1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Support/ScopedPrinter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::FunctionCallee getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::FunctionCallee getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 } 85 86 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 87 /// 88 /// The messenger used when the return value is returned on the x87 89 /// floating-point stack; without a special entrypoint, the nil case 90 /// would be unbalanced. 91 llvm::FunctionCallee getMessageSendFpretFn() const { 92 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 93 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 94 params, true), 95 "objc_msgSend_fpret"); 96 } 97 98 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 99 /// 100 /// The messenger used when the return value is returned in two values on the 101 /// x87 floating point stack; without a special entrypoint, the nil case 102 /// would be unbalanced. Only used on 64-bit X86. 103 llvm::FunctionCallee getMessageSendFp2retFn() const { 104 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 105 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 106 llvm::Type *resultType = 107 llvm::StructType::get(longDoubleType, longDoubleType); 108 109 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 110 params, true), 111 "objc_msgSend_fp2ret"); 112 } 113 114 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 115 /// 116 /// The messenger used for super calls, which have different dispatch 117 /// semantics. The class passed is the superclass of the current 118 /// class. 119 llvm::FunctionCallee getMessageSendSuperFn() const { 120 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 121 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 122 params, true), 123 "objc_msgSendSuper"); 124 } 125 126 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 127 /// 128 /// A slightly different messenger used for super calls. The class 129 /// passed is the current class. 130 llvm::FunctionCallee getMessageSendSuperFn2() const { 131 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 132 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 133 params, true), 134 "objc_msgSendSuper2"); 135 } 136 137 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 138 /// SEL op, ...) 139 /// 140 /// The messenger used for super calls which return an aggregate indirectly. 141 llvm::FunctionCallee getMessageSendSuperStretFn() const { 142 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 143 return CGM.CreateRuntimeFunction( 144 llvm::FunctionType::get(CGM.VoidTy, params, true), 145 "objc_msgSendSuper_stret"); 146 } 147 148 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 149 /// SEL op, ...) 150 /// 151 /// objc_msgSendSuper_stret with the super2 semantics. 152 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 153 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 154 return CGM.CreateRuntimeFunction( 155 llvm::FunctionType::get(CGM.VoidTy, params, true), 156 "objc_msgSendSuper2_stret"); 157 } 158 159 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 160 // There is no objc_msgSendSuper_fpret? How can that work? 161 return getMessageSendSuperFn(); 162 } 163 164 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 165 // There is no objc_msgSendSuper_fpret? How can that work? 166 return getMessageSendSuperFn2(); 167 } 168 169 protected: 170 CodeGen::CodeGenModule &CGM; 171 172 public: 173 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 174 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 175 llvm::Type *IvarOffsetVarTy; 176 177 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 178 llvm::PointerType *ObjectPtrTy; 179 180 /// PtrObjectPtrTy - LLVM type for id * 181 llvm::PointerType *PtrObjectPtrTy; 182 183 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 184 llvm::PointerType *SelectorPtrTy; 185 186 private: 187 /// ProtocolPtrTy - LLVM type for external protocol handles 188 /// (typeof(Protocol)) 189 llvm::Type *ExternalProtocolPtrTy; 190 191 public: 192 llvm::Type *getExternalProtocolPtrTy() { 193 if (!ExternalProtocolPtrTy) { 194 // FIXME: It would be nice to unify this with the opaque type, so that the 195 // IR comes out a bit cleaner. 196 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 197 ASTContext &Ctx = CGM.getContext(); 198 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 199 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 200 } 201 202 return ExternalProtocolPtrTy; 203 } 204 205 // SuperCTy - clang type for struct objc_super. 206 QualType SuperCTy; 207 // SuperPtrCTy - clang type for struct objc_super *. 208 QualType SuperPtrCTy; 209 210 /// SuperTy - LLVM type for struct objc_super. 211 llvm::StructType *SuperTy; 212 /// SuperPtrTy - LLVM type for struct objc_super *. 213 llvm::PointerType *SuperPtrTy; 214 215 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 216 /// in GCC parlance). 217 llvm::StructType *PropertyTy; 218 219 /// PropertyListTy - LLVM type for struct objc_property_list 220 /// (_prop_list_t in GCC parlance). 221 llvm::StructType *PropertyListTy; 222 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 223 llvm::PointerType *PropertyListPtrTy; 224 225 // MethodTy - LLVM type for struct objc_method. 226 llvm::StructType *MethodTy; 227 228 /// CacheTy - LLVM type for struct objc_cache. 229 llvm::Type *CacheTy; 230 /// CachePtrTy - LLVM type for struct objc_cache *. 231 llvm::PointerType *CachePtrTy; 232 233 llvm::FunctionCallee getGetPropertyFn() { 234 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 235 ASTContext &Ctx = CGM.getContext(); 236 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 237 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 238 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 239 CanQualType Params[] = { 240 IdType, SelType, 241 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 242 llvm::FunctionType *FTy = 243 Types.GetFunctionType( 244 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 245 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 246 } 247 248 llvm::FunctionCallee getSetPropertyFn() { 249 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 250 ASTContext &Ctx = CGM.getContext(); 251 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 252 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 253 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 254 CanQualType Params[] = { 255 IdType, 256 SelType, 257 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 258 IdType, 259 Ctx.BoolTy, 260 Ctx.BoolTy}; 261 llvm::FunctionType *FTy = 262 Types.GetFunctionType( 263 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 264 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 265 } 266 267 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 268 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 269 ASTContext &Ctx = CGM.getContext(); 270 // void objc_setProperty_atomic(id self, SEL _cmd, 271 // id newValue, ptrdiff_t offset); 272 // void objc_setProperty_nonatomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 279 SmallVector<CanQualType,4> Params; 280 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 281 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 282 Params.push_back(IdType); 283 Params.push_back(SelType); 284 Params.push_back(IdType); 285 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 286 llvm::FunctionType *FTy = 287 Types.GetFunctionType( 288 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 289 const char *name; 290 if (atomic && copy) 291 name = "objc_setProperty_atomic_copy"; 292 else if (atomic && !copy) 293 name = "objc_setProperty_atomic"; 294 else if (!atomic && copy) 295 name = "objc_setProperty_nonatomic_copy"; 296 else 297 name = "objc_setProperty_nonatomic"; 298 299 return CGM.CreateRuntimeFunction(FTy, name); 300 } 301 302 llvm::FunctionCallee getCopyStructFn() { 303 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 304 ASTContext &Ctx = CGM.getContext(); 305 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 306 SmallVector<CanQualType,5> Params; 307 Params.push_back(Ctx.VoidPtrTy); 308 Params.push_back(Ctx.VoidPtrTy); 309 Params.push_back(Ctx.getSizeType()); 310 Params.push_back(Ctx.BoolTy); 311 Params.push_back(Ctx.BoolTy); 312 llvm::FunctionType *FTy = 313 Types.GetFunctionType( 314 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 315 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 316 } 317 318 /// This routine declares and returns address of: 319 /// void objc_copyCppObjectAtomic( 320 /// void *dest, const void *src, 321 /// void (*copyHelper) (void *dest, const void *source)); 322 llvm::FunctionCallee getCppAtomicObjectFunction() { 323 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 324 ASTContext &Ctx = CGM.getContext(); 325 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 326 SmallVector<CanQualType,3> Params; 327 Params.push_back(Ctx.VoidPtrTy); 328 Params.push_back(Ctx.VoidPtrTy); 329 Params.push_back(Ctx.VoidPtrTy); 330 llvm::FunctionType *FTy = 331 Types.GetFunctionType( 332 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 333 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 334 } 335 336 llvm::FunctionCallee getEnumerationMutationFn() { 337 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 338 ASTContext &Ctx = CGM.getContext(); 339 // void objc_enumerationMutation (id) 340 SmallVector<CanQualType,1> Params; 341 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 342 llvm::FunctionType *FTy = 343 Types.GetFunctionType( 344 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 345 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 346 } 347 348 llvm::FunctionCallee getLookUpClassFn() { 349 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 350 ASTContext &Ctx = CGM.getContext(); 351 // Class objc_lookUpClass (const char *) 352 SmallVector<CanQualType,1> Params; 353 Params.push_back( 354 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 355 llvm::FunctionType *FTy = 356 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 357 Ctx.getCanonicalType(Ctx.getObjCClassType()), 358 Params)); 359 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 360 } 361 362 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 363 llvm::FunctionCallee getGcReadWeakFn() { 364 // id objc_read_weak (id *) 365 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 366 llvm::FunctionType *FTy = 367 llvm::FunctionType::get(ObjectPtrTy, args, false); 368 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 369 } 370 371 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 372 llvm::FunctionCallee getGcAssignWeakFn() { 373 // id objc_assign_weak (id, id *) 374 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 375 llvm::FunctionType *FTy = 376 llvm::FunctionType::get(ObjectPtrTy, args, false); 377 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 378 } 379 380 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 381 llvm::FunctionCallee getGcAssignGlobalFn() { 382 // id objc_assign_global(id, id *) 383 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 384 llvm::FunctionType *FTy = 385 llvm::FunctionType::get(ObjectPtrTy, args, false); 386 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 387 } 388 389 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 390 llvm::FunctionCallee getGcAssignThreadLocalFn() { 391 // id objc_assign_threadlocal(id src, id * dest) 392 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 393 llvm::FunctionType *FTy = 394 llvm::FunctionType::get(ObjectPtrTy, args, false); 395 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 396 } 397 398 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 399 llvm::FunctionCallee getGcAssignIvarFn() { 400 // id objc_assign_ivar(id, id *, ptrdiff_t) 401 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 402 CGM.PtrDiffTy }; 403 llvm::FunctionType *FTy = 404 llvm::FunctionType::get(ObjectPtrTy, args, false); 405 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 406 } 407 408 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 409 llvm::FunctionCallee GcMemmoveCollectableFn() { 410 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 411 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 412 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 413 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 414 } 415 416 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 417 llvm::FunctionCallee getGcAssignStrongCastFn() { 418 // id objc_assign_strongCast(id, id *) 419 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 420 llvm::FunctionType *FTy = 421 llvm::FunctionType::get(ObjectPtrTy, args, false); 422 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 423 } 424 425 /// ExceptionThrowFn - LLVM objc_exception_throw function. 426 llvm::FunctionCallee getExceptionThrowFn() { 427 // void objc_exception_throw(id) 428 llvm::Type *args[] = { ObjectPtrTy }; 429 llvm::FunctionType *FTy = 430 llvm::FunctionType::get(CGM.VoidTy, args, false); 431 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 432 } 433 434 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 435 llvm::FunctionCallee getExceptionRethrowFn() { 436 // void objc_exception_rethrow(void) 437 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 438 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 439 } 440 441 /// SyncEnterFn - LLVM object_sync_enter function. 442 llvm::FunctionCallee getSyncEnterFn() { 443 // int objc_sync_enter (id) 444 llvm::Type *args[] = { ObjectPtrTy }; 445 llvm::FunctionType *FTy = 446 llvm::FunctionType::get(CGM.IntTy, args, false); 447 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 448 } 449 450 /// SyncExitFn - LLVM object_sync_exit function. 451 llvm::FunctionCallee getSyncExitFn() { 452 // int objc_sync_exit (id) 453 llvm::Type *args[] = { ObjectPtrTy }; 454 llvm::FunctionType *FTy = 455 llvm::FunctionType::get(CGM.IntTy, args, false); 456 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 457 } 458 459 llvm::FunctionCallee getSendFn(bool IsSuper) const { 460 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 461 } 462 463 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 464 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 465 } 466 467 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 468 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 469 } 470 471 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 472 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 473 } 474 475 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 476 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 477 } 478 479 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 480 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 481 } 482 483 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 484 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 485 } 486 487 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 488 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 489 } 490 491 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 492 }; 493 494 /// ObjCTypesHelper - Helper class that encapsulates lazy 495 /// construction of varies types used during ObjC generation. 496 class ObjCTypesHelper : public ObjCCommonTypesHelper { 497 public: 498 /// SymtabTy - LLVM type for struct objc_symtab. 499 llvm::StructType *SymtabTy; 500 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 501 llvm::PointerType *SymtabPtrTy; 502 /// ModuleTy - LLVM type for struct objc_module. 503 llvm::StructType *ModuleTy; 504 505 /// ProtocolTy - LLVM type for struct objc_protocol. 506 llvm::StructType *ProtocolTy; 507 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 508 llvm::PointerType *ProtocolPtrTy; 509 /// ProtocolExtensionTy - LLVM type for struct 510 /// objc_protocol_extension. 511 llvm::StructType *ProtocolExtensionTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension *. 514 llvm::PointerType *ProtocolExtensionPtrTy; 515 /// MethodDescriptionTy - LLVM type for struct 516 /// objc_method_description. 517 llvm::StructType *MethodDescriptionTy; 518 /// MethodDescriptionListTy - LLVM type for struct 519 /// objc_method_description_list. 520 llvm::StructType *MethodDescriptionListTy; 521 /// MethodDescriptionListPtrTy - LLVM type for struct 522 /// objc_method_description_list *. 523 llvm::PointerType *MethodDescriptionListPtrTy; 524 /// ProtocolListTy - LLVM type for struct objc_property_list. 525 llvm::StructType *ProtocolListTy; 526 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 527 llvm::PointerType *ProtocolListPtrTy; 528 /// CategoryTy - LLVM type for struct objc_category. 529 llvm::StructType *CategoryTy; 530 /// ClassTy - LLVM type for struct objc_class. 531 llvm::StructType *ClassTy; 532 /// ClassPtrTy - LLVM type for struct objc_class *. 533 llvm::PointerType *ClassPtrTy; 534 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 535 llvm::StructType *ClassExtensionTy; 536 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 537 llvm::PointerType *ClassExtensionPtrTy; 538 // IvarTy - LLVM type for struct objc_ivar. 539 llvm::StructType *IvarTy; 540 /// IvarListTy - LLVM type for struct objc_ivar_list. 541 llvm::StructType *IvarListTy; 542 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 543 llvm::PointerType *IvarListPtrTy; 544 /// MethodListTy - LLVM type for struct objc_method_list. 545 llvm::StructType *MethodListTy; 546 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 547 llvm::PointerType *MethodListPtrTy; 548 549 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 550 llvm::StructType *ExceptionDataTy; 551 552 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 553 llvm::FunctionCallee getExceptionTryEnterFn() { 554 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 555 return CGM.CreateRuntimeFunction( 556 llvm::FunctionType::get(CGM.VoidTy, params, false), 557 "objc_exception_try_enter"); 558 } 559 560 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 561 llvm::FunctionCallee getExceptionTryExitFn() { 562 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 563 return CGM.CreateRuntimeFunction( 564 llvm::FunctionType::get(CGM.VoidTy, params, false), 565 "objc_exception_try_exit"); 566 } 567 568 /// ExceptionExtractFn - LLVM objc_exception_extract function. 569 llvm::FunctionCallee getExceptionExtractFn() { 570 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 571 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 572 params, false), 573 "objc_exception_extract"); 574 } 575 576 /// ExceptionMatchFn - LLVM objc_exception_match function. 577 llvm::FunctionCallee getExceptionMatchFn() { 578 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 579 return CGM.CreateRuntimeFunction( 580 llvm::FunctionType::get(CGM.Int32Ty, params, false), 581 "objc_exception_match"); 582 } 583 584 /// SetJmpFn - LLVM _setjmp function. 585 llvm::FunctionCallee getSetJmpFn() { 586 // This is specifically the prototype for x86. 587 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 588 return CGM.CreateRuntimeFunction( 589 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 590 llvm::AttributeList::get(CGM.getLLVMContext(), 591 llvm::AttributeList::FunctionIndex, 592 llvm::Attribute::NonLazyBind)); 593 } 594 595 public: 596 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 597 }; 598 599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600 /// modern abi 601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602 public: 603 // MethodListnfABITy - LLVM for struct _method_list_t 604 llvm::StructType *MethodListnfABITy; 605 606 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 607 llvm::PointerType *MethodListnfABIPtrTy; 608 609 // ProtocolnfABITy = LLVM for struct _protocol_t 610 llvm::StructType *ProtocolnfABITy; 611 612 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 613 llvm::PointerType *ProtocolnfABIPtrTy; 614 615 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 616 llvm::StructType *ProtocolListnfABITy; 617 618 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 619 llvm::PointerType *ProtocolListnfABIPtrTy; 620 621 // ClassnfABITy - LLVM for struct _class_t 622 llvm::StructType *ClassnfABITy; 623 624 // ClassnfABIPtrTy - LLVM for struct _class_t* 625 llvm::PointerType *ClassnfABIPtrTy; 626 627 // IvarnfABITy - LLVM for struct _ivar_t 628 llvm::StructType *IvarnfABITy; 629 630 // IvarListnfABITy - LLVM for struct _ivar_list_t 631 llvm::StructType *IvarListnfABITy; 632 633 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 634 llvm::PointerType *IvarListnfABIPtrTy; 635 636 // ClassRonfABITy - LLVM for struct _class_ro_t 637 llvm::StructType *ClassRonfABITy; 638 639 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 640 llvm::PointerType *ImpnfABITy; 641 642 // CategorynfABITy - LLVM for struct _category_t 643 llvm::StructType *CategorynfABITy; 644 645 // New types for nonfragile abi messaging. 646 647 // MessageRefTy - LLVM for: 648 // struct _message_ref_t { 649 // IMP messenger; 650 // SEL name; 651 // }; 652 llvm::StructType *MessageRefTy; 653 // MessageRefCTy - clang type for struct _message_ref_t 654 QualType MessageRefCTy; 655 656 // MessageRefPtrTy - LLVM for struct _message_ref_t* 657 llvm::Type *MessageRefPtrTy; 658 // MessageRefCPtrTy - clang type for struct _message_ref_t* 659 QualType MessageRefCPtrTy; 660 661 // SuperMessageRefTy - LLVM for: 662 // struct _super_message_ref_t { 663 // SUPER_IMP messenger; 664 // SEL name; 665 // }; 666 llvm::StructType *SuperMessageRefTy; 667 668 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 669 llvm::PointerType *SuperMessageRefPtrTy; 670 671 llvm::FunctionCallee getMessageSendFixupFn() { 672 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 673 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 674 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 675 params, true), 676 "objc_msgSend_fixup"); 677 } 678 679 llvm::FunctionCallee getMessageSendFpretFixupFn() { 680 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 681 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 682 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 683 params, true), 684 "objc_msgSend_fpret_fixup"); 685 } 686 687 llvm::FunctionCallee getMessageSendStretFixupFn() { 688 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 689 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 690 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 691 params, true), 692 "objc_msgSend_stret_fixup"); 693 } 694 695 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 696 // id objc_msgSendSuper2_fixup (struct objc_super *, 697 // struct _super_message_ref_t*, ...) 698 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 699 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 700 params, true), 701 "objc_msgSendSuper2_fixup"); 702 } 703 704 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 705 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 706 // struct _super_message_ref_t*, ...) 707 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 708 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 709 params, true), 710 "objc_msgSendSuper2_stret_fixup"); 711 } 712 713 llvm::FunctionCallee getObjCEndCatchFn() { 714 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 715 "objc_end_catch"); 716 } 717 718 llvm::FunctionCallee getObjCBeginCatchFn() { 719 llvm::Type *params[] = { Int8PtrTy }; 720 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 721 params, false), 722 "objc_begin_catch"); 723 } 724 725 /// Class objc_loadClassref (void *) 726 /// 727 /// Loads from a classref. For Objective-C stub classes, this invokes the 728 /// initialization callback stored inside the stub. For all other classes 729 /// this simply dereferences the pointer. 730 llvm::FunctionCallee getLoadClassrefFn() const { 731 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 732 // be called a lot. 733 // 734 // Also it is safe to make it readnone, since we never load or store the 735 // classref except by calling this function. 736 llvm::Type *params[] = { Int8PtrPtrTy }; 737 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 738 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 739 "objc_loadClassref", 740 llvm::AttributeList::get(CGM.getLLVMContext(), 741 llvm::AttributeList::FunctionIndex, 742 {llvm::Attribute::NonLazyBind, 743 llvm::Attribute::ReadNone, 744 llvm::Attribute::NoUnwind})); 745 if (!CGM.getTriple().isOSBinFormatCOFF()) 746 cast<llvm::Function>(F.getCallee())->setLinkage( 747 llvm::Function::ExternalWeakLinkage); 748 749 return F; 750 } 751 752 llvm::StructType *EHTypeTy; 753 llvm::Type *EHTypePtrTy; 754 755 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 756 }; 757 758 enum class ObjCLabelType { 759 ClassName, 760 MethodVarName, 761 MethodVarType, 762 PropertyName, 763 }; 764 765 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 766 public: 767 class SKIP_SCAN { 768 public: 769 unsigned skip; 770 unsigned scan; 771 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 772 : skip(_skip), scan(_scan) {} 773 }; 774 775 /// opcode for captured block variables layout 'instructions'. 776 /// In the following descriptions, 'I' is the value of the immediate field. 777 /// (field following the opcode). 778 /// 779 enum BLOCK_LAYOUT_OPCODE { 780 /// An operator which affects how the following layout should be 781 /// interpreted. 782 /// I == 0: Halt interpretation and treat everything else as 783 /// a non-pointer. Note that this instruction is equal 784 /// to '\0'. 785 /// I != 0: Currently unused. 786 BLOCK_LAYOUT_OPERATOR = 0, 787 788 /// The next I+1 bytes do not contain a value of object pointer type. 789 /// Note that this can leave the stream unaligned, meaning that 790 /// subsequent word-size instructions do not begin at a multiple of 791 /// the pointer size. 792 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 793 794 /// The next I+1 words do not contain a value of object pointer type. 795 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 796 /// when the required skip quantity is a multiple of the pointer size. 797 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 798 799 /// The next I+1 words are __strong pointers to Objective-C 800 /// objects or blocks. 801 BLOCK_LAYOUT_STRONG = 3, 802 803 /// The next I+1 words are pointers to __block variables. 804 BLOCK_LAYOUT_BYREF = 4, 805 806 /// The next I+1 words are __weak pointers to Objective-C 807 /// objects or blocks. 808 BLOCK_LAYOUT_WEAK = 5, 809 810 /// The next I+1 words are __unsafe_unretained pointers to 811 /// Objective-C objects or blocks. 812 BLOCK_LAYOUT_UNRETAINED = 6 813 814 /// The next I+1 words are block or object pointers with some 815 /// as-yet-unspecified ownership semantics. If we add more 816 /// flavors of ownership semantics, values will be taken from 817 /// this range. 818 /// 819 /// This is included so that older tools can at least continue 820 /// processing the layout past such things. 821 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 822 823 /// All other opcodes are reserved. Halt interpretation and 824 /// treat everything else as opaque. 825 }; 826 827 class RUN_SKIP { 828 public: 829 enum BLOCK_LAYOUT_OPCODE opcode; 830 CharUnits block_var_bytepos; 831 CharUnits block_var_size; 832 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 833 CharUnits BytePos = CharUnits::Zero(), 834 CharUnits Size = CharUnits::Zero()) 835 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 836 837 // Allow sorting based on byte pos. 838 bool operator<(const RUN_SKIP &b) const { 839 return block_var_bytepos < b.block_var_bytepos; 840 } 841 }; 842 843 protected: 844 llvm::LLVMContext &VMContext; 845 // FIXME! May not be needing this after all. 846 unsigned ObjCABI; 847 848 // arc/mrr layout of captured block literal variables. 849 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 850 851 /// LazySymbols - Symbols to generate a lazy reference for. See 852 /// DefinedSymbols and FinishModule(). 853 llvm::SetVector<IdentifierInfo*> LazySymbols; 854 855 /// DefinedSymbols - External symbols which are defined by this 856 /// module. The symbols in this list and LazySymbols are used to add 857 /// special linker symbols which ensure that Objective-C modules are 858 /// linked properly. 859 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 860 861 /// ClassNames - uniqued class names. 862 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 863 864 /// MethodVarNames - uniqued method variable names. 865 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 866 867 /// DefinedCategoryNames - list of category names in form Class_Category. 868 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 869 870 /// MethodVarTypes - uniqued method type signatures. We have to use 871 /// a StringMap here because have no other unique reference. 872 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 873 874 /// MethodDefinitions - map of methods which have been defined in 875 /// this translation unit. 876 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 877 878 /// DirectMethodDefinitions - map of direct methods which have been defined in 879 /// this translation unit. 880 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 881 882 /// PropertyNames - uniqued method variable names. 883 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 884 885 /// ClassReferences - uniqued class references. 886 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 887 888 /// SelectorReferences - uniqued selector references. 889 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 890 891 /// Protocols - Protocols for which an objc_protocol structure has 892 /// been emitted. Forward declarations are handled by creating an 893 /// empty structure whose initializer is filled in when/if defined. 894 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 895 896 /// DefinedProtocols - Protocols which have actually been 897 /// defined. We should not need this, see FIXME in GenerateProtocol. 898 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 899 900 /// DefinedClasses - List of defined classes. 901 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 902 903 /// ImplementedClasses - List of @implemented classes. 904 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 905 906 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 908 909 /// DefinedCategories - List of defined categories. 910 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 911 912 /// DefinedStubCategories - List of defined categories on class stubs. 913 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 914 915 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 917 918 /// Cached reference to the class for constant strings. This value has type 919 /// int * but is actually an Obj-C class pointer. 920 llvm::WeakTrackingVH ConstantStringClassRef; 921 922 /// The LLVM type corresponding to NSConstantString. 923 llvm::StructType *NSConstantStringType = nullptr; 924 925 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 926 927 /// GetNameForMethod - Return a name for the given method. 928 /// \param[out] NameOut - The return value. 929 void GetNameForMethod(const ObjCMethodDecl *OMD, 930 const ObjCContainerDecl *CD, 931 SmallVectorImpl<char> &NameOut, 932 bool ignoreCategoryNamespace = false); 933 934 /// GetMethodVarName - Return a unique constant for the given 935 /// selector's name. The return value has type char *. 936 llvm::Constant *GetMethodVarName(Selector Sel); 937 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 938 939 /// GetMethodVarType - Return a unique constant for the given 940 /// method's type encoding string. The return value has type char *. 941 942 // FIXME: This is a horrible name. 943 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 944 bool Extended = false); 945 llvm::Constant *GetMethodVarType(const FieldDecl *D); 946 947 /// GetPropertyName - Return a unique constant for the given 948 /// name. The return value has type char *. 949 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 950 951 // FIXME: This can be dropped once string functions are unified. 952 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 953 const Decl *Container); 954 955 /// GetClassName - Return a unique constant for the given selector's 956 /// runtime name (which may change via use of objc_runtime_name attribute on 957 /// class or protocol definition. The return value has type char *. 958 llvm::Constant *GetClassName(StringRef RuntimeName); 959 960 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 961 962 /// BuildIvarLayout - Builds ivar layout bitmap for the class 963 /// implementation for the __strong or __weak case. 964 /// 965 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 966 /// are any weak ivars defined directly in the class. Meaningless unless 967 /// building a weak layout. Does not guarantee that the layout will 968 /// actually have any entries, because the ivar might be under-aligned. 969 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 970 CharUnits beginOffset, 971 CharUnits endOffset, 972 bool forStrongLayout, 973 bool hasMRCWeakIvars); 974 975 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 976 CharUnits beginOffset, 977 CharUnits endOffset) { 978 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 979 } 980 981 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 982 CharUnits beginOffset, 983 CharUnits endOffset, 984 bool hasMRCWeakIvars) { 985 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 986 } 987 988 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 989 990 void UpdateRunSkipBlockVars(bool IsByref, 991 Qualifiers::ObjCLifetime LifeTime, 992 CharUnits FieldOffset, 993 CharUnits FieldSize); 994 995 void BuildRCBlockVarRecordLayout(const RecordType *RT, 996 CharUnits BytePos, bool &HasUnion, 997 bool ByrefLayout=false); 998 999 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 1000 const RecordDecl *RD, 1001 ArrayRef<const FieldDecl*> RecFields, 1002 CharUnits BytePos, bool &HasUnion, 1003 bool ByrefLayout); 1004 1005 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1006 1007 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1008 1009 /// GetIvarLayoutName - Returns a unique constant for the given 1010 /// ivar layout bitmap. 1011 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1012 const ObjCCommonTypesHelper &ObjCTypes); 1013 1014 /// EmitPropertyList - Emit the given property list. The return 1015 /// value has type PropertyListPtrTy. 1016 llvm::Constant *EmitPropertyList(Twine Name, 1017 const Decl *Container, 1018 const ObjCContainerDecl *OCD, 1019 const ObjCCommonTypesHelper &ObjCTypes, 1020 bool IsClassProperty); 1021 1022 /// EmitProtocolMethodTypes - Generate the array of extended method type 1023 /// strings. The return value has type Int8PtrPtrTy. 1024 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1025 ArrayRef<llvm::Constant*> MethodTypes, 1026 const ObjCCommonTypesHelper &ObjCTypes); 1027 1028 /// GetProtocolRef - Return a reference to the internal protocol 1029 /// description, creating an empty one if it has not been 1030 /// defined. The return value has type ProtocolPtrTy. 1031 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1032 1033 /// Return a reference to the given Class using runtime calls rather than 1034 /// by a symbol reference. 1035 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1036 const ObjCInterfaceDecl *ID, 1037 ObjCCommonTypesHelper &ObjCTypes); 1038 1039 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1040 1041 public: 1042 /// CreateMetadataVar - Create a global variable with internal 1043 /// linkage for use by the Objective-C runtime. 