1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides Objective-C code generation targeting the Apple runtime.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCleanup.h"
15 #include "CGObjCRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "clang/CodeGen/ConstantInitBuilder.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/LangOptions.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "llvm/ADT/CachedHashString.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Support/ScopedPrinter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cstdio>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 namespace {
46 
47 // FIXME: We should find a nicer way to make the labels for metadata, string
48 // concatenation is lame.
49 
50 class ObjCCommonTypesHelper {
51 protected:
52   llvm::LLVMContext &VMContext;
53 
54 private:
55   // The types of these functions don't really matter because we
56   // should always bitcast before calling them.
57 
58   /// id objc_msgSend (id, SEL, ...)
59   ///
60   /// The default messenger, used for sends whose ABI is unchanged from
61   /// the all-integer/pointer case.
62   llvm::FunctionCallee getMessageSendFn() const {
63     // Add the non-lazy-bind attribute, since objc_msgSend is likely to
64     // be called a lot.
65     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
66     return CGM.CreateRuntimeFunction(
67         llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend",
68         llvm::AttributeList::get(CGM.getLLVMContext(),
69                                  llvm::AttributeList::FunctionIndex,
70                                  llvm::Attribute::NonLazyBind));
71   }
72 
73   /// void objc_msgSend_stret (id, SEL, ...)
74   ///
75   /// The messenger used when the return value is an aggregate returned
76   /// by indirect reference in the first argument, and therefore the
77   /// self and selector parameters are shifted over by one.
78   llvm::FunctionCallee getMessageSendStretFn() const {
79     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
80     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
81                                                              params, true),
82                                      "objc_msgSend_stret");
83   }
84 
85   /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
86   ///
87   /// The messenger used when the return value is returned on the x87
88   /// floating-point stack; without a special entrypoint, the nil case
89   /// would be unbalanced.
90   llvm::FunctionCallee getMessageSendFpretFn() const {
91     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
92     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
93                                                              params, true),
94                                      "objc_msgSend_fpret");
95   }
96 
97   /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
98   ///
99   /// The messenger used when the return value is returned in two values on the
100   /// x87 floating point stack; without a special entrypoint, the nil case
101   /// would be unbalanced. Only used on 64-bit X86.
102   llvm::FunctionCallee getMessageSendFp2retFn() const {
103     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
104     llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
105     llvm::Type *resultType =
106         llvm::StructType::get(longDoubleType, longDoubleType);
107 
108     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
109                                                              params, true),
110                                      "objc_msgSend_fp2ret");
111   }
112 
113   /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
114   ///
115   /// The messenger used for super calls, which have different dispatch
116   /// semantics.  The class passed is the superclass of the current
117   /// class.
118   llvm::FunctionCallee getMessageSendSuperFn() const {
119     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
120     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
121                                                              params, true),
122                                      "objc_msgSendSuper");
123   }
124 
125   /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
126   ///
127   /// A slightly different messenger used for super calls.  The class
128   /// passed is the current class.
129   llvm::FunctionCallee getMessageSendSuperFn2() const {
130     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
131     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
132                                                              params, true),
133                                      "objc_msgSendSuper2");
134   }
135 
136   /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
137   ///                              SEL op, ...)
138   ///
139   /// The messenger used for super calls which return an aggregate indirectly.
140   llvm::FunctionCallee getMessageSendSuperStretFn() const {
141     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
142     return CGM.CreateRuntimeFunction(
143       llvm::FunctionType::get(CGM.VoidTy, params, true),
144       "objc_msgSendSuper_stret");
145   }
146 
147   /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
148   ///                               SEL op, ...)
149   ///
150   /// objc_msgSendSuper_stret with the super2 semantics.
151   llvm::FunctionCallee getMessageSendSuperStretFn2() const {
152     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
153     return CGM.CreateRuntimeFunction(
154       llvm::FunctionType::get(CGM.VoidTy, params, true),
155       "objc_msgSendSuper2_stret");
156   }
157 
158   llvm::FunctionCallee getMessageSendSuperFpretFn() const {
159     // There is no objc_msgSendSuper_fpret? How can that work?
160     return getMessageSendSuperFn();
161   }
162 
163   llvm::FunctionCallee getMessageSendSuperFpretFn2() const {
164     // There is no objc_msgSendSuper_fpret? How can that work?
165     return getMessageSendSuperFn2();
166   }
167 
168 protected:
169   CodeGen::CodeGenModule &CGM;
170 
171 public:
172   llvm::IntegerType *ShortTy, *IntTy, *LongTy;
173   llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy;
174   llvm::Type *IvarOffsetVarTy;
175 
176   /// ObjectPtrTy - LLVM type for object handles (typeof(id))
177   llvm::PointerType *ObjectPtrTy;
178 
179   /// PtrObjectPtrTy - LLVM type for id *
180   llvm::PointerType *PtrObjectPtrTy;
181 
182   /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
183   llvm::PointerType *SelectorPtrTy;
184 
185 private:
186   /// ProtocolPtrTy - LLVM type for external protocol handles
187   /// (typeof(Protocol))
188   llvm::Type *ExternalProtocolPtrTy;
189 
190 public:
191   llvm::Type *getExternalProtocolPtrTy() {
192     if (!ExternalProtocolPtrTy) {
193       // FIXME: It would be nice to unify this with the opaque type, so that the
194       // IR comes out a bit cleaner.
195       CodeGen::CodeGenTypes &Types = CGM.getTypes();
196       ASTContext &Ctx = CGM.getContext();
197       llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
198       ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
199     }
200 
201     return ExternalProtocolPtrTy;
202   }
203 
204   // SuperCTy - clang type for struct objc_super.
205   QualType SuperCTy;
206   // SuperPtrCTy - clang type for struct objc_super *.
207   QualType SuperPtrCTy;
208 
209   /// SuperTy - LLVM type for struct objc_super.
210   llvm::StructType *SuperTy;
211   /// SuperPtrTy - LLVM type for struct objc_super *.
212   llvm::PointerType *SuperPtrTy;
213 
214   /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
215   /// in GCC parlance).
216   llvm::StructType *PropertyTy;
217 
218   /// PropertyListTy - LLVM type for struct objc_property_list
219   /// (_prop_list_t in GCC parlance).
220   llvm::StructType *PropertyListTy;
221   /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
222   llvm::PointerType *PropertyListPtrTy;
223 
224   // MethodTy - LLVM type for struct objc_method.
225   llvm::StructType *MethodTy;
226 
227   /// CacheTy - LLVM type for struct objc_cache.
228   llvm::Type *CacheTy;
229   /// CachePtrTy - LLVM type for struct objc_cache *.
230   llvm::PointerType *CachePtrTy;
231 
232   llvm::FunctionCallee getGetPropertyFn() {
233     CodeGen::CodeGenTypes &Types = CGM.getTypes();
234     ASTContext &Ctx = CGM.getContext();
235     // id objc_getProperty (id, SEL, ptrdiff_t, bool)
236     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
237     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
238     CanQualType Params[] = {
239         IdType, SelType,
240         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy};
241     llvm::FunctionType *FTy =
242         Types.GetFunctionType(
243           Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
244     return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
245   }
246 
247   llvm::FunctionCallee getSetPropertyFn() {
248     CodeGen::CodeGenTypes &Types = CGM.getTypes();
249     ASTContext &Ctx = CGM.getContext();
250     // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
251     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
252     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
253     CanQualType Params[] = {
254         IdType,
255         SelType,
256         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(),
257         IdType,
258         Ctx.BoolTy,
259         Ctx.BoolTy};
260     llvm::FunctionType *FTy =
261         Types.GetFunctionType(
262           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
263     return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
264   }
265 
266   llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) {
267     CodeGen::CodeGenTypes &Types = CGM.getTypes();
268     ASTContext &Ctx = CGM.getContext();
269     // void objc_setProperty_atomic(id self, SEL _cmd,
270     //                              id newValue, ptrdiff_t offset);
271     // void objc_setProperty_nonatomic(id self, SEL _cmd,
272     //                                 id newValue, ptrdiff_t offset);
273     // void objc_setProperty_atomic_copy(id self, SEL _cmd,
274     //                                   id newValue, ptrdiff_t offset);
275     // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
276     //                                      id newValue, ptrdiff_t offset);
277 
278     SmallVector<CanQualType,4> Params;
279     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
280     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
281     Params.push_back(IdType);
282     Params.push_back(SelType);
283     Params.push_back(IdType);
284     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
285     llvm::FunctionType *FTy =
286         Types.GetFunctionType(
287           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
288     const char *name;
289     if (atomic && copy)
290       name = "objc_setProperty_atomic_copy";
291     else if (atomic && !copy)
292       name = "objc_setProperty_atomic";
293     else if (!atomic && copy)
294       name = "objc_setProperty_nonatomic_copy";
295     else
296       name = "objc_setProperty_nonatomic";
297 
298     return CGM.CreateRuntimeFunction(FTy, name);
299   }
300 
301   llvm::FunctionCallee getCopyStructFn() {
302     CodeGen::CodeGenTypes &Types = CGM.getTypes();
303     ASTContext &Ctx = CGM.getContext();
304     // void objc_copyStruct (void *, const void *, size_t, bool, bool)
305     SmallVector<CanQualType,5> Params;
306     Params.push_back(Ctx.VoidPtrTy);
307     Params.push_back(Ctx.VoidPtrTy);
308     Params.push_back(Ctx.getSizeType());
309     Params.push_back(Ctx.BoolTy);
310     Params.push_back(Ctx.BoolTy);
311     llvm::FunctionType *FTy =
312         Types.GetFunctionType(
313           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
314     return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
315   }
316 
317   /// This routine declares and returns address of:
318   /// void objc_copyCppObjectAtomic(
319   ///         void *dest, const void *src,
320   ///         void (*copyHelper) (void *dest, const void *source));
321   llvm::FunctionCallee getCppAtomicObjectFunction() {
322     CodeGen::CodeGenTypes &Types = CGM.getTypes();
323     ASTContext &Ctx = CGM.getContext();
324     /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
325     SmallVector<CanQualType,3> Params;
326     Params.push_back(Ctx.VoidPtrTy);
327     Params.push_back(Ctx.VoidPtrTy);
328     Params.push_back(Ctx.VoidPtrTy);
329     llvm::FunctionType *FTy =
330         Types.GetFunctionType(
331           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
332     return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
333   }
334 
335   llvm::FunctionCallee getEnumerationMutationFn() {
336     CodeGen::CodeGenTypes &Types = CGM.getTypes();
337     ASTContext &Ctx = CGM.getContext();
338     // void objc_enumerationMutation (id)
339     SmallVector<CanQualType,1> Params;
340     Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
341     llvm::FunctionType *FTy =
342         Types.GetFunctionType(
343           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
344     return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
345   }
346 
347   llvm::FunctionCallee getLookUpClassFn() {
348     CodeGen::CodeGenTypes &Types = CGM.getTypes();
349     ASTContext &Ctx = CGM.getContext();
350     // Class objc_lookUpClass (const char *)
351     SmallVector<CanQualType,1> Params;
352     Params.push_back(
353       Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
354     llvm::FunctionType *FTy =
355         Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration(
356                                 Ctx.getCanonicalType(Ctx.getObjCClassType()),
357                                 Params));
358     return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass");
359   }
360 
361   /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
362   llvm::FunctionCallee getGcReadWeakFn() {
363     // id objc_read_weak (id *)
364     llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
365     llvm::FunctionType *FTy =
366       llvm::FunctionType::get(ObjectPtrTy, args, false);
367     return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
368   }
369 
370   /// GcAssignWeakFn -- LLVM objc_assign_weak function.
371   llvm::FunctionCallee getGcAssignWeakFn() {
372     // id objc_assign_weak (id, id *)
373     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
374     llvm::FunctionType *FTy =
375       llvm::FunctionType::get(ObjectPtrTy, args, false);
376     return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
377   }
378 
379   /// GcAssignGlobalFn -- LLVM objc_assign_global function.
380   llvm::FunctionCallee getGcAssignGlobalFn() {
381     // id objc_assign_global(id, id *)
382     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
383     llvm::FunctionType *FTy =
384       llvm::FunctionType::get(ObjectPtrTy, args, false);
385     return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
386   }
387 
388   /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
389   llvm::FunctionCallee getGcAssignThreadLocalFn() {
390     // id objc_assign_threadlocal(id src, id * dest)
391     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
392     llvm::FunctionType *FTy =
393       llvm::FunctionType::get(ObjectPtrTy, args, false);
394     return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
395   }
396 
397   /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
398   llvm::FunctionCallee getGcAssignIvarFn() {
399     // id objc_assign_ivar(id, id *, ptrdiff_t)
400     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
401                            CGM.PtrDiffTy };
402     llvm::FunctionType *FTy =
403       llvm::FunctionType::get(ObjectPtrTy, args, false);
404     return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
405   }
406 
407   /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
408   llvm::FunctionCallee GcMemmoveCollectableFn() {
409     // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
410     llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
411     llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
412     return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
413   }
414 
415   /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
416   llvm::FunctionCallee getGcAssignStrongCastFn() {
417     // id objc_assign_strongCast(id, id *)
418     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
419     llvm::FunctionType *FTy =
420       llvm::FunctionType::get(ObjectPtrTy, args, false);
421     return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
422   }
423 
424   /// ExceptionThrowFn - LLVM objc_exception_throw function.
425   llvm::FunctionCallee getExceptionThrowFn() {
426     // void objc_exception_throw(id)
427     llvm::Type *args[] = { ObjectPtrTy };
428     llvm::FunctionType *FTy =
429       llvm::FunctionType::get(CGM.VoidTy, args, false);
430     return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
431   }
432 
433   /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
434   llvm::FunctionCallee getExceptionRethrowFn() {
435     // void objc_exception_rethrow(void)
436     llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
437     return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
438   }
439 
440   /// SyncEnterFn - LLVM object_sync_enter function.
441   llvm::FunctionCallee getSyncEnterFn() {
442     // int objc_sync_enter (id)
443     llvm::Type *args[] = { ObjectPtrTy };
444     llvm::FunctionType *FTy =
445       llvm::FunctionType::get(CGM.IntTy, args, false);
446     return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
447   }
448 
449   /// SyncExitFn - LLVM object_sync_exit function.
450   llvm::FunctionCallee getSyncExitFn() {
451     // int objc_sync_exit (id)
452     llvm::Type *args[] = { ObjectPtrTy };
453     llvm::FunctionType *FTy =
454       llvm::FunctionType::get(CGM.IntTy, args, false);
455     return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
456   }
457 
458   llvm::FunctionCallee getSendFn(bool IsSuper) const {
459     return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
460   }
461 
462   llvm::FunctionCallee getSendFn2(bool IsSuper) const {
463     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
464   }
465 
466   llvm::FunctionCallee getSendStretFn(bool IsSuper) const {
467     return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
468   }
469 
470   llvm::FunctionCallee getSendStretFn2(bool IsSuper) const {
471     return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
472   }
473 
474   llvm::FunctionCallee getSendFpretFn(bool IsSuper) const {
475     return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
476   }
477 
478   llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const {
479     return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
480   }
481 
482   llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const {
483     return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
484   }
485 
486   llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const {
487     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
488   }
489 
490   ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
491 };
492 
493 /// ObjCTypesHelper - Helper class that encapsulates lazy
494 /// construction of varies types used during ObjC generation.
495 class ObjCTypesHelper : public ObjCCommonTypesHelper {
496 public:
497   /// SymtabTy - LLVM type for struct objc_symtab.
498   llvm::StructType *SymtabTy;
499   /// SymtabPtrTy - LLVM type for struct objc_symtab *.
500   llvm::PointerType *SymtabPtrTy;
501   /// ModuleTy - LLVM type for struct objc_module.
502   llvm::StructType *ModuleTy;
503 
504   /// ProtocolTy - LLVM type for struct objc_protocol.
505   llvm::StructType *ProtocolTy;
506   /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
507   llvm::PointerType *ProtocolPtrTy;
508   /// ProtocolExtensionTy - LLVM type for struct
509   /// objc_protocol_extension.
510   llvm::StructType *ProtocolExtensionTy;
511   /// ProtocolExtensionTy - LLVM type for struct
512   /// objc_protocol_extension *.
513   llvm::PointerType *ProtocolExtensionPtrTy;
514   /// MethodDescriptionTy - LLVM type for struct
515   /// objc_method_description.
516   llvm::StructType *MethodDescriptionTy;
517   /// MethodDescriptionListTy - LLVM type for struct
518   /// objc_method_description_list.
519   llvm::StructType *MethodDescriptionListTy;
520   /// MethodDescriptionListPtrTy - LLVM type for struct
521   /// objc_method_description_list *.
522   llvm::PointerType *MethodDescriptionListPtrTy;
523   /// ProtocolListTy - LLVM type for struct objc_property_list.
524   llvm::StructType *ProtocolListTy;
525   /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
526   llvm::PointerType *ProtocolListPtrTy;
527   /// CategoryTy - LLVM type for struct objc_category.
528   llvm::StructType *CategoryTy;
529   /// ClassTy - LLVM type for struct objc_class.
530   llvm::StructType *ClassTy;
531   /// ClassPtrTy - LLVM type for struct objc_class *.
532   llvm::PointerType *ClassPtrTy;
533   /// ClassExtensionTy - LLVM type for struct objc_class_ext.
534   llvm::StructType *ClassExtensionTy;
535   /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
536   llvm::PointerType *ClassExtensionPtrTy;
537   // IvarTy - LLVM type for struct objc_ivar.
538   llvm::StructType *IvarTy;
539   /// IvarListTy - LLVM type for struct objc_ivar_list.
540   llvm::StructType *IvarListTy;
541   /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
542   llvm::PointerType *IvarListPtrTy;
543   /// MethodListTy - LLVM type for struct objc_method_list.
544   llvm::StructType *MethodListTy;
545   /// MethodListPtrTy - LLVM type for struct objc_method_list *.
546   llvm::PointerType *MethodListPtrTy;
547 
548   /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
549   llvm::StructType *ExceptionDataTy;
550 
551   /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
552   llvm::FunctionCallee getExceptionTryEnterFn() {
553     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
554     return CGM.CreateRuntimeFunction(
555       llvm::FunctionType::get(CGM.VoidTy, params, false),
556       "objc_exception_try_enter");
557   }
558 
559   /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
560   llvm::FunctionCallee getExceptionTryExitFn() {
561     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
562     return CGM.CreateRuntimeFunction(
563       llvm::FunctionType::get(CGM.VoidTy, params, false),
564       "objc_exception_try_exit");
565   }
566 
567   /// ExceptionExtractFn - LLVM objc_exception_extract function.
568   llvm::FunctionCallee getExceptionExtractFn() {
569     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
570     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
571                                                              params, false),
572                                      "objc_exception_extract");
573   }
574 
575   /// ExceptionMatchFn - LLVM objc_exception_match function.
576   llvm::FunctionCallee getExceptionMatchFn() {
577     llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
578     return CGM.CreateRuntimeFunction(
579       llvm::FunctionType::get(CGM.Int32Ty, params, false),
580       "objc_exception_match");
581   }
582 
583   /// SetJmpFn - LLVM _setjmp function.
584   llvm::FunctionCallee getSetJmpFn() {
585     // This is specifically the prototype for x86.
586     llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
587     return CGM.CreateRuntimeFunction(
588         llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp",
589         llvm::AttributeList::get(CGM.getLLVMContext(),
590                                  llvm::AttributeList::FunctionIndex,
591                                  llvm::Attribute::NonLazyBind));
592   }
593 
594 public:
595   ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
596 };
597 
598 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
599 /// modern abi
600 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
601 public:
602   // MethodListnfABITy - LLVM for struct _method_list_t
603   llvm::StructType *MethodListnfABITy;
604 
605   // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
606   llvm::PointerType *MethodListnfABIPtrTy;
607 
608   // ProtocolnfABITy = LLVM for struct _protocol_t
609   llvm::StructType *ProtocolnfABITy;
610 
611   // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
612   llvm::PointerType *ProtocolnfABIPtrTy;
613 
614   // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
615   llvm::StructType *ProtocolListnfABITy;
616 
617   // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
618   llvm::PointerType *ProtocolListnfABIPtrTy;
619 
620   // ClassnfABITy - LLVM for struct _class_t
621   llvm::StructType *ClassnfABITy;
622 
623   // ClassnfABIPtrTy - LLVM for struct _class_t*
624   llvm::PointerType *ClassnfABIPtrTy;
625 
626   // IvarnfABITy - LLVM for struct _ivar_t
627   llvm::StructType *IvarnfABITy;
628 
629   // IvarListnfABITy - LLVM for struct _ivar_list_t
630   llvm::StructType *IvarListnfABITy;
631 
632   // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
633   llvm::PointerType *IvarListnfABIPtrTy;
634 
635   // ClassRonfABITy - LLVM for struct _class_ro_t
636   llvm::StructType *ClassRonfABITy;
637 
638   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
639   llvm::PointerType *ImpnfABITy;
640 
641   // CategorynfABITy - LLVM for struct _category_t
642   llvm::StructType *CategorynfABITy;
643 
644   // New types for nonfragile abi messaging.
645 
646   // MessageRefTy - LLVM for:
647   // struct _message_ref_t {
648   //   IMP messenger;
649   //   SEL name;
650   // };
651   llvm::StructType *MessageRefTy;
652   // MessageRefCTy - clang type for struct _message_ref_t
653   QualType MessageRefCTy;
654 
655   // MessageRefPtrTy - LLVM for struct _message_ref_t*
656   llvm::Type *MessageRefPtrTy;
657   // MessageRefCPtrTy - clang type for struct _message_ref_t*
658   QualType MessageRefCPtrTy;
659 
660   // SuperMessageRefTy - LLVM for:
661   // struct _super_message_ref_t {
662   //   SUPER_IMP messenger;
663   //   SEL name;
664   // };
665   llvm::StructType *SuperMessageRefTy;
666 
667   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
668   llvm::PointerType *SuperMessageRefPtrTy;
669 
670   llvm::FunctionCallee getMessageSendFixupFn() {
671     // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
672     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
673     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
674                                                              params, true),
675                                      "objc_msgSend_fixup");
676   }
677 
678   llvm::FunctionCallee getMessageSendFpretFixupFn() {
679     // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
680     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
681     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
682                                                              params, true),
683                                      "objc_msgSend_fpret_fixup");
684   }
685 
686   llvm::FunctionCallee getMessageSendStretFixupFn() {
687     // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
688     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
689     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
690                                                              params, true),
691                                      "objc_msgSend_stret_fixup");
692   }
693 
694   llvm::FunctionCallee getMessageSendSuper2FixupFn() {
695     // id objc_msgSendSuper2_fixup (struct objc_super *,
696     //                              struct _super_message_ref_t*, ...)
697     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
698     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
699                                                               params, true),
700                                       "objc_msgSendSuper2_fixup");
701   }
702 
703   llvm::FunctionCallee getMessageSendSuper2StretFixupFn() {
704     // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
705     //                                   struct _super_message_ref_t*, ...)
706     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
707     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
708                                                               params, true),
709                                       "objc_msgSendSuper2_stret_fixup");
710   }
711 
712   llvm::FunctionCallee getObjCEndCatchFn() {
713     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
714                                      "objc_end_catch");
715   }
716 
717   llvm::FunctionCallee getObjCBeginCatchFn() {
718     llvm::Type *params[] = { Int8PtrTy };
719     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
720                                                              params, false),
721                                      "objc_begin_catch");
722   }
723 
724   llvm::StructType *EHTypeTy;
725   llvm::Type *EHTypePtrTy;
726 
727   ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
728 };
729 
730 enum class ObjCLabelType {
731   ClassName,
732   MethodVarName,
733   MethodVarType,
734   PropertyName,
735 };
736 
737 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
738 public:
739   class SKIP_SCAN {
740   public:
741     unsigned skip;
742     unsigned scan;
743     SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
744       : skip(_skip), scan(_scan) {}
745   };
746 
747   /// opcode for captured block variables layout 'instructions'.
748   /// In the following descriptions, 'I' is the value of the immediate field.
749   /// (field following the opcode).
750   ///
751   enum BLOCK_LAYOUT_OPCODE {
752     /// An operator which affects how the following layout should be
753     /// interpreted.
754     ///   I == 0: Halt interpretation and treat everything else as
755     ///           a non-pointer.  Note that this instruction is equal
756     ///           to '\0'.
757     ///   I != 0: Currently unused.
758     BLOCK_LAYOUT_OPERATOR            = 0,
759 
760     /// The next I+1 bytes do not contain a value of object pointer type.
761     /// Note that this can leave the stream unaligned, meaning that
762     /// subsequent word-size instructions do not begin at a multiple of
763     /// the pointer size.
764     BLOCK_LAYOUT_NON_OBJECT_BYTES    = 1,
765 
766     /// The next I+1 words do not contain a value of object pointer type.
767     /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
768     /// when the required skip quantity is a multiple of the pointer size.
769     BLOCK_LAYOUT_NON_OBJECT_WORDS    = 2,
770 
771     /// The next I+1 words are __strong pointers to Objective-C
772     /// objects or blocks.
773     BLOCK_LAYOUT_STRONG              = 3,
774 
775     /// The next I+1 words are pointers to __block variables.
776     BLOCK_LAYOUT_BYREF               = 4,
777 
778     /// The next I+1 words are __weak pointers to Objective-C
779     /// objects or blocks.
780     BLOCK_LAYOUT_WEAK                = 5,
781 
782     /// The next I+1 words are __unsafe_unretained pointers to
783     /// Objective-C objects or blocks.
784     BLOCK_LAYOUT_UNRETAINED          = 6
785 
786     /// The next I+1 words are block or object pointers with some
787     /// as-yet-unspecified ownership semantics.  If we add more
788     /// flavors of ownership semantics, values will be taken from
789     /// this range.
790     ///
791     /// This is included so that older tools can at least continue
792     /// processing the layout past such things.
793     //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
794 
795     /// All other opcodes are reserved.  Halt interpretation and
796     /// treat everything else as opaque.
797   };
798 
799   class RUN_SKIP {
800   public:
801     enum BLOCK_LAYOUT_OPCODE opcode;
802     CharUnits block_var_bytepos;
803     CharUnits block_var_size;
804     RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
805              CharUnits BytePos = CharUnits::Zero(),
806              CharUnits Size = CharUnits::Zero())
807     : opcode(Opcode), block_var_bytepos(BytePos),  block_var_size(Size) {}
808 
809     // Allow sorting based on byte pos.
810     bool operator<(const RUN_SKIP &b) const {
811       return block_var_bytepos < b.block_var_bytepos;
812     }
813   };
814 
815 protected:
816   llvm::LLVMContext &VMContext;
817   // FIXME! May not be needing this after all.
818   unsigned ObjCABI;
819 
820   // arc/mrr layout of captured block literal variables.
821   SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
822 
823   /// LazySymbols - Symbols to generate a lazy reference for. See
824   /// DefinedSymbols and FinishModule().
825   llvm::SetVector<IdentifierInfo*> LazySymbols;
826 
827   /// DefinedSymbols - External symbols which are defined by this
828   /// module. The symbols in this list and LazySymbols are used to add
829   /// special linker symbols which ensure that Objective-C modules are
830   /// linked properly.
831   llvm::SetVector<IdentifierInfo*> DefinedSymbols;
832 
833   /// ClassNames - uniqued class names.
834   llvm::StringMap<llvm::GlobalVariable*> ClassNames;
835 
836   /// MethodVarNames - uniqued method variable names.
837   llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
838 
839   /// DefinedCategoryNames - list of category names in form Class_Category.
840   llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames;
841 
842   /// MethodVarTypes - uniqued method type signatures. We have to use
843   /// a StringMap here because have no other unique reference.
844   llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
845 
846   /// MethodDefinitions - map of methods which have been defined in
847   /// this translation unit.
848   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
849 
850   /// PropertyNames - uniqued method variable names.
851   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
852 
853   /// ClassReferences - uniqued class references.
854   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
855 
856   /// SelectorReferences - uniqued selector references.
