1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Builder implementation for CGRecordLayout objects. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGRecordLayout.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenTypes.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 namespace { 34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an 35 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we 36 /// detail some of the complexities and weirdnesses here. 37 /// * LLVM does not have unions - Unions can, in theory be represented by any 38 /// llvm::Type with correct size. We choose a field via a specific heuristic 39 /// and add padding if necessary. 40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous 41 /// runs and allocated as a single storage type for the run. ASTRecordLayout 42 /// contains enough information to determine where the runs break. Microsoft 43 /// and Itanium follow different rules and use different codepaths. 44 /// * It is desired that, when possible, bitfields use the appropriate iN type 45 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to 46 /// i24. This isn't always possible because i24 has storage size of 32 bit 47 /// and if it is possible to use that extra byte of padding we must use 48 /// [i8 x 3] instead of i24. The function clipTailPadding does this. 49 /// C++ examples that require clipping: 50 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 51 /// struct A { int a : 24; }; // a must be clipped because a struct like B 52 // could exist: struct B : A { char b; }; // b goes at offset 3 53 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized 54 /// fields. The existing asserts suggest that LLVM assumes that *every* field 55 /// has an underlying storage type. Therefore empty structures containing 56 /// zero sized subobjects such as empty records or zero sized arrays still get 57 /// a zero sized (empty struct) storage type. 58 /// * Clang reads the complete type rather than the base type when generating 59 /// code to access fields. Bitfields in tail position with tail padding may 60 /// be clipped in the base class but not the complete class (we may discover 61 /// that the tail padding is not used in the complete class.) However, 62 /// because LLVM reads from the complete type it can generate incorrect code 63 /// if we do not clip the tail padding off of the bitfield in the complete 64 /// layout. This introduces a somewhat awkward extra unnecessary clip stage. 65 /// The location of the clip is stored internally as a sentinal of type 66 /// SCISSOR. If LLVM were updated to read base types (which it probably 67 /// should because locations of things such as VBases are bogus in the llvm 68 /// type anyway) then we could eliminate the SCISSOR. 69 /// * Itanium allows nearly empty primary virtual bases. These bases don't get 70 /// get their own storage because they're laid out as part of another base 71 /// or at the beginning of the structure. Determining if a VBase actually 72 /// gets storage awkwardly involves a walk of all bases. 73 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. 74 struct CGRecordLowering { 75 // MemberInfo is a helper structure that contains information about a record 76 // member. In additional to the standard member types, there exists a 77 // sentinal member type that ensures correct rounding. 78 struct MemberInfo { 79 CharUnits Offset; 80 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; 81 llvm::Type *Data; 82 union { 83 const FieldDecl *FD; 84 const CXXRecordDecl *RD; 85 }; 86 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 87 const FieldDecl *FD = nullptr) 88 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} 89 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 90 const CXXRecordDecl *RD) 91 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} 92 // MemberInfos are sorted so we define a < operator. 93 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } 94 }; 95 // The constructor. 96 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); 97 // Short helper routines. 98 /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *. 