1044 /// 1045 /// This is a convenience wrapper which not only creates the 1046 /// variable, but also sets the section and alignment and adds the 1047 /// global to the "llvm.used" list. 1048 /// 1049 /// \param Name - The variable name. 1050 /// \param Init - The variable initializer; this is also used to 1051 /// define the type of the variable. 1052 /// \param Section - The section the variable should go into, or empty. 1053 /// \param Align - The alignment for the variable, or 0. 1054 /// \param AddToUsed - Whether the variable should be added to 1055 /// "llvm.used". 1056 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1057 ConstantStructBuilder &Init, 1058 StringRef Section, CharUnits Align, 1059 bool AddToUsed); 1060 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1061 llvm::Constant *Init, 1062 StringRef Section, CharUnits Align, 1063 bool AddToUsed); 1064 1065 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1066 ObjCLabelType LabelType, 1067 bool ForceNonFragileABI = false, 1068 bool NullTerminate = true); 1069 1070 protected: 1071 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1072 ReturnValueSlot Return, 1073 QualType ResultType, 1074 Selector Sel, 1075 llvm::Value *Arg0, 1076 QualType Arg0Ty, 1077 bool IsSuper, 1078 const CallArgList &CallArgs, 1079 const ObjCMethodDecl *OMD, 1080 const ObjCInterfaceDecl *ClassReceiver, 1081 const ObjCCommonTypesHelper &ObjCTypes); 1082 1083 /// EmitImageInfo - Emit the image info marker used to encode some module 1084 /// level information. 1085 void EmitImageInfo(); 1086 1087 public: 1088 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1089 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1090 1091 bool isNonFragileABI() const { 1092 return ObjCABI == 2; 1093 } 1094 1095 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1096 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1097 1098 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1099 const ObjCContainerDecl *CD=nullptr) override; 1100 1101 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1102 const ObjCContainerDecl *CD); 1103 1104 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1105 const ObjCMethodDecl *OMD, 1106 const ObjCContainerDecl *CD) override; 1107 1108 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1109 1110 /// GetOrEmitProtocol - Get the protocol object for the given 1111 /// declaration, emitting it if necessary. The return value has type 1112 /// ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1114 1115 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1116 /// object for the given declaration, emitting it if needed. These 1117 /// forward references will be filled in with empty bodies if no 1118 /// definition is seen. The return value has type ProtocolPtrTy. 1119 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1120 1121 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1122 1123 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1124 const CGBlockInfo &blockInfo) override; 1125 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1126 const CGBlockInfo &blockInfo) override; 1127 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1128 const CGBlockInfo &blockInfo) override; 1129 1130 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1131 QualType T) override; 1132 1133 private: 1134 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1135 }; 1136 1137 namespace { 1138 1139 enum class MethodListType { 1140 CategoryInstanceMethods, 1141 CategoryClassMethods, 1142 InstanceMethods, 1143 ClassMethods, 1144 ProtocolInstanceMethods, 1145 ProtocolClassMethods, 1146 OptionalProtocolInstanceMethods, 1147 OptionalProtocolClassMethods, 1148 }; 1149 1150 /// A convenience class for splitting the methods of a protocol into 1151 /// the four interesting groups. 1152 class ProtocolMethodLists { 1153 public: 1154 enum Kind { 1155 RequiredInstanceMethods, 1156 RequiredClassMethods, 1157 OptionalInstanceMethods, 1158 OptionalClassMethods 1159 }; 1160 enum { 1161 NumProtocolMethodLists = 4 1162 }; 1163 1164 static MethodListType getMethodListKind(Kind kind) { 1165 switch (kind) { 1166 case RequiredInstanceMethods: 1167 return MethodListType::ProtocolInstanceMethods; 1168 case RequiredClassMethods: 1169 return MethodListType::ProtocolClassMethods; 1170 case OptionalInstanceMethods: 1171 return MethodListType::OptionalProtocolInstanceMethods; 1172 case OptionalClassMethods: 1173 return MethodListType::OptionalProtocolClassMethods; 1174 } 1175 llvm_unreachable("bad kind"); 1176 } 1177 1178 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1179 1180 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1181 ProtocolMethodLists result; 1182 1183 for (auto MD : PD->methods()) { 1184 size_t index = (2 * size_t(MD->isOptional())) 1185 + (size_t(MD->isClassMethod())); 1186 result.Methods[index].push_back(MD); 1187 } 1188 1189 return result; 1190 } 1191 1192 template <class Self> 1193 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1194 // In both ABIs, the method types list is parallel with the 1195 // concatenation of the methods arrays in the following order: 1196 // instance methods 1197 // class methods 1198 // optional instance methods 1199 // optional class methods 1200 SmallVector<llvm::Constant*, 8> result; 1201 1202 // Methods is already in the correct order for both ABIs. 1203 for (auto &list : Methods) { 1204 for (auto MD : list) { 1205 result.push_back(self->GetMethodVarType(MD, true)); 1206 } 1207 } 1208 1209 return result; 1210 } 1211 1212 template <class Self> 1213 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1214 Kind kind) const { 1215 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1216 getMethodListKind(kind), Methods[kind]); 1217 } 1218 }; 1219 1220 } // end anonymous namespace 1221 1222 class CGObjCMac : public CGObjCCommonMac { 1223 private: 1224 friend ProtocolMethodLists; 1225 1226 ObjCTypesHelper ObjCTypes; 1227 1228 /// EmitModuleInfo - Another marker encoding module level 1229 /// information. 1230 void EmitModuleInfo(); 1231 1232 /// EmitModuleSymols - Emit module symbols, the list of defined 1233 /// classes and categories. The result has type SymtabPtrTy. 1234 llvm::Constant *EmitModuleSymbols(); 1235 1236 /// FinishModule - Write out global data structures at the end of 1237 /// processing a translation unit. 1238 void FinishModule(); 1239 1240 /// EmitClassExtension - Generate the class extension structure used 1241 /// to store the weak ivar layout and properties. The return value 1242 /// has type ClassExtensionPtrTy. 1243 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1244 CharUnits instanceSize, 1245 bool hasMRCWeakIvars, 1246 bool isMetaclass); 1247 1248 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1249 /// for the given class. 1250 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1251 const ObjCInterfaceDecl *ID); 1252 1253 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1254 IdentifierInfo *II); 1255 1256 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1257 1258 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1259 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1260 1261 /// EmitIvarList - Emit the ivar list for the given 1262 /// implementation. If ForClass is true the list of class ivars 1263 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1264 /// interface ivars will be emitted. The return value has type 1265 /// IvarListPtrTy. 1266 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1267 bool ForClass); 1268 1269 /// EmitMetaClass - Emit a forward reference to the class structure 1270 /// for the metaclass of the given interface. The return value has 1271 /// type ClassPtrTy. 1272 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1273 1274 /// EmitMetaClass - Emit a class structure for the metaclass of the 1275 /// given implementation. The return value has type ClassPtrTy. 1276 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1277 llvm::Constant *Protocols, 1278 ArrayRef<const ObjCMethodDecl *> Methods); 1279 1280 void emitMethodConstant(ConstantArrayBuilder &builder, 1281 const ObjCMethodDecl *MD); 1282 1283 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1284 const ObjCMethodDecl *MD); 1285 1286 /// EmitMethodList - Emit the method list for the given 1287 /// implementation. The return value has type MethodListPtrTy. 1288 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1289 ArrayRef<const ObjCMethodDecl *> Methods); 1290 1291 /// GetOrEmitProtocol - Get the protocol object for the given 1292 /// declaration, emitting it if necessary. The return value has type 1293 /// ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1295 1296 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1297 /// object for the given declaration, emitting it if needed. These 1298 /// forward references will be filled in with empty bodies if no 1299 /// definition is seen. The return value has type ProtocolPtrTy. 1300 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1301 1302 /// EmitProtocolExtension - Generate the protocol extension 1303 /// structure used to store optional instance and class methods, and 1304 /// protocol properties. The return value has type 1305 /// ProtocolExtensionPtrTy. 1306 llvm::Constant * 1307 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1308 const ProtocolMethodLists &methodLists); 1309 1310 /// EmitProtocolList - Generate the list of referenced 1311 /// protocols. The return value has type ProtocolListPtrTy. 1312 llvm::Constant *EmitProtocolList(Twine Name, 1313 ObjCProtocolDecl::protocol_iterator begin, 1314 ObjCProtocolDecl::protocol_iterator end); 1315 1316 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1317 /// for the given selector. 1318 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1319 Address EmitSelectorAddr(Selector Sel); 1320 1321 public: 1322 CGObjCMac(CodeGen::CodeGenModule &cgm); 1323 1324 llvm::Constant *getNSConstantStringClassRef() override; 1325 1326 llvm::Function *ModuleInitFunction() override; 1327 1328 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1329 ReturnValueSlot Return, 1330 QualType ResultType, 1331 Selector Sel, llvm::Value *Receiver, 1332 const CallArgList &CallArgs, 1333 const ObjCInterfaceDecl *Class, 1334 const ObjCMethodDecl *Method) override; 1335 1336 CodeGen::RValue 1337 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1338 ReturnValueSlot Return, QualType ResultType, 1339 Selector Sel, const ObjCInterfaceDecl *Class, 1340 bool isCategoryImpl, llvm::Value *Receiver, 1341 bool IsClassMessage, const CallArgList &CallArgs, 1342 const ObjCMethodDecl *Method) override; 1343 1344 llvm::Value *GetClass(CodeGenFunction &CGF, 1345 const ObjCInterfaceDecl *ID) override; 1346 1347 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1348 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1349 1350 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1351 /// untyped one. 1352 llvm::Value *GetSelector(CodeGenFunction &CGF, 1353 const ObjCMethodDecl *Method) override; 1354 1355 llvm::Constant *GetEHType(QualType T) override; 1356 1357 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1358 1359 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1360 1361 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1362 1363 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1364 const ObjCProtocolDecl *PD) override; 1365 1366 llvm::FunctionCallee GetPropertyGetFunction() override; 1367 llvm::FunctionCallee GetPropertySetFunction() override; 1368 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1369 bool copy) override; 1370 llvm::FunctionCallee GetGetStructFunction() override; 1371 llvm::FunctionCallee GetSetStructFunction() override; 1372 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1373 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1374 llvm::FunctionCallee EnumerationMutationFunction() override; 1375 1376 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1377 const ObjCAtTryStmt &S) override; 1378 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1379 const ObjCAtSynchronizedStmt &S) override; 1380 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1381 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1382 bool ClearInsertionPoint=true) override; 1383 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1384 Address AddrWeakObj) override; 1385 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1386 llvm::Value *src, Address dst) override; 1387 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest, 1389 bool threadlocal = false) override; 1390 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1391 llvm::Value *src, Address dest, 1392 llvm::Value *ivarOffset) override; 1393 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1394 llvm::Value *src, Address dest) override; 1395 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1396 Address dest, Address src, 1397 llvm::Value *size) override; 1398 1399 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1400 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1401 unsigned CVRQualifiers) override; 1402 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1403 const ObjCInterfaceDecl *Interface, 1404 const ObjCIvarDecl *Ivar) override; 1405 }; 1406 1407 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1408 private: 1409 friend ProtocolMethodLists; 1410 ObjCNonFragileABITypesHelper ObjCTypes; 1411 llvm::GlobalVariable* ObjCEmptyCacheVar; 1412 llvm::Constant* ObjCEmptyVtableVar; 1413 1414 /// SuperClassReferences - uniqued super class references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1416 1417 /// MetaClassReferences - uniqued meta class references. 1418 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1419 1420 /// EHTypeReferences - uniqued class ehtype references. 1421 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1422 1423 /// VTableDispatchMethods - List of methods for which we generate 1424 /// vtable-based message dispatch. 1425 llvm::DenseSet<Selector> VTableDispatchMethods; 1426 1427 /// DefinedMetaClasses - List of defined meta-classes. 1428 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1429 1430 /// isVTableDispatchedSelector - Returns true if SEL is a 1431 /// vtable-based selector. 1432 bool isVTableDispatchedSelector(Selector Sel); 1433 1434 /// FinishNonFragileABIModule - Write out global data structures at the end of 1435 /// processing a translation unit. 1436 void FinishNonFragileABIModule(); 1437 1438 /// AddModuleClassList - Add the given list of class pointers to the 1439 /// module with the provided symbol and section names. 1440 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1441 StringRef SymbolName, StringRef SectionName); 1442 1443 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1444 unsigned InstanceStart, 1445 unsigned InstanceSize, 1446 const ObjCImplementationDecl *ID); 1447 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1448 bool isMetaclass, 1449 llvm::Constant *IsAGV, 1450 llvm::Constant *SuperClassGV, 1451 llvm::Constant *ClassRoGV, 1452 bool HiddenVisibility); 1453 1454 void emitMethodConstant(ConstantArrayBuilder &builder, 1455 const ObjCMethodDecl *MD, 1456 bool forProtocol); 1457 1458 /// Emit the method list for the given implementation. The return value 1459 /// has type MethodListnfABITy. 1460 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1461 ArrayRef<const ObjCMethodDecl *> Methods); 1462 1463 /// EmitIvarList - Emit the ivar list for the given 1464 /// implementation. If ForClass is true the list of class ivars 1465 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1466 /// interface ivars will be emitted. The return value has type 1467 /// IvarListnfABIPtrTy. 1468 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1469 1470 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1471 const ObjCIvarDecl *Ivar, 1472 unsigned long int offset); 1473 1474 /// GetOrEmitProtocol - Get the protocol object for the given 1475 /// declaration, emitting it if necessary. The return value has type 1476 /// ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1478 1479 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1480 /// object for the given declaration, emitting it if needed. These 1481 /// forward references will be filled in with empty bodies if no 1482 /// definition is seen. The return value has type ProtocolPtrTy. 1483 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1484 1485 /// EmitProtocolList - Generate the list of referenced 1486 /// protocols. The return value has type ProtocolListPtrTy. 1487 llvm::Constant *EmitProtocolList(Twine Name, 1488 ObjCProtocolDecl::protocol_iterator begin, 1489 ObjCProtocolDecl::protocol_iterator end); 1490 1491 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1492 ReturnValueSlot Return, 1493 QualType ResultType, 1494 Selector Sel, 1495 llvm::Value *Receiver, 1496 QualType Arg0Ty, 1497 bool IsSuper, 1498 const CallArgList &CallArgs, 1499 const ObjCMethodDecl *Method); 1500 1501 /// GetClassGlobal - Return the global variable for the Objective-C 1502 /// class of the given name. 1503 llvm::Constant *GetClassGlobal(StringRef Name, 1504 ForDefinition_t IsForDefinition, 1505 bool Weak = false, bool DLLImport = false); 1506 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1507 bool isMetaclass, 1508 ForDefinition_t isForDefinition); 1509 1510 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1511 1512 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID, 1514 llvm::GlobalVariable *Entry); 1515 1516 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1517 /// for the given class reference. 1518 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1519 const ObjCInterfaceDecl *ID); 1520 1521 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1522 IdentifierInfo *II, 1523 const ObjCInterfaceDecl *ID); 1524 1525 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1526 1527 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1528 /// for the given super class reference. 1529 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1530 const ObjCInterfaceDecl *ID); 1531 1532 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1533 /// meta-data 1534 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1535 const ObjCInterfaceDecl *ID, bool Weak); 1536 1537 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1538 /// the given ivar. 1539 /// 1540 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1541 const ObjCInterfaceDecl *ID, 1542 const ObjCIvarDecl *Ivar); 1543 1544 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1545 /// for the given selector. 1546 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1547 Address EmitSelectorAddr(Selector Sel); 1548 1549 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1550 /// interface. The return value has type EHTypePtrTy. 1551 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1552 ForDefinition_t IsForDefinition); 1553 1554 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1555 1556 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1557 1558 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1559 uint32_t &InstanceStart, 1560 uint32_t &InstanceSize); 1561 1562 // Shamelessly stolen from Analysis/CFRefCount.cpp 1563 Selector GetNullarySelector(const char* name) const { 1564 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1565 return CGM.getContext().Selectors.getSelector(0, &II); 1566 } 1567 1568 Selector GetUnarySelector(const char* name) const { 1569 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1570 return CGM.getContext().Selectors.getSelector(1, &II); 1571 } 1572 1573 /// ImplementationIsNonLazy - Check whether the given category or 1574 /// class implementation is "non-lazy". 1575 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1576 1577 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1578 const ObjCIvarDecl *IV) { 1579 // Annotate the load as an invariant load iff inside an instance method 1580 // and ivar belongs to instance method's class and one of its super class. 1581 // This check is needed because the ivar offset is a lazily 1582 // initialised value that may depend on objc_msgSend to perform a fixup on 1583 // the first message dispatch. 1584 // 1585 // An additional opportunity to mark the load as invariant arises when the 1586 // base of the ivar access is a parameter to an Objective C method. 1587 // However, because the parameters are not available in the current 1588 // interface, we cannot perform this check. 1589 // 1590 // Note that for direct methods, because objc_msgSend is skipped, 1591 // and that the method may be inlined, this optimization actually 1592 // can't be performed. 1593 if (const ObjCMethodDecl *MD = 1594 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1595 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1596 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1597 return IV->getContainingInterface()->isSuperClassOf(ID); 1598 return false; 1599 } 1600 1601 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1602 // NSObject is a fixed size. If we can see the @implementation of a class 1603 // which inherits from NSObject then we know that all it's offsets also must 1604 // be fixed. FIXME: Can we do this if see a chain of super classes with 1605 // implementations leading to NSObject? 1606 return ID->getImplementation() && ID->getSuperClass() && 1607 ID->getSuperClass()->getName() == "NSObject"; 1608 } 1609 1610 public: 1611 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1612 1613 llvm::Constant *getNSConstantStringClassRef() override; 1614 1615 llvm::Function *ModuleInitFunction() override; 1616 1617 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1618 ReturnValueSlot Return, 1619 QualType ResultType, Selector Sel, 1620 llvm::Value *Receiver, 1621 const CallArgList &CallArgs, 1622 const ObjCInterfaceDecl *Class, 1623 const ObjCMethodDecl *Method) override; 1624 1625 CodeGen::RValue 1626 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1627 ReturnValueSlot Return, QualType ResultType, 1628 Selector Sel, const ObjCInterfaceDecl *Class, 1629 bool isCategoryImpl, llvm::Value *Receiver, 1630 bool IsClassMessage, const CallArgList &CallArgs, 1631 const ObjCMethodDecl *Method) override; 1632 1633 llvm::Value *GetClass(CodeGenFunction &CGF, 1634 const ObjCInterfaceDecl *ID) override; 1635 1636 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1637 { return EmitSelector(CGF, Sel); } 1638 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1639 { return EmitSelectorAddr(Sel); } 1640 1641 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1642 /// untyped one. 1643 llvm::Value *GetSelector(CodeGenFunction &CGF, 1644 const ObjCMethodDecl *Method) override 1645 { return EmitSelector(CGF, Method->getSelector()); } 1646 1647 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1648 1649 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1650 1651 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1652 1653 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1654 const ObjCProtocolDecl *PD) override; 1655 1656 llvm::Constant *GetEHType(QualType T) override; 1657 1658 llvm::FunctionCallee GetPropertyGetFunction() override { 1659 return ObjCTypes.getGetPropertyFn(); 1660 } 1661 llvm::FunctionCallee GetPropertySetFunction() override { 1662 return ObjCTypes.getSetPropertyFn(); 1663 } 1664 1665 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1666 bool copy) override { 1667 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1668 } 1669 1670 llvm::FunctionCallee GetSetStructFunction() override { 1671 return ObjCTypes.getCopyStructFn(); 1672 } 1673 1674 llvm::FunctionCallee GetGetStructFunction() override { 1675 return ObjCTypes.getCopyStructFn(); 1676 } 1677 1678 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1679 return ObjCTypes.getCppAtomicObjectFunction(); 1680 } 1681 1682 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1683 return ObjCTypes.getCppAtomicObjectFunction(); 1684 } 1685 1686 llvm::FunctionCallee EnumerationMutationFunction() override { 1687 return ObjCTypes.getEnumerationMutationFn(); 1688 } 1689 1690 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1691 const ObjCAtTryStmt &S) override; 1692 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1693 const ObjCAtSynchronizedStmt &S) override; 1694 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1695 bool ClearInsertionPoint=true) override; 1696 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1697 Address AddrWeakObj) override; 1698 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1699 llvm::Value *src, Address edst) override; 1700 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest, 1702 bool threadlocal = false) override; 1703 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1704 llvm::Value *src, Address dest, 1705 llvm::Value *ivarOffset) override; 1706 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1707 llvm::Value *src, Address dest) override; 1708 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1709 Address dest, Address src, 1710 llvm::Value *size) override; 1711 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1712 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1713 unsigned CVRQualifiers) override; 1714 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1715 const ObjCInterfaceDecl *Interface, 1716 const ObjCIvarDecl *Ivar) override; 1717 }; 1718 1719 /// A helper class for performing the null-initialization of a return 1720 /// value. 1721 struct NullReturnState { 1722 llvm::BasicBlock *NullBB; 1723 NullReturnState() : NullBB(nullptr) {} 1724 1725 /// Perform a null-check of the given receiver. 1726 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1727 // Make blocks for the null-receiver and call edges. 1728 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1729 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1730 1731 // Check for a null receiver and, if there is one, jump to the 1732 // null-receiver block. There's no point in trying to avoid it: 1733 // we're always going to put *something* there, because otherwise 1734 // we shouldn't have done this null-check in the first place. 1735 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1736 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1737 1738 // Otherwise, start performing the call. 1739 CGF.EmitBlock(callBB); 1740 } 1741 1742 /// Complete the null-return operation. It is valid to call this 1743 /// regardless of whether 'init' has been called. 1744 RValue complete(CodeGenFunction &CGF, 1745 ReturnValueSlot returnSlot, 1746 RValue result, 1747 QualType resultType, 1748 const CallArgList &CallArgs, 1749 const ObjCMethodDecl *Method) { 1750 // If we never had to do a null-check, just use the raw result. 1751 if (!NullBB) return result; 1752 1753 // The continuation block. This will be left null if we don't have an 1754 // IP, which can happen if the method we're calling is marked noreturn. 1755 llvm::BasicBlock *contBB = nullptr; 1756 1757 // Finish the call path. 1758 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1759 if (callBB) { 1760 contBB = CGF.createBasicBlock("msgSend.cont"); 1761 CGF.Builder.CreateBr(contBB); 1762 } 1763 1764 // Okay, start emitting the null-receiver block. 1765 CGF.EmitBlock(NullBB); 1766 1767 // Release any consumed arguments we've got. 1768 if (Method) { 1769 CallArgList::const_iterator I = CallArgs.begin(); 1770 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1771 e = Method->param_end(); i != e; ++i, ++I) { 1772 const ParmVarDecl *ParamDecl = (*i); 1773 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1774 RValue RV = I->getRValue(CGF); 1775 assert(RV.isScalar() && 1776 "NullReturnState::complete - arg not on object"); 1777 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1778 } 1779 } 1780 } 1781 1782 // The phi code below assumes that we haven't needed any control flow yet. 1783 assert(CGF.Builder.GetInsertBlock() == NullBB); 1784 1785 // If we've got a void return, just jump to the continuation block. 1786 if (result.isScalar() && resultType->isVoidType()) { 1787 // No jumps required if the message-send was noreturn. 1788 if (contBB) CGF.EmitBlock(contBB); 1789 return result; 1790 } 1791 1792 // If we've got a scalar return, build a phi. 1793 if (result.isScalar()) { 1794 // Derive the null-initialization value. 1795 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1796 1797 // If no join is necessary, just flow out. 1798 if (!contBB) return RValue::get(null); 1799 1800 // Otherwise, build a phi. 1801 CGF.EmitBlock(contBB); 1802 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1803 phi->addIncoming(result.getScalarVal(), callBB); 1804 phi->addIncoming(null, NullBB); 1805 return RValue::get(phi); 1806 } 1807 1808 // If we've got an aggregate return, null the buffer out. 1809 // FIXME: maybe we should be doing things differently for all the 1810 // cases where the ABI has us returning (1) non-agg values in 1811 // memory or (2) agg values in registers. 1812 if (result.isAggregate()) { 1813 assert(result.isAggregate() && "null init of non-aggregate result?"); 1814 if (!returnSlot.isUnused()) 1815 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1816 if (contBB) CGF.EmitBlock(contBB); 1817 return result; 1818 } 1819 1820 // Complex types. 1821 CGF.EmitBlock(contBB); 1822 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1823 1824 // Find the scalar type and its zero value. 1825 llvm::Type *scalarTy = callResult.first->getType(); 1826 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1827 1828 // Build phis for both coordinates. 1829 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1830 real->addIncoming(callResult.first, callBB); 1831 real->addIncoming(scalarZero, NullBB); 1832 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1833 imag->addIncoming(callResult.second, callBB); 1834 imag->addIncoming(scalarZero, NullBB); 1835 return RValue::getComplex(real, imag); 1836 } 1837 }; 1838 1839 } // end anonymous namespace 1840 1841 /* *** Helper Functions *** */ 1842 1843 /// getConstantGEP() - Help routine to construct simple GEPs. 1844 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1845 llvm::GlobalVariable *C, unsigned idx0, 1846 unsigned idx1) { 1847 llvm::Value *Idxs[] = { 1848 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1849 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1850 }; 1851 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1852 } 1853 1854 /// hasObjCExceptionAttribute - Return true if this class or any super 1855 /// class has the __objc_exception__ attribute. 1856 static bool hasObjCExceptionAttribute(ASTContext &Context, 1857 const ObjCInterfaceDecl *OID) { 1858 if (OID->hasAttr<ObjCExceptionAttr>()) 1859 return true; 1860 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1861 return hasObjCExceptionAttribute(Context, Super); 1862 return false; 1863 } 1864 1865 static llvm::GlobalValue::LinkageTypes 1866 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1867 if (CGM.getTriple().isOSBinFormatMachO() && 1868 (Section.empty() || Section.startswith("__DATA"))) 1869 return llvm::GlobalValue::InternalLinkage; 1870 return llvm::GlobalValue::PrivateLinkage; 1871 } 1872 1873 /// A helper function to create an internal or private global variable. 1874 static llvm::GlobalVariable * 1875 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1876 const llvm::Twine &Name, CodeGenModule &CGM) { 1877 std::string SectionName; 1878 if (CGM.getTriple().isOSBinFormatMachO()) 1879 SectionName = "__DATA, __objc_const"; 1880 auto *GV = Builder.finishAndCreateGlobal( 1881 Name, CGM.getPointerAlign(), /*constant*/ false, 1882 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1883 GV->setSection(SectionName); 1884 return GV; 1885 } 1886 1887 /* *** CGObjCMac Public Interface *** */ 1888 1889 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1890 ObjCTypes(cgm) { 1891 ObjCABI = 1; 1892 EmitImageInfo(); 1893 } 1894 1895 /// GetClass - Return a reference to the class for the given interface 1896 /// decl. 1897 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1898 const ObjCInterfaceDecl *ID) { 1899 return EmitClassRef(CGF, ID); 1900 } 1901 1902 /// GetSelector - Return the pointer to the unique'd string for this selector. 1903 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1904 return EmitSelector(CGF, Sel); 1905 } 1906 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1907 return EmitSelectorAddr(Sel); 1908 } 1909 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1910 *Method) { 1911 return EmitSelector(CGF, Method->getSelector()); 1912 } 1913 1914 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1915 if (T->isObjCIdType() || 1916 T->isObjCQualifiedIdType()) { 1917 return CGM.GetAddrOfRTTIDescriptor( 1918 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1919 } 1920 if (T->isObjCClassType() || 1921 T->isObjCQualifiedClassType()) { 1922 return CGM.GetAddrOfRTTIDescriptor( 1923 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1924 } 1925 if (T->isObjCObjectPointerType()) 1926 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1927 1928 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1929 } 1930 1931 /// Generate a constant CFString object. 1932 /* 1933 struct __builtin_CFString { 1934 const int *isa; // point to __CFConstantStringClassReference 1935 int flags; 1936 const char *str; 1937 long length; 1938 }; 1939 */ 1940 1941 /// or Generate a constant NSString object. 1942 /* 1943 struct __builtin_NSString { 1944 const int *isa; // point to __NSConstantStringClassReference 1945 const char *str; 1946 unsigned int length; 1947 }; 1948 */ 1949 1950 ConstantAddress 1951 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1952 return (!CGM.getLangOpts().NoConstantCFStrings 1953 ? CGM.GetAddrOfConstantCFString(SL) 1954 : GenerateConstantNSString(SL)); 1955 } 1956 1957 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1958 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1959 const StringLiteral *Literal, unsigned &StringLength) { 1960 StringRef String = Literal->getString(); 1961 StringLength = String.size(); 1962 return *Map.insert(std::make_pair(String, nullptr)).first; 1963 } 1964 1965 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1966 if (llvm::Value *V = ConstantStringClassRef) 1967 return cast<llvm::Constant>(V); 1968 1969 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1970 std::string str = 1971 StringClass.empty() ? "_NSConstantStringClassReference" 1972 : "_" + StringClass + "ClassReference"; 1973 1974 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1975 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1976 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1977 ConstantStringClassRef = V; 1978 return V; 1979 } 1980 1981 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1982 if (llvm::Value *V = ConstantStringClassRef) 1983 return cast<llvm::Constant>(V); 1984 1985 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1986 std::string str = 1987 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1988 : "OBJC_CLASS_$_" + StringClass; 1989 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1990 1991 // Make sure the result is of the correct type. 1992 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1993 1994 ConstantStringClassRef = V; 1995 return V; 1996 } 1997 1998 ConstantAddress 1999 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 2000 unsigned StringLength = 0; 2001 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2002 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 2003 2004 if (auto *C = Entry.second) 2005 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2006 2007 // If we don't already have it, get _NSConstantStringClassReference. 