1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Builder implementation for CGRecordLayout objects.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGRecordLayout.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenTypes.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 namespace {
34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
35 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
36 /// detail some of the complexities and weirdnesses here.
37 /// * LLVM does not have unions - Unions can, in theory be represented by any
38 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
39 ///   and add padding if necessary.
40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
41 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
42 ///   contains enough information to determine where the runs break.  Microsoft
43 ///   and Itanium follow different rules and use different codepaths.
44 /// * It is desired that, when possible, bitfields use the appropriate iN type
45 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
46 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
47 ///   and if it is possible to use that extra byte of padding we must use
48 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
49 ///   C++ examples that require clipping:
50 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
51 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
52 //    could exist: struct B : A { char b; }; // b goes at offset 3
53 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
54 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
55 ///   has an underlying storage type.  Therefore empty structures containing
56 ///   zero sized subobjects such as empty records or zero sized arrays still get
57 ///   a zero sized (empty struct) storage type.
58 /// * Clang reads the complete type rather than the base type when generating
59 ///   code to access fields.  Bitfields in tail position with tail padding may
60 ///   be clipped in the base class but not the complete class (we may discover
61 ///   that the tail padding is not used in the complete class.) However,
62 ///   because LLVM reads from the complete type it can generate incorrect code
63 ///   if we do not clip the tail padding off of the bitfield in the complete
64 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
65 ///   The location of the clip is stored internally as a sentinal of type
66 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
67 ///   should because locations of things such as VBases are bogus in the llvm
68 ///   type anyway) then we could eliminate the SCISSOR.
69 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
70 ///   get their own storage because they're laid out as part of another base
71 ///   or at the beginning of the structure.  Determining if a VBase actually
72 ///   gets storage awkwardly involves a walk of all bases.
73 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
74 struct CGRecordLowering {
75   // MemberInfo is a helper structure that contains information about a record
76   // member.  In additional to the standard member types, there exists a
77   // sentinal member type that ensures correct rounding.
78   struct MemberInfo {
79     CharUnits Offset;
80     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
81     llvm::Type *Data;
82     union {
83       const FieldDecl *FD;
84       const CXXRecordDecl *RD;
85     };
86     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
87                const FieldDecl *FD = 0)
88       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
89     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
90                const CXXRecordDecl *RD)
91       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
92     // MemberInfos are sorted so we define a < operator.
93     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
94   };
95   // The constructor.
96   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D);
97   // Short helper routines.
98   /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *.
99   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
100     return MemberInfo(Offset, MemberInfo::Field, Data);
101   }
102   bool useMSABI() {
103     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
104            D->isMsStruct(Context);
105   }
106   /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments.
107   llvm::Type *getIntNType(uint64_t NumBits) {
108     return llvm::Type::getIntNTy(Types.getLLVMContext(),
109         (unsigned)llvm::RoundUpToAlignment(NumBits, 8));
110   }
111   /// \brief Gets an llvm type of size NumBytes and alignment 1.
112   llvm::Type *getByteArrayType(CharUnits NumBytes) {
113     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
114     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
115     return NumBytes == CharUnits::One() ? Type :
116         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
117   }
118   /// \brief Gets the storage type for a field decl and handles storage
119   /// for itanium bitfields that are smaller than their declared type.
120   llvm::Type *getStorageType(const FieldDecl *FD) {
121     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
122     return useMSABI() || !FD->isBitField() ? Type :
123         getIntNType(std::min(FD->getBitWidthValue(Context),
124                              (unsigned)Context.toBits(getSize(Type))));
125   }
126   /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl.