857   llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
858 
859   /// Protocols - Protocols for which an objc_protocol structure has
860   /// been emitted. Forward declarations are handled by creating an
861   /// empty structure whose initializer is filled in when/if defined.
862   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
863 
864   /// DefinedProtocols - Protocols which have actually been
865   /// defined. We should not need this, see FIXME in GenerateProtocol.
866   llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
867 
868   /// DefinedClasses - List of defined classes.
869   SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
870 
871   /// ImplementedClasses - List of @implemented classes.
872   SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
873 
874   /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
875   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
876 
877   /// DefinedCategories - List of defined categories.
878   SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
879 
880   /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
881   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
882 
883   /// Cached reference to the class for constant strings. This value has type
884   /// int * but is actually an Obj-C class pointer.
885   llvm::WeakTrackingVH ConstantStringClassRef;
886 
887   /// The LLVM type corresponding to NSConstantString.
888   llvm::StructType *NSConstantStringType = nullptr;
889 
890   llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap;
891 
892   /// GetNameForMethod - Return a name for the given method.
893   /// \param[out] NameOut - The return value.
894   void GetNameForMethod(const ObjCMethodDecl *OMD,
895                         const ObjCContainerDecl *CD,
896                         SmallVectorImpl<char> &NameOut);
897 
898   /// GetMethodVarName - Return a unique constant for the given
899   /// selector's name. The return value has type char *.
900   llvm::Constant *GetMethodVarName(Selector Sel);
901   llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
902 
903   /// GetMethodVarType - Return a unique constant for the given
904   /// method's type encoding string. The return value has type char *.
905 
906   // FIXME: This is a horrible name.
907   llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
908                                    bool Extended = false);
909   llvm::Constant *GetMethodVarType(const FieldDecl *D);
910 
911   /// GetPropertyName - Return a unique constant for the given
912   /// name. The return value has type char *.
913   llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
914 
915   // FIXME: This can be dropped once string functions are unified.
916   llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
917                                         const Decl *Container);
918 
919   /// GetClassName - Return a unique constant for the given selector's
920   /// runtime name (which may change via use of objc_runtime_name attribute on
921   /// class or protocol definition. The return value has type char *.
922   llvm::Constant *GetClassName(StringRef RuntimeName);
923 
924   llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
925 
926   /// BuildIvarLayout - Builds ivar layout bitmap for the class
927   /// implementation for the __strong or __weak case.
928   ///
929   /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
930   ///   are any weak ivars defined directly in the class.  Meaningless unless
931   ///   building a weak layout.  Does not guarantee that the layout will
932   ///   actually have any entries, because the ivar might be under-aligned.
933   llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
934                                   CharUnits beginOffset,
935                                   CharUnits endOffset,
936                                   bool forStrongLayout,
937                                   bool hasMRCWeakIvars);
938 
939   llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
940                                         CharUnits beginOffset,
941                                         CharUnits endOffset) {
942     return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
943   }
944 
945   llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
946                                       CharUnits beginOffset,
947                                       CharUnits endOffset,
948                                       bool hasMRCWeakIvars) {
949     return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
950   }
951 
952   Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
953 
954   void UpdateRunSkipBlockVars(bool IsByref,
955                               Qualifiers::ObjCLifetime LifeTime,
956                               CharUnits FieldOffset,
957                               CharUnits FieldSize);
958 
959   void BuildRCBlockVarRecordLayout(const RecordType *RT,
960                                    CharUnits BytePos, bool &HasUnion,
961                                    bool ByrefLayout=false);
962 
963   void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
964                            const RecordDecl *RD,
965                            ArrayRef<const FieldDecl*> RecFields,
966                            CharUnits BytePos, bool &HasUnion,
967                            bool ByrefLayout);
968 
969   uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
970 
971   llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
972 
973   /// GetIvarLayoutName - Returns a unique constant for the given
974   /// ivar layout bitmap.
975   llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
976                                     const ObjCCommonTypesHelper &ObjCTypes);
977 
978   /// EmitPropertyList - Emit the given property list. The return
979   /// value has type PropertyListPtrTy.
980   llvm::Constant *EmitPropertyList(Twine Name,
981                                    const Decl *Container,
982                                    const ObjCContainerDecl *OCD,
983                                    const ObjCCommonTypesHelper &ObjCTypes,
984                                    bool IsClassProperty);
985 
986   /// EmitProtocolMethodTypes - Generate the array of extended method type
987   /// strings. The return value has type Int8PtrPtrTy.
988   llvm::Constant *EmitProtocolMethodTypes(Twine Name,
989                                           ArrayRef<llvm::Constant*> MethodTypes,
990                                        const ObjCCommonTypesHelper &ObjCTypes);
991 
992   /// GetProtocolRef - Return a reference to the internal protocol
993   /// description, creating an empty one if it has not been
994   /// defined. The return value has type ProtocolPtrTy.
995   llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
996 
997   /// Return a reference to the given Class using runtime calls rather than
998   /// by a symbol reference.
999   llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
1000                                       const ObjCInterfaceDecl *ID,
1001                                       ObjCCommonTypesHelper &ObjCTypes);
1002 
1003   std::string GetSectionName(StringRef Section, StringRef MachOAttributes);
1004 
1005 public:
1006   /// CreateMetadataVar - Create a global variable with internal
1007   /// linkage for use by the Objective-C runtime.
1008   ///
1009   /// This is a convenience wrapper which not only creates the
1010   /// variable, but also sets the section and alignment and adds the
1011   /// global to the "llvm.used" list.
1012   ///
1013   /// \param Name - The variable name.
1014   /// \param Init - The variable initializer; this is also used to
1015   ///   define the type of the variable.
1016   /// \param Section - The section the variable should go into, or empty.
1017   /// \param Align - The alignment for the variable, or 0.
1018   /// \param AddToUsed - Whether the variable should be added to
1019   ///   "llvm.used".
1020   llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1021                                           ConstantStructBuilder &Init,
1022                                           StringRef Section, CharUnits Align,
1023                                           bool AddToUsed);
1024   llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1025                                           llvm::Constant *Init,
1026                                           StringRef Section, CharUnits Align,
1027                                           bool AddToUsed);
1028 
1029   llvm::GlobalVariable *CreateCStringLiteral(StringRef Name,
1030                                              ObjCLabelType LabelType,
1031                                              bool ForceNonFragileABI = false,
1032                                              bool NullTerminate = true);
1033 
1034 protected:
1035   CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1036                                   ReturnValueSlot Return,
1037                                   QualType ResultType,
1038                                   llvm::Value *Sel,
1039                                   llvm::Value *Arg0,
1040                                   QualType Arg0Ty,
1041                                   bool IsSuper,
1042                                   const CallArgList &CallArgs,
1043                                   const ObjCMethodDecl *OMD,
1044                                   const ObjCInterfaceDecl *ClassReceiver,
1045                                   const ObjCCommonTypesHelper &ObjCTypes);
1046 
1047   /// EmitImageInfo - Emit the image info marker used to encode some module
1048   /// level information.
1049   void EmitImageInfo();
1050 
1051 public:
1052   CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
1053     CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { }
1054 
1055   bool isNonFragileABI() const {
1056     return ObjCABI == 2;
1057   }
1058 
1059   ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1060   ConstantAddress GenerateConstantNSString(const StringLiteral *SL);
1061 
1062   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1063                                  const ObjCContainerDecl *CD=nullptr) override;
1064 
1065   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1066 
1067   /// GetOrEmitProtocol - Get the protocol object for the given
1068   /// declaration, emitting it if necessary. The return value has type
1069   /// ProtocolPtrTy.
1070   virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
1071 
1072   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1073   /// object for the given declaration, emitting it if needed. These
1074   /// forward references will be filled in with empty bodies if no
1075   /// definition is seen. The return value has type ProtocolPtrTy.
1076   virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1077 
1078   virtual llvm::Constant *getNSConstantStringClassRef() = 0;
1079 
1080   llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1081                                      const CGBlockInfo &blockInfo) override;
1082   llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1083                                      const CGBlockInfo &blockInfo) override;
1084   std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM,
1085                                   const CGBlockInfo &blockInfo) override;
1086 
1087   llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1088                                    QualType T) override;
1089 
1090 private:
1091   void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo);
1092 };
1093 
1094 namespace {
1095 
1096 enum class MethodListType {
1097   CategoryInstanceMethods,
1098   CategoryClassMethods,
1099   InstanceMethods,
1100   ClassMethods,
1101   ProtocolInstanceMethods,
1102   ProtocolClassMethods,
1103   OptionalProtocolInstanceMethods,
1104   OptionalProtocolClassMethods,
1105 };
1106 
1107 /// A convenience class for splitting the methods of a protocol into
1108 /// the four interesting groups.
1109 class ProtocolMethodLists {
1110 public:
1111   enum Kind {
1112     RequiredInstanceMethods,
1113     RequiredClassMethods,
1114     OptionalInstanceMethods,
1115     OptionalClassMethods
1116   };
1117   enum {
1118     NumProtocolMethodLists = 4
1119   };
1120 
1121   static MethodListType getMethodListKind(Kind kind) {
1122     switch (kind) {
1123     case RequiredInstanceMethods:
1124       return MethodListType::ProtocolInstanceMethods;
1125     case RequiredClassMethods:
1126       return MethodListType::ProtocolClassMethods;
1127     case OptionalInstanceMethods:
1128       return MethodListType::OptionalProtocolInstanceMethods;
1129     case OptionalClassMethods:
1130       return MethodListType::OptionalProtocolClassMethods;
1131     }
1132     llvm_unreachable("bad kind");
1133   }
1134 
1135   SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists];
1136 
1137   static ProtocolMethodLists get(const ObjCProtocolDecl *PD) {
1138     ProtocolMethodLists result;
1139 
1140     for (auto MD : PD->methods()) {
1141       size_t index = (2 * size_t(MD->isOptional()))
1142                    + (size_t(MD->isClassMethod()));
1143       result.Methods[index].push_back(MD);
1144     }
1145 
1146     return result;
1147   }
1148 
1149   template <class Self>
1150   SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const {
1151     // In both ABIs, the method types list is parallel with the
1152     // concatenation of the methods arrays in the following order:
1153     //   instance methods
1154     //   class methods
1155     //   optional instance methods
1156     //   optional class methods
1157     SmallVector<llvm::Constant*, 8> result;
1158 
1159     // Methods is already in the correct order for both ABIs.
1160     for (auto &list : Methods) {
1161       for (auto MD : list) {
1162         result.push_back(self->GetMethodVarType(MD, true));
1163       }
1164     }
1165 
1166     return result;
1167   }
1168 
1169   template <class Self>
1170   llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD,
1171                                  Kind kind) const {
1172     return self->emitMethodList(PD->getObjCRuntimeNameAsString(),
1173                                 getMethodListKind(kind), Methods[kind]);
1174   }
1175 };
1176 
1177 } // end anonymous namespace
1178 
1179 class CGObjCMac : public CGObjCCommonMac {
1180 private:
1181   friend ProtocolMethodLists;
1182 
1183   ObjCTypesHelper ObjCTypes;
1184 
1185   /// EmitModuleInfo - Another marker encoding module level
1186   /// information.
1187   void EmitModuleInfo();
1188 
1189   /// EmitModuleSymols - Emit module symbols, the list of defined
1190   /// classes and categories. The result has type SymtabPtrTy.
1191   llvm::Constant *EmitModuleSymbols();
1192 
1193   /// FinishModule - Write out global data structures at the end of
1194   /// processing a translation unit.
1195   void FinishModule();
1196 
1197   /// EmitClassExtension - Generate the class extension structure used
1198   /// to store the weak ivar layout and properties. The return value
1199   /// has type ClassExtensionPtrTy.
1200   llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1201                                      CharUnits instanceSize,
1202                                      bool hasMRCWeakIvars,
1203                                      bool isMetaclass);
1204 
1205   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1206   /// for the given class.
1207   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1208                             const ObjCInterfaceDecl *ID);
1209 
1210   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1211                                   IdentifierInfo *II);
1212 
1213   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1214 
1215   /// EmitSuperClassRef - Emits reference to class's main metadata class.
1216   llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1217 
1218   /// EmitIvarList - Emit the ivar list for the given
1219   /// implementation. If ForClass is true the list of class ivars
1220   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1221   /// interface ivars will be emitted. The return value has type
1222   /// IvarListPtrTy.
1223   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1224                                bool ForClass);
1225 
1226   /// EmitMetaClass - Emit a forward reference to the class structure
1227   /// for the metaclass of the given interface. The return value has
1228   /// type ClassPtrTy.
1229   llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1230 
1231   /// EmitMetaClass - Emit a class structure for the metaclass of the
1232   /// given implementation. The return value has type ClassPtrTy.
1233   llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1234                                 llvm::Constant *Protocols,
1235                                 ArrayRef<const ObjCMethodDecl *> Methods);
1236 
1237   void emitMethodConstant(ConstantArrayBuilder &builder,
1238                           const ObjCMethodDecl *MD);
1239 
1240   void emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
1241                                      const ObjCMethodDecl *MD);
1242 
1243   /// EmitMethodList - Emit the method list for the given
1244   /// implementation. The return value has type MethodListPtrTy.
1245   llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1246                                  ArrayRef<const ObjCMethodDecl *> Methods);
1247 
1248   /// GetOrEmitProtocol - Get the protocol object for the given
1249   /// declaration, emitting it if necessary. The return value has type
1250   /// ProtocolPtrTy.
1251   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1252 
1253   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1254   /// object for the given declaration, emitting it if needed. These
1255   /// forward references will be filled in with empty bodies if no
1256   /// definition is seen. The return value has type ProtocolPtrTy.
1257   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1258 
1259   /// EmitProtocolExtension - Generate the protocol extension
1260   /// structure used to store optional instance and class methods, and
1261   /// protocol properties. The return value has type
1262   /// ProtocolExtensionPtrTy.
1263   llvm::Constant *
1264   EmitProtocolExtension(const ObjCProtocolDecl *PD,
1265                         const ProtocolMethodLists &methodLists);
1266 
1267   /// EmitProtocolList - Generate the list of referenced
1268   /// protocols. The return value has type ProtocolListPtrTy.
1269   llvm::Constant *EmitProtocolList(Twine Name,
1270                                    ObjCProtocolDecl::protocol_iterator begin,
1271                                    ObjCProtocolDecl::protocol_iterator end);
1272 
1273   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1274   /// for the given selector.
1275   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1276   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1277 
1278 public:
1279   CGObjCMac(CodeGen::CodeGenModule &cgm);
1280 
1281   llvm::Constant *getNSConstantStringClassRef() override;
1282 
1283   llvm::Function *ModuleInitFunction() override;
1284 
1285   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1286                                       ReturnValueSlot Return,
1287                                       QualType ResultType,
1288                                       Selector Sel, llvm::Value *Receiver,
1289                                       const CallArgList &CallArgs,
1290                                       const ObjCInterfaceDecl *Class,
1291                                       const ObjCMethodDecl *Method) override;
1292 
1293   CodeGen::RValue
1294   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1295                            ReturnValueSlot Return, QualType ResultType,
1296                            Selector Sel, const ObjCInterfaceDecl *Class,
1297                            bool isCategoryImpl, llvm::Value *Receiver,
1298                            bool IsClassMessage, const CallArgList &CallArgs,
1299                            const ObjCMethodDecl *Method) override;
1300 
1301   llvm::Value *GetClass(CodeGenFunction &CGF,
1302                         const ObjCInterfaceDecl *ID) override;
1303 
1304   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1305   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1306 
1307   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1308   /// untyped one.
1309   llvm::Value *GetSelector(CodeGenFunction &CGF,
1310                            const ObjCMethodDecl *Method) override;
1311 
1312   llvm::Constant *GetEHType(QualType T) override;
1313 
1314   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1315 
1316   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1317 
1318   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1319 
1320   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1321                                    const ObjCProtocolDecl *PD) override;
1322 
1323   llvm::FunctionCallee GetPropertyGetFunction() override;
1324   llvm::FunctionCallee GetPropertySetFunction() override;
1325   llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1326                                                        bool copy) override;
1327   llvm::FunctionCallee GetGetStructFunction() override;
1328   llvm::FunctionCallee GetSetStructFunction() override;
1329   llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
1330   llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
1331   llvm::FunctionCallee EnumerationMutationFunction() override;
1332 
1333   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1334                    const ObjCAtTryStmt &S) override;
1335   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1336                             const ObjCAtSynchronizedStmt &S) override;
1337   void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1338   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1339                      bool ClearInsertionPoint=true) override;
1340   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1341                                  Address AddrWeakObj) override;
1342   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1343                           llvm::Value *src, Address dst) override;
1344   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1345                             llvm::Value *src, Address dest,
1346                             bool threadlocal = false) override;
1347   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1348                           llvm::Value *src, Address dest,
1349                           llvm::Value *ivarOffset) override;
1350   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1351                                 llvm::Value *src, Address dest) override;
1352   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1353                                 Address dest, Address src,
1354                                 llvm::Value *size) override;
1355 
1356   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1357                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1358                               unsigned CVRQualifiers) override;
1359   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1360                               const ObjCInterfaceDecl *Interface,
1361                               const ObjCIvarDecl *Ivar) override;
1362 };
1363 
1364 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1365 private:
1366   friend ProtocolMethodLists;
1367   ObjCNonFragileABITypesHelper ObjCTypes;
1368   llvm::GlobalVariable* ObjCEmptyCacheVar;
1369   llvm::Constant* ObjCEmptyVtableVar;
1370 
1371   /// SuperClassReferences - uniqued super class references.
1372   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1373 
1374   /// MetaClassReferences - uniqued meta class references.
1375   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1376 
1377   /// EHTypeReferences - uniqued class ehtype references.
1378   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1379 
1380   /// VTableDispatchMethods - List of methods for which we generate
1381   /// vtable-based message dispatch.
1382   llvm::DenseSet<Selector> VTableDispatchMethods;
1383 
1384   /// DefinedMetaClasses - List of defined meta-classes.
1385   std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1386 
1387   /// isVTableDispatchedSelector - Returns true if SEL is a
1388   /// vtable-based selector.
1389   bool isVTableDispatchedSelector(Selector Sel);
1390 
1391   /// FinishNonFragileABIModule - Write out global data structures at the end of
1392   /// processing a translation unit.
1393   void FinishNonFragileABIModule();
1394 
1395   /// AddModuleClassList - Add the given list of class pointers to the
1396   /// module with the provided symbol and section names.
1397   void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1398                           StringRef SymbolName, StringRef SectionName);
1399 
1400   llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1401                                               unsigned InstanceStart,
1402                                               unsigned InstanceSize,
1403                                               const ObjCImplementationDecl *ID);
1404   llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI,
1405                                          bool isMetaclass,
1406                                          llvm::Constant *IsAGV,
1407                                          llvm::Constant *SuperClassGV,
1408                                          llvm::Constant *ClassRoGV,
1409                                          bool HiddenVisibility);
1410 
1411   void emitMethodConstant(ConstantArrayBuilder &builder,
1412                             const ObjCMethodDecl *MD,
1413                             bool forProtocol);
1414 
1415   /// Emit the method list for the given implementation. The return value
1416   /// has type MethodListnfABITy.
1417   llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1418                                  ArrayRef<const ObjCMethodDecl *> Methods);
1419 
1420   /// EmitIvarList - Emit the ivar list for the given
1421   /// implementation. If ForClass is true the list of class ivars
1422   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1423   /// interface ivars will be emitted. The return value has type
1424   /// IvarListnfABIPtrTy.
1425   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1426 
1427   llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1428                                     const ObjCIvarDecl *Ivar,
1429                                     unsigned long int offset);
1430 
1431   /// GetOrEmitProtocol - Get the protocol object for the given
1432   /// declaration, emitting it if necessary. The return value has type
1433   /// ProtocolPtrTy.
1434   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1435 
1436   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1437   /// object for the given declaration, emitting it if needed. These
1438   /// forward references will be filled in with empty bodies if no
1439   /// definition is seen. The return value has type ProtocolPtrTy.
1440   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1441 
1442   /// EmitProtocolList - Generate the list of referenced
1443   /// protocols. The return value has type ProtocolListPtrTy.
1444   llvm::Constant *EmitProtocolList(Twine Name,
1445                                    ObjCProtocolDecl::protocol_iterator begin,
1446                                    ObjCProtocolDecl::protocol_iterator end);
1447 
1448   CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1449                                         ReturnValueSlot Return,
1450                                         QualType ResultType,
1451                                         Selector Sel,
1452                                         llvm::Value *Receiver,
1453                                         QualType Arg0Ty,
1454                                         bool IsSuper,
1455                                         const CallArgList &CallArgs,
1456                                         const ObjCMethodDecl *Method);
1457 
1458   /// GetClassGlobal - Return the global variable for the Objective-C
1459   /// class of the given name.
1460   llvm::Constant *GetClassGlobal(StringRef Name,
1461                                  ForDefinition_t IsForDefinition,
1462                                  bool Weak = false, bool DLLImport = false);
1463   llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID,
1464                                  bool isMetaclass,
1465                                  ForDefinition_t isForDefinition);
1466 
1467   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1468   /// for the given class reference.
1469   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1470                             const ObjCInterfaceDecl *ID);
1471 
1472   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1473                                   IdentifierInfo *II,
1474                                   const ObjCInterfaceDecl *ID);
1475 
1476   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1477 
1478   /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1479   /// for the given super class reference.
1480   llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1481                                  const ObjCInterfaceDecl *ID);
1482 
1483   /// EmitMetaClassRef - Return a Value * of the address of _class_t
1484   /// meta-data
1485   llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1486                                 const ObjCInterfaceDecl *ID, bool Weak);
1487 
1488   /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1489   /// the given ivar.
1490   ///
1491   llvm::GlobalVariable * ObjCIvarOffsetVariable(
1492     const ObjCInterfaceDecl *ID,
1493     const ObjCIvarDecl *Ivar);
1494 
1495   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1496   /// for the given selector.
1497   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1498   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1499 
1500   /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1501   /// interface. The return value has type EHTypePtrTy.
1502   llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1503                                      ForDefinition_t IsForDefinition);
1504 
1505   StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1506 
1507   StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1508 
1509   void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1510                         uint32_t &InstanceStart,
1511                         uint32_t &InstanceSize);
1512 
1513   // Shamelessly stolen from Analysis/CFRefCount.cpp
1514   Selector GetNullarySelector(const char* name) const {
1515     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1516     return CGM.getContext().Selectors.getSelector(0, &II);
1517   }
1518 
1519   Selector GetUnarySelector(const char* name) const {
1520     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1521     return CGM.getContext().Selectors.getSelector(1, &II);
1522   }
1523 
1524   /// ImplementationIsNonLazy - Check whether the given category or
1525   /// class implementation is "non-lazy".
1526   bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1527 
1528   bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1529                                    const ObjCIvarDecl *IV) {
1530     // Annotate the load as an invariant load iff inside an instance method
1531     // and ivar belongs to instance method's class and one of its super class.
1532     // This check is needed because the ivar offset is a lazily
1533     // initialised value that may depend on objc_msgSend to perform a fixup on
1534     // the first message dispatch.
1535     //
1536     // An additional opportunity to mark the load as invariant arises when the
1537     // base of the ivar access is a parameter to an Objective C method.
1538     // However, because the parameters are not available in the current
1539     // interface, we cannot perform this check.
1540     if (const ObjCMethodDecl *MD =
1541           dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1542       if (MD->isInstanceMethod())
1543         if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1544           return IV->getContainingInterface()->isSuperClassOf(ID);
1545     return false;
1546   }
1547 
1548   bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) {
1549     // NSObject is a fixed size. If we can see the @implementation of a class
1550     // which inherits from NSObject then we know that all it's offsets also must
1551     // be fixed. FIXME: Can we do this if see a chain of super classes with
1552     // implementations leading to NSObject?
1553     return ID->getImplementation() && ID->getSuperClass() &&
1554            ID->getSuperClass()->getName() == "NSObject";
1555   }
1556 
1557 public:
1558   CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1559 
1560   llvm::Constant *getNSConstantStringClassRef() override;
1561 
1562   llvm::Function *ModuleInitFunction() override;
1563 
1564   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1565                                       ReturnValueSlot Return,
1566                                       QualType ResultType, Selector Sel,
1567                                       llvm::Value *Receiver,
1568                                       const CallArgList &CallArgs,
1569                                       const ObjCInterfaceDecl *Class,
1570                                       const ObjCMethodDecl *Method) override;
1571 
1572   CodeGen::RValue
1573   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1574                            ReturnValueSlot Return, QualType ResultType,
1575                            Selector Sel, const ObjCInterfaceDecl *Class,
1576                            bool isCategoryImpl, llvm::Value *Receiver,
1577                            bool IsClassMessage, const CallArgList &CallArgs,
1578                            const ObjCMethodDecl *Method) override;
1579 
1580   llvm::Value *GetClass(CodeGenFunction &CGF,
1581                         const ObjCInterfaceDecl *ID) override;
1582 
1583   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1584     { return EmitSelector(CGF, Sel); }
1585   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1586     { return EmitSelectorAddr(CGF, Sel); }
1587 
1588   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1589   /// untyped one.
1590   llvm::Value *GetSelector(CodeGenFunction &CGF,
1591                            const ObjCMethodDecl *Method) override
1592     { return EmitSelector(CGF, Method->getSelector()); }
1593 
1594   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1595 
1596   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1597 
1598   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1599 
1600   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1601                                    const ObjCProtocolDecl *PD) override;
1602 
1603   llvm::Constant *GetEHType(QualType T) override;
1604 
1605   llvm::FunctionCallee GetPropertyGetFunction() override {
1606     return ObjCTypes.getGetPropertyFn();
1607   }
1608   llvm::FunctionCallee GetPropertySetFunction() override {
1609     return ObjCTypes.getSetPropertyFn();
1610   }
1611 
1612   llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1613                                                        bool copy) override {
1614     return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1615   }
1616 
1617   llvm::FunctionCallee GetSetStructFunction() override {
1618     return ObjCTypes.getCopyStructFn();
1619   }
1620 
1621   llvm::FunctionCallee GetGetStructFunction() override {
1622     return ObjCTypes.getCopyStructFn();
1623   }
1624 
1625   llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
1626     return ObjCTypes.getCppAtomicObjectFunction();
1627   }
1628 
1629   llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
1630     return ObjCTypes.getCppAtomicObjectFunction();
1631   }
1632 
1633   llvm::FunctionCallee EnumerationMutationFunction() override {
1634     return ObjCTypes.getEnumerationMutationFn();
1635   }
1636 
1637   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1638                    const ObjCAtTryStmt &S) override;
1639   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1640                             const ObjCAtSynchronizedStmt &S) override;
1641   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1642                      bool ClearInsertionPoint=true) override;
1643   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1644                                  Address AddrWeakObj) override;
1645   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1646                           llvm::Value *src, Address edst) override;
1647   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1648                             llvm::Value *src, Address dest,
1649                             bool threadlocal = false) override;
1650   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1651                           llvm::Value *src, Address dest,
1652                           llvm::Value *ivarOffset) override;
1653   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1654                                 llvm::Value *src, Address dest) override;
1655   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1656                                 Address dest, Address src,
1657                                 llvm::Value *size) override;
1658   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1659                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1660                               unsigned CVRQualifiers) override;
1661   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1662                               const ObjCInterfaceDecl *Interface,
1663                               const ObjCIvarDecl *Ivar) override;
1664 };
1665 
1666 /// A helper class for performing the null-initialization of a return
1667 /// value.
1668 struct NullReturnState {
1669   llvm::BasicBlock *NullBB;
1670   NullReturnState() : NullBB(nullptr) {}
1671 
1672   /// Perform a null-check of the given receiver.
1673   void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1674     // Make blocks for the null-receiver and call edges.