2008 llvm::Constant *Class = getNSConstantStringClassRef(); 2009 2010 // If we don't already have it, construct the type for a constant NSString. 2011 if (!NSConstantStringType) { 2012 NSConstantStringType = 2013 llvm::StructType::create({ 2014 CGM.Int32Ty->getPointerTo(), 2015 CGM.Int8PtrTy, 2016 CGM.IntTy 2017 }, "struct.__builtin_NSString"); 2018 } 2019 2020 ConstantInitBuilder Builder(CGM); 2021 auto Fields = Builder.beginStruct(NSConstantStringType); 2022 2023 // Class pointer. 2024 Fields.add(Class); 2025 2026 // String pointer. 2027 llvm::Constant *C = 2028 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2029 2030 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2031 bool isConstant = !CGM.getLangOpts().WritableStrings; 2032 2033 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2034 Linkage, C, ".str"); 2035 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2036 // Don't enforce the target's minimum global alignment, since the only use 2037 // of the string is via this class initializer. 2038 GV->setAlignment(llvm::Align(1)); 2039 Fields.addBitCast(GV, CGM.Int8PtrTy); 2040 2041 // String length. 2042 Fields.addInt(CGM.IntTy, StringLength); 2043 2044 // The struct. 2045 CharUnits Alignment = CGM.getPointerAlign(); 2046 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2047 /*constant*/ true, 2048 llvm::GlobalVariable::PrivateLinkage); 2049 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2050 const char *NSStringNonFragileABISection = 2051 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2052 // FIXME. Fix section. 2053 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2054 ? NSStringNonFragileABISection 2055 : NSStringSection); 2056 Entry.second = GV; 2057 2058 return ConstantAddress(GV, Alignment); 2059 } 2060 2061 enum { 2062 kCFTaggedObjectID_Integer = (1 << 1) + 1 2063 }; 2064 2065 /// Generates a message send where the super is the receiver. This is 2066 /// a message send to self with special delivery semantics indicating 2067 /// which class's method should be called. 2068 CodeGen::RValue 2069 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2070 ReturnValueSlot Return, 2071 QualType ResultType, 2072 Selector Sel, 2073 const ObjCInterfaceDecl *Class, 2074 bool isCategoryImpl, 2075 llvm::Value *Receiver, 2076 bool IsClassMessage, 2077 const CodeGen::CallArgList &CallArgs, 2078 const ObjCMethodDecl *Method) { 2079 // Create and init a super structure; this is a (receiver, class) 2080 // pair we will pass to objc_msgSendSuper. 2081 Address ObjCSuper = 2082 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2083 "objc_super"); 2084 llvm::Value *ReceiverAsObject = 2085 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2086 CGF.Builder.CreateStore(ReceiverAsObject, 2087 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2088 2089 // If this is a class message the metaclass is passed as the target. 2090 llvm::Value *Target; 2091 if (IsClassMessage) { 2092 if (isCategoryImpl) { 2093 // Message sent to 'super' in a class method defined in a category 2094 // implementation requires an odd treatment. 2095 // If we are in a class method, we must retrieve the 2096 // _metaclass_ for the current class, pointed at by 2097 // the class's "isa" pointer. The following assumes that 2098 // isa" is the first ivar in a class (which it must be). 2099 Target = EmitClassRef(CGF, Class->getSuperClass()); 2100 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2101 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2102 } else { 2103 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2104 llvm::Value *SuperPtr = 2105 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2106 llvm::Value *Super = 2107 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2108 Target = Super; 2109 } 2110 } else if (isCategoryImpl) 2111 Target = EmitClassRef(CGF, Class->getSuperClass()); 2112 else { 2113 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2114 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2115 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2116 } 2117 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2118 // ObjCTypes types. 2119 llvm::Type *ClassTy = 2120 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2121 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2122 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2123 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2124 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2125 ObjCTypes); 2126 } 2127 2128 /// Generate code for a message send expression. 2129 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2130 ReturnValueSlot Return, 2131 QualType ResultType, 2132 Selector Sel, 2133 llvm::Value *Receiver, 2134 const CallArgList &CallArgs, 2135 const ObjCInterfaceDecl *Class, 2136 const ObjCMethodDecl *Method) { 2137 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2138 CGF.getContext().getObjCIdType(), false, CallArgs, 2139 Method, Class, ObjCTypes); 2140 } 2141 2142 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2143 do { 2144 if (ID->isWeakImported()) 2145 return true; 2146 } while ((ID = ID->getSuperClass())); 2147 2148 return false; 2149 } 2150 2151 CodeGen::RValue 2152 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2153 ReturnValueSlot Return, 2154 QualType ResultType, 2155 Selector Sel, 2156 llvm::Value *Arg0, 2157 QualType Arg0Ty, 2158 bool IsSuper, 2159 const CallArgList &CallArgs, 2160 const ObjCMethodDecl *Method, 2161 const ObjCInterfaceDecl *ClassReceiver, 2162 const ObjCCommonTypesHelper &ObjCTypes) { 2163 CodeGenTypes &Types = CGM.getTypes(); 2164 auto selTy = CGF.getContext().getObjCSelType(); 2165 llvm::Value *SelValue; 2166 2167 if (Method && Method->isDirectMethod()) { 2168 // Direct methods will synthesize the proper `_cmd` internally, 2169 // so just don't bother with setting the `_cmd` argument. 2170 assert(!IsSuper); 2171 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2172 } else { 2173 SelValue = GetSelector(CGF, Sel); 2174 } 2175 2176 CallArgList ActualArgs; 2177 if (!IsSuper) 2178 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2179 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2180 ActualArgs.add(RValue::get(SelValue), selTy); 2181 ActualArgs.addFrom(CallArgs); 2182 2183 // If we're calling a method, use the formal signature. 2184 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2185 2186 if (Method) 2187 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2188 CGM.getContext().getCanonicalType(ResultType) && 2189 "Result type mismatch!"); 2190 2191 bool ReceiverCanBeNull = true; 2192 2193 // Super dispatch assumes that self is non-null; even the messenger 2194 // doesn't have a null check internally. 2195 if (IsSuper) { 2196 ReceiverCanBeNull = false; 2197 2198 // If this is a direct dispatch of a class method, check whether the class, 2199 // or anything in its hierarchy, was weak-linked. 2200 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2201 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2202 2203 // If we're emitting a method, and self is const (meaning just ARC, for now), 2204 // and the receiver is a load of self, then self is a valid object. 2205 } else if (auto CurMethod = 2206 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2207 auto Self = CurMethod->getSelfDecl(); 2208 if (Self->getType().isConstQualified()) { 2209 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2210 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2211 if (SelfAddr == LI->getPointerOperand()) { 2212 ReceiverCanBeNull = false; 2213 } 2214 } 2215 } 2216 } 2217 2218 bool RequiresNullCheck = false; 2219 2220 llvm::FunctionCallee Fn = nullptr; 2221 if (Method && Method->isDirectMethod()) { 2222 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2223 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2224 if (ReceiverCanBeNull) RequiresNullCheck = true; 2225 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2226 : ObjCTypes.getSendStretFn(IsSuper); 2227 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2228 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2229 : ObjCTypes.getSendFpretFn(IsSuper); 2230 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2231 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2232 : ObjCTypes.getSendFp2retFn(IsSuper); 2233 } else { 2234 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2235 // must be made for it. 2236 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2237 RequiresNullCheck = true; 2238 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2239 : ObjCTypes.getSendFn(IsSuper); 2240 } 2241 2242 // Cast function to proper signature 2243 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2244 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2245 2246 // We don't need to emit a null check to zero out an indirect result if the 2247 // result is ignored. 2248 if (Return.isUnused()) 2249 RequiresNullCheck = false; 2250 2251 // Emit a null-check if there's a consumed argument other than the receiver. 2252 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2253 for (const auto *ParamDecl : Method->parameters()) { 2254 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2255 RequiresNullCheck = true; 2256 break; 2257 } 2258 } 2259 } 2260 2261 NullReturnState nullReturn; 2262 if (RequiresNullCheck) { 2263 nullReturn.init(CGF, Arg0); 2264 } 2265 2266 llvm::CallBase *CallSite; 2267 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2268 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2269 &CallSite); 2270 2271 // Mark the call as noreturn if the method is marked noreturn and the 2272 // receiver cannot be null. 2273 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2274 CallSite->setDoesNotReturn(); 2275 } 2276 2277 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2278 RequiresNullCheck ? Method : nullptr); 2279 } 2280 2281 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2282 bool pointee = false) { 2283 // Note that GC qualification applies recursively to C pointer types 2284 // that aren't otherwise decorated. This is weird, but it's probably 2285 // an intentional workaround to the unreliable placement of GC qualifiers. 2286 if (FQT.isObjCGCStrong()) 2287 return Qualifiers::Strong; 2288 2289 if (FQT.isObjCGCWeak()) 2290 return Qualifiers::Weak; 2291 2292 if (auto ownership = FQT.getObjCLifetime()) { 2293 // Ownership does not apply recursively to C pointer types. 2294 if (pointee) return Qualifiers::GCNone; 2295 switch (ownership) { 2296 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2297 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2298 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2299 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2300 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2301 } 2302 llvm_unreachable("bad objc ownership"); 2303 } 2304 2305 // Treat unqualified retainable pointers as strong. 2306 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2307 return Qualifiers::Strong; 2308 2309 // Walk into C pointer types, but only in GC. 2310 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2311 if (const PointerType *PT = FQT->getAs<PointerType>()) 2312 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2313 } 2314 2315 return Qualifiers::GCNone; 2316 } 2317 2318 namespace { 2319 struct IvarInfo { 2320 CharUnits Offset; 2321 uint64_t SizeInWords; 2322 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2323 : Offset(offset), SizeInWords(sizeInWords) {} 2324 2325 // Allow sorting based on byte pos. 2326 bool operator<(const IvarInfo &other) const { 2327 return Offset < other.Offset; 2328 } 2329 }; 2330 2331 /// A helper class for building GC layout strings. 2332 class IvarLayoutBuilder { 2333 CodeGenModule &CGM; 2334 2335 /// The start of the layout. Offsets will be relative to this value, 2336 /// and entries less than this value will be silently discarded. 2337 CharUnits InstanceBegin; 2338 2339 /// The end of the layout. Offsets will never exceed this value. 2340 CharUnits InstanceEnd; 2341 2342 /// Whether we're generating the strong layout or the weak layout. 2343 bool ForStrongLayout; 2344 2345 /// Whether the offsets in IvarsInfo might be out-of-order. 2346 bool IsDisordered = false; 2347 2348 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2349 2350 public: 2351 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2352 CharUnits instanceEnd, bool forStrongLayout) 2353 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2354 ForStrongLayout(forStrongLayout) { 2355 } 2356 2357 void visitRecord(const RecordType *RT, CharUnits offset); 2358 2359 template <class Iterator, class GetOffsetFn> 2360 void visitAggregate(Iterator begin, Iterator end, 2361 CharUnits aggrOffset, 2362 const GetOffsetFn &getOffset); 2363 2364 void visitField(const FieldDecl *field, CharUnits offset); 2365 2366 /// Add the layout of a block implementation. 2367 void visitBlock(const CGBlockInfo &blockInfo); 2368 2369 /// Is there any information for an interesting bitmap? 2370 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2371 2372 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2373 llvm::SmallVectorImpl<unsigned char> &buffer); 2374 2375 static void dump(ArrayRef<unsigned char> buffer) { 2376 const unsigned char *s = buffer.data(); 2377 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2378 if (!(s[i] & 0xf0)) 2379 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2380 else 2381 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2382 printf("\n"); 2383 } 2384 }; 2385 } // end anonymous namespace 2386 2387 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2388 const CGBlockInfo &blockInfo) { 2389 2390 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2391 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2392 return nullPtr; 2393 2394 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2395 /*for strong layout*/ true); 2396 2397 builder.visitBlock(blockInfo); 2398 2399 if (!builder.hasBitmapData()) 2400 return nullPtr; 2401 2402 llvm::SmallVector<unsigned char, 32> buffer; 2403 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2404 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2405 printf("\n block variable layout for block: "); 2406 builder.dump(buffer); 2407 } 2408 2409 return C; 2410 } 2411 2412 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2413 // __isa is the first field in block descriptor and must assume by runtime's 2414 // convention that it is GC'able. 2415 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2416 2417 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2418 2419 // Ignore the optional 'this' capture: C++ objects are not assumed 2420 // to be GC'ed. 2421 2422 CharUnits lastFieldOffset; 2423 2424 // Walk the captured variables. 2425 for (const auto &CI : blockDecl->captures()) { 2426 const VarDecl *variable = CI.getVariable(); 2427 QualType type = variable->getType(); 2428 2429 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2430 2431 // Ignore constant captures. 2432 if (capture.isConstant()) continue; 2433 2434 CharUnits fieldOffset = capture.getOffset(); 2435 2436 // Block fields are not necessarily ordered; if we detect that we're 2437 // adding them out-of-order, make sure we sort later. 2438 if (fieldOffset < lastFieldOffset) 2439 IsDisordered = true; 2440 lastFieldOffset = fieldOffset; 2441 2442 // __block variables are passed by their descriptor address. 2443 if (CI.isByRef()) { 2444 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2445 continue; 2446 } 2447 2448 assert(!type->isArrayType() && "array variable should not be caught"); 2449 if (const RecordType *record = type->getAs<RecordType>()) { 2450 visitRecord(record, fieldOffset); 2451 continue; 2452 } 2453 2454 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2455 2456 if (GCAttr == Qualifiers::Strong) { 2457 assert(CGM.getContext().getTypeSize(type) 2458 == CGM.getTarget().getPointerWidth(0)); 2459 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2460 } 2461 } 2462 } 2463 2464 /// getBlockCaptureLifetime - This routine returns life time of the captured 2465 /// block variable for the purpose of block layout meta-data generation. FQT is 2466 /// the type of the variable captured in the block. 2467 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2468 bool ByrefLayout) { 2469 // If it has an ownership qualifier, we're done. 2470 if (auto lifetime = FQT.getObjCLifetime()) 2471 return lifetime; 2472 2473 // If it doesn't, and this is ARC, it has no ownership. 2474 if (CGM.getLangOpts().ObjCAutoRefCount) 2475 return Qualifiers::OCL_None; 2476 2477 // In MRC, retainable pointers are owned by non-__block variables. 2478 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2479 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2480 2481 return Qualifiers::OCL_None; 2482 } 2483 2484 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2485 Qualifiers::ObjCLifetime LifeTime, 2486 CharUnits FieldOffset, 2487 CharUnits FieldSize) { 2488 // __block variables are passed by their descriptor address. 2489 if (IsByref) 2490 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2491 FieldSize)); 2492 else if (LifeTime == Qualifiers::OCL_Strong) 2493 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2494 FieldSize)); 2495 else if (LifeTime == Qualifiers::OCL_Weak) 2496 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2497 FieldSize)); 2498 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2499 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2500 FieldSize)); 2501 else 2502 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2503 FieldOffset, 2504 FieldSize)); 2505 } 2506 2507 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2508 const RecordDecl *RD, 2509 ArrayRef<const FieldDecl*> RecFields, 2510 CharUnits BytePos, bool &HasUnion, 2511 bool ByrefLayout) { 2512 bool IsUnion = (RD && RD->isUnion()); 2513 CharUnits MaxUnionSize = CharUnits::Zero(); 2514 const FieldDecl *MaxField = nullptr; 2515 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2516 CharUnits MaxFieldOffset = CharUnits::Zero(); 2517 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2518 2519 if (RecFields.empty()) 2520 return; 2521 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2522 2523 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2524 const FieldDecl *Field = RecFields[i]; 2525 // Note that 'i' here is actually the field index inside RD of Field, 2526 // although this dependency is hidden. 2527 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2528 CharUnits FieldOffset = 2529 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2530 2531 // Skip over unnamed or bitfields 2532 if (!Field->getIdentifier() || Field->isBitField()) { 2533 LastFieldBitfieldOrUnnamed = Field; 2534 LastBitfieldOrUnnamedOffset = FieldOffset; 2535 continue; 2536 } 2537 2538 LastFieldBitfieldOrUnnamed = nullptr; 2539 QualType FQT = Field->getType(); 2540 if (FQT->isRecordType() || FQT->isUnionType()) { 2541 if (FQT->isUnionType()) 2542 HasUnion = true; 2543 2544 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2545 BytePos + FieldOffset, HasUnion); 2546 continue; 2547 } 2548 2549 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2550 auto *CArray = cast<ConstantArrayType>(Array); 2551 uint64_t ElCount = CArray->getSize().getZExtValue(); 2552 assert(CArray && "only array with known element size is supported"); 2553 FQT = CArray->getElementType(); 2554 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2555 auto *CArray = cast<ConstantArrayType>(Array); 2556 ElCount *= CArray->getSize().getZExtValue(); 2557 FQT = CArray->getElementType(); 2558 } 2559 if (FQT->isRecordType() && ElCount) { 2560 int OldIndex = RunSkipBlockVars.size() - 1; 2561 auto *RT = FQT->castAs<RecordType>(); 2562 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2563 2564 // Replicate layout information for each array element. Note that 2565 // one element is already done. 2566 uint64_t ElIx = 1; 2567 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2568 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2569 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2570 RunSkipBlockVars.push_back( 2571 RUN_SKIP(RunSkipBlockVars[i].opcode, 2572 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2573 RunSkipBlockVars[i].block_var_size)); 2574 } 2575 continue; 2576 } 2577 } 2578 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2579 if (IsUnion) { 2580 CharUnits UnionIvarSize = FieldSize; 2581 if (UnionIvarSize > MaxUnionSize) { 2582 MaxUnionSize = UnionIvarSize; 2583 MaxField = Field; 2584 MaxFieldOffset = FieldOffset; 2585 } 2586 } else { 2587 UpdateRunSkipBlockVars(false, 2588 getBlockCaptureLifetime(FQT, ByrefLayout), 2589 BytePos + FieldOffset, 2590 FieldSize); 2591 } 2592 } 2593 2594 if (LastFieldBitfieldOrUnnamed) { 2595 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2596 // Last field was a bitfield. Must update the info. 2597 uint64_t BitFieldSize 2598 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2599 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2600 ((BitFieldSize % ByteSizeInBits) != 0); 2601 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2602 Size += LastBitfieldOrUnnamedOffset; 2603 UpdateRunSkipBlockVars(false, 2604 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2605 ByrefLayout), 2606 BytePos + LastBitfieldOrUnnamedOffset, 2607 Size); 2608 } else { 2609 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2610 // Last field was unnamed. Must update skip info. 2611 CharUnits FieldSize 2612 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2613 UpdateRunSkipBlockVars(false, 2614 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2615 ByrefLayout), 2616 BytePos + LastBitfieldOrUnnamedOffset, 2617 FieldSize); 2618 } 2619 } 2620 2621 if (MaxField) 2622 UpdateRunSkipBlockVars(false, 2623 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2624 BytePos + MaxFieldOffset, 2625 MaxUnionSize); 2626 } 2627 2628 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2629 CharUnits BytePos, 2630 bool &HasUnion, 2631 bool ByrefLayout) { 2632 const RecordDecl *RD = RT->getDecl(); 2633 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2634 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2635 const llvm::StructLayout *RecLayout = 2636 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2637 2638 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2639 } 2640 2641 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2642 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2643 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2644 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2645 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2646 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2647 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2648 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2649 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2650 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2651 SmallVectorImpl<unsigned char> &Layout) { 2652 uint64_t Result = 0; 2653 if (Layout.size() <= 3) { 2654 unsigned size = Layout.size(); 2655 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2656 unsigned char inst; 2657 enum BLOCK_LAYOUT_OPCODE opcode ; 2658 switch (size) { 2659 case 3: 2660 inst = Layout[0]; 2661 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2662 if (opcode == BLOCK_LAYOUT_STRONG) 2663 strong_word_count = (inst & 0xF)+1; 2664 else 2665 return 0; 2666 inst = Layout[1]; 2667 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2668 if (opcode == BLOCK_LAYOUT_BYREF) 2669 byref_word_count = (inst & 0xF)+1; 2670 else 2671 return 0; 2672 inst = Layout[2]; 2673 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2674 if (opcode == BLOCK_LAYOUT_WEAK) 2675 weak_word_count = (inst & 0xF)+1; 2676 else 2677 return 0; 2678 break; 2679 2680 case 2: 2681 inst = Layout[0]; 2682 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2683 if (opcode == BLOCK_LAYOUT_STRONG) { 2684 strong_word_count = (inst & 0xF)+1; 2685 inst = Layout[1]; 2686 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2687 if (opcode == BLOCK_LAYOUT_BYREF) 2688 byref_word_count = (inst & 0xF)+1; 2689 else if (opcode == BLOCK_LAYOUT_WEAK) 2690 weak_word_count = (inst & 0xF)+1; 2691 else 2692 return 0; 2693 } 2694 else if (opcode == BLOCK_LAYOUT_BYREF) { 2695 byref_word_count = (inst & 0xF)+1; 2696 inst = Layout[1]; 2697 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2698 if (opcode == BLOCK_LAYOUT_WEAK) 2699 weak_word_count = (inst & 0xF)+1; 2700 else 2701 return 0; 2702 } 2703 else 2704 return 0; 2705 break; 2706 2707 case 1: 2708 inst = Layout[0]; 2709 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2710 if (opcode == BLOCK_LAYOUT_STRONG) 2711 strong_word_count = (inst & 0xF)+1; 2712 else if (opcode == BLOCK_LAYOUT_BYREF) 2713 byref_word_count = (inst & 0xF)+1; 2714 else if (opcode == BLOCK_LAYOUT_WEAK) 2715 weak_word_count = (inst & 0xF)+1; 2716 else 2717 return 0; 2718 break; 2719 2720 default: 2721 return 0; 2722 } 2723 2724 // Cannot inline when any of the word counts is 15. Because this is one less 2725 // than the actual work count (so 15 means 16 actual word counts), 2726 // and we can only display 0 thru 15 word counts. 2727 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2728 return 0; 2729 2730 unsigned count = 2731 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2732 2733 if (size == count) { 2734 if (strong_word_count) 2735 Result = strong_word_count; 2736 Result <<= 4; 2737 if (byref_word_count) 2738 Result += byref_word_count; 2739 Result <<= 4; 2740 if (weak_word_count) 2741 Result += weak_word_count; 2742 } 2743 } 2744 return Result; 2745 } 2746 2747 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2748 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2749 if (RunSkipBlockVars.empty()) 2750 return nullPtr; 2751 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2752 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2753 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2754 2755 // Sort on byte position; captures might not be allocated in order, 2756 // and unions can do funny things. 2757 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2758 SmallVector<unsigned char, 16> Layout; 2759 2760 unsigned size = RunSkipBlockVars.size(); 2761 for (unsigned i = 0; i < size; i++) { 2762 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2763 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2764 CharUnits end_byte_pos = start_byte_pos; 2765 unsigned j = i+1; 2766 while (j < size) { 2767 if (opcode == RunSkipBlockVars[j].opcode) { 2768 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2769 i++; 2770 } 2771 else 2772 break; 2773 } 2774 CharUnits size_in_bytes = 2775 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2776 if (j < size) { 2777 CharUnits gap = 2778 RunSkipBlockVars[j].block_var_bytepos - 2779 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2780 size_in_bytes += gap; 2781 } 2782 CharUnits residue_in_bytes = CharUnits::Zero(); 2783 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2784 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2785 size_in_bytes -= residue_in_bytes; 2786 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2787 } 2788 2789 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2790 while (size_in_words >= 16) { 2791 // Note that value in imm. is one less that the actual 2792 // value. So, 0xf means 16 words follow! 2793 unsigned char inst = (opcode << 4) | 0xf; 2794 Layout.push_back(inst); 2795 size_in_words -= 16; 2796 } 2797 if (size_in_words > 0) { 2798 // Note that value in imm. is one less that the actual 2799 // value. So, we subtract 1 away! 2800 unsigned char inst = (opcode << 4) | (size_in_words-1); 2801 Layout.push_back(inst); 2802 } 2803 if (residue_in_bytes > CharUnits::Zero()) { 2804 unsigned char inst = 2805 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2806 Layout.push_back(inst); 2807 } 2808 } 2809 2810 while (!Layout.empty()) { 2811 unsigned char inst = Layout.back(); 2812 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2813 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2814 Layout.pop_back(); 2815 else 2816 break; 2817 } 2818 2819 uint64_t Result = InlineLayoutInstruction(Layout); 2820 if (Result != 0) { 2821 // Block variable layout instruction has been inlined. 2822 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2823 if (ComputeByrefLayout) 2824 printf("\n Inline BYREF variable layout: "); 2825 else 2826 printf("\n Inline block variable layout: "); 2827 printf("0x0%" PRIx64 "", Result); 2828 if (auto numStrong = (Result & 0xF00) >> 8) 2829 printf(", BL_STRONG:%d", (int) numStrong); 2830 if (auto numByref = (Result & 0x0F0) >> 4) 2831 printf(", BL_BYREF:%d", (int) numByref); 2832 if (auto numWeak = (Result & 0x00F) >> 0) 2833 printf(", BL_WEAK:%d", (int) numWeak); 2834 printf(", BL_OPERATOR:0\n"); 2835 } 2836 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2837 } 2838 2839 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2840 Layout.push_back(inst); 2841 std::string BitMap; 2842 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2843 BitMap += Layout[i]; 2844 2845 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2846 if (ComputeByrefLayout) 2847 printf("\n Byref variable layout: "); 2848 else 2849 printf("\n Block variable layout: "); 2850 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2851 unsigned char inst = BitMap[i]; 2852 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2853 unsigned delta = 1; 2854 switch (opcode) { 2855 case BLOCK_LAYOUT_OPERATOR: 2856 printf("BL_OPERATOR:"); 2857 delta = 0; 2858 break; 2859 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2860 printf("BL_NON_OBJECT_BYTES:"); 2861 break; 2862 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2863 printf("BL_NON_OBJECT_WORD:"); 2864 break; 2865 case BLOCK_LAYOUT_STRONG: 2866 printf("BL_STRONG:"); 2867 break; 2868 case BLOCK_LAYOUT_BYREF: 2869 printf("BL_BYREF:"); 2870 break; 2871 case BLOCK_LAYOUT_WEAK: 2872 printf("BL_WEAK:"); 2873 break; 2874 case BLOCK_LAYOUT_UNRETAINED: 2875 printf("BL_UNRETAINED:"); 2876 break; 2877 } 2878 // Actual value of word count is one more that what is in the imm. 2879 // field of the instruction 2880 printf("%d", (inst & 0xf) + delta); 2881 if (i < e-1) 2882 printf(", "); 2883 else 2884 printf("\n"); 2885 } 2886 } 2887 2888 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2889 /*ForceNonFragileABI=*/true, 2890 /*NullTerminate=*/false); 2891 return getConstantGEP(VMContext, Entry, 0, 0); 2892 } 2893 2894 static std::string getBlockLayoutInfoString( 2895 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2896 bool HasCopyDisposeHelpers) { 2897 std::string Str; 2898 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2899 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2900 // Copy/dispose helpers don't have any information about 2901 // __unsafe_unretained captures, so unconditionally concatenate a string. 2902 Str += "u"; 2903 } else if (HasCopyDisposeHelpers) { 2904 // Information about __strong, __weak, or byref captures has already been 2905 // encoded into the names of the copy/dispose helpers. We have to add a 2906 // string here only when the copy/dispose helpers aren't generated (which 2907 // happens when the block is non-escaping). 2908 continue; 2909 } else { 2910 switch (R.opcode) { 2911 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2912 Str += "s"; 2913 break; 2914 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2915 Str += "r"; 2916 break; 2917 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2918 Str += "w"; 2919 break; 2920 default: 2921 continue; 2922 } 2923 } 2924 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2925 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2926 } 2927 return Str; 2928 } 2929 2930 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2931 const CGBlockInfo &blockInfo) { 2932 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2933 2934 RunSkipBlockVars.clear(); 2935 bool hasUnion = false; 2936 2937 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2938 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2939 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2940 2941 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2942 2943 // Calculate the basic layout of the block structure. 2944 const llvm::StructLayout *layout = 2945 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2946 2947 // Ignore the optional 'this' capture: C++ objects are not assumed 2948 // to be GC'ed. 2949 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2950 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2951 blockInfo.BlockHeaderForcedGapOffset, 2952 blockInfo.BlockHeaderForcedGapSize); 2953 // Walk the captured variables. 2954 for (const auto &CI : blockDecl->captures()) { 2955 const VarDecl *variable = CI.getVariable(); 2956 QualType type = variable->getType(); 2957 2958 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2959 2960 // Ignore constant captures. 2961 if (capture.isConstant()) continue; 2962 2963 CharUnits fieldOffset = 2964 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2965 2966 assert(!type->isArrayType() && "array variable should not be caught"); 2967 if (!CI.isByRef()) 2968 if (const RecordType *record = type->getAs<RecordType>()) { 2969 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2970 continue; 2971 } 2972 CharUnits fieldSize; 2973 if (CI.isByRef()) 2974 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2975 else 2976 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2977 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2978 fieldOffset, fieldSize); 2979 } 2980 } 2981 2982 llvm::Constant * 2983 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2984 const CGBlockInfo &blockInfo) { 2985 fillRunSkipBlockVars(CGM, blockInfo); 2986 return getBitmapBlockLayout(false); 2987 } 2988 2989 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2990 const CGBlockInfo &blockInfo) { 2991 fillRunSkipBlockVars(CGM, blockInfo); 2992 return getBlockLayoutInfoString(RunSkipBlockVars, 2993 blockInfo.needsCopyDisposeHelpers()); 2994 } 2995 2996 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2997 QualType T) { 2998 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2999 assert(!T->isArrayType() && "__block array variable should not be caught"); 3000 CharUnits fieldOffset; 3001 RunSkipBlockVars.clear(); 3002 bool hasUnion = false; 3003 if (const RecordType *record = T->getAs<RecordType>()) { 3004 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 3005 llvm::Constant *Result = getBitmapBlockLayout(true); 3006 if (isa<llvm::ConstantInt>(Result)) 3007 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 3008 return Result; 3009 } 3010 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 3011 return nullPtr; 3012 } 3013 3014 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 3015 const ObjCProtocolDecl *PD) { 3016 // FIXME: I don't understand why gcc generates this, or where it is 3017 // resolved. Investigate. Its also wasteful to look this up over and over. 3018 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3019 3020 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 3021 ObjCTypes.getExternalProtocolPtrTy()); 3022 } 3023 3024 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 3025 // FIXME: We shouldn't need this, the protocol decl should contain enough 3026 // information to tell us whether this was a declaration or a definition. 