1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Builder implementation for CGRecordLayout objects.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGRecordLayout.h"
14 #include "CGCXXABI.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 namespace {
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
38 ///   and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
41 ///   contains enough information to determine where the runs break.  Microsoft
42 ///   and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
45 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
46 ///   and if it is possible to use that extra byte of padding we must use
47 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
48 ///   C++ examples that require clipping:
49 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
51 //    could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
54 ///   has an underlying storage type.  Therefore empty structures containing
55 ///   zero sized subobjects such as empty records or zero sized arrays still get
56 ///   a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 ///   code to access fields.  Bitfields in tail position with tail padding may
59 ///   be clipped in the base class but not the complete class (we may discover
60 ///   that the tail padding is not used in the complete class.) However,
61 ///   because LLVM reads from the complete type it can generate incorrect code
62 ///   if we do not clip the tail padding off of the bitfield in the complete
63 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
64 ///   The location of the clip is stored internally as a sentinel of type
65 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
66 ///   should because locations of things such as VBases are bogus in the llvm
67 ///   type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
69 ///   get their own storage because they're laid out as part of another base
70 ///   or at the beginning of the structure.  Determining if a VBase actually
71 ///   gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering {
74   // MemberInfo is a helper structure that contains information about a record
75   // member.  In additional to the standard member types, there exists a
76   // sentinel member type that ensures correct rounding.
77   struct MemberInfo {
78     CharUnits Offset;
79     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
80     llvm::Type *Data;
81     union {
82       const FieldDecl *FD;
83       const CXXRecordDecl *RD;
84     };
85     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
86                const FieldDecl *FD = nullptr)
87       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
88     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
89                const CXXRecordDecl *RD)
90       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
91     // MemberInfos are sorted so we define a < operator.
92     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
93   };
94   // The constructor.
95   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
96   // Short helper routines.
97   /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
99     return MemberInfo(Offset, MemberInfo::Field, Data);
100   }
101 
102   /// The Microsoft bitfield layout rule allocates discrete storage
103   /// units of the field's formal type and only combines adjacent
104   /// fields of the same formal type.  We want to emit a layout with
105   /// these discrete storage units instead of combining them into a
106   /// continuous run.
107   bool isDiscreteBitFieldABI() {
108     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
109            D->isMsStruct(Context);
110   }
111 
112   /// The Itanium base layout rule allows virtual bases to overlap
113   /// other bases, which complicates layout in specific ways.
114   ///
115   /// Note specifically that the ms_struct attribute doesn't change this.
116   bool isOverlappingVBaseABI() {
117     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
118   }
119 
120   /// Wraps llvm::Type::getIntNTy with some implicit arguments.
121   llvm::Type *getIntNType(uint64_t NumBits) {
122     return llvm::Type::getIntNTy(Types.getLLVMContext(),
123                                  (unsigned)llvm::alignTo(NumBits, 8));
124   }
125   /// Gets an llvm type of size NumBytes and alignment 1.
126   llvm::Type *getByteArrayType(CharUnits NumBytes) {
127     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
128     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
129     return NumBytes == CharUnits::One() ? Type :
130         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
131   }
132   /// Gets the storage type for a field decl and handles storage
133   /// for itanium bitfields that are smaller than their declared type.
134   llvm::Type *getStorageType(const FieldDecl *FD) {
135     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
136     if (!FD->isBitField()) return Type;
137     if (isDiscreteBitFieldABI()) return Type;
138     return getIntNType(std::min(FD->getBitWidthValue(Context),
139                              (unsigned)Context.toBits(getSize(Type))));
140   }
141   /// Gets the llvm Basesubobject type from a CXXRecordDecl.
142   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
143     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
144   }
145   CharUnits bitsToCharUnits(uint64_t BitOffset) {
146     return Context.toCharUnitsFromBits(BitOffset);
147   }
148   CharUnits getSize(llvm::Type *Type) {
149     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
150   }
151   CharUnits getAlignment(llvm::Type *Type) {
152     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
153   }
154   bool isZeroInitializable(const FieldDecl *FD) {
155     return Types.isZeroInitializable(FD->getType());
156   }
157   bool isZeroInitializable(const RecordDecl *RD) {
158     return Types.isZeroInitializable(RD);
159   }
160   void appendPaddingBytes(CharUnits Size) {
161     if (!Size.isZero())
162       FieldTypes.push_back(getByteArrayType(Size));
163   }
164   uint64_t getFieldBitOffset(const FieldDecl *FD) {
165     return Layout.getFieldOffset(FD->getFieldIndex());
166   }
167   // Layout routines.
