1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Builder implementation for CGRecordLayout objects.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGRecordLayout.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenTypes.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 namespace {
34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
35 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
36 /// detail some of the complexities and weirdnesses here.
37 /// * LLVM does not have unions - Unions can, in theory be represented by any
38 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
39 ///   and add padding if necessary.
40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
41 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
42 ///   contains enough information to determine where the runs break.  Microsoft
43 ///   and Itanium follow different rules and use different codepaths.
44 /// * It is desired that, when possible, bitfields use the appropriate iN type
45 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
46 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
47 ///   and if it is possible to use that extra byte of padding we must use
48 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
49 ///   C++ examples that require clipping:
50 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
51 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
52 //    could exist: struct B : A { char b; }; // b goes at offset 3
53 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
54 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
55 ///   has an underlying storage type.  Therefore empty structures containing
56 ///   zero sized subobjects such as empty records or zero sized arrays still get
57 ///   a zero sized (empty struct) storage type.
58 /// * Clang reads the complete type rather than the base type when generating
59 ///   code to access fields.  Bitfields in tail position with tail padding may
60 ///   be clipped in the base class but not the complete class (we may discover
61 ///   that the tail padding is not used in the complete class.) However,
62 ///   because LLVM reads from the complete type it can generate incorrect code
63 ///   if we do not clip the tail padding off of the bitfield in the complete
64 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
65 ///   The location of the clip is stored internally as a sentinal of type
66 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
67 ///   should because locations of things such as VBases are bogus in the llvm
68 ///   type anyway) then we could eliminate the SCISSOR.
69 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
70 ///   get their own storage because they're laid out as part of another base
71 ///   or at the beginning of the structure.  Determining if a VBase actually
72 ///   gets storage awkwardly involves a walk of all bases.
73 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
74 struct CGRecordLowering {
75   // MemberInfo is a helper structure that contains information about a record
76   // member.  In additional to the standard member types, there exists a
77   // sentinal member type that ensures correct rounding.
78   struct MemberInfo {
79     CharUnits Offset;
80     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
81     llvm::Type *Data;
82     union {
83       const FieldDecl *FD;
84       const CXXRecordDecl *RD;
85     };
86     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
87                const FieldDecl *FD = nullptr)
88       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
89     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
90                const CXXRecordDecl *RD)
91       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
92     // MemberInfos are sorted so we define a < operator.
93     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
94   };
95   // The constructor.
96   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
97   // Short helper routines.
98   /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *.
99   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
100     return MemberInfo(Offset, MemberInfo::Field, Data);
101   }
102 
103   /// The Microsoft bitfield layout rule allocates discrete storage
104   /// units of the field's formal type and only combines adjacent
105   /// fields of the same formal type.  We want to emit a layout with
106   /// these discrete storage units instead of combining them into a
107   /// continuous run.
108   bool isDiscreteBitFieldABI() {
109     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
110            D->isMsStruct(Context);
111   }
112 
113   /// The Itanium base layout rule allows virtual bases to overlap
114   /// other bases, which complicates layout in specific ways.
115   ///
116   /// Note specifically that the ms_struct attribute doesn't change this.
117   bool isOverlappingVBaseABI() {
118     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
119   }
120 
121   /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments.
122   llvm::Type *getIntNType(uint64_t NumBits) {
123     return llvm::Type::getIntNTy(Types.getLLVMContext(),
124         (unsigned)llvm::RoundUpToAlignment(NumBits, 8));
125   }
126   /// \brief Gets an llvm type of size NumBytes and alignment 1.
127   llvm::Type *getByteArrayType(CharUnits NumBytes) {
128     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
129     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
130     return NumBytes == CharUnits::One() ? Type :
131         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
132   }
133   /// \brief Gets the storage type for a field decl and handles storage
134   /// for itanium bitfields that are smaller than their declared type.
135   llvm::Type *getStorageType(const FieldDecl *FD) {
136     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
137     if (!FD->isBitField()) return Type;
138     if (isDiscreteBitFieldABI()) return Type;
139     return getIntNType(std::min(FD->getBitWidthValue(Context),
140                              (unsigned)Context.toBits(getSize(Type))));
141   }
142   /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl.