99 MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { 100 return MemberInfo(Offset, MemberInfo::Field, Data); 101 } 102 bool useMSABI() { 103 return Context.getTargetInfo().getCXXABI().isMicrosoft() || 104 D->isMsStruct(Context); 105 } 106 /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments. 107 llvm::Type *getIntNType(uint64_t NumBits) { 108 return llvm::Type::getIntNTy(Types.getLLVMContext(), 109 (unsigned)llvm::RoundUpToAlignment(NumBits, 8)); 110 } 111 /// \brief Gets an llvm type of size NumBytes and alignment 1. 112 llvm::Type *getByteArrayType(CharUnits NumBytes) { 113 assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed."); 114 llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext()); 115 return NumBytes == CharUnits::One() ? Type : 116 (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity()); 117 } 118 /// \brief Gets the storage type for a field decl and handles storage 119 /// for itanium bitfields that are smaller than their declared type. 120 llvm::Type *getStorageType(const FieldDecl *FD) { 121 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); 122 return useMSABI() || !FD->isBitField() ? Type : 123 getIntNType(std::min(FD->getBitWidthValue(Context), 124 (unsigned)Context.toBits(getSize(Type)))); 125 } 126 /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl. 127 llvm::Type *getStorageType(const CXXRecordDecl *RD) { 128 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); 129 } 130 CharUnits bitsToCharUnits(uint64_t BitOffset) { 131 return Context.toCharUnitsFromBits(BitOffset); 132 } 133 CharUnits getSize(llvm::Type *Type) { 134 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); 135 } 136 CharUnits getAlignment(llvm::Type *Type) { 137 return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); 138 } 139 bool isZeroInitializable(const FieldDecl *FD) { 140 const Type *Type = FD->getType()->getBaseElementTypeUnsafe(); 141 if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>()) 142 return Types.getCXXABI().isZeroInitializable(MPT); 143 if (const RecordType *RT = Type->getAs<RecordType>()) 144 return isZeroInitializable(RT->getDecl()); 145 return true; 146 } 147 bool isZeroInitializable(const RecordDecl *RD) { 148 return Types.getCGRecordLayout(RD).isZeroInitializable(); 149 } 150 void appendPaddingBytes(CharUnits Size) { 151 if (!Size.isZero()) 152 FieldTypes.push_back(getByteArrayType(Size)); 153 } 154 uint64_t getFieldBitOffset(const FieldDecl *FD) { 155 return Layout.getFieldOffset(FD->getFieldIndex()); 156 } 157 // Layout routines. 158 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, 159 llvm::Type *StorageType); 160 /// \brief Lowers an ASTRecordLayout to a llvm type. 161 void lower(bool NonVirtualBaseType); 162 void lowerUnion(); 163 void accumulateFields(); 164 void accumulateBitFields(RecordDecl::field_iterator Field, 165 RecordDecl::field_iterator FieldEnd); 166 void accumulateBases(); 167 void accumulateVPtrs(); 168 void accumulateVBases(); 169 /// \brief Recursively searches all of the bases to find out if a vbase is 170 /// not the primary vbase of some base class. 171 bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); 172 void calculateZeroInit(); 173 /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail 174 /// padding that is or can potentially be used. 175 void clipTailPadding(); 176 /// \brief Determines if we need a packed llvm struct. 177 void determinePacked(bool NVBaseType); 178 /// \brief Inserts padding everwhere it's needed. 179 void insertPadding(); 180 /// \brief Fills out the structures that are ultimately consumed. 181 void fillOutputFields(); 182 // Input memoization fields. 183 CodeGenTypes &Types; 184 const ASTContext &Context; 185 const RecordDecl *D; 186 const CXXRecordDecl *RD; 187 const ASTRecordLayout &Layout; 188 const llvm::DataLayout &DataLayout; 189 // Helpful intermediate data-structures. 190 std::vector<MemberInfo> Members; 191 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. 