127   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
128     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
129   }
130   CharUnits bitsToCharUnits(uint64_t BitOffset) {
131     return Context.toCharUnitsFromBits(BitOffset);
132   }
133   CharUnits getSize(llvm::Type *Type) {
134     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
135   }
136   CharUnits getAlignment(llvm::Type *Type) {
137     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
138   }
139   bool isZeroInitializable(const FieldDecl *FD) {
140     const Type *Type = FD->getType()->getBaseElementTypeUnsafe();
141     if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>())
142       return Types.getCXXABI().isZeroInitializable(MPT);
143     if (const RecordType *RT = Type->getAs<RecordType>())
144       return isZeroInitializable(RT->getDecl());
145     return true;
146   }
147   bool isZeroInitializable(const RecordDecl *RD) {
148     return Types.getCGRecordLayout(RD).isZeroInitializable();
149   }
150   void appendPaddingBytes(CharUnits Size) {
151     if (!Size.isZero())
152       FieldTypes.push_back(getByteArrayType(Size));
153   }
154   uint64_t getFieldBitOffset(const FieldDecl *FD) {
155     return Layout.getFieldOffset(FD->getFieldIndex());
156   }
157   // Layout routines.
158   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
159                        llvm::Type *StorageType);
160   /// \brief Lowers an ASTRecordLayout to a llvm type.
161   void lower(bool NonVirtualBaseType);
162   void lowerUnion();
163   void accumulateFields();
164   void accumulateBitFields(RecordDecl::field_iterator Field,
165                         RecordDecl::field_iterator FieldEnd);
166   void accumulateBases();
167   void accumulateVPtrs();
168   void accumulateVBases();
169   /// \brief Recursively searches all of the bases to find out if a vbase is
170   /// not the primary vbase of some base class.
171   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
172   void calculateZeroInit();
173   /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail
174   /// padding that is or can potentially be used.
175   void clipTailPadding();
176   /// \brief Determines if we need a packed llvm struct.
177   void determinePacked();
178   /// \brief Inserts padding everwhere it's needed.
179   void insertPadding();
180   /// \brief Fills out the structures that are ultimately consumed.
181   void fillOutputFields();
182   // Input memoization fields.
183   CodeGenTypes &Types;
184   const ASTContext &Context;
185   const RecordDecl *D;
186   const CXXRecordDecl *RD;
187   const ASTRecordLayout &Layout;
188   const llvm::DataLayout &DataLayout;
189   // Helpful intermediate data-structures.
190   std::vector<MemberInfo> Members;
191   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
192   SmallVector<llvm::Type *, 16> FieldTypes;
193   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
194   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
195   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
196   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
197   bool IsZeroInitializable : 1;
198   bool IsZeroInitializableAsBase : 1;
199   bool Packed : 1;
200 private:
201   CGRecordLowering(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
202   void operator =(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
203 };
204 } // namespace {
205 
206 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D)
207   : Types(Types), Context(Types.getContext()), D(D),
208     RD(dyn_cast<CXXRecordDecl>(D)),
209     Layout(Types.getContext().getASTRecordLayout(D)),
210     DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
211     IsZeroInitializableAsBase(true), Packed(false) {}
212 
213 void CGRecordLowering::setBitFieldInfo(
214     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
215   CGBitFieldInfo &Info = BitFields[FD];
216   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
217   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
218   Info.Size = FD->getBitWidthValue(Context);
219   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
220   // Here we calculate the actual storage alignment of the bits.  E.g if we've
221   // got an alignment >= 2 and the bitfield starts at offset 6 we've got an
222   // alignment of 2.
223   Info.StorageAlignment =
224       Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity();
225   if (Info.Size > Info.StorageSize)
226     Info.Size = Info.StorageSize;
227   // Reverse the bit offsets for big endian machines. Because we represent
228   // a bitfield as a single large integer load, we can imagine the bits
229   // counting from the most-significant-bit instead of the
230   // least-significant-bit.
231   if (DataLayout.isBigEndian())
232     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
233 }
234 
235 void CGRecordLowering::lower(bool NVBaseType) {
236   // The lowering process implemented in this function takes a variety of
237   // carefully ordered phases.
238   // 1) Store all members (fields and bases) in a list and sort them by offset.