143   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
144     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
145   }
146   CharUnits bitsToCharUnits(uint64_t BitOffset) {
147     return Context.toCharUnitsFromBits(BitOffset);
148   }
149   CharUnits getSize(llvm::Type *Type) {
150     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
151   }
152   CharUnits getAlignment(llvm::Type *Type) {
153     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
154   }
155   bool isZeroInitializable(const FieldDecl *FD) {
156     return Types.isZeroInitializable(FD->getType());
157   }
158   bool isZeroInitializable(const RecordDecl *RD) {
159     return Types.isZeroInitializable(RD);
160   }
161   void appendPaddingBytes(CharUnits Size) {
162     if (!Size.isZero())
163       FieldTypes.push_back(getByteArrayType(Size));
164   }
165   uint64_t getFieldBitOffset(const FieldDecl *FD) {
166     return Layout.getFieldOffset(FD->getFieldIndex());
167   }
168   // Layout routines.
169   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
170                        llvm::Type *StorageType);
171   /// \brief Lowers an ASTRecordLayout to a llvm type.
172   void lower(bool NonVirtualBaseType);
173   void lowerUnion();
174   void accumulateFields();
175   void accumulateBitFields(RecordDecl::field_iterator Field,
176                         RecordDecl::field_iterator FieldEnd);
177   void accumulateBases();
178   void accumulateVPtrs();
179   void accumulateVBases();
180   /// \brief Recursively searches all of the bases to find out if a vbase is
181   /// not the primary vbase of some base class.
182   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
183   void calculateZeroInit();
184   /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail
185   /// padding that is or can potentially be used.
186   void clipTailPadding();
187   /// \brief Determines if we need a packed llvm struct.
188   void determinePacked(bool NVBaseType);
189   /// \brief Inserts padding everwhere it's needed.
190   void insertPadding();
191   /// \brief Fills out the structures that are ultimately consumed.
192   void fillOutputFields();
193   // Input memoization fields.
194   CodeGenTypes &Types;
195   const ASTContext &Context;
196   const RecordDecl *D;
197   const CXXRecordDecl *RD;
198   const ASTRecordLayout &Layout;
199   const llvm::DataLayout &DataLayout;
200   // Helpful intermediate data-structures.
201   std::vector<MemberInfo> Members;
202   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
203   SmallVector<llvm::Type *, 16> FieldTypes;
204   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
205   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
206   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
207   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
208   bool IsZeroInitializable : 1;
209   bool IsZeroInitializableAsBase : 1;
210   bool Packed : 1;
211 private:
212   CGRecordLowering(const CGRecordLowering &) = delete;
213   void operator =(const CGRecordLowering &) = delete;
214 };
215 } // namespace {
216 
217 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,                                 bool Packed)
218   : Types(Types), Context(Types.getContext()), D(D),
219     RD(dyn_cast<CXXRecordDecl>(D)),
220     Layout(Types.getContext().getASTRecordLayout(D)),
221     DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
222     IsZeroInitializableAsBase(true), Packed(Packed) {}
223 
224 void CGRecordLowering::setBitFieldInfo(
225     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
226   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
227   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
228   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
229   Info.Size = FD->getBitWidthValue(Context);
230   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
231   // Here we calculate the actual storage alignment of the bits.  E.g if we've
232   // got an alignment >= 2 and the bitfield starts at offset 6 we've got an
233   // alignment of 2.
234   Info.StorageAlignment =
235       Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity();
236   if (Info.Size > Info.StorageSize)
237     Info.Size = Info.StorageSize;
238   // Reverse the bit offsets for big endian machines. Because we represent
239   // a bitfield as a single large integer load, we can imagine the bits
240   // counting from the most-significant-bit instead of the
241   // least-significant-bit.
242   if (DataLayout.isBigEndian())
243     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
244 }
245 
246 void CGRecordLowering::lower(bool NVBaseType) {
247   // The lowering process implemented in this function takes a variety of
248   // carefully ordered phases.
249   // 1) Store all members (fields and bases) in a list and sort them by offset.
250   // 2) Add a 1-byte capstone member at the Size of the structure.
251   // 3) Clip bitfield storages members if their tail padding is or might be
252   //    used by another field or base.  The clipping process uses the capstone
253   //    by treating it as another object that occurs after the record.
