1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Builder implementation for CGRecordLayout objects.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGRecordLayout.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "CodeGenTypes.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Type.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetData.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 namespace clang {
30 namespace CodeGen {
31 
32 class CGRecordLayoutBuilder {
33 public:
34   /// FieldTypes - Holds the LLVM types that the struct is created from.
35   std::vector<const llvm::Type *> FieldTypes;
36 
37   /// LLVMFieldInfo - Holds a field and its corresponding LLVM field number.
38   typedef std::pair<const FieldDecl *, unsigned> LLVMFieldInfo;
39   llvm::SmallVector<LLVMFieldInfo, 16> LLVMFields;
40 
41   /// LLVMBitFieldInfo - Holds location and size information about a bit field.
42   typedef std::pair<const FieldDecl *, CGBitFieldInfo> LLVMBitFieldInfo;
43   llvm::SmallVector<LLVMBitFieldInfo, 16> LLVMBitFields;
44 
45   typedef std::pair<const CXXRecordDecl *, unsigned> LLVMBaseInfo;
46   llvm::SmallVector<LLVMBaseInfo, 16> LLVMNonVirtualBases;
47 
48   /// ContainsPointerToDataMember - Whether one of the fields in this record
49   /// layout is a pointer to data member, or a struct that contains pointer to
50   /// data member.
51   bool ContainsPointerToDataMember;
52 
53   /// Packed - Whether the resulting LLVM struct will be packed or not.
54   bool Packed;
55 
56 private:
57   CodeGenTypes &Types;
58 
59   /// Alignment - Contains the alignment of the RecordDecl.
60   //
61   // FIXME: This is not needed and should be removed.
62   unsigned Alignment;
63 
64   /// AlignmentAsLLVMStruct - Will contain the maximum alignment of all the
65   /// LLVM types.
66   unsigned AlignmentAsLLVMStruct;
67 
68   /// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
69   /// this will have the number of bits still available in the field.
70   char BitsAvailableInLastField;
71 
72   /// NextFieldOffsetInBytes - Holds the next field offset in bytes.
73   uint64_t NextFieldOffsetInBytes;
74 
75   /// LayoutUnionField - Will layout a field in an union and return the type
76   /// that the field will have.
77   const llvm::Type *LayoutUnionField(const FieldDecl *Field,
78                                      const ASTRecordLayout &Layout);
79 
80   /// LayoutUnion - Will layout a union RecordDecl.
81   void LayoutUnion(const RecordDecl *D);
82 
83   /// LayoutField - try to layout all fields in the record decl.
84   /// Returns false if the operation failed because the struct is not packed.
85   bool LayoutFields(const RecordDecl *D);
86 
87   /// LayoutNonVirtualBase - layout a single non-virtual base.
88   void LayoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
89                             uint64_t BaseOffset);
90 
91   /// LayoutNonVirtualBases - layout the non-virtual bases of a record decl.
92   void LayoutNonVirtualBases(const CXXRecordDecl *RD,
93                              const ASTRecordLayout &Layout);
94 
95   /// LayoutField - layout a single field. Returns false if the operation failed
96   /// because the current struct is not packed.
97   bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
98 
99   /// LayoutBitField - layout a single bit field.
100   void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
101 
102   /// AppendField - Appends a field with the given offset and type.
103   void AppendField(uint64_t FieldOffsetInBytes, const llvm::Type *FieldTy);
104 
105   /// AppendPadding - Appends enough padding bytes so that the total
106   /// struct size is a multiple of the field alignment.
107   void AppendPadding(uint64_t FieldOffsetInBytes, unsigned FieldAlignment);
108 
109   /// AppendBytes - Append a given number of bytes to the record.
110   void AppendBytes(uint64_t NumBytes);
111 
112   /// AppendTailPadding - Append enough tail padding so that the type will have
113   /// the passed size.