1675     NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1676     llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1677 
1678     // Check for a null receiver and, if there is one, jump to the
1679     // null-receiver block.  There's no point in trying to avoid it:
1680     // we're always going to put *something* there, because otherwise
1681     // we shouldn't have done this null-check in the first place.
1682     llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1683     CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1684 
1685     // Otherwise, start performing the call.
1686     CGF.EmitBlock(callBB);
1687   }
1688 
1689   /// Complete the null-return operation.  It is valid to call this
1690   /// regardless of whether 'init' has been called.
1691   RValue complete(CodeGenFunction &CGF,
1692                   ReturnValueSlot returnSlot,
1693                   RValue result,
1694                   QualType resultType,
1695                   const CallArgList &CallArgs,
1696                   const ObjCMethodDecl *Method) {
1697     // If we never had to do a null-check, just use the raw result.
1698     if (!NullBB) return result;
1699 
1700     // The continuation block.  This will be left null if we don't have an
1701     // IP, which can happen if the method we're calling is marked noreturn.
1702     llvm::BasicBlock *contBB = nullptr;
1703 
1704     // Finish the call path.
1705     llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1706     if (callBB) {
1707       contBB = CGF.createBasicBlock("msgSend.cont");
1708       CGF.Builder.CreateBr(contBB);
1709     }
1710 
1711     // Okay, start emitting the null-receiver block.
1712     CGF.EmitBlock(NullBB);
1713 
1714     // Release any consumed arguments we've got.
1715     if (Method) {
1716       CallArgList::const_iterator I = CallArgs.begin();
1717       for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(),
1718            e = Method->param_end(); i != e; ++i, ++I) {
1719         const ParmVarDecl *ParamDecl = (*i);
1720         if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1721           RValue RV = I->getRValue(CGF);
1722           assert(RV.isScalar() &&
1723                  "NullReturnState::complete - arg not on object");
1724           CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
1725         }
1726       }
1727     }
1728 
1729     // The phi code below assumes that we haven't needed any control flow yet.
1730     assert(CGF.Builder.GetInsertBlock() == NullBB);
1731 
1732     // If we've got a void return, just jump to the continuation block.
1733     if (result.isScalar() && resultType->isVoidType()) {
1734       // No jumps required if the message-send was noreturn.
1735       if (contBB) CGF.EmitBlock(contBB);
1736       return result;
1737     }
1738 
1739     // If we've got a scalar return, build a phi.
1740     if (result.isScalar()) {
1741       // Derive the null-initialization value.
1742       llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType);
1743 
1744       // If no join is necessary, just flow out.
1745       if (!contBB) return RValue::get(null);
1746 
1747       // Otherwise, build a phi.
1748       CGF.EmitBlock(contBB);
1749       llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1750       phi->addIncoming(result.getScalarVal(), callBB);
1751       phi->addIncoming(null, NullBB);
1752       return RValue::get(phi);
1753     }
1754 
1755     // If we've got an aggregate return, null the buffer out.
1756     // FIXME: maybe we should be doing things differently for all the
1757     // cases where the ABI has us returning (1) non-agg values in
1758     // memory or (2) agg values in registers.
1759     if (result.isAggregate()) {
1760       assert(result.isAggregate() && "null init of non-aggregate result?");
1761       if (!returnSlot.isUnused())
1762         CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1763       if (contBB) CGF.EmitBlock(contBB);
1764       return result;
1765     }
1766 
1767     // Complex types.
1768     CGF.EmitBlock(contBB);
1769     CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1770 
1771     // Find the scalar type and its zero value.
1772     llvm::Type *scalarTy = callResult.first->getType();
1773     llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1774 
1775     // Build phis for both coordinates.
1776     llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1777     real->addIncoming(callResult.first, callBB);
1778     real->addIncoming(scalarZero, NullBB);
1779     llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1780     imag->addIncoming(callResult.second, callBB);
1781     imag->addIncoming(scalarZero, NullBB);
1782     return RValue::getComplex(real, imag);
1783   }
1784 };
1785 
1786 } // end anonymous namespace
1787 
1788 /* *** Helper Functions *** */
1789 
1790 /// getConstantGEP() - Help routine to construct simple GEPs.
1791 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1792                                       llvm::GlobalVariable *C, unsigned idx0,
1793                                       unsigned idx1) {
1794   llvm::Value *Idxs[] = {
1795     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1796     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1797   };
1798   return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1799 }
1800 
1801 /// hasObjCExceptionAttribute - Return true if this class or any super
1802 /// class has the __objc_exception__ attribute.
1803 static bool hasObjCExceptionAttribute(ASTContext &Context,
1804                                       const ObjCInterfaceDecl *OID) {
1805   if (OID->hasAttr<ObjCExceptionAttr>())
1806     return true;
1807   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1808     return hasObjCExceptionAttribute(Context, Super);
1809   return false;
1810 }
1811 
1812 /* *** CGObjCMac Public Interface *** */
1813 
1814 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1815                                                     ObjCTypes(cgm) {
1816   ObjCABI = 1;
1817   EmitImageInfo();
1818 }
1819 
1820 /// GetClass - Return a reference to the class for the given interface
1821 /// decl.
1822 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1823                                  const ObjCInterfaceDecl *ID) {
1824   return EmitClassRef(CGF, ID);
1825 }
1826 
1827 /// GetSelector - Return the pointer to the unique'd string for this selector.
1828 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1829   return EmitSelector(CGF, Sel);
1830 }
1831 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1832   return EmitSelectorAddr(CGF, Sel);
1833 }
1834 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1835                                     *Method) {
1836   return EmitSelector(CGF, Method->getSelector());
1837 }
1838 
1839 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1840   if (T->isObjCIdType() ||
1841       T->isObjCQualifiedIdType()) {
1842     return CGM.GetAddrOfRTTIDescriptor(
1843               CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1844   }
1845   if (T->isObjCClassType() ||
1846       T->isObjCQualifiedClassType()) {
1847     return CGM.GetAddrOfRTTIDescriptor(
1848              CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1849   }
1850   if (T->isObjCObjectPointerType())
1851     return CGM.GetAddrOfRTTIDescriptor(T,  /*ForEH=*/true);
1852 
1853   llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1854 }
1855 
1856 /// Generate a constant CFString object.
1857 /*
1858   struct __builtin_CFString {
1859   const int *isa; // point to __CFConstantStringClassReference
1860   int flags;
1861   const char *str;
1862   long length;
1863   };
1864 */
1865 
1866 /// or Generate a constant NSString object.
1867 /*
1868    struct __builtin_NSString {
1869      const int *isa; // point to __NSConstantStringClassReference
1870      const char *str;
1871      unsigned int length;
1872    };
1873 */
1874 
1875 ConstantAddress
1876 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) {
1877   return (!CGM.getLangOpts().NoConstantCFStrings
1878             ? CGM.GetAddrOfConstantCFString(SL)
1879             : GenerateConstantNSString(SL));
1880 }
1881 
1882 static llvm::StringMapEntry<llvm::GlobalVariable *> &
1883 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
1884                        const StringLiteral *Literal, unsigned &StringLength) {
1885   StringRef String = Literal->getString();
1886   StringLength = String.size();
1887   return *Map.insert(std::make_pair(String, nullptr)).first;
1888 }
1889 
1890 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() {
1891   if (llvm::Value *V = ConstantStringClassRef)
1892     return cast<llvm::Constant>(V);
1893 
1894   auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1895   std::string str =
1896     StringClass.empty() ? "_NSConstantStringClassReference"
1897                         : "_" + StringClass + "ClassReference";
1898 
1899   llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0);
1900   auto GV = CGM.CreateRuntimeVariable(PTy, str);
1901   auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1902   ConstantStringClassRef = V;
1903   return V;
1904 }
1905 
1906 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() {
1907   if (llvm::Value *V = ConstantStringClassRef)
1908     return cast<llvm::Constant>(V);
1909 
1910   auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1911   std::string str =
1912     StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1913                         : "OBJC_CLASS_$_" + StringClass;
1914   auto GV = GetClassGlobal(str, NotForDefinition);
1915 
1916   // Make sure the result is of the correct type.
1917   auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1918 
1919   ConstantStringClassRef = V;
1920   return V;
1921 }
1922 
1923 ConstantAddress
1924 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) {
1925   unsigned StringLength = 0;
1926   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
1927     GetConstantStringEntry(NSConstantStringMap, Literal, StringLength);
1928 
1929   if (auto *C = Entry.second)
1930     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
1931 
1932   // If we don't already have it, get _NSConstantStringClassReference.
1933   llvm::Constant *Class = getNSConstantStringClassRef();
1934 
1935   // If we don't already have it, construct the type for a constant NSString.
1936   if (!NSConstantStringType) {
1937     NSConstantStringType =
1938       llvm::StructType::create({
1939         CGM.Int32Ty->getPointerTo(),
1940         CGM.Int8PtrTy,
1941         CGM.IntTy
1942       }, "struct.__builtin_NSString");
1943   }
1944 
1945   ConstantInitBuilder Builder(CGM);
1946   auto Fields = Builder.beginStruct(NSConstantStringType);
1947 
1948   // Class pointer.
1949   Fields.add(Class);
1950 
1951   // String pointer.
1952   llvm::Constant *C =
1953     llvm::ConstantDataArray::getString(VMContext, Entry.first());
1954 
1955   llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage;
1956   bool isConstant = !CGM.getLangOpts().WritableStrings;
1957 
1958   auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant,
1959                                       Linkage, C, ".str");
1960   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1961   // Don't enforce the target's minimum global alignment, since the only use
1962   // of the string is via this class initializer.
1963   GV->setAlignment(1);
1964   Fields.addBitCast(GV, CGM.Int8PtrTy);
1965 
1966   // String length.
1967   Fields.addInt(CGM.IntTy, StringLength);
1968 
1969   // The struct.
1970   CharUnits Alignment = CGM.getPointerAlign();
1971   GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment,
1972                                     /*constant*/ true,
1973                                     llvm::GlobalVariable::PrivateLinkage);
1974   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
1975   const char *NSStringNonFragileABISection =
1976       "__DATA,__objc_stringobj,regular,no_dead_strip";
1977   // FIXME. Fix section.
1978   GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile()
1979                      ? NSStringNonFragileABISection
1980                      : NSStringSection);
1981   Entry.second = GV;
1982 
1983   return ConstantAddress(GV, Alignment);
1984 }
1985 
1986 enum {
1987   kCFTaggedObjectID_Integer = (1 << 1) + 1
1988 };
1989 
1990 /// Generates a message send where the super is the receiver.  This is
1991 /// a message send to self with special delivery semantics indicating
1992 /// which class's method should be called.
1993 CodeGen::RValue
1994 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1995                                     ReturnValueSlot Return,
1996                                     QualType ResultType,
1997                                     Selector Sel,
1998                                     const ObjCInterfaceDecl *Class,
1999                                     bool isCategoryImpl,
2000                                     llvm::Value *Receiver,
2001                                     bool IsClassMessage,
2002                                     const CodeGen::CallArgList &CallArgs,
2003                                     const ObjCMethodDecl *Method) {
2004   // Create and init a super structure; this is a (receiver, class)
2005   // pair we will pass to objc_msgSendSuper.
2006   Address ObjCSuper =
2007     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
2008                          "objc_super");
2009   llvm::Value *ReceiverAsObject =
2010     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
2011   CGF.Builder.CreateStore(ReceiverAsObject,
2012                           CGF.Builder.CreateStructGEP(ObjCSuper, 0));
2013 
2014   // If this is a class message the metaclass is passed as the target.
2015   llvm::Value *Target;
2016   if (IsClassMessage) {
2017     if (isCategoryImpl) {
2018       // Message sent to 'super' in a class method defined in a category
2019       // implementation requires an odd treatment.
2020       // If we are in a class method, we must retrieve the
2021       // _metaclass_ for the current class, pointed at by
2022       // the class's "isa" pointer.  The following assumes that
2023       // isa" is the first ivar in a class (which it must be).
2024       Target = EmitClassRef(CGF, Class->getSuperClass());
2025       Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
2026       Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign());
2027     } else {
2028       llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
2029       llvm::Value *SuperPtr =
2030           CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
2031       llvm::Value *Super =
2032         CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign());
2033       Target = Super;
2034     }
2035   } else if (isCategoryImpl)
2036     Target = EmitClassRef(CGF, Class->getSuperClass());
2037   else {
2038     llvm::Value *ClassPtr = EmitSuperClassRef(Class);
2039     ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
2040     Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign());
2041   }
2042   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
2043   // ObjCTypes types.
2044   llvm::Type *ClassTy =
2045     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
2046   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
2047   CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1));
2048   return EmitMessageSend(CGF, Return, ResultType,
2049                          EmitSelector(CGF, Sel),
2050                          ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
2051                          true, CallArgs, Method, Class, ObjCTypes);
2052 }
2053 
2054 /// Generate code for a message send expression.
2055 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
2056                                                ReturnValueSlot Return,
2057                                                QualType ResultType,
2058                                                Selector Sel,
2059                                                llvm::Value *Receiver,
2060                                                const CallArgList &CallArgs,
2061                                                const ObjCInterfaceDecl *Class,
2062                                                const ObjCMethodDecl *Method) {
2063   return EmitMessageSend(CGF, Return, ResultType,
2064                          EmitSelector(CGF, Sel),
2065                          Receiver, CGF.getContext().getObjCIdType(),
2066                          false, CallArgs, Method, Class, ObjCTypes);
2067 }
2068 
2069 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) {
2070   do {
2071     if (ID->isWeakImported())
2072       return true;
2073   } while ((ID = ID->getSuperClass()));
2074 
2075   return false;
2076 }
2077 
2078 CodeGen::RValue
2079 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
2080                                  ReturnValueSlot Return,
2081                                  QualType ResultType,
2082                                  llvm::Value *Sel,
2083                                  llvm::Value *Arg0,
2084                                  QualType Arg0Ty,
2085                                  bool IsSuper,
2086                                  const CallArgList &CallArgs,
2087                                  const ObjCMethodDecl *Method,
2088                                  const ObjCInterfaceDecl *ClassReceiver,
2089                                  const ObjCCommonTypesHelper &ObjCTypes) {
2090   CallArgList ActualArgs;
2091   if (!IsSuper)
2092     Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
2093   ActualArgs.add(RValue::get(Arg0), Arg0Ty);
2094   ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType());
2095   ActualArgs.addFrom(CallArgs);
2096 
2097   // If we're calling a method, use the formal signature.
2098   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2099 
2100   if (Method)
2101     assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
2102                CGM.getContext().getCanonicalType(ResultType) &&
2103            "Result type mismatch!");
2104 
2105   bool ReceiverCanBeNull = true;
2106 
2107   // Super dispatch assumes that self is non-null; even the messenger
2108   // doesn't have a null check internally.
2109   if (IsSuper) {
2110     ReceiverCanBeNull = false;
2111 
2112   // If this is a direct dispatch of a class method, check whether the class,
2113   // or anything in its hierarchy, was weak-linked.
2114   } else if (ClassReceiver && Method && Method->isClassMethod()) {
2115     ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver);
2116 
2117   // If we're emitting a method, and self is const (meaning just ARC, for now),
2118   // and the receiver is a load of self, then self is a valid object.
2119   } else if (auto CurMethod =
2120                dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) {
2121     auto Self = CurMethod->getSelfDecl();
2122     if (Self->getType().isConstQualified()) {
2123       if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) {
2124         llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer();
2125         if (SelfAddr == LI->getPointerOperand()) {
2126           ReceiverCanBeNull = false;
2127         }
2128       }
2129     }
2130   }
2131 
2132   bool RequiresNullCheck = false;
2133 
2134   llvm::FunctionCallee Fn = nullptr;
2135   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
2136     if (ReceiverCanBeNull) RequiresNullCheck = true;
2137     Fn = (ObjCABI == 2) ?  ObjCTypes.getSendStretFn2(IsSuper)
2138       : ObjCTypes.getSendStretFn(IsSuper);
2139   } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2140     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
2141       : ObjCTypes.getSendFpretFn(IsSuper);
2142   } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
2143     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
2144       : ObjCTypes.getSendFp2retFn(IsSuper);
2145   } else {
2146     // arm64 uses objc_msgSend for stret methods and yet null receiver check
2147     // must be made for it.
2148     if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2149       RequiresNullCheck = true;
2150     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
2151       : ObjCTypes.getSendFn(IsSuper);
2152   }
2153 
2154   // Cast function to proper signature
2155   llvm::Constant *BitcastFn = cast<llvm::Constant>(
2156       CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType));
2157 
2158   // We don't need to emit a null check to zero out an indirect result if the
2159   // result is ignored.
2160   if (Return.isUnused())
2161     RequiresNullCheck = false;
2162 
2163   // Emit a null-check if there's a consumed argument other than the receiver.
2164   if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) {
2165     for (const auto *ParamDecl : Method->parameters()) {
2166       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
2167         RequiresNullCheck = true;
2168         break;
2169       }
2170     }
2171   }
2172 
2173   NullReturnState nullReturn;
2174   if (RequiresNullCheck) {
2175     nullReturn.init(CGF, Arg0);
2176   }
2177 
2178   llvm::CallBase *CallSite;
2179   CGCallee Callee = CGCallee::forDirect(BitcastFn);
2180   RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs,
2181                                &CallSite);
2182 
2183   // Mark the call as noreturn if the method is marked noreturn and the
2184   // receiver cannot be null.
2185   if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
2186     CallSite->setDoesNotReturn();
2187   }
2188 
2189   return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs,
2190                              RequiresNullCheck ? Method : nullptr);
2191 }
2192 
2193 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
2194                                            bool pointee = false) {
2195   // Note that GC qualification applies recursively to C pointer types
2196   // that aren't otherwise decorated.  This is weird, but it's probably
2197   // an intentional workaround to the unreliable placement of GC qualifiers.
2198   if (FQT.isObjCGCStrong())
2199     return Qualifiers::Strong;
2200 
2201   if (FQT.isObjCGCWeak())
2202     return Qualifiers::Weak;
2203 
2204   if (auto ownership = FQT.getObjCLifetime()) {
2205     // Ownership does not apply recursively to C pointer types.
2206     if (pointee) return Qualifiers::GCNone;
2207     switch (ownership) {
2208     case Qualifiers::OCL_Weak: return Qualifiers::Weak;
2209     case Qualifiers::OCL_Strong: return Qualifiers::Strong;
2210     case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
2211     case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
2212     case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
2213     }
2214     llvm_unreachable("bad objc ownership");
2215   }
2216 
2217   // Treat unqualified retainable pointers as strong.
2218   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2219     return Qualifiers::Strong;
2220 
2221   // Walk into C pointer types, but only in GC.
2222   if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
2223     if (const PointerType *PT = FQT->getAs<PointerType>())
2224       return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
2225   }
2226 
2227   return Qualifiers::GCNone;
2228 }
2229 
2230 namespace {
2231   struct IvarInfo {
2232     CharUnits Offset;
2233     uint64_t SizeInWords;
2234     IvarInfo(CharUnits offset, uint64_t sizeInWords)
2235       : Offset(offset), SizeInWords(sizeInWords) {}
2236 
2237     // Allow sorting based on byte pos.
2238     bool operator<(const IvarInfo &other) const {
2239       return Offset < other.Offset;
2240     }
2241   };
2242 
2243   /// A helper class for building GC layout strings.
2244   class IvarLayoutBuilder {
2245     CodeGenModule &CGM;
2246 
2247     /// The start of the layout.  Offsets will be relative to this value,
2248     /// and entries less than this value will be silently discarded.
2249     CharUnits InstanceBegin;
2250 
2251     /// The end of the layout.  Offsets will never exceed this value.
2252     CharUnits InstanceEnd;
2253 
2254     /// Whether we're generating the strong layout or the weak layout.
2255     bool ForStrongLayout;
2256 
2257     /// Whether the offsets in IvarsInfo might be out-of-order.
2258     bool IsDisordered = false;
2259 
2260     llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2261 
2262   public:
2263     IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2264                       CharUnits instanceEnd, bool forStrongLayout)
2265       : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2266         ForStrongLayout(forStrongLayout) {
2267     }
2268 
2269     void visitRecord(const RecordType *RT, CharUnits offset);
2270 
2271     template <class Iterator, class GetOffsetFn>
2272     void visitAggregate(Iterator begin, Iterator end,
2273                         CharUnits aggrOffset,
2274                         const GetOffsetFn &getOffset);
2275 
2276     void visitField(const FieldDecl *field, CharUnits offset);
2277 
2278     /// Add the layout of a block implementation.
2279     void visitBlock(const CGBlockInfo &blockInfo);
2280 
2281     /// Is there any information for an interesting bitmap?
2282     bool hasBitmapData() const { return !IvarsInfo.empty(); }
2283 
2284     llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2285                                 llvm::SmallVectorImpl<unsigned char> &buffer);
2286 
2287     static void dump(ArrayRef<unsigned char> buffer) {
2288       const unsigned char *s = buffer.data();
2289       for (unsigned i = 0, e = buffer.size(); i < e; i++)
2290         if (!(s[i] & 0xf0))
2291           printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2292         else
2293           printf("0x%x%s",  s[i], s[i] != 0 ? ", " : "");
2294       printf("\n");
2295     }
2296   };
2297 } // end anonymous namespace
2298 
2299 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2300                                                 const CGBlockInfo &blockInfo) {
2301 
2302   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2303   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2304     return nullPtr;
2305 
2306   IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2307                             /*for strong layout*/ true);
2308 
2309   builder.visitBlock(blockInfo);
2310 
2311   if (!builder.hasBitmapData())
2312     return nullPtr;
2313 
2314   llvm::SmallVector<unsigned char, 32> buffer;
2315   llvm::Constant *C = builder.buildBitmap(*this, buffer);
2316   if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2317     printf("\n block variable layout for block: ");
2318     builder.dump(buffer);
2319   }
2320 
2321   return C;
2322 }
2323 
2324 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2325   // __isa is the first field in block descriptor and must assume by runtime's
2326   // convention that it is GC'able.
2327   IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2328 
2329   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2330 
2331   // Ignore the optional 'this' capture: C++ objects are not assumed
2332   // to be GC'ed.
2333 
2334   CharUnits lastFieldOffset;
2335 
2336   // Walk the captured variables.
2337   for (const auto &CI : blockDecl->captures()) {
2338     const VarDecl *variable = CI.getVariable();
2339     QualType type = variable->getType();
2340 
2341     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2342 
2343     // Ignore constant captures.
2344     if (capture.isConstant()) continue;
2345 
2346     CharUnits fieldOffset = capture.getOffset();
2347 
2348     // Block fields are not necessarily ordered; if we detect that we're
2349     // adding them out-of-order, make sure we sort later.
2350     if (fieldOffset < lastFieldOffset)
2351       IsDisordered = true;
2352     lastFieldOffset = fieldOffset;
2353 
2354     // __block variables are passed by their descriptor address.
2355     if (CI.isByRef()) {
2356       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2357       continue;
2358     }
2359 
2360     assert(!type->isArrayType() && "array variable should not be caught");
2361     if (const RecordType *record = type->getAs<RecordType>()) {
2362       visitRecord(record, fieldOffset);
2363       continue;
2364     }
2365 
2366     Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2367 
2368     if (GCAttr == Qualifiers::Strong) {
2369       assert(CGM.getContext().getTypeSize(type)
2370                 == CGM.getTarget().getPointerWidth(0));
2371       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2372     }
2373   }
2374 }
2375 
2376 /// getBlockCaptureLifetime - This routine returns life time of the captured
2377 /// block variable for the purpose of block layout meta-data generation. FQT is
2378 /// the type of the variable captured in the block.
2379 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2380                                                                   bool ByrefLayout) {
2381   // If it has an ownership qualifier, we're done.
2382   if (auto lifetime = FQT.getObjCLifetime())
2383     return lifetime;
2384 
2385   // If it doesn't, and this is ARC, it has no ownership.
2386   if (CGM.getLangOpts().ObjCAutoRefCount)
2387     return Qualifiers::OCL_None;
2388 
2389   // In MRC, retainable pointers are owned by non-__block variables.
2390   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2391     return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2392 
2393   return Qualifiers::OCL_None;
2394 }
2395 
2396 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2397                                              Qualifiers::ObjCLifetime LifeTime,
2398                                              CharUnits FieldOffset,
2399                                              CharUnits FieldSize) {
2400   // __block variables are passed by their descriptor address.
2401   if (IsByref)
2402     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2403                                         FieldSize));
2404   else if (LifeTime == Qualifiers::OCL_Strong)
2405     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2406                                         FieldSize));
2407   else if (LifeTime == Qualifiers::OCL_Weak)
2408     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2409                                         FieldSize));
2410   else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2411     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2412                                         FieldSize));
2413   else
2414     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2415                                         FieldOffset,
2416                                         FieldSize));
2417 }
2418 
2419 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2420                                           const RecordDecl *RD,
2421                                           ArrayRef<const FieldDecl*> RecFields,
2422                                           CharUnits BytePos, bool &HasUnion,
2423                                           bool ByrefLayout) {
2424   bool IsUnion = (RD && RD->isUnion());
2425   CharUnits MaxUnionSize = CharUnits::Zero();
2426   const FieldDecl *MaxField = nullptr;
2427   const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2428   CharUnits MaxFieldOffset = CharUnits::Zero();
2429   CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2430 
2431   if (RecFields.empty())
2432     return;
2433   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2434 
2435   for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2436     const FieldDecl *Field = RecFields[i];
2437     // Note that 'i' here is actually the field index inside RD of Field,
2438     // although this dependency is hidden.
2439     const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2440     CharUnits FieldOffset =
2441       CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2442 
2443     // Skip over unnamed or bitfields
2444     if (!Field->getIdentifier() || Field->isBitField()) {
2445       LastFieldBitfieldOrUnnamed = Field;
2446       LastBitfieldOrUnnamedOffset = FieldOffset;
2447       continue;
2448     }
2449 
2450     LastFieldBitfieldOrUnnamed = nullptr;
2451     QualType FQT = Field->getType();
2452     if (FQT->isRecordType() || FQT->isUnionType()) {
2453       if (FQT->isUnionType())
2454         HasUnion = true;
2455 
2456       BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
2457                                   BytePos + FieldOffset, HasUnion);
2458       continue;
2459     }
2460 
2461     if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2462       const ConstantArrayType *CArray =
2463         dyn_cast_or_null<ConstantArrayType>(Array);
2464       uint64_t ElCount = CArray->getSize().getZExtValue();
2465       assert(CArray && "only array with known element size is supported");
2466       FQT = CArray->getElementType();
2467       while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2468         const ConstantArrayType *CArray =
2469           dyn_cast_or_null<ConstantArrayType>(Array);
2470         ElCount *= CArray->getSize().getZExtValue();
2471         FQT = CArray->getElementType();
2472       }
2473       if (FQT->isRecordType() && ElCount) {
2474         int OldIndex = RunSkipBlockVars.size() - 1;
2475         const RecordType *RT = FQT->getAs<RecordType>();
2476         BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset,
2477                                     HasUnion);
2478 
2479         // Replicate layout information for each array element. Note that
2480         // one element is already done.
2481         uint64_t ElIx = 1;
2482         for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2483           CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2484           for (int i = OldIndex+1; i <= FirstIndex; ++i)
2485             RunSkipBlockVars.push_back(
2486               RUN_SKIP(RunSkipBlockVars[i].opcode,
2487               RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2488               RunSkipBlockVars[i].block_var_size));
2489         }
2490         continue;
2491       }
2492     }
2493     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2494     if (IsUnion) {
2495       CharUnits UnionIvarSize = FieldSize;
2496       if (UnionIvarSize > MaxUnionSize) {
2497         MaxUnionSize = UnionIvarSize;
2498         MaxField = Field;
2499         MaxFieldOffset = FieldOffset;
2500       }
2501     } else {
2502       UpdateRunSkipBlockVars(false,
2503                              getBlockCaptureLifetime(FQT, ByrefLayout),
2504                              BytePos + FieldOffset,
2505                              FieldSize);
2506     }
2507   }
2508 
2509   if (LastFieldBitfieldOrUnnamed) {
2510     if (LastFieldBitfieldOrUnnamed->isBitField()) {
2511       // Last field was a bitfield. Must update the info.