254   // 4) Determine if the llvm-struct requires packing.  It's important that this
255   //    phase occur after clipping, because clipping changes the llvm type.
256   //    This phase reads the offset of the capstone when determining packedness
257   //    and updates the alignment of the capstone to be equal of the alignment
258   //    of the record after doing so.
259   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
260   //    have been computed and needs to know the alignment of the record in
261   //    order to understand if explicit tail padding is needed.
262   // 6) Remove the capstone, we don't need it anymore.
263   // 7) Determine if this record can be zero-initialized.  This phase could have
264   //    been placed anywhere after phase 1.
265   // 8) Format the complete list of members in a way that can be consumed by
266   //    CodeGenTypes::ComputeRecordLayout.
267   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
268   if (D->isUnion())
269     return lowerUnion();
270   accumulateFields();
271   // RD implies C++.
272   if (RD) {
273     accumulateVPtrs();
274     accumulateBases();
275     if (Members.empty())
276       return appendPaddingBytes(Size);
277     if (!NVBaseType)
278       accumulateVBases();
279   }
280   std::stable_sort(Members.begin(), Members.end());
281   Members.push_back(StorageInfo(Size, getIntNType(8)));
282   clipTailPadding();
283   determinePacked(NVBaseType);
284   insertPadding();
285   Members.pop_back();
286   calculateZeroInit();
287   fillOutputFields();
288 }
289 
290 void CGRecordLowering::lowerUnion() {
291   CharUnits LayoutSize = Layout.getSize();
292   llvm::Type *StorageType = nullptr;
293   bool SeenNamedMember = false;
294   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
295   // locate the "most appropriate" storage type.  The heuristic for finding the
296   // storage type isn't necessary, the first (non-0-length-bitfield) field's
297   // type would work fine and be simpler but would be different than what we've
298   // been doing and cause lit tests to change.
299   for (const auto *Field : D->fields()) {
300     if (Field->isBitField()) {
301       // Skip 0 sized bitfields.
302       if (Field->getBitWidthValue(Context) == 0)
303         continue;
304       llvm::Type *FieldType = getStorageType(Field);
305       if (LayoutSize < getSize(FieldType))
306         FieldType = getByteArrayType(LayoutSize);
307       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
308     }
309     Fields[Field->getCanonicalDecl()] = 0;
310     llvm::Type *FieldType = getStorageType(Field);
311     // Compute zero-initializable status.
312     // This union might not be zero initialized: it may contain a pointer to
313     // data member which might have some exotic initialization sequence.
314     // If this is the case, then we aught not to try and come up with a "better"
315     // type, it might not be very easy to come up with a Constant which
316     // correctly initializes it.
317     if (!SeenNamedMember) {
318       SeenNamedMember = Field->getIdentifier();
319       if (!SeenNamedMember)
320         if (const auto *FieldRD =
321                 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl()))
322         SeenNamedMember = FieldRD->findFirstNamedDataMember();
323       if (SeenNamedMember && !isZeroInitializable(Field)) {
324         IsZeroInitializable = IsZeroInitializableAsBase = false;
325         StorageType = FieldType;
326       }
327     }
328     // Because our union isn't zero initializable, we won't be getting a better
329     // storage type.
330     if (!IsZeroInitializable)
331       continue;
332     // Conditionally update our storage type if we've got a new "better" one.
333     if (!StorageType ||
334         getAlignment(FieldType) >  getAlignment(StorageType) ||
335         (getAlignment(FieldType) == getAlignment(StorageType) &&
336         getSize(FieldType) > getSize(StorageType)))
337       StorageType = FieldType;
338   }
339   // If we have no storage type just pad to the appropriate size and return.
340   if (!StorageType)
341     return appendPaddingBytes(LayoutSize);
342   // If our storage size was bigger than our required size (can happen in the
343   // case of packed bitfields on Itanium) then just use an I8 array.
344   if (LayoutSize < getSize(StorageType))
345     StorageType = getByteArrayType(LayoutSize);
346   FieldTypes.push_back(StorageType);
347   appendPaddingBytes(LayoutSize - getSize(StorageType));
348   // Set packed if we need it.