192 SmallVector<llvm::Type *, 16> FieldTypes; 193 llvm::DenseMap<const FieldDecl *, unsigned> Fields; 194 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 195 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 196 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; 197 bool IsZeroInitializable : 1; 198 bool IsZeroInitializableAsBase : 1; 199 bool Packed : 1; 200 private: 201 CGRecordLowering(const CGRecordLowering &) LLVM_DELETED_FUNCTION; 202 void operator =(const CGRecordLowering &) LLVM_DELETED_FUNCTION; 203 }; 204 } // namespace { 205 206 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed) 207 : Types(Types), Context(Types.getContext()), D(D), 208 RD(dyn_cast<CXXRecordDecl>(D)), 209 Layout(Types.getContext().getASTRecordLayout(D)), 210 DataLayout(Types.getDataLayout()), IsZeroInitializable(true), 211 IsZeroInitializableAsBase(true), Packed(Packed) {} 212 213 void CGRecordLowering::setBitFieldInfo( 214 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { 215 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; 216 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 217 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); 218 Info.Size = FD->getBitWidthValue(Context); 219 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); 220 // Here we calculate the actual storage alignment of the bits. E.g if we've 221 // got an alignment >= 2 and the bitfield starts at offset 6 we've got an 222 // alignment of 2. 223 Info.StorageAlignment = 224 Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity(); 225 if (Info.Size > Info.StorageSize) 226 Info.Size = Info.StorageSize; 227 // Reverse the bit offsets for big endian machines. Because we represent 228 // a bitfield as a single large integer load, we can imagine the bits 229 // counting from the most-significant-bit instead of the 230 // least-significant-bit. 231 if (DataLayout.isBigEndian()) 232 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); 233 } 234 235 void CGRecordLowering::lower(bool NVBaseType) { 236 // The lowering process implemented in this function takes a variety of 237 // carefully ordered phases. 238 // 1) Store all members (fields and bases) in a list and sort them by offset. 239 // 2) Add a 1-byte capstone member at the Size of the structure. 240 // 3) Clip bitfield storages members if their tail padding is or might be 241 // used by another field or base. The clipping process uses the capstone 242 // by treating it as another object that occurs after the record. 243 // 4) Determine if the llvm-struct requires packing. It's important that this 244 // phase occur after clipping, because clipping changes the llvm type. 245 // This phase reads the offset of the capstone when determining packedness 246 // and updates the alignment of the capstone to be equal of the alignment 247 // of the record after doing so. 248 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to 249 // have been computed and needs to know the alignment of the record in 250 // order to understand if explicit tail padding is needed. 251 // 6) Remove the capstone, we don't need it anymore. 252 // 7) Determine if this record can be zero-initialized. This phase could have 253 // been placed anywhere after phase 1. 254 // 8) Format the complete list of members in a way that can be consumed by 255 // CodeGenTypes::ComputeRecordLayout. 256 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); 257 if (D->isUnion()) 258 return lowerUnion(); 259 accumulateFields(); 260 // RD implies C++. 261 if (RD) { 262 accumulateVPtrs(); 263 accumulateBases(); 264 if (Members.empty()) 265 return appendPaddingBytes(Size); 266 if (!NVBaseType) 267 accumulateVBases(); 268 } 269 std::stable_sort(Members.begin(), Members.end()); 270 Members.push_back(StorageInfo(Size, getIntNType(8))); 271 clipTailPadding(); 272 determinePacked(NVBaseType); 273 insertPadding(); 274 Members.pop_back(); 275 calculateZeroInit(); 276 fillOutputFields(); 277 } 278 279 void CGRecordLowering::lowerUnion() { 280 CharUnits LayoutSize = Layout.getSize(); 281 llvm::Type *StorageType = nullptr; 282 bool SeenNamedMember = false; 283 // Iterate through the fields setting bitFieldInfo and the Fields array. Also 284 // locate the "most appropriate" storage type. The heuristic for finding the 285 // storage type isn't necessary, the first (non-0-length-bitfield) field's 286 // type would work fine and be simpler but would be different than what we've 287 // been doing and cause lit tests to change. 288 for (const auto *Field : D->fields()) { 289 if (Field->isBitField()) { 290 // Skip 0 sized bitfields. 