LastIteration) BODY; 4749 // <Final counter/linear vars updates>; 4750 // } 4751 // 4752 4753 // Emit: if (PreCond) - begin. 4754 // If the condition constant folds and can be elided, avoid emitting the 4755 // whole loop. 4756 bool CondConstant; 4757 llvm::BasicBlock *ContBlock = nullptr; 4758 OMPLoopScope PreInitScope(CGF, S); 4759 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4760 if (!CondConstant) 4761 return; 4762 } else { 4763 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4764 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4765 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4766 CGF.getProfileCount(&S)); 4767 CGF.EmitBlock(ThenBlock); 4768 CGF.incrementProfileCounter(&S); 4769 } 4770 4771 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4772 CGF.EmitOMPSimdInit(S); 4773 4774 OMPPrivateScope LoopScope(CGF); 4775 // Emit helper vars inits. 4776 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4777 auto *I = CS->getCapturedDecl()->param_begin(); 4778 auto *LBP = std::next(I, LowerBound); 4779 auto *UBP = std::next(I, UpperBound); 4780 auto *STP = std::next(I, Stride); 4781 auto *LIP = std::next(I, LastIter); 4782 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4783 LoopScope); 4784 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4785 LoopScope); 4786 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4787 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4788 LoopScope); 4789 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4790 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4791 (void)LoopScope.Privatize(); 4792 // Emit the loop iteration variable. 4793 const Expr *IVExpr = S.getIterationVariable(); 4794 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4795 CGF.EmitVarDecl(*IVDecl); 4796 CGF.EmitIgnoredExpr(S.getInit()); 4797 4798 // Emit the iterations count variable. 4799 // If it is not a variable, Sema decided to calculate iterations count on 4800 // each iteration (e.g., it is foldable into a constant). 4801 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4802 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4803 // Emit calculation of the iterations count. 4804 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4805 } 4806 4807 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4808 S.getInc(), 4809 [&S](CodeGenFunction &CGF) { 4810 CGF.EmitOMPLoopBody(S, JumpDest()); 4811 CGF.EmitStopPoint(&S); 4812 }, 4813 [](CodeGenFunction &) {}); 4814 // Emit: if (PreCond) - end. 4815 if (ContBlock) { 4816 CGF.EmitBranch(ContBlock); 4817 CGF.EmitBlock(ContBlock, true); 4818 } 4819 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4820 if (HasLastprivateClause) { 4821 CGF.EmitOMPLastprivateClauseFinal( 4822 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4823 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4824 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4825 (*LIP)->getType(), S.getLocStart()))); 4826 } 4827 }; 4828 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4829 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4830 const OMPTaskDataTy &Data) { 4831 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4832 OMPLoopScope PreInitScope(CGF, S); 4833 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4834 OutlinedFn, SharedsTy, 4835 CapturedStruct, IfCond, Data); 4836 }; 4837 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4838 CodeGen); 4839 }; 4840 if (Data.Nogroup) { 4841 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4842 } else { 4843 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4844 *this, 4845 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4846 PrePostActionTy &Action) { 4847 Action.Enter(CGF); 4848 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4849 Data); 4850 }, 4851 S.getLocStart()); 4852 } 4853 } 4854 4855 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4856 EmitOMPTaskLoopBasedDirective(S); 4857 } 4858 4859 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4860 const OMPTaskLoopSimdDirective &S) { 4861 EmitOMPTaskLoopBasedDirective(S); 4862 } 4863 4864 // Generate the instructions for '#pragma omp target update' directive. 4865 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4866 const OMPTargetUpdateDirective &S) { 4867 // If we don't have target devices, don't bother emitting the data mapping 4868 // code. 4869 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4870 return; 4871 4872 // Check if we have any if clause associated with the directive. 4873 const Expr *IfCond = nullptr; 4874 if (auto *C = S.getSingleClause<OMPIfClause>()) 4875 IfCond = C->getCondition(); 4876 4877 // Check if we have any device clause associated with the directive. 4878 const Expr *Device = nullptr; 4879 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4880 Device = C->getDevice(); 4881 4882 OMPLexicalScope Scope(*this, S, OMPD_task); 4883 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4884 } 4885 4886 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 4887 const OMPExecutableDirective &D) { 4888 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 4889 return; 4890 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 4891 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 4892 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 4893 } else { 4894 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 4895 for (const auto *E : LD->counters()) { 4896 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 4897 cast<DeclRefExpr>(E)->getDecl())) { 4898 // Emit only those that were not explicitly referenced in clauses. 4899 if (!CGF.LocalDeclMap.count(VD)) 4900 CGF.EmitVarDecl(*VD); 4901 } 4902 } 4903 } 4904 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 4905 } 4906 }; 4907 OMPSimdLexicalScope Scope(*this, D); 4908 CGM.getOpenMPRuntime().emitInlinedDirective( 4909 *this, 4910 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 4911 : D.getDirectiveKind(), 4912 CodeGen); 4913 } 4914