349   if (LayoutSize % getAlignment(StorageType))
350     Packed = true;
351 }
352 
353 void CGRecordLowering::accumulateFields() {
354   for (RecordDecl::field_iterator Field = D->field_begin(),
355                                   FieldEnd = D->field_end();
356     Field != FieldEnd;)
357     if (Field->isBitField()) {
358       RecordDecl::field_iterator Start = Field;
359       // Iterate to gather the list of bitfields.
360       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
361       accumulateBitFields(Start, Field);
362     } else {
363       Members.push_back(MemberInfo(
364           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
365           getStorageType(*Field), *Field));
366       ++Field;
367     }
368 }
369 
370 void
371 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
372                                       RecordDecl::field_iterator FieldEnd) {
373   // Run stores the first element of the current run of bitfields.  FieldEnd is
374   // used as a special value to note that we don't have a current run.  A
375   // bitfield run is a contiguous collection of bitfields that can be stored in
376   // the same storage block.  Zero-sized bitfields and bitfields that would
377   // cross an alignment boundary break a run and start a new one.
378   RecordDecl::field_iterator Run = FieldEnd;
379   // Tail is the offset of the first bit off the end of the current run.  It's
380   // used to determine if the ASTRecordLayout is treating these two bitfields as
381   // contiguous.  StartBitOffset is offset of the beginning of the Run.
382   uint64_t StartBitOffset, Tail = 0;
383   if (isDiscreteBitFieldABI()) {
384     for (; Field != FieldEnd; ++Field) {
385       uint64_t BitOffset = getFieldBitOffset(*Field);
386       // Zero-width bitfields end runs.
387       if (Field->getBitWidthValue(Context) == 0) {
388         Run = FieldEnd;
389         continue;
390       }
391       llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
392       // If we don't have a run yet, or don't live within the previous run's
393       // allocated storage then we allocate some storage and start a new run.
394       if (Run == FieldEnd || BitOffset >= Tail) {
395         Run = Field;
396         StartBitOffset = BitOffset;
397         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
398         // Add the storage member to the record.  This must be added to the
399         // record before the bitfield members so that it gets laid out before
400         // the bitfields it contains get laid out.
401         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
402       }
403       // Bitfields get the offset of their storage but come afterward and remain
404       // there after a stable sort.
405       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
406                                    MemberInfo::Field, nullptr, *Field));
407     }
408     return;
409   }
410   for (;;) {
411     // Check to see if we need to start a new run.
412     if (Run == FieldEnd) {
413       // If we're out of fields, return.
414       if (Field == FieldEnd)
415         break;
416       // Any non-zero-length bitfield can start a new run.
417       if (Field->getBitWidthValue(Context) != 0) {
418         Run = Field;
419         StartBitOffset = getFieldBitOffset(*Field);
420         Tail = StartBitOffset + Field->getBitWidthValue(Context);
421       }
422       ++Field;
423       continue;
424     }
425     // Add bitfields to the run as long as they qualify.
426     if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 &&
427         Tail == getFieldBitOffset(*Field)) {
428       Tail += Field->getBitWidthValue(Context);
429       ++Field;
430       continue;
431     }
432     // We've hit a break-point in the run and need to emit a storage field.
433     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
434     // Add the storage member to the record and set the bitfield info for all of
435     // the bitfields in the run.  Bitfields get the offset of their storage but
436     // come afterward and remain there after a stable sort.
437     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
438     for (; Run != Field; ++Run)
439       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
440                                    MemberInfo::Field, nullptr, *Run));
441     Run = FieldEnd;
442   }
443 }
444 
445 void CGRecordLowering::accumulateBases() {
446   // If we've got a primary virtual base, we need to add it with the bases.
447   if (Layout.isPrimaryBaseVirtual()) {
448     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
449     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
450                                  getStorageType(BaseDecl), BaseDecl));
451   }
452   // Accumulate the non-virtual bases.
453   for (const auto &Base : RD->bases()) {
454     if (Base.isVirtual())
455       continue;
456 
457     // Bases can be zero-sized even if not technically empty if they
458     // contain only a trailing array member.