114   void AppendTailPadding(uint64_t RecordSize);
115 
116   unsigned getTypeAlignment(const llvm::Type *Ty) const;
117 
118   /// CheckForPointerToDataMember - Check if the given type contains a pointer
119   /// to data member.
120   void CheckForPointerToDataMember(QualType T);
121   void CheckForPointerToDataMember(const CXXRecordDecl *RD);
122 
123 public:
124   CGRecordLayoutBuilder(CodeGenTypes &Types)
125     : ContainsPointerToDataMember(false), Packed(false), Types(Types),
126       Alignment(0), AlignmentAsLLVMStruct(1),
127       BitsAvailableInLastField(0), NextFieldOffsetInBytes(0) { }
128 
129   /// Layout - Will layout a RecordDecl.
130   void Layout(const RecordDecl *D);
131 };
132 
133 }
134 }
135 
136 void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
137   Alignment = Types.getContext().getASTRecordLayout(D).getAlignment() / 8;
138   Packed = D->hasAttr<PackedAttr>();
139 
140   if (D->isUnion()) {
141     LayoutUnion(D);
142     return;
143   }
144 
145   if (LayoutFields(D))
146     return;
147 
148   // We weren't able to layout the struct. Try again with a packed struct
149   Packed = true;
150   AlignmentAsLLVMStruct = 1;
151   NextFieldOffsetInBytes = 0;
152   FieldTypes.clear();
153   LLVMFields.clear();
154   LLVMBitFields.clear();
155   LLVMNonVirtualBases.clear();
156 
157   LayoutFields(D);
158 }
159 
160 static CGBitFieldInfo ComputeBitFieldInfo(CodeGenTypes &Types,
161                                           const FieldDecl *FD,
162                                           uint64_t FieldOffset,
163                                           uint64_t FieldSize) {
164   const RecordDecl *RD = FD->getParent();
165   const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
166   uint64_t ContainingTypeSizeInBits = RL.getSize();
167   unsigned ContainingTypeAlign = RL.getAlignment();
168 
169   const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(FD->getType());
170   uint64_t TypeSizeInBytes = Types.getTargetData().getTypeAllocSize(Ty);
171   uint64_t TypeSizeInBits = TypeSizeInBytes * 8;
172 
173   bool IsSigned = FD->getType()->isSignedIntegerType();
174 
175   if (FieldSize > TypeSizeInBits) {
176     // We have a wide bit-field. The extra bits are only used for padding, so
177     // if we have a bitfield of type T, with size N:
178     //
179     // T t : N;
180     //
181     // We can just assume that it's:
182     //
183     // T t : sizeof(T);
184     //
185     FieldSize = TypeSizeInBits;
186   }
187 
188   // Compute the access components. The policy we use is to start by attempting
189   // to access using the width of the bit-field type itself and to always access
190   // at aligned indices of that type. If such an access would fail because it
191   // extends past the bound of the type, then we reduce size to the next smaller
192   // power of two and retry. The current algorithm assumes pow2 sized types,
193   // although this is easy to fix.
194   //
195   // FIXME: This algorithm is wrong on big-endian systems, I think.
196   assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
197   CGBitFieldInfo::AccessInfo Components[3];
198   unsigned NumComponents = 0;
199   unsigned AccessedTargetBits = 0;       // The tumber of target bits accessed.
200   unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
201 
202   // Round down from the field offset to find the first access position that is
203   // at an aligned offset of the initial access type.
204   uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
205 
206   // Adjust initial access size to fit within record.
207   while (AccessWidth > 8 &&
208          AccessStart + AccessWidth > ContainingTypeSizeInBits) {
209     AccessWidth >>= 1;
210     AccessStart = FieldOffset - (FieldOffset % AccessWidth);
211   }
212 
213   while (AccessedTargetBits < FieldSize) {
214     // Check that we can access using a type of this size, without reading off
215     // the end of the structure. This can occur with packed structures and
216     // -fno-bitfield-type-align, for example.
217     if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
218       // If so, reduce access size to the next smaller power-of-two and retry.