3027 DefinedProtocols.insert(PD->getIdentifier()); 3028 3029 // If we have generated a forward reference to this protocol, emit 3030 // it now. Otherwise do nothing, the protocol objects are lazily 3031 // emitted. 3032 if (Protocols.count(PD->getIdentifier())) 3033 GetOrEmitProtocol(PD); 3034 } 3035 3036 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 3037 if (DefinedProtocols.count(PD->getIdentifier())) 3038 return GetOrEmitProtocol(PD); 3039 3040 return GetOrEmitProtocolRef(PD); 3041 } 3042 3043 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 3044 CodeGenFunction &CGF, 3045 const ObjCInterfaceDecl *ID, 3046 ObjCCommonTypesHelper &ObjCTypes) { 3047 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3048 3049 llvm::Value *className = CGF.CGM 3050 .GetAddrOfConstantCString(std::string( 3051 ID->getObjCRuntimeNameAsString())) 3052 .getPointer(); 3053 ASTContext &ctx = CGF.CGM.getContext(); 3054 className = 3055 CGF.Builder.CreateBitCast(className, 3056 CGF.ConvertType( 3057 ctx.getPointerType(ctx.CharTy.withConst()))); 3058 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3059 call->setDoesNotThrow(); 3060 return call; 3061 } 3062 3063 /* 3064 // Objective-C 1.0 extensions 3065 struct _objc_protocol { 3066 struct _objc_protocol_extension *isa; 3067 char *protocol_name; 3068 struct _objc_protocol_list *protocol_list; 3069 struct _objc__method_prototype_list *instance_methods; 3070 struct _objc__method_prototype_list *class_methods 3071 }; 3072 3073 See EmitProtocolExtension(). 3074 */ 3075 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3076 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3077 3078 // Early exit if a defining object has already been generated. 3079 if (Entry && Entry->hasInitializer()) 3080 return Entry; 3081 3082 // Use the protocol definition, if there is one. 3083 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3084 PD = Def; 3085 3086 // FIXME: I don't understand why gcc generates this, or where it is 3087 // resolved. Investigate. Its also wasteful to look this up over and over. 3088 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3089 3090 // Construct method lists. 3091 auto methodLists = ProtocolMethodLists::get(PD); 3092 3093 ConstantInitBuilder builder(CGM); 3094 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3095 values.add(EmitProtocolExtension(PD, methodLists)); 3096 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3097 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3098 PD->protocol_begin(), PD->protocol_end())); 3099 values.add(methodLists.emitMethodList(this, PD, 3100 ProtocolMethodLists::RequiredInstanceMethods)); 3101 values.add(methodLists.emitMethodList(this, PD, 3102 ProtocolMethodLists::RequiredClassMethods)); 3103 3104 if (Entry) { 3105 // Already created, update the initializer. 3106 assert(Entry->hasPrivateLinkage()); 3107 values.finishAndSetAsInitializer(Entry); 3108 } else { 3109 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3110 CGM.getPointerAlign(), 3111 /*constant*/ false, 3112 llvm::GlobalValue::PrivateLinkage); 3113 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3114 3115 Protocols[PD->getIdentifier()] = Entry; 3116 } 3117 CGM.addCompilerUsedGlobal(Entry); 3118 3119 return Entry; 3120 } 3121 3122 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3123 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3124 3125 if (!Entry) { 3126 // We use the initializer as a marker of whether this is a forward 3127 // reference or not. At module finalization we add the empty 3128 // contents for protocols which were referenced but never defined. 3129 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3130 false, llvm::GlobalValue::PrivateLinkage, 3131 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3132 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3133 // FIXME: Is this necessary? Why only for protocol? 3134 Entry->setAlignment(llvm::Align(4)); 3135 } 3136 3137 return Entry; 3138 } 3139 3140 /* 3141 struct _objc_protocol_extension { 3142 uint32_t size; 3143 struct objc_method_description_list *optional_instance_methods; 3144 struct objc_method_description_list *optional_class_methods; 3145 struct objc_property_list *instance_properties; 3146 const char ** extendedMethodTypes; 3147 struct objc_property_list *class_properties; 3148 }; 3149 */ 3150 llvm::Constant * 3151 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3152 const ProtocolMethodLists &methodLists) { 3153 auto optInstanceMethods = 3154 methodLists.emitMethodList(this, PD, 3155 ProtocolMethodLists::OptionalInstanceMethods); 3156 auto optClassMethods = 3157 methodLists.emitMethodList(this, PD, 3158 ProtocolMethodLists::OptionalClassMethods); 3159 3160 auto extendedMethodTypes = 3161 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3162 methodLists.emitExtendedTypesArray(this), 3163 ObjCTypes); 3164 3165 auto instanceProperties = 3166 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3167 ObjCTypes, false); 3168 auto classProperties = 3169 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3170 PD, ObjCTypes, true); 3171 3172 // Return null if no extension bits are used. 3173 if (optInstanceMethods->isNullValue() && 3174 optClassMethods->isNullValue() && 3175 extendedMethodTypes->isNullValue() && 3176 instanceProperties->isNullValue() && 3177 classProperties->isNullValue()) { 3178 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3179 } 3180 3181 uint64_t size = 3182 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3183 3184 ConstantInitBuilder builder(CGM); 3185 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3186 values.addInt(ObjCTypes.IntTy, size); 3187 values.add(optInstanceMethods); 3188 values.add(optClassMethods); 3189 values.add(instanceProperties); 3190 values.add(extendedMethodTypes); 3191 values.add(classProperties); 3192 3193 // No special section, but goes in llvm.used 3194 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3195 StringRef(), CGM.getPointerAlign(), true); 3196 } 3197 3198 /* 3199 struct objc_protocol_list { 3200 struct objc_protocol_list *next; 3201 long count; 3202 Protocol *list[]; 3203 }; 3204 */ 3205 llvm::Constant * 3206 CGObjCMac::EmitProtocolList(Twine name, 3207 ObjCProtocolDecl::protocol_iterator begin, 3208 ObjCProtocolDecl::protocol_iterator end) { 3209 // Just return null for empty protocol lists 3210 if (begin == end) 3211 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3212 3213 ConstantInitBuilder builder(CGM); 3214 auto values = builder.beginStruct(); 3215 3216 // This field is only used by the runtime. 3217 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3218 3219 // Reserve a slot for the count. 3220 auto countSlot = values.addPlaceholder(); 3221 3222 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3223 for (; begin != end; ++begin) { 3224 refsArray.add(GetProtocolRef(*begin)); 3225 } 3226 auto count = refsArray.size(); 3227 3228 // This list is null terminated. 3229 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3230 3231 refsArray.finishAndAddTo(values); 3232 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3233 3234 StringRef section; 3235 if (CGM.getTriple().isOSBinFormatMachO()) 3236 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3237 3238 llvm::GlobalVariable *GV = 3239 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3240 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3241 } 3242 3243 static void 3244 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3245 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3246 const ObjCProtocolDecl *Proto, 3247 bool IsClassProperty) { 3248 for (const auto *PD : Proto->properties()) { 3249 if (IsClassProperty != PD->isClassProperty()) 3250 continue; 3251 if (!PropertySet.insert(PD->getIdentifier()).second) 3252 continue; 3253 Properties.push_back(PD); 3254 } 3255 3256 for (const auto *P : Proto->protocols()) 3257 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3258 } 3259 3260 /* 3261 struct _objc_property { 3262 const char * const name; 3263 const char * const attributes; 3264 }; 3265 3266 struct _objc_property_list { 3267 uint32_t entsize; // sizeof (struct _objc_property) 3268 uint32_t prop_count; 3269 struct _objc_property[prop_count]; 3270 }; 3271 */ 3272 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3273 const Decl *Container, 3274 const ObjCContainerDecl *OCD, 3275 const ObjCCommonTypesHelper &ObjCTypes, 3276 bool IsClassProperty) { 3277 if (IsClassProperty) { 3278 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3279 // with deployment target < 9.0. 3280 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3281 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3282 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3283 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3284 } 3285 3286 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3287 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3288 3289 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3290 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3291 for (auto *PD : ClassExt->properties()) { 3292 if (IsClassProperty != PD->isClassProperty()) 3293 continue; 3294 if (PD->isDirectProperty()) 3295 continue; 3296 PropertySet.insert(PD->getIdentifier()); 3297 Properties.push_back(PD); 3298 } 3299 3300 for (const auto *PD : OCD->properties()) { 3301 if (IsClassProperty != PD->isClassProperty()) 3302 continue; 3303 // Don't emit duplicate metadata for properties that were already in a 3304 // class extension. 3305 if (!PropertySet.insert(PD->getIdentifier()).second) 3306 continue; 3307 if (PD->isDirectProperty()) 3308 continue; 3309 Properties.push_back(PD); 3310 } 3311 3312 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3313 for (const auto *P : OID->all_referenced_protocols()) 3314 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3315 } 3316 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3317 for (const auto *P : CD->protocols()) 3318 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3319 } 3320 3321 // Return null for empty list. 3322 if (Properties.empty()) 3323 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3324 3325 unsigned propertySize = 3326 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3327 3328 ConstantInitBuilder builder(CGM); 3329 auto values = builder.beginStruct(); 3330 values.addInt(ObjCTypes.IntTy, propertySize); 3331 values.addInt(ObjCTypes.IntTy, Properties.size()); 3332 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3333 for (auto PD : Properties) { 3334 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3335 property.add(GetPropertyName(PD->getIdentifier())); 3336 property.add(GetPropertyTypeString(PD, Container)); 3337 property.finishAndAddTo(propertiesArray); 3338 } 3339 propertiesArray.finishAndAddTo(values); 3340 3341 StringRef Section; 3342 if (CGM.getTriple().isOSBinFormatMachO()) 3343 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3344 : "__OBJC,__property,regular,no_dead_strip"; 3345 3346 llvm::GlobalVariable *GV = 3347 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3348 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3349 } 3350 3351 llvm::Constant * 3352 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3353 ArrayRef<llvm::Constant*> MethodTypes, 3354 const ObjCCommonTypesHelper &ObjCTypes) { 3355 // Return null for empty list. 3356 if (MethodTypes.empty()) 3357 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3358 3359 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3360 MethodTypes.size()); 3361 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3362 3363 StringRef Section; 3364 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3365 Section = "__DATA, __objc_const"; 3366 3367 llvm::GlobalVariable *GV = 3368 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3369 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3370 } 3371 3372 /* 3373 struct _objc_category { 3374 char *category_name; 3375 char *class_name; 3376 struct _objc_method_list *instance_methods; 3377 struct _objc_method_list *class_methods; 3378 struct _objc_protocol_list *protocols; 3379 uint32_t size; // <rdar://4585769> 3380 struct _objc_property_list *instance_properties; 3381 struct _objc_property_list *class_properties; 3382 }; 3383 */ 3384 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3385 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3386 3387 // FIXME: This is poor design, the OCD should have a pointer to the category 3388 // decl. Additionally, note that Category can be null for the @implementation 3389 // w/o an @interface case. Sema should just create one for us as it does for 3390 // @implementation so everyone else can live life under a clear blue sky. 3391 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3392 const ObjCCategoryDecl *Category = 3393 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3394 3395 SmallString<256> ExtName; 3396 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3397 << OCD->getName(); 3398 3399 ConstantInitBuilder Builder(CGM); 3400 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3401 3402 enum { 3403 InstanceMethods, 3404 ClassMethods, 3405 NumMethodLists 3406 }; 3407 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3408 for (const auto *MD : OCD->methods()) { 3409 if (!MD->isDirectMethod()) 3410 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3411 } 3412 3413 Values.add(GetClassName(OCD->getName())); 3414 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3415 LazySymbols.insert(Interface->getIdentifier()); 3416 3417 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3418 Methods[InstanceMethods])); 3419 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3420 Methods[ClassMethods])); 3421 if (Category) { 3422 Values.add( 3423 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3424 Category->protocol_begin(), Category->protocol_end())); 3425 } else { 3426 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3427 } 3428 Values.addInt(ObjCTypes.IntTy, Size); 3429 3430 // If there is no category @interface then there can be no properties. 3431 if (Category) { 3432 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3433 OCD, Category, ObjCTypes, false)); 3434 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3435 OCD, Category, ObjCTypes, true)); 3436 } else { 3437 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3438 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3439 } 3440 3441 llvm::GlobalVariable *GV = 3442 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3443 "__OBJC,__category,regular,no_dead_strip", 3444 CGM.getPointerAlign(), true); 3445 DefinedCategories.push_back(GV); 3446 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3447 // method definition entries must be clear for next implementation. 3448 MethodDefinitions.clear(); 3449 } 3450 3451 enum FragileClassFlags { 3452 /// Apparently: is not a meta-class. 3453 FragileABI_Class_Factory = 0x00001, 3454 3455 /// Is a meta-class. 3456 FragileABI_Class_Meta = 0x00002, 3457 3458 /// Has a non-trivial constructor or destructor. 3459 FragileABI_Class_HasCXXStructors = 0x02000, 3460 3461 /// Has hidden visibility. 3462 FragileABI_Class_Hidden = 0x20000, 3463 3464 /// Class implementation was compiled under ARC. 3465 FragileABI_Class_CompiledByARC = 0x04000000, 3466 3467 /// Class implementation was compiled under MRC and has MRC weak ivars. 3468 /// Exclusive with CompiledByARC. 3469 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3470 }; 3471 3472 enum NonFragileClassFlags { 3473 /// Is a meta-class. 3474 NonFragileABI_Class_Meta = 0x00001, 3475 3476 /// Is a root class. 3477 NonFragileABI_Class_Root = 0x00002, 3478 3479 /// Has a non-trivial constructor or destructor. 3480 NonFragileABI_Class_HasCXXStructors = 0x00004, 3481 3482 /// Has hidden visibility. 3483 NonFragileABI_Class_Hidden = 0x00010, 3484 3485 /// Has the exception attribute. 3486 NonFragileABI_Class_Exception = 0x00020, 3487 3488 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3489 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3490 3491 /// Class implementation was compiled under ARC. 3492 NonFragileABI_Class_CompiledByARC = 0x00080, 3493 3494 /// Class has non-trivial destructors, but zero-initialization is okay. 3495 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3496 3497 /// Class implementation was compiled under MRC and has MRC weak ivars. 3498 /// Exclusive with CompiledByARC. 3499 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3500 }; 3501 3502 static bool hasWeakMember(QualType type) { 3503 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3504 return true; 3505 } 3506 3507 if (auto recType = type->getAs<RecordType>()) { 3508 for (auto field : recType->getDecl()->fields()) { 3509 if (hasWeakMember(field->getType())) 3510 return true; 3511 } 3512 } 3513 3514 return false; 3515 } 3516 3517 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3518 /// (and actually fill in a layout string) if we really do have any 3519 /// __weak ivars. 3520 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3521 const ObjCImplementationDecl *ID) { 3522 if (!CGM.getLangOpts().ObjCWeak) return false; 3523 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3524 3525 for (const ObjCIvarDecl *ivar = 3526 ID->getClassInterface()->all_declared_ivar_begin(); 3527 ivar; ivar = ivar->getNextIvar()) { 3528 if (hasWeakMember(ivar->getType())) 3529 return true; 3530 } 3531 3532 return false; 3533 } 3534 3535 /* 3536 struct _objc_class { 3537 Class isa; 3538 Class super_class; 3539 const char *name; 3540 long version; 3541 long info; 3542 long instance_size; 3543 struct _objc_ivar_list *ivars; 3544 struct _objc_method_list *methods; 3545 struct _objc_cache *cache; 3546 struct _objc_protocol_list *protocols; 3547 // Objective-C 1.0 extensions (<rdr://4585769>) 3548 const char *ivar_layout; 3549 struct _objc_class_ext *ext; 3550 }; 3551 3552 See EmitClassExtension(); 3553 */ 3554 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3555 IdentifierInfo *RuntimeName = 3556 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3557 DefinedSymbols.insert(RuntimeName); 3558 3559 std::string ClassName = ID->getNameAsString(); 3560 // FIXME: Gross 3561 ObjCInterfaceDecl *Interface = 3562 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3563 llvm::Constant *Protocols = 3564 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3565 Interface->all_referenced_protocol_begin(), 3566 Interface->all_referenced_protocol_end()); 3567 unsigned Flags = FragileABI_Class_Factory; 3568 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3569 Flags |= FragileABI_Class_HasCXXStructors; 3570 3571 bool hasMRCWeak = false; 3572 3573 if (CGM.getLangOpts().ObjCAutoRefCount) 3574 Flags |= FragileABI_Class_CompiledByARC; 3575 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3576 Flags |= FragileABI_Class_HasMRCWeakIvars; 3577 3578 CharUnits Size = 3579 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3580 3581 // FIXME: Set CXX-structors flag. 3582 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3583 Flags |= FragileABI_Class_Hidden; 3584 3585 enum { 3586 InstanceMethods, 3587 ClassMethods, 3588 NumMethodLists 3589 }; 3590 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3591 for (const auto *MD : ID->methods()) { 3592 if (!MD->isDirectMethod()) 3593 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3594 } 3595 3596 for (const auto *PID : ID->property_impls()) { 3597 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3598 if (PID->getPropertyDecl()->isDirectProperty()) 3599 continue; 3600 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3601 if (GetMethodDefinition(MD)) 3602 Methods[InstanceMethods].push_back(MD); 3603 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3604 if (GetMethodDefinition(MD)) 3605 Methods[InstanceMethods].push_back(MD); 3606 } 3607 } 3608 3609 ConstantInitBuilder builder(CGM); 3610 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3611 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3612 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3613 // Record a reference to the super class. 3614 LazySymbols.insert(Super->getIdentifier()); 3615 3616 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3617 ObjCTypes.ClassPtrTy); 3618 } else { 3619 values.addNullPointer(ObjCTypes.ClassPtrTy); 3620 } 3621 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3622 // Version is always 0. 3623 values.addInt(ObjCTypes.LongTy, 0); 3624 values.addInt(ObjCTypes.LongTy, Flags); 3625 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3626 values.add(EmitIvarList(ID, false)); 3627 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3628 Methods[InstanceMethods])); 3629 // cache is always NULL. 3630 values.addNullPointer(ObjCTypes.CachePtrTy); 3631 values.add(Protocols); 3632 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3633 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3634 /*isMetaclass*/ false)); 3635 3636 std::string Name("OBJC_CLASS_"); 3637 Name += ClassName; 3638 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3639 // Check for a forward reference. 3640 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3641 if (GV) { 3642 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3643 "Forward metaclass reference has incorrect type."); 3644 values.finishAndSetAsInitializer(GV); 3645 GV->setSection(Section); 3646 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3647 CGM.addCompilerUsedGlobal(GV); 3648 } else 3649 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3650 DefinedClasses.push_back(GV); 3651 ImplementedClasses.push_back(Interface); 3652 // method definition entries must be clear for next implementation. 3653 MethodDefinitions.clear(); 3654 } 3655 3656 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3657 llvm::Constant *Protocols, 3658 ArrayRef<const ObjCMethodDecl*> Methods) { 3659 unsigned Flags = FragileABI_Class_Meta; 3660 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3661 3662 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3663 Flags |= FragileABI_Class_Hidden; 3664 3665 ConstantInitBuilder builder(CGM); 3666 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3667 // The isa for the metaclass is the root of the hierarchy. 3668 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3669 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3670 Root = Super; 3671 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3672 ObjCTypes.ClassPtrTy); 3673 // The super class for the metaclass is emitted as the name of the 3674 // super class. The runtime fixes this up to point to the 3675 // *metaclass* for the super class. 3676 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3677 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3678 ObjCTypes.ClassPtrTy); 3679 } else { 3680 values.addNullPointer(ObjCTypes.ClassPtrTy); 3681 } 3682 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3683 // Version is always 0. 3684 values.addInt(ObjCTypes.LongTy, 0); 3685 values.addInt(ObjCTypes.LongTy, Flags); 3686 values.addInt(ObjCTypes.LongTy, Size); 3687 values.add(EmitIvarList(ID, true)); 3688 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3689 Methods)); 3690 // cache is always NULL. 3691 values.addNullPointer(ObjCTypes.CachePtrTy); 3692 values.add(Protocols); 3693 // ivar_layout for metaclass is always NULL. 3694 values.addNullPointer(ObjCTypes.Int8PtrTy); 3695 // The class extension is used to store class properties for metaclasses. 3696 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3697 /*isMetaclass*/true)); 3698 3699 std::string Name("OBJC_METACLASS_"); 3700 Name += ID->getName(); 3701 3702 // Check for a forward reference. 3703 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3704 if (GV) { 3705 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3706 "Forward metaclass reference has incorrect type."); 3707 values.finishAndSetAsInitializer(GV); 3708 } else { 3709 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3710 /*constant*/ false, 3711 llvm::GlobalValue::PrivateLinkage); 3712 } 3713 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3714 CGM.addCompilerUsedGlobal(GV); 3715 3716 return GV; 3717 } 3718 3719 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3720 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3721 3722 // FIXME: Should we look these up somewhere other than the module. Its a bit 3723 // silly since we only generate these while processing an implementation, so 3724 // exactly one pointer would work if know when we entered/exitted an 3725 // implementation block. 3726 3727 // Check for an existing forward reference. 3728 // Previously, metaclass with internal linkage may have been defined. 3729 // pass 'true' as 2nd argument so it is returned. 3730 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3731 if (!GV) 3732 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3733 llvm::GlobalValue::PrivateLinkage, nullptr, 3734 Name); 3735 3736 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3737 "Forward metaclass reference has incorrect type."); 3738 return GV; 3739 } 3740 3741 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3742 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3743 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3744 3745 if (!GV) 3746 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3747 llvm::GlobalValue::PrivateLinkage, nullptr, 3748 Name); 3749 3750 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3751 "Forward class metadata reference has incorrect type."); 3752 return GV; 3753 } 3754 3755 /* 3756 Emit a "class extension", which in this specific context means extra 3757 data that doesn't fit in the normal fragile-ABI class structure, and 3758 has nothing to do with the language concept of a class extension. 3759 3760 struct objc_class_ext { 3761 uint32_t size; 3762 const char *weak_ivar_layout; 3763 struct _objc_property_list *properties; 3764 }; 3765 */ 3766 llvm::Constant * 3767 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3768 CharUnits InstanceSize, bool hasMRCWeakIvars, 3769 bool isMetaclass) { 3770 // Weak ivar layout. 3771 llvm::Constant *layout; 3772 if (isMetaclass) { 3773 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3774 } else { 3775 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3776 hasMRCWeakIvars); 3777 } 3778 3779 // Properties. 3780 llvm::Constant *propertyList = 3781 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3782 : Twine("_OBJC_$_PROP_LIST_")) 3783 + ID->getName(), 3784 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3785 3786 // Return null if no extension bits are used. 3787 if (layout->isNullValue() && propertyList->isNullValue()) { 3788 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3789 } 3790 3791 uint64_t size = 3792 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3793 3794 ConstantInitBuilder builder(CGM); 3795 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3796 values.addInt(ObjCTypes.IntTy, size); 3797 values.add(layout); 3798 values.add(propertyList); 3799 3800 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3801 "__OBJC,__class_ext,regular,no_dead_strip", 3802 CGM.getPointerAlign(), true); 3803 } 3804 3805 /* 3806 struct objc_ivar { 3807 char *ivar_name; 3808 char *ivar_type; 3809 int ivar_offset; 3810 }; 3811 3812 struct objc_ivar_list { 3813 int ivar_count; 3814 struct objc_ivar list[count]; 3815 }; 3816 */ 3817 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3818 bool ForClass) { 3819 // When emitting the root class GCC emits ivar entries for the 3820 // actual class structure. It is not clear if we need to follow this 3821 // behavior; for now lets try and get away with not doing it. If so, 3822 // the cleanest solution would be to make up an ObjCInterfaceDecl 3823 // for the class. 3824 if (ForClass) 3825 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3826 3827 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3828 3829 ConstantInitBuilder builder(CGM); 3830 auto ivarList = builder.beginStruct(); 3831 auto countSlot = ivarList.addPlaceholder(); 3832 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3833 3834 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3835 IVD; IVD = IVD->getNextIvar()) { 3836 // Ignore unnamed bit-fields. 3837 if (!IVD->getDeclName()) 3838 continue; 3839 3840 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3841 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3842 ivar.add(GetMethodVarType(IVD)); 3843 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3844 ivar.finishAndAddTo(ivars); 3845 } 3846 3847 // Return null for empty list. 3848 auto count = ivars.size(); 3849 if (count == 0) { 3850 ivars.abandon(); 3851 ivarList.abandon(); 3852 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3853 } 3854 3855 ivars.finishAndAddTo(ivarList); 3856 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3857 3858 llvm::GlobalVariable *GV; 3859 if (ForClass) 3860 GV = 3861 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3862 "__OBJC,__class_vars,regular,no_dead_strip", 3863 CGM.getPointerAlign(), true); 3864 else 3865 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3866 "__OBJC,__instance_vars,regular,no_dead_strip", 3867 CGM.getPointerAlign(), true); 3868 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3869 } 3870 3871 /// Build a struct objc_method_description constant for the given method. 3872 /// 3873 /// struct objc_method_description { 3874 /// SEL method_name; 3875 /// char *method_types; 3876 /// }; 3877 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3878 const ObjCMethodDecl *MD) { 3879 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3880 description.addBitCast(GetMethodVarName(MD->getSelector()), 3881 ObjCTypes.SelectorPtrTy); 3882 description.add(GetMethodVarType(MD)); 3883 description.finishAndAddTo(builder); 3884 } 3885 3886 /// Build a struct objc_method constant for the given method. 3887 /// 3888 /// struct objc_method { 3889 /// SEL method_name; 3890 /// char *method_types; 3891 /// void *method; 3892 /// }; 3893 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3894 const ObjCMethodDecl *MD) { 3895 llvm::Function *fn = GetMethodDefinition(MD); 3896 assert(fn && "no definition registered for method"); 3897 3898 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3899 method.addBitCast(GetMethodVarName(MD->getSelector()), 3900 ObjCTypes.SelectorPtrTy); 3901 method.add(GetMethodVarType(MD)); 3902 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3903 method.finishAndAddTo(builder); 3904 } 3905 3906 /// Build a struct objc_method_list or struct objc_method_description_list, 3907 /// as appropriate. 3908 /// 3909 /// struct objc_method_list { 3910 /// struct objc_method_list *obsolete; 3911 /// int count; 3912 /// struct objc_method methods_list[count]; 3913 /// }; 3914 /// 3915 /// struct objc_method_description_list { 3916 /// int count; 3917 /// struct objc_method_description list[count]; 3918 /// }; 3919 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3920 ArrayRef<const ObjCMethodDecl *> methods) { 3921 StringRef prefix; 3922 StringRef section; 3923 bool forProtocol = false; 3924 switch (MLT) { 3925 case MethodListType::CategoryInstanceMethods: 3926 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3927 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3928 forProtocol = false; 3929 break; 3930 case MethodListType::CategoryClassMethods: 3931 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3932 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3933 forProtocol = false; 3934 break; 3935 case MethodListType::InstanceMethods: 3936 prefix = "OBJC_INSTANCE_METHODS_"; 3937 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3938 forProtocol = false; 3939 break; 3940 case MethodListType::ClassMethods: 3941 prefix = "OBJC_CLASS_METHODS_"; 3942 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3943 forProtocol = false; 3944 break; 3945 case MethodListType::ProtocolInstanceMethods: 3946 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3947 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3948 forProtocol = true; 3949 break; 3950 case MethodListType::ProtocolClassMethods: 3951 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3952 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3953 forProtocol = true; 3954 break; 3955 case MethodListType::OptionalProtocolInstanceMethods: 3956 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3957 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3958 forProtocol = true; 3959 break; 3960 case MethodListType::OptionalProtocolClassMethods: 3961 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3962 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3963 forProtocol = true; 3964 break; 3965 } 3966 3967 // Return null for empty list. 3968 if (methods.empty()) 3969 return llvm::Constant::getNullValue(forProtocol 3970 ? ObjCTypes.MethodDescriptionListPtrTy 3971 : ObjCTypes.MethodListPtrTy); 3972 3973 // For protocols, this is an objc_method_description_list, which has 3974 // a slightly different structure. 3975 if (forProtocol) { 3976 ConstantInitBuilder builder(CGM); 3977 auto values = builder.beginStruct(); 3978 values.addInt(ObjCTypes.IntTy, methods.size()); 3979 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3980 for (auto MD : methods) { 3981 emitMethodDescriptionConstant(methodArray, MD); 3982 } 3983 methodArray.finishAndAddTo(values); 3984 3985 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3986 CGM.getPointerAlign(), true); 3987 return llvm::ConstantExpr::getBitCast(GV, 3988 ObjCTypes.MethodDescriptionListPtrTy); 3989 } 3990 3991 // Otherwise, it's an objc_method_list. 3992 ConstantInitBuilder builder(CGM); 3993 auto values = builder.beginStruct(); 3994 values.addNullPointer(ObjCTypes.Int8PtrTy); 3995 values.addInt(ObjCTypes.IntTy, methods.size()); 3996 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3997 for (auto MD : methods) { 3998 if (!MD->isDirectMethod()) 3999 emitMethodConstant(methodArray, MD); 4000 } 4001 methodArray.finishAndAddTo(values); 4002 4003 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 4004 CGM.getPointerAlign(), true); 4005 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 4006 } 4007 4008 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 4009 const ObjCContainerDecl *CD) { 4010 llvm::Function *Method; 4011 4012 if (OMD->isDirectMethod()) { 4013 Method = GenerateDirectMethod(OMD, CD); 4014 } else { 4015 SmallString<256> Name; 4016 GetNameForMethod(OMD, CD, Name); 4017 4018 CodeGenTypes &Types = CGM.getTypes(); 4019 llvm::FunctionType *MethodTy = 4020 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4021 Method = 4022 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 4023 Name.str(), &CGM.getModule()); 4024 } 4025 4026 MethodDefinitions.insert(std::make_pair(OMD, Method)); 4027 4028 return Method; 4029 } 4030 4031 llvm::Function * 4032 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 4033 const ObjCContainerDecl *CD) { 4034 auto *COMD = OMD->getCanonicalDecl(); 4035 auto I = DirectMethodDefinitions.find(COMD); 4036 llvm::Function *OldFn = nullptr, *Fn = nullptr; 4037 4038 if (I != DirectMethodDefinitions.end()) { 4039 // Objective-C allows for the declaration and implementation types 4040 // to differ slightly. 