2512       uint64_t BitFieldSize
2513         = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2514       unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2515                         ((BitFieldSize % ByteSizeInBits) != 0);
2516       CharUnits Size = CharUnits::fromQuantity(UnsSize);
2517       Size += LastBitfieldOrUnnamedOffset;
2518       UpdateRunSkipBlockVars(false,
2519                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2520                                                      ByrefLayout),
2521                              BytePos + LastBitfieldOrUnnamedOffset,
2522                              Size);
2523     } else {
2524       assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2525       // Last field was unnamed. Must update skip info.
2526       CharUnits FieldSize
2527         = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2528       UpdateRunSkipBlockVars(false,
2529                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2530                                                      ByrefLayout),
2531                              BytePos + LastBitfieldOrUnnamedOffset,
2532                              FieldSize);
2533     }
2534   }
2535 
2536   if (MaxField)
2537     UpdateRunSkipBlockVars(false,
2538                            getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2539                            BytePos + MaxFieldOffset,
2540                            MaxUnionSize);
2541 }
2542 
2543 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2544                                                   CharUnits BytePos,
2545                                                   bool &HasUnion,
2546                                                   bool ByrefLayout) {
2547   const RecordDecl *RD = RT->getDecl();
2548   SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2549   llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2550   const llvm::StructLayout *RecLayout =
2551     CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2552 
2553   BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2554 }
2555 
2556 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2557 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2558 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2559 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2560 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2561 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2562 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2563 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2564 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
2565 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2566                                     SmallVectorImpl<unsigned char> &Layout) {
2567   uint64_t Result = 0;
2568   if (Layout.size() <= 3) {
2569     unsigned size = Layout.size();
2570     unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2571     unsigned char inst;
2572     enum BLOCK_LAYOUT_OPCODE opcode ;
2573     switch (size) {
2574       case 3:
2575         inst = Layout[0];
2576         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2577         if (opcode == BLOCK_LAYOUT_STRONG)
2578           strong_word_count = (inst & 0xF)+1;
2579         else
2580           return 0;
2581         inst = Layout[1];
2582         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2583         if (opcode == BLOCK_LAYOUT_BYREF)
2584           byref_word_count = (inst & 0xF)+1;
2585         else
2586           return 0;
2587         inst = Layout[2];
2588         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2589         if (opcode == BLOCK_LAYOUT_WEAK)
2590           weak_word_count = (inst & 0xF)+1;
2591         else
2592           return 0;
2593         break;
2594 
2595       case 2:
2596         inst = Layout[0];
2597         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2598         if (opcode == BLOCK_LAYOUT_STRONG) {
2599           strong_word_count = (inst & 0xF)+1;
2600           inst = Layout[1];
2601           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2602           if (opcode == BLOCK_LAYOUT_BYREF)
2603             byref_word_count = (inst & 0xF)+1;
2604           else if (opcode == BLOCK_LAYOUT_WEAK)
2605             weak_word_count = (inst & 0xF)+1;
2606           else
2607             return 0;
2608         }
2609         else if (opcode == BLOCK_LAYOUT_BYREF) {
2610           byref_word_count = (inst & 0xF)+1;
2611           inst = Layout[1];
2612           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2613           if (opcode == BLOCK_LAYOUT_WEAK)
2614             weak_word_count = (inst & 0xF)+1;
2615           else
2616             return 0;
2617         }
2618         else
2619           return 0;
2620         break;
2621 
2622       case 1:
2623         inst = Layout[0];
2624         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2625         if (opcode == BLOCK_LAYOUT_STRONG)
2626           strong_word_count = (inst & 0xF)+1;
2627         else if (opcode == BLOCK_LAYOUT_BYREF)
2628           byref_word_count = (inst & 0xF)+1;
2629         else if (opcode == BLOCK_LAYOUT_WEAK)
2630           weak_word_count = (inst & 0xF)+1;
2631         else
2632           return 0;
2633         break;
2634 
2635       default:
2636         return 0;
2637     }
2638 
2639     // Cannot inline when any of the word counts is 15. Because this is one less
2640     // than the actual work count (so 15 means 16 actual word counts),
2641     // and we can only display 0 thru 15 word counts.
2642     if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2643       return 0;
2644 
2645     unsigned count =
2646       (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2647 
2648     if (size == count) {
2649       if (strong_word_count)
2650         Result = strong_word_count;
2651       Result <<= 4;
2652       if (byref_word_count)
2653         Result += byref_word_count;
2654       Result <<= 4;
2655       if (weak_word_count)
2656         Result += weak_word_count;
2657     }
2658   }
2659   return Result;
2660 }
2661 
2662 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2663   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2664   if (RunSkipBlockVars.empty())
2665     return nullPtr;
2666   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2667   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2668   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2669 
2670   // Sort on byte position; captures might not be allocated in order,
2671   // and unions can do funny things.
2672   llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2673   SmallVector<unsigned char, 16> Layout;
2674 
2675   unsigned size = RunSkipBlockVars.size();
2676   for (unsigned i = 0; i < size; i++) {
2677     enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2678     CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2679     CharUnits end_byte_pos = start_byte_pos;
2680     unsigned j = i+1;
2681     while (j < size) {
2682       if (opcode == RunSkipBlockVars[j].opcode) {
2683         end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2684         i++;
2685       }
2686       else
2687         break;
2688     }
2689     CharUnits size_in_bytes =
2690     end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2691     if (j < size) {
2692       CharUnits gap =
2693       RunSkipBlockVars[j].block_var_bytepos -
2694       RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2695       size_in_bytes += gap;
2696     }
2697     CharUnits residue_in_bytes = CharUnits::Zero();
2698     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2699       residue_in_bytes = size_in_bytes % WordSizeInBytes;
2700       size_in_bytes -= residue_in_bytes;
2701       opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2702     }
2703 
2704     unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2705     while (size_in_words >= 16) {
2706       // Note that value in imm. is one less that the actual
2707       // value. So, 0xf means 16 words follow!
2708       unsigned char inst = (opcode << 4) | 0xf;
2709       Layout.push_back(inst);
2710       size_in_words -= 16;
2711     }
2712     if (size_in_words > 0) {
2713       // Note that value in imm. is one less that the actual
2714       // value. So, we subtract 1 away!
2715       unsigned char inst = (opcode << 4) | (size_in_words-1);
2716       Layout.push_back(inst);
2717     }
2718     if (residue_in_bytes > CharUnits::Zero()) {
2719       unsigned char inst =
2720       (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2721       Layout.push_back(inst);
2722     }
2723   }
2724 
2725   while (!Layout.empty()) {
2726     unsigned char inst = Layout.back();
2727     enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2728     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2729       Layout.pop_back();
2730     else
2731       break;
2732   }
2733 
2734   uint64_t Result = InlineLayoutInstruction(Layout);
2735   if (Result != 0) {
2736     // Block variable layout instruction has been inlined.
2737     if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2738       if (ComputeByrefLayout)
2739         printf("\n Inline BYREF variable layout: ");
2740       else
2741         printf("\n Inline block variable layout: ");
2742       printf("0x0%" PRIx64 "", Result);
2743       if (auto numStrong = (Result & 0xF00) >> 8)
2744         printf(", BL_STRONG:%d", (int) numStrong);
2745       if (auto numByref = (Result & 0x0F0) >> 4)
2746         printf(", BL_BYREF:%d", (int) numByref);
2747       if (auto numWeak = (Result & 0x00F) >> 0)
2748         printf(", BL_WEAK:%d", (int) numWeak);
2749       printf(", BL_OPERATOR:0\n");
2750     }
2751     return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2752   }
2753 
2754   unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2755   Layout.push_back(inst);
2756   std::string BitMap;
2757   for (unsigned i = 0, e = Layout.size(); i != e; i++)
2758     BitMap += Layout[i];
2759 
2760   if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2761     if (ComputeByrefLayout)
2762       printf("\n Byref variable layout: ");
2763     else
2764       printf("\n Block variable layout: ");
2765     for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2766       unsigned char inst = BitMap[i];
2767       enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2768       unsigned delta = 1;
2769       switch (opcode) {
2770         case BLOCK_LAYOUT_OPERATOR:
2771           printf("BL_OPERATOR:");
2772           delta = 0;
2773           break;
2774         case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2775           printf("BL_NON_OBJECT_BYTES:");
2776           break;
2777         case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2778           printf("BL_NON_OBJECT_WORD:");
2779           break;
2780         case BLOCK_LAYOUT_STRONG:
2781           printf("BL_STRONG:");
2782           break;
2783         case BLOCK_LAYOUT_BYREF:
2784           printf("BL_BYREF:");
2785           break;
2786         case BLOCK_LAYOUT_WEAK:
2787           printf("BL_WEAK:");
2788           break;
2789         case BLOCK_LAYOUT_UNRETAINED:
2790           printf("BL_UNRETAINED:");
2791           break;
2792       }
2793       // Actual value of word count is one more that what is in the imm.
2794       // field of the instruction
2795       printf("%d", (inst & 0xf) + delta);
2796       if (i < e-1)
2797         printf(", ");
2798       else
2799         printf("\n");
2800     }
2801   }
2802 
2803   auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName,
2804                                      /*ForceNonFragileABI=*/true,
2805                                      /*NullTerminate=*/false);
2806   return getConstantGEP(VMContext, Entry, 0, 0);
2807 }
2808 
2809 static std::string getBlockLayoutInfoString(
2810     const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars,
2811     bool HasCopyDisposeHelpers) {
2812   std::string Str;
2813   for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) {
2814     if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) {
2815       // Copy/dispose helpers don't have any information about
2816       // __unsafe_unretained captures, so unconditionally concatenate a string.
2817       Str += "u";
2818     } else if (HasCopyDisposeHelpers) {
2819       // Information about __strong, __weak, or byref captures has already been
2820       // encoded into the names of the copy/dispose helpers. We have to add a
2821       // string here only when the copy/dispose helpers aren't generated (which
2822       // happens when the block is non-escaping).
2823       continue;
2824     } else {
2825       switch (R.opcode) {
2826       case CGObjCCommonMac::BLOCK_LAYOUT_STRONG:
2827         Str += "s";
2828         break;
2829       case CGObjCCommonMac::BLOCK_LAYOUT_BYREF:
2830         Str += "r";
2831         break;
2832       case CGObjCCommonMac::BLOCK_LAYOUT_WEAK:
2833         Str += "w";
2834         break;
2835       default:
2836         continue;
2837       }
2838     }
2839     Str += llvm::to_string(R.block_var_bytepos.getQuantity());
2840     Str += "l" + llvm::to_string(R.block_var_size.getQuantity());
2841   }
2842   return Str;
2843 }
2844 
2845 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM,
2846                                            const CGBlockInfo &blockInfo) {
2847   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2848 
2849   RunSkipBlockVars.clear();
2850   bool hasUnion = false;
2851 
2852   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2853   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2854   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2855 
2856   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2857 
2858   // Calculate the basic layout of the block structure.
2859   const llvm::StructLayout *layout =
2860   CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2861 
2862   // Ignore the optional 'this' capture: C++ objects are not assumed
2863   // to be GC'ed.
2864   if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2865     UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2866                            blockInfo.BlockHeaderForcedGapOffset,
2867                            blockInfo.BlockHeaderForcedGapSize);
2868   // Walk the captured variables.
2869   for (const auto &CI : blockDecl->captures()) {
2870     const VarDecl *variable = CI.getVariable();
2871     QualType type = variable->getType();
2872 
2873     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2874 
2875     // Ignore constant captures.
2876     if (capture.isConstant()) continue;
2877 
2878     CharUnits fieldOffset =
2879        CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2880 
2881     assert(!type->isArrayType() && "array variable should not be caught");
2882     if (!CI.isByRef())
2883       if (const RecordType *record = type->getAs<RecordType>()) {
2884         BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2885         continue;
2886       }
2887     CharUnits fieldSize;
2888     if (CI.isByRef())
2889       fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2890     else
2891       fieldSize = CGM.getContext().getTypeSizeInChars(type);
2892     UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2893                            fieldOffset, fieldSize);
2894   }
2895 }
2896 
2897 llvm::Constant *
2898 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2899                                     const CGBlockInfo &blockInfo) {
2900   fillRunSkipBlockVars(CGM, blockInfo);
2901   return getBitmapBlockLayout(false);
2902 }
2903 
2904 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM,
2905                                                  const CGBlockInfo &blockInfo) {
2906   fillRunSkipBlockVars(CGM, blockInfo);
2907   return getBlockLayoutInfoString(RunSkipBlockVars,
2908                                   blockInfo.needsCopyDisposeHelpers());
2909 }
2910 
2911 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2912                                                   QualType T) {
2913   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2914   assert(!T->isArrayType() && "__block array variable should not be caught");
2915   CharUnits fieldOffset;
2916   RunSkipBlockVars.clear();
2917   bool hasUnion = false;
2918   if (const RecordType *record = T->getAs<RecordType>()) {
2919     BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2920     llvm::Constant *Result = getBitmapBlockLayout(true);
2921     if (isa<llvm::ConstantInt>(Result))
2922       Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2923     return Result;
2924   }
2925   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2926   return nullPtr;
2927 }
2928 
2929 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2930                                             const ObjCProtocolDecl *PD) {
2931   // FIXME: I don't understand why gcc generates this, or where it is
2932   // resolved. Investigate. Its also wasteful to look this up over and over.
2933   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2934 
2935   return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2936                                         ObjCTypes.getExternalProtocolPtrTy());
2937 }
2938 
2939 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2940   // FIXME: We shouldn't need this, the protocol decl should contain enough
2941   // information to tell us whether this was a declaration or a definition.
2942   DefinedProtocols.insert(PD->getIdentifier());
2943 
2944   // If we have generated a forward reference to this protocol, emit
2945   // it now. Otherwise do nothing, the protocol objects are lazily
2946   // emitted.
2947   if (Protocols.count(PD->getIdentifier()))
2948     GetOrEmitProtocol(PD);
2949 }
2950 
2951 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2952   if (DefinedProtocols.count(PD->getIdentifier()))
2953     return GetOrEmitProtocol(PD);
2954 
2955   return GetOrEmitProtocolRef(PD);
2956 }
2957 
2958 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2959                CodeGenFunction &CGF,
2960                const ObjCInterfaceDecl *ID,
2961                ObjCCommonTypesHelper &ObjCTypes) {
2962   llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn();
2963 
2964   llvm::Value *className =
2965       CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString())
2966         .getPointer();
2967   ASTContext &ctx = CGF.CGM.getContext();
2968   className =
2969       CGF.Builder.CreateBitCast(className,
2970                                 CGF.ConvertType(
2971                                   ctx.getPointerType(ctx.CharTy.withConst())));
2972   llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className);
2973   call->setDoesNotThrow();
2974   return call;
2975 }
2976 
2977 /*
2978 // Objective-C 1.0 extensions
2979 struct _objc_protocol {
2980 struct _objc_protocol_extension *isa;
2981 char *protocol_name;
2982 struct _objc_protocol_list *protocol_list;
2983 struct _objc__method_prototype_list *instance_methods;
2984 struct _objc__method_prototype_list *class_methods
2985 };
2986 
2987 See EmitProtocolExtension().
2988 */
2989 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
2990   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
2991 
2992   // Early exit if a defining object has already been generated.
2993   if (Entry && Entry->hasInitializer())
2994     return Entry;
2995 
2996   // Use the protocol definition, if there is one.
2997   if (const ObjCProtocolDecl *Def = PD->getDefinition())
2998     PD = Def;
2999 
3000   // FIXME: I don't understand why gcc generates this, or where it is
3001   // resolved. Investigate. Its also wasteful to look this up over and over.
3002   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
3003 
3004   // Construct method lists.
3005   auto methodLists = ProtocolMethodLists::get(PD);
3006 
3007   ConstantInitBuilder builder(CGM);
3008   auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
3009   values.add(EmitProtocolExtension(PD, methodLists));
3010   values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
3011   values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
3012                               PD->protocol_begin(), PD->protocol_end()));
3013   values.add(methodLists.emitMethodList(this, PD,
3014                               ProtocolMethodLists::RequiredInstanceMethods));
3015   values.add(methodLists.emitMethodList(this, PD,
3016                               ProtocolMethodLists::RequiredClassMethods));
3017 
3018   if (Entry) {
3019     // Already created, update the initializer.
3020     assert(Entry->hasPrivateLinkage());
3021     values.finishAndSetAsInitializer(Entry);
3022   } else {
3023     Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(),
3024                                          CGM.getPointerAlign(),
3025                                          /*constant*/ false,
3026                                          llvm::GlobalValue::PrivateLinkage);
3027     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3028 
3029     Protocols[PD->getIdentifier()] = Entry;
3030   }
3031   CGM.addCompilerUsedGlobal(Entry);
3032 
3033   return Entry;
3034 }
3035 
3036 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
3037   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
3038 
3039   if (!Entry) {
3040     // We use the initializer as a marker of whether this is a forward
3041     // reference or not. At module finalization we add the empty
3042     // contents for protocols which were referenced but never defined.
3043     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
3044                                      false, llvm::GlobalValue::PrivateLinkage,
3045                                      nullptr, "OBJC_PROTOCOL_" + PD->getName());
3046     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3047     // FIXME: Is this necessary? Why only for protocol?
3048     Entry->setAlignment(4);
3049   }
3050 
3051   return Entry;
3052 }
3053 
3054 /*
3055   struct _objc_protocol_extension {
3056   uint32_t size;
3057   struct objc_method_description_list *optional_instance_methods;
3058   struct objc_method_description_list *optional_class_methods;
3059   struct objc_property_list *instance_properties;
3060   const char ** extendedMethodTypes;
3061   struct objc_property_list *class_properties;
3062   };
3063 */
3064 llvm::Constant *
3065 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
3066                                  const ProtocolMethodLists &methodLists) {
3067   auto optInstanceMethods =
3068     methodLists.emitMethodList(this, PD,
3069                                ProtocolMethodLists::OptionalInstanceMethods);
3070   auto optClassMethods =
3071     methodLists.emitMethodList(this, PD,
3072                                ProtocolMethodLists::OptionalClassMethods);
3073 
3074   auto extendedMethodTypes =
3075     EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
3076                             methodLists.emitExtendedTypesArray(this),
3077                             ObjCTypes);
3078 
3079   auto instanceProperties =
3080     EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
3081                      ObjCTypes, false);
3082   auto classProperties =
3083     EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
3084                      PD, ObjCTypes, true);
3085 
3086   // Return null if no extension bits are used.
3087   if (optInstanceMethods->isNullValue() &&
3088       optClassMethods->isNullValue() &&
3089       extendedMethodTypes->isNullValue() &&
3090       instanceProperties->isNullValue() &&
3091       classProperties->isNullValue()) {
3092     return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
3093   }
3094 
3095   uint64_t size =
3096     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
3097 
3098   ConstantInitBuilder builder(CGM);
3099   auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy);
3100   values.addInt(ObjCTypes.IntTy, size);
3101   values.add(optInstanceMethods);
3102   values.add(optClassMethods);
3103   values.add(instanceProperties);
3104   values.add(extendedMethodTypes);
3105   values.add(classProperties);
3106 
3107   // No special section, but goes in llvm.used
3108   return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), values,
3109                            StringRef(), CGM.getPointerAlign(), true);
3110 }
3111 
3112 /*
3113   struct objc_protocol_list {
3114     struct objc_protocol_list *next;
3115     long count;
3116     Protocol *list[];
3117   };
3118 */
3119 llvm::Constant *
3120 CGObjCMac::EmitProtocolList(Twine name,
3121                             ObjCProtocolDecl::protocol_iterator begin,
3122                             ObjCProtocolDecl::protocol_iterator end) {
3123   // Just return null for empty protocol lists
3124   if (begin == end)
3125     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3126 
3127   ConstantInitBuilder builder(CGM);
3128   auto values = builder.beginStruct();
3129 
3130   // This field is only used by the runtime.
3131   values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3132 
3133   // Reserve a slot for the count.
3134   auto countSlot = values.addPlaceholder();
3135 
3136   auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy);
3137   for (; begin != end; ++begin) {
3138     refsArray.add(GetProtocolRef(*begin));
3139   }
3140   auto count = refsArray.size();
3141 
3142   // This list is null terminated.
3143   refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy);
3144 
3145   refsArray.finishAndAddTo(values);
3146   values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
3147 
3148   StringRef section;
3149   if (CGM.getTriple().isOSBinFormatMachO())
3150     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3151 
3152   llvm::GlobalVariable *GV =
3153       CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false);
3154   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
3155 }
3156 
3157 static void
3158 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
3159                        SmallVectorImpl<const ObjCPropertyDecl *> &Properties,
3160                        const ObjCProtocolDecl *Proto,
3161                        bool IsClassProperty) {
3162   for (const auto *P : Proto->protocols())
3163     PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3164 
3165   for (const auto *PD : Proto->properties()) {
3166     if (IsClassProperty != PD->isClassProperty())
3167       continue;
3168     if (!PropertySet.insert(PD->getIdentifier()).second)
3169       continue;
3170     Properties.push_back(PD);
3171   }
3172 }
3173 
3174 /*
3175   struct _objc_property {
3176     const char * const name;
3177     const char * const attributes;
3178   };
3179 
3180   struct _objc_property_list {
3181     uint32_t entsize; // sizeof (struct _objc_property)
3182     uint32_t prop_count;
3183     struct _objc_property[prop_count];
3184   };
3185 */
3186 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
3187                                        const Decl *Container,
3188                                        const ObjCContainerDecl *OCD,
3189                                        const ObjCCommonTypesHelper &ObjCTypes,
3190                                        bool IsClassProperty) {
3191   if (IsClassProperty) {
3192     // Make this entry NULL for OS X with deployment target < 10.11, for iOS
3193     // with deployment target < 9.0.
3194     const llvm::Triple &Triple = CGM.getTarget().getTriple();
3195     if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) ||
3196         (Triple.isiOS() && Triple.isOSVersionLT(9)))
3197       return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3198   }
3199 
3200   SmallVector<const ObjCPropertyDecl *, 16> Properties;
3201   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3202 
3203   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3204     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3205       for (auto *PD : ClassExt->properties()) {
3206         if (IsClassProperty != PD->isClassProperty())
3207           continue;
3208         PropertySet.insert(PD->getIdentifier());
3209         Properties.push_back(PD);
3210       }
3211 
3212   for (const auto *PD : OCD->properties()) {
3213     if (IsClassProperty != PD->isClassProperty())
3214       continue;
3215     // Don't emit duplicate metadata for properties that were already in a
3216     // class extension.
3217     if (!PropertySet.insert(PD->getIdentifier()).second)
3218       continue;
3219     Properties.push_back(PD);
3220   }
3221 
3222   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
3223     for (const auto *P : OID->all_referenced_protocols())
3224       PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3225   }
3226   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
3227     for (const auto *P : CD->protocols())
3228       PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3229   }
3230 
3231   // Return null for empty list.
3232   if (Properties.empty())
3233     return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3234 
3235   unsigned propertySize =
3236     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
3237 
3238   ConstantInitBuilder builder(CGM);
3239   auto values = builder.beginStruct();
3240   values.addInt(ObjCTypes.IntTy, propertySize);
3241   values.addInt(ObjCTypes.IntTy, Properties.size());
3242   auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy);
3243   for (auto PD : Properties) {
3244     auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy);
3245     property.add(GetPropertyName(PD->getIdentifier()));
3246     property.add(GetPropertyTypeString(PD, Container));
3247     property.finishAndAddTo(propertiesArray);
3248   }
3249   propertiesArray.finishAndAddTo(values);
3250 
3251   StringRef Section;
3252   if (CGM.getTriple().isOSBinFormatMachO())
3253     Section = (ObjCABI == 2) ? "__DATA, __objc_const"
3254                              : "__OBJC,__property,regular,no_dead_strip";
3255 
3256   llvm::GlobalVariable *GV =
3257       CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3258   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
3259 }
3260 
3261 llvm::Constant *
3262 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3263                                          ArrayRef<llvm::Constant*> MethodTypes,
3264                                          const ObjCCommonTypesHelper &ObjCTypes) {
3265   // Return null for empty list.
3266   if (MethodTypes.empty())
3267     return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
3268 
3269   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
3270                                              MethodTypes.size());
3271   llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
3272 
3273   StringRef Section;
3274   if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2)
3275     Section = "__DATA, __objc_const";
3276 
3277   llvm::GlobalVariable *GV =
3278       CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3279   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
3280 }
3281 
3282 /*
3283   struct _objc_category {
3284   char *category_name;
3285   char *class_name;
3286   struct _objc_method_list *instance_methods;
3287   struct _objc_method_list *class_methods;
3288   struct _objc_protocol_list *protocols;
3289   uint32_t size; // <rdar://4585769>
3290   struct _objc_property_list *instance_properties;
3291   struct _objc_property_list *class_properties;
3292   };
3293 */
3294 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3295   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3296 
3297   // FIXME: This is poor design, the OCD should have a pointer to the category
3298   // decl. Additionally, note that Category can be null for the @implementation
3299   // w/o an @interface case. Sema should just create one for us as it does for
3300   // @implementation so everyone else can live life under a clear blue sky.
3301   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3302   const ObjCCategoryDecl *Category =
3303     Interface->FindCategoryDeclaration(OCD->getIdentifier());
3304 
3305   SmallString<256> ExtName;
3306   llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3307                                      << OCD->getName();
3308 
3309   ConstantInitBuilder Builder(CGM);
3310   auto Values = Builder.beginStruct(ObjCTypes.CategoryTy);
3311 
3312   enum {
3313     InstanceMethods,
3314     ClassMethods,
3315     NumMethodLists
3316   };
3317   SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3318   for (const auto *MD : OCD->methods()) {
3319     Methods[unsigned(MD->isClassMethod())].push_back(MD);
3320   }
3321 
3322   Values.add(GetClassName(OCD->getName()));
3323   Values.add(GetClassName(Interface->getObjCRuntimeNameAsString()));
3324   LazySymbols.insert(Interface->getIdentifier());
3325 
3326   Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods,
3327                             Methods[InstanceMethods]));
3328   Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods,
3329                             Methods[ClassMethods]));
3330   if (Category) {
3331     Values.add(
3332         EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3333                          Category->protocol_begin(), Category->protocol_end()));
3334   } else {
3335     Values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3336   }
3337   Values.addInt(ObjCTypes.IntTy, Size);
3338 
3339   // If there is no category @interface then there can be no properties.
3340   if (Category) {
3341     Values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
3342                                 OCD, Category, ObjCTypes, false));
3343     Values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3344                                 OCD, Category, ObjCTypes, true));
3345   } else {
3346     Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3347     Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3348   }
3349 
3350   llvm::GlobalVariable *GV =
3351       CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values,
3352                         "__OBJC,__category,regular,no_dead_strip",
3353                         CGM.getPointerAlign(), true);
3354   DefinedCategories.push_back(GV);
3355   DefinedCategoryNames.insert(llvm::CachedHashString(ExtName));
3356   // method definition entries must be clear for next implementation.
3357   MethodDefinitions.clear();
3358 }
3359 
3360 enum FragileClassFlags {
3361   /// Apparently: is not a meta-class.
3362   FragileABI_Class_Factory                 = 0x00001,
3363 
3364   /// Is a meta-class.
3365   FragileABI_Class_Meta                    = 0x00002,
3366 
3367   /// Has a non-trivial constructor or destructor.
3368   FragileABI_Class_HasCXXStructors         = 0x02000,
3369 
3370   /// Has hidden visibility.
3371   FragileABI_Class_Hidden                  = 0x20000,
3372 
3373   /// Class implementation was compiled under ARC.
3374   FragileABI_Class_CompiledByARC           = 0x04000000,
3375 
3376   /// Class implementation was compiled under MRC and has MRC weak ivars.
3377   /// Exclusive with CompiledByARC.