239   // 2) Add a 1-byte capstone member at the Size of the structure.
240   // 3) Clip bitfield storages members if their tail padding is or might be
241   //    used by another field or base.  The clipping process uses the capstone
242   //    by treating it as another object that occurs after the record.
243   // 4) Determine if the llvm-struct requires packing.  It's important that this
244   //    phase occur after clipping, because clipping changes the llvm type.
245   //    This phase reads the offset of the capstone when determining packedness
246   //    and updates the alignment of the capstone to be equal of the alignment
247   //    of the record after doing so.
248   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
249   //    have been computed and needs to know the alignment of the record in
250   //    order to understand if explicit tail padding is needed.
251   // 6) Remove the capstone, we don't need it anymore.
252   // 7) Determine if this record can be zero-initialized.  This phase could have
253   //    been placed anywhere after phase 1.
254   // 8) Format the complete list of members in a way that can be consumed by
255   //    CodeGenTypes::ComputeRecordLayout.
256   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
257   if (D->isUnion())
258     return lowerUnion();
259   accumulateFields();
260   // RD implies C++.
261   if (RD) {
262     accumulateVPtrs();
263     accumulateBases();
264     if (Members.empty())
265       return appendPaddingBytes(Size);
266     if (!NVBaseType)
267       accumulateVBases();
268   }
269   std::stable_sort(Members.begin(), Members.end());
270   Members.push_back(StorageInfo(Size, getIntNType(8)));
271   clipTailPadding();
272   determinePacked();
273   insertPadding();
274   Members.pop_back();
275   calculateZeroInit();
276   fillOutputFields();
277 }
278 
279 void CGRecordLowering::lowerUnion() {
280   CharUnits LayoutSize = Layout.getSize();
281   llvm::Type *StorageType = 0;
282   // Compute zero-initializable status.
283   if (!D->field_empty() && !isZeroInitializable(*D->field_begin()))
284     IsZeroInitializable = IsZeroInitializableAsBase = false;
285   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
286   // locate the "most appropriate" storage type.  The heuristic for finding the
287   // storage type isn't necessary, the first (non-0-length-bitfield) field's
288   // type would work fine and be simpler but would be differen than what we've
289   // been doing and cause lit tests to change.
290   for (const auto *Field : D->fields()) {
291     if (Field->isBitField()) {
292       // Skip 0 sized bitfields.
293       if (Field->getBitWidthValue(Context) == 0)
294         continue;
295       llvm::Type *FieldType = getStorageType(Field);
296       if (LayoutSize < getSize(FieldType))
297         FieldType = getByteArrayType(LayoutSize);
298       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
299     }
300     Fields[Field] = 0;
301     llvm::Type *FieldType = getStorageType(Field);
302     // Conditionally update our storage type if we've got a new "better" one.
303     if (!StorageType ||
304         getAlignment(FieldType) >  getAlignment(StorageType) ||
305         (getAlignment(FieldType) == getAlignment(StorageType) &&
306         getSize(FieldType) > getSize(StorageType)))
307       StorageType = FieldType;
308   }
309   // If we have no storage type just pad to the appropriate size and return.
310   if (!StorageType)
311     return appendPaddingBytes(LayoutSize);
312   // If our storage size was bigger than our required size (can happen in the
313   // case of packed bitfields on Itanium) then just use an I8 array.
314   if (LayoutSize < getSize(StorageType))
315     StorageType = getByteArrayType(LayoutSize);
316   FieldTypes.push_back(StorageType);
317   appendPaddingBytes(LayoutSize - getSize(StorageType));
318   // Set packed if we need it.
319   if (LayoutSize % getAlignment(StorageType))
320     Packed = true;
321 }
322 
323 void CGRecordLowering::accumulateFields() {
324   for (RecordDecl::field_iterator Field = D->field_begin(),
325                                   FieldEnd = D->field_end();
326     Field != FieldEnd;)
327     if (Field->isBitField()) {
328       RecordDecl::field_iterator Start = Field;
329       // Iterate to gather the list of bitfields.