4041 // 4042 // If we're being asked for the Function associated for a method 4043 // implementation, a previous value might have been cached 4044 // based on the type of the canonical declaration. 4045 // 4046 // If these do not match, then we'll replace this function with 4047 // a new one that has the proper type below. 4048 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4049 return I->second; 4050 OldFn = I->second; 4051 } 4052 4053 CodeGenTypes &Types = CGM.getTypes(); 4054 llvm::FunctionType *MethodTy = 4055 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4056 4057 if (OldFn) { 4058 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4059 "", &CGM.getModule()); 4060 Fn->takeName(OldFn); 4061 OldFn->replaceAllUsesWith( 4062 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4063 OldFn->eraseFromParent(); 4064 4065 // Replace the cached function in the map. 4066 I->second = Fn; 4067 } else { 4068 SmallString<256> Name; 4069 GetNameForMethod(OMD, CD, Name, /*ignoreCategoryNamespace*/ true); 4070 4071 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4072 Name.str(), &CGM.getModule()); 4073 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4074 } 4075 4076 return Fn; 4077 } 4078 4079 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4080 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4081 const ObjCContainerDecl *CD) { 4082 auto &Builder = CGF.Builder; 4083 bool ReceiverCanBeNull = true; 4084 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4085 auto selfValue = Builder.CreateLoad(selfAddr); 4086 4087 // Generate: 4088 // 4089 // /* for class methods only to force class lazy initialization */ 4090 // self = [self self]; 4091 // 4092 // /* unless the receiver is never NULL */ 4093 // if (self == nil) { 4094 // return (ReturnType){ }; 4095 // } 4096 // 4097 // _cmd = @selector(...) 4098 // ... 4099 4100 if (OMD->isClassMethod()) { 4101 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4102 assert(OID && 4103 "GenerateDirectMethod() should be called with the Class Interface"); 4104 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4105 auto ResultType = CGF.getContext().getObjCIdType(); 4106 RValue result; 4107 CallArgList Args; 4108 4109 // TODO: If this method is inlined, the caller might know that `self` is 4110 // already initialized; for example, it might be an ordinary Objective-C 4111 // method which always receives an initialized `self`, or it might have just 4112 // forced initialization on its own. 4113 // 4114 // We should find a way to eliminate this unnecessary initialization in such 4115 // cases in LLVM. 4116 result = GeneratePossiblySpecializedMessageSend( 4117 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4118 nullptr, true); 4119 Builder.CreateStore(result.getScalarVal(), selfAddr); 4120 4121 // Nullable `Class` expressions cannot be messaged with a direct method 4122 // so the only reason why the receive can be null would be because 4123 // of weak linking. 4124 ReceiverCanBeNull = isWeakLinkedClass(OID); 4125 } 4126 4127 if (ReceiverCanBeNull) { 4128 llvm::BasicBlock *SelfIsNilBlock = 4129 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4130 llvm::BasicBlock *ContBlock = 4131 CGF.createBasicBlock("objc_direct_method.cont"); 4132 4133 // if (self == nil) { 4134 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4135 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4136 4137 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4138 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4139 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4140 4141 CGF.EmitBlock(SelfIsNilBlock); 4142 4143 // return (ReturnType){ }; 4144 auto retTy = OMD->getReturnType(); 4145 Builder.SetInsertPoint(SelfIsNilBlock); 4146 if (!retTy->isVoidType()) { 4147 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4148 } 4149 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4150 // } 4151 4152 // rest of the body 4153 CGF.EmitBlock(ContBlock); 4154 Builder.SetInsertPoint(ContBlock); 4155 } 4156 4157 // only synthesize _cmd if it's referenced 4158 if (OMD->getCmdDecl()->isUsed()) { 4159 Builder.CreateStore(GetSelector(CGF, OMD), 4160 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4161 } 4162 } 4163 4164 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4165 ConstantStructBuilder &Init, 4166 StringRef Section, 4167 CharUnits Align, 4168 bool AddToUsed) { 4169 llvm::GlobalValue::LinkageTypes LT = 4170 getLinkageTypeForObjCMetadata(CGM, Section); 4171 llvm::GlobalVariable *GV = 4172 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4173 if (!Section.empty()) 4174 GV->setSection(Section); 4175 if (AddToUsed) 4176 CGM.addCompilerUsedGlobal(GV); 4177 return GV; 4178 } 4179 4180 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4181 llvm::Constant *Init, 4182 StringRef Section, 4183 CharUnits Align, 4184 bool AddToUsed) { 4185 llvm::Type *Ty = Init->getType(); 4186 llvm::GlobalValue::LinkageTypes LT = 4187 getLinkageTypeForObjCMetadata(CGM, Section); 4188 llvm::GlobalVariable *GV = 4189 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4190 if (!Section.empty()) 4191 GV->setSection(Section); 4192 GV->setAlignment(Align.getAsAlign()); 4193 if (AddToUsed) 4194 CGM.addCompilerUsedGlobal(GV); 4195 return GV; 4196 } 4197 4198 llvm::GlobalVariable * 4199 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4200 bool ForceNonFragileABI, 4201 bool NullTerminate) { 4202 StringRef Label; 4203 switch (Type) { 4204 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4205 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4206 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4207 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4208 } 4209 4210 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4211 4212 StringRef Section; 4213 switch (Type) { 4214 case ObjCLabelType::ClassName: 4215 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4216 : "__TEXT,__cstring,cstring_literals"; 4217 break; 4218 case ObjCLabelType::MethodVarName: 4219 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4220 : "__TEXT,__cstring,cstring_literals"; 4221 break; 4222 case ObjCLabelType::MethodVarType: 4223 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4224 : "__TEXT,__cstring,cstring_literals"; 4225 break; 4226 case ObjCLabelType::PropertyName: 4227 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4228 : "__TEXT,__cstring,cstring_literals"; 4229 break; 4230 } 4231 4232 llvm::Constant *Value = 4233 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4234 llvm::GlobalVariable *GV = 4235 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4236 /*isConstant=*/true, 4237 llvm::GlobalValue::PrivateLinkage, Value, Label); 4238 if (CGM.getTriple().isOSBinFormatMachO()) 4239 GV->setSection(Section); 4240 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4241 GV->setAlignment(CharUnits::One().getAsAlign()); 4242 CGM.addCompilerUsedGlobal(GV); 4243 4244 return GV; 4245 } 4246 4247 llvm::Function *CGObjCMac::ModuleInitFunction() { 4248 // Abuse this interface function as a place to finalize. 4249 FinishModule(); 4250 return nullptr; 4251 } 4252 4253 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4254 return ObjCTypes.getGetPropertyFn(); 4255 } 4256 4257 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4258 return ObjCTypes.getSetPropertyFn(); 4259 } 4260 4261 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4262 bool copy) { 4263 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4264 } 4265 4266 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4267 return ObjCTypes.getCopyStructFn(); 4268 } 4269 4270 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4271 return ObjCTypes.getCopyStructFn(); 4272 } 4273 4274 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4275 return ObjCTypes.getCppAtomicObjectFunction(); 4276 } 4277 4278 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4279 return ObjCTypes.getCppAtomicObjectFunction(); 4280 } 4281 4282 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4283 return ObjCTypes.getEnumerationMutationFn(); 4284 } 4285 4286 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4287 return EmitTryOrSynchronizedStmt(CGF, S); 4288 } 4289 4290 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4291 const ObjCAtSynchronizedStmt &S) { 4292 return EmitTryOrSynchronizedStmt(CGF, S); 4293 } 4294 4295 namespace { 4296 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4297 const Stmt &S; 4298 Address SyncArgSlot; 4299 Address CallTryExitVar; 4300 Address ExceptionData; 4301 ObjCTypesHelper &ObjCTypes; 4302 PerformFragileFinally(const Stmt *S, 4303 Address SyncArgSlot, 4304 Address CallTryExitVar, 4305 Address ExceptionData, 4306 ObjCTypesHelper *ObjCTypes) 4307 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4308 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4309 4310 void Emit(CodeGenFunction &CGF, Flags flags) override { 4311 // Check whether we need to call objc_exception_try_exit. 4312 // In optimized code, this branch will always be folded. 4313 llvm::BasicBlock *FinallyCallExit = 4314 CGF.createBasicBlock("finally.call_exit"); 4315 llvm::BasicBlock *FinallyNoCallExit = 4316 CGF.createBasicBlock("finally.no_call_exit"); 4317 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4318 FinallyCallExit, FinallyNoCallExit); 4319 4320 CGF.EmitBlock(FinallyCallExit); 4321 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4322 ExceptionData.getPointer()); 4323 4324 CGF.EmitBlock(FinallyNoCallExit); 4325 4326 if (isa<ObjCAtTryStmt>(S)) { 4327 if (const ObjCAtFinallyStmt* FinallyStmt = 4328 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4329 // Don't try to do the @finally if this is an EH cleanup. 4330 if (flags.isForEHCleanup()) return; 4331 4332 // Save the current cleanup destination in case there's 4333 // control flow inside the finally statement. 4334 llvm::Value *CurCleanupDest = 4335 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4336 4337 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4338 4339 if (CGF.HaveInsertPoint()) { 4340 CGF.Builder.CreateStore(CurCleanupDest, 4341 CGF.getNormalCleanupDestSlot()); 4342 } else { 4343 // Currently, the end of the cleanup must always exist. 4344 CGF.EnsureInsertPoint(); 4345 } 4346 } 4347 } else { 4348 // Emit objc_sync_exit(expr); as finally's sole statement for 4349 // @synchronized. 4350 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4351 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4352 } 4353 } 4354 }; 4355 4356 class FragileHazards { 4357 CodeGenFunction &CGF; 4358 SmallVector<llvm::Value*, 20> Locals; 4359 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4360 4361 llvm::InlineAsm *ReadHazard; 4362 llvm::InlineAsm *WriteHazard; 4363 4364 llvm::FunctionType *GetAsmFnType(); 4365 4366 void collectLocals(); 4367 void emitReadHazard(CGBuilderTy &Builder); 4368 4369 public: 4370 FragileHazards(CodeGenFunction &CGF); 4371 4372 void emitWriteHazard(); 4373 void emitHazardsInNewBlocks(); 4374 }; 4375 } // end anonymous namespace 4376 4377 /// Create the fragile-ABI read and write hazards based on the current 4378 /// state of the function, which is presumed to be immediately prior 4379 /// to a @try block. These hazards are used to maintain correct 4380 /// semantics in the face of optimization and the fragile ABI's 4381 /// cavalier use of setjmp/longjmp. 4382 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4383 collectLocals(); 4384 4385 if (Locals.empty()) return; 4386 4387 // Collect all the blocks in the function. 4388 for (llvm::Function::iterator 4389 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4390 BlocksBeforeTry.insert(&*I); 4391 4392 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4393 4394 // Create a read hazard for the allocas. This inhibits dead-store 4395 // optimizations and forces the values to memory. This hazard is 4396 // inserted before any 'throwing' calls in the protected scope to 4397 // reflect the possibility that the variables might be read from the 4398 // catch block if the call throws. 4399 { 4400 std::string Constraint; 4401 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4402 if (I) Constraint += ','; 4403 Constraint += "*m"; 4404 } 4405 4406 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4407 } 4408 4409 // Create a write hazard for the allocas. This inhibits folding 4410 // loads across the hazard. This hazard is inserted at the 4411 // beginning of the catch path to reflect the possibility that the 4412 // variables might have been written within the protected scope. 4413 { 4414 std::string Constraint; 4415 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4416 if (I) Constraint += ','; 4417 Constraint += "=*m"; 4418 } 4419 4420 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4421 } 4422 } 4423 4424 /// Emit a write hazard at the current location. 4425 void FragileHazards::emitWriteHazard() { 4426 if (Locals.empty()) return; 4427 4428 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4429 } 4430 4431 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4432 assert(!Locals.empty()); 4433 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4434 call->setDoesNotThrow(); 4435 call->setCallingConv(CGF.getRuntimeCC()); 4436 } 4437 4438 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4439 /// which have been inserted since the beginning of the try. 4440 void FragileHazards::emitHazardsInNewBlocks() { 4441 if (Locals.empty()) return; 4442 4443 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4444 4445 // Iterate through all blocks, skipping those prior to the try. 4446 for (llvm::Function::iterator 4447 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4448 llvm::BasicBlock &BB = *FI; 4449 if (BlocksBeforeTry.count(&BB)) continue; 4450 4451 // Walk through all the calls in the block. 4452 for (llvm::BasicBlock::iterator 4453 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4454 llvm::Instruction &I = *BI; 4455 4456 // Ignore instructions that aren't non-intrinsic calls. 4457 // These are the only calls that can possibly call longjmp. 4458 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4459 continue; 4460 if (isa<llvm::IntrinsicInst>(I)) 4461 continue; 4462 4463 // Ignore call sites marked nounwind. This may be questionable, 4464 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4465 if (cast<llvm::CallBase>(I).doesNotThrow()) 4466 continue; 4467 4468 // Insert a read hazard before the call. This will ensure that 4469 // any writes to the locals are performed before making the 4470 // call. If the call throws, then this is sufficient to 4471 // guarantee correctness as long as it doesn't also write to any 4472 // locals. 4473 Builder.SetInsertPoint(&BB, BI); 4474 emitReadHazard(Builder); 4475 } 4476 } 4477 } 4478 4479 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4480 if (V.isValid()) S.insert(V.getPointer()); 4481 } 4482 4483 void FragileHazards::collectLocals() { 4484 // Compute a set of allocas to ignore. 4485 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4486 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4487 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4488 4489 // Collect all the allocas currently in the function. This is 4490 // probably way too aggressive. 4491 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4492 for (llvm::BasicBlock::iterator 4493 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4494 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4495 Locals.push_back(&*I); 4496 } 4497 4498 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4499 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4500 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4501 tys[i] = Locals[i]->getType(); 4502 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4503 } 4504 4505 /* 4506 4507 Objective-C setjmp-longjmp (sjlj) Exception Handling 4508 -- 4509 4510 A catch buffer is a setjmp buffer plus: 4511 - a pointer to the exception that was caught 4512 - a pointer to the previous exception data buffer 4513 - two pointers of reserved storage 4514 Therefore catch buffers form a stack, with a pointer to the top 4515 of the stack kept in thread-local storage. 4516 4517 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4518 objc_exception_try_exit pops the given catch buffer, which is 4519 required to be the top of the EH stack. 4520 objc_exception_throw pops the top of the EH stack, writes the 4521 thrown exception into the appropriate field, and longjmps 4522 to the setjmp buffer. It crashes the process (with a printf 4523 and an abort()) if there are no catch buffers on the stack. 4524 objc_exception_extract just reads the exception pointer out of the 4525 catch buffer. 4526 4527 There's no reason an implementation couldn't use a light-weight 4528 setjmp here --- something like __builtin_setjmp, but API-compatible 4529 with the heavyweight setjmp. This will be more important if we ever 4530 want to implement correct ObjC/C++ exception interactions for the 4531 fragile ABI. 4532 4533 Note that for this use of setjmp/longjmp to be correct, we may need 4534 to mark some local variables volatile: if a non-volatile local 4535 variable is modified between the setjmp and the longjmp, it has 4536 indeterminate value. For the purposes of LLVM IR, it may be 4537 sufficient to make loads and stores within the @try (to variables 4538 declared outside the @try) volatile. This is necessary for 4539 optimized correctness, but is not currently being done; this is 4540 being tracked as rdar://problem/8160285 4541 4542 The basic framework for a @try-catch-finally is as follows: 4543 { 4544 objc_exception_data d; 4545 id _rethrow = null; 4546 bool _call_try_exit = true; 4547 4548 objc_exception_try_enter(&d); 4549 if (!setjmp(d.jmp_buf)) { 4550 ... try body ... 4551 } else { 4552 // exception path 4553 id _caught = objc_exception_extract(&d); 4554 4555 // enter new try scope for handlers 4556 if (!setjmp(d.jmp_buf)) { 4557 ... match exception and execute catch blocks ... 4558 4559 // fell off end, rethrow. 4560 _rethrow = _caught; 4561 ... jump-through-finally to finally_rethrow ... 4562 } else { 4563 // exception in catch block 4564 _rethrow = objc_exception_extract(&d); 4565 _call_try_exit = false; 4566 ... jump-through-finally to finally_rethrow ... 4567 } 4568 } 4569 ... jump-through-finally to finally_end ... 4570 4571 finally: 4572 if (_call_try_exit) 4573 objc_exception_try_exit(&d); 4574 4575 ... finally block .... 4576 ... dispatch to finally destination ... 4577 4578 finally_rethrow: 4579 objc_exception_throw(_rethrow); 4580 4581 finally_end: 4582 } 4583 4584 This framework differs slightly from the one gcc uses, in that gcc 4585 uses _rethrow to determine if objc_exception_try_exit should be called 4586 and if the object should be rethrown. This breaks in the face of 4587 throwing nil and introduces unnecessary branches. 4588 4589 We specialize this framework for a few particular circumstances: 4590 4591 - If there are no catch blocks, then we avoid emitting the second 4592 exception handling context. 4593 4594 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4595 e)) we avoid emitting the code to rethrow an uncaught exception. 4596 4597 - FIXME: If there is no @finally block we can do a few more 4598 simplifications. 4599 4600 Rethrows and Jumps-Through-Finally 4601 -- 4602 4603 '@throw;' is supported by pushing the currently-caught exception 4604 onto ObjCEHStack while the @catch blocks are emitted. 4605 4606 Branches through the @finally block are handled with an ordinary 4607 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4608 exceptions are not compatible with C++ exceptions, and this is 4609 hardly the only place where this will go wrong. 4610 4611 @synchronized(expr) { stmt; } is emitted as if it were: 4612 id synch_value = expr; 4613 objc_sync_enter(synch_value); 4614 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4615 */ 4616 4617 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4618 const Stmt &S) { 4619 bool isTry = isa<ObjCAtTryStmt>(S); 4620 4621 // A destination for the fall-through edges of the catch handlers to 4622 // jump to. 4623 CodeGenFunction::JumpDest FinallyEnd = 4624 CGF.getJumpDestInCurrentScope("finally.end"); 4625 4626 // A destination for the rethrow edge of the catch handlers to jump 4627 // to. 4628 CodeGenFunction::JumpDest FinallyRethrow = 4629 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4630 4631 // For @synchronized, call objc_sync_enter(sync.expr). The 4632 // evaluation of the expression must occur before we enter the 4633 // @synchronized. We can't avoid a temp here because we need the 4634 // value to be preserved. If the backend ever does liveness 4635 // correctly after setjmp, this will be unnecessary. 4636 Address SyncArgSlot = Address::invalid(); 4637 if (!isTry) { 4638 llvm::Value *SyncArg = 4639 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4640 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4641 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4642 4643 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4644 CGF.getPointerAlign(), "sync.arg"); 4645 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4646 } 4647 4648 // Allocate memory for the setjmp buffer. This needs to be kept 4649 // live throughout the try and catch blocks. 4650 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4651 CGF.getPointerAlign(), 4652 "exceptiondata.ptr"); 4653 4654 // Create the fragile hazards. Note that this will not capture any 4655 // of the allocas required for exception processing, but will 4656 // capture the current basic block (which extends all the way to the 4657 // setjmp call) as "before the @try". 4658 FragileHazards Hazards(CGF); 4659 4660 // Create a flag indicating whether the cleanup needs to call 4661 // objc_exception_try_exit. This is true except when 4662 // - no catches match and we're branching through the cleanup 4663 // just to rethrow the exception, or 4664 // - a catch matched and we're falling out of the catch handler. 4665 // The setjmp-safety rule here is that we should always store to this 4666 // variable in a place that dominates the branch through the cleanup 4667 // without passing through any setjmps. 4668 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4669 CharUnits::One(), 4670 "_call_try_exit"); 4671 4672 // A slot containing the exception to rethrow. Only needed when we 4673 // have both a @catch and a @finally. 4674 Address PropagatingExnVar = Address::invalid(); 4675 4676 // Push a normal cleanup to leave the try scope. 4677 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4678 SyncArgSlot, 4679 CallTryExitVar, 4680 ExceptionData, 4681 &ObjCTypes); 4682 4683 // Enter a try block: 4684 // - Call objc_exception_try_enter to push ExceptionData on top of 4685 // the EH stack. 4686 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4687 ExceptionData.getPointer()); 4688 4689 // - Call setjmp on the exception data buffer. 4690 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4691 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4692 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4693 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4694 "setjmp_buffer"); 4695 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4696 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4697 SetJmpResult->setCanReturnTwice(); 4698 4699 // If setjmp returned 0, enter the protected block; otherwise, 4700 // branch to the handler. 4701 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4702 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4703 llvm::Value *DidCatch = 4704 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4705 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4706 4707 // Emit the protected block. 4708 CGF.EmitBlock(TryBlock); 4709 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4710 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4711 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4712 4713 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4714 4715 // Emit the exception handler block. 4716 CGF.EmitBlock(TryHandler); 4717 4718 // Don't optimize loads of the in-scope locals across this point. 4719 Hazards.emitWriteHazard(); 4720 4721 // For a @synchronized (or a @try with no catches), just branch 4722 // through the cleanup to the rethrow block. 4723 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4724 // Tell the cleanup not to re-pop the exit. 4725 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4726 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4727 4728 // Otherwise, we have to match against the caught exceptions. 4729 } else { 4730 // Retrieve the exception object. We may emit multiple blocks but 4731 // nothing can cross this so the value is already in SSA form. 4732 llvm::CallInst *Caught = 4733 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4734 ExceptionData.getPointer(), "caught"); 4735 4736 // Push the exception to rethrow onto the EH value stack for the 4737 // benefit of any @throws in the handlers. 4738 CGF.ObjCEHValueStack.push_back(Caught); 4739 4740 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4741 4742 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4743 4744 llvm::BasicBlock *CatchBlock = nullptr; 4745 llvm::BasicBlock *CatchHandler = nullptr; 4746 if (HasFinally) { 4747 // Save the currently-propagating exception before 4748 // objc_exception_try_enter clears the exception slot. 4749 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4750 CGF.getPointerAlign(), 4751 "propagating_exception"); 4752 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4753 4754 // Enter a new exception try block (in case a @catch block 4755 // throws an exception). 4756 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4757 ExceptionData.getPointer()); 4758 4759 llvm::CallInst *SetJmpResult = 4760 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4761 SetJmpBuffer, "setjmp.result"); 4762 SetJmpResult->setCanReturnTwice(); 4763 4764 llvm::Value *Threw = 4765 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4766 4767 CatchBlock = CGF.createBasicBlock("catch"); 4768 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4769 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4770 4771 CGF.EmitBlock(CatchBlock); 4772 } 4773 4774 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4775 4776 // Handle catch list. As a special case we check if everything is 4777 // matched and avoid generating code for falling off the end if 4778 // so. 4779 bool AllMatched = false; 4780 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4781 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4782 4783 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4784 const ObjCObjectPointerType *OPT = nullptr; 4785 4786 // catch(...) always matches. 4787 if (!CatchParam) { 4788 AllMatched = true; 4789 } else { 4790 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4791 4792 // catch(id e) always matches under this ABI, since only 4793 // ObjC exceptions end up here in the first place. 4794 // FIXME: For the time being we also match id<X>; this should 4795 // be rejected by Sema instead. 4796 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4797 AllMatched = true; 4798 } 4799 4800 // If this is a catch-all, we don't need to test anything. 4801 if (AllMatched) { 4802 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4803 4804 if (CatchParam) { 4805 CGF.EmitAutoVarDecl(*CatchParam); 4806 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4807 4808 // These types work out because ConvertType(id) == i8*. 4809 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4810 } 4811 4812 CGF.EmitStmt(CatchStmt->getCatchBody()); 4813 4814 // The scope of the catch variable ends right here. 4815 CatchVarCleanups.ForceCleanup(); 4816 4817 CGF.EmitBranchThroughCleanup(FinallyEnd); 4818 break; 4819 } 4820 4821 assert(OPT && "Unexpected non-object pointer type in @catch"); 4822 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4823 4824 // FIXME: @catch (Class c) ? 4825 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4826 assert(IDecl && "Catch parameter must have Objective-C type!"); 4827 4828 // Check if the @catch block matches the exception object. 4829 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4830 4831 llvm::Value *matchArgs[] = { Class, Caught }; 4832 llvm::CallInst *Match = 4833 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4834 matchArgs, "match"); 4835 4836 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4837 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4838 4839 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4840 MatchedBlock, NextCatchBlock); 4841 4842 // Emit the @catch block. 4843 CGF.EmitBlock(MatchedBlock); 4844 4845 // Collect any cleanups for the catch variable. The scope lasts until 4846 // the end of the catch body. 4847 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4848 4849 CGF.EmitAutoVarDecl(*CatchParam); 4850 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4851 4852 // Initialize the catch variable. 4853 llvm::Value *Tmp = 4854 CGF.Builder.CreateBitCast(Caught, 4855 CGF.ConvertType(CatchParam->getType())); 4856 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4857 4858 CGF.EmitStmt(CatchStmt->getCatchBody()); 4859 4860 // We're done with the catch variable. 4861 CatchVarCleanups.ForceCleanup(); 4862 4863 CGF.EmitBranchThroughCleanup(FinallyEnd); 4864 4865 CGF.EmitBlock(NextCatchBlock); 4866 } 4867 4868 CGF.ObjCEHValueStack.pop_back(); 4869 4870 // If nothing wanted anything to do with the caught exception, 4871 // kill the extract call. 4872 if (Caught->use_empty()) 4873 Caught->eraseFromParent(); 4874 4875 if (!AllMatched) 4876 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4877 4878 if (HasFinally) { 4879 // Emit the exception handler for the @catch blocks. 4880 CGF.EmitBlock(CatchHandler); 4881 4882 // In theory we might now need a write hazard, but actually it's 4883 // unnecessary because there's no local-accessing code between 4884 // the try's write hazard and here. 4885 //Hazards.emitWriteHazard(); 4886 4887 // Extract the new exception and save it to the 4888 // propagating-exception slot. 4889 assert(PropagatingExnVar.isValid()); 4890 llvm::CallInst *NewCaught = 4891 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4892 ExceptionData.getPointer(), "caught"); 4893 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4894 4895 // Don't pop the catch handler; the throw already did. 4896 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4897 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4898 } 4899 } 4900 4901 // Insert read hazards as required in the new blocks. 4902 Hazards.emitHazardsInNewBlocks(); 4903 4904 // Pop the cleanup. 4905 CGF.Builder.restoreIP(TryFallthroughIP); 4906 if (CGF.HaveInsertPoint()) 4907 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4908 CGF.PopCleanupBlock(); 4909 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4910 4911 // Emit the rethrow block. 4912 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4913 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4914 if (CGF.HaveInsertPoint()) { 4915 // If we have a propagating-exception variable, check it. 4916 llvm::Value *PropagatingExn; 4917 if (PropagatingExnVar.isValid()) { 4918 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4919 4920 // Otherwise, just look in the buffer for the exception to throw. 4921 } else { 4922 llvm::CallInst *Caught = 4923 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4924 ExceptionData.getPointer()); 4925 PropagatingExn = Caught; 4926 } 4927 4928 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4929 PropagatingExn); 4930 CGF.Builder.CreateUnreachable(); 4931 } 4932 4933 CGF.Builder.restoreIP(SavedIP); 4934 } 4935 4936 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4937 const ObjCAtThrowStmt &S, 4938 bool ClearInsertionPoint) { 4939 llvm::Value *ExceptionAsObject; 4940 4941 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4942 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4943 ExceptionAsObject = 4944 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4945 } else { 4946 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4947 "Unexpected rethrow outside @catch block."); 4948 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4949 } 4950 4951 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4952 ->setDoesNotReturn(); 4953 CGF.Builder.CreateUnreachable(); 4954 4955 // Clear the insertion point to indicate we are in unreachable code. 4956 if (ClearInsertionPoint) 4957 CGF.Builder.ClearInsertionPoint(); 4958 } 4959 4960 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4961 /// object: objc_read_weak (id *src) 4962 /// 4963 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4964 Address AddrWeakObj) { 4965 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4966 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4967 ObjCTypes.PtrObjectPtrTy); 4968 llvm::Value *read_weak = 4969 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4970 AddrWeakObj.getPointer(), "weakread"); 4971 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4972 return read_weak; 4973 } 4974 4975 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4976 /// objc_assign_weak (id src, id *dst) 4977 /// 4978 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4979 llvm::Value *src, Address dst) { 4980 llvm::Type * SrcTy = src->getType(); 4981 if (!isa<llvm::PointerType>(SrcTy)) { 4982 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4983 assert(Size <= 8 && "does not support size > 8"); 4984 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4985 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4986 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4987 } 4988 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4989 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4990 llvm::Value *args[] = { src, dst.getPointer() }; 4991 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4992 args, "weakassign"); 4993 } 4994 4995 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4996 /// objc_assign_global (id src, id *dst) 4997 /// 4998 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4999 llvm::Value *src, Address dst, 5000 bool threadlocal) { 5001 llvm::Type * SrcTy = src->getType(); 5002 if (!isa<llvm::PointerType>(SrcTy)) { 5003 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5004 assert(Size <= 8 && "does not support size > 8"); 5005 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5006 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5007 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5008 } 5009 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5010 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5011 llvm::Value *args[] = { src, dst.getPointer() }; 5012 if (!threadlocal) 5013 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 5014 args, "globalassign"); 5015 else 5016 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 5017 args, "threadlocalassign"); 5018 } 5019 5020 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 5021 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 5022 /// 5023 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 5024 llvm::Value *src, Address dst, 5025 llvm::Value *ivarOffset) { 5026 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 5027 llvm::Type * SrcTy = src->getType(); 5028 if (!isa<llvm::PointerType>(SrcTy)) { 5029 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5030 assert(Size <= 8 && "does not support size > 8"); 5031 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5032 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5033 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5034 } 5035 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5036 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5037 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 5038 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 5039 } 5040 5041 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5042 /// objc_assign_strongCast (id src, id *dst) 5043 /// 5044 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5045 llvm::Value *src, Address dst) { 5046 llvm::Type * SrcTy = src->getType(); 5047 if (!isa<llvm::PointerType>(SrcTy)) { 5048 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5049 assert(Size <= 8 && "does not support size > 8"); 5050 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5051 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5052 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5053 } 5054 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5055 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5056 llvm::Value *args[] = { src, dst.getPointer() }; 5057 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5058 args, "strongassign"); 5059 } 5060 5061 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5062 Address DestPtr, 5063 Address SrcPtr, 5064 llvm::Value *size) { 5065 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5066 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5067 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5068 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5069 } 5070 5071 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5072 /// 5073 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5074 QualType ObjectTy, 5075 llvm::Value *BaseValue, 5076 const ObjCIvarDecl *Ivar, 5077 unsigned CVRQualifiers) { 5078 const ObjCInterfaceDecl *ID = 5079 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5080 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5081 EmitIvarOffset(CGF, ID, Ivar)); 5082 } 5083 5084 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5085 const ObjCInterfaceDecl *Interface, 5086 const ObjCIvarDecl *Ivar) { 5087 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5088 return llvm::ConstantInt::get( 5089 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5090 Offset); 5091 } 5092 5093 /* *** Private Interface *** */ 5094 5095 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5096 StringRef MachOAttributes) { 5097 switch (CGM.getTriple().getObjectFormat()) { 5098 case llvm::Triple::UnknownObjectFormat: 5099 llvm_unreachable("unexpected object file format"); 5100 case llvm::Triple::MachO: { 5101 if (MachOAttributes.empty()) 5102 return ("__DATA," + Section).str(); 5103 return ("__DATA," + Section + "," + MachOAttributes).str(); 5104 } 5105 case llvm::Triple::ELF: 5106 assert(Section.substr(0, 2) == "__" && 5107 "expected the name to begin with __"); 5108 return Section.substr(2).str(); 5109 case llvm::Triple::COFF: 5110 assert(Section.substr(0, 2) == "__" && 5111 "expected the name to begin with __"); 5112 return ("." + Section.substr(2) + "$B").str(); 5113 case llvm::Triple::Wasm: 5114 case llvm::Triple::XCOFF: 5115 llvm::report_fatal_error( 5116 "Objective-C support is unimplemented for object file format."); 5117 } 5118 5119 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5120 } 5121 5122 /// EmitImageInfo - Emit the image info marker used to encode some module 5123 /// level information. 