168   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
169                        llvm::Type *StorageType);
170   /// Lowers an ASTRecordLayout to a llvm type.
171   void lower(bool NonVirtualBaseType);
172   void lowerUnion();
173   void accumulateFields();
174   void accumulateBitFields(RecordDecl::field_iterator Field,
175                         RecordDecl::field_iterator FieldEnd);
176   void accumulateBases();
177   void accumulateVPtrs();
178   void accumulateVBases();
179   /// Recursively searches all of the bases to find out if a vbase is
180   /// not the primary vbase of some base class.
181   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
182   void calculateZeroInit();
183   /// Lowers bitfield storage types to I8 arrays for bitfields with tail
184   /// padding that is or can potentially be used.
185   void clipTailPadding();
186   /// Determines if we need a packed llvm struct.
187   void determinePacked(bool NVBaseType);
188   /// Inserts padding everywhere it's needed.
189   void insertPadding();
190   /// Fills out the structures that are ultimately consumed.
191   void fillOutputFields();
192   // Input memoization fields.
193   CodeGenTypes &Types;
194   const ASTContext &Context;
195   const RecordDecl *D;
196   const CXXRecordDecl *RD;
197   const ASTRecordLayout &Layout;
198   const llvm::DataLayout &DataLayout;
199   // Helpful intermediate data-structures.
200   std::vector<MemberInfo> Members;
201   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
202   SmallVector<llvm::Type *, 16> FieldTypes;
203   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
204   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
205   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
206   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
207   bool IsZeroInitializable : 1;
208   bool IsZeroInitializableAsBase : 1;
209   bool Packed : 1;
210 private:
211   CGRecordLowering(const CGRecordLowering &) = delete;
212   void operator =(const CGRecordLowering &) = delete;
213 };
214 } // namespace {
215 
216 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
217                                    bool Packed)
218     : Types(Types), Context(Types.getContext()), D(D),
219       RD(dyn_cast<CXXRecordDecl>(D)),
220       Layout(Types.getContext().getASTRecordLayout(D)),
221       DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
222       IsZeroInitializableAsBase(true), Packed(Packed) {}
223 
224 void CGRecordLowering::setBitFieldInfo(
225     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
226   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
227   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
228   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
229   Info.Size = FD->getBitWidthValue(Context);
230   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
231   Info.StorageOffset = StartOffset;
232   if (Info.Size > Info.StorageSize)
233     Info.Size = Info.StorageSize;
234   // Reverse the bit offsets for big endian machines. Because we represent
235   // a bitfield as a single large integer load, we can imagine the bits
236   // counting from the most-significant-bit instead of the
237   // least-significant-bit.
238   if (DataLayout.isBigEndian())
239     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
240 }
241 
242 void CGRecordLowering::lower(bool NVBaseType) {
243   // The lowering process implemented in this function takes a variety of
244   // carefully ordered phases.
245   // 1) Store all members (fields and bases) in a list and sort them by offset.
246   // 2) Add a 1-byte capstone member at the Size of the structure.
247   // 3) Clip bitfield storages members if their tail padding is or might be
248   //    used by another field or base.  The clipping process uses the capstone
249   //    by treating it as another object that occurs after the record.
250   // 4) Determine if the llvm-struct requires packing.  It's important that this
251   //    phase occur after clipping, because clipping changes the llvm type.
252   //    This phase reads the offset of the capstone when determining packedness
253   //    and updates the alignment of the capstone to be equal of the alignment
254   //    of the record after doing so.
255   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
256   //    have been computed and needs to know the alignment of the record in
257   //    order to understand if explicit tail padding is needed.
258   // 6) Remove the capstone, we don't need it anymore.
259   // 7) Determine if this record can be zero-initialized.  This phase could have
260   //    been placed anywhere after phase 1.
261   // 8) Format the complete list of members in a way that can be consumed by
262   //    CodeGenTypes::ComputeRecordLayout.
263   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
264   if (D->isUnion())
265     return lowerUnion();
266   accumulateFields();
267   // RD implies C++.