291 if (Field->getBitWidthValue(Context) == 0) 292 continue; 293 llvm::Type *FieldType = getStorageType(Field); 294 if (LayoutSize < getSize(FieldType)) 295 FieldType = getByteArrayType(LayoutSize); 296 setBitFieldInfo(Field, CharUnits::Zero(), FieldType); 297 } 298 Fields[Field->getCanonicalDecl()] = 0; 299 llvm::Type *FieldType = getStorageType(Field); 300 // Compute zero-initializable status. 301 // This union might not be zero initialized: it may contain a pointer to 302 // data member which might have some exotic initialization sequence. 303 // If this is the case, then we aught not to try and come up with a "better" 304 // type, it might not be very easy to come up with a Constant which 305 // correctly initializes it. 306 if (!SeenNamedMember && Field->getDeclName()) { 307 SeenNamedMember = true; 308 if (!isZeroInitializable(Field)) { 309 IsZeroInitializable = IsZeroInitializableAsBase = false; 310 StorageType = FieldType; 311 } 312 } 313 // Because our union isn't zero initializable, we won't be getting a better 314 // storage type. 315 if (!IsZeroInitializable) 316 continue; 317 // Conditionally update our storage type if we've got a new "better" one. 318 if (!StorageType || 319 getAlignment(FieldType) > getAlignment(StorageType) || 320 (getAlignment(FieldType) == getAlignment(StorageType) && 321 getSize(FieldType) > getSize(StorageType))) 322 StorageType = FieldType; 323 } 324 // If we have no storage type just pad to the appropriate size and return. 325 if (!StorageType) 326 return appendPaddingBytes(LayoutSize); 327 // If our storage size was bigger than our required size (can happen in the 328 // case of packed bitfields on Itanium) then just use an I8 array. 329 if (LayoutSize < getSize(StorageType)) 330 StorageType = getByteArrayType(LayoutSize); 331 FieldTypes.push_back(StorageType); 332 appendPaddingBytes(LayoutSize - getSize(StorageType)); 333 // Set packed if we need it. 334 if (LayoutSize % getAlignment(StorageType)) 335 Packed = true; 336 } 337 338 void CGRecordLowering::accumulateFields() { 339 for (RecordDecl::field_iterator Field = D->field_begin(), 340 FieldEnd = D->field_end(); 341 Field != FieldEnd;) 342 if (Field->isBitField()) { 343 RecordDecl::field_iterator Start = Field; 344 // Iterate to gather the list of bitfields. 345 for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); 346 accumulateBitFields(Start, Field); 347 } else { 348 Members.push_back(MemberInfo( 349 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, 350 getStorageType(*Field), *Field)); 351 ++Field; 352 } 353 } 354 355 void 356 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, 357 RecordDecl::field_iterator FieldEnd) { 358 // Run stores the first element of the current run of bitfields. FieldEnd is 359 // used as a special value to note that we don't have a current run. A 360 // bitfield run is a contiguous collection of bitfields that can be stored in 361 // the same storage block. Zero-sized bitfields and bitfields that would 362 // cross an alignment boundary break a run and start a new one. 363 RecordDecl::field_iterator Run = FieldEnd; 364 // Tail is the offset of the first bit off the end of the current run. It's 365 // used to determine if the ASTRecordLayout is treating these two bitfields as 366 // contiguous. StartBitOffset is offset of the beginning of the Run. 367 uint64_t StartBitOffset, Tail = 0; 368 if (useMSABI()) { 369 for (; Field != FieldEnd; ++Field) { 370 uint64_t BitOffset = getFieldBitOffset(*Field); 371 // Zero-width bitfields end runs. 372 if (Field->getBitWidthValue(Context) == 0) { 373 Run = FieldEnd; 374 continue; 375 } 376 llvm::Type *Type = Types.ConvertTypeForMem(Field->getType()); 377 // If we don't have a run yet, or don't live within the previous run's 378 // allocated storage then we allocate some storage and start a new run. 379 if (Run == FieldEnd || BitOffset >= Tail) { 380 Run = Field; 381 StartBitOffset = BitOffset; 382 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); 383 // Add the storage member to the record. This must be added to the 384 // record before the bitfield members so that it gets laid out before 385 // the bitfields it contains get laid out. 386 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 387 } 388 // Bitfields get the offset of their storage but come afterward and remain 389 // there after a stable sort. 390 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 391 MemberInfo::Field, nullptr, *Field)); 392 } 393 return; 394 } 395 for (;;) { 396 // Check to see if we need to start a new run. 397 if (Run == FieldEnd) { 398 // If we're out of fields, return. 