5124 /// 5125 /// See: <rdr://4810609&4810587&4810587> 5126 /// struct IMAGE_INFO { 5127 /// unsigned version; 5128 /// unsigned flags; 5129 /// }; 5130 enum ImageInfoFlags { 5131 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5132 eImageInfo_GarbageCollected = (1 << 1), 5133 eImageInfo_GCOnly = (1 << 2), 5134 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5135 5136 // A flag indicating that the module has no instances of a @synthesize of a 5137 // superclass variable. <rdar://problem/6803242> 5138 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5139 eImageInfo_ImageIsSimulated = (1 << 5), 5140 eImageInfo_ClassProperties = (1 << 6) 5141 }; 5142 5143 void CGObjCCommonMac::EmitImageInfo() { 5144 unsigned version = 0; // Version is unused? 5145 std::string Section = 5146 (ObjCABI == 1) 5147 ? "__OBJC,__image_info,regular" 5148 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5149 5150 // Generate module-level named metadata to convey this information to the 5151 // linker and code-gen. 5152 llvm::Module &Mod = CGM.getModule(); 5153 5154 // Add the ObjC ABI version to the module flags. 5155 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5156 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5157 version); 5158 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5159 llvm::MDString::get(VMContext, Section)); 5160 5161 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5162 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5163 // Non-GC overrides those files which specify GC. 5164 Mod.addModuleFlag(llvm::Module::Error, 5165 "Objective-C Garbage Collection", 5166 llvm::ConstantInt::get(Int8Ty,0)); 5167 } else { 5168 // Add the ObjC garbage collection value. 5169 Mod.addModuleFlag(llvm::Module::Error, 5170 "Objective-C Garbage Collection", 5171 llvm::ConstantInt::get(Int8Ty, 5172 (uint8_t)eImageInfo_GarbageCollected)); 5173 5174 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5175 // Add the ObjC GC Only value. 5176 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5177 eImageInfo_GCOnly); 5178 5179 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5180 llvm::Metadata *Ops[2] = { 5181 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5182 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5183 Int8Ty, eImageInfo_GarbageCollected))}; 5184 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5185 llvm::MDNode::get(VMContext, Ops)); 5186 } 5187 } 5188 5189 // Indicate whether we're compiling this to run on a simulator. 5190 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5191 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5192 eImageInfo_ImageIsSimulated); 5193 5194 // Indicate whether we are generating class properties. 5195 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5196 eImageInfo_ClassProperties); 5197 } 5198 5199 // struct objc_module { 5200 // unsigned long version; 5201 // unsigned long size; 5202 // const char *name; 5203 // Symtab symtab; 5204 // }; 5205 5206 // FIXME: Get from somewhere 5207 static const int ModuleVersion = 7; 5208 5209 void CGObjCMac::EmitModuleInfo() { 5210 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5211 5212 ConstantInitBuilder builder(CGM); 5213 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5214 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5215 values.addInt(ObjCTypes.LongTy, Size); 5216 // This used to be the filename, now it is unused. <rdr://4327263> 5217 values.add(GetClassName(StringRef(""))); 5218 values.add(EmitModuleSymbols()); 5219 CreateMetadataVar("OBJC_MODULES", values, 5220 "__OBJC,__module_info,regular,no_dead_strip", 5221 CGM.getPointerAlign(), true); 5222 } 5223 5224 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5225 unsigned NumClasses = DefinedClasses.size(); 5226 unsigned NumCategories = DefinedCategories.size(); 5227 5228 // Return null if no symbols were defined. 5229 if (!NumClasses && !NumCategories) 5230 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5231 5232 ConstantInitBuilder builder(CGM); 5233 auto values = builder.beginStruct(); 5234 values.addInt(ObjCTypes.LongTy, 0); 5235 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5236 values.addInt(ObjCTypes.ShortTy, NumClasses); 5237 values.addInt(ObjCTypes.ShortTy, NumCategories); 5238 5239 // The runtime expects exactly the list of defined classes followed 5240 // by the list of defined categories, in a single array. 5241 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5242 for (unsigned i=0; i<NumClasses; i++) { 5243 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5244 assert(ID); 5245 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5246 // We are implementing a weak imported interface. Give it external linkage 5247 if (ID->isWeakImported() && !IMP->isWeakImported()) 5248 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5249 5250 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5251 } 5252 for (unsigned i=0; i<NumCategories; i++) 5253 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5254 5255 array.finishAndAddTo(values); 5256 5257 llvm::GlobalVariable *GV = CreateMetadataVar( 5258 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5259 CGM.getPointerAlign(), true); 5260 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5261 } 5262 5263 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5264 IdentifierInfo *II) { 5265 LazySymbols.insert(II); 5266 5267 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5268 5269 if (!Entry) { 5270 llvm::Constant *Casted = 5271 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5272 ObjCTypes.ClassPtrTy); 5273 Entry = CreateMetadataVar( 5274 "OBJC_CLASS_REFERENCES_", Casted, 5275 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5276 CGM.getPointerAlign(), true); 5277 } 5278 5279 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 5280 } 5281 5282 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5283 const ObjCInterfaceDecl *ID) { 5284 // If the class has the objc_runtime_visible attribute, we need to 5285 // use the Objective-C runtime to get the class. 5286 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5287 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5288 5289 IdentifierInfo *RuntimeName = 5290 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5291 return EmitClassRefFromId(CGF, RuntimeName); 5292 } 5293 5294 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5295 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5296 return EmitClassRefFromId(CGF, II); 5297 } 5298 5299 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5300 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5301 } 5302 5303 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5304 CharUnits Align = CGM.getPointerAlign(); 5305 5306 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5307 if (!Entry) { 5308 llvm::Constant *Casted = 5309 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5310 ObjCTypes.SelectorPtrTy); 5311 Entry = CreateMetadataVar( 5312 "OBJC_SELECTOR_REFERENCES_", Casted, 5313 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5314 Entry->setExternallyInitialized(true); 5315 } 5316 5317 return Address(Entry, Align); 5318 } 5319 5320 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5321 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5322 if (!Entry) 5323 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5324 return getConstantGEP(VMContext, Entry, 0, 0); 5325 } 5326 5327 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5328 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5329 I = MethodDefinitions.find(MD); 5330 if (I != MethodDefinitions.end()) 5331 return I->second; 5332 5333 return nullptr; 5334 } 5335 5336 /// GetIvarLayoutName - Returns a unique constant for the given 5337 /// ivar layout bitmap. 5338 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5339 const ObjCCommonTypesHelper &ObjCTypes) { 5340 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5341 } 5342 5343 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5344 CharUnits offset) { 5345 const RecordDecl *RD = RT->getDecl(); 5346 5347 // If this is a union, remember that we had one, because it might mess 5348 // up the ordering of layout entries. 5349 if (RD->isUnion()) 5350 IsDisordered = true; 5351 5352 const ASTRecordLayout *recLayout = nullptr; 5353 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5354 [&](const FieldDecl *field) -> CharUnits { 5355 if (!recLayout) 5356 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5357 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5358 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5359 }); 5360 } 5361 5362 template <class Iterator, class GetOffsetFn> 5363 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5364 CharUnits aggregateOffset, 5365 const GetOffsetFn &getOffset) { 5366 for (; begin != end; ++begin) { 5367 auto field = *begin; 5368 5369 // Skip over bitfields. 5370 if (field->isBitField()) { 5371 continue; 5372 } 5373 5374 // Compute the offset of the field within the aggregate. 5375 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5376 5377 visitField(field, fieldOffset); 5378 } 5379 } 5380 5381 /// Collect layout information for the given fields into IvarsInfo. 5382 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5383 CharUnits fieldOffset) { 5384 QualType fieldType = field->getType(); 5385 5386 // Drill down into arrays. 5387 uint64_t numElts = 1; 5388 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5389 numElts = 0; 5390 fieldType = arrayType->getElementType(); 5391 } 5392 // Unlike incomplete arrays, constant arrays can be nested. 5393 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5394 numElts *= arrayType->getSize().getZExtValue(); 5395 fieldType = arrayType->getElementType(); 5396 } 5397 5398 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5399 5400 // If we ended up with a zero-sized array, we've done what we can do within 5401 // the limits of this layout encoding. 5402 if (numElts == 0) return; 5403 5404 // Recurse if the base element type is a record type. 5405 if (auto recType = fieldType->getAs<RecordType>()) { 5406 size_t oldEnd = IvarsInfo.size(); 5407 5408 visitRecord(recType, fieldOffset); 5409 5410 // If we have an array, replicate the first entry's layout information. 5411 auto numEltEntries = IvarsInfo.size() - oldEnd; 5412 if (numElts != 1 && numEltEntries != 0) { 5413 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5414 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5415 // Copy the last numEltEntries onto the end of the array, adjusting 5416 // each for the element size. 5417 for (size_t i = 0; i != numEltEntries; ++i) { 5418 auto firstEntry = IvarsInfo[oldEnd + i]; 5419 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5420 firstEntry.SizeInWords)); 5421 } 5422 } 5423 } 5424 5425 return; 5426 } 5427 5428 // Classify the element type. 5429 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5430 5431 // If it matches what we're looking for, add an entry. 5432 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5433 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5434 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5435 == CGM.getPointerSize()); 5436 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5437 } 5438 } 5439 5440 /// buildBitmap - This routine does the horsework of taking the offsets of 5441 /// strong/weak references and creating a bitmap. The bitmap is also 5442 /// returned in the given buffer, suitable for being passed to \c dump(). 5443 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5444 llvm::SmallVectorImpl<unsigned char> &buffer) { 5445 // The bitmap is a series of skip/scan instructions, aligned to word 5446 // boundaries. The skip is performed first. 5447 const unsigned char MaxNibble = 0xF; 5448 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5449 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5450 5451 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5452 5453 // Sort the ivar info on byte position in case we encounterred a 5454 // union nested in the ivar list. 5455 if (IsDisordered) { 5456 // This isn't a stable sort, but our algorithm should handle it fine. 5457 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5458 } else { 5459 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5460 } 5461 assert(IvarsInfo.back().Offset < InstanceEnd); 5462 5463 assert(buffer.empty()); 5464 5465 // Skip the next N words. 5466 auto skip = [&](unsigned numWords) { 5467 assert(numWords > 0); 5468 5469 // Try to merge into the previous byte. Since scans happen second, we 5470 // can't do this if it includes a scan. 5471 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5472 unsigned lastSkip = buffer.back() >> SkipShift; 5473 if (lastSkip < MaxNibble) { 5474 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5475 numWords -= claimed; 5476 lastSkip += claimed; 5477 buffer.back() = (lastSkip << SkipShift); 5478 } 5479 } 5480 5481 while (numWords >= MaxNibble) { 5482 buffer.push_back(MaxNibble << SkipShift); 5483 numWords -= MaxNibble; 5484 } 5485 if (numWords) { 5486 buffer.push_back(numWords << SkipShift); 5487 } 5488 }; 5489 5490 // Scan the next N words. 5491 auto scan = [&](unsigned numWords) { 5492 assert(numWords > 0); 5493 5494 // Try to merge into the previous byte. Since scans happen second, we can 5495 // do this even if it includes a skip. 5496 if (!buffer.empty()) { 5497 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5498 if (lastScan < MaxNibble) { 5499 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5500 numWords -= claimed; 5501 lastScan += claimed; 5502 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5503 } 5504 } 5505 5506 while (numWords >= MaxNibble) { 5507 buffer.push_back(MaxNibble << ScanShift); 5508 numWords -= MaxNibble; 5509 } 5510 if (numWords) { 5511 buffer.push_back(numWords << ScanShift); 5512 } 5513 }; 5514 5515 // One past the end of the last scan. 5516 unsigned endOfLastScanInWords = 0; 5517 const CharUnits WordSize = CGM.getPointerSize(); 5518 5519 // Consider all the scan requests. 5520 for (auto &request : IvarsInfo) { 5521 CharUnits beginOfScan = request.Offset - InstanceBegin; 5522 5523 // Ignore scan requests that don't start at an even multiple of the 5524 // word size. We can't encode them. 5525 if ((beginOfScan % WordSize) != 0) continue; 5526 5527 // Ignore scan requests that start before the instance start. 5528 // This assumes that scans never span that boundary. The boundary 5529 // isn't the true start of the ivars, because in the fragile-ARC case 5530 // it's rounded up to word alignment, but the test above should leave 5531 // us ignoring that possibility. 5532 if (beginOfScan.isNegative()) { 5533 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5534 continue; 5535 } 5536 5537 unsigned beginOfScanInWords = beginOfScan / WordSize; 5538 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5539 5540 // If the scan starts some number of words after the last one ended, 5541 // skip forward. 5542 if (beginOfScanInWords > endOfLastScanInWords) { 5543 skip(beginOfScanInWords - endOfLastScanInWords); 5544 5545 // Otherwise, start scanning where the last left off. 5546 } else { 5547 beginOfScanInWords = endOfLastScanInWords; 5548 5549 // If that leaves us with nothing to scan, ignore this request. 5550 if (beginOfScanInWords >= endOfScanInWords) continue; 5551 } 5552 5553 // Scan to the end of the request. 5554 assert(beginOfScanInWords < endOfScanInWords); 5555 scan(endOfScanInWords - beginOfScanInWords); 5556 endOfLastScanInWords = endOfScanInWords; 5557 } 5558 5559 if (buffer.empty()) 5560 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5561 5562 // For GC layouts, emit a skip to the end of the allocation so that we 5563 // have precise information about the entire thing. This isn't useful 5564 // or necessary for the ARC-style layout strings. 5565 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5566 unsigned lastOffsetInWords = 5567 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5568 if (lastOffsetInWords > endOfLastScanInWords) { 5569 skip(lastOffsetInWords - endOfLastScanInWords); 5570 } 5571 } 5572 5573 // Null terminate the string. 5574 buffer.push_back(0); 5575 5576 auto *Entry = CGObjC.CreateCStringLiteral( 5577 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5578 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5579 } 5580 5581 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5582 /// implementation for the __strong or __weak case. 5583 /// The layout map displays which words in ivar list must be skipped 5584 /// and which must be scanned by GC (see below). String is built of bytes. 5585 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5586 /// of words to skip and right nibble is count of words to scan. So, each 5587 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5588 /// represented by a 0x00 byte which also ends the string. 5589 /// 1. when ForStrongLayout is true, following ivars are scanned: 5590 /// - id, Class 5591 /// - object * 5592 /// - __strong anything 5593 /// 5594 /// 2. When ForStrongLayout is false, following ivars are scanned: 5595 /// - __weak anything 5596 /// 5597 llvm::Constant * 5598 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5599 CharUnits beginOffset, CharUnits endOffset, 5600 bool ForStrongLayout, bool HasMRCWeakIvars) { 5601 // If this is MRC, and we're either building a strong layout or there 5602 // are no weak ivars, bail out early. 5603 llvm::Type *PtrTy = CGM.Int8PtrTy; 5604 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5605 !CGM.getLangOpts().ObjCAutoRefCount && 5606 (ForStrongLayout || !HasMRCWeakIvars)) 5607 return llvm::Constant::getNullValue(PtrTy); 5608 5609 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5610 SmallVector<const ObjCIvarDecl*, 32> ivars; 5611 5612 // GC layout strings include the complete object layout, possibly 5613 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5614 // up. 5615 // 5616 // ARC layout strings only include the class's ivars. In non-fragile 5617 // runtimes, that means starting at InstanceStart, rounded up to word 5618 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5619 // starting at the offset of the first ivar, rounded up to word alignment. 5620 // 5621 // MRC weak layout strings follow the ARC style. 5622 CharUnits baseOffset; 5623 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5624 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5625 IVD; IVD = IVD->getNextIvar()) 5626 ivars.push_back(IVD); 5627 5628 if (isNonFragileABI()) { 5629 baseOffset = beginOffset; // InstanceStart 5630 } else if (!ivars.empty()) { 5631 baseOffset = 5632 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5633 } else { 5634 baseOffset = CharUnits::Zero(); 5635 } 5636 5637 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5638 } 5639 else { 5640 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5641 5642 baseOffset = CharUnits::Zero(); 5643 } 5644 5645 if (ivars.empty()) 5646 return llvm::Constant::getNullValue(PtrTy); 5647 5648 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5649 5650 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5651 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5652 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5653 }); 5654 5655 if (!builder.hasBitmapData()) 5656 return llvm::Constant::getNullValue(PtrTy); 5657 5658 llvm::SmallVector<unsigned char, 4> buffer; 5659 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5660 5661 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5662 printf("\n%s ivar layout for class '%s': ", 5663 ForStrongLayout ? "strong" : "weak", 5664 OMD->getClassInterface()->getName().str().c_str()); 5665 builder.dump(buffer); 5666 } 5667 return C; 5668 } 5669 5670 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5671 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5672 // FIXME: Avoid std::string in "Sel.getAsString()" 5673 if (!Entry) 5674 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5675 return getConstantGEP(VMContext, Entry, 0, 0); 5676 } 5677 5678 // FIXME: Merge into a single cstring creation function. 5679 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5680 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5681 } 5682 5683 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5684 std::string TypeStr; 5685 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5686 5687 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5688 if (!Entry) 5689 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5690 return getConstantGEP(VMContext, Entry, 0, 0); 5691 } 5692 5693 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5694 bool Extended) { 5695 std::string TypeStr = 5696 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5697 5698 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5699 if (!Entry) 5700 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5701 return getConstantGEP(VMContext, Entry, 0, 0); 5702 } 5703 5704 // FIXME: Merge into a single cstring creation function. 5705 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5706 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5707 if (!Entry) 5708 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5709 return getConstantGEP(VMContext, Entry, 0, 0); 5710 } 5711 5712 // FIXME: Merge into a single cstring creation function. 5713 // FIXME: This Decl should be more precise. 5714 llvm::Constant * 5715 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5716 const Decl *Container) { 5717 std::string TypeStr = 5718 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5719 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5720 } 5721 5722 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5723 const ObjCContainerDecl *CD, 5724 SmallVectorImpl<char> &Name, 5725 bool ignoreCategoryNamespace) { 5726 llvm::raw_svector_ostream OS(Name); 5727 assert (CD && "Missing container decl in GetNameForMethod"); 5728 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5729 << '[' << CD->getName(); 5730 if (!ignoreCategoryNamespace) 5731 if (const ObjCCategoryImplDecl *CID = 5732 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5733 OS << '(' << *CID << ')'; 5734 OS << ' ' << D->getSelector().getAsString() << ']'; 5735 } 5736 5737 void CGObjCMac::FinishModule() { 5738 EmitModuleInfo(); 5739 5740 // Emit the dummy bodies for any protocols which were referenced but 5741 // never defined. 5742 for (auto &entry : Protocols) { 5743 llvm::GlobalVariable *global = entry.second; 5744 if (global->hasInitializer()) 5745 continue; 5746 5747 ConstantInitBuilder builder(CGM); 5748 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5749 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5750 values.add(GetClassName(entry.first->getName())); 5751 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5752 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5753 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5754 values.finishAndSetAsInitializer(global); 5755 CGM.addCompilerUsedGlobal(global); 5756 } 5757 5758 // Add assembler directives to add lazy undefined symbol references 5759 // for classes which are referenced but not defined. This is 5760 // important for correct linker interaction. 5761 // 5762 // FIXME: It would be nice if we had an LLVM construct for this. 5763 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5764 CGM.getTriple().isOSBinFormatMachO()) { 5765 SmallString<256> Asm; 5766 Asm += CGM.getModule().getModuleInlineAsm(); 5767 if (!Asm.empty() && Asm.back() != '\n') 5768 Asm += '\n'; 5769 5770 llvm::raw_svector_ostream OS(Asm); 5771 for (const auto *Sym : DefinedSymbols) 5772 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5773 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5774 for (const auto *Sym : LazySymbols) 5775 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5776 for (const auto &Category : DefinedCategoryNames) 5777 OS << "\t.objc_category_name_" << Category << "=0\n" 5778 << "\t.globl .objc_category_name_" << Category << "\n"; 5779 5780 CGM.getModule().setModuleInlineAsm(OS.str()); 5781 } 5782 } 5783 5784 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5785 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5786 ObjCEmptyVtableVar(nullptr) { 5787 ObjCABI = 2; 5788 } 5789 5790 /* *** */ 5791 5792 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5793 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5794 { 5795 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5796 ASTContext &Ctx = CGM.getContext(); 5797 5798 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5799 IntTy = CGM.IntTy; 5800 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5801 Int8PtrTy = CGM.Int8PtrTy; 5802 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5803 5804 // arm64 targets use "int" ivar offset variables. All others, 5805 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5806 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5807 IvarOffsetVarTy = IntTy; 5808 else 5809 IvarOffsetVarTy = LongTy; 5810 5811 ObjectPtrTy = 5812 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5813 PtrObjectPtrTy = 5814 llvm::PointerType::getUnqual(ObjectPtrTy); 5815 SelectorPtrTy = 5816 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5817 5818 // I'm not sure I like this. The implicit coordination is a bit 5819 // gross. We should solve this in a reasonable fashion because this 5820 // is a pretty common task (match some runtime data structure with 5821 // an LLVM data structure). 5822 5823 // FIXME: This is leaked. 5824 // FIXME: Merge with rewriter code? 5825 5826 // struct _objc_super { 5827 // id self; 5828 // Class cls; 5829 // } 5830 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5831 Ctx.getTranslationUnitDecl(), 5832 SourceLocation(), SourceLocation(), 5833 &Ctx.Idents.get("_objc_super")); 5834 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5835 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5836 false, ICIS_NoInit)); 5837 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5838 nullptr, Ctx.getObjCClassType(), nullptr, 5839 nullptr, false, ICIS_NoInit)); 5840 RD->completeDefinition(); 5841 5842 SuperCTy = Ctx.getTagDeclType(RD); 5843 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5844 5845 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5846 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5847 5848 // struct _prop_t { 5849 // char *name; 5850 // char *attributes; 5851 // } 5852 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5853 5854 // struct _prop_list_t { 5855 // uint32_t entsize; // sizeof(struct _prop_t) 5856 // uint32_t count_of_properties; 5857 // struct _prop_t prop_list[count_of_properties]; 5858 // } 5859 PropertyListTy = llvm::StructType::create( 5860 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5861 // struct _prop_list_t * 5862 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5863 5864 // struct _objc_method { 5865 // SEL _cmd; 5866 // char *method_type; 5867 // char *_imp; 5868 // } 5869 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5870 Int8PtrTy, Int8PtrTy); 5871 5872 // struct _objc_cache * 5873 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5874 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5875 } 5876 5877 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5878 : ObjCCommonTypesHelper(cgm) { 5879 // struct _objc_method_description { 5880 // SEL name; 5881 // char *types; 5882 // } 5883 MethodDescriptionTy = llvm::StructType::create( 5884 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5885 5886 // struct _objc_method_description_list { 5887 // int count; 5888 // struct _objc_method_description[1]; 5889 // } 5890 MethodDescriptionListTy = 5891 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5892 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5893 5894 // struct _objc_method_description_list * 5895 MethodDescriptionListPtrTy = 5896 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5897 5898 // Protocol description structures 5899 5900 // struct _objc_protocol_extension { 5901 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5902 // struct _objc_method_description_list *optional_instance_methods; 5903 // struct _objc_method_description_list *optional_class_methods; 5904 // struct _objc_property_list *instance_properties; 5905 // const char ** extendedMethodTypes; 5906 // struct _objc_property_list *class_properties; 5907 // } 5908 ProtocolExtensionTy = llvm::StructType::create( 5909 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5910 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5911 PropertyListPtrTy); 5912 5913 // struct _objc_protocol_extension * 5914 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5915 5916 // Handle recursive construction of Protocol and ProtocolList types 5917 5918 ProtocolTy = 5919 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5920 5921 ProtocolListTy = 5922 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5923 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5924 llvm::ArrayType::get(ProtocolTy, 0)); 5925 5926 // struct _objc_protocol { 5927 // struct _objc_protocol_extension *isa; 5928 // char *protocol_name; 5929 // struct _objc_protocol **_objc_protocol_list; 5930 // struct _objc_method_description_list *instance_methods; 5931 // struct _objc_method_description_list *class_methods; 5932 // } 5933 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5934 llvm::PointerType::getUnqual(ProtocolListTy), 5935 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5936 5937 // struct _objc_protocol_list * 5938 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5939 5940 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5941 5942 // Class description structures 5943 5944 // struct _objc_ivar { 5945 // char *ivar_name; 5946 // char *ivar_type; 5947 // int ivar_offset; 5948 // } 5949 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5950 IntTy); 5951 5952 // struct _objc_ivar_list * 5953 IvarListTy = 5954 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5955 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5956 5957 // struct _objc_method_list * 5958 MethodListTy = 5959 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5960 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5961 5962 // struct _objc_class_extension * 5963 ClassExtensionTy = llvm::StructType::create( 5964 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5965 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5966 5967 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5968 5969 // struct _objc_class { 5970 // Class isa; 5971 // Class super_class; 5972 // char *name; 5973 // long version; 5974 // long info; 5975 // long instance_size; 5976 // struct _objc_ivar_list *ivars; 5977 // struct _objc_method_list *methods; 5978 // struct _objc_cache *cache; 5979 // struct _objc_protocol_list *protocols; 5980 // char *ivar_layout; 5981 // struct _objc_class_ext *ext; 5982 // }; 5983 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5984 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5985 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5986 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5987 5988 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5989 5990 // struct _objc_category { 5991 // char *category_name; 5992 // char *class_name; 5993 // struct _objc_method_list *instance_method; 5994 // struct _objc_method_list *class_method; 5995 // struct _objc_protocol_list *protocols; 5996 // uint32_t size; // sizeof(struct _objc_category) 5997 // struct _objc_property_list *instance_properties;// category's @property 5998 // struct _objc_property_list *class_properties; 5999 // } 6000 CategoryTy = llvm::StructType::create( 6001 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 6002 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 6003 PropertyListPtrTy); 6004 6005 // Global metadata structures 6006 6007 // struct _objc_symtab { 6008 // long sel_ref_cnt; 6009 // SEL *refs; 6010 // short cls_def_cnt; 6011 // short cat_def_cnt; 6012 // char *defs[cls_def_cnt + cat_def_cnt]; 6013 // } 6014 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 6015 SelectorPtrTy, ShortTy, ShortTy, 6016 llvm::ArrayType::get(Int8PtrTy, 0)); 6017 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 6018 6019 // struct _objc_module { 6020 // long version; 6021 // long size; // sizeof(struct _objc_module) 6022 // char *name; 6023 // struct _objc_symtab* symtab; 6024 // } 6025 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 6026 Int8PtrTy, SymtabPtrTy); 6027 6028 // FIXME: This is the size of the setjmp buffer and should be target 6029 // specific. 