3378   FragileABI_Class_HasMRCWeakIvars         = 0x08000000,
3379 };
3380 
3381 enum NonFragileClassFlags {
3382   /// Is a meta-class.
3383   NonFragileABI_Class_Meta                 = 0x00001,
3384 
3385   /// Is a root class.
3386   NonFragileABI_Class_Root                 = 0x00002,
3387 
3388   /// Has a non-trivial constructor or destructor.
3389   NonFragileABI_Class_HasCXXStructors      = 0x00004,
3390 
3391   /// Has hidden visibility.
3392   NonFragileABI_Class_Hidden               = 0x00010,
3393 
3394   /// Has the exception attribute.
3395   NonFragileABI_Class_Exception            = 0x00020,
3396 
3397   /// (Obsolete) ARC-specific: this class has a .release_ivars method
3398   NonFragileABI_Class_HasIvarReleaser      = 0x00040,
3399 
3400   /// Class implementation was compiled under ARC.
3401   NonFragileABI_Class_CompiledByARC        = 0x00080,
3402 
3403   /// Class has non-trivial destructors, but zero-initialization is okay.
3404   NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3405 
3406   /// Class implementation was compiled under MRC and has MRC weak ivars.
3407   /// Exclusive with CompiledByARC.
3408   NonFragileABI_Class_HasMRCWeakIvars      = 0x00200,
3409 };
3410 
3411 static bool hasWeakMember(QualType type) {
3412   if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3413     return true;
3414   }
3415 
3416   if (auto recType = type->getAs<RecordType>()) {
3417     for (auto field : recType->getDecl()->fields()) {
3418       if (hasWeakMember(field->getType()))
3419         return true;
3420     }
3421   }
3422 
3423   return false;
3424 }
3425 
3426 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3427 /// (and actually fill in a layout string) if we really do have any
3428 /// __weak ivars.
3429 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3430                             const ObjCImplementationDecl *ID) {
3431   if (!CGM.getLangOpts().ObjCWeak) return false;
3432   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3433 
3434   for (const ObjCIvarDecl *ivar =
3435          ID->getClassInterface()->all_declared_ivar_begin();
3436        ivar; ivar = ivar->getNextIvar()) {
3437     if (hasWeakMember(ivar->getType()))
3438       return true;
3439   }
3440 
3441   return false;
3442 }
3443 
3444 /*
3445   struct _objc_class {
3446   Class isa;
3447   Class super_class;
3448   const char *name;
3449   long version;
3450   long info;
3451   long instance_size;
3452   struct _objc_ivar_list *ivars;
3453   struct _objc_method_list *methods;
3454   struct _objc_cache *cache;
3455   struct _objc_protocol_list *protocols;
3456   // Objective-C 1.0 extensions (<rdr://4585769>)
3457   const char *ivar_layout;
3458   struct _objc_class_ext *ext;
3459   };
3460 
3461   See EmitClassExtension();
3462 */
3463 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3464   IdentifierInfo *RuntimeName =
3465       &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString());
3466   DefinedSymbols.insert(RuntimeName);
3467 
3468   std::string ClassName = ID->getNameAsString();
3469   // FIXME: Gross
3470   ObjCInterfaceDecl *Interface =
3471     const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3472   llvm::Constant *Protocols =
3473       EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3474                        Interface->all_referenced_protocol_begin(),
3475                        Interface->all_referenced_protocol_end());
3476   unsigned Flags = FragileABI_Class_Factory;
3477   if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3478     Flags |= FragileABI_Class_HasCXXStructors;
3479 
3480   bool hasMRCWeak = false;
3481 
3482   if (CGM.getLangOpts().ObjCAutoRefCount)
3483     Flags |= FragileABI_Class_CompiledByARC;
3484   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3485     Flags |= FragileABI_Class_HasMRCWeakIvars;
3486 
3487   CharUnits Size =
3488     CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3489 
3490   // FIXME: Set CXX-structors flag.
3491   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3492     Flags |= FragileABI_Class_Hidden;
3493 
3494   enum {
3495     InstanceMethods,
3496     ClassMethods,
3497     NumMethodLists
3498   };
3499   SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3500   for (const auto *MD : ID->methods()) {
3501     Methods[unsigned(MD->isClassMethod())].push_back(MD);
3502   }
3503 
3504   for (const auto *PID : ID->property_impls()) {
3505     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3506       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3507 
3508       if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
3509         if (GetMethodDefinition(MD))
3510           Methods[InstanceMethods].push_back(MD);
3511       if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
3512         if (GetMethodDefinition(MD))
3513           Methods[InstanceMethods].push_back(MD);
3514     }
3515   }
3516 
3517   ConstantInitBuilder builder(CGM);
3518   auto values = builder.beginStruct(ObjCTypes.ClassTy);
3519   values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods]));
3520   if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3521     // Record a reference to the super class.
3522     LazySymbols.insert(Super->getIdentifier());
3523 
3524     values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3525                       ObjCTypes.ClassPtrTy);
3526   } else {
3527     values.addNullPointer(ObjCTypes.ClassPtrTy);
3528   }
3529   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3530   // Version is always 0.
3531   values.addInt(ObjCTypes.LongTy, 0);
3532   values.addInt(ObjCTypes.LongTy, Flags);
3533   values.addInt(ObjCTypes.LongTy, Size.getQuantity());
3534   values.add(EmitIvarList(ID, false));
3535   values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods,
3536                             Methods[InstanceMethods]));
3537   // cache is always NULL.
3538   values.addNullPointer(ObjCTypes.CachePtrTy);
3539   values.add(Protocols);
3540   values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size));
3541   values.add(EmitClassExtension(ID, Size, hasMRCWeak,
3542                                 /*isMetaclass*/ false));
3543 
3544   std::string Name("OBJC_CLASS_");
3545   Name += ClassName;
3546   const char *Section = "__OBJC,__class,regular,no_dead_strip";
3547   // Check for a forward reference.
3548   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3549   if (GV) {
3550     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3551            "Forward metaclass reference has incorrect type.");
3552     values.finishAndSetAsInitializer(GV);
3553     GV->setSection(Section);
3554     GV->setAlignment(CGM.getPointerAlign().getQuantity());
3555     CGM.addCompilerUsedGlobal(GV);
3556   } else
3557     GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3558   DefinedClasses.push_back(GV);
3559   ImplementedClasses.push_back(Interface);
3560   // method definition entries must be clear for next implementation.
3561   MethodDefinitions.clear();
3562 }
3563 
3564 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3565                                          llvm::Constant *Protocols,
3566                                 ArrayRef<const ObjCMethodDecl*> Methods) {
3567   unsigned Flags = FragileABI_Class_Meta;
3568   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3569 
3570   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3571     Flags |= FragileABI_Class_Hidden;
3572 
3573   ConstantInitBuilder builder(CGM);
3574   auto values = builder.beginStruct(ObjCTypes.ClassTy);
3575   // The isa for the metaclass is the root of the hierarchy.
3576   const ObjCInterfaceDecl *Root = ID->getClassInterface();
3577   while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3578     Root = Super;
3579   values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3580                     ObjCTypes.ClassPtrTy);
3581   // The super class for the metaclass is emitted as the name of the
3582   // super class. The runtime fixes this up to point to the
3583   // *metaclass* for the super class.
3584   if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3585     values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3586                       ObjCTypes.ClassPtrTy);
3587   } else {
3588     values.addNullPointer(ObjCTypes.ClassPtrTy);
3589   }
3590   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3591   // Version is always 0.
3592   values.addInt(ObjCTypes.LongTy, 0);
3593   values.addInt(ObjCTypes.LongTy, Flags);
3594   values.addInt(ObjCTypes.LongTy, Size);
3595   values.add(EmitIvarList(ID, true));
3596   values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods,
3597                             Methods));
3598   // cache is always NULL.
3599   values.addNullPointer(ObjCTypes.CachePtrTy);
3600   values.add(Protocols);
3601   // ivar_layout for metaclass is always NULL.
3602   values.addNullPointer(ObjCTypes.Int8PtrTy);
3603   // The class extension is used to store class properties for metaclasses.
3604   values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/,
3605                                 /*isMetaclass*/true));
3606 
3607   std::string Name("OBJC_METACLASS_");
3608   Name += ID->getName();
3609 
3610   // Check for a forward reference.
3611   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3612   if (GV) {
3613     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3614            "Forward metaclass reference has incorrect type.");
3615     values.finishAndSetAsInitializer(GV);
3616   } else {
3617     GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
3618                                       /*constant*/ false,
3619                                       llvm::GlobalValue::PrivateLinkage);
3620   }
3621   GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3622   CGM.addCompilerUsedGlobal(GV);
3623 
3624   return GV;
3625 }
3626 
3627 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3628   std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3629 
3630   // FIXME: Should we look these up somewhere other than the module. Its a bit
3631   // silly since we only generate these while processing an implementation, so
3632   // exactly one pointer would work if know when we entered/exitted an
3633   // implementation block.
3634 
3635   // Check for an existing forward reference.
3636   // Previously, metaclass with internal linkage may have been defined.
3637   // pass 'true' as 2nd argument so it is returned.
3638   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3639   if (!GV)
3640     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3641                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3642                                   Name);
3643 
3644   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3645          "Forward metaclass reference has incorrect type.");
3646   return GV;
3647 }
3648 
3649 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3650   std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3651   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3652 
3653   if (!GV)
3654     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3655                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3656                                   Name);
3657 
3658   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3659          "Forward class metadata reference has incorrect type.");
3660   return GV;
3661 }
3662 
3663 /*
3664   Emit a "class extension", which in this specific context means extra
3665   data that doesn't fit in the normal fragile-ABI class structure, and
3666   has nothing to do with the language concept of a class extension.
3667 
3668   struct objc_class_ext {
3669   uint32_t size;
3670   const char *weak_ivar_layout;
3671   struct _objc_property_list *properties;
3672   };
3673 */
3674 llvm::Constant *
3675 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3676                               CharUnits InstanceSize, bool hasMRCWeakIvars,
3677                               bool isMetaclass) {
3678   // Weak ivar layout.
3679   llvm::Constant *layout;
3680   if (isMetaclass) {
3681     layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
3682   } else {
3683     layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3684                                  hasMRCWeakIvars);
3685   }
3686 
3687   // Properties.
3688   llvm::Constant *propertyList =
3689     EmitPropertyList((isMetaclass ? Twine("\01l_OBJC_$_CLASS_PROP_LIST_")
3690                                   : Twine("\01l_OBJC_$_PROP_LIST_"))
3691                         + ID->getName(),
3692                      ID, ID->getClassInterface(), ObjCTypes, isMetaclass);
3693 
3694   // Return null if no extension bits are used.
3695   if (layout->isNullValue() && propertyList->isNullValue()) {
3696     return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3697   }
3698 
3699   uint64_t size =
3700     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3701 
3702   ConstantInitBuilder builder(CGM);
3703   auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy);
3704   values.addInt(ObjCTypes.IntTy, size);
3705   values.add(layout);
3706   values.add(propertyList);
3707 
3708   return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values,
3709                            "__OBJC,__class_ext,regular,no_dead_strip",
3710                            CGM.getPointerAlign(), true);
3711 }
3712 
3713 /*
3714   struct objc_ivar {
3715     char *ivar_name;
3716     char *ivar_type;
3717     int ivar_offset;
3718   };
3719 
3720   struct objc_ivar_list {
3721     int ivar_count;
3722     struct objc_ivar list[count];
3723   };
3724 */
3725 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3726                                         bool ForClass) {
3727   // When emitting the root class GCC emits ivar entries for the
3728   // actual class structure. It is not clear if we need to follow this
3729   // behavior; for now lets try and get away with not doing it. If so,
3730   // the cleanest solution would be to make up an ObjCInterfaceDecl
3731   // for the class.
3732   if (ForClass)
3733     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3734 
3735   const ObjCInterfaceDecl *OID = ID->getClassInterface();
3736 
3737   ConstantInitBuilder builder(CGM);
3738   auto ivarList = builder.beginStruct();
3739   auto countSlot = ivarList.addPlaceholder();
3740   auto ivars = ivarList.beginArray(ObjCTypes.IvarTy);
3741 
3742   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3743        IVD; IVD = IVD->getNextIvar()) {
3744     // Ignore unnamed bit-fields.
3745     if (!IVD->getDeclName())
3746       continue;
3747 
3748     auto ivar = ivars.beginStruct(ObjCTypes.IvarTy);
3749     ivar.add(GetMethodVarName(IVD->getIdentifier()));
3750     ivar.add(GetMethodVarType(IVD));
3751     ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD));
3752     ivar.finishAndAddTo(ivars);
3753   }
3754 
3755   // Return null for empty list.
3756   auto count = ivars.size();
3757   if (count == 0) {
3758     ivars.abandon();
3759     ivarList.abandon();
3760     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3761   }
3762 
3763   ivars.finishAndAddTo(ivarList);
3764   ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count);
3765 
3766   llvm::GlobalVariable *GV;
3767   if (ForClass)
3768     GV =
3769         CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList,
3770                           "__OBJC,__class_vars,regular,no_dead_strip",
3771                           CGM.getPointerAlign(), true);
3772   else
3773     GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList,
3774                            "__OBJC,__instance_vars,regular,no_dead_strip",
3775                            CGM.getPointerAlign(), true);
3776   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3777 }
3778 
3779 /// Build a struct objc_method_description constant for the given method.
3780 ///
3781 /// struct objc_method_description {
3782 ///   SEL method_name;
3783 ///   char *method_types;
3784 /// };
3785 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
3786                                               const ObjCMethodDecl *MD) {
3787   auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy);
3788   description.addBitCast(GetMethodVarName(MD->getSelector()),
3789                          ObjCTypes.SelectorPtrTy);
3790   description.add(GetMethodVarType(MD));
3791   description.finishAndAddTo(builder);
3792 }
3793 
3794 /// Build a struct objc_method constant for the given method.
3795 ///
3796 /// struct objc_method {
3797 ///   SEL method_name;
3798 ///   char *method_types;
3799 ///   void *method;
3800 /// };
3801 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder,
3802                                    const ObjCMethodDecl *MD) {
3803   llvm::Function *fn = GetMethodDefinition(MD);
3804   assert(fn && "no definition registered for method");
3805 
3806   auto method = builder.beginStruct(ObjCTypes.MethodTy);
3807   method.addBitCast(GetMethodVarName(MD->getSelector()),
3808                     ObjCTypes.SelectorPtrTy);
3809   method.add(GetMethodVarType(MD));
3810   method.addBitCast(fn, ObjCTypes.Int8PtrTy);
3811   method.finishAndAddTo(builder);
3812 }
3813 
3814 /// Build a struct objc_method_list or struct objc_method_description_list,
3815 /// as appropriate.
3816 ///
3817 /// struct objc_method_list {
3818 ///   struct objc_method_list *obsolete;
3819 ///   int count;
3820 ///   struct objc_method methods_list[count];
3821 /// };
3822 ///
3823 /// struct objc_method_description_list {
3824 ///   int count;
3825 ///   struct objc_method_description list[count];
3826 /// };
3827 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT,
3828                                  ArrayRef<const ObjCMethodDecl *> methods) {
3829   StringRef prefix;
3830   StringRef section;
3831   bool forProtocol = false;
3832   switch (MLT) {
3833   case MethodListType::CategoryInstanceMethods:
3834     prefix = "OBJC_CATEGORY_INSTANCE_METHODS_";
3835     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3836     forProtocol = false;
3837     break;
3838   case MethodListType::CategoryClassMethods:
3839     prefix = "OBJC_CATEGORY_CLASS_METHODS_";
3840     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3841     forProtocol = false;
3842     break;
3843   case MethodListType::InstanceMethods:
3844     prefix = "OBJC_INSTANCE_METHODS_";
3845     section = "__OBJC,__inst_meth,regular,no_dead_strip";
3846     forProtocol = false;
3847     break;
3848   case MethodListType::ClassMethods:
3849     prefix = "OBJC_CLASS_METHODS_";
3850     section = "__OBJC,__cls_meth,regular,no_dead_strip";
3851     forProtocol = false;
3852     break;
3853   case MethodListType::ProtocolInstanceMethods:
3854     prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_";
3855     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3856     forProtocol = true;
3857     break;
3858   case MethodListType::ProtocolClassMethods:
3859     prefix = "OBJC_PROTOCOL_CLASS_METHODS_";
3860     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3861     forProtocol = true;
3862     break;
3863   case MethodListType::OptionalProtocolInstanceMethods:
3864     prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_";
3865     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3866     forProtocol = true;
3867     break;
3868   case MethodListType::OptionalProtocolClassMethods:
3869     prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_";
3870     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3871     forProtocol = true;
3872     break;
3873   }
3874 
3875   // Return null for empty list.
3876   if (methods.empty())
3877     return llvm::Constant::getNullValue(forProtocol
3878                                         ? ObjCTypes.MethodDescriptionListPtrTy
3879                                         : ObjCTypes.MethodListPtrTy);
3880 
3881   // For protocols, this is an objc_method_description_list, which has
3882   // a slightly different structure.
3883   if (forProtocol) {
3884     ConstantInitBuilder builder(CGM);
3885     auto values = builder.beginStruct();
3886     values.addInt(ObjCTypes.IntTy, methods.size());
3887     auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy);
3888     for (auto MD : methods) {
3889       emitMethodDescriptionConstant(methodArray, MD);
3890     }
3891     methodArray.finishAndAddTo(values);
3892 
3893     llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3894                                                  CGM.getPointerAlign(), true);
3895     return llvm::ConstantExpr::getBitCast(GV,
3896                                           ObjCTypes.MethodDescriptionListPtrTy);
3897   }
3898 
3899   // Otherwise, it's an objc_method_list.
3900   ConstantInitBuilder builder(CGM);
3901   auto values = builder.beginStruct();
3902   values.addNullPointer(ObjCTypes.Int8PtrTy);
3903   values.addInt(ObjCTypes.IntTy, methods.size());
3904   auto methodArray = values.beginArray(ObjCTypes.MethodTy);
3905   for (auto MD : methods) {
3906     emitMethodConstant(methodArray, MD);
3907   }
3908   methodArray.finishAndAddTo(values);
3909 
3910   llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3911                                                CGM.getPointerAlign(), true);
3912   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3913 }
3914 
3915 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3916                                                 const ObjCContainerDecl *CD) {
3917   SmallString<256> Name;
3918   GetNameForMethod(OMD, CD, Name);
3919 
3920   CodeGenTypes &Types = CGM.getTypes();
3921   llvm::FunctionType *MethodTy =
3922     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3923   llvm::Function *Method =
3924     llvm::Function::Create(MethodTy,
3925                            llvm::GlobalValue::InternalLinkage,
3926                            Name.str(),
3927                            &CGM.getModule());
3928   MethodDefinitions.insert(std::make_pair(OMD, Method));
3929 
3930   return Method;
3931 }
3932 
3933 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3934                                                ConstantStructBuilder &Init,
3935                                                          StringRef Section,
3936                                                          CharUnits Align,
3937                                                          bool AddToUsed) {
3938   llvm::GlobalVariable *GV =
3939     Init.finishAndCreateGlobal(Name, Align, /*constant*/ false,
3940                                llvm::GlobalValue::PrivateLinkage);
3941   if (!Section.empty())
3942     GV->setSection(Section);
3943   if (AddToUsed)
3944     CGM.addCompilerUsedGlobal(GV);
3945   return GV;
3946 }
3947 
3948 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3949                                                          llvm::Constant *Init,
3950                                                          StringRef Section,
3951                                                          CharUnits Align,
3952                                                          bool AddToUsed) {
3953   llvm::Type *Ty = Init->getType();
3954   llvm::GlobalVariable *GV =
3955     new llvm::GlobalVariable(CGM.getModule(), Ty, false,
3956                              llvm::GlobalValue::PrivateLinkage, Init, Name);
3957   if (!Section.empty())
3958     GV->setSection(Section);
3959   GV->setAlignment(Align.getQuantity());
3960   if (AddToUsed)
3961     CGM.addCompilerUsedGlobal(GV);
3962   return GV;
3963 }
3964 
3965 llvm::GlobalVariable *
3966 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type,
3967                                       bool ForceNonFragileABI,
3968                                       bool NullTerminate) {
3969   StringRef Label;
3970   switch (Type) {
3971   case ObjCLabelType::ClassName:     Label = "OBJC_CLASS_NAME_"; break;
3972   case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break;
3973   case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break;
3974   case ObjCLabelType::PropertyName:  Label = "OBJC_PROP_NAME_ATTR_"; break;
3975   }
3976 
3977   bool NonFragile = ForceNonFragileABI || isNonFragileABI();
3978 
3979   StringRef Section;
3980   switch (Type) {
3981   case ObjCLabelType::ClassName:
3982     Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals"
3983                          : "__TEXT,__cstring,cstring_literals";
3984     break;
3985   case ObjCLabelType::MethodVarName:
3986     Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
3987                          : "__TEXT,__cstring,cstring_literals";
3988     break;
3989   case ObjCLabelType::MethodVarType:
3990     Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals"
3991                          : "__TEXT,__cstring,cstring_literals";
3992     break;
3993   case ObjCLabelType::PropertyName:
3994     Section = "__TEXT,__cstring,cstring_literals";
3995     break;
3996   }
3997 
3998   llvm::Constant *Value =
3999       llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate);
4000   llvm::GlobalVariable *GV =
4001       new llvm::GlobalVariable(CGM.getModule(), Value->getType(),
4002                                /*isConstant=*/true,
4003                                llvm::GlobalValue::PrivateLinkage, Value, Label);
4004   if (CGM.getTriple().isOSBinFormatMachO())
4005     GV->setSection(Section);
4006   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4007   GV->setAlignment(CharUnits::One().getQuantity());
4008   CGM.addCompilerUsedGlobal(GV);
4009 
4010   return GV;
4011 }
4012 
4013 llvm::Function *CGObjCMac::ModuleInitFunction() {
4014   // Abuse this interface function as a place to finalize.
4015   FinishModule();
4016   return nullptr;
4017 }
4018 
4019 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() {
4020   return ObjCTypes.getGetPropertyFn();
4021 }
4022 
4023 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() {
4024   return ObjCTypes.getSetPropertyFn();
4025 }
4026 
4027 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
4028                                                                 bool copy) {
4029   return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
4030 }
4031 
4032 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() {
4033   return ObjCTypes.getCopyStructFn();
4034 }
4035 
4036 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() {
4037   return ObjCTypes.getCopyStructFn();
4038 }
4039 
4040 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() {
4041   return ObjCTypes.getCppAtomicObjectFunction();
4042 }
4043 
4044 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() {
4045   return ObjCTypes.getCppAtomicObjectFunction();
4046 }
4047 
4048 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() {
4049   return ObjCTypes.getEnumerationMutationFn();
4050 }
4051 
4052 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
4053   return EmitTryOrSynchronizedStmt(CGF, S);
4054 }
4055 
4056 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
4057                                      const ObjCAtSynchronizedStmt &S) {
4058   return EmitTryOrSynchronizedStmt(CGF, S);
4059 }
4060 
4061 namespace {
4062   struct PerformFragileFinally final : EHScopeStack::Cleanup {
4063     const Stmt &S;
4064     Address SyncArgSlot;
4065     Address CallTryExitVar;
4066     Address ExceptionData;
4067     ObjCTypesHelper &ObjCTypes;
4068     PerformFragileFinally(const Stmt *S,
4069                           Address SyncArgSlot,
4070                           Address CallTryExitVar,
4071                           Address ExceptionData,
4072                           ObjCTypesHelper *ObjCTypes)
4073       : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
4074         ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
4075 
4076     void Emit(CodeGenFunction &CGF, Flags flags) override {
4077       // Check whether we need to call objc_exception_try_exit.
4078       // In optimized code, this branch will always be folded.
4079       llvm::BasicBlock *FinallyCallExit =
4080         CGF.createBasicBlock("finally.call_exit");
4081       llvm::BasicBlock *FinallyNoCallExit =
4082         CGF.createBasicBlock("finally.no_call_exit");
4083       CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
4084                                FinallyCallExit, FinallyNoCallExit);
4085 
4086       CGF.EmitBlock(FinallyCallExit);
4087       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
4088                                   ExceptionData.getPointer());
4089 
4090       CGF.EmitBlock(FinallyNoCallExit);
4091 
4092       if (isa<ObjCAtTryStmt>(S)) {
4093         if (const ObjCAtFinallyStmt* FinallyStmt =
4094               cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
4095           // Don't try to do the @finally if this is an EH cleanup.
4096           if (flags.isForEHCleanup()) return;
4097 
4098           // Save the current cleanup destination in case there's
4099           // control flow inside the finally statement.
4100           llvm::Value *CurCleanupDest =
4101             CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
4102 
4103           CGF.EmitStmt(FinallyStmt->getFinallyBody());
4104 
4105           if (CGF.HaveInsertPoint()) {
4106             CGF.Builder.CreateStore(CurCleanupDest,
4107                                     CGF.getNormalCleanupDestSlot());
4108           } else {
4109             // Currently, the end of the cleanup must always exist.
4110             CGF.EnsureInsertPoint();
4111           }
4112         }
4113       } else {
4114         // Emit objc_sync_exit(expr); as finally's sole statement for
4115         // @synchronized.
4116         llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
4117         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
4118       }
4119     }
4120   };
4121 
4122   class FragileHazards {
4123     CodeGenFunction &CGF;
4124     SmallVector<llvm::Value*, 20> Locals;
4125     llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
4126 
4127     llvm::InlineAsm *ReadHazard;
4128     llvm::InlineAsm *WriteHazard;
4129 
4130     llvm::FunctionType *GetAsmFnType();
4131 
4132     void collectLocals();
4133     void emitReadHazard(CGBuilderTy &Builder);
4134 
4135   public:
4136     FragileHazards(CodeGenFunction &CGF);
4137 
4138     void emitWriteHazard();
4139     void emitHazardsInNewBlocks();
4140   };
4141 } // end anonymous namespace
4142 
4143 /// Create the fragile-ABI read and write hazards based on the current
4144 /// state of the function, which is presumed to be immediately prior
4145 /// to a @try block.  These hazards are used to maintain correct
4146 /// semantics in the face of optimization and the fragile ABI's
4147 /// cavalier use of setjmp/longjmp.
4148 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
4149   collectLocals();
4150 
4151   if (Locals.empty()) return;
4152 
4153   // Collect all the blocks in the function.
4154   for (llvm::Function::iterator
4155          I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
4156     BlocksBeforeTry.insert(&*I);
4157 
4158   llvm::FunctionType *AsmFnTy = GetAsmFnType();
4159 
4160   // Create a read hazard for the allocas.  This inhibits dead-store
4161   // optimizations and forces the values to memory.  This hazard is
4162   // inserted before any 'throwing' calls in the protected scope to
4163   // reflect the possibility that the variables might be read from the
4164   // catch block if the call throws.
4165   {
4166     std::string Constraint;
4167     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4168       if (I) Constraint += ',';
4169       Constraint += "*m";
4170     }
4171 
4172     ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4173   }
4174 
4175   // Create a write hazard for the allocas.  This inhibits folding
4176   // loads across the hazard.  This hazard is inserted at the
4177   // beginning of the catch path to reflect the possibility that the
4178   // variables might have been written within the protected scope.
4179   {
4180     std::string Constraint;
4181     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4182       if (I) Constraint += ',';
4183       Constraint += "=*m";
4184     }
4185 
4186     WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4187   }
4188 }
4189 
4190 /// Emit a write hazard at the current location.
4191 void FragileHazards::emitWriteHazard() {
4192   if (Locals.empty()) return;
4193 
4194   CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
4195 }
4196 
4197 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
4198   assert(!Locals.empty());
4199   llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
4200   call->setDoesNotThrow();
4201   call->setCallingConv(CGF.getRuntimeCC());
4202 }
4203 
4204 /// Emit read hazards in all the protected blocks, i.e. all the blocks
4205 /// which have been inserted since the beginning of the try.
4206 void FragileHazards::emitHazardsInNewBlocks() {
4207   if (Locals.empty()) return;
4208 
4209   CGBuilderTy Builder(CGF, CGF.getLLVMContext());
4210 
4211   // Iterate through all blocks, skipping those prior to the try.