268   if (RD) {
269     accumulateVPtrs();
270     accumulateBases();
271     if (Members.empty())
272       return appendPaddingBytes(Size);
273     if (!NVBaseType)
274       accumulateVBases();
275   }
276   llvm::stable_sort(Members);
277   Members.push_back(StorageInfo(Size, getIntNType(8)));
278   clipTailPadding();
279   determinePacked(NVBaseType);
280   insertPadding();
281   Members.pop_back();
282   calculateZeroInit();
283   fillOutputFields();
284 }
285 
286 void CGRecordLowering::lowerUnion() {
287   CharUnits LayoutSize = Layout.getSize();
288   llvm::Type *StorageType = nullptr;
289   bool SeenNamedMember = false;
290   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
291   // locate the "most appropriate" storage type.  The heuristic for finding the
292   // storage type isn't necessary, the first (non-0-length-bitfield) field's
293   // type would work fine and be simpler but would be different than what we've
294   // been doing and cause lit tests to change.
295   for (const auto *Field : D->fields()) {
296     if (Field->isBitField()) {
297       if (Field->isZeroLengthBitField(Context))
298         continue;
299       llvm::Type *FieldType = getStorageType(Field);
300       if (LayoutSize < getSize(FieldType))
301         FieldType = getByteArrayType(LayoutSize);
302       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
303     }
304     Fields[Field->getCanonicalDecl()] = 0;
305     llvm::Type *FieldType = getStorageType(Field);
306     // Compute zero-initializable status.
307     // This union might not be zero initialized: it may contain a pointer to
308     // data member which might have some exotic initialization sequence.
309     // If this is the case, then we aught not to try and come up with a "better"
310     // type, it might not be very easy to come up with a Constant which
311     // correctly initializes it.
312     if (!SeenNamedMember) {
313       SeenNamedMember = Field->getIdentifier();
314       if (!SeenNamedMember)
315         if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
316           SeenNamedMember = FieldRD->findFirstNamedDataMember();
317       if (SeenNamedMember && !isZeroInitializable(Field)) {
318         IsZeroInitializable = IsZeroInitializableAsBase = false;
319         StorageType = FieldType;
320       }
321     }
322     // Because our union isn't zero initializable, we won't be getting a better
323     // storage type.
324     if (!IsZeroInitializable)
325       continue;
326     // Conditionally update our storage type if we've got a new "better" one.
327     if (!StorageType ||
328         getAlignment(FieldType) >  getAlignment(StorageType) ||
329         (getAlignment(FieldType) == getAlignment(StorageType) &&
330         getSize(FieldType) > getSize(StorageType)))
331       StorageType = FieldType;
332   }
333   // If we have no storage type just pad to the appropriate size and return.
334   if (!StorageType)
335     return appendPaddingBytes(LayoutSize);
336   // If our storage size was bigger than our required size (can happen in the
337   // case of packed bitfields on Itanium) then just use an I8 array.
338   if (LayoutSize < getSize(StorageType))
339     StorageType = getByteArrayType(LayoutSize);
340   FieldTypes.push_back(StorageType);
341   appendPaddingBytes(LayoutSize - getSize(StorageType));
342   // Set packed if we need it.
343   if (LayoutSize % getAlignment(StorageType))
344     Packed = true;
345 }
346 
347 void CGRecordLowering::accumulateFields() {
348   for (RecordDecl::field_iterator Field = D->field_begin(),
349                                   FieldEnd = D->field_end();
350     Field != FieldEnd;)
351     if (Field->isBitField()) {
352       RecordDecl::field_iterator Start = Field;
353       // Iterate to gather the list of bitfields.
354       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
355       accumulateBitFields(Start, Field);
356     } else {
357       Members.push_back(MemberInfo(
358           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
359           getStorageType(*Field), *Field));
360       ++Field;
361     }
362 }
363 
364 void
365 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
366                                       RecordDecl::field_iterator FieldEnd) {
367   // Run stores the first element of the current run of bitfields.  FieldEnd is
368   // used as a special value to note that we don't have a current run.  A
369   // bitfield run is a contiguous collection of bitfields that can be stored in
370   // the same storage block.  Zero-sized bitfields and bitfields that would
371   // cross an alignment boundary break a run and start a new one.