330       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
331       accumulateBitFields(Start, Field);
332     } else {
333       Members.push_back(MemberInfo(
334           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
335           getStorageType(*Field), *Field));
336       ++Field;
337     }
338 }
339 
340 void
341 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
342                                       RecordDecl::field_iterator FieldEnd) {
343   // Run stores the first element of the current run of bitfields.  FieldEnd is
344   // used as a special value to note that we don't have a current run.  A
345   // bitfield run is a contiguous collection of bitfields that can be stored in
346   // the same storage block.  Zero-sized bitfields and bitfields that would
347   // cross an alignment boundary break a run and start a new one.
348   RecordDecl::field_iterator Run = FieldEnd;
349   // Tail is the offset of the first bit off the end of the current run.  It's
350   // used to determine if the ASTRecordLayout is treating these two bitfields as
351   // contiguous.  StartBitOffset is offset of the beginning of the Run.
352   uint64_t StartBitOffset, Tail = 0;
353   if (useMSABI()) {
354     for (; Field != FieldEnd; ++Field) {
355       uint64_t BitOffset = getFieldBitOffset(*Field);
356       // Zero-width bitfields end runs.
357       if (Field->getBitWidthValue(Context) == 0) {
358         Run = FieldEnd;
359         continue;
360       }
361       llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
362       // If we don't have a run yet, or don't live within the previous run's
363       // allocated storage then we allocate some storage and start a new run.
364       if (Run == FieldEnd || BitOffset >= Tail) {
365         Run = Field;
366         StartBitOffset = BitOffset;
367         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
368         // Add the storage member to the record.  This must be added to the
369         // record before the bitfield members so that it gets laid out before
370         // the bitfields it contains get laid out.
371         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
372       }
373       // Bitfields get the offset of their storage but come afterward and remain
374       // there after a stable sort.
375       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
376                                    MemberInfo::Field, 0, *Field));
377     }
378     return;
379   }
380   for (;;) {
381     // Check to see if we need to start a new run.
382     if (Run == FieldEnd) {
383       // If we're out of fields, return.
384       if (Field == FieldEnd)
385         break;
386       // Any non-zero-length bitfield can start a new run.
387       if (Field->getBitWidthValue(Context) != 0) {
388         Run = Field;
389         StartBitOffset = getFieldBitOffset(*Field);
390         Tail = StartBitOffset + Field->getBitWidthValue(Context);
391       }
392       ++Field;
393       continue;
394     }
395     // Add bitfields to the run as long as they qualify.
396     if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 &&
397         Tail == getFieldBitOffset(*Field)) {
398       Tail += Field->getBitWidthValue(Context);
399       ++Field;
400       continue;
401     }
402     // We've hit a break-point in the run and need to emit a storage field.
403     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
404     // Add the storage member to the record and set the bitfield info for all of
405     // the bitfields in the run.  Bitfields get the offset of their storage but
406     // come afterward and remain there after a stable sort.
407     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
408     for (; Run != Field; ++Run)
409       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
410                                    MemberInfo::Field, 0, *Run));
411     Run = FieldEnd;
412   }
413 }
414 
415 void CGRecordLowering::accumulateBases() {
416   // If we've got a primary virtual base, we need to add it with the bases.
417   if (Layout.isPrimaryBaseVirtual())
418     Members.push_back(StorageInfo(
419       CharUnits::Zero(),
420       getStorageType(Layout.getPrimaryBase())));
421   // Accumulate the non-virtual bases.
