1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Builder implementation for CGRecordLayout objects. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGRecordLayout.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenTypes.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 namespace { 34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an 35 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we 36 /// detail some of the complexities and weirdnesses here. 37 /// * LLVM does not have unions - Unions can, in theory be represented by any 38 /// llvm::Type with correct size. We choose a field via a specific heuristic 39 /// and add padding if necessary. 40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous 41 /// runs and allocated as a single storage type for the run. ASTRecordLayout 42 /// contains enough information to determine where the runs break. Microsoft 43 /// and Itanium follow different rules and use different codepaths. 44 /// * It is desired that, when possible, bitfields use the appropriate iN type 45 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to 46 /// i24. This isn't always possible because i24 has storage size of 32 bit 47 /// and if it is possible to use that extra byte of padding we must use 48 /// [i8 x 3] instead of i24. The function clipTailPadding does this. 49 /// C++ examples that require clipping: 50 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 51 /// struct A { int a : 24; }; // a must be clipped because a struct like B 52 // could exist: struct B : A { char b; }; // b goes at offset 3 53 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized 54 /// fields. The existing asserts suggest that LLVM assumes that *every* field 55 /// has an underlying storage type. Therefore empty structures containing 56 /// zero sized subobjects such as empty records or zero sized arrays still get 57 /// a zero sized (empty struct) storage type. 58 /// * Clang reads the complete type rather than the base type when generating 59 /// code to access fields. Bitfields in tail position with tail padding may 60 /// be clipped in the base class but not the complete class (we may discover 61 /// that the tail padding is not used in the complete class.) However, 62 /// because LLVM reads from the complete type it can generate incorrect code 63 /// if we do not clip the tail padding off of the bitfield in the complete 64 /// layout. This introduces a somewhat awkward extra unnecessary clip stage. 65 /// The location of the clip is stored internally as a sentinal of type 66 /// SCISSOR. If LLVM were updated to read base types (which it probably 67 /// should because locations of things such as VBases are bogus in the llvm 68 /// type anyway) then we could eliminate the SCISSOR. 69 /// * Itanium allows nearly empty primary virtual bases. These bases don't get 70 /// get their own storage because they're laid out as part of another base 71 /// or at the beginning of the structure. Determining if a VBase actually 72 /// gets storage awkwardly involves a walk of all bases. 73 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. 74 struct CGRecordLowering { 75 // MemberInfo is a helper structure that contains information about a record 76 // member. In additional to the standard member types, there exists a 77 // sentinal member type that ensures correct rounding. 78 struct MemberInfo { 79 CharUnits Offset; 80 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; 81 llvm::Type *Data; 82 union { 83 const FieldDecl *FD; 84 const CXXRecordDecl *RD; 85 }; 86 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 87 const FieldDecl *FD = nullptr) 88 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} 89 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 90 const CXXRecordDecl *RD) 91 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} 92 // MemberInfos are sorted so we define a < operator. 93 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } 94 }; 95 // The constructor. 96 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); 97 // Short helper routines. 98 /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *. 