4212   for (llvm::Function::iterator
4213          FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
4214     llvm::BasicBlock &BB = *FI;
4215     if (BlocksBeforeTry.count(&BB)) continue;
4216 
4217     // Walk through all the calls in the block.
4218     for (llvm::BasicBlock::iterator
4219            BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
4220       llvm::Instruction &I = *BI;
4221 
4222       // Ignore instructions that aren't non-intrinsic calls.
4223       // These are the only calls that can possibly call longjmp.
4224       if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I))
4225         continue;
4226       if (isa<llvm::IntrinsicInst>(I))
4227         continue;
4228 
4229       // Ignore call sites marked nounwind.  This may be questionable,
4230       // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
4231       if (cast<llvm::CallBase>(I).doesNotThrow())
4232         continue;
4233 
4234       // Insert a read hazard before the call.  This will ensure that
4235       // any writes to the locals are performed before making the
4236       // call.  If the call throws, then this is sufficient to
4237       // guarantee correctness as long as it doesn't also write to any
4238       // locals.
4239       Builder.SetInsertPoint(&BB, BI);
4240       emitReadHazard(Builder);
4241     }
4242   }
4243 }
4244 
4245 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
4246   if (V.isValid()) S.insert(V.getPointer());
4247 }
4248 
4249 void FragileHazards::collectLocals() {
4250   // Compute a set of allocas to ignore.
4251   llvm::DenseSet<llvm::Value*> AllocasToIgnore;
4252   addIfPresent(AllocasToIgnore, CGF.ReturnValue);
4253   addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
4254 
4255   // Collect all the allocas currently in the function.  This is
4256   // probably way too aggressive.
4257   llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
4258   for (llvm::BasicBlock::iterator
4259          I = Entry.begin(), E = Entry.end(); I != E; ++I)
4260     if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
4261       Locals.push_back(&*I);
4262 }
4263 
4264 llvm::FunctionType *FragileHazards::GetAsmFnType() {
4265   SmallVector<llvm::Type *, 16> tys(Locals.size());
4266   for (unsigned i = 0, e = Locals.size(); i != e; ++i)
4267     tys[i] = Locals[i]->getType();
4268   return llvm::FunctionType::get(CGF.VoidTy, tys, false);
4269 }
4270 
4271 /*
4272 
4273   Objective-C setjmp-longjmp (sjlj) Exception Handling
4274   --
4275 
4276   A catch buffer is a setjmp buffer plus:
4277     - a pointer to the exception that was caught
4278     - a pointer to the previous exception data buffer
4279     - two pointers of reserved storage
4280   Therefore catch buffers form a stack, with a pointer to the top
4281   of the stack kept in thread-local storage.
4282 
4283   objc_exception_try_enter pushes a catch buffer onto the EH stack.
4284   objc_exception_try_exit pops the given catch buffer, which is
4285     required to be the top of the EH stack.
4286   objc_exception_throw pops the top of the EH stack, writes the
4287     thrown exception into the appropriate field, and longjmps
4288     to the setjmp buffer.  It crashes the process (with a printf
4289     and an abort()) if there are no catch buffers on the stack.
4290   objc_exception_extract just reads the exception pointer out of the
4291     catch buffer.
4292 
4293   There's no reason an implementation couldn't use a light-weight
4294   setjmp here --- something like __builtin_setjmp, but API-compatible
4295   with the heavyweight setjmp.  This will be more important if we ever
4296   want to implement correct ObjC/C++ exception interactions for the
4297   fragile ABI.
4298 
4299   Note that for this use of setjmp/longjmp to be correct, we may need
4300   to mark some local variables volatile: if a non-volatile local
4301   variable is modified between the setjmp and the longjmp, it has
4302   indeterminate value.  For the purposes of LLVM IR, it may be
4303   sufficient to make loads and stores within the @try (to variables
4304   declared outside the @try) volatile.  This is necessary for
4305   optimized correctness, but is not currently being done; this is
4306   being tracked as rdar://problem/8160285
4307 
4308   The basic framework for a @try-catch-finally is as follows:
4309   {
4310   objc_exception_data d;
4311   id _rethrow = null;
4312   bool _call_try_exit = true;
4313 
4314   objc_exception_try_enter(&d);
4315   if (!setjmp(d.jmp_buf)) {
4316   ... try body ...
4317   } else {
4318   // exception path
4319   id _caught = objc_exception_extract(&d);
4320 
4321   // enter new try scope for handlers
4322   if (!setjmp(d.jmp_buf)) {
4323   ... match exception and execute catch blocks ...
4324 
4325   // fell off end, rethrow.
4326   _rethrow = _caught;
4327   ... jump-through-finally to finally_rethrow ...
4328   } else {
4329   // exception in catch block
4330   _rethrow = objc_exception_extract(&d);
4331   _call_try_exit = false;
4332   ... jump-through-finally to finally_rethrow ...
4333   }
4334   }
4335   ... jump-through-finally to finally_end ...
4336 
4337   finally:
4338   if (_call_try_exit)
4339   objc_exception_try_exit(&d);
4340 
4341   ... finally block ....
4342   ... dispatch to finally destination ...
4343 
4344   finally_rethrow:
4345   objc_exception_throw(_rethrow);
4346 
4347   finally_end:
4348   }
4349 
4350   This framework differs slightly from the one gcc uses, in that gcc
4351   uses _rethrow to determine if objc_exception_try_exit should be called
4352   and if the object should be rethrown. This breaks in the face of
4353   throwing nil and introduces unnecessary branches.
4354 
4355   We specialize this framework for a few particular circumstances:
4356 
4357   - If there are no catch blocks, then we avoid emitting the second
4358   exception handling context.
4359 
4360   - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4361   e)) we avoid emitting the code to rethrow an uncaught exception.
4362 
4363   - FIXME: If there is no @finally block we can do a few more
4364   simplifications.
4365 
4366   Rethrows and Jumps-Through-Finally
4367   --
4368 
4369   '@throw;' is supported by pushing the currently-caught exception
4370   onto ObjCEHStack while the @catch blocks are emitted.
4371 
4372   Branches through the @finally block are handled with an ordinary
4373   normal cleanup.  We do not register an EH cleanup; fragile-ABI ObjC
4374   exceptions are not compatible with C++ exceptions, and this is
4375   hardly the only place where this will go wrong.
4376 
4377   @synchronized(expr) { stmt; } is emitted as if it were:
4378     id synch_value = expr;
4379     objc_sync_enter(synch_value);
4380     @try { stmt; } @finally { objc_sync_exit(synch_value); }
4381 */
4382 
4383 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4384                                           const Stmt &S) {
4385   bool isTry = isa<ObjCAtTryStmt>(S);
4386 
4387   // A destination for the fall-through edges of the catch handlers to
4388   // jump to.
4389   CodeGenFunction::JumpDest FinallyEnd =
4390     CGF.getJumpDestInCurrentScope("finally.end");
4391 
4392   // A destination for the rethrow edge of the catch handlers to jump
4393   // to.
4394   CodeGenFunction::JumpDest FinallyRethrow =
4395     CGF.getJumpDestInCurrentScope("finally.rethrow");
4396 
4397   // For @synchronized, call objc_sync_enter(sync.expr). The
4398   // evaluation of the expression must occur before we enter the
4399   // @synchronized.  We can't avoid a temp here because we need the
4400   // value to be preserved.  If the backend ever does liveness
4401   // correctly after setjmp, this will be unnecessary.
4402   Address SyncArgSlot = Address::invalid();
4403   if (!isTry) {
4404     llvm::Value *SyncArg =
4405       CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
4406     SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4407     CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4408 
4409     SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4410                                        CGF.getPointerAlign(), "sync.arg");
4411     CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
4412   }
4413 
4414   // Allocate memory for the setjmp buffer.  This needs to be kept
4415   // live throughout the try and catch blocks.
4416   Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4417                                                CGF.getPointerAlign(),
4418                                                "exceptiondata.ptr");
4419 
4420   // Create the fragile hazards.  Note that this will not capture any
4421   // of the allocas required for exception processing, but will
4422   // capture the current basic block (which extends all the way to the
4423   // setjmp call) as "before the @try".
4424   FragileHazards Hazards(CGF);
4425 
4426   // Create a flag indicating whether the cleanup needs to call
4427   // objc_exception_try_exit.  This is true except when
4428   //   - no catches match and we're branching through the cleanup
4429   //     just to rethrow the exception, or
4430   //   - a catch matched and we're falling out of the catch handler.
4431   // The setjmp-safety rule here is that we should always store to this
4432   // variable in a place that dominates the branch through the cleanup
4433   // without passing through any setjmps.
4434   Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4435                                                 CharUnits::One(),
4436                                                 "_call_try_exit");
4437 
4438   // A slot containing the exception to rethrow.  Only needed when we
4439   // have both a @catch and a @finally.
4440   Address PropagatingExnVar = Address::invalid();
4441 
4442   // Push a normal cleanup to leave the try scope.
4443   CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4444                                                  SyncArgSlot,
4445                                                  CallTryExitVar,
4446                                                  ExceptionData,
4447                                                  &ObjCTypes);
4448 
4449   // Enter a try block:
4450   //  - Call objc_exception_try_enter to push ExceptionData on top of
4451   //    the EH stack.
4452   CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4453                               ExceptionData.getPointer());
4454 
4455   //  - Call setjmp on the exception data buffer.
4456   llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4457   llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4458   llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4459       ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4460       "setjmp_buffer");
4461   llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4462       ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4463   SetJmpResult->setCanReturnTwice();
4464 
4465   // If setjmp returned 0, enter the protected block; otherwise,
4466   // branch to the handler.
4467   llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4468   llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4469   llvm::Value *DidCatch =
4470     CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4471   CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4472 
4473   // Emit the protected block.
4474   CGF.EmitBlock(TryBlock);
4475   CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4476   CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4477                      : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4478 
4479   CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4480 
4481   // Emit the exception handler block.
4482   CGF.EmitBlock(TryHandler);
4483 
4484   // Don't optimize loads of the in-scope locals across this point.
4485   Hazards.emitWriteHazard();
4486 
4487   // For a @synchronized (or a @try with no catches), just branch
4488   // through the cleanup to the rethrow block.
4489   if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4490     // Tell the cleanup not to re-pop the exit.
4491     CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4492     CGF.EmitBranchThroughCleanup(FinallyRethrow);
4493 
4494   // Otherwise, we have to match against the caught exceptions.
4495   } else {
4496     // Retrieve the exception object.  We may emit multiple blocks but
4497     // nothing can cross this so the value is already in SSA form.
4498     llvm::CallInst *Caught =
4499       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4500                                   ExceptionData.getPointer(), "caught");
4501 
4502     // Push the exception to rethrow onto the EH value stack for the
4503     // benefit of any @throws in the handlers.
4504     CGF.ObjCEHValueStack.push_back(Caught);
4505 
4506     const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4507 
4508     bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4509 
4510     llvm::BasicBlock *CatchBlock = nullptr;
4511     llvm::BasicBlock *CatchHandler = nullptr;
4512     if (HasFinally) {
4513       // Save the currently-propagating exception before
4514       // objc_exception_try_enter clears the exception slot.
4515       PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4516                                                CGF.getPointerAlign(),
4517                                                "propagating_exception");
4518       CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4519 
4520       // Enter a new exception try block (in case a @catch block
4521       // throws an exception).
4522       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4523                                   ExceptionData.getPointer());
4524 
4525       llvm::CallInst *SetJmpResult =
4526         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4527                                     SetJmpBuffer, "setjmp.result");
4528       SetJmpResult->setCanReturnTwice();
4529 
4530       llvm::Value *Threw =
4531         CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4532 
4533       CatchBlock = CGF.createBasicBlock("catch");
4534       CatchHandler = CGF.createBasicBlock("catch_for_catch");
4535       CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4536 
4537       CGF.EmitBlock(CatchBlock);
4538     }
4539 
4540     CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4541 
4542     // Handle catch list. As a special case we check if everything is
4543     // matched and avoid generating code for falling off the end if
4544     // so.
4545     bool AllMatched = false;
4546     for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) {
4547       const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I);
4548 
4549       const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4550       const ObjCObjectPointerType *OPT = nullptr;
4551 
4552       // catch(...) always matches.
4553       if (!CatchParam) {
4554         AllMatched = true;
4555       } else {
4556         OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4557 
4558         // catch(id e) always matches under this ABI, since only
4559         // ObjC exceptions end up here in the first place.
4560         // FIXME: For the time being we also match id<X>; this should
4561         // be rejected by Sema instead.
4562         if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4563           AllMatched = true;
4564       }
4565 
4566       // If this is a catch-all, we don't need to test anything.
4567       if (AllMatched) {
4568         CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4569 
4570         if (CatchParam) {
4571           CGF.EmitAutoVarDecl(*CatchParam);
4572           assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4573 
4574           // These types work out because ConvertType(id) == i8*.
4575           EmitInitOfCatchParam(CGF, Caught, CatchParam);
4576         }
4577 
4578         CGF.EmitStmt(CatchStmt->getCatchBody());
4579 
4580         // The scope of the catch variable ends right here.
4581         CatchVarCleanups.ForceCleanup();
4582 
4583         CGF.EmitBranchThroughCleanup(FinallyEnd);
4584         break;
4585       }
4586 
4587       assert(OPT && "Unexpected non-object pointer type in @catch");
4588       const ObjCObjectType *ObjTy = OPT->getObjectType();
4589 
4590       // FIXME: @catch (Class c) ?
4591       ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4592       assert(IDecl && "Catch parameter must have Objective-C type!");
4593 
4594       // Check if the @catch block matches the exception object.
4595       llvm::Value *Class = EmitClassRef(CGF, IDecl);
4596 
4597       llvm::Value *matchArgs[] = { Class, Caught };
4598       llvm::CallInst *Match =
4599         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4600                                     matchArgs, "match");
4601 
4602       llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4603       llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4604 
4605       CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4606                                MatchedBlock, NextCatchBlock);
4607 
4608       // Emit the @catch block.
4609       CGF.EmitBlock(MatchedBlock);
4610 
4611       // Collect any cleanups for the catch variable.  The scope lasts until
4612       // the end of the catch body.
4613       CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4614 
4615       CGF.EmitAutoVarDecl(*CatchParam);
4616       assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4617 
4618       // Initialize the catch variable.
4619       llvm::Value *Tmp =
4620         CGF.Builder.CreateBitCast(Caught,
4621                                   CGF.ConvertType(CatchParam->getType()));
4622       EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4623 
4624       CGF.EmitStmt(CatchStmt->getCatchBody());
4625 
4626       // We're done with the catch variable.
4627       CatchVarCleanups.ForceCleanup();
4628 
4629       CGF.EmitBranchThroughCleanup(FinallyEnd);
4630 
4631       CGF.EmitBlock(NextCatchBlock);
4632     }
4633 
4634     CGF.ObjCEHValueStack.pop_back();
4635 
4636     // If nothing wanted anything to do with the caught exception,
4637     // kill the extract call.
4638     if (Caught->use_empty())
4639       Caught->eraseFromParent();
4640 
4641     if (!AllMatched)
4642       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4643 
4644     if (HasFinally) {
4645       // Emit the exception handler for the @catch blocks.
4646       CGF.EmitBlock(CatchHandler);
4647 
4648       // In theory we might now need a write hazard, but actually it's
4649       // unnecessary because there's no local-accessing code between
4650       // the try's write hazard and here.
4651       //Hazards.emitWriteHazard();
4652 
4653       // Extract the new exception and save it to the
4654       // propagating-exception slot.
4655       assert(PropagatingExnVar.isValid());
4656       llvm::CallInst *NewCaught =
4657         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4658                                     ExceptionData.getPointer(), "caught");
4659       CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4660 
4661       // Don't pop the catch handler; the throw already did.
4662       CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4663       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4664     }
4665   }
4666 
4667   // Insert read hazards as required in the new blocks.
4668   Hazards.emitHazardsInNewBlocks();
4669 
4670   // Pop the cleanup.
4671   CGF.Builder.restoreIP(TryFallthroughIP);
4672   if (CGF.HaveInsertPoint())
4673     CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4674   CGF.PopCleanupBlock();
4675   CGF.EmitBlock(FinallyEnd.getBlock(), true);
4676 
4677   // Emit the rethrow block.
4678   CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4679   CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4680   if (CGF.HaveInsertPoint()) {
4681     // If we have a propagating-exception variable, check it.
4682     llvm::Value *PropagatingExn;
4683     if (PropagatingExnVar.isValid()) {
4684       PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4685 
4686     // Otherwise, just look in the buffer for the exception to throw.
4687     } else {
4688       llvm::CallInst *Caught =
4689         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4690                                     ExceptionData.getPointer());
4691       PropagatingExn = Caught;
4692     }
4693 
4694     CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4695                                 PropagatingExn);
4696     CGF.Builder.CreateUnreachable();
4697   }
4698 
4699   CGF.Builder.restoreIP(SavedIP);
4700 }
4701 
4702 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4703                               const ObjCAtThrowStmt &S,
4704                               bool ClearInsertionPoint) {
4705   llvm::Value *ExceptionAsObject;
4706 
4707   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4708     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4709     ExceptionAsObject =
4710       CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4711   } else {
4712     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4713            "Unexpected rethrow outside @catch block.");
4714     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4715   }
4716 
4717   CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4718     ->setDoesNotReturn();
4719   CGF.Builder.CreateUnreachable();
4720 
4721   // Clear the insertion point to indicate we are in unreachable code.
4722   if (ClearInsertionPoint)
4723     CGF.Builder.ClearInsertionPoint();
4724 }
4725 
4726 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4727 /// object: objc_read_weak (id *src)
4728 ///
4729 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4730                                           Address AddrWeakObj) {
4731   llvm::Type* DestTy = AddrWeakObj.getElementType();
4732   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
4733                                           ObjCTypes.PtrObjectPtrTy);
4734   llvm::Value *read_weak =
4735     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4736                                 AddrWeakObj.getPointer(), "weakread");
4737   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4738   return read_weak;
4739 }
4740 
4741 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4742 /// objc_assign_weak (id src, id *dst)
4743 ///
4744 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4745                                    llvm::Value *src, Address dst) {
4746   llvm::Type * SrcTy = src->getType();
4747   if (!isa<llvm::PointerType>(SrcTy)) {
4748     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4749     assert(Size <= 8 && "does not support size > 8");
4750     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4751                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4752     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4753   }
4754   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4755   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4756   llvm::Value *args[] = { src, dst.getPointer() };
4757   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4758                               args, "weakassign");
4759 }
4760 
4761 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4762 /// objc_assign_global (id src, id *dst)
4763 ///
4764 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4765                                      llvm::Value *src, Address dst,
4766                                      bool threadlocal) {
4767   llvm::Type * SrcTy = src->getType();
4768   if (!isa<llvm::PointerType>(SrcTy)) {
4769     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4770     assert(Size <= 8 && "does not support size > 8");
4771     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4772                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4773     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4774   }
4775   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4776   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4777   llvm::Value *args[] = { src, dst.getPointer() };
4778   if (!threadlocal)
4779     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4780                                 args, "globalassign");
4781   else
4782     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4783                                 args, "threadlocalassign");
4784 }
4785 
4786 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4787 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4788 ///
4789 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4790                                    llvm::Value *src, Address dst,
4791                                    llvm::Value *ivarOffset) {
4792   assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4793   llvm::Type * SrcTy = src->getType();
4794   if (!isa<llvm::PointerType>(SrcTy)) {
4795     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4796     assert(Size <= 8 && "does not support size > 8");
4797     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4798                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4799     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4800   }
4801   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4802   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4803   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
4804   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4805 }
4806 
4807 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4808 /// objc_assign_strongCast (id src, id *dst)
4809 ///
4810 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4811                                          llvm::Value *src, Address dst) {
4812   llvm::Type * SrcTy = src->getType();
4813   if (!isa<llvm::PointerType>(SrcTy)) {
4814     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4815     assert(Size <= 8 && "does not support size > 8");
4816     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4817                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4818     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4819   }
4820   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4821   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4822   llvm::Value *args[] = { src, dst.getPointer() };
4823   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
4824                               args, "strongassign");
4825 }
4826 
4827 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
4828                                          Address DestPtr,
4829                                          Address SrcPtr,
4830                                          llvm::Value *size) {
4831   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
4832   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
4833   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
4834   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
4835 }
4836 
4837 /// EmitObjCValueForIvar - Code Gen for ivar reference.
4838 ///
4839 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
4840                                        QualType ObjectTy,
4841                                        llvm::Value *BaseValue,
4842                                        const ObjCIvarDecl *Ivar,
4843                                        unsigned CVRQualifiers) {
4844   const ObjCInterfaceDecl *ID =
4845     ObjectTy->getAs<ObjCObjectType>()->getInterface();
4846   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4847                                   EmitIvarOffset(CGF, ID, Ivar));
4848 }
4849 
4850 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
4851                                        const ObjCInterfaceDecl *Interface,
4852                                        const ObjCIvarDecl *Ivar) {
4853   uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
4854   return llvm::ConstantInt::get(
4855     CGM.getTypes().ConvertType(CGM.getContext().LongTy),
4856     Offset);
4857 }
4858 
4859 /* *** Private Interface *** */
4860 
4861 std::string CGObjCCommonMac::GetSectionName(StringRef Section,
4862                                             StringRef MachOAttributes) {
4863   switch (CGM.getTriple().getObjectFormat()) {
4864   default:
4865     llvm_unreachable("unexpected object file format");
4866   case llvm::Triple::MachO: {
4867     if (MachOAttributes.empty())
4868       return ("__DATA," + Section).str();
4869     return ("__DATA," + Section + "," + MachOAttributes).str();
4870   }
4871   case llvm::Triple::ELF:
4872     assert(Section.substr(0, 2) == "__" &&
4873            "expected the name to begin with __");
4874     return Section.substr(2).str();
4875   case llvm::Triple::COFF:
4876     assert(Section.substr(0, 2) == "__" &&
4877            "expected the name to begin with __");
4878     return ("." + Section.substr(2) + "$B").str();
4879   }
4880 }
4881 
4882 /// EmitImageInfo - Emit the image info marker used to encode some module
4883 /// level information.
4884 ///
4885 /// See: <rdr://4810609&4810587&4810587>
4886 /// struct IMAGE_INFO {
4887 ///   unsigned version;
4888 ///   unsigned flags;
4889 /// };
4890 enum ImageInfoFlags {
4891   eImageInfo_FixAndContinue      = (1 << 0), // This flag is no longer set by clang.
4892   eImageInfo_GarbageCollected    = (1 << 1),
4893   eImageInfo_GCOnly              = (1 << 2),
4894   eImageInfo_OptimizedByDyld     = (1 << 3), // This flag is set by the dyld shared cache.
4895 
4896   // A flag indicating that the module has no instances of a @synthesize of a
4897   // superclass variable. <rdar://problem/6803242>
4898   eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
4899   eImageInfo_ImageIsSimulated    = (1 << 5),
4900   eImageInfo_ClassProperties     = (1 << 6)
4901 };
4902 
4903 void CGObjCCommonMac::EmitImageInfo() {
4904   unsigned version = 0; // Version is unused?
4905   std::string Section =
4906       (ObjCABI == 1)
4907           ? "__OBJC,__image_info,regular"
4908           : GetSectionName("__objc_imageinfo", "regular,no_dead_strip");
4909 
4910   // Generate module-level named metadata to convey this information to the
4911   // linker and code-gen.
4912   llvm::Module &Mod = CGM.getModule();
4913 
4914   // Add the ObjC ABI version to the module flags.
4915   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
4916   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
4917                     version);
4918   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
4919                     llvm::MDString::get(VMContext, Section));
4920 
4921   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
4922     // Non-GC overrides those files which specify GC.
4923     Mod.addModuleFlag(llvm::Module::Override,
4924                       "Objective-C Garbage Collection", (uint32_t)0);
4925   } else {
4926     // Add the ObjC garbage collection value.
4927     Mod.addModuleFlag(llvm::Module::Error,
4928                       "Objective-C Garbage Collection",
4929                       eImageInfo_GarbageCollected);
4930 
4931     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
4932       // Add the ObjC GC Only value.
4933       Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
4934                         eImageInfo_GCOnly);
4935 
4936       // Require that GC be specified and set to eImageInfo_GarbageCollected.
4937       llvm::Metadata *Ops[2] = {
4938           llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
4939           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
4940               llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))};
4941       Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
4942                         llvm::MDNode::get(VMContext, Ops));
4943     }
4944   }
4945 
4946   // Indicate whether we're compiling this to run on a simulator.
4947   if (CGM.getTarget().getTriple().isSimulatorEnvironment())
4948     Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
4949                       eImageInfo_ImageIsSimulated);
4950 
4951   // Indicate whether we are generating class properties.
4952   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties",
4953                     eImageInfo_ClassProperties);
4954 }
4955 
4956 // struct objc_module {
4957 //   unsigned long version;
4958 //   unsigned long size;
4959 //   const char *name;
4960 //   Symtab symtab;
4961 // };
4962 
4963 // FIXME: Get from somewhere
4964 static const int ModuleVersion = 7;
4965 
4966 void CGObjCMac::EmitModuleInfo() {
4967   uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
4968 
4969   ConstantInitBuilder builder(CGM);
4970   auto values = builder.beginStruct(ObjCTypes.ModuleTy);
4971   values.addInt(ObjCTypes.LongTy, ModuleVersion);
4972   values.addInt(ObjCTypes.LongTy, Size);
4973   // This used to be the filename, now it is unused. <rdr://4327263>
4974   values.add(GetClassName(StringRef("")));
4975   values.add(EmitModuleSymbols());
4976   CreateMetadataVar("OBJC_MODULES", values,
4977                     "__OBJC,__module_info,regular,no_dead_strip",
4978                     CGM.getPointerAlign(), true);
4979 }
4980 
4981 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
4982   unsigned NumClasses = DefinedClasses.size();
4983   unsigned NumCategories = DefinedCategories.size();
4984 
4985   // Return null if no symbols were defined.
4986   if (!NumClasses && !NumCategories)
4987     return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
4988 
4989   ConstantInitBuilder builder(CGM);
4990   auto values = builder.beginStruct();
4991   values.addInt(ObjCTypes.LongTy, 0);
4992   values.addNullPointer(ObjCTypes.SelectorPtrTy);
4993   values.addInt(ObjCTypes.ShortTy, NumClasses);
4994   values.addInt(ObjCTypes.ShortTy, NumCategories);
4995 
4996   // The runtime expects exactly the list of defined classes followed
4997   // by the list of defined categories, in a single array.
4998   auto array = values.beginArray(ObjCTypes.Int8PtrTy);
4999   for (unsigned i=0; i<NumClasses; i++) {
5000     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5001     assert(ID);
5002     if (ObjCImplementationDecl *IMP = ID->getImplementation())
5003       // We are implementing a weak imported interface. Give it external linkage
5004       if (ID->isWeakImported() && !IMP->isWeakImported())
5005         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5006 
5007     array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy);
5008   }
5009   for (unsigned i=0; i<NumCategories; i++)
5010     array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy);
5011 
5012   array.finishAndAddTo(values);
5013 
5014   llvm::GlobalVariable *GV = CreateMetadataVar(
5015       "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip",
5016       CGM.getPointerAlign(), true);
5017   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
5018 }
5019 
5020 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
5021                                            IdentifierInfo *II) {
5022   LazySymbols.insert(II);
5023 
5024   llvm::GlobalVariable *&Entry = ClassReferences[II];
5025 
5026   if (!Entry) {
5027     llvm::Constant *Casted =
5028     llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
5029                                    ObjCTypes.ClassPtrTy);
5030     Entry = CreateMetadataVar(
5031         "OBJC_CLASS_REFERENCES_", Casted,
5032         "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
5033         CGM.getPointerAlign(), true);
5034   }
5035 
5036   return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign());
5037 }
5038 
5039 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
5040                                      const ObjCInterfaceDecl *ID) {
5041   // If the class has the objc_runtime_visible attribute, we need to
5042   // use the Objective-C runtime to get the class.