372   RecordDecl::field_iterator Run = FieldEnd;
373   // Tail is the offset of the first bit off the end of the current run.  It's
374   // used to determine if the ASTRecordLayout is treating these two bitfields as
375   // contiguous.  StartBitOffset is offset of the beginning of the Run.
376   uint64_t StartBitOffset, Tail = 0;
377   if (isDiscreteBitFieldABI()) {
378     for (; Field != FieldEnd; ++Field) {
379       uint64_t BitOffset = getFieldBitOffset(*Field);
380       // Zero-width bitfields end runs.
381       if (Field->isZeroLengthBitField(Context)) {
382         Run = FieldEnd;
383         continue;
384       }
385       llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
386       // If we don't have a run yet, or don't live within the previous run's
387       // allocated storage then we allocate some storage and start a new run.
388       if (Run == FieldEnd || BitOffset >= Tail) {
389         Run = Field;
390         StartBitOffset = BitOffset;
391         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
392         // Add the storage member to the record.  This must be added to the
393         // record before the bitfield members so that it gets laid out before
394         // the bitfields it contains get laid out.
395         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
396       }
397       // Bitfields get the offset of their storage but come afterward and remain
398       // there after a stable sort.
399       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
400                                    MemberInfo::Field, nullptr, *Field));
401     }
402     return;
403   }
404 
405   // Check if OffsetInRecord is better as a single field run. When OffsetInRecord
406   // has legal integer width, and its bitfield offset is naturally aligned, it
407   // is better to make the bitfield a separate storage component so as it can be
408   // accessed directly with lower cost.
409   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
410                                       uint64_t StartBitOffset) {
411     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
412       return false;
413     if (!DataLayout.isLegalInteger(OffsetInRecord))
414       return false;
415     // Make sure StartBitOffset is natually aligned if it is treated as an
416     // IType integer.
417      if (StartBitOffset %
418             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
419         0)
420       return false;
421     return true;
422   };
423 
424   // The start field is better as a single field run.
425   bool StartFieldAsSingleRun = false;
426   for (;;) {
427     // Check to see if we need to start a new run.
428     if (Run == FieldEnd) {
429       // If we're out of fields, return.
430       if (Field == FieldEnd)
431         break;
432       // Any non-zero-length bitfield can start a new run.
433       if (!Field->isZeroLengthBitField(Context)) {
434         Run = Field;
435         StartBitOffset = getFieldBitOffset(*Field);
436         Tail = StartBitOffset + Field->getBitWidthValue(Context);
437         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
438                                                          StartBitOffset);
439       }
440       ++Field;
441       continue;
442     }
443 
444     // If the start field of a new run is better as a single run, or
445     // if current field (or consecutive fields) is better as a single run, or
446     // if current field has zero width bitfield and either
447     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
448     // true, or
449     // if the offset of current field is inconsistent with the offset of
450     // previous field plus its offset,
451     // skip the block below and go ahead to emit the storage.
452     // Otherwise, try to add bitfields to the run.
453     if (!StartFieldAsSingleRun && Field != FieldEnd &&
454         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
455         (!Field->isZeroLengthBitField(Context) ||
456          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
457           !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
458         Tail == getFieldBitOffset(*Field)) {
459       Tail += Field->getBitWidthValue(Context);
460       ++Field;
461       continue;
462     }
463 
464     // We've hit a break-point in the run and need to emit a storage field.
465     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
466     // Add the storage member to the record and set the bitfield info for all of
467     // the bitfields in the run.  Bitfields get the offset of their storage but
468     // come afterward and remain there after a stable sort.
469     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
470     for (; Run != Field; ++Run)
471       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
472                                    MemberInfo::Field, nullptr, *Run));
473     Run = FieldEnd;
474     StartFieldAsSingleRun = false;
475   }
476 }
477 
478 void CGRecordLowering::accumulateBases() {
479   // If we've got a primary virtual base, we need to add it with the bases.
480   if (Layout.isPrimaryBaseVirtual()) {
481     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
482     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
483                                  getStorageType(BaseDecl), BaseDecl));
484   }
485   // Accumulate the non-virtual bases.
486   for (const auto &Base : RD->bases()) {
487     if (Base.isVirtual())
488       continue;
489 
490     // Bases can be zero-sized even if not technically empty if they
491     // contain only a trailing array member.