99 MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { 100 return MemberInfo(Offset, MemberInfo::Field, Data); 101 } 102 103 /// The Microsoft bitfield layout rule allocates discrete storage 104 /// units of the field's formal type and only combines adjacent 105 /// fields of the same formal type. We want to emit a layout with 106 /// these discrete storage units instead of combining them into a 107 /// continuous run. 108 bool isDiscreteBitFieldABI() { 109 return Context.getTargetInfo().getCXXABI().isMicrosoft() || 110 D->isMsStruct(Context); 111 } 112 113 /// The Itanium base layout rule allows virtual bases to overlap 114 /// other bases, which complicates layout in specific ways. 115 /// 116 /// Note specifically that the ms_struct attribute doesn't change this. 117 bool isOverlappingVBaseABI() { 118 return !Context.getTargetInfo().getCXXABI().isMicrosoft(); 119 } 120 121 /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments. 122 llvm::Type *getIntNType(uint64_t NumBits) { 123 return llvm::Type::getIntNTy(Types.getLLVMContext(), 124 (unsigned)llvm::RoundUpToAlignment(NumBits, 8)); 125 } 126 /// \brief Gets an llvm type of size NumBytes and alignment 1. 127 llvm::Type *getByteArrayType(CharUnits NumBytes) { 128 assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed."); 129 llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext()); 130 return NumBytes == CharUnits::One() ? Type : 131 (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity()); 132 } 133 /// \brief Gets the storage type for a field decl and handles storage 134 /// for itanium bitfields that are smaller than their declared type. 135 llvm::Type *getStorageType(const FieldDecl *FD) { 136 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); 137 if (!FD->isBitField()) return Type; 138 if (isDiscreteBitFieldABI()) return Type; 139 return getIntNType(std::min(FD->getBitWidthValue(Context), 140 (unsigned)Context.toBits(getSize(Type)))); 141 } 142 /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl. 143 llvm::Type *getStorageType(const CXXRecordDecl *RD) { 144 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); 145 } 146 CharUnits bitsToCharUnits(uint64_t BitOffset) { 147 return Context.toCharUnitsFromBits(BitOffset); 148 } 149 CharUnits getSize(llvm::Type *Type) { 150 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); 151 } 152 CharUnits getAlignment(llvm::Type *Type) { 153 return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); 154 } 155 bool isZeroInitializable(const FieldDecl *FD) { 156 return Types.isZeroInitializable(FD->getType()); 157 } 158 bool isZeroInitializable(const RecordDecl *RD) { 159 return Types.isZeroInitializable(RD); 160 } 161 void appendPaddingBytes(CharUnits Size) { 162 if (!Size.isZero()) 163 FieldTypes.push_back(getByteArrayType(Size)); 164 } 165 uint64_t getFieldBitOffset(const FieldDecl *FD) { 166 return Layout.getFieldOffset(FD->getFieldIndex()); 167 } 168 // Layout routines. 169 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, 170 llvm::Type *StorageType); 171 /// \brief Lowers an ASTRecordLayout to a llvm type. 172 void lower(bool NonVirtualBaseType); 173 void lowerUnion(); 174 void accumulateFields(); 175 void accumulateBitFields(RecordDecl::field_iterator Field, 176 RecordDecl::field_iterator FieldEnd); 177 void accumulateBases(); 178 void accumulateVPtrs(); 179 void accumulateVBases(); 180 /// \brief Recursively searches all of the bases to find out if a vbase is 181 /// not the primary vbase of some base class. 182 bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); 183 void calculateZeroInit(); 184 /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail 185 /// padding that is or can potentially be used. 186 void clipTailPadding(); 187 /// \brief Determines if we need a packed llvm struct. 188 void determinePacked(bool NVBaseType); 189 /// \brief Inserts padding everwhere it's needed. 190 void insertPadding(); 191 /// \brief Fills out the structures that are ultimately consumed. 192 void fillOutputFields(); 193 // Input memoization fields. 194 CodeGenTypes &Types; 195 const ASTContext &Context; 196 const RecordDecl *D; 197 const CXXRecordDecl *RD; 198 const ASTRecordLayout &Layout; 199 const llvm::DataLayout &DataLayout; 200 // Helpful intermediate data-structures. 201 std::vector<MemberInfo> Members; 202 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. 