5043   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
5044     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
5045 
5046   IdentifierInfo *RuntimeName =
5047       &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString());
5048   return EmitClassRefFromId(CGF, RuntimeName);
5049 }
5050 
5051 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
5052   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
5053   return EmitClassRefFromId(CGF, II);
5054 }
5055 
5056 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
5057   return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel));
5058 }
5059 
5060 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) {
5061   CharUnits Align = CGF.getPointerAlign();
5062 
5063   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
5064   if (!Entry) {
5065     llvm::Constant *Casted =
5066       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
5067                                      ObjCTypes.SelectorPtrTy);
5068     Entry = CreateMetadataVar(
5069         "OBJC_SELECTOR_REFERENCES_", Casted,
5070         "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
5071     Entry->setExternallyInitialized(true);
5072   }
5073 
5074   return Address(Entry, Align);
5075 }
5076 
5077 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
5078     llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
5079     if (!Entry)
5080       Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName);
5081     return getConstantGEP(VMContext, Entry, 0, 0);
5082 }
5083 
5084 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
5085   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
5086       I = MethodDefinitions.find(MD);
5087   if (I != MethodDefinitions.end())
5088     return I->second;
5089 
5090   return nullptr;
5091 }
5092 
5093 /// GetIvarLayoutName - Returns a unique constant for the given
5094 /// ivar layout bitmap.
5095 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
5096                                        const ObjCCommonTypesHelper &ObjCTypes) {
5097   return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
5098 }
5099 
5100 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
5101                                     CharUnits offset) {
5102   const RecordDecl *RD = RT->getDecl();
5103 
5104   // If this is a union, remember that we had one, because it might mess
5105   // up the ordering of layout entries.
5106   if (RD->isUnion())
5107     IsDisordered = true;
5108 
5109   const ASTRecordLayout *recLayout = nullptr;
5110   visitAggregate(RD->field_begin(), RD->field_end(), offset,
5111                  [&](const FieldDecl *field) -> CharUnits {
5112     if (!recLayout)
5113       recLayout = &CGM.getContext().getASTRecordLayout(RD);
5114     auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
5115     return CGM.getContext().toCharUnitsFromBits(offsetInBits);
5116   });
5117 }
5118 
5119 template <class Iterator, class GetOffsetFn>
5120 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
5121                                        CharUnits aggregateOffset,
5122                                        const GetOffsetFn &getOffset) {
5123   for (; begin != end; ++begin) {
5124     auto field = *begin;
5125 
5126     // Skip over bitfields.
5127     if (field->isBitField()) {
5128       continue;
5129     }
5130 
5131     // Compute the offset of the field within the aggregate.
5132     CharUnits fieldOffset = aggregateOffset + getOffset(field);
5133 
5134     visitField(field, fieldOffset);
5135   }
5136 }
5137 
5138 /// Collect layout information for the given fields into IvarsInfo.
5139 void IvarLayoutBuilder::visitField(const FieldDecl *field,
5140                                    CharUnits fieldOffset) {
5141   QualType fieldType = field->getType();
5142 
5143   // Drill down into arrays.
5144   uint64_t numElts = 1;
5145   if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) {
5146     numElts = 0;
5147     fieldType = arrayType->getElementType();
5148   }
5149   // Unlike incomplete arrays, constant arrays can be nested.
5150   while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
5151     numElts *= arrayType->getSize().getZExtValue();
5152     fieldType = arrayType->getElementType();
5153   }
5154 
5155   assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
5156 
5157   // If we ended up with a zero-sized array, we've done what we can do within
5158   // the limits of this layout encoding.
5159   if (numElts == 0) return;
5160 
5161   // Recurse if the base element type is a record type.
5162   if (auto recType = fieldType->getAs<RecordType>()) {
5163     size_t oldEnd = IvarsInfo.size();
5164 
5165     visitRecord(recType, fieldOffset);
5166 
5167     // If we have an array, replicate the first entry's layout information.
5168     auto numEltEntries = IvarsInfo.size() - oldEnd;
5169     if (numElts != 1 && numEltEntries != 0) {
5170       CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
5171       for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
5172         // Copy the last numEltEntries onto the end of the array, adjusting
5173         // each for the element size.
5174         for (size_t i = 0; i != numEltEntries; ++i) {
5175           auto firstEntry = IvarsInfo[oldEnd + i];
5176           IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
5177                                        firstEntry.SizeInWords));
5178         }
5179       }
5180     }
5181 
5182     return;
5183   }
5184 
5185   // Classify the element type.
5186   Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
5187 
5188   // If it matches what we're looking for, add an entry.
5189   if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
5190       || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
5191     assert(CGM.getContext().getTypeSizeInChars(fieldType)
5192              == CGM.getPointerSize());
5193     IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
5194   }
5195 }
5196 
5197 /// buildBitmap - This routine does the horsework of taking the offsets of
5198 /// strong/weak references and creating a bitmap.  The bitmap is also
5199 /// returned in the given buffer, suitable for being passed to \c dump().
5200 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
5201                                 llvm::SmallVectorImpl<unsigned char> &buffer) {
5202   // The bitmap is a series of skip/scan instructions, aligned to word
5203   // boundaries.  The skip is performed first.
5204   const unsigned char MaxNibble = 0xF;
5205   const unsigned char SkipMask = 0xF0, SkipShift = 4;
5206   const unsigned char ScanMask = 0x0F, ScanShift = 0;
5207 
5208   assert(!IvarsInfo.empty() && "generating bitmap for no data");
5209 
5210   // Sort the ivar info on byte position in case we encounterred a
5211   // union nested in the ivar list.
5212   if (IsDisordered) {
5213     // This isn't a stable sort, but our algorithm should handle it fine.
5214     llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
5215   } else {
5216     assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end()));
5217   }
5218   assert(IvarsInfo.back().Offset < InstanceEnd);
5219 
5220   assert(buffer.empty());
5221 
5222   // Skip the next N words.
5223   auto skip = [&](unsigned numWords) {
5224     assert(numWords > 0);
5225 
5226     // Try to merge into the previous byte.  Since scans happen second, we
5227     // can't do this if it includes a scan.
5228     if (!buffer.empty() && !(buffer.back() & ScanMask)) {
5229       unsigned lastSkip = buffer.back() >> SkipShift;
5230       if (lastSkip < MaxNibble) {
5231         unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
5232         numWords -= claimed;
5233         lastSkip += claimed;
5234         buffer.back() = (lastSkip << SkipShift);
5235       }
5236     }
5237 
5238     while (numWords >= MaxNibble) {
5239       buffer.push_back(MaxNibble << SkipShift);
5240       numWords -= MaxNibble;
5241     }
5242     if (numWords) {
5243       buffer.push_back(numWords << SkipShift);
5244     }
5245   };
5246 
5247   // Scan the next N words.
5248   auto scan = [&](unsigned numWords) {
5249     assert(numWords > 0);
5250 
5251     // Try to merge into the previous byte.  Since scans happen second, we can
5252     // do this even if it includes a skip.
5253     if (!buffer.empty()) {
5254       unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
5255       if (lastScan < MaxNibble) {
5256         unsigned claimed = std::min(MaxNibble - lastScan, numWords);
5257         numWords -= claimed;
5258         lastScan += claimed;
5259         buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
5260       }
5261     }
5262 
5263     while (numWords >= MaxNibble) {
5264       buffer.push_back(MaxNibble << ScanShift);
5265       numWords -= MaxNibble;
5266     }
5267     if (numWords) {
5268       buffer.push_back(numWords << ScanShift);
5269     }
5270   };
5271 
5272   // One past the end of the last scan.
5273   unsigned endOfLastScanInWords = 0;
5274   const CharUnits WordSize = CGM.getPointerSize();
5275 
5276   // Consider all the scan requests.
5277   for (auto &request : IvarsInfo) {
5278     CharUnits beginOfScan = request.Offset - InstanceBegin;
5279 
5280     // Ignore scan requests that don't start at an even multiple of the
5281     // word size.  We can't encode them.
5282     if ((beginOfScan % WordSize) != 0) continue;
5283 
5284     // Ignore scan requests that start before the instance start.
5285     // This assumes that scans never span that boundary.  The boundary
5286     // isn't the true start of the ivars, because in the fragile-ARC case
5287     // it's rounded up to word alignment, but the test above should leave
5288     // us ignoring that possibility.
5289     if (beginOfScan.isNegative()) {
5290       assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
5291       continue;
5292     }
5293 
5294     unsigned beginOfScanInWords = beginOfScan / WordSize;
5295     unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
5296 
5297     // If the scan starts some number of words after the last one ended,
5298     // skip forward.
5299     if (beginOfScanInWords > endOfLastScanInWords) {
5300       skip(beginOfScanInWords - endOfLastScanInWords);
5301 
5302     // Otherwise, start scanning where the last left off.
5303     } else {
5304       beginOfScanInWords = endOfLastScanInWords;
5305 
5306       // If that leaves us with nothing to scan, ignore this request.
5307       if (beginOfScanInWords >= endOfScanInWords) continue;
5308     }
5309 
5310     // Scan to the end of the request.
5311     assert(beginOfScanInWords < endOfScanInWords);
5312     scan(endOfScanInWords - beginOfScanInWords);
5313     endOfLastScanInWords = endOfScanInWords;
5314   }
5315 
5316   if (buffer.empty())
5317     return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
5318 
5319   // For GC layouts, emit a skip to the end of the allocation so that we
5320   // have precise information about the entire thing.  This isn't useful
5321   // or necessary for the ARC-style layout strings.
5322   if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5323     unsigned lastOffsetInWords =
5324       (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
5325     if (lastOffsetInWords > endOfLastScanInWords) {
5326       skip(lastOffsetInWords - endOfLastScanInWords);
5327     }
5328   }
5329 
5330   // Null terminate the string.
5331   buffer.push_back(0);
5332 
5333   auto *Entry = CGObjC.CreateCStringLiteral(
5334       reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName);
5335   return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
5336 }
5337 
5338 /// BuildIvarLayout - Builds ivar layout bitmap for the class
5339 /// implementation for the __strong or __weak case.
5340 /// The layout map displays which words in ivar list must be skipped
5341 /// and which must be scanned by GC (see below). String is built of bytes.
5342 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
5343 /// of words to skip and right nibble is count of words to scan. So, each
5344 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
5345 /// represented by a 0x00 byte which also ends the string.
5346 /// 1. when ForStrongLayout is true, following ivars are scanned:
5347 /// - id, Class
5348 /// - object *
5349 /// - __strong anything
5350 ///
5351 /// 2. When ForStrongLayout is false, following ivars are scanned:
5352 /// - __weak anything
5353 ///
5354 llvm::Constant *
5355 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
5356                                  CharUnits beginOffset, CharUnits endOffset,
5357                                  bool ForStrongLayout, bool HasMRCWeakIvars) {
5358   // If this is MRC, and we're either building a strong layout or there
5359   // are no weak ivars, bail out early.
5360   llvm::Type *PtrTy = CGM.Int8PtrTy;
5361   if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
5362       !CGM.getLangOpts().ObjCAutoRefCount &&
5363       (ForStrongLayout || !HasMRCWeakIvars))
5364     return llvm::Constant::getNullValue(PtrTy);
5365 
5366   const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5367   SmallVector<const ObjCIvarDecl*, 32> ivars;
5368 
5369   // GC layout strings include the complete object layout, possibly
5370   // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5371   // up.
5372   //
5373   // ARC layout strings only include the class's ivars.  In non-fragile
5374   // runtimes, that means starting at InstanceStart, rounded up to word
5375   // alignment.  In fragile runtimes, there's no InstanceStart, so it means
5376   // starting at the offset of the first ivar, rounded up to word alignment.
5377   //
5378   // MRC weak layout strings follow the ARC style.
5379   CharUnits baseOffset;
5380   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5381     for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5382          IVD; IVD = IVD->getNextIvar())
5383       ivars.push_back(IVD);
5384 
5385     if (isNonFragileABI()) {
5386       baseOffset = beginOffset; // InstanceStart
5387     } else if (!ivars.empty()) {
5388       baseOffset =
5389         CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
5390     } else {
5391       baseOffset = CharUnits::Zero();
5392     }
5393 
5394     baseOffset = baseOffset.alignTo(CGM.getPointerAlign());
5395   }
5396   else {
5397     CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
5398 
5399     baseOffset = CharUnits::Zero();
5400   }
5401 
5402   if (ivars.empty())
5403     return llvm::Constant::getNullValue(PtrTy);
5404 
5405   IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5406 
5407   builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
5408                          [&](const ObjCIvarDecl *ivar) -> CharUnits {
5409       return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
5410   });
5411 
5412   if (!builder.hasBitmapData())
5413     return llvm::Constant::getNullValue(PtrTy);
5414 
5415   llvm::SmallVector<unsigned char, 4> buffer;
5416   llvm::Constant *C = builder.buildBitmap(*this, buffer);
5417 
5418    if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5419     printf("\n%s ivar layout for class '%s': ",
5420            ForStrongLayout ? "strong" : "weak",
5421            OMD->getClassInterface()->getName().str().c_str());
5422     builder.dump(buffer);
5423   }
5424   return C;
5425 }
5426 
5427 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5428   llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5429   // FIXME: Avoid std::string in "Sel.getAsString()"
5430   if (!Entry)
5431     Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName);
5432   return getConstantGEP(VMContext, Entry, 0, 0);
5433 }
5434 
5435 // FIXME: Merge into a single cstring creation function.
5436 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5437   return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5438 }
5439 
5440 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5441   std::string TypeStr;
5442   CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5443 
5444   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5445   if (!Entry)
5446     Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5447   return getConstantGEP(VMContext, Entry, 0, 0);
5448 }
5449 
5450 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5451                                                   bool Extended) {
5452   std::string TypeStr =
5453     CGM.getContext().getObjCEncodingForMethodDecl(D, Extended);
5454 
5455   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5456   if (!Entry)
5457     Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5458   return getConstantGEP(VMContext, Entry, 0, 0);
5459 }
5460 
5461 // FIXME: Merge into a single cstring creation function.
5462 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5463   llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5464   if (!Entry)
5465     Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName);
5466   return getConstantGEP(VMContext, Entry, 0, 0);
5467 }
5468 
5469 // FIXME: Merge into a single cstring creation function.
5470 // FIXME: This Decl should be more precise.
5471 llvm::Constant *
5472 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5473                                        const Decl *Container) {
5474   std::string TypeStr =
5475     CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
5476   return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5477 }
5478 
5479 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
5480                                        const ObjCContainerDecl *CD,
5481                                        SmallVectorImpl<char> &Name) {
5482   llvm::raw_svector_ostream OS(Name);
5483   assert (CD && "Missing container decl in GetNameForMethod");
5484   OS << '\01' << (D->isInstanceMethod() ? '-' : '+')
5485      << '[' << CD->getName();
5486   if (const ObjCCategoryImplDecl *CID =
5487       dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext()))
5488     OS << '(' << *CID << ')';
5489   OS << ' ' << D->getSelector().getAsString() << ']';
5490 }
5491 
5492 void CGObjCMac::FinishModule() {
5493   EmitModuleInfo();
5494 
5495   // Emit the dummy bodies for any protocols which were referenced but
5496   // never defined.
5497   for (auto &entry : Protocols) {
5498     llvm::GlobalVariable *global = entry.second;
5499     if (global->hasInitializer())
5500       continue;
5501 
5502     ConstantInitBuilder builder(CGM);
5503     auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
5504     values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy);
5505     values.add(GetClassName(entry.first->getName()));
5506     values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
5507     values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5508     values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5509     values.finishAndSetAsInitializer(global);
5510     CGM.addCompilerUsedGlobal(global);
5511   }
5512 
5513   // Add assembler directives to add lazy undefined symbol references
5514   // for classes which are referenced but not defined. This is
5515   // important for correct linker interaction.
5516   //
5517   // FIXME: It would be nice if we had an LLVM construct for this.
5518   if ((!LazySymbols.empty() || !DefinedSymbols.empty()) &&
5519       CGM.getTriple().isOSBinFormatMachO()) {
5520     SmallString<256> Asm;
5521     Asm += CGM.getModule().getModuleInlineAsm();
5522     if (!Asm.empty() && Asm.back() != '\n')
5523       Asm += '\n';
5524 
5525     llvm::raw_svector_ostream OS(Asm);
5526     for (const auto *Sym : DefinedSymbols)
5527       OS << "\t.objc_class_name_" << Sym->getName() << "=0\n"
5528          << "\t.globl .objc_class_name_" << Sym->getName() << "\n";
5529     for (const auto *Sym : LazySymbols)
5530       OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n";
5531     for (const auto &Category : DefinedCategoryNames)
5532       OS << "\t.objc_category_name_" << Category << "=0\n"
5533          << "\t.globl .objc_category_name_" << Category << "\n";
5534 
5535     CGM.getModule().setModuleInlineAsm(OS.str());
5536   }
5537 }
5538 
5539 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5540     : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr),
5541       ObjCEmptyVtableVar(nullptr) {
5542   ObjCABI = 2;
5543 }
5544 
5545 /* *** */
5546 
5547 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5548   : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5549 {
5550   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5551   ASTContext &Ctx = CGM.getContext();
5552 
5553   ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy));
5554   IntTy = CGM.IntTy;
5555   LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy));
5556   Int8PtrTy = CGM.Int8PtrTy;
5557   Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5558 
5559   // arm64 targets use "int" ivar offset variables. All others,
5560   // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5561   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5562     IvarOffsetVarTy = IntTy;
5563   else
5564     IvarOffsetVarTy = LongTy;
5565 
5566   ObjectPtrTy =
5567     cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType()));
5568   PtrObjectPtrTy =
5569     llvm::PointerType::getUnqual(ObjectPtrTy);
5570   SelectorPtrTy =
5571     cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType()));
5572 
5573   // I'm not sure I like this. The implicit coordination is a bit
5574   // gross. We should solve this in a reasonable fashion because this
5575   // is a pretty common task (match some runtime data structure with
5576   // an LLVM data structure).
5577 
5578   // FIXME: This is leaked.
5579   // FIXME: Merge with rewriter code?
5580 
5581   // struct _objc_super {
5582   //   id self;
5583   //   Class cls;
5584   // }
5585   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5586                                       Ctx.getTranslationUnitDecl(),
5587                                       SourceLocation(), SourceLocation(),
5588                                       &Ctx.Idents.get("_objc_super"));
5589   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5590                                 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5591                                 false, ICIS_NoInit));
5592   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5593                                 nullptr, Ctx.getObjCClassType(), nullptr,
5594                                 nullptr, false, ICIS_NoInit));
5595   RD->completeDefinition();
5596 
5597   SuperCTy = Ctx.getTagDeclType(RD);
5598   SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5599 
5600   SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5601   SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5602 
5603   // struct _prop_t {
5604   //   char *name;
5605   //   char *attributes;
5606   // }
5607   PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy);
5608 
5609   // struct _prop_list_t {
5610   //   uint32_t entsize;      // sizeof(struct _prop_t)
5611   //   uint32_t count_of_properties;
5612   //   struct _prop_t prop_list[count_of_properties];
5613   // }
5614   PropertyListTy = llvm::StructType::create(
5615       "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0));
5616   // struct _prop_list_t *
5617   PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5618 
5619   // struct _objc_method {
5620   //   SEL _cmd;
5621   //   char *method_type;
5622   //   char *_imp;
5623   // }
5624   MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy,
5625                                       Int8PtrTy, Int8PtrTy);
5626 
5627   // struct _objc_cache *
5628   CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5629   CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5630 }
5631 
5632 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5633   : ObjCCommonTypesHelper(cgm) {
5634   // struct _objc_method_description {
5635   //   SEL name;
5636   //   char *types;
5637   // }
5638   MethodDescriptionTy = llvm::StructType::create(
5639       "struct._objc_method_description", SelectorPtrTy, Int8PtrTy);
5640 
5641   // struct _objc_method_description_list {
5642   //   int count;
5643   //   struct _objc_method_description[1];
5644   // }
5645   MethodDescriptionListTy =
5646       llvm::StructType::create("struct._objc_method_description_list", IntTy,
5647                                llvm::ArrayType::get(MethodDescriptionTy, 0));
5648 
5649   // struct _objc_method_description_list *
5650   MethodDescriptionListPtrTy =
5651     llvm::PointerType::getUnqual(MethodDescriptionListTy);
5652 
5653   // Protocol description structures
5654 
5655   // struct _objc_protocol_extension {
5656   //   uint32_t size;  // sizeof(struct _objc_protocol_extension)
5657   //   struct _objc_method_description_list *optional_instance_methods;
5658   //   struct _objc_method_description_list *optional_class_methods;
5659   //   struct _objc_property_list *instance_properties;
5660   //   const char ** extendedMethodTypes;
5661   //   struct _objc_property_list *class_properties;
5662   // }
5663   ProtocolExtensionTy = llvm::StructType::create(
5664       "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy,
5665       MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy,
5666       PropertyListPtrTy);
5667 
5668   // struct _objc_protocol_extension *
5669   ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5670 
5671   // Handle recursive construction of Protocol and ProtocolList types
5672 
5673   ProtocolTy =
5674     llvm::StructType::create(VMContext, "struct._objc_protocol");
5675 
5676   ProtocolListTy =
5677     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5678   ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy,
5679                           llvm::ArrayType::get(ProtocolTy, 0));
5680 
5681   // struct _objc_protocol {
5682   //   struct _objc_protocol_extension *isa;
5683   //   char *protocol_name;
5684   //   struct _objc_protocol **_objc_protocol_list;
5685   //   struct _objc_method_description_list *instance_methods;
5686   //   struct _objc_method_description_list *class_methods;
5687   // }
5688   ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5689                       llvm::PointerType::getUnqual(ProtocolListTy),
5690                       MethodDescriptionListPtrTy, MethodDescriptionListPtrTy);
5691 
5692   // struct _objc_protocol_list *
5693   ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5694 
5695   ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5696 
5697   // Class description structures
5698 
5699   // struct _objc_ivar {
5700   //   char *ivar_name;
5701   //   char *ivar_type;
5702   //   int  ivar_offset;
5703   // }
5704   IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy,
5705                                     IntTy);
5706 
5707   // struct _objc_ivar_list *
5708   IvarListTy =
5709     llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5710   IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5711 
5712   // struct _objc_method_list *
5713   MethodListTy =
5714     llvm::StructType::create(VMContext, "struct._objc_method_list");
5715   MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5716 
5717   // struct _objc_class_extension *
5718   ClassExtensionTy = llvm::StructType::create(
5719       "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy);
5720   ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5721 
5722   ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5723 
5724   // struct _objc_class {
5725   //   Class isa;
5726   //   Class super_class;
5727   //   char *name;
5728   //   long version;
5729   //   long info;
5730   //   long instance_size;
5731   //   struct _objc_ivar_list *ivars;
5732   //   struct _objc_method_list *methods;
5733   //   struct _objc_cache *cache;
5734   //   struct _objc_protocol_list *protocols;
5735   //   char *ivar_layout;
5736   //   struct _objc_class_ext *ext;
5737   // };
5738   ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5739                    llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy,
5740                    LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy,
5741                    ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy);
5742 
5743   ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5744 
5745   // struct _objc_category {
5746   //   char *category_name;
5747   //   char *class_name;
5748   //   struct _objc_method_list *instance_method;
5749   //   struct _objc_method_list *class_method;
5750   //   struct _objc_protocol_list *protocols;
5751   //   uint32_t size;  // sizeof(struct _objc_category)
5752   //   struct _objc_property_list *instance_properties;// category's @property
5753   //   struct _objc_property_list *class_properties;
5754   // }
5755   CategoryTy = llvm::StructType::create(
5756       "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5757       MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy,
5758       PropertyListPtrTy);
5759 
5760   // Global metadata structures
5761 
5762   // struct _objc_symtab {
5763   //   long sel_ref_cnt;
5764   //   SEL *refs;
5765   //   short cls_def_cnt;
5766   //   short cat_def_cnt;
5767   //   char *defs[cls_def_cnt + cat_def_cnt];
5768   // }
5769   SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy,
5770                                       SelectorPtrTy, ShortTy, ShortTy,
5771                                       llvm::ArrayType::get(Int8PtrTy, 0));
5772   SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5773 
5774   // struct _objc_module {
5775   //   long version;
5776   //   long size;   // sizeof(struct _objc_module)
5777   //   char *name;
5778   //   struct _objc_symtab* symtab;
5779   //  }
5780   ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy,
5781                                       Int8PtrTy, SymtabPtrTy);
5782 
5783   // FIXME: This is the size of the setjmp buffer and should be target
5784   // specific. 18 is what's used on 32-bit X86.
5785   uint64_t SetJmpBufferSize = 18;
5786 
5787   // Exceptions
5788   llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5789 
5790   ExceptionDataTy = llvm::StructType::create(
5791       "struct._objc_exception_data",
5792       llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy);
5793 }
5794 
5795 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5796   : ObjCCommonTypesHelper(cgm) {
5797   // struct _method_list_t {
5798   //   uint32_t entsize;  // sizeof(struct _objc_method)
5799   //   uint32_t method_count;
5800   //   struct _objc_method method_list[method_count];
5801   // }
5802   MethodListnfABITy =
5803       llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5804                                llvm::ArrayType::get(MethodTy, 0));
5805   // struct method_list_t *
5806   MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5807 
5808   // struct _protocol_t {
5809   //   id isa;  // NULL
5810   //   const char * const protocol_name;
5811   //   const struct _protocol_list_t * protocol_list; // super protocols
5812   //   const struct method_list_t * const instance_methods;
5813   //   const struct method_list_t * const class_methods;
5814   //   const struct method_list_t *optionalInstanceMethods;
5815   //   const struct method_list_t *optionalClassMethods;
5816   //   const struct _prop_list_t * properties;
5817   //   const uint32_t size;  // sizeof(struct _protocol_t)
5818   //   const uint32_t flags;  // = 0
5819   //   const char ** extendedMethodTypes;
5820   //   const char *demangledName;
5821   //   const struct _prop_list_t * class_properties;
5822   // }
5823 
5824   // Holder for struct _protocol_list_t *
5825   ProtocolListnfABITy =
5826     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5827 
5828   ProtocolnfABITy = llvm::StructType::create(
5829       "struct._protocol_t", ObjectPtrTy, Int8PtrTy,
5830       llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy,
5831       MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5832       PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy,
5833       PropertyListPtrTy);
5834 
5835   // struct _protocol_t*
5836   ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
5837 
5838   // struct _protocol_list_t {
5839   //   long protocol_count;   // Note, this is 32/64 bit
5840   //   struct _protocol_t *[protocol_count];
5841   // }
5842   ProtocolListnfABITy->setBody(LongTy,
5843                                llvm::ArrayType::get(ProtocolnfABIPtrTy, 0));
5844 
5845   // struct _objc_protocol_list*
5846   ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
5847 
5848   // struct _ivar_t {
5849   //   unsigned [long] int *offset;  // pointer to ivar offset location
5850   //   char *name;
5851   //   char *type;
5852   //   uint32_t alignment;
5853   //   uint32_t size;
5854   // }
5855   IvarnfABITy = llvm::StructType::create(
5856       "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
5857       Int8PtrTy, Int8PtrTy, IntTy, IntTy);
5858 
5859   // struct _ivar_list_t {
5860   //   uint32 entsize;  // sizeof(struct _ivar_t)
5861   //   uint32 count;
5862   //   struct _iver_t list[count];
5863   // }
5864   IvarListnfABITy =
5865       llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
5866                                llvm::ArrayType::get(IvarnfABITy, 0));
5867 
5868   IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
5869 
5870   // struct _class_ro_t {
5871   //   uint32_t const flags;
5872   //   uint32_t const instanceStart;
5873   //   uint32_t const instanceSize;
5874   //   uint32_t const reserved;  // only when building for 64bit targets
5875   //   const uint8_t * const ivarLayout;
5876   //   const char *const name;
5877   //   const struct _method_list_t * const baseMethods;
5878   //   const struct _objc_protocol_list *const baseProtocols;
5879   //   const struct _ivar_list_t *const ivars;
5880   //   const uint8_t * const weakIvarLayout;
5881   //   const struct _prop_list_t * const properties;
5882   // }
5883 
5884   // FIXME. Add 'reserved' field in 64bit abi mode!