219       AccessWidth >>= 1;
220       assert(AccessWidth >= 8 && "Cannot access under byte size!");
221       continue;
222     }
223 
224     // Otherwise, add an access component.
225 
226     // First, compute the bits inside this access which are part of the
227     // target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
228     // intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
229     // in the target that we are reading.
230     assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
231     assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
232     uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
233     uint64_t AccessBitsInFieldSize =
234       std::min(AccessWidth + AccessStart,
235                FieldOffset + FieldSize) - AccessBitsInFieldStart;
236 
237     assert(NumComponents < 3 && "Unexpected number of components!");
238     CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
239     AI.FieldIndex = 0;
240     // FIXME: We still follow the old access pattern of only using the field
241     // byte offset. We should switch this once we fix the struct layout to be
242     // pretty.
243     AI.FieldByteOffset = AccessStart / 8;
244     AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
245     AI.AccessWidth = AccessWidth;
246     AI.AccessAlignment = llvm::MinAlign(ContainingTypeAlign, AccessStart) / 8;
247     AI.TargetBitOffset = AccessedTargetBits;
248     AI.TargetBitWidth = AccessBitsInFieldSize;
249 
250     AccessStart += AccessWidth;
251     AccessedTargetBits += AI.TargetBitWidth;
252   }
253 
254   assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
255   return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
256 }
257 
258 void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
259                                            uint64_t FieldOffset) {
260   uint64_t FieldSize =
261     D->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();
262 
263   if (FieldSize == 0)
264     return;
265 
266   uint64_t NextFieldOffset = NextFieldOffsetInBytes * 8;
267   unsigned NumBytesToAppend;
268 
269   if (FieldOffset < NextFieldOffset) {
270     assert(BitsAvailableInLastField && "Bitfield size mismatch!");
271     assert(NextFieldOffsetInBytes && "Must have laid out at least one byte!");
272 
273     // The bitfield begins in the previous bit-field.
274     NumBytesToAppend =
275       llvm::RoundUpToAlignment(FieldSize - BitsAvailableInLastField, 8) / 8;
276   } else {
277     assert(FieldOffset % 8 == 0 && "Field offset not aligned correctly");
278 
279     // Append padding if necessary.
280     AppendBytes((FieldOffset - NextFieldOffset) / 8);
281 
282     NumBytesToAppend =
283       llvm::RoundUpToAlignment(FieldSize, 8) / 8;
284 
285     assert(NumBytesToAppend && "No bytes to append!");
286   }
287 
288   // Add the bit field info.
289   LLVMBitFields.push_back(
290     LLVMBitFieldInfo(D, ComputeBitFieldInfo(Types, D, FieldOffset, FieldSize)));
291 
292   AppendBytes(NumBytesToAppend);
293 
294   BitsAvailableInLastField =
295     NextFieldOffsetInBytes * 8 - (FieldOffset + FieldSize);
296 }
297 
298 bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
299                                         uint64_t FieldOffset) {
300   // If the field is packed, then we need a packed struct.
301   if (!Packed && D->hasAttr<PackedAttr>())
302     return false;
303 
304   if (D->isBitField()) {
305     // We must use packed structs for unnamed bit fields since they
306     // don't affect the struct alignment.
307     if (!Packed && !D->getDeclName())
308       return false;
309 
310     LayoutBitField(D, FieldOffset);
311     return true;
312   }
313 
314   // Check if we have a pointer to data member in this field.
315   CheckForPointerToDataMember(D->getType());
316 
317   assert(FieldOffset % 8 == 0 && "FieldOffset is not on a byte boundary!");
318   uint64_t FieldOffsetInBytes = FieldOffset / 8;
319 
320   const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(D->getType());
321   unsigned TypeAlignment = getTypeAlignment(Ty);
322 
323   // If the type alignment is larger then the struct alignment, we must use
324   // a packed struct.