203 SmallVector<llvm::Type *, 16> FieldTypes; 204 llvm::DenseMap<const FieldDecl *, unsigned> Fields; 205 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 206 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 207 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; 208 bool IsZeroInitializable : 1; 209 bool IsZeroInitializableAsBase : 1; 210 bool Packed : 1; 211 private: 212 CGRecordLowering(const CGRecordLowering &) = delete; 213 void operator =(const CGRecordLowering &) = delete; 214 }; 215 } // namespace { 216 217 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed) 218 : Types(Types), Context(Types.getContext()), D(D), 219 RD(dyn_cast<CXXRecordDecl>(D)), 220 Layout(Types.getContext().getASTRecordLayout(D)), 221 DataLayout(Types.getDataLayout()), IsZeroInitializable(true), 222 IsZeroInitializableAsBase(true), Packed(Packed) {} 223 224 void CGRecordLowering::setBitFieldInfo( 225 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { 226 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; 227 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 228 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); 229 Info.Size = FD->getBitWidthValue(Context); 230 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); 231 // Here we calculate the actual storage alignment of the bits. E.g if we've 232 // got an alignment >= 2 and the bitfield starts at offset 6 we've got an 233 // alignment of 2. 234 Info.StorageAlignment = 235 Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity(); 236 if (Info.Size > Info.StorageSize) 237 Info.Size = Info.StorageSize; 238 // Reverse the bit offsets for big endian machines. Because we represent 239 // a bitfield as a single large integer load, we can imagine the bits 240 // counting from the most-significant-bit instead of the 241 // least-significant-bit. 242 if (DataLayout.isBigEndian()) 243 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); 244 } 245 246 void CGRecordLowering::lower(bool NVBaseType) { 247 // The lowering process implemented in this function takes a variety of 248 // carefully ordered phases. 249 // 1) Store all members (fields and bases) in a list and sort them by offset. 250 // 2) Add a 1-byte capstone member at the Size of the structure. 251 // 3) Clip bitfield storages members if their tail padding is or might be 252 // used by another field or base. The clipping process uses the capstone 253 // by treating it as another object that occurs after the record. 254 // 4) Determine if the llvm-struct requires packing. It's important that this 255 // phase occur after clipping, because clipping changes the llvm type. 256 // This phase reads the offset of the capstone when determining packedness 257 // and updates the alignment of the capstone to be equal of the alignment 258 // of the record after doing so. 259 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to 260 // have been computed and needs to know the alignment of the record in 261 // order to understand if explicit tail padding is needed. 262 // 6) Remove the capstone, we don't need it anymore. 263 // 7) Determine if this record can be zero-initialized. This phase could have 264 // been placed anywhere after phase 1. 265 // 8) Format the complete list of members in a way that can be consumed by 266 // CodeGenTypes::ComputeRecordLayout. 267 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); 268 if (D->isUnion()) 269 return lowerUnion(); 270 accumulateFields(); 271 // RD implies C++. 272 if (RD) { 273 accumulateVPtrs(); 274 accumulateBases(); 275 if (Members.empty()) 276 return appendPaddingBytes(Size); 277 if (!NVBaseType) 278 accumulateVBases(); 279 } 280 std::stable_sort(Members.begin(), Members.end()); 281 Members.push_back(StorageInfo(Size, getIntNType(8))); 282 clipTailPadding(); 283 determinePacked(NVBaseType); 284 insertPadding(); 285 Members.pop_back(); 286 calculateZeroInit(); 287 fillOutputFields(); 288 } 289 290 void CGRecordLowering::lowerUnion() { 291 CharUnits LayoutSize = Layout.getSize(); 292 llvm::Type *StorageType = nullptr; 293 bool SeenNamedMember = false; 294 // Iterate through the fields setting bitFieldInfo and the Fields array. Also 295 // locate the "most appropriate" storage type. The heuristic for finding the 296 // storage type isn't necessary, the first (non-0-length-bitfield) field's 297 // type would work fine and be simpler but would be different than what we've 298 // been doing and cause lit tests to change. 