399 if (Field == FieldEnd) 400 break; 401 // Any non-zero-length bitfield can start a new run. 402 if (Field->getBitWidthValue(Context) != 0) { 403 Run = Field; 404 StartBitOffset = getFieldBitOffset(*Field); 405 Tail = StartBitOffset + Field->getBitWidthValue(Context); 406 } 407 ++Field; 408 continue; 409 } 410 // Add bitfields to the run as long as they qualify. 411 if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 && 412 Tail == getFieldBitOffset(*Field)) { 413 Tail += Field->getBitWidthValue(Context); 414 ++Field; 415 continue; 416 } 417 // We've hit a break-point in the run and need to emit a storage field. 418 llvm::Type *Type = getIntNType(Tail - StartBitOffset); 419 // Add the storage member to the record and set the bitfield info for all of 420 // the bitfields in the run. Bitfields get the offset of their storage but 421 // come afterward and remain there after a stable sort. 422 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 423 for (; Run != Field; ++Run) 424 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 425 MemberInfo::Field, nullptr, *Run)); 426 Run = FieldEnd; 427 } 428 } 429 430 void CGRecordLowering::accumulateBases() { 431 // If we've got a primary virtual base, we need to add it with the bases. 432 if (Layout.isPrimaryBaseVirtual()) { 433 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); 434 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, 435 getStorageType(BaseDecl), BaseDecl)); 436 } 437 // Accumulate the non-virtual bases. 438 for (const auto &Base : RD->bases()) { 439 if (Base.isVirtual()) 440 continue; 441 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 442 if (!BaseDecl->isEmpty()) 443 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), 444 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); 445 } 446 } 447 448 void CGRecordLowering::accumulateVPtrs() { 449 if (Layout.hasOwnVFPtr()) 450 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, 451 llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> 452 getPointerTo()->getPointerTo())); 453 if (Layout.hasOwnVBPtr()) 454 Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, 455 llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); 456 } 457 458 void CGRecordLowering::accumulateVBases() { 459 CharUnits ScissorOffset = Layout.getNonVirtualSize(); 460 // In the itanium ABI, it's possible to place a vbase at a dsize that is 461 // smaller than the nvsize. Here we check to see if such a base is placed 462 // before the nvsize and set the scissor offset to that, instead of the 463 // nvsize. 464 if (!useMSABI()) 465 for (const auto &Base : RD->vbases()) { 466 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 467 if (BaseDecl->isEmpty()) 468 continue; 469 // If the vbase is a primary virtual base of some base, then it doesn't 470 // get its own storage location but instead lives inside of that base. 471 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) 472 continue; 473 ScissorOffset = std::min(ScissorOffset, 474 Layout.getVBaseClassOffset(BaseDecl)); 475 } 476 Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, 477 RD)); 478 for (const auto &Base : RD->vbases()) { 479 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 480 if (BaseDecl->isEmpty()) 481 continue; 482 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); 483 // If the vbase is a primary virtual base of some base, then it doesn't 484 // get its own storage location but instead lives inside of that base. 485 if (!useMSABI() && Context.isNearlyEmpty(BaseDecl) && 486 !hasOwnStorage(RD, BaseDecl)) { 487 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, 488 BaseDecl)); 489 continue; 490 } 491 // If we've got a vtordisp, add it as a storage type. 492 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) 493 