325   if (TypeAlignment > Alignment) {
326     assert(!Packed && "Alignment is wrong even with packed struct!");
327     return false;
328   }
329 
330   if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
331     const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
332     if (const MaxFieldAlignmentAttr *MFAA =
333           RD->getAttr<MaxFieldAlignmentAttr>()) {
334       if (MFAA->getAlignment() != TypeAlignment * 8 && !Packed)
335         return false;
336     }
337   }
338 
339   // Round up the field offset to the alignment of the field type.
340   uint64_t AlignedNextFieldOffsetInBytes =
341     llvm::RoundUpToAlignment(NextFieldOffsetInBytes, TypeAlignment);
342 
343   if (FieldOffsetInBytes < AlignedNextFieldOffsetInBytes) {
344     assert(!Packed && "Could not place field even with packed struct!");
345     return false;
346   }
347 
348   if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) {
349     // Even with alignment, the field offset is not at the right place,
350     // insert padding.
351     uint64_t PaddingInBytes = FieldOffsetInBytes - NextFieldOffsetInBytes;
352 
353     AppendBytes(PaddingInBytes);
354   }
355 
356   // Now append the field.
357   LLVMFields.push_back(LLVMFieldInfo(D, FieldTypes.size()));
358   AppendField(FieldOffsetInBytes, Ty);
359 
360   return true;
361 }
362 
363 const llvm::Type *
364 CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
365                                         const ASTRecordLayout &Layout) {
366   if (Field->isBitField()) {
367     uint64_t FieldSize =
368       Field->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();
369 
370     // Ignore zero sized bit fields.
371     if (FieldSize == 0)
372       return 0;
373 
374     const llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
375     unsigned NumBytesToAppend =
376       llvm::RoundUpToAlignment(FieldSize, 8) / 8;
377 
378     if (NumBytesToAppend > 1)
379       FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend);
380 
381     // Add the bit field info.
382     LLVMBitFields.push_back(
383       LLVMBitFieldInfo(Field, ComputeBitFieldInfo(Types, Field, 0, FieldSize)));
384     return FieldTy;
385   }
386 
387   // This is a regular union field.
388   LLVMFields.push_back(LLVMFieldInfo(Field, 0));
389   return Types.ConvertTypeForMemRecursive(Field->getType());
390 }
391 
392 void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
393   assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
394 
395   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
396 
397   const llvm::Type *Ty = 0;
398   uint64_t Size = 0;
399   unsigned Align = 0;
400 
401   bool HasOnlyZeroSizedBitFields = true;
402 
403   unsigned FieldNo = 0;
404   for (RecordDecl::field_iterator Field = D->field_begin(),
405        FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
406     assert(Layout.getFieldOffset(FieldNo) == 0 &&
407           "Union field offset did not start at the beginning of record!");
408     const llvm::Type *FieldTy = LayoutUnionField(*Field, Layout);
409 
410     if (!FieldTy)
411       continue;
412 
413     HasOnlyZeroSizedBitFields = false;
414 
415     unsigned FieldAlign = Types.getTargetData().getABITypeAlignment(FieldTy);
416     uint64_t FieldSize = Types.getTargetData().getTypeAllocSize(FieldTy);
417 
418     if (FieldAlign < Align)
419       continue;
420 
421     if (FieldAlign > Align || FieldSize > Size) {
422       Ty = FieldTy;
423       Align = FieldAlign;
424       Size = FieldSize;
425     }
426   }
427 
428   // Now add our field.
429   if (Ty) {
430     AppendField(0, Ty);
431 
432     if (getTypeAlignment(Ty) > Layout.getAlignment() / 8) {
433       // We need a packed struct.
434       Packed = true;
435       Align = 1;
436     }
437   }
438   if (!Align) {
439     assert(HasOnlyZeroSizedBitFields &&
440            "0-align record did not have all zero-sized bit-fields!");
441     Align = 1;
442   }
443 
444   // Append tail padding.