422   for (const auto &Base : RD->bases()) {
423     if (Base.isVirtual())
424       continue;
425     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
426     if (!BaseDecl->isEmpty())
427       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
428           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
429   }
430 }
431 
432 void CGRecordLowering::accumulateVPtrs() {
433   if (Layout.hasOwnVFPtr())
434     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
435         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
436             getPointerTo()->getPointerTo()));
437   if (Layout.hasOwnVBPtr())
438     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
439         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
440 }
441 
442 void CGRecordLowering::accumulateVBases() {
443   Members.push_back(MemberInfo(Layout.getNonVirtualSize(),
444                                MemberInfo::Scissor, 0, RD));
445   for (const auto &Base : RD->vbases()) {
446     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
447     if (BaseDecl->isEmpty())
448       continue;
449     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
450     // If the vbase is a primary virtual base of some base, then it doesn't
451     // get its own storage location but instead lives inside of that base.
452     if (!useMSABI() && Context.isNearlyEmpty(BaseDecl) &&
453         !hasOwnStorage(RD, BaseDecl)) {
454       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 0, BaseDecl));
455       continue;
456     }
457     // If we've got a vtordisp, add it as a storage type.
458     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
459       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
460                                     getIntNType(32)));
461     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
462                                  getStorageType(BaseDecl), BaseDecl));
463   }
464 }
465 
466 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
467                                      const CXXRecordDecl *Query) {
468   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
469   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
470     return false;
471   for (const auto &Base : Decl->bases())
472     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
473       return false;
474   return true;
475 }
476 
477 void CGRecordLowering::calculateZeroInit() {
478   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
479                                                MemberEnd = Members.end();
480        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
481     if (Member->Kind == MemberInfo::Field) {
482       if (!Member->FD || isZeroInitializable(Member->FD))
483         continue;
484       IsZeroInitializable = IsZeroInitializableAsBase = false;
485     } else if (Member->Kind == MemberInfo::Base ||
486                Member->Kind == MemberInfo::VBase) {
487       if (isZeroInitializable(Member->RD))
488         continue;
489       IsZeroInitializable = false;
490       if (Member->Kind == MemberInfo::Base)
491         IsZeroInitializableAsBase = false;
492     }
493   }
494 }
495 
496 void CGRecordLowering::clipTailPadding() {
497   std::vector<MemberInfo>::iterator Prior = Members.begin();
498   CharUnits Tail = getSize(Prior->Data);
499   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
500                                          MemberEnd = Members.end();
501        Member != MemberEnd; ++Member) {
502     // Only members with data and the scissor can cut into tail padding.
503     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
504       continue;
505     if (Member->Offset < Tail) {
506       assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
507              "Only storage fields have tail padding!");
508       Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment(
509           cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
510     }
511     if (Member->Data)
512       Prior = Member;
513     Tail = Prior->Offset + getSize(Prior->Data);
514   }
515 }
516 
517 void CGRecordLowering::determinePacked() {
518   CharUnits Alignment = CharUnits::One();
519   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
520                                                MemberEnd = Members.end();
521        Member != MemberEnd; ++Member) {
522     if (!Member->Data)
523       continue;
524     // If any member falls at an offset that it not a multiple of its alignment,
525     // then the entire record must be packed.
526     if (Member->Offset % getAlignment(Member->Data))
527       Packed = true;
528     Alignment = std::max(Alignment, getAlignment(Member->Data));
529   }
530   // If the size of the record (the capstone's offset) is not a multiple of the
531   // record's alignment, it must be packed.
532   if (Members.back().Offset % Alignment)
533     Packed = true;
534   // Update the alignment of the sentinal.
535   if (!Packed)
536     Members.back().Data = getIntNType(Context.toBits(Alignment));
537 }
538 
539 void CGRecordLowering::insertPadding() {
540   std::vector<std::pair<CharUnits, CharUnits> > Padding;
541   CharUnits Size = CharUnits::Zero();
542   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
543                                                MemberEnd = Members.end();
544        Member != MemberEnd; ++Member) {
545     if (!Member->Data)
546       continue;
547     CharUnits Offset = Member->Offset;
548     assert(Offset >= Size);
549     // Insert padding if we need to.