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), 494 getIntNType(32))); 495 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 496 getStorageType(BaseDecl), BaseDecl)); 497 } 498 } 499 500 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, 501 const CXXRecordDecl *Query) { 502 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); 503 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) 504 return false; 505 for (const auto &Base : Decl->bases()) 506 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) 507 return false; 508 return true; 509 } 510 511 void CGRecordLowering::calculateZeroInit() { 512 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 513 MemberEnd = Members.end(); 514 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { 515 if (Member->Kind == MemberInfo::Field) { 516 if (!Member->FD || isZeroInitializable(Member->FD)) 517 continue; 518 IsZeroInitializable = IsZeroInitializableAsBase = false; 519 } else if (Member->Kind == MemberInfo::Base || 520 Member->Kind == MemberInfo::VBase) { 521 if (isZeroInitializable(Member->RD)) 522 continue; 523 IsZeroInitializable = false; 524 if (Member->Kind == MemberInfo::Base) 525 IsZeroInitializableAsBase = false; 526 } 527 } 528 } 529 530 void CGRecordLowering::clipTailPadding() { 531 std::vector<MemberInfo>::iterator Prior = Members.begin(); 532 CharUnits Tail = getSize(Prior->Data); 533 for (std::vector<MemberInfo>::iterator Member = Prior + 1, 534 MemberEnd = Members.end(); 535 Member != MemberEnd; ++Member) { 536 // Only members with data and the scissor can cut into tail padding. 537 if (!Member->Data && Member->Kind != MemberInfo::Scissor) 538 continue; 539 if (Member->Offset < Tail) { 540 assert(Prior->Kind == MemberInfo::Field && !Prior->FD && 541 "Only storage fields have tail padding!"); 542 Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment( 543 cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); 544 } 545 if (Member->Data) 546 Prior = Member; 547 Tail = Prior->Offset + getSize(Prior->Data); 548 } 549 } 550 551 void CGRecordLowering::determinePacked(bool NVBaseType) { 552 if (Packed) 553 return; 554 CharUnits Alignment = CharUnits::One(); 555 CharUnits NVAlignment = CharUnits::One(); 556 CharUnits NVSize = 557 !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); 558 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 559 MemberEnd = Members.end(); 560 Member != MemberEnd; ++Member) { 561 if (!Member->Data) 562 continue; 563 // If any member falls at an offset that it not a multiple of its alignment, 564 // then the entire record must be packed. 565 if (Member->Offset % getAlignment(Member->Data)) 566 Packed = true; 567 if (Member->Offset < NVSize) 568 NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); 569 Alignment = std::max(Alignment, getAlignment(Member->Data)); 570 } 571 // If the size of the record (the capstone's offset) is not a multiple of the 572 // record's alignment, it must be packed. 573 if (Members.back().Offset % Alignment) 574 Packed = true; 575 // If the non-virtual sub-object is not a multiple of the non-virtual 576 // sub-object's alignment, it must be packed. We cannot have a packed 577 // non-virtual sub-object and an unpacked complete object or vise versa. 578 if (NVSize % NVAlignment) 579 Packed = true; 580 // Update the alignment of the sentinal. 581 if (!Packed) 582 Members.back().Data = getIntNType(Context.toBits(Alignment)); 583 } 584 585 void CGRecordLowering::insertPadding() { 586 std::vector<std::pair<CharUnits, CharUnits> > Padding; 587 CharUnits Size = CharUnits::Zero(); 588 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 589 MemberEnd = Members.end(); 590 Member != MemberEnd; ++Member) { 591 if (!Member->Data) 592 continue; 593 CharUnits Offset = Member->Offset; 594 assert(Offset >= Size); 595 // Insert padding if we need to. 596 if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() : 597 getAlignment(Member->Data))) 598 Padding.push_back(std::make_pair(Size, Offset - Size)); 599 Size = Offset + getSize(Member->Data); 600 } 601 if (Padding.empty()) 602 return; 603 // Add the padding to the Members list and sort it. 604 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator 605 Pad = Padding.begin(), PadEnd = Padding.end(); 606 Pad != PadEnd; ++Pad) 607 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); 608 std::stable_sort(Members.begin(), Members.end()); 609 } 610 611 void CGRecordLowering::fillOutputFields() { 612 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 613 MemberEnd = Members.end(); 614 Member != MemberEnd; ++Member) { 615 if (Member->Data) 616 FieldTypes.push_back(Member->Data); 617 if (Member->Kind == MemberInfo::Field) { 618 if (Member->FD) 619 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; 620 // A field without storage must be a bitfield. 