18 is what's used on 32-bit X86. 6030 uint64_t SetJmpBufferSize = 18; 6031 6032 // Exceptions 6033 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 6034 6035 ExceptionDataTy = llvm::StructType::create( 6036 "struct._objc_exception_data", 6037 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 6038 } 6039 6040 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 6041 : ObjCCommonTypesHelper(cgm) { 6042 // struct _method_list_t { 6043 // uint32_t entsize; // sizeof(struct _objc_method) 6044 // uint32_t method_count; 6045 // struct _objc_method method_list[method_count]; 6046 // } 6047 MethodListnfABITy = 6048 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 6049 llvm::ArrayType::get(MethodTy, 0)); 6050 // struct method_list_t * 6051 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 6052 6053 // struct _protocol_t { 6054 // id isa; // NULL 6055 // const char * const protocol_name; 6056 // const struct _protocol_list_t * protocol_list; // super protocols 6057 // const struct method_list_t * const instance_methods; 6058 // const struct method_list_t * const class_methods; 6059 // const struct method_list_t *optionalInstanceMethods; 6060 // const struct method_list_t *optionalClassMethods; 6061 // const struct _prop_list_t * properties; 6062 // const uint32_t size; // sizeof(struct _protocol_t) 6063 // const uint32_t flags; // = 0 6064 // const char ** extendedMethodTypes; 6065 // const char *demangledName; 6066 // const struct _prop_list_t * class_properties; 6067 // } 6068 6069 // Holder for struct _protocol_list_t * 6070 ProtocolListnfABITy = 6071 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6072 6073 ProtocolnfABITy = llvm::StructType::create( 6074 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6075 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6076 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6077 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6078 PropertyListPtrTy); 6079 6080 // struct _protocol_t* 6081 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6082 6083 // struct _protocol_list_t { 6084 // long protocol_count; // Note, this is 32/64 bit 6085 // struct _protocol_t *[protocol_count]; 6086 // } 6087 ProtocolListnfABITy->setBody(LongTy, 6088 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6089 6090 // struct _objc_protocol_list* 6091 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6092 6093 // struct _ivar_t { 6094 // unsigned [long] int *offset; // pointer to ivar offset location 6095 // char *name; 6096 // char *type; 6097 // uint32_t alignment; 6098 // uint32_t size; 6099 // } 6100 IvarnfABITy = llvm::StructType::create( 6101 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6102 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6103 6104 // struct _ivar_list_t { 6105 // uint32 entsize; // sizeof(struct _ivar_t) 6106 // uint32 count; 6107 // struct _iver_t list[count]; 6108 // } 6109 IvarListnfABITy = 6110 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6111 llvm::ArrayType::get(IvarnfABITy, 0)); 6112 6113 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6114 6115 // struct _class_ro_t { 6116 // uint32_t const flags; 6117 // uint32_t const instanceStart; 6118 // uint32_t const instanceSize; 6119 // uint32_t const reserved; // only when building for 64bit targets 6120 // const uint8_t * const ivarLayout; 6121 // const char *const name; 6122 // const struct _method_list_t * const baseMethods; 6123 // const struct _objc_protocol_list *const baseProtocols; 6124 // const struct _ivar_list_t *const ivars; 6125 // const uint8_t * const weakIvarLayout; 6126 // const struct _prop_list_t * const properties; 6127 // } 6128 6129 // FIXME. Add 'reserved' field in 64bit abi mode! 6130 ClassRonfABITy = llvm::StructType::create( 6131 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6132 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6133 Int8PtrTy, PropertyListPtrTy); 6134 6135 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6136 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6137 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6138 ->getPointerTo(); 6139 6140 // struct _class_t { 6141 // struct _class_t *isa; 6142 // struct _class_t * const superclass; 6143 // void *cache; 6144 // IMP *vtable; 6145 // struct class_ro_t *ro; 6146 // } 6147 6148 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6149 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6150 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6151 llvm::PointerType::getUnqual(ImpnfABITy), 6152 llvm::PointerType::getUnqual(ClassRonfABITy)); 6153 6154 // LLVM for struct _class_t * 6155 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6156 6157 // struct _category_t { 6158 // const char * const name; 6159 // struct _class_t *const cls; 6160 // const struct _method_list_t * const instance_methods; 6161 // const struct _method_list_t * const class_methods; 6162 // const struct _protocol_list_t * const protocols; 6163 // const struct _prop_list_t * const properties; 6164 // const struct _prop_list_t * const class_properties; 6165 // const uint32_t size; 6166 // } 6167 CategorynfABITy = llvm::StructType::create( 6168 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6169 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6170 PropertyListPtrTy, IntTy); 6171 6172 // New types for nonfragile abi messaging. 6173 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6174 ASTContext &Ctx = CGM.getContext(); 6175 6176 // MessageRefTy - LLVM for: 6177 // struct _message_ref_t { 6178 // IMP messenger; 6179 // SEL name; 6180 // }; 6181 6182 // First the clang type for struct _message_ref_t 6183 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6184 Ctx.getTranslationUnitDecl(), 6185 SourceLocation(), SourceLocation(), 6186 &Ctx.Idents.get("_message_ref_t")); 6187 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6188 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6189 ICIS_NoInit)); 6190 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6191 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6192 false, ICIS_NoInit)); 6193 RD->completeDefinition(); 6194 6195 MessageRefCTy = Ctx.getTagDeclType(RD); 6196 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6197 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6198 6199 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6200 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6201 6202 // SuperMessageRefTy - LLVM for: 6203 // struct _super_message_ref_t { 6204 // SUPER_IMP messenger; 6205 // SEL name; 6206 // }; 6207 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6208 ImpnfABITy, SelectorPtrTy); 6209 6210 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6211 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6212 6213 6214 // struct objc_typeinfo { 6215 // const void** vtable; // objc_ehtype_vtable + 2 6216 // const char* name; // c++ typeinfo string 6217 // Class cls; 6218 // }; 6219 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6220 llvm::PointerType::getUnqual(Int8PtrTy), 6221 Int8PtrTy, ClassnfABIPtrTy); 6222 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6223 } 6224 6225 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6226 FinishNonFragileABIModule(); 6227 6228 return nullptr; 6229 } 6230 6231 void CGObjCNonFragileABIMac::AddModuleClassList( 6232 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6233 StringRef SectionName) { 6234 unsigned NumClasses = Container.size(); 6235 6236 if (!NumClasses) 6237 return; 6238 6239 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6240 for (unsigned i=0; i<NumClasses; i++) 6241 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6242 ObjCTypes.Int8PtrTy); 6243 llvm::Constant *Init = 6244 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6245 Symbols.size()), 6246 Symbols); 6247 6248 // Section name is obtained by calling GetSectionName, which returns 6249 // sections in the __DATA segment on MachO. 6250 assert((!CGM.getTriple().isOSBinFormatMachO() || 6251 SectionName.startswith("__DATA")) && 6252 "SectionName expected to start with __DATA on MachO"); 6253 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6254 CGM.getModule(), Init->getType(), false, 6255 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6256 GV->setAlignment( 6257 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6258 GV->setSection(SectionName); 6259 CGM.addCompilerUsedGlobal(GV); 6260 } 6261 6262 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6263 // nonfragile abi has no module definition. 6264 6265 // Build list of all implemented class addresses in array 6266 // L_OBJC_LABEL_CLASS_$. 6267 6268 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6269 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6270 assert(ID); 6271 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6272 // We are implementing a weak imported interface. Give it external linkage 6273 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6274 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6275 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6276 } 6277 } 6278 6279 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6280 GetSectionName("__objc_classlist", 6281 "regular,no_dead_strip")); 6282 6283 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6284 GetSectionName("__objc_nlclslist", 6285 "regular,no_dead_strip")); 6286 6287 // Build list of all implemented category addresses in array 6288 // L_OBJC_LABEL_CATEGORY_$. 6289 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6290 GetSectionName("__objc_catlist", 6291 "regular,no_dead_strip")); 6292 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6293 GetSectionName("__objc_catlist2", 6294 "regular,no_dead_strip")); 6295 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6296 GetSectionName("__objc_nlcatlist", 6297 "regular,no_dead_strip")); 6298 6299 EmitImageInfo(); 6300 } 6301 6302 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6303 /// VTableDispatchMethods; false otherwise. What this means is that 6304 /// except for the 19 selectors in the list, we generate 32bit-style 6305 /// message dispatch call for all the rest. 6306 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6307 // At various points we've experimented with using vtable-based 6308 // dispatch for all methods. 6309 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6310 case CodeGenOptions::Legacy: 6311 return false; 6312 case CodeGenOptions::NonLegacy: 6313 return true; 6314 case CodeGenOptions::Mixed: 6315 break; 6316 } 6317 6318 // If so, see whether this selector is in the white-list of things which must 6319 // use the new dispatch convention. We lazily build a dense set for this. 6320 if (VTableDispatchMethods.empty()) { 6321 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6322 VTableDispatchMethods.insert(GetNullarySelector("class")); 6323 VTableDispatchMethods.insert(GetNullarySelector("self")); 6324 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6325 VTableDispatchMethods.insert(GetNullarySelector("length")); 6326 VTableDispatchMethods.insert(GetNullarySelector("count")); 6327 6328 // These are vtable-based if GC is disabled. 6329 // Optimistically use vtable dispatch for hybrid compiles. 6330 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6331 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6332 VTableDispatchMethods.insert(GetNullarySelector("release")); 6333 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6334 } 6335 6336 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6337 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6338 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6339 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6340 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6341 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6342 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6343 6344 // These are vtable-based if GC is enabled. 6345 // Optimistically use vtable dispatch for hybrid compiles. 6346 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6347 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6348 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6349 6350 // "countByEnumeratingWithState:objects:count" 6351 IdentifierInfo *KeyIdents[] = { 6352 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6353 &CGM.getContext().Idents.get("objects"), 6354 &CGM.getContext().Idents.get("count") 6355 }; 6356 VTableDispatchMethods.insert( 6357 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6358 } 6359 } 6360 6361 return VTableDispatchMethods.count(Sel); 6362 } 6363 6364 /// BuildClassRoTInitializer - generate meta-data for: 6365 /// struct _class_ro_t { 6366 /// uint32_t const flags; 6367 /// uint32_t const instanceStart; 6368 /// uint32_t const instanceSize; 6369 /// uint32_t const reserved; // only when building for 64bit targets 6370 /// const uint8_t * const ivarLayout; 6371 /// const char *const name; 6372 /// const struct _method_list_t * const baseMethods; 6373 /// const struct _protocol_list_t *const baseProtocols; 6374 /// const struct _ivar_list_t *const ivars; 6375 /// const uint8_t * const weakIvarLayout; 6376 /// const struct _prop_list_t * const properties; 6377 /// } 6378 /// 6379 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6380 unsigned flags, 6381 unsigned InstanceStart, 6382 unsigned InstanceSize, 6383 const ObjCImplementationDecl *ID) { 6384 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6385 6386 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6387 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6388 6389 bool hasMRCWeak = false; 6390 if (CGM.getLangOpts().ObjCAutoRefCount) 6391 flags |= NonFragileABI_Class_CompiledByARC; 6392 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6393 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6394 6395 ConstantInitBuilder builder(CGM); 6396 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6397 6398 values.addInt(ObjCTypes.IntTy, flags); 6399 values.addInt(ObjCTypes.IntTy, InstanceStart); 6400 values.addInt(ObjCTypes.IntTy, InstanceSize); 6401 values.add((flags & NonFragileABI_Class_Meta) 6402 ? GetIvarLayoutName(nullptr, ObjCTypes) 6403 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6404 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6405 6406 // const struct _method_list_t * const baseMethods; 6407 SmallVector<const ObjCMethodDecl*, 16> methods; 6408 if (flags & NonFragileABI_Class_Meta) { 6409 for (const auto *MD : ID->class_methods()) 6410 if (!MD->isDirectMethod()) 6411 methods.push_back(MD); 6412 } else { 6413 for (const auto *MD : ID->instance_methods()) 6414 if (!MD->isDirectMethod()) 6415 methods.push_back(MD); 6416 } 6417 6418 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6419 (flags & NonFragileABI_Class_Meta) 6420 ? MethodListType::ClassMethods 6421 : MethodListType::InstanceMethods, 6422 methods)); 6423 6424 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6425 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6426 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6427 + OID->getObjCRuntimeNameAsString(), 6428 OID->all_referenced_protocol_begin(), 6429 OID->all_referenced_protocol_end())); 6430 6431 if (flags & NonFragileABI_Class_Meta) { 6432 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6433 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6434 values.add(EmitPropertyList( 6435 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6436 ID, ID->getClassInterface(), ObjCTypes, true)); 6437 } else { 6438 values.add(EmitIvarList(ID)); 6439 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6440 values.add(EmitPropertyList( 6441 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6442 ID, ID->getClassInterface(), ObjCTypes, false)); 6443 } 6444 6445 llvm::SmallString<64> roLabel; 6446 llvm::raw_svector_ostream(roLabel) 6447 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6448 : "_OBJC_CLASS_RO_$_") 6449 << ClassName; 6450 6451 return finishAndCreateGlobal(values, roLabel, CGM); 6452 } 6453 6454 /// Build the metaclass object for a class. 6455 /// 6456 /// struct _class_t { 6457 /// struct _class_t *isa; 6458 /// struct _class_t * const superclass; 6459 /// void *cache; 6460 /// IMP *vtable; 6461 /// struct class_ro_t *ro; 6462 /// } 6463 /// 6464 llvm::GlobalVariable * 6465 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6466 bool isMetaclass, 6467 llvm::Constant *IsAGV, 6468 llvm::Constant *SuperClassGV, 6469 llvm::Constant *ClassRoGV, 6470 bool HiddenVisibility) { 6471 ConstantInitBuilder builder(CGM); 6472 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6473 values.add(IsAGV); 6474 if (SuperClassGV) { 6475 values.add(SuperClassGV); 6476 } else { 6477 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6478 } 6479 values.add(ObjCEmptyCacheVar); 6480 values.add(ObjCEmptyVtableVar); 6481 values.add(ClassRoGV); 6482 6483 llvm::GlobalVariable *GV = 6484 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6485 values.finishAndSetAsInitializer(GV); 6486 6487 if (CGM.getTriple().isOSBinFormatMachO()) 6488 GV->setSection("__DATA, __objc_data"); 6489 GV->setAlignment(llvm::Align( 6490 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6491 if (!CGM.getTriple().isOSBinFormatCOFF()) 6492 if (HiddenVisibility) 6493 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6494 return GV; 6495 } 6496 6497 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6498 const ObjCImplDecl *OD) const { 6499 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6500 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6501 OD->hasAttr<ObjCNonLazyClassAttr>(); 6502 } 6503 6504 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6505 uint32_t &InstanceStart, 6506 uint32_t &InstanceSize) { 6507 const ASTRecordLayout &RL = 6508 CGM.getContext().getASTObjCImplementationLayout(OID); 6509 6510 // InstanceSize is really instance end. 6511 InstanceSize = RL.getDataSize().getQuantity(); 6512 6513 // If there are no fields, the start is the same as the end. 6514 if (!RL.getFieldCount()) 6515 InstanceStart = InstanceSize; 6516 else 6517 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6518 } 6519 6520 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6521 StringRef Name) { 6522 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6523 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6524 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6525 6526 const VarDecl *VD = nullptr; 6527 for (const auto &Result : DC->lookup(&II)) 6528 if ((VD = dyn_cast<VarDecl>(Result))) 6529 break; 6530 6531 if (!VD) 6532 return llvm::GlobalValue::DLLImportStorageClass; 6533 if (VD->hasAttr<DLLExportAttr>()) 6534 return llvm::GlobalValue::DLLExportStorageClass; 6535 if (VD->hasAttr<DLLImportAttr>()) 6536 return llvm::GlobalValue::DLLImportStorageClass; 6537 return llvm::GlobalValue::DefaultStorageClass; 6538 } 6539 6540 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6541 if (!ObjCEmptyCacheVar) { 6542 ObjCEmptyCacheVar = 6543 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6544 llvm::GlobalValue::ExternalLinkage, nullptr, 6545 "_objc_empty_cache"); 6546 if (CGM.getTriple().isOSBinFormatCOFF()) 6547 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6548 6549 // Only OS X with deployment version <10.9 use the empty vtable symbol 6550 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6551 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6552 ObjCEmptyVtableVar = 6553 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6554 llvm::GlobalValue::ExternalLinkage, nullptr, 6555 "_objc_empty_vtable"); 6556 else 6557 ObjCEmptyVtableVar = 6558 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6559 } 6560 6561 // FIXME: Is this correct (that meta class size is never computed)? 6562 uint32_t InstanceStart = 6563 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6564 uint32_t InstanceSize = InstanceStart; 6565 uint32_t flags = NonFragileABI_Class_Meta; 6566 6567 llvm::Constant *SuperClassGV, *IsAGV; 6568 6569 const auto *CI = ID->getClassInterface(); 6570 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6571 6572 // Build the flags for the metaclass. 6573 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6574 ? !CI->hasAttr<DLLExportAttr>() 6575 : CI->getVisibility() == HiddenVisibility; 6576 if (classIsHidden) 6577 flags |= NonFragileABI_Class_Hidden; 6578 6579 // FIXME: why is this flag set on the metaclass? 6580 // ObjC metaclasses have no fields and don't really get constructed. 6581 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6582 flags |= NonFragileABI_Class_HasCXXStructors; 6583 if (!ID->hasNonZeroConstructors()) 6584 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6585 } 6586 6587 if (!CI->getSuperClass()) { 6588 // class is root 6589 flags |= NonFragileABI_Class_Root; 6590 6591 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6592 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6593 } else { 6594 // Has a root. Current class is not a root. 6595 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6596 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6597 Root = Super; 6598 6599 const auto *Super = CI->getSuperClass(); 6600 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6601 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6602 } 6603 6604 llvm::GlobalVariable *CLASS_RO_GV = 6605 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6606 6607 llvm::GlobalVariable *MetaTClass = 6608 BuildClassObject(CI, /*metaclass*/ true, 6609 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6610 CGM.setGVProperties(MetaTClass, CI); 6611 DefinedMetaClasses.push_back(MetaTClass); 6612 6613 // Metadata for the class 6614 flags = 0; 6615 if (classIsHidden) 6616 flags |= NonFragileABI_Class_Hidden; 6617 6618 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6619 flags |= NonFragileABI_Class_HasCXXStructors; 6620 6621 // Set a flag to enable a runtime optimization when a class has 6622 // fields that require destruction but which don't require 6623 // anything except zero-initialization during construction. This 6624 // is most notably true of __strong and __weak types, but you can 6625 // also imagine there being C++ types with non-trivial default 6626 // constructors that merely set all fields to null. 6627 if (!ID->hasNonZeroConstructors()) 6628 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6629 } 6630 6631 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6632 flags |= NonFragileABI_Class_Exception; 6633 6634 if (!CI->getSuperClass()) { 6635 flags |= NonFragileABI_Class_Root; 6636 SuperClassGV = nullptr; 6637 } else { 6638 // Has a root. Current class is not a root. 6639 const auto *Super = CI->getSuperClass(); 6640 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6641 } 6642 6643 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6644 CLASS_RO_GV = 6645 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6646 6647 llvm::GlobalVariable *ClassMD = 6648 BuildClassObject(CI, /*metaclass*/ false, 6649 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6650 CGM.setGVProperties(ClassMD, CI); 6651 DefinedClasses.push_back(ClassMD); 6652 ImplementedClasses.push_back(CI); 6653 6654 // Determine if this class is also "non-lazy". 6655 if (ImplementationIsNonLazy(ID)) 6656 DefinedNonLazyClasses.push_back(ClassMD); 6657 6658 // Force the definition of the EHType if necessary. 6659 if (flags & NonFragileABI_Class_Exception) 6660 (void) GetInterfaceEHType(CI, ForDefinition); 6661 // Make sure method definition entries are all clear for next implementation. 6662 MethodDefinitions.clear(); 6663 } 6664 6665 /// GenerateProtocolRef - This routine is called to generate code for 6666 /// a protocol reference expression; as in: 6667 /// @code 6668 /// @protocol(Proto1); 6669 /// @endcode 6670 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6671 /// which will hold address of the protocol meta-data. 6672 /// 6673 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6674 const ObjCProtocolDecl *PD) { 6675 6676 // This routine is called for @protocol only. So, we must build definition 6677 // of protocol's meta-data (not a reference to it!) 6678 // 6679 llvm::Constant *Init = 6680 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6681 ObjCTypes.getExternalProtocolPtrTy()); 6682 6683 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6684 ProtocolName += PD->getObjCRuntimeNameAsString(); 6685 6686 CharUnits Align = CGF.getPointerAlign(); 6687 6688 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6689 if (PTGV) 6690 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6691 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6692 llvm::GlobalValue::WeakAnyLinkage, Init, 6693 ProtocolName); 6694 PTGV->setSection(GetSectionName("__objc_protorefs", 6695 "coalesced,no_dead_strip")); 6696 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6697 PTGV->setAlignment(Align.getAsAlign()); 6698 if (!CGM.getTriple().isOSBinFormatMachO()) 6699 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6700 CGM.addUsedGlobal(PTGV); 6701 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6702 } 6703 6704 /// GenerateCategory - Build metadata for a category implementation. 6705 /// struct _category_t { 6706 /// const char * const name; 6707 /// struct _class_t *const cls; 6708 /// const struct _method_list_t * const instance_methods; 6709 /// const struct _method_list_t * const class_methods; 6710 /// const struct _protocol_list_t * const protocols; 6711 /// const struct _prop_list_t * const properties; 6712 /// const struct _prop_list_t * const class_properties; 6713 /// const uint32_t size; 6714 /// } 6715 /// 6716 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6717 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6718 const char *Prefix = "_OBJC_$_CATEGORY_"; 6719 6720 llvm::SmallString<64> ExtCatName(Prefix); 6721 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6722 ExtCatName += "_$_"; 6723 ExtCatName += OCD->getNameAsString(); 6724 6725 ConstantInitBuilder builder(CGM); 6726 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6727 values.add(GetClassName(OCD->getIdentifier()->getName())); 6728 // meta-class entry symbol 6729 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6730 std::string listName = 6731 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6732 6733 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6734 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6735 for (const auto *MD : OCD->methods()) { 6736 if (MD->isDirectMethod()) 6737 continue; 6738 if (MD->isInstanceMethod()) { 6739 instanceMethods.push_back(MD); 6740 } else { 6741 classMethods.push_back(MD); 6742 } 6743 } 6744 6745 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6746 instanceMethods)); 6747 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6748 classMethods)); 6749 6750 const ObjCCategoryDecl *Category = 6751 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6752 if (Category) { 6753 SmallString<256> ExtName; 6754 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6755 << OCD->getName(); 6756 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6757 + Interface->getObjCRuntimeNameAsString() + "_$_" 6758 + Category->getName(), 6759 Category->protocol_begin(), 6760 Category->protocol_end())); 6761 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6762 OCD, Category, ObjCTypes, false)); 6763 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6764 OCD, Category, ObjCTypes, true)); 6765 } else { 6766 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6767 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6768 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6769 } 6770 6771 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6772 values.addInt(ObjCTypes.IntTy, Size); 6773 6774 llvm::GlobalVariable *GCATV = 6775 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6776 CGM.addCompilerUsedGlobal(GCATV); 6777 if (Interface->hasAttr<ObjCClassStubAttr>()) 6778 DefinedStubCategories.push_back(GCATV); 6779 else 6780 DefinedCategories.push_back(GCATV); 6781 6782 // Determine if this category is also "non-lazy". 6783 if (ImplementationIsNonLazy(OCD)) 6784 DefinedNonLazyCategories.push_back(GCATV); 6785 // method definition entries must be clear for next implementation. 6786 MethodDefinitions.clear(); 6787 } 6788 6789 /// emitMethodConstant - Return a struct objc_method constant. If 6790 /// forProtocol is true, the implementation will be null; otherwise, 6791 /// the method must have a definition registered with the runtime. 6792 /// 6793 /// struct _objc_method { 6794 /// SEL _cmd; 6795 /// char *method_type; 6796 /// char *_imp; 6797 /// } 6798 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6799 const ObjCMethodDecl *MD, 6800 bool forProtocol) { 6801 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6802 method.addBitCast(GetMethodVarName(MD->getSelector()), 6803 ObjCTypes.SelectorPtrTy); 6804 method.add(GetMethodVarType(MD)); 6805 6806 if (forProtocol) { 6807 // Protocol methods have no implementation. So, this entry is always NULL. 6808 method.addNullPointer(ObjCTypes.Int8PtrTy); 6809 } else { 6810 llvm::Function *fn = GetMethodDefinition(MD); 6811 assert(fn && "no definition for method?"); 6812 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6813 } 6814 6815 method.finishAndAddTo(builder); 6816 } 6817 6818 /// Build meta-data for method declarations. 6819 /// 6820 /// struct _method_list_t { 6821 /// uint32_t entsize; // sizeof(struct _objc_method) 6822 /// uint32_t method_count; 6823 /// struct _objc_method method_list[method_count]; 6824 /// } 6825 /// 6826 llvm::Constant * 6827 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6828 ArrayRef<const ObjCMethodDecl *> methods) { 6829 // Return null for empty list. 6830 if (methods.empty()) 6831 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6832 6833 StringRef prefix; 6834 bool forProtocol; 6835 switch (kind) { 6836 case MethodListType::CategoryInstanceMethods: 6837 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6838 forProtocol = false; 6839 break; 6840 case MethodListType::CategoryClassMethods: 6841 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6842 forProtocol = false; 6843 break; 6844 case MethodListType::InstanceMethods: 6845 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6846 forProtocol = false; 6847 break; 6848 case MethodListType::ClassMethods: 6849 prefix = "_OBJC_$_CLASS_METHODS_"; 6850 forProtocol = false; 6851 break; 6852 6853 case MethodListType::ProtocolInstanceMethods: 6854 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6855 forProtocol = true; 6856 break; 6857 case MethodListType::ProtocolClassMethods: 6858 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6859 forProtocol = true; 6860 break; 6861 case MethodListType::OptionalProtocolInstanceMethods: 6862 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6863 forProtocol = true; 6864 break; 6865 case MethodListType::OptionalProtocolClassMethods: 6866 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6867 forProtocol = true; 6868 break; 6869 } 6870 6871 ConstantInitBuilder builder(CGM); 6872 auto values = builder.beginStruct(); 6873 6874 // sizeof(struct _objc_method) 6875 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6876 values.addInt(ObjCTypes.IntTy, Size); 6877 // method_count 6878 values.addInt(ObjCTypes.IntTy, methods.size()); 6879 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6880 for (auto MD : methods) 6881 emitMethodConstant(methodArray, MD, forProtocol); 6882 methodArray.finishAndAddTo(values); 6883 6884 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6885 CGM.addCompilerUsedGlobal(GV); 6886 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6887 } 6888 6889 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6890 /// the given ivar. 6891 llvm::GlobalVariable * 6892 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6893 const ObjCIvarDecl *Ivar) { 6894 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6895 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6896 Name += Container->getObjCRuntimeNameAsString(); 6897 Name += "."; 6898 Name += Ivar->getName(); 6899 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6900 if (!IvarOffsetGV) { 6901 IvarOffsetGV = 6902 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6903 false, llvm::GlobalValue::ExternalLinkage, 6904 nullptr, Name.str()); 6905 if (CGM.getTriple().isOSBinFormatCOFF()) { 6906 bool IsPrivateOrPackage = 6907 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6908 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6909 6910 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6911 6912 if (ContainingID->hasAttr<DLLImportAttr>()) 6913 IvarOffsetGV 6914 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6915 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6916 IvarOffsetGV 6917 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6918 } 6919 } 6920 return IvarOffsetGV; 6921 } 6922 6923 llvm::Constant * 6924 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6925 const ObjCIvarDecl *Ivar, 6926 unsigned long int Offset) { 6927 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6928 IvarOffsetGV->setInitializer( 6929 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6930 IvarOffsetGV->setAlignment(llvm::Align( 6931 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6932 6933 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6934 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6935 // as well (i.e., in ObjCIvarOffsetVariable). 6936 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6937 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6938 ID->getVisibility() == HiddenVisibility) 6939 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6940 else 6941 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6942 } 6943 6944 // If ID's layout is known, then make the global constant. This serves as a 6945 // useful assertion: we'll never use this variable to calculate ivar offsets, 6946 // so if the runtime tries to patch it then we should crash. 6947 if (isClassLayoutKnownStatically(ID)) 6948 IvarOffsetGV->setConstant(true); 6949 6950 if (CGM.getTriple().isOSBinFormatMachO()) 6951 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6952 return IvarOffsetGV; 6953 } 6954 6955 /// EmitIvarList - Emit the ivar list for the given 6956 /// implementation. The return value has type 6957 /// IvarListnfABIPtrTy. 