550     if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() :
551                                           getAlignment(Member->Data)))
552       Padding.push_back(std::make_pair(Size, Offset - Size));
553     Size = Offset + getSize(Member->Data);
554   }
555   if (Padding.empty())
556     return;
557   // Add the padding to the Members list and sort it.
558   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
559         Pad = Padding.begin(), PadEnd = Padding.end();
560         Pad != PadEnd; ++Pad)
561     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
562   std::stable_sort(Members.begin(), Members.end());
563 }
564 
565 void CGRecordLowering::fillOutputFields() {
566   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
567                                                MemberEnd = Members.end();
568        Member != MemberEnd; ++Member) {
569     if (Member->Data)
570       FieldTypes.push_back(Member->Data);
571     if (Member->Kind == MemberInfo::Field) {
572       if (Member->FD)
573         Fields[Member->FD] = FieldTypes.size() - 1;
574       // A field without storage must be a bitfield.
575       if (!Member->Data)
576         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
577     } else if (Member->Kind == MemberInfo::Base)
578       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
579     else if (Member->Kind == MemberInfo::VBase)
580       VirtualBases[Member->RD] = FieldTypes.size() - 1;
581   }
582 }
583 
584 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
585                                         const FieldDecl *FD,
586                                         uint64_t Offset, uint64_t Size,
587                                         uint64_t StorageSize,
588                                         uint64_t StorageAlignment) {
589   // This function is vestigial from CGRecordLayoutBuilder days but is still
590   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
591   // when addressed will allow for the removal of this function.
592   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
593   CharUnits TypeSizeInBytes =
594     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
595   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
596 
597   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
598 
599   if (Size > TypeSizeInBits) {
600     // We have a wide bit-field. The extra bits are only used for padding, so
601     // if we have a bitfield of type T, with size N:
602     //
603     // T t : N;
604     //
605     // We can just assume that it's:
606     //
607     // T t : sizeof(T);
608     //
609     Size = TypeSizeInBits;
610   }
611 
612   // Reverse the bit offsets for big endian machines. Because we represent
613   // a bitfield as a single large integer load, we can imagine the bits
614   // counting from the most-significant-bit instead of the
615   // least-significant-bit.
616   if (Types.getDataLayout().isBigEndian()) {
617     Offset = StorageSize - (Offset + Size);
618   }
619 
620   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
621 }
622 
623 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
624                                                   llvm::StructType *Ty) {
625   CGRecordLowering Builder(*this, D);
626 
627   Builder.lower(false);
628 
629   // If we're in C++, compute the base subobject type.
630   llvm::StructType *BaseTy = 0;
631   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
632     BaseTy = Ty;
633     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
634       CGRecordLowering BaseBuilder(*this, D);
635       BaseBuilder.lower(true);
636       BaseTy = llvm::StructType::create(
637           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
638       addRecordTypeName(D, BaseTy, ".base");
639     }
640   }
641 
642   // Fill in the struct *after* computing the base type.  Filling in the body
643   // signifies that the type is no longer opaque and record layout is complete,
644   // but we may need to recursively layout D while laying D out as a base type.
645   Ty->setBody(Builder.FieldTypes, Builder.Packed);
646 
647   CGRecordLayout *RL =
648     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
649                         Builder.IsZeroInitializableAsBase);
650 
651   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
652   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
653 
654   // Add all the field numbers.
655   RL->FieldInfo.swap(Builder.Fields);
656 
657   // Add bitfield info.
658   RL->BitFields.swap(Builder.BitFields);
659 
660   // Dump the layout, if requested.
661   if (getContext().getLangOpts().DumpRecordLayouts) {
662     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
663     llvm::outs() << "Record: ";
664     D->dump(llvm::outs());
665     llvm::outs() << "\nLayout: ";
666     RL->print(llvm::outs());
667   }
668 
669 #ifndef NDEBUG
670   // Verify that the computed LLVM struct size matches the AST layout size.