445   if (Layout.getSize() / 8 > Size)
446     AppendPadding(Layout.getSize() / 8, Align);
447 }
448 
449 void CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
450                                                  uint64_t BaseOffset) {
451   const ASTRecordLayout &Layout =
452     Types.getContext().getASTRecordLayout(BaseDecl);
453 
454   uint64_t NonVirtualSize = Layout.getNonVirtualSize();
455 
456   if (BaseDecl->isEmpty()) {
457     // FIXME: Lay out empty bases.
458     return;
459   }
460 
461   CheckForPointerToDataMember(BaseDecl);
462 
463   // FIXME: Actually use a better type than [sizeof(BaseDecl) x i8] when we can.
464   AppendPadding(BaseOffset / 8, 1);
465 
466   // Append the base field.
467   LLVMNonVirtualBases.push_back(LLVMBaseInfo(BaseDecl, FieldTypes.size()));
468 
469   AppendBytes(NonVirtualSize / 8);
470 }
471 
472 void
473 CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
474                                              const ASTRecordLayout &Layout) {
475   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
476 
477   // Check if we need to add a vtable pointer.
478   if (RD->isDynamicClass()) {
479     if (!PrimaryBase) {
480       const llvm::Type *FunctionType =
481         llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
482                                 /*isVarArg=*/true);
483       const llvm::Type *VTableTy = FunctionType->getPointerTo();
484 
485       assert(NextFieldOffsetInBytes == 0 &&
486              "VTable pointer must come first!");
487       AppendField(NextFieldOffsetInBytes, VTableTy->getPointerTo());
488     } else {
489       // FIXME: Handle a virtual primary base.
490       if (!Layout.getPrimaryBaseWasVirtual())
491         LayoutNonVirtualBase(PrimaryBase, 0);
492     }
493   }
494 
495   // Layout the non-virtual bases.
496   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
497        E = RD->bases_end(); I != E; ++I) {
498     if (I->isVirtual())
499       continue;
500 
501     const CXXRecordDecl *BaseDecl =
502       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
503 
504     // We've already laid out the primary base.
505     if (BaseDecl == PrimaryBase && !Layout.getPrimaryBaseWasVirtual())
506       continue;
507 
508     LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl));
509   }
510 }
511 
512 bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
513   assert(!D->isUnion() && "Can't call LayoutFields on a union!");
514   assert(Alignment && "Did not set alignment!");
515 
516   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
517 
518   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
519     LayoutNonVirtualBases(RD, Layout);
520 
521   unsigned FieldNo = 0;
522 
523   for (RecordDecl::field_iterator Field = D->field_begin(),
524        FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
525     if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
526       assert(!Packed &&
527              "Could not layout fields even with a packed LLVM struct!");
528       return false;
529     }
530   }
531 
532   // Append tail padding if necessary.
533   AppendTailPadding(Layout.getSize());
534 
535   return true;
536 }
537 
538 void CGRecordLayoutBuilder::AppendTailPadding(uint64_t RecordSize) {
539   assert(RecordSize % 8 == 0 && "Invalid record size!");
540 
541   uint64_t RecordSizeInBytes = RecordSize / 8;
542   assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!");
543 
544   uint64_t AlignedNextFieldOffset =
545     llvm::RoundUpToAlignment(NextFieldOffsetInBytes, AlignmentAsLLVMStruct);
546 
547   if (AlignedNextFieldOffset == RecordSizeInBytes) {
548     // We don't need any padding.