492     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
493     if (!BaseDecl->isEmpty() &&
494         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
495       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
496           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
497   }
498 }
499 
500 void CGRecordLowering::accumulateVPtrs() {
501   if (Layout.hasOwnVFPtr())
502     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
503         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
504             getPointerTo()->getPointerTo()));
505   if (Layout.hasOwnVBPtr())
506     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
507         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
508 }
509 
510 void CGRecordLowering::accumulateVBases() {
511   CharUnits ScissorOffset = Layout.getNonVirtualSize();
512   // In the itanium ABI, it's possible to place a vbase at a dsize that is
513   // smaller than the nvsize.  Here we check to see if such a base is placed
514   // before the nvsize and set the scissor offset to that, instead of the
515   // nvsize.
516   if (isOverlappingVBaseABI())
517     for (const auto &Base : RD->vbases()) {
518       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
519       if (BaseDecl->isEmpty())
520         continue;
521       // If the vbase is a primary virtual base of some base, then it doesn't
522       // get its own storage location but instead lives inside of that base.
523       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
524         continue;
525       ScissorOffset = std::min(ScissorOffset,
526                                Layout.getVBaseClassOffset(BaseDecl));
527     }
528   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
529                                RD));
530   for (const auto &Base : RD->vbases()) {
531     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
532     if (BaseDecl->isEmpty())
533       continue;
534     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
535     // If the vbase is a primary virtual base of some base, then it doesn't
536     // get its own storage location but instead lives inside of that base.
537     if (isOverlappingVBaseABI() &&
538         Context.isNearlyEmpty(BaseDecl) &&
539         !hasOwnStorage(RD, BaseDecl)) {
540       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
541                                    BaseDecl));
542       continue;
543     }
544     // If we've got a vtordisp, add it as a storage type.
545     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
546       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
547                                     getIntNType(32)));
548     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
549                                  getStorageType(BaseDecl), BaseDecl));
550   }
551 }
552 
553 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
554                                      const CXXRecordDecl *Query) {
555   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
556   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
557     return false;
558   for (const auto &Base : Decl->bases())
559     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
560       return false;
561   return true;
562 }
563 
564 void CGRecordLowering::calculateZeroInit() {
565   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
566                                                MemberEnd = Members.end();
567        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
568     if (Member->Kind == MemberInfo::Field) {
569       if (!Member->FD || isZeroInitializable(Member->FD))
570         continue;
571       IsZeroInitializable = IsZeroInitializableAsBase = false;
572     } else if (Member->Kind == MemberInfo::Base ||
573                Member->Kind == MemberInfo::VBase) {
574       if (isZeroInitializable(Member->RD))
575         continue;
576       IsZeroInitializable = false;
577       if (Member->Kind == MemberInfo::Base)
578         IsZeroInitializableAsBase = false;
579     }
580   }
581 }
582 
583 void CGRecordLowering::clipTailPadding() {
584   std::vector<MemberInfo>::iterator Prior = Members.begin();
585   CharUnits Tail = getSize(Prior->Data);
586   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
587                                          MemberEnd = Members.end();
588        Member != MemberEnd; ++Member) {
589     // Only members with data and the scissor can cut into tail padding.
590     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
591       continue;
592     if (Member->Offset < Tail) {
593       assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
594              "Only storage fields have tail padding!");
595       Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
596           cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
597     }
598     if (Member->Data)
599       Prior = Member;
600     Tail = Prior->Offset + getSize(Prior->Data);
601   }
602 }
603 
604 void CGRecordLowering::determinePacked(bool NVBaseType) {
605   if (Packed)
606     return;
607   CharUnits Alignment = CharUnits::One();
608   CharUnits NVAlignment = CharUnits::One();
609   CharUnits NVSize =
610       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
611   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
612                                                MemberEnd = Members.end();
613        Member != MemberEnd; ++Member) {
614     if (!Member->Data)
615       continue;
616     // If any member falls at an offset that it not a multiple of its alignment,
617     // then the entire record must be packed.
618     if (Member->Offset % getAlignment(Member->Data))
619       Packed = true;
620     if (Member->Offset < NVSize)
621       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
622     Alignment = std::max(Alignment, getAlignment(Member->Data));
623   }
624   // If the size of the record (the capstone's offset) is not a multiple of the
625   // record's alignment, it must be packed.