459     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
460     if (!BaseDecl->isEmpty() &&
461         !Context.getASTRecordLayout(BaseDecl).getSize().isZero())
462       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
463           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
464   }
465 }
466 
467 void CGRecordLowering::accumulateVPtrs() {
468   if (Layout.hasOwnVFPtr())
469     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
470         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
471             getPointerTo()->getPointerTo()));
472   if (Layout.hasOwnVBPtr())
473     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
474         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
475 }
476 
477 void CGRecordLowering::accumulateVBases() {
478   CharUnits ScissorOffset = Layout.getNonVirtualSize();
479   // In the itanium ABI, it's possible to place a vbase at a dsize that is
480   // smaller than the nvsize.  Here we check to see if such a base is placed
481   // before the nvsize and set the scissor offset to that, instead of the
482   // nvsize.
483   if (isOverlappingVBaseABI())
484     for (const auto &Base : RD->vbases()) {
485       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
486       if (BaseDecl->isEmpty())
487         continue;
488       // If the vbase is a primary virtual base of some base, then it doesn't
489       // get its own storage location but instead lives inside of that base.
490       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
491         continue;
492       ScissorOffset = std::min(ScissorOffset,
493                                Layout.getVBaseClassOffset(BaseDecl));
494     }
495   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
496                                RD));
497   for (const auto &Base : RD->vbases()) {
498     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
499     if (BaseDecl->isEmpty())
500       continue;
501     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
502     // If the vbase is a primary virtual base of some base, then it doesn't
503     // get its own storage location but instead lives inside of that base.
504     if (isOverlappingVBaseABI() &&
505         Context.isNearlyEmpty(BaseDecl) &&
506         !hasOwnStorage(RD, BaseDecl)) {
507       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
508                                    BaseDecl));
509       continue;
510     }
511     // If we've got a vtordisp, add it as a storage type.
512     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
513       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
514                                     getIntNType(32)));
515     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
516                                  getStorageType(BaseDecl), BaseDecl));
517   }
518 }
519 
520 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
521                                      const CXXRecordDecl *Query) {
522   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
523   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
524     return false;
525   for (const auto &Base : Decl->bases())
526     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
527       return false;
528   return true;
529 }
530 
531 void CGRecordLowering::calculateZeroInit() {
532   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
533                                                MemberEnd = Members.end();
534        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
535     if (Member->Kind == MemberInfo::Field) {
536       if (!Member->FD || isZeroInitializable(Member->FD))
537         continue;
538       IsZeroInitializable = IsZeroInitializableAsBase = false;
539     } else if (Member->Kind == MemberInfo::Base ||
540                Member->Kind == MemberInfo::VBase) {
541       if (isZeroInitializable(Member->RD))
542         continue;
543       IsZeroInitializable = false;
544       if (Member->Kind == MemberInfo::Base)
545         IsZeroInitializableAsBase = false;
546     }
547   }
548 }
549 
550 void CGRecordLowering::clipTailPadding() {
551   std::vector<MemberInfo>::iterator Prior = Members.begin();
552   CharUnits Tail = getSize(Prior->Data);
553   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
554                                          MemberEnd = Members.end();
555        Member != MemberEnd; ++Member) {
556     // Only members with data and the scissor can cut into tail padding.
557     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
558       continue;
559     if (Member->Offset < Tail) {
560       assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
561              "Only storage fields have tail padding!");
562       Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment(
563           cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
564     }
565     if (Member->Data)
566       Prior = Member;
567     Tail = Prior->Offset + getSize(Prior->Data);
568   }
569 }
570 
571 void CGRecordLowering::determinePacked(bool NVBaseType) {
572   if (Packed)
573     return;
574   CharUnits Alignment = CharUnits::One();
575   CharUnits NVAlignment = CharUnits::One();
576   CharUnits NVSize =
577       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
578   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
579                                                MemberEnd = Members.end();
580        Member != MemberEnd; ++Member) {
581     if (!Member->Data)
582       continue;
583     // If any member falls at an offset that it not a multiple of its alignment,
584     // then the entire record must be packed.
585     if (Member->Offset % getAlignment(Member->Data))
586       Packed = true;
587     if (Member->Offset < NVSize)
588       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
589     Alignment = std::max(Alignment, getAlignment(Member->Data));
590   }
591   // If the size of the record (the capstone's offset) is not a multiple of the
592   // record's alignment, it must be packed.
593   if (Members.back().Offset % Alignment)
594     Packed = true;
595   // If the non-virtual sub-object is not a multiple of the non-virtual
596   // sub-object's alignment, it must be packed.  We cannot have a packed
597   // non-virtual sub-object and an unpacked complete object or vise versa.