549     return;
550   }
551 
552   unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes;
553   AppendBytes(NumPadBytes);
554 }
555 
556 void CGRecordLayoutBuilder::AppendField(uint64_t FieldOffsetInBytes,
557                                         const llvm::Type *FieldTy) {
558   AlignmentAsLLVMStruct = std::max(AlignmentAsLLVMStruct,
559                                    getTypeAlignment(FieldTy));
560 
561   uint64_t FieldSizeInBytes = Types.getTargetData().getTypeAllocSize(FieldTy);
562 
563   FieldTypes.push_back(FieldTy);
564 
565   NextFieldOffsetInBytes = FieldOffsetInBytes + FieldSizeInBytes;
566   BitsAvailableInLastField = 0;
567 }
568 
569 void CGRecordLayoutBuilder::AppendPadding(uint64_t FieldOffsetInBytes,
570                                           unsigned FieldAlignment) {
571   assert(NextFieldOffsetInBytes <= FieldOffsetInBytes &&
572          "Incorrect field layout!");
573 
574   // Round up the field offset to the alignment of the field type.
575   uint64_t AlignedNextFieldOffsetInBytes =
576     llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment);
577 
578   if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) {
579     // Even with alignment, the field offset is not at the right place,
580     // insert padding.
581     uint64_t PaddingInBytes = FieldOffsetInBytes - NextFieldOffsetInBytes;
582 
583     AppendBytes(PaddingInBytes);
584   }
585 }
586 
587 void CGRecordLayoutBuilder::AppendBytes(uint64_t NumBytes) {
588   if (NumBytes == 0)
589     return;
590 
591   const llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
592   if (NumBytes > 1)
593     Ty = llvm::ArrayType::get(Ty, NumBytes);
594 
595   // Append the padding field
596   AppendField(NextFieldOffsetInBytes, Ty);
597 }
598 
599 unsigned CGRecordLayoutBuilder::getTypeAlignment(const llvm::Type *Ty) const {
600   if (Packed)
601     return 1;
602 
603   return Types.getTargetData().getABITypeAlignment(Ty);
604 }
605 
606 void CGRecordLayoutBuilder::CheckForPointerToDataMember(QualType T) {
607   // This record already contains a member pointer.
608   if (ContainsPointerToDataMember)
609     return;
610 
611   // Can only have member pointers if we're compiling C++.
612   if (!Types.getContext().getLangOptions().CPlusPlus)
613     return;
614 
615   T = Types.getContext().getBaseElementType(T);
616 
617   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
618     if (!MPT->getPointeeType()->isFunctionType()) {
619       // We have a pointer to data member.
620       ContainsPointerToDataMember = true;
621     }
622   } else if (const RecordType *RT = T->getAs<RecordType>()) {
623     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
624 
625     return CheckForPointerToDataMember(RD);
626   }
627 }
628 
629 void
630 CGRecordLayoutBuilder::CheckForPointerToDataMember(const CXXRecordDecl *RD) {
631   // This record already contains a member pointer.
632   if (ContainsPointerToDataMember)
633     return;
634 
635   // FIXME: It would be better if there was a way to explicitly compute the
636   // record layout instead of converting to a type.
637   Types.ConvertTagDeclType(RD);
638 
639   const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
640 
641   if (Layout.containsPointerToDataMember())
642     ContainsPointerToDataMember = true;
643 }
644 
645 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D) {
646   CGRecordLayoutBuilder Builder(*this);
647 
648   Builder.Layout(D);
649 
650   const llvm::Type *Ty = llvm::StructType::get(getLLVMContext(),
651                                                Builder.FieldTypes,
652                                                Builder.Packed);
653 
654   CGRecordLayout *RL =
655     new CGRecordLayout(Ty, Builder.ContainsPointerToDataMember);
656 
657   // Add all the non-virtual base field numbers.
658   RL->NonVirtualBaseFields.insert(Builder.LLVMNonVirtualBases.begin(),
659                                   Builder.LLVMNonVirtualBases.end());
660 
661   // Add all the field numbers.
662   RL->FieldInfo.insert(Builder.LLVMFields.begin(),
663                        Builder.LLVMFields.end());
664 
665   // Add bitfield info.
666   RL->BitFields.insert(Builder.LLVMBitFields.begin(),
667                        Builder.LLVMBitFields.end());
668 
669   // Dump the layout, if requested.