299 for (const auto *Field : D->fields()) { 300 if (Field->isBitField()) { 301 // Skip 0 sized bitfields. 302 if (Field->getBitWidthValue(Context) == 0) 303 continue; 304 llvm::Type *FieldType = getStorageType(Field); 305 if (LayoutSize < getSize(FieldType)) 306 FieldType = getByteArrayType(LayoutSize); 307 setBitFieldInfo(Field, CharUnits::Zero(), FieldType); 308 } 309 Fields[Field->getCanonicalDecl()] = 0; 310 llvm::Type *FieldType = getStorageType(Field); 311 // Compute zero-initializable status. 312 // This union might not be zero initialized: it may contain a pointer to 313 // data member which might have some exotic initialization sequence. 314 // If this is the case, then we aught not to try and come up with a "better" 315 // type, it might not be very easy to come up with a Constant which 316 // correctly initializes it. 317 if (!SeenNamedMember) { 318 SeenNamedMember = Field->getIdentifier(); 319 if (!SeenNamedMember) 320 if (const auto *FieldRD = 321 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 322 SeenNamedMember = FieldRD->findFirstNamedDataMember(); 323 if (SeenNamedMember && !isZeroInitializable(Field)) { 324 IsZeroInitializable = IsZeroInitializableAsBase = false; 325 StorageType = FieldType; 326 } 327 } 328 // Because our union isn't zero initializable, we won't be getting a better 329 // storage type. 330 if (!IsZeroInitializable) 331 continue; 332 // Conditionally update our storage type if we've got a new "better" one. 333 if (!StorageType || 334 getAlignment(FieldType) > getAlignment(StorageType) || 335 (getAlignment(FieldType) == getAlignment(StorageType) && 336 getSize(FieldType) > getSize(StorageType))) 337 StorageType = FieldType; 338 } 339 // If we have no storage type just pad to the appropriate size and return. 340 if (!StorageType) 341 return appendPaddingBytes(LayoutSize); 342 // If our storage size was bigger than our required size (can happen in the 343 // case of packed bitfields on Itanium) then just use an I8 array. 344 if (LayoutSize < getSize(StorageType)) 345 StorageType = getByteArrayType(LayoutSize); 346 FieldTypes.push_back(StorageType); 347 appendPaddingBytes(LayoutSize - getSize(StorageType)); 348 // Set packed if we need it. 349 if (LayoutSize % getAlignment(StorageType)) 350 Packed = true; 351 } 352 353 void CGRecordLowering::accumulateFields() { 354 for (RecordDecl::field_iterator Field = D->field_begin(), 355 FieldEnd = D->field_end(); 356 Field != FieldEnd;) 357 if (Field->isBitField()) { 358 RecordDecl::field_iterator Start = Field; 359 // Iterate to gather the list of bitfields. 360 for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); 361 accumulateBitFields(Start, Field); 362 } else { 363 Members.push_back(MemberInfo( 364 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, 365 getStorageType(*Field), *Field)); 366 ++Field; 367 } 368 } 369 370 void 371 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, 372 RecordDecl::field_iterator FieldEnd) { 373 // Run stores the first element of the current run of bitfields. FieldEnd is 374 // used as a special value to note that we don't have a current run. A 375 // bitfield run is a contiguous collection of bitfields that can be stored in 376 // the same storage block. Zero-sized bitfields and bitfields that would 377 // cross an alignment boundary break a run and start a new one. 378 RecordDecl::field_iterator Run = FieldEnd; 379 // Tail is the offset of the first bit off the end of the current run. It's 380 // used to determine if the ASTRecordLayout is treating these two bitfields as 381 // contiguous. StartBitOffset is offset of the beginning of the Run. 382 uint64_t StartBitOffset, Tail = 0; 383 if (isDiscreteBitFieldABI()) { 384 for (; Field != FieldEnd; ++Field) { 385 uint64_t BitOffset = getFieldBitOffset(*Field); 386 // Zero-width bitfields end runs. 387 if (Field->getBitWidthValue(Context) == 0) { 388 Run = FieldEnd; 389 continue; 390 } 391 llvm::Type *Type = Types.ConvertTypeForMem(Field->getType()); 392 // If we don't have a run yet, or don't live within the previous run's 393 // allocated storage then we allocate some storage and start a new run. 394 if (Run == FieldEnd || BitOffset >= Tail) { 395 Run = Field; 396 StartBitOffset = BitOffset; 397 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); 398 // Add the storage member to the record. This must be added to the 399 // record before the bitfield members so that it gets laid out before 400 // the bitfields it contains get laid out. 401 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 402 } 403 // Bitfields get the offset of their storage but come afterward and remain 404 // there after a stable sort. 405 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 406 MemberInfo::Field, nullptr, *Field)); 407 } 408 return; 409 } 410 for (;;) { 411 // Check to see if we need to start a new run. 412 if (Run == FieldEnd) { 413 // If we're out of fields, return. 