5885   ClassRonfABITy = llvm::StructType::create(
5886       "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy,
5887       MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy,
5888       Int8PtrTy, PropertyListPtrTy);
5889 
5890   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
5891   llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
5892   ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
5893                  ->getPointerTo();
5894 
5895   // struct _class_t {
5896   //   struct _class_t *isa;
5897   //   struct _class_t * const superclass;
5898   //   void *cache;
5899   //   IMP *vtable;
5900   //   struct class_ro_t *ro;
5901   // }
5902 
5903   ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
5904   ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
5905                         llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy,
5906                         llvm::PointerType::getUnqual(ImpnfABITy),
5907                         llvm::PointerType::getUnqual(ClassRonfABITy));
5908 
5909   // LLVM for struct _class_t *
5910   ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
5911 
5912   // struct _category_t {
5913   //   const char * const name;
5914   //   struct _class_t *const cls;
5915   //   const struct _method_list_t * const instance_methods;
5916   //   const struct _method_list_t * const class_methods;
5917   //   const struct _protocol_list_t * const protocols;
5918   //   const struct _prop_list_t * const properties;
5919   //   const struct _prop_list_t * const class_properties;
5920   //   const uint32_t size;
5921   // }
5922   CategorynfABITy = llvm::StructType::create(
5923       "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy,
5924       MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy,
5925       PropertyListPtrTy, IntTy);
5926 
5927   // New types for nonfragile abi messaging.
5928   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5929   ASTContext &Ctx = CGM.getContext();
5930 
5931   // MessageRefTy - LLVM for:
5932   // struct _message_ref_t {
5933   //   IMP messenger;
5934   //   SEL name;
5935   // };
5936 
5937   // First the clang type for struct _message_ref_t
5938   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5939                                       Ctx.getTranslationUnitDecl(),
5940                                       SourceLocation(), SourceLocation(),
5941                                       &Ctx.Idents.get("_message_ref_t"));
5942   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5943                                 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
5944                                 ICIS_NoInit));
5945   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5946                                 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
5947                                 false, ICIS_NoInit));
5948   RD->completeDefinition();
5949 
5950   MessageRefCTy = Ctx.getTagDeclType(RD);
5951   MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
5952   MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
5953 
5954   // MessageRefPtrTy - LLVM for struct _message_ref_t*
5955   MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
5956 
5957   // SuperMessageRefTy - LLVM for:
5958   // struct _super_message_ref_t {
5959   //   SUPER_IMP messenger;
5960   //   SEL name;
5961   // };
5962   SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t",
5963                                                ImpnfABITy, SelectorPtrTy);
5964 
5965   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
5966   SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
5967 
5968 
5969   // struct objc_typeinfo {
5970   //   const void** vtable; // objc_ehtype_vtable + 2
5971   //   const char*  name;    // c++ typeinfo string
5972   //   Class        cls;
5973   // };
5974   EHTypeTy = llvm::StructType::create("struct._objc_typeinfo",
5975                                       llvm::PointerType::getUnqual(Int8PtrTy),
5976                                       Int8PtrTy, ClassnfABIPtrTy);
5977   EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
5978 }
5979 
5980 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
5981   FinishNonFragileABIModule();
5982 
5983   return nullptr;
5984 }
5985 
5986 void CGObjCNonFragileABIMac::AddModuleClassList(
5987     ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
5988     StringRef SectionName) {
5989   unsigned NumClasses = Container.size();
5990 
5991   if (!NumClasses)
5992     return;
5993 
5994   SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
5995   for (unsigned i=0; i<NumClasses; i++)
5996     Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
5997                                                 ObjCTypes.Int8PtrTy);
5998   llvm::Constant *Init =
5999     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
6000                                                   Symbols.size()),
6001                              Symbols);
6002 
6003   llvm::GlobalVariable *GV =
6004     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6005                              llvm::GlobalValue::PrivateLinkage,
6006                              Init,
6007                              SymbolName);
6008   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6009   GV->setSection(SectionName);
6010   CGM.addCompilerUsedGlobal(GV);
6011 }
6012 
6013 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
6014   // nonfragile abi has no module definition.
6015 
6016   // Build list of all implemented class addresses in array
6017   // L_OBJC_LABEL_CLASS_$.
6018 
6019   for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
6020     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
6021     assert(ID);
6022     if (ObjCImplementationDecl *IMP = ID->getImplementation())
6023       // We are implementing a weak imported interface. Give it external linkage
6024       if (ID->isWeakImported() && !IMP->isWeakImported()) {
6025         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6026         DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6027       }
6028   }
6029 
6030   AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
6031                      GetSectionName("__objc_classlist",
6032                                     "regular,no_dead_strip"));
6033 
6034   AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
6035                      GetSectionName("__objc_nlclslist",
6036                                     "regular,no_dead_strip"));
6037 
6038   // Build list of all implemented category addresses in array
6039   // L_OBJC_LABEL_CATEGORY_$.
6040   AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
6041                      GetSectionName("__objc_catlist",
6042                                     "regular,no_dead_strip"));
6043   AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
6044                      GetSectionName("__objc_nlcatlist",
6045                                     "regular,no_dead_strip"));
6046 
6047   EmitImageInfo();
6048 }
6049 
6050 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
6051 /// VTableDispatchMethods; false otherwise. What this means is that
6052 /// except for the 19 selectors in the list, we generate 32bit-style
6053 /// message dispatch call for all the rest.
6054 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
6055   // At various points we've experimented with using vtable-based
6056   // dispatch for all methods.
6057   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
6058   case CodeGenOptions::Legacy:
6059     return false;
6060   case CodeGenOptions::NonLegacy:
6061     return true;
6062   case CodeGenOptions::Mixed:
6063     break;
6064   }
6065 
6066   // If so, see whether this selector is in the white-list of things which must
6067   // use the new dispatch convention. We lazily build a dense set for this.
6068   if (VTableDispatchMethods.empty()) {
6069     VTableDispatchMethods.insert(GetNullarySelector("alloc"));
6070     VTableDispatchMethods.insert(GetNullarySelector("class"));
6071     VTableDispatchMethods.insert(GetNullarySelector("self"));
6072     VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
6073     VTableDispatchMethods.insert(GetNullarySelector("length"));
6074     VTableDispatchMethods.insert(GetNullarySelector("count"));
6075 
6076     // These are vtable-based if GC is disabled.
6077     // Optimistically use vtable dispatch for hybrid compiles.
6078     if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
6079       VTableDispatchMethods.insert(GetNullarySelector("retain"));
6080       VTableDispatchMethods.insert(GetNullarySelector("release"));
6081       VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
6082     }
6083 
6084     VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
6085     VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
6086     VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
6087     VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
6088     VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
6089     VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
6090     VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
6091 
6092     // These are vtable-based if GC is enabled.
6093     // Optimistically use vtable dispatch for hybrid compiles.
6094     if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
6095       VTableDispatchMethods.insert(GetNullarySelector("hash"));
6096       VTableDispatchMethods.insert(GetUnarySelector("addObject"));
6097 
6098       // "countByEnumeratingWithState:objects:count"
6099       IdentifierInfo *KeyIdents[] = {
6100         &CGM.getContext().Idents.get("countByEnumeratingWithState"),
6101         &CGM.getContext().Idents.get("objects"),
6102         &CGM.getContext().Idents.get("count")
6103       };
6104       VTableDispatchMethods.insert(
6105         CGM.getContext().Selectors.getSelector(3, KeyIdents));
6106     }
6107   }
6108 
6109   return VTableDispatchMethods.count(Sel);
6110 }
6111 
6112 /// BuildClassRoTInitializer - generate meta-data for:
6113 /// struct _class_ro_t {
6114 ///   uint32_t const flags;
6115 ///   uint32_t const instanceStart;
6116 ///   uint32_t const instanceSize;
6117 ///   uint32_t const reserved;  // only when building for 64bit targets
6118 ///   const uint8_t * const ivarLayout;
6119 ///   const char *const name;
6120 ///   const struct _method_list_t * const baseMethods;
6121 ///   const struct _protocol_list_t *const baseProtocols;
6122 ///   const struct _ivar_list_t *const ivars;
6123 ///   const uint8_t * const weakIvarLayout;
6124 ///   const struct _prop_list_t * const properties;
6125 /// }
6126 ///
6127 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
6128   unsigned flags,
6129   unsigned InstanceStart,
6130   unsigned InstanceSize,
6131   const ObjCImplementationDecl *ID) {
6132   std::string ClassName = ID->getObjCRuntimeNameAsString();
6133 
6134   CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
6135   CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
6136 
6137   bool hasMRCWeak = false;
6138   if (CGM.getLangOpts().ObjCAutoRefCount)
6139     flags |= NonFragileABI_Class_CompiledByARC;
6140   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
6141     flags |= NonFragileABI_Class_HasMRCWeakIvars;
6142 
6143   ConstantInitBuilder builder(CGM);
6144   auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy);
6145 
6146   values.addInt(ObjCTypes.IntTy, flags);
6147   values.addInt(ObjCTypes.IntTy, InstanceStart);
6148   values.addInt(ObjCTypes.IntTy, InstanceSize);
6149   values.add((flags & NonFragileABI_Class_Meta)
6150                 ? GetIvarLayoutName(nullptr, ObjCTypes)
6151                 : BuildStrongIvarLayout(ID, beginInstance, endInstance));
6152   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
6153 
6154   // const struct _method_list_t * const baseMethods;
6155   SmallVector<const ObjCMethodDecl*, 16> methods;
6156   if (flags & NonFragileABI_Class_Meta) {
6157     for (const auto *MD : ID->class_methods())
6158       methods.push_back(MD);
6159   } else {
6160     for (const auto *MD : ID->instance_methods())
6161       methods.push_back(MD);
6162 
6163     for (const auto *PID : ID->property_impls()) {
6164       if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
6165         ObjCPropertyDecl *PD = PID->getPropertyDecl();
6166 
6167         if (auto MD = PD->getGetterMethodDecl())
6168           if (GetMethodDefinition(MD))
6169             methods.push_back(MD);
6170         if (auto MD = PD->getSetterMethodDecl())
6171           if (GetMethodDefinition(MD))
6172             methods.push_back(MD);
6173       }
6174     }
6175   }
6176 
6177   values.add(emitMethodList(ID->getObjCRuntimeNameAsString(),
6178                             (flags & NonFragileABI_Class_Meta)
6179                                ? MethodListType::ClassMethods
6180                                : MethodListType::InstanceMethods,
6181                             methods));
6182 
6183   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6184   assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
6185   values.add(EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
6186                                 + OID->getObjCRuntimeNameAsString(),
6187                               OID->all_referenced_protocol_begin(),
6188                               OID->all_referenced_protocol_end()));
6189 
6190   if (flags & NonFragileABI_Class_Meta) {
6191     values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy);
6192     values.add(GetIvarLayoutName(nullptr, ObjCTypes));
6193     values.add(EmitPropertyList(
6194         "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6195         ID, ID->getClassInterface(), ObjCTypes, true));
6196   } else {
6197     values.add(EmitIvarList(ID));
6198     values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak));
6199     values.add(EmitPropertyList(
6200         "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6201         ID, ID->getClassInterface(), ObjCTypes, false));
6202   }
6203 
6204   llvm::SmallString<64> roLabel;
6205   llvm::raw_svector_ostream(roLabel)
6206       << ((flags & NonFragileABI_Class_Meta) ? "\01l_OBJC_METACLASS_RO_$_"
6207                                              : "\01l_OBJC_CLASS_RO_$_")
6208       << ClassName;
6209 
6210   llvm::GlobalVariable *CLASS_RO_GV =
6211     values.finishAndCreateGlobal(roLabel, CGM.getPointerAlign(),
6212                                  /*constant*/ false,
6213                                  llvm::GlobalValue::PrivateLinkage);
6214   if (CGM.getTriple().isOSBinFormatMachO())
6215     CLASS_RO_GV->setSection("__DATA, __objc_const");
6216   return CLASS_RO_GV;
6217 }
6218 
6219 /// Build the metaclass object for a class.
6220 ///
6221 /// struct _class_t {
6222 ///   struct _class_t *isa;
6223 ///   struct _class_t * const superclass;
6224 ///   void *cache;
6225 ///   IMP *vtable;
6226 ///   struct class_ro_t *ro;
6227 /// }
6228 ///
6229 llvm::GlobalVariable *
6230 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI,
6231                                          bool isMetaclass,
6232                                          llvm::Constant *IsAGV,
6233                                          llvm::Constant *SuperClassGV,
6234                                          llvm::Constant *ClassRoGV,
6235                                          bool HiddenVisibility) {
6236   ConstantInitBuilder builder(CGM);
6237   auto values = builder.beginStruct(ObjCTypes.ClassnfABITy);
6238   values.add(IsAGV);
6239   if (SuperClassGV) {
6240     values.add(SuperClassGV);
6241   } else {
6242     values.addNullPointer(ObjCTypes.ClassnfABIPtrTy);
6243   }
6244   values.add(ObjCEmptyCacheVar);
6245   values.add(ObjCEmptyVtableVar);
6246   values.add(ClassRoGV);
6247 
6248   llvm::GlobalVariable *GV =
6249     cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition));
6250   values.finishAndSetAsInitializer(GV);
6251 
6252   if (CGM.getTriple().isOSBinFormatMachO())
6253     GV->setSection("__DATA, __objc_data");
6254   GV->setAlignment(
6255       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy));
6256   if (!CGM.getTriple().isOSBinFormatCOFF())
6257     if (HiddenVisibility)
6258       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6259   return GV;
6260 }
6261 
6262 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy(
6263     const ObjCImplDecl *OD) const {
6264   return OD->getClassMethod(GetNullarySelector("load")) != nullptr ||
6265          OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>();
6266 }
6267 
6268 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
6269                                               uint32_t &InstanceStart,
6270                                               uint32_t &InstanceSize) {
6271   const ASTRecordLayout &RL =
6272     CGM.getContext().getASTObjCImplementationLayout(OID);
6273 
6274   // InstanceSize is really instance end.
6275   InstanceSize = RL.getDataSize().getQuantity();
6276 
6277   // If there are no fields, the start is the same as the end.
6278   if (!RL.getFieldCount())
6279     InstanceStart = InstanceSize;
6280   else
6281     InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
6282 }
6283 
6284 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM,
6285                                                           StringRef Name) {
6286   IdentifierInfo &II = CGM.getContext().Idents.get(Name);
6287   TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
6288   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6289 
6290   const VarDecl *VD = nullptr;
6291   for (const auto &Result : DC->lookup(&II))
6292     if ((VD = dyn_cast<VarDecl>(Result)))
6293       break;
6294 
6295   if (!VD)
6296     return llvm::GlobalValue::DLLImportStorageClass;
6297   if (VD->hasAttr<DLLExportAttr>())
6298     return llvm::GlobalValue::DLLExportStorageClass;
6299   if (VD->hasAttr<DLLImportAttr>())
6300     return llvm::GlobalValue::DLLImportStorageClass;
6301   return llvm::GlobalValue::DefaultStorageClass;
6302 }
6303 
6304 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
6305   if (!ObjCEmptyCacheVar) {
6306     ObjCEmptyCacheVar =
6307         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false,
6308                                  llvm::GlobalValue::ExternalLinkage, nullptr,
6309                                  "_objc_empty_cache");
6310     if (CGM.getTriple().isOSBinFormatCOFF())
6311       ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache"));
6312 
6313     // Only OS X with deployment version <10.9 use the empty vtable symbol
6314     const llvm::Triple &Triple = CGM.getTarget().getTriple();
6315     if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9))
6316       ObjCEmptyVtableVar =
6317           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false,
6318                                    llvm::GlobalValue::ExternalLinkage, nullptr,
6319                                    "_objc_empty_vtable");
6320     else
6321       ObjCEmptyVtableVar =
6322         llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo());
6323   }
6324 
6325   // FIXME: Is this correct (that meta class size is never computed)?
6326   uint32_t InstanceStart =
6327     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
6328   uint32_t InstanceSize = InstanceStart;
6329   uint32_t flags = NonFragileABI_Class_Meta;
6330 
6331   llvm::Constant *SuperClassGV, *IsAGV;
6332 
6333   const auto *CI = ID->getClassInterface();
6334   assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0");
6335 
6336   // Build the flags for the metaclass.
6337   bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF())
6338                            ? !CI->hasAttr<DLLExportAttr>()
6339                            : CI->getVisibility() == HiddenVisibility;
6340   if (classIsHidden)
6341     flags |= NonFragileABI_Class_Hidden;
6342 
6343   // FIXME: why is this flag set on the metaclass?
6344   // ObjC metaclasses have no fields and don't really get constructed.
6345   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6346     flags |= NonFragileABI_Class_HasCXXStructors;
6347     if (!ID->hasNonZeroConstructors())
6348       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6349   }
6350 
6351   if (!CI->getSuperClass()) {
6352     // class is root
6353     flags |= NonFragileABI_Class_Root;
6354 
6355     SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition);
6356     IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition);
6357   } else {
6358     // Has a root. Current class is not a root.
6359     const ObjCInterfaceDecl *Root = ID->getClassInterface();
6360     while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6361       Root = Super;
6362 
6363     const auto *Super = CI->getSuperClass();
6364     IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition);
6365     SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition);
6366   }
6367 
6368   llvm::GlobalVariable *CLASS_RO_GV =
6369       BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6370 
6371   llvm::GlobalVariable *MetaTClass =
6372     BuildClassObject(CI, /*metaclass*/ true,
6373                      IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden);
6374   CGM.setGVProperties(MetaTClass, CI);
6375   DefinedMetaClasses.push_back(MetaTClass);
6376 
6377   // Metadata for the class
6378   flags = 0;
6379   if (classIsHidden)
6380     flags |= NonFragileABI_Class_Hidden;
6381 
6382   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6383     flags |= NonFragileABI_Class_HasCXXStructors;
6384 
6385     // Set a flag to enable a runtime optimization when a class has
6386     // fields that require destruction but which don't require
6387     // anything except zero-initialization during construction.  This
6388     // is most notably true of __strong and __weak types, but you can
6389     // also imagine there being C++ types with non-trivial default
6390     // constructors that merely set all fields to null.
6391     if (!ID->hasNonZeroConstructors())
6392       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6393   }
6394 
6395   if (hasObjCExceptionAttribute(CGM.getContext(), CI))
6396     flags |= NonFragileABI_Class_Exception;
6397 
6398   if (!CI->getSuperClass()) {
6399     flags |= NonFragileABI_Class_Root;
6400     SuperClassGV = nullptr;
6401   } else {
6402     // Has a root. Current class is not a root.
6403     const auto *Super = CI->getSuperClass();
6404     SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition);
6405   }
6406 
6407   GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6408   CLASS_RO_GV =
6409       BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6410 
6411   llvm::GlobalVariable *ClassMD =
6412     BuildClassObject(CI, /*metaclass*/ false,
6413                      MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden);
6414   CGM.setGVProperties(ClassMD, CI);
6415   DefinedClasses.push_back(ClassMD);
6416   ImplementedClasses.push_back(CI);
6417 
6418   // Determine if this class is also "non-lazy".
6419   if (ImplementationIsNonLazy(ID))
6420     DefinedNonLazyClasses.push_back(ClassMD);
6421 
6422   // Force the definition of the EHType if necessary.
6423   if (flags & NonFragileABI_Class_Exception)
6424     (void) GetInterfaceEHType(CI, ForDefinition);
6425   // Make sure method definition entries are all clear for next implementation.
6426   MethodDefinitions.clear();
6427 }
6428 
6429 /// GenerateProtocolRef - This routine is called to generate code for
6430 /// a protocol reference expression; as in:
6431 /// @code
6432 ///   @protocol(Proto1);
6433 /// @endcode
6434 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6435 /// which will hold address of the protocol meta-data.
6436 ///
6437 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6438                                                          const ObjCProtocolDecl *PD) {
6439 
6440   // This routine is called for @protocol only. So, we must build definition
6441   // of protocol's meta-data (not a reference to it!)
6442   //
6443   llvm::Constant *Init =
6444     llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6445                                    ObjCTypes.getExternalProtocolPtrTy());
6446 
6447   std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
6448   ProtocolName += PD->getObjCRuntimeNameAsString();
6449 
6450   CharUnits Align = CGF.getPointerAlign();
6451 
6452   llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6453   if (PTGV)
6454     return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6455   PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6456                                   llvm::GlobalValue::WeakAnyLinkage, Init,
6457                                   ProtocolName);
6458   PTGV->setSection(GetSectionName("__objc_protorefs",
6459                                   "coalesced,no_dead_strip"));
6460   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6461   PTGV->setAlignment(Align.getQuantity());
6462   if (!CGM.getTriple().isOSBinFormatMachO())
6463     PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName));
6464   CGM.addUsedGlobal(PTGV);
6465   return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6466 }
6467 
6468 /// GenerateCategory - Build metadata for a category implementation.
6469 /// struct _category_t {
6470 ///   const char * const name;
6471 ///   struct _class_t *const cls;
6472 ///   const struct _method_list_t * const instance_methods;
6473 ///   const struct _method_list_t * const class_methods;
6474 ///   const struct _protocol_list_t * const protocols;
6475 ///   const struct _prop_list_t * const properties;
6476 ///   const struct _prop_list_t * const class_properties;
6477 ///   const uint32_t size;
6478 /// }
6479 ///
6480 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6481   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6482   const char *Prefix = "\01l_OBJC_$_CATEGORY_";
6483 
6484   llvm::SmallString<64> ExtCatName(Prefix);
6485   ExtCatName += Interface->getObjCRuntimeNameAsString();
6486   ExtCatName += "_$_";
6487   ExtCatName += OCD->getNameAsString();
6488 
6489   ConstantInitBuilder builder(CGM);
6490   auto values = builder.beginStruct(ObjCTypes.CategorynfABITy);
6491   values.add(GetClassName(OCD->getIdentifier()->getName()));
6492   // meta-class entry symbol
6493   values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition));
6494   std::string listName =
6495       (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str();
6496 
6497   SmallVector<const ObjCMethodDecl *, 16> instanceMethods;
6498   SmallVector<const ObjCMethodDecl *, 8> classMethods;
6499   for (const auto *MD : OCD->methods()) {
6500     if (MD->isInstanceMethod()) {
6501       instanceMethods.push_back(MD);
6502     } else {
6503       classMethods.push_back(MD);
6504     }
6505   }
6506 
6507   values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods,
6508                             instanceMethods));
6509   values.add(emitMethodList(listName, MethodListType::CategoryClassMethods,
6510                             classMethods));
6511 
6512   const ObjCCategoryDecl *Category =
6513     Interface->FindCategoryDeclaration(OCD->getIdentifier());
6514   if (Category) {
6515     SmallString<256> ExtName;
6516     llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_"
6517                                        << OCD->getName();
6518     values.add(EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
6519                                    + Interface->getObjCRuntimeNameAsString() + "_$_"
6520                                    + Category->getName(),
6521                                 Category->protocol_begin(),
6522                                 Category->protocol_end()));
6523     values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
6524                                 OCD, Category, ObjCTypes, false));
6525     values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
6526                                 OCD, Category, ObjCTypes, true));
6527   } else {
6528     values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy);
6529     values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6530     values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6531   }
6532 
6533   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6534   values.addInt(ObjCTypes.IntTy, Size);
6535 
6536   llvm::GlobalVariable *GCATV =
6537     values.finishAndCreateGlobal(ExtCatName.str(), CGM.getPointerAlign(),
6538                                  /*constant*/ false,
6539                                  llvm::GlobalValue::PrivateLinkage);
6540   if (CGM.getTriple().isOSBinFormatMachO())
6541     GCATV->setSection("__DATA, __objc_const");
6542   CGM.addCompilerUsedGlobal(GCATV);
6543   DefinedCategories.push_back(GCATV);
6544 
6545   // Determine if this category is also "non-lazy".
6546   if (ImplementationIsNonLazy(OCD))
6547     DefinedNonLazyCategories.push_back(GCATV);
6548   // method definition entries must be clear for next implementation.
6549   MethodDefinitions.clear();
6550 }
6551 
6552 /// emitMethodConstant - Return a struct objc_method constant.  If
6553 /// forProtocol is true, the implementation will be null; otherwise,
6554 /// the method must have a definition registered with the runtime.
6555 ///
6556 /// struct _objc_method {
6557 ///   SEL _cmd;
6558 ///   char *method_type;
6559 ///   char *_imp;
6560 /// }
6561 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder,
6562                                                 const ObjCMethodDecl *MD,
6563                                                 bool forProtocol) {
6564   auto method = builder.beginStruct(ObjCTypes.MethodTy);
6565   method.addBitCast(GetMethodVarName(MD->getSelector()),
6566                     ObjCTypes.SelectorPtrTy);
6567   method.add(GetMethodVarType(MD));
6568 
6569   if (forProtocol) {
6570     // Protocol methods have no implementation. So, this entry is always NULL.
6571     method.addNullPointer(ObjCTypes.Int8PtrTy);
6572   } else {
6573     llvm::Function *fn = GetMethodDefinition(MD);
6574     assert(fn && "no definition for method?");
6575     method.addBitCast(fn, ObjCTypes.Int8PtrTy);
6576   }
6577 
6578   method.finishAndAddTo(builder);
6579 }
6580 
6581 /// Build meta-data for method declarations.
6582 ///
6583 /// struct _method_list_t {
6584 ///   uint32_t entsize;  // sizeof(struct _objc_method)
6585 ///   uint32_t method_count;
6586 ///   struct _objc_method method_list[method_count];
6587 /// }
6588 ///
6589 llvm::Constant *
6590 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind,
6591                               ArrayRef<const ObjCMethodDecl *> methods) {
6592   // Return null for empty list.
6593   if (methods.empty())
6594     return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6595 
6596   StringRef prefix;
6597   bool forProtocol;
6598   switch (kind) {
6599   case MethodListType::CategoryInstanceMethods:
6600     prefix = "\01l_OBJC_$_CATEGORY_INSTANCE_METHODS_";
6601     forProtocol = false;
6602     break;
6603   case MethodListType::CategoryClassMethods:
6604     prefix = "\01l_OBJC_$_CATEGORY_CLASS_METHODS_";
6605     forProtocol = false;
6606     break;
6607   case MethodListType::InstanceMethods:
6608     prefix = "\01l_OBJC_$_INSTANCE_METHODS_";
6609     forProtocol = false;
6610     break;
6611   case MethodListType::ClassMethods:
6612     prefix = "\01l_OBJC_$_CLASS_METHODS_";
6613     forProtocol = false;
6614     break;
6615 
6616   case MethodListType::ProtocolInstanceMethods:
6617     prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_";
6618     forProtocol = true;
6619     break;
6620   case MethodListType::ProtocolClassMethods:
6621     prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_";
6622     forProtocol = true;
6623     break;
6624   case MethodListType::OptionalProtocolInstanceMethods:
6625     prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_";
6626     forProtocol = true;
6627     break;
6628   case MethodListType::OptionalProtocolClassMethods:
6629     prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_";
6630     forProtocol = true;
6631     break;
6632   }
6633 
6634   ConstantInitBuilder builder(CGM);
6635   auto values = builder.beginStruct();
6636 
6637   // sizeof(struct _objc_method)
6638   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6639   values.addInt(ObjCTypes.IntTy, Size);
6640   // method_count
6641   values.addInt(ObjCTypes.IntTy, methods.size());
6642   auto methodArray = values.beginArray(ObjCTypes.MethodTy);
6643   for (auto MD : methods) {
6644     emitMethodConstant(methodArray, MD, forProtocol);
6645   }
6646   methodArray