670   if (getContext().getLangOptions().DumpRecordLayouts) {
671     llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
672     llvm::errs() << "Record: ";
673     D->dump();
674     llvm::errs() << "\nLayout: ";
675     RL->dump();
676   }
677 
678 #ifndef NDEBUG
679   // Verify that the computed LLVM struct size matches the AST layout size.
680   uint64_t TypeSizeInBits = getContext().getASTRecordLayout(D).getSize();
681   assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
682          "Type size mismatch!");
683 
684   // Verify that the LLVM and AST field offsets agree.
685   const llvm::StructType *ST =
686     dyn_cast<llvm::StructType>(RL->getLLVMType());
687   const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
688 
689   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
690   RecordDecl::field_iterator it = D->field_begin();
691   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
692     const FieldDecl *FD = *it;
693 
694     // For non-bit-fields, just check that the LLVM struct offset matches the
695     // AST offset.
696     if (!FD->isBitField()) {
697       unsigned FieldNo = RL->getLLVMFieldNo(FD);
698       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
699              "Invalid field offset!");
700       continue;
701     }
702 
703     // Ignore unnamed bit-fields.
704     if (!FD->getDeclName())
705       continue;
706 
707     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
708     for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
709       const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
710 
711       // Verify that every component access is within the structure.
712       uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
713       uint64_t AccessBitOffset = FieldOffset + AI.FieldByteOffset * 8;
714       assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
715              "Invalid bit-field access (out of range)!");
716     }
717   }
718 #endif
719 
720   return RL;
721 }
722 
723 void CGRecordLayout::print(llvm::raw_ostream &OS) const {
724   OS << "<CGRecordLayout\n";
725   OS << "  LLVMType:" << *LLVMType << "\n";
726   OS << "  ContainsPointerToDataMember:" << ContainsPointerToDataMember << "\n";
727   OS << "  BitFields:[\n";
728 
729   // Print bit-field infos in declaration order.
730   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
731   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
732          it = BitFields.begin(), ie = BitFields.end();
733        it != ie; ++it) {
734     const RecordDecl *RD = it->first->getParent();
735     unsigned Index = 0;
736     for (RecordDecl::field_iterator
737            it2 = RD->field_begin(); *it2 != it->first; ++it2)
738       ++Index;
739     BFIs.push_back(std::make_pair(Index, &it->second));
740   }
741   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
742   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
743     OS.indent(4);
744     BFIs[i].second->print(OS);
745     OS << "\n";
746   }
747 
748   OS << "]>\n";
749 }
750 
751 void CGRecordLayout::dump() const {
752   print(llvm::errs());
753 }
754 
755 void CGBitFieldInfo::print(llvm::raw_ostream &OS) const {
756   OS << "<CGBitFieldInfo";
757   OS << " Size:" << Size;
758   OS << " IsSigned:" << IsSigned << "\n";
759 
760   OS.indent(4 + strlen("<CGBitFieldInfo"));
761   OS << " NumComponents:" << getNumComponents();
762   OS << " Components: [";
763   if (getNumComponents()) {
764     OS << "\n";
765     for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
766       const AccessInfo &AI = getComponent(i);
767       OS.indent(8);
768       OS << "<AccessInfo"
769          << " FieldIndex:" << AI.FieldIndex
770          << " FieldByteOffset:" << AI.FieldByteOffset
771          << " FieldBitStart:" << AI.FieldBitStart
772          << " AccessWidth:" << AI.AccessWidth << "\n";
773       OS.indent(8 + strlen("<AccessInfo"));
774       OS << " AccessAlignment:" << AI.AccessAlignment
775          << " TargetBitOffset:" << AI.TargetBitOffset
776          << " TargetBitWidth:" << AI.TargetBitWidth
777          << ">\n";
778     }
779     OS.indent(4);
780   }
781   OS << "]>";
782 }
783 
784 void CGBitFieldInfo::dump() const {
785   print(llvm::errs());
786 }
787