414 if (Field == FieldEnd) 415 break; 416 // Any non-zero-length bitfield can start a new run. 417 if (Field->getBitWidthValue(Context) != 0) { 418 Run = Field; 419 StartBitOffset = getFieldBitOffset(*Field); 420 Tail = StartBitOffset + Field->getBitWidthValue(Context); 421 } 422 ++Field; 423 continue; 424 } 425 // Add bitfields to the run as long as they qualify. 426 if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 && 427 Tail == getFieldBitOffset(*Field)) { 428 Tail += Field->getBitWidthValue(Context); 429 ++Field; 430 continue; 431 } 432 // We've hit a break-point in the run and need to emit a storage field. 433 llvm::Type *Type = getIntNType(Tail - StartBitOffset); 434 // Add the storage member to the record and set the bitfield info for all of 435 // the bitfields in the run. Bitfields get the offset of their storage but 436 // come afterward and remain there after a stable sort. 437 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 438 for (; Run != Field; ++Run) 439 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 440 MemberInfo::Field, nullptr, *Run)); 441 Run = FieldEnd; 442 } 443 } 444 445 void CGRecordLowering::accumulateBases() { 446 // If we've got a primary virtual base, we need to add it with the bases. 447 if (Layout.isPrimaryBaseVirtual()) { 448 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); 449 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, 450 getStorageType(BaseDecl), BaseDecl)); 451 } 452 // Accumulate the non-virtual bases. 453 for (const auto &Base : RD->bases()) { 454 if (Base.isVirtual()) 455 continue; 456 457 // Bases can be zero-sized even if not technically empty if they 458 // contain only a trailing array member. 459 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 460 if (!BaseDecl->isEmpty() && 461 !Context.getASTRecordLayout(BaseDecl).getSize().isZero()) 462 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), 463 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); 464 } 465 } 466 467 void CGRecordLowering::accumulateVPtrs() { 468 if (Layout.hasOwnVFPtr()) 469 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, 470 llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> 471 getPointerTo()->getPointerTo())); 472 if (Layout.hasOwnVBPtr()) 473 Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, 474 llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); 475 } 476 477 void CGRecordLowering::accumulateVBases() { 478 CharUnits ScissorOffset = Layout.getNonVirtualSize(); 479 // In the itanium ABI, it's possible to place a vbase at a dsize that is 480 // smaller than the nvsize. Here we check to see if such a base is placed 481 // before the nvsize and set the scissor offset to that, instead of the 482 // nvsize. 483 if (isOverlappingVBaseABI()) 484 for (const auto &Base : RD->vbases()) { 485 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 486 if (BaseDecl->isEmpty()) 487 continue; 488 // If the vbase is a primary virtual base of some base, then it doesn't 489 // get its own storage location but instead lives inside of that base. 490 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) 491 continue; 492 ScissorOffset = std::min(ScissorOffset, 493 Layout.getVBaseClassOffset(BaseDecl)); 494 } 495 Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, 496 RD)); 497 for (const auto &Base : RD->vbases()) { 498 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 499 if (BaseDecl->isEmpty()) 500 continue; 501 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); 502 // If the vbase is a primary virtual base of some base, then it doesn't 503 // get its own storage location but instead lives inside of that base. 504 if (isOverlappingVBaseABI() && 505 