626   if (Members.back().Offset % Alignment)
627     Packed = true;
628   // If the non-virtual sub-object is not a multiple of the non-virtual
629   // sub-object's alignment, it must be packed.  We cannot have a packed
630   // non-virtual sub-object and an unpacked complete object or vise versa.
631   if (NVSize % NVAlignment)
632     Packed = true;
633   // Update the alignment of the sentinel.
634   if (!Packed)
635     Members.back().Data = getIntNType(Context.toBits(Alignment));
636 }
637 
638 void CGRecordLowering::insertPadding() {
639   std::vector<std::pair<CharUnits, CharUnits> > Padding;
640   CharUnits Size = CharUnits::Zero();
641   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
642                                                MemberEnd = Members.end();
643        Member != MemberEnd; ++Member) {
644     if (!Member->Data)
645       continue;
646     CharUnits Offset = Member->Offset;
647     assert(Offset >= Size);
648     // Insert padding if we need to.
649     if (Offset !=
650         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
651       Padding.push_back(std::make_pair(Size, Offset - Size));
652     Size = Offset + getSize(Member->Data);
653   }
654   if (Padding.empty())
655     return;
656   // Add the padding to the Members list and sort it.
657   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
658         Pad = Padding.begin(), PadEnd = Padding.end();
659         Pad != PadEnd; ++Pad)
660     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
661   llvm::stable_sort(Members);
662 }
663 
664 void CGRecordLowering::fillOutputFields() {
665   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
666                                                MemberEnd = Members.end();
667        Member != MemberEnd; ++Member) {
668     if (Member->Data)
669       FieldTypes.push_back(Member->Data);
670     if (Member->Kind == MemberInfo::Field) {
671       if (Member->FD)
672         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
673       // A field without storage must be a bitfield.
674       if (!Member->Data)
675         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
676     } else if (Member->Kind == MemberInfo::Base)
677       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
678     else if (Member->Kind == MemberInfo::VBase)
679       VirtualBases[Member->RD] = FieldTypes.size() - 1;
680   }
681 }
682 
683 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
684                                         const FieldDecl *FD,
685                                         uint64_t Offset, uint64_t Size,
686                                         uint64_t StorageSize,
687                                         CharUnits StorageOffset) {
688   // This function is vestigial from CGRecordLayoutBuilder days but is still
689   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
690   // when addressed will allow for the removal of this function.
691   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
692   CharUnits TypeSizeInBytes =
693     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
694   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
695 
696   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
697 
698   if (Size > TypeSizeInBits) {
699     // We have a wide bit-field. The extra bits are only used for padding, so
700     // if we have a bitfield of type T, with size N:
701     //
702     // T t : N;
703     //
704     // We can just assume that it's:
705     //
706     // T t : sizeof(T);
707     //
708     Size = TypeSizeInBits;
709   }
710 
711   // Reverse the bit offsets for big endian machines. Because we represent
712   // a bitfield as a single large integer load, we can imagine the bits
713   // counting from the most-significant-bit instead of the
714   // least-significant-bit.
715   if (Types.getDataLayout().isBigEndian()) {
716     Offset = StorageSize - (Offset + Size);
717   }
718 
719   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
720 }
721 
722 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
723                                                   llvm::StructType *Ty) {
724   CGRecordLowering Builder(*this, D, /*Packed=*/false);
725 
726   Builder.lower(/*NonVirtualBaseType=*/false);
727 
728   // If we're in C++, compute the base subobject type.
729   llvm::StructType *BaseTy = nullptr;
730   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
731     BaseTy = Ty;
732     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
733       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
734       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
735       BaseTy = llvm::StructType::create(
736           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
737       addRecordTypeName(D, BaseTy, ".base");
738       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
739       // on both of them with the same index.
740       assert(Builder.Packed == BaseBuilder.Packed &&
741              "Non-virtual and complete types must agree on packedness");
742     }
743   }
744 
745   // Fill in the struct *after* computing the base type.  Filling in the body
746   // signifies that the type is no longer opaque and record layout is complete,
747   // but we may need to recursively layout D while laying D out as a base type.
748   Ty->setBody(Builder.FieldTypes, Builder.Packed);
749 
750   CGRecordLayout *RL =
751     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
752                         Builder.IsZeroInitializableAsBase);
753 
754   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
755   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
756 
757   // Add all the field numbers.