598   if (NVSize % NVAlignment)
599     Packed = true;
600   // Update the alignment of the sentinal.
601   if (!Packed)
602     Members.back().Data = getIntNType(Context.toBits(Alignment));
603 }
604 
605 void CGRecordLowering::insertPadding() {
606   std::vector<std::pair<CharUnits, CharUnits> > Padding;
607   CharUnits Size = CharUnits::Zero();
608   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
609                                                MemberEnd = Members.end();
610        Member != MemberEnd; ++Member) {
611     if (!Member->Data)
612       continue;
613     CharUnits Offset = Member->Offset;
614     assert(Offset >= Size);
615     // Insert padding if we need to.
616     if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() :
617                                           getAlignment(Member->Data)))
618       Padding.push_back(std::make_pair(Size, Offset - Size));
619     Size = Offset + getSize(Member->Data);
620   }
621   if (Padding.empty())
622     return;
623   // Add the padding to the Members list and sort it.
624   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
625         Pad = Padding.begin(), PadEnd = Padding.end();
626         Pad != PadEnd; ++Pad)
627     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
628   std::stable_sort(Members.begin(), Members.end());
629 }
630 
631 void CGRecordLowering::fillOutputFields() {
632   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
633                                                MemberEnd = Members.end();
634        Member != MemberEnd; ++Member) {
635     if (Member->Data)
636       FieldTypes.push_back(Member->Data);
637     if (Member->Kind == MemberInfo::Field) {
638       if (Member->FD)
639         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
640       // A field without storage must be a bitfield.
641       if (!Member->Data)
642         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
643     } else if (Member->Kind == MemberInfo::Base)
644       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
645     else if (Member->Kind == MemberInfo::VBase)
646       VirtualBases[Member->RD] = FieldTypes.size() - 1;
647   }
648 }
649 
650 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
651                                         const FieldDecl *FD,
652                                         uint64_t Offset, uint64_t Size,
653                                         uint64_t StorageSize,
654                                         uint64_t StorageAlignment) {
655   // This function is vestigial from CGRecordLayoutBuilder days but is still
656   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
657   // when addressed will allow for the removal of this function.
658   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
659   CharUnits TypeSizeInBytes =
660     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
661   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
662 
663   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
664 
665   if (Size > TypeSizeInBits) {
666     // We have a wide bit-field. The extra bits are only used for padding, so
667     // if we have a bitfield of type T, with size N:
668     //
669     // T t : N;
670     //
671     // We can just assume that it's:
672     //
673     // T t : sizeof(T);
674     //
675     Size = TypeSizeInBits;
676   }
677 
678   // Reverse the bit offsets for big endian machines. Because we represent
679   // a bitfield as a single large integer load, we can imagine the bits
680   // counting from the most-significant-bit instead of the
681   // least-significant-bit.
682   if (Types.getDataLayout().isBigEndian()) {
683     Offset = StorageSize - (Offset + Size);
684   }
685 
686   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
687 }
688 
689 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
690                                                   llvm::StructType *Ty) {
691   CGRecordLowering Builder(*this, D, /*Packed=*/false);
692 
693   Builder.lower(/*NonVirtualBaseType=*/false);
694 
695   // If we're in C++, compute the base subobject type.
696   llvm::StructType *BaseTy = nullptr;
697   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
698     BaseTy = Ty;
699     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
700       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
701       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
702       BaseTy = llvm::StructType::create(
703           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
704       addRecordTypeName(D, BaseTy, ".base");
705       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
706       // on both of them with the same index.
707       assert(Builder.Packed == BaseBuilder.Packed &&
708              "Non-virtual and complete types must agree on packedness");
709     }
710   }
711 
712   // Fill in the struct *after* computing the base type.  Filling in the body
713   // signifies that the type is no longer opaque and record layout is complete,
714   // but we may need to recursively layout D while laying D out as a base type.
715   Ty->setBody(Builder.FieldTypes, Builder.Packed);
716 
717   CGRecordLayout *RL =
718     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
719                         Builder.IsZeroInitializableAsBase);
720 
721   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
722   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
723 
724   // Add all the field numbers.
725   RL->FieldInfo.swap(Builder.Fields);
726 
727   // Add bitfield info.