671   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
672 
673   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
674   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
675          "Type size mismatch!");
676 
677   if (BaseTy) {
678     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
679 
680     uint64_t AlignedNonVirtualTypeSizeInBits =
681       getContext().toBits(NonVirtualSize);
682 
683     assert(AlignedNonVirtualTypeSizeInBits ==
684            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
685            "Type size mismatch!");
686   }
687 
688   // Verify that the LLVM and AST field offsets agree.
689   llvm::StructType *ST =
690     dyn_cast<llvm::StructType>(RL->getLLVMType());
691   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
692 
693   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
694   RecordDecl::field_iterator it = D->field_begin();
695   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
696     const FieldDecl *FD = *it;
697 
698     // For non-bit-fields, just check that the LLVM struct offset matches the
699     // AST offset.
700     if (!FD->isBitField()) {
701       unsigned FieldNo = RL->getLLVMFieldNo(FD);
702       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
703              "Invalid field offset!");
704       continue;
705     }
706 
707     // Ignore unnamed bit-fields.
708     if (!FD->getDeclName())
709       continue;
710 
711     // Don't inspect zero-length bitfields.
712     if (FD->getBitWidthValue(getContext()) == 0)
713       continue;
714 
715     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
716     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
717 
718     // Unions have overlapping elements dictating their layout, but for
719     // non-unions we can verify that this section of the layout is the exact
720     // expected size.
721     if (D->isUnion()) {
722       // For unions we verify that the start is zero and the size
723       // is in-bounds. However, on BE systems, the offset may be non-zero, but
724       // the size + offset should match the storage size in that case as it
725       // "starts" at the back.
726       if (getDataLayout().isBigEndian())
727         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
728                Info.StorageSize &&
729                "Big endian union bitfield does not end at the back");
730       else
731         assert(Info.Offset == 0 &&
732                "Little endian union bitfield with a non-zero offset");
733       assert(Info.StorageSize <= SL->getSizeInBits() &&
734              "Union not large enough for bitfield storage");
735     } else {
736       assert(Info.StorageSize ==
737              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
738              "Storage size does not match the element type size");
739     }
740     assert(Info.Size > 0 && "Empty bitfield!");
741     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
742            "Bitfield outside of its allocated storage");
743   }
744 #endif
745 
746   return RL;
747 }
748 
749 void CGRecordLayout::print(raw_ostream &OS) const {
750   OS << "<CGRecordLayout\n";
751   OS << "  LLVMType:" << *CompleteObjectType << "\n";
752   if (BaseSubobjectType)
753     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
754   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
755   OS << "  BitFields:[\n";
756 
757   // Print bit-field infos in declaration order.
758   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
759   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
760          it = BitFields.begin(), ie = BitFields.end();
761        it != ie; ++it) {
762     const RecordDecl *RD = it->first->getParent();
763     unsigned Index = 0;
764     for (RecordDecl::field_iterator
765            it2 = RD->field_begin(); *it2 != it->first; ++it2)
766       ++Index;
767     BFIs.push_back(std::make_pair(Index, &it->second));
768   }
769   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
770   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
771     OS.indent(4);
772     BFIs[i].second->print(OS);
773     OS << "\n";
774   }
775 
776   OS << "]>\n";
777 }
778 
779 void CGRecordLayout::dump() const {
780   print(llvm::errs());
781 }
782 
783 void CGBitFieldInfo::print(raw_ostream &OS) const {
784   OS << "<CGBitFieldInfo"
785      << " Offset:" << Offset
786      << " Size:" << Size
787      << " IsSigned:" << IsSigned
788      << " StorageSize:" << StorageSize
789      << " StorageAlignment:" << StorageAlignment << ">";
790 }
791 
792 void CGBitFieldInfo::dump() const {
793   print(llvm::errs());
794 }
795