Context.isNearlyEmpty(BaseDecl) && 506 !hasOwnStorage(RD, BaseDecl)) { 507 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, 508 BaseDecl)); 509 continue; 510 } 511 // If we've got a vtordisp, add it as a storage type. 512 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) 513 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), 514 getIntNType(32))); 515 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 516 getStorageType(BaseDecl), BaseDecl)); 517 } 518 } 519 520 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, 521 const CXXRecordDecl *Query) { 522 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); 523 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) 524 return false; 525 for (const auto &Base : Decl->bases()) 526 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) 527 return false; 528 return true; 529 } 530 531 void CGRecordLowering::calculateZeroInit() { 532 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 533 MemberEnd = Members.end(); 534 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { 535 if (Member->Kind == MemberInfo::Field) { 536 if (!Member->FD || isZeroInitializable(Member->FD)) 537 continue; 538 IsZeroInitializable = IsZeroInitializableAsBase = false; 539 } else if (Member->Kind == MemberInfo::Base || 540 Member->Kind == MemberInfo::VBase) { 541 if (isZeroInitializable(Member->RD)) 542 continue; 543 IsZeroInitializable = false; 544 if (Member->Kind == MemberInfo::Base) 545 IsZeroInitializableAsBase = false; 546 } 547 } 548 } 549 550 void CGRecordLowering::clipTailPadding() { 551 std::vector<MemberInfo>::iterator Prior = Members.begin(); 552 CharUnits Tail = getSize(Prior->Data); 553 for (std::vector<MemberInfo>::iterator Member = Prior + 1, 554 MemberEnd = Members.end(); 555 Member != MemberEnd; ++Member) { 556 // Only members with data and the scissor can cut into tail padding. 557 if (!Member->Data && Member->Kind != MemberInfo::Scissor) 558 continue; 559 if (Member->Offset < Tail) { 560 assert(Prior->Kind == MemberInfo::Field && !Prior->FD && 561 "Only storage fields have tail padding!"); 562 Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment( 563 cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); 564 } 565 if (Member->Data) 566 Prior = Member; 567 Tail = Prior->Offset + getSize(Prior->Data); 568 } 569 } 570 571 void CGRecordLowering::determinePacked(bool NVBaseType) { 572 if (Packed) 573 return; 574 CharUnits Alignment = CharUnits::One(); 575 CharUnits NVAlignment = CharUnits::One(); 576 CharUnits NVSize = 577 !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); 578 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 579 MemberEnd = Members.end(); 580 Member != MemberEnd; ++Member) { 581 if (!Member->Data) 582 continue; 583 // If any member falls at an offset that it not a multiple of its alignment, 584 // then the entire record must be packed. 585 if (Member->Offset % getAlignment(Member->Data)) 586 Packed = true; 587 if (Member->Offset < NVSize) 588 NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); 589 Alignment = std::max(Alignment, getAlignment(Member->Data)); 590 } 591 // If the size of the record (the capstone's offset) is not a multiple of the 592 // record's alignment, it must be packed. 593 if (Members.back().Offset % Alignment) 594 Packed = true; 595 // If the non-virtual sub-object is not a multiple of the non-virtual 596 // sub-object's alignment, it must be packed. We cannot have a packed 597 // non-virtual sub-object and an unpacked complete object or vise versa. 598 if (NVSize % NVAlignment) 599 Packed = true; 600 // Update the alignment of the sentinal. 601 if (!Packed) 602 Members.back().Data = getIntNType(Context.toBits(Alignment)); 603 } 604 605 void CGRecordLowering::insertPadding() { 606 std::vector<std::pair<CharUnits, CharUnits> > Padding; 607 CharUnits Size = CharUnits::Zero(); 608 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 609 MemberEnd = Members.end(); 610 Member != MemberEnd; ++Member) { 611 if (!Member->Data) 612 continue; 613 CharUnits Offset = Member->Offset; 614 assert(Offset >= Size); 615 // Insert padding if we need to. 616 if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() : 617 getAlignment(Member->Data))) 618 Padding.push_back(std::make_pair(Size, Offset - Size)); 619 Size = Offset + getSize(Member->Data); 620 } 621 if (Padding.empty()) 622 return; 623 // Add the padding to the Members list and sort it. 624 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator 625 Pad = Padding.begin(), PadEnd = Padding.end(); 626 Pad != PadEnd; ++Pad) 627 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); 628 std::stable_sort(Members.begin(), Members.end()); 629 } 630 631 void CGRecordLowering::fillOutputFields() { 632 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 633 MemberEnd = Members.end(); 634 Member != MemberEnd; ++Member) { 635 if (Member->Data) 636 FieldTypes.push_back(Member->Data); 637 if (Member->Kind == MemberInfo::Field) { 638 if (Member->FD) 639 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; 640 // A field without storage must be a bitfield. 641 if (!Member->Data) 642 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); 643 } else if (Member->Kind == MemberInfo::Base) 644 NonVirtualBases[Member->RD] = FieldTypes.size() - 1; 645 else if (Member->Kind == MemberInfo::VBase) 646 VirtualBases[Member->RD] = FieldTypes.size() - 1; 647 } 648 } 649 650 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, 651 const FieldDecl *FD, 652 uint64_t Offset, uint64_t Size, 653 uint64_t StorageSize, 654 uint64_t StorageAlignment) { 655 // This function is vestigial from CGRecordLayoutBuilder days but is still 656 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that 657 // when addressed will allow for the removal of this function. 658 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); 659 CharUnits TypeSizeInBytes = 660 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); 661 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); 662 663 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 664 665 if (Size > TypeSizeInBits) { 666 // We have a wide bit-field. The extra bits are only used for padding, so 667 // if we have a bitfield of type T, with size N: 668 // 669 // T t : N; 670 // 671 // We can just assume that it's: 672 // 673 // T t : sizeof(T); 674 // 675 Size = TypeSizeInBits; 676 } 677 678 // Reverse the bit offsets for big endian machines. Because we represent 679 // a bitfield as a single large integer load, we can imagine the bits 680 // counting from the most-significant-bit instead of the 681 // least-significant-bit. 682 if (Types.getDataLayout().isBigEndian()) { 683 Offset = StorageSize - (Offset + Size); 684 } 685 686 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment); 687 } 688 689 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, 690 llvm::StructType *Ty) { 691 CGRecordLowering Builder(*this, D, /*Packed=*/false); 692 693 Builder.lower(/*NonVirtualBaseType=*/false); 694 695 // If we're in C++, compute the base subobject type. 696 llvm::StructType *BaseTy = nullptr; 697 if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { 698 BaseTy = Ty; 699 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { 700 CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); 701 BaseBuilder.lower(/*NonVirtualBaseType=*/true); 702 BaseTy = llvm::StructType::create( 703 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); 704 addRecordTypeName(D, BaseTy, ".base"); 705 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work 706 // on both of them with the same index. 707 assert(Builder.Packed == BaseBuilder.Packed && 708 "Non-virtual and complete types must agree on packedness"); 709 } 710 } 711 712 // Fill in the struct *after* computing the base type. Filling in the body 713 // signifies that the type is no longer opaque and record layout is complete, 714 // but we may need to recursively layout D while laying D out as a base type. 715 Ty->setBody(Builder.FieldTypes, Builder.Packed); 716 717 CGRecordLayout *RL = 718 new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, 719 Builder.IsZeroInitializableAsBase); 720 721 RL->NonVirtualBases.swap(Builder.NonVirtualBases); 722 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); 723 724 // Add all the field numbers. 725 RL->FieldInfo.swap(Builder.Fields); 726 727 // Add bitfield info. 728 RL->BitFields.swap(Builder.BitFields); 729 730 // Dump the layout, if requested. 