728   RL->BitFields.swap(Builder.BitFields);
729 
730   // Dump the layout, if requested.
731   if (getContext().getLangOpts().DumpRecordLayouts) {
732     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
733     llvm::outs() << "Record: ";
734     D->dump(llvm::outs());
735     llvm::outs() << "\nLayout: ";
736     RL->print(llvm::outs());
737   }
738 
739 #ifndef NDEBUG
740   // Verify that the computed LLVM struct size matches the AST layout size.
741   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
742 
743   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
744   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
745          "Type size mismatch!");
746 
747   if (BaseTy) {
748     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
749 
750     uint64_t AlignedNonVirtualTypeSizeInBits =
751       getContext().toBits(NonVirtualSize);
752 
753     assert(AlignedNonVirtualTypeSizeInBits ==
754            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
755            "Type size mismatch!");
756   }
757 
758   // Verify that the LLVM and AST field offsets agree.
759   llvm::StructType *ST =
760     dyn_cast<llvm::StructType>(RL->getLLVMType());
761   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
762 
763   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
764   RecordDecl::field_iterator it = D->field_begin();
765   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
766     const FieldDecl *FD = *it;
767 
768     // For non-bit-fields, just check that the LLVM struct offset matches the
769     // AST offset.
770     if (!FD->isBitField()) {
771       unsigned FieldNo = RL->getLLVMFieldNo(FD);
772       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
773              "Invalid field offset!");
774       continue;
775     }
776 
777     // Ignore unnamed bit-fields.
778     if (!FD->getDeclName())
779       continue;
780 
781     // Don't inspect zero-length bitfields.
782     if (FD->getBitWidthValue(getContext()) == 0)
783       continue;
784 
785     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
786     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
787 
788     // Unions have overlapping elements dictating their layout, but for
789     // non-unions we can verify that this section of the layout is the exact
790     // expected size.
791     if (D->isUnion()) {
792       // For unions we verify that the start is zero and the size
793       // is in-bounds. However, on BE systems, the offset may be non-zero, but
794       // the size + offset should match the storage size in that case as it
795       // "starts" at the back.
796       if (getDataLayout().isBigEndian())
797         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
798                Info.StorageSize &&
799                "Big endian union bitfield does not end at the back");
800       else
801         assert(Info.Offset == 0 &&
802                "Little endian union bitfield with a non-zero offset");
803       assert(Info.StorageSize <= SL->getSizeInBits() &&
804              "Union not large enough for bitfield storage");
805     } else {
806       assert(Info.StorageSize ==
807              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
808              "Storage size does not match the element type size");
809     }
810     assert(Info.Size > 0 && "Empty bitfield!");
811     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
812            "Bitfield outside of its allocated storage");
813   }
814 #endif
815 
816   return RL;
817 }
818 
819 void CGRecordLayout::print(raw_ostream &OS) const {
820   OS << "<CGRecordLayout\n";
821   OS << "  LLVMType:" << *CompleteObjectType << "\n";
822   if (BaseSubobjectType)
823     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
824   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
825   OS << "  BitFields:[\n";
826 
827   // Print bit-field infos in declaration order.
828   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
829   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
830          it = BitFields.begin(), ie = BitFields.end();
831        it != ie; ++it) {
832     const RecordDecl *RD = it->first->getParent();
833     unsigned Index = 0;
834     for (RecordDecl::field_iterator
835            it2 = RD->field_begin(); *it2 != it->first; ++it2)
836       ++Index;
837     BFIs.push_back(std::make_pair(Index, &it->second));
838   }
839   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
840   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
841     OS.indent(4);
842     BFIs[i].second->print(OS);
843     OS << "\n";
844   }
845 
846   OS << "]>\n";
847 }
848 
849 void CGRecordLayout::dump() const {
850   print(llvm::errs());
851 }
852 
853 void CGBitFieldInfo::print(raw_ostream &OS) const {
854   OS << "<CGBitFieldInfo"
855      << " Offset:" << Offset
856      << " Size:" << Size
857      << " IsSigned:" << IsSigned
858      << " StorageSize:" << StorageSize
859      << " StorageAlignment:" << StorageAlignment << ">";
860 }
861 
862 void CGBitFieldInfo::dump() const {
863   print(llvm::errs());
864 }
865