621 if (!Member->Data) 622 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); 623 } else if (Member->Kind == MemberInfo::Base) 624 NonVirtualBases[Member->RD] = FieldTypes.size() - 1; 625 else if (Member->Kind == MemberInfo::VBase) 626 VirtualBases[Member->RD] = FieldTypes.size() - 1; 627 } 628 } 629 630 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, 631 const FieldDecl *FD, 632 uint64_t Offset, uint64_t Size, 633 uint64_t StorageSize, 634 uint64_t StorageAlignment) { 635 // This function is vestigial from CGRecordLayoutBuilder days but is still 636 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that 637 // when addressed will allow for the removal of this function. 638 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); 639 CharUnits TypeSizeInBytes = 640 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); 641 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); 642 643 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 644 645 if (Size > TypeSizeInBits) { 646 // We have a wide bit-field. The extra bits are only used for padding, so 647 // if we have a bitfield of type T, with size N: 648 // 649 // T t : N; 650 // 651 // We can just assume that it's: 652 // 653 // T t : sizeof(T); 654 // 655 Size = TypeSizeInBits; 656 } 657 658 // Reverse the bit offsets for big endian machines. Because we represent 659 // a bitfield as a single large integer load, we can imagine the bits 660 // counting from the most-significant-bit instead of the 661 // least-significant-bit. 662 if (Types.getDataLayout().isBigEndian()) { 663 Offset = StorageSize - (Offset + Size); 664 } 665 666 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment); 667 } 668 669 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, 670 llvm::StructType *Ty) { 671 CGRecordLowering Builder(*this, D, /*Packed=*/false); 672 673 Builder.lower(/*NonVirtualBaseType=*/false); 674 675 // If we're in C++, compute the base subobject type. 676 llvm::StructType *BaseTy = nullptr; 677 if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { 678 BaseTy = Ty; 679 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { 680 CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); 681 BaseBuilder.lower(/*NonVirtualBaseType=*/true); 682 BaseTy = llvm::StructType::create( 683 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); 684 addRecordTypeName(D, BaseTy, ".base"); 685 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work 686 // on both of them with the same index. 687 assert(Builder.Packed == BaseBuilder.Packed && 688 "Non-virtual and complete types must agree on packedness"); 689 } 690 } 691 692 // Fill in the struct *after* computing the base type. Filling in the body 693 // signifies that the type is no longer opaque and record layout is complete, 694 // but we may need to recursively layout D while laying D out as a base type. 695 Ty->setBody(Builder.FieldTypes, Builder.Packed); 696 697 CGRecordLayout *RL = 698 new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, 699 Builder.IsZeroInitializableAsBase); 700 701 RL->NonVirtualBases.swap(Builder.NonVirtualBases); 702 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); 703 704 // Add all the field numbers. 705 RL->FieldInfo.swap(Builder.Fields); 706 707 // Add bitfield info. 708 RL->BitFields.swap(Builder.BitFields); 709 710 // Dump the layout, if requested. 