731 if (getContext().getLangOpts().DumpRecordLayouts) { 732 llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; 733 llvm::outs() << "Record: "; 734 D->dump(llvm::outs()); 735 llvm::outs() << "\nLayout: "; 736 RL->print(llvm::outs()); 737 } 738 739 #ifndef NDEBUG 740 // Verify that the computed LLVM struct size matches the AST layout size. 741 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); 742 743 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); 744 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && 745 "Type size mismatch!"); 746 747 if (BaseTy) { 748 CharUnits NonVirtualSize = Layout.getNonVirtualSize(); 749 750 uint64_t AlignedNonVirtualTypeSizeInBits = 751 getContext().toBits(NonVirtualSize); 752 753 assert(AlignedNonVirtualTypeSizeInBits == 754 getDataLayout().getTypeAllocSizeInBits(BaseTy) && 755 "Type size mismatch!"); 756 } 757 758 // Verify that the LLVM and AST field offsets agree. 759 llvm::StructType *ST = 760 dyn_cast<llvm::StructType>(RL->getLLVMType()); 761 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); 762 763 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); 764 RecordDecl::field_iterator it = D->field_begin(); 765 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { 766 const FieldDecl *FD = *it; 767 768 // For non-bit-fields, just check that the LLVM struct offset matches the 769 // AST offset. 770 if (!FD->isBitField()) { 771 unsigned FieldNo = RL->getLLVMFieldNo(FD); 772 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && 773 "Invalid field offset!"); 774 continue; 775 } 776 777 // Ignore unnamed bit-fields. 778 if (!FD->getDeclName()) 779 continue; 780 781 // Don't inspect zero-length bitfields. 782 if (FD->getBitWidthValue(getContext()) == 0) 783 continue; 784 785 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); 786 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); 787 788 // Unions have overlapping elements dictating their layout, but for 789 // non-unions we can verify that this section of the layout is the exact 790 // expected size. 791 if (D->isUnion()) { 792 // For unions we verify that the start is zero and the size 793 // is in-bounds. However, on BE systems, the offset may be non-zero, but 794 // the size + offset should match the storage size in that case as it 795 // "starts" at the back. 796 if (getDataLayout().isBigEndian()) 797 assert(static_cast<unsigned>(Info.Offset + Info.Size) == 798 Info.StorageSize && 799 "Big endian union bitfield does not end at the back"); 800 else 801 assert(Info.Offset == 0 && 802 "Little endian union bitfield with a non-zero offset"); 803 assert(Info.StorageSize <= SL->getSizeInBits() && 804 "Union not large enough for bitfield storage"); 805 } else { 806 assert(Info.StorageSize == 807 getDataLayout().getTypeAllocSizeInBits(ElementTy) && 808 "Storage size does not match the element type size"); 809 } 810 assert(Info.Size > 0 && "Empty bitfield!"); 811 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && 812 "Bitfield outside of its allocated storage"); 813 } 814 #endif 815 816 return RL; 817 } 818 819 void CGRecordLayout::print(raw_ostream &OS) const { 820 OS << "<CGRecordLayout\n"; 821 OS << " LLVMType:" << *CompleteObjectType << "\n"; 822 if (BaseSubobjectType) 823 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 824 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; 825 OS << " BitFields:[\n"; 826 827 // Print bit-field infos in declaration order. 828 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; 829 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator 830 it = BitFields.begin(), ie = BitFields.end(); 831 it != ie; ++it) { 832 const RecordDecl *RD = it->first->getParent(); 833 unsigned Index = 0; 834 for (RecordDecl::field_iterator 835 it2 = RD->field_begin(); *it2 != it->first; ++it2) 836 ++Index; 837 BFIs.push_back(std::make_pair(Index, &it->second)); 838 } 839 llvm::array_pod_sort(BFIs.begin(), BFIs.end()); 840 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { 841 OS.indent(4); 842 BFIs[i].second->print(OS); 843 OS << "\n"; 844 } 845 846 OS << "]>\n"; 847 } 848 849 void CGRecordLayout::dump() const { 850 print(llvm::errs()); 851 } 852 853 void CGBitFieldInfo::print(raw_ostream &OS) const { 854 OS << "<CGBitFieldInfo" 855 << " Offset:" << Offset 856 << " Size:" << Size 857 << " IsSigned:" << IsSigned 858 << " StorageSize:" << StorageSize 859 << " StorageAlignment:" << StorageAlignment << ">"; 860 } 861 862 void CGBitFieldInfo::dump() const { 863 print(llvm::errs()); 864 } 865