758   RL->FieldInfo.swap(Builder.Fields);
759 
760   // Add bitfield info.
761   RL->BitFields.swap(Builder.BitFields);
762 
763   // Dump the layout, if requested.
764   if (getContext().getLangOpts().DumpRecordLayouts) {
765     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
766     llvm::outs() << "Record: ";
767     D->dump(llvm::outs());
768     llvm::outs() << "\nLayout: ";
769     RL->print(llvm::outs());
770   }
771 
772 #ifndef NDEBUG
773   // Verify that the computed LLVM struct size matches the AST layout size.
774   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
775 
776   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
777   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
778          "Type size mismatch!");
779 
780   if (BaseTy) {
781     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
782 
783     uint64_t AlignedNonVirtualTypeSizeInBits =
784       getContext().toBits(NonVirtualSize);
785 
786     assert(AlignedNonVirtualTypeSizeInBits ==
787            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
788            "Type size mismatch!");
789   }
790 
791   // Verify that the LLVM and AST field offsets agree.
792   llvm::StructType *ST = RL->getLLVMType();
793   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
794 
795   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
796   RecordDecl::field_iterator it = D->field_begin();
797   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
798     const FieldDecl *FD = *it;
799 
800     // For non-bit-fields, just check that the LLVM struct offset matches the
801     // AST offset.
802     if (!FD->isBitField()) {
803       unsigned FieldNo = RL->getLLVMFieldNo(FD);
804       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
805              "Invalid field offset!");
806       continue;
807     }
808 
809     // Ignore unnamed bit-fields.
810     if (!FD->getDeclName())
811       continue;
812 
813     // Don't inspect zero-length bitfields.
814     if (FD->isZeroLengthBitField(getContext()))
815       continue;
816 
817     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
818     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
819 
820     // Unions have overlapping elements dictating their layout, but for
821     // non-unions we can verify that this section of the layout is the exact
822     // expected size.
823     if (D->isUnion()) {
824       // For unions we verify that the start is zero and the size
825       // is in-bounds. However, on BE systems, the offset may be non-zero, but
826       // the size + offset should match the storage size in that case as it
827       // "starts" at the back.
828       if (getDataLayout().isBigEndian())
829         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
830                Info.StorageSize &&
831                "Big endian union bitfield does not end at the back");
832       else
833         assert(Info.Offset == 0 &&
834                "Little endian union bitfield with a non-zero offset");
835       assert(Info.StorageSize <= SL->getSizeInBits() &&
836              "Union not large enough for bitfield storage");
837     } else {
838       assert(Info.StorageSize ==
839              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
840              "Storage size does not match the element type size");
841     }
842     assert(Info.Size > 0 && "Empty bitfield!");
843     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
844            "Bitfield outside of its allocated storage");
845   }
846 #endif
847 
848   return RL;
849 }
850 
851 void CGRecordLayout::print(raw_ostream &OS) const {
852   OS << "<CGRecordLayout\n";
853   OS << "  LLVMType:" << *CompleteObjectType << "\n";
854   if (BaseSubobjectType)
855     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
856   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
857   OS << "  BitFields:[\n";
858 
859   // Print bit-field infos in declaration order.
860   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
861   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
862          it = BitFields.begin(), ie = BitFields.end();
863        it != ie; ++it) {
864     const RecordDecl *RD = it->first->getParent();
865     unsigned Index = 0;
866     for (RecordDecl::field_iterator
867            it2 = RD->field_begin(); *it2 != it->first; ++it2)
868       ++Index;
869     BFIs.push_back(std::make_pair(Index, &it->second));
870   }
871   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
872   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
873     OS.indent(4);
874     BFIs[i].second->print(OS);
875     OS << "\n";
876   }
877 
878   OS << "]>\n";
879 }
880 
881 LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
882   print(llvm::errs());
883 }
884 
885 void CGBitFieldInfo::print(raw_ostream &OS) const {
886   OS << "<CGBitFieldInfo"
887      << " Offset:" << Offset
888      << " Size:" << Size
889      << " IsSigned:" << IsSigned
890      << " StorageSize:" << StorageSize
891      << " StorageOffset:" << StorageOffset.getQuantity() << ">";
892 }
893 
894 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
895   print(llvm::errs());
896 }
897