711 if (getContext().getLangOpts().DumpRecordLayouts) { 712 llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; 713 llvm::outs() << "Record: "; 714 D->dump(llvm::outs()); 715 llvm::outs() << "\nLayout: "; 716 RL->print(llvm::outs()); 717 } 718 719 #ifndef NDEBUG 720 // Verify that the computed LLVM struct size matches the AST layout size. 721 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); 722 723 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); 724 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && 725 "Type size mismatch!"); 726 727 if (BaseTy) { 728 CharUnits NonVirtualSize = Layout.getNonVirtualSize(); 729 730 uint64_t AlignedNonVirtualTypeSizeInBits = 731 getContext().toBits(NonVirtualSize); 732 733 assert(AlignedNonVirtualTypeSizeInBits == 734 getDataLayout().getTypeAllocSizeInBits(BaseTy) && 735 "Type size mismatch!"); 736 } 737 738 // Verify that the LLVM and AST field offsets agree. 739 llvm::StructType *ST = 740 dyn_cast<llvm::StructType>(RL->getLLVMType()); 741 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); 742 743 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); 744 RecordDecl::field_iterator it = D->field_begin(); 745 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { 746 const FieldDecl *FD = *it; 747 748 // For non-bit-fields, just check that the LLVM struct offset matches the 749 // AST offset. 750 if (!FD->isBitField()) { 751 unsigned FieldNo = RL->getLLVMFieldNo(FD); 752 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && 753 "Invalid field offset!"); 754 continue; 755 } 756 757 // Ignore unnamed bit-fields. 758 if (!FD->getDeclName()) 759 continue; 760 761 // Don't inspect zero-length bitfields. 762 if (FD->getBitWidthValue(getContext()) == 0) 763 continue; 764 765 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); 766 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); 767 768 // Unions have overlapping elements dictating their layout, but for 769 // non-unions we can verify that this section of the layout is the exact 770 // expected size. 771 if (D->isUnion()) { 772 // For unions we verify that the start is zero and the size 773 // is in-bounds. However, on BE systems, the offset may be non-zero, but 774 // the size + offset should match the storage size in that case as it 775 // "starts" at the back. 776 if (getDataLayout().isBigEndian()) 777 assert(static_cast<unsigned>(Info.Offset + Info.Size) == 778 Info.StorageSize && 779 "Big endian union bitfield does not end at the back"); 780 else 781 assert(Info.Offset == 0 && 782 "Little endian union bitfield with a non-zero offset"); 783 assert(Info.StorageSize <= SL->getSizeInBits() && 784 "Union not large enough for bitfield storage"); 785 } else { 786 assert(Info.StorageSize == 787 getDataLayout().getTypeAllocSizeInBits(ElementTy) && 788 "Storage size does not match the element type size"); 789 } 790 assert(Info.Size > 0 && "Empty bitfield!"); 791 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && 792 "Bitfield outside of its allocated storage"); 793 } 794 #endif 795 796 return RL; 797 } 798 799 void CGRecordLayout::print(raw_ostream &OS) const { 800 OS << "<CGRecordLayout\n"; 801 OS << " LLVMType:" << *CompleteObjectType << "\n"; 802 if (BaseSubobjectType) 803 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 804 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; 805 OS << " BitFields:[\n"; 806 807 // Print bit-field infos in declaration order. 808 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; 809 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator 810 it = BitFields.begin(), ie = BitFields.end(); 811 it != ie; ++it) { 812 const RecordDecl *RD = it->first->getParent(); 813 unsigned Index = 0; 814 for (RecordDecl::field_iterator 815 it2 = RD->field_begin(); *it2 != it->first; ++it2) 816 ++Index; 817 BFIs.push_back(std::make_pair(Index, &it->second)); 818 } 819 llvm::array_pod_sort(BFIs.begin(), BFIs.end()); 820 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { 821 OS.indent(4); 822 BFIs[i].second->print(OS); 823 OS << "\n"; 824 } 825 826 OS << "]>\n"; 827 } 828 829 void CGRecordLayout::dump() const { 830 print(llvm::errs()); 831 } 832 833 void CGBitFieldInfo::print(raw_ostream &OS) const { 834 OS << "<CGBitFieldInfo" 835 << " Offset:" << Offset 836 << " Size:" << Size 837 << " IsSigned:" << IsSigned 838 << " StorageSize:" << StorageSize 839 << " StorageAlignment:" << StorageAlignment << ">"; 840 } 841 842 void CGBitFieldInfo::dump() const { 843 print(llvm::errs()); 844 } 845