6958 /// struct _ivar_t { 6959 /// unsigned [long] int *offset; // pointer to ivar offset location 6960 /// char *name; 6961 /// char *type; 6962 /// uint32_t alignment; 6963 /// uint32_t size; 6964 /// } 6965 /// struct _ivar_list_t { 6966 /// uint32 entsize; // sizeof(struct _ivar_t) 6967 /// uint32 count; 6968 /// struct _iver_t list[count]; 6969 /// } 6970 /// 6971 6972 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6973 const ObjCImplementationDecl *ID) { 6974 6975 ConstantInitBuilder builder(CGM); 6976 auto ivarList = builder.beginStruct(); 6977 ivarList.addInt(ObjCTypes.IntTy, 6978 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6979 auto ivarCountSlot = ivarList.addPlaceholder(); 6980 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6981 6982 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6983 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6984 6985 // FIXME. Consolidate this with similar code in GenerateClass. 6986 6987 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6988 IVD; IVD = IVD->getNextIvar()) { 6989 // Ignore unnamed bit-fields. 6990 if (!IVD->getDeclName()) 6991 continue; 6992 6993 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6994 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6995 ComputeIvarBaseOffset(CGM, ID, IVD))); 6996 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6997 ivar.add(GetMethodVarType(IVD)); 6998 llvm::Type *FieldTy = 6999 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 7000 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 7001 unsigned Align = CGM.getContext().getPreferredTypeAlign( 7002 IVD->getType().getTypePtr()) >> 3; 7003 Align = llvm::Log2_32(Align); 7004 ivar.addInt(ObjCTypes.IntTy, Align); 7005 // NOTE. Size of a bitfield does not match gcc's, because of the 7006 // way bitfields are treated special in each. But I am told that 7007 // 'size' for bitfield ivars is ignored by the runtime so it does 7008 // not matter. If it matters, there is enough info to get the 7009 // bitfield right! 7010 ivar.addInt(ObjCTypes.IntTy, Size); 7011 ivar.finishAndAddTo(ivars); 7012 } 7013 // Return null for empty list. 7014 if (ivars.empty()) { 7015 ivars.abandon(); 7016 ivarList.abandon(); 7017 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 7018 } 7019 7020 auto ivarCount = ivars.size(); 7021 ivars.finishAndAddTo(ivarList); 7022 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 7023 7024 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 7025 llvm::GlobalVariable *GV = finishAndCreateGlobal( 7026 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 7027 CGM.addCompilerUsedGlobal(GV); 7028 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 7029 } 7030 7031 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 7032 const ObjCProtocolDecl *PD) { 7033 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 7034 7035 if (!Entry) { 7036 // We use the initializer as a marker of whether this is a forward 7037 // reference or not. At module finalization we add the empty 7038 // contents for protocols which were referenced but never defined. 7039 llvm::SmallString<64> Protocol; 7040 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7041 << PD->getObjCRuntimeNameAsString(); 7042 7043 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7044 false, llvm::GlobalValue::ExternalLinkage, 7045 nullptr, Protocol); 7046 if (!CGM.getTriple().isOSBinFormatMachO()) 7047 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7048 } 7049 7050 return Entry; 7051 } 7052 7053 /// GetOrEmitProtocol - Generate the protocol meta-data: 7054 /// @code 7055 /// struct _protocol_t { 7056 /// id isa; // NULL 7057 /// const char * const protocol_name; 7058 /// const struct _protocol_list_t * protocol_list; // super protocols 7059 /// const struct method_list_t * const instance_methods; 7060 /// const struct method_list_t * const class_methods; 7061 /// const struct method_list_t *optionalInstanceMethods; 7062 /// const struct method_list_t *optionalClassMethods; 7063 /// const struct _prop_list_t * properties; 7064 /// const uint32_t size; // sizeof(struct _protocol_t) 7065 /// const uint32_t flags; // = 0 7066 /// const char ** extendedMethodTypes; 7067 /// const char *demangledName; 7068 /// const struct _prop_list_t * class_properties; 7069 /// } 7070 /// @endcode 7071 /// 7072 7073 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7074 const ObjCProtocolDecl *PD) { 7075 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7076 7077 // Early exit if a defining object has already been generated. 7078 if (Entry && Entry->hasInitializer()) 7079 return Entry; 7080 7081 // Use the protocol definition, if there is one. 7082 assert(PD->hasDefinition() && 7083 "emitting protocol metadata without definition"); 7084 PD = PD->getDefinition(); 7085 7086 auto methodLists = ProtocolMethodLists::get(PD); 7087 7088 ConstantInitBuilder builder(CGM); 7089 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7090 7091 // isa is NULL 7092 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7093 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7094 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7095 + PD->getObjCRuntimeNameAsString(), 7096 PD->protocol_begin(), 7097 PD->protocol_end())); 7098 values.add(methodLists.emitMethodList(this, PD, 7099 ProtocolMethodLists::RequiredInstanceMethods)); 7100 values.add(methodLists.emitMethodList(this, PD, 7101 ProtocolMethodLists::RequiredClassMethods)); 7102 values.add(methodLists.emitMethodList(this, PD, 7103 ProtocolMethodLists::OptionalInstanceMethods)); 7104 values.add(methodLists.emitMethodList(this, PD, 7105 ProtocolMethodLists::OptionalClassMethods)); 7106 values.add(EmitPropertyList( 7107 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7108 nullptr, PD, ObjCTypes, false)); 7109 uint32_t Size = 7110 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7111 values.addInt(ObjCTypes.IntTy, Size); 7112 values.addInt(ObjCTypes.IntTy, 0); 7113 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7114 + PD->getObjCRuntimeNameAsString(), 7115 methodLists.emitExtendedTypesArray(this), 7116 ObjCTypes)); 7117 7118 // const char *demangledName; 7119 values.addNullPointer(ObjCTypes.Int8PtrTy); 7120 7121 values.add(EmitPropertyList( 7122 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7123 nullptr, PD, ObjCTypes, true)); 7124 7125 if (Entry) { 7126 // Already created, fix the linkage and update the initializer. 7127 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7128 values.finishAndSetAsInitializer(Entry); 7129 } else { 7130 llvm::SmallString<64> symbolName; 7131 llvm::raw_svector_ostream(symbolName) 7132 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7133 7134 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7135 /*constant*/ false, 7136 llvm::GlobalValue::WeakAnyLinkage); 7137 if (!CGM.getTriple().isOSBinFormatMachO()) 7138 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7139 7140 Protocols[PD->getIdentifier()] = Entry; 7141 } 7142 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7143 CGM.addUsedGlobal(Entry); 7144 7145 // Use this protocol meta-data to build protocol list table in section 7146 // __DATA, __objc_protolist 7147 llvm::SmallString<64> ProtocolRef; 7148 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7149 << PD->getObjCRuntimeNameAsString(); 7150 7151 llvm::GlobalVariable *PTGV = 7152 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7153 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7154 ProtocolRef); 7155 if (!CGM.getTriple().isOSBinFormatMachO()) 7156 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7157 PTGV->setAlignment(llvm::Align( 7158 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7159 PTGV->setSection(GetSectionName("__objc_protolist", 7160 "coalesced,no_dead_strip")); 7161 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7162 CGM.addUsedGlobal(PTGV); 7163 return Entry; 7164 } 7165 7166 /// EmitProtocolList - Generate protocol list meta-data: 7167 /// @code 7168 /// struct _protocol_list_t { 7169 /// long protocol_count; // Note, this is 32/64 bit 7170 /// struct _protocol_t[protocol_count]; 7171 /// } 7172 /// @endcode 7173 /// 7174 llvm::Constant * 7175 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7176 ObjCProtocolDecl::protocol_iterator begin, 7177 ObjCProtocolDecl::protocol_iterator end) { 7178 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7179 7180 // Just return null for empty protocol lists 7181 if (begin == end) 7182 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7183 7184 // FIXME: We shouldn't need to do this lookup here, should we? 7185 SmallString<256> TmpName; 7186 Name.toVector(TmpName); 7187 llvm::GlobalVariable *GV = 7188 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7189 if (GV) 7190 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7191 7192 ConstantInitBuilder builder(CGM); 7193 auto values = builder.beginStruct(); 7194 auto countSlot = values.addPlaceholder(); 7195 7196 // A null-terminated array of protocols. 7197 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7198 for (; begin != end; ++begin) 7199 array.add(GetProtocolRef(*begin)); // Implemented??? 7200 auto count = array.size(); 7201 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7202 7203 array.finishAndAddTo(values); 7204 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7205 7206 GV = finishAndCreateGlobal(values, Name, CGM); 7207 CGM.addCompilerUsedGlobal(GV); 7208 return llvm::ConstantExpr::getBitCast(GV, 7209 ObjCTypes.ProtocolListnfABIPtrTy); 7210 } 7211 7212 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7213 /// This code gen. amounts to generating code for: 7214 /// @code 7215 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7216 /// @encode 7217 /// 7218 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7219 CodeGen::CodeGenFunction &CGF, 7220 QualType ObjectTy, 7221 llvm::Value *BaseValue, 7222 const ObjCIvarDecl *Ivar, 7223 unsigned CVRQualifiers) { 7224 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7225 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7226 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7227 Offset); 7228 } 7229 7230 llvm::Value * 7231 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7232 const ObjCInterfaceDecl *Interface, 7233 const ObjCIvarDecl *Ivar) { 7234 llvm::Value *IvarOffsetValue; 7235 if (isClassLayoutKnownStatically(Interface)) { 7236 IvarOffsetValue = llvm::ConstantInt::get( 7237 ObjCTypes.IvarOffsetVarTy, 7238 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7239 } else { 7240 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7241 IvarOffsetValue = 7242 CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar"); 7243 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7244 cast<llvm::LoadInst>(IvarOffsetValue) 7245 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7246 llvm::MDNode::get(VMContext, None)); 7247 } 7248 7249 // This could be 32bit int or 64bit integer depending on the architecture. 7250 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7251 // as this is what caller always expects. 7252 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7253 IvarOffsetValue = CGF.Builder.CreateIntCast( 7254 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7255 return IvarOffsetValue; 7256 } 7257 7258 static void appendSelectorForMessageRefTable(std::string &buffer, 7259 Selector selector) { 7260 if (selector.isUnarySelector()) { 7261 buffer += selector.getNameForSlot(0); 7262 return; 7263 } 7264 7265 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7266 buffer += selector.getNameForSlot(i); 7267 buffer += '_'; 7268 } 7269 } 7270 7271 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7272 /// struct, initially containing the selector pointer and a pointer to 7273 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7274 /// load and call the function pointer, passing the address of the 7275 /// struct as the second parameter. The runtime determines whether 7276 /// the selector is currently emitted using vtable dispatch; if so, it 7277 /// substitutes a stub function which simply tail-calls through the 7278 /// appropriate vtable slot, and if not, it substitues a stub function 7279 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7280 /// argument to correctly point to the selector. 7281 RValue 7282 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7283 ReturnValueSlot returnSlot, 7284 QualType resultType, 7285 Selector selector, 7286 llvm::Value *arg0, 7287 QualType arg0Type, 7288 bool isSuper, 7289 const CallArgList &formalArgs, 7290 const ObjCMethodDecl *method) { 7291 // Compute the actual arguments. 7292 CallArgList args; 7293 7294 // First argument: the receiver / super-call structure. 7295 if (!isSuper) 7296 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7297 args.add(RValue::get(arg0), arg0Type); 7298 7299 // Second argument: a pointer to the message ref structure. Leave 7300 // the actual argument value blank for now. 7301 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7302 7303 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7304 7305 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7306 7307 NullReturnState nullReturn; 7308 7309 // Find the function to call and the mangled name for the message 7310 // ref structure. Using a different mangled name wouldn't actually 7311 // be a problem; it would just be a waste. 7312 // 7313 // The runtime currently never uses vtable dispatch for anything 7314 // except normal, non-super message-sends. 7315 // FIXME: don't use this for that. 7316 llvm::FunctionCallee fn = nullptr; 7317 std::string messageRefName("_"); 7318 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7319 if (isSuper) { 7320 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7321 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7322 } else { 7323 nullReturn.init(CGF, arg0); 7324 fn = ObjCTypes.getMessageSendStretFixupFn(); 7325 messageRefName += "objc_msgSend_stret_fixup"; 7326 } 7327 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7328 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7329 messageRefName += "objc_msgSend_fpret_fixup"; 7330 } else { 7331 if (isSuper) { 7332 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7333 messageRefName += "objc_msgSendSuper2_fixup"; 7334 } else { 7335 fn = ObjCTypes.getMessageSendFixupFn(); 7336 messageRefName += "objc_msgSend_fixup"; 7337 } 7338 } 7339 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7340 messageRefName += '_'; 7341 7342 // Append the selector name, except use underscores anywhere we 7343 // would have used colons. 7344 appendSelectorForMessageRefTable(messageRefName, selector); 7345 7346 llvm::GlobalVariable *messageRef 7347 = CGM.getModule().getGlobalVariable(messageRefName); 7348 if (!messageRef) { 7349 // Build the message ref structure. 7350 ConstantInitBuilder builder(CGM); 7351 auto values = builder.beginStruct(); 7352 values.add(cast<llvm::Constant>(fn.getCallee())); 7353 values.add(GetMethodVarName(selector)); 7354 messageRef = values.finishAndCreateGlobal(messageRefName, 7355 CharUnits::fromQuantity(16), 7356 /*constant*/ false, 7357 llvm::GlobalValue::WeakAnyLinkage); 7358 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7359 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7360 } 7361 7362 bool requiresnullCheck = false; 7363 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7364 for (const auto *ParamDecl : method->parameters()) { 7365 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7366 if (!nullReturn.NullBB) 7367 nullReturn.init(CGF, arg0); 7368 requiresnullCheck = true; 7369 break; 7370 } 7371 } 7372 7373 Address mref = 7374 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7375 CGF.getPointerAlign()); 7376 7377 // Update the message ref argument. 7378 args[1].setRValue(RValue::get(mref.getPointer())); 7379 7380 // Load the function to call from the message ref table. 7381 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7382 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7383 7384 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7385 CGCallee callee(CGCalleeInfo(), calleePtr); 7386 7387 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7388 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7389 requiresnullCheck ? method : nullptr); 7390 } 7391 7392 /// Generate code for a message send expression in the nonfragile abi. 7393 CodeGen::RValue 7394 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7395 ReturnValueSlot Return, 7396 QualType ResultType, 7397 Selector Sel, 7398 llvm::Value *Receiver, 7399 const CallArgList &CallArgs, 7400 const ObjCInterfaceDecl *Class, 7401 const ObjCMethodDecl *Method) { 7402 return isVTableDispatchedSelector(Sel) 7403 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7404 Receiver, CGF.getContext().getObjCIdType(), 7405 false, CallArgs, Method) 7406 : EmitMessageSend(CGF, Return, ResultType, Sel, 7407 Receiver, CGF.getContext().getObjCIdType(), 7408 false, CallArgs, Method, Class, ObjCTypes); 7409 } 7410 7411 llvm::Constant * 7412 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7413 bool metaclass, 7414 ForDefinition_t isForDefinition) { 7415 auto prefix = 7416 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7417 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7418 isForDefinition, 7419 ID->isWeakImported(), 7420 !isForDefinition 7421 && CGM.getTriple().isOSBinFormatCOFF() 7422 && ID->hasAttr<DLLImportAttr>()); 7423 } 7424 7425 llvm::Constant * 7426 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7427 ForDefinition_t IsForDefinition, 7428 bool Weak, bool DLLImport) { 7429 llvm::GlobalValue::LinkageTypes L = 7430 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7431 : llvm::GlobalValue::ExternalLinkage; 7432 7433 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7434 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7435 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7436 nullptr, Name); 7437 7438 if (DLLImport) 7439 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7440 7441 if (GV) { 7442 GV->replaceAllUsesWith( 7443 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7444 GV->eraseFromParent(); 7445 } 7446 GV = NewGV; 7447 CGM.getModule().getGlobalList().push_back(GV); 7448 } 7449 7450 assert(GV->getLinkage() == L); 7451 return GV; 7452 } 7453 7454 llvm::Constant * 7455 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7456 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7457 NotForDefinition); 7458 7459 if (!ID->hasAttr<ObjCClassStubAttr>()) 7460 return ClassGV; 7461 7462 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7463 7464 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7465 // must set the least significant bit set to 1. 7466 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7467 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7468 } 7469 7470 llvm::Value * 7471 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7472 const ObjCInterfaceDecl *ID, 7473 llvm::GlobalVariable *Entry) { 7474 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7475 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7476 // a special runtime function. 7477 return CGF.EmitRuntimeCall( 7478 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7479 } 7480 7481 CharUnits Align = CGF.getPointerAlign(); 7482 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7483 } 7484 7485 llvm::Value * 7486 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7487 IdentifierInfo *II, 7488 const ObjCInterfaceDecl *ID) { 7489 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7490 7491 if (!Entry) { 7492 llvm::Constant *ClassGV; 7493 if (ID) { 7494 ClassGV = GetClassGlobalForClassRef(ID); 7495 } else { 7496 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7497 NotForDefinition); 7498 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7499 "classref was emitted with the wrong type?"); 7500 } 7501 7502 std::string SectionName = 7503 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7504 Entry = new llvm::GlobalVariable( 7505 CGM.getModule(), ClassGV->getType(), false, 7506 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7507 "OBJC_CLASSLIST_REFERENCES_$_"); 7508 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7509 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7510 Entry->setSection(SectionName); 7511 7512 CGM.addCompilerUsedGlobal(Entry); 7513 } 7514 7515 return EmitLoadOfClassRef(CGF, ID, Entry); 7516 } 7517 7518 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7519 const ObjCInterfaceDecl *ID) { 7520 // If the class has the objc_runtime_visible attribute, we need to 7521 // use the Objective-C runtime to get the class. 7522 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7523 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7524 7525 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7526 } 7527 7528 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7529 CodeGenFunction &CGF) { 7530 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7531 return EmitClassRefFromId(CGF, II, nullptr); 7532 } 7533 7534 llvm::Value * 7535 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7536 const ObjCInterfaceDecl *ID) { 7537 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7538 7539 if (!Entry) { 7540 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7541 std::string SectionName = 7542 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7543 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7544 llvm::GlobalValue::PrivateLinkage, ClassGV, 7545 "OBJC_CLASSLIST_SUP_REFS_$_"); 7546 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7547 Entry->setSection(SectionName); 7548 CGM.addCompilerUsedGlobal(Entry); 7549 } 7550 7551 return EmitLoadOfClassRef(CGF, ID, Entry); 7552 } 7553 7554 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7555 /// meta-data 7556 /// 7557 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7558 const ObjCInterfaceDecl *ID, 7559 bool Weak) { 7560 CharUnits Align = CGF.getPointerAlign(); 7561 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7562 if (!Entry) { 7563 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7564 std::string SectionName = 7565 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7566 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7567 false, llvm::GlobalValue::PrivateLinkage, 7568 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7569 Entry->setAlignment(Align.getAsAlign()); 7570 Entry->setSection(SectionName); 7571 CGM.addCompilerUsedGlobal(Entry); 7572 } 7573 7574 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7575 } 7576 7577 /// GetClass - Return a reference to the class for the given interface 7578 /// decl. 7579 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7580 const ObjCInterfaceDecl *ID) { 7581 if (ID->isWeakImported()) { 7582 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7583 (void)ClassGV; 7584 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7585 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7586 } 7587 7588 return EmitClassRef(CGF, ID); 7589 } 7590 7591 /// Generates a message send where the super is the receiver. This is 7592 /// a message send to self with special delivery semantics indicating 7593 /// which class's method should be called. 7594 CodeGen::RValue 7595 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7596 ReturnValueSlot Return, 7597 QualType ResultType, 7598 Selector Sel, 7599 const ObjCInterfaceDecl *Class, 7600 bool isCategoryImpl, 7601 llvm::Value *Receiver, 7602 bool IsClassMessage, 7603 const CodeGen::CallArgList &CallArgs, 7604 const ObjCMethodDecl *Method) { 7605 // ... 7606 // Create and init a super structure; this is a (receiver, class) 7607 // pair we will pass to objc_msgSendSuper. 7608 Address ObjCSuper = 7609 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7610 "objc_super"); 7611 7612 llvm::Value *ReceiverAsObject = 7613 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7614 CGF.Builder.CreateStore(ReceiverAsObject, 7615 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7616 7617 // If this is a class message the metaclass is passed as the target. 7618 llvm::Value *Target; 7619 if (IsClassMessage) 7620 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7621 else 7622 Target = EmitSuperClassRef(CGF, Class); 7623 7624 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7625 // ObjCTypes types. 7626 llvm::Type *ClassTy = 7627 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7628 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7629 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7630 7631 return (isVTableDispatchedSelector(Sel)) 7632 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7633 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7634 true, CallArgs, Method) 7635 : EmitMessageSend(CGF, Return, ResultType, Sel, 7636 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7637 true, CallArgs, Method, Class, ObjCTypes); 7638 } 7639 7640 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7641 Selector Sel) { 7642 Address Addr = EmitSelectorAddr(Sel); 7643 7644 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7645 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7646 llvm::MDNode::get(VMContext, None)); 7647 return LI; 7648 } 7649 7650 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7651 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7652 CharUnits Align = CGM.getPointerAlign(); 7653 if (!Entry) { 7654 llvm::Constant *Casted = 7655 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7656 ObjCTypes.SelectorPtrTy); 7657 std::string SectionName = 7658 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7659 Entry = new llvm::GlobalVariable( 7660 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7661 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7662 "OBJC_SELECTOR_REFERENCES_"); 7663 Entry->setExternallyInitialized(true); 7664 Entry->setSection(SectionName); 7665 Entry->setAlignment(Align.getAsAlign()); 7666 CGM.addCompilerUsedGlobal(Entry); 7667 } 7668 7669 return Address(Entry, Align); 7670 } 7671 7672 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7673 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7674 /// 7675 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7676 llvm::Value *src, 7677 Address dst, 7678 llvm::Value *ivarOffset) { 7679 llvm::Type * SrcTy = src->getType(); 7680 if (!isa<llvm::PointerType>(SrcTy)) { 7681 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7682 assert(Size <= 8 && "does not support size > 8"); 7683 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7684 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7685 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7686 } 7687 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7688 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7689 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7690 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7691 } 7692 7693 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7694 /// objc_assign_strongCast (id src, id *dst) 7695 /// 7696 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7697 CodeGen::CodeGenFunction &CGF, 7698 llvm::Value *src, Address dst) { 7699 llvm::Type * SrcTy = src->getType(); 7700 if (!isa<llvm::PointerType>(SrcTy)) { 7701 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7702 assert(Size <= 8 && "does not support size > 8"); 7703 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7704 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7705 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7706 } 7707 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7708 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7709 llvm::Value *args[] = { src, dst.getPointer() }; 7710 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7711 args, "weakassign"); 7712 } 7713 7714 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7715 CodeGen::CodeGenFunction &CGF, 7716 Address DestPtr, 7717 Address SrcPtr, 7718 llvm::Value *Size) { 7719 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7720 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7721 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7722 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7723 } 7724 7725 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7726 /// object: objc_read_weak (id *src) 7727 /// 7728 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7729 CodeGen::CodeGenFunction &CGF, 7730 Address AddrWeakObj) { 7731 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7732 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7733 llvm::Value *read_weak = 7734 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7735 AddrWeakObj.getPointer(), "weakread"); 7736 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7737 return read_weak; 7738 } 7739 7740 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7741 /// objc_assign_weak (id src, id *dst) 7742 /// 7743 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7744 llvm::Value *src, Address dst) { 7745 llvm::Type * SrcTy = src->getType(); 7746 if (!isa<llvm::PointerType>(SrcTy)) { 7747 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7748 assert(Size <= 8 && "does not support size > 8"); 7749 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7750 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7751 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7752 } 7753 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7754 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7755 llvm::Value *args[] = { src, dst.getPointer() }; 7756 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7757 args, "weakassign"); 7758 } 7759 7760 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7761 /// objc_assign_global (id src, id *dst) 7762 /// 7763 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7764 llvm::Value *src, Address dst, 7765 bool threadlocal) { 7766 llvm::Type * SrcTy = src->getType(); 7767 if (!isa<llvm::PointerType>(SrcTy)) { 7768 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7769 assert(Size <= 8 && "does not support size > 8"); 7770 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7771 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7772 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7773 } 7774 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7775 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7776 llvm::Value *args[] = { src, dst.getPointer() }; 7777 if (!threadlocal) 7778 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7779 args, "globalassign"); 7780 else 7781 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7782 args, "threadlocalassign"); 7783 } 7784 7785 void 7786 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7787 const ObjCAtSynchronizedStmt &S) { 7788 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7789 ObjCTypes.getSyncExitFn()); 7790 } 7791 7792 llvm::Constant * 7793 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7794 // There's a particular fixed type info for 'id'. 7795 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7796 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7797 if (!IDEHType) { 7798 IDEHType = 7799 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7800 llvm::GlobalValue::ExternalLinkage, nullptr, 7801 "OBJC_EHTYPE_id"); 7802 if (CGM.getTriple().isOSBinFormatCOFF()) 7803 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7804 } 7805 return IDEHType; 7806 } 7807 7808 // All other types should be Objective-C interface pointer types. 7809 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7810 assert(PT && "Invalid @catch type."); 7811 7812 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7813 assert(IT && "Invalid @catch type."); 7814 7815 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7816 } 7817 7818 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7819 const ObjCAtTryStmt &S) { 7820 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7821 ObjCTypes.getObjCEndCatchFn(), 7822 ObjCTypes.getExceptionRethrowFn()); 7823 } 7824 7825 /// EmitThrowStmt - Generate code for a throw statement. 7826 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7827 const ObjCAtThrowStmt &S, 7828 bool ClearInsertionPoint) { 7829 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7830 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7831 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7832 llvm::CallBase *Call = 7833 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7834 Call->setDoesNotReturn(); 7835 } else { 7836 llvm::CallBase *Call = 7837 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7838 Call->setDoesNotReturn(); 7839 } 7840 7841 CGF.Builder.CreateUnreachable(); 7842 if (ClearInsertionPoint) 7843 CGF.Builder.ClearInsertionPoint(); 7844 } 7845 7846 llvm::Constant * 7847 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7848 ForDefinition_t IsForDefinition) { 7849 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7850 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7851 7852 // If we don't need a definition, return the entry if found or check 7853 // if we use an external reference. 7854 if (!IsForDefinition) { 7855 if (Entry) 7856 return Entry; 7857 7858 // If this type (or a super class) has the __objc_exception__ 7859 // attribute, emit an external reference. 7860 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7861 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7862 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7863 false, llvm::GlobalValue::ExternalLinkage, 7864 nullptr, EHTypeName); 7865 CGM.setGVProperties(Entry, ID); 7866 return Entry; 7867 } 7868 } 7869 7870 // Otherwise we need to either make a new entry or fill in the initializer. 7871 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7872 7873 std::string VTableName = "objc_ehtype_vtable"; 7874 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7875 if (!VTableGV) { 7876 VTableGV = 7877 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7878 llvm::GlobalValue::ExternalLinkage, nullptr, 7879 VTableName); 7880 if (CGM.getTriple().isOSBinFormatCOFF()) 7881 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7882 } 7883 7884 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7885 ConstantInitBuilder builder(CGM); 7886 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7887 values.add( 7888 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7889 VTableGV, VTableIdx)); 7890 values.add(GetClassName(ClassName)); 7891 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7892 7893 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7894 ? llvm::GlobalValue::ExternalLinkage 7895 : llvm::GlobalValue::WeakAnyLinkage; 7896 if (Entry) { 7897 values.finishAndSetAsInitializer(Entry); 7898 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7899 } else { 7900 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7901 CGM.getPointerAlign(), 7902 /*constant*/ false, 7903 L); 7904 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7905 CGM.setGVProperties(Entry, ID); 7906 } 7907 assert(Entry->getLinkage() == L); 7908 7909 if (!CGM.getTriple().isOSBinFormatCOFF()) 7910 if (ID->getVisibility() == HiddenVisibility) 7911 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7912 7913 if (IsForDefinition) 7914 if (CGM.getTriple().isOSBinFormatMachO()) 7915 Entry->setSection("__DATA,__objc_const"); 7916 7917 return Entry; 7918 } 7919 7920 /* *** */ 7921 7922 CodeGen::CGObjCRuntime * 7923 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7924 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7925 case ObjCRuntime::FragileMacOSX: 7926 return new CGObjCMac(CGM); 7927 7928 case ObjCRuntime::MacOSX: 7929 case ObjCRuntime::iOS: 7930 case ObjCRuntime::WatchOS: 7931 return new CGObjCNonFragileABIMac(CGM); 7932 7933 case ObjCRuntime::GNUstep: 7934 case ObjCRuntime::GCC: 7935 case ObjCRuntime::ObjFW: 7936 llvm_unreachable("these runtimes are not Mac runtimes"); 7937 } 7938 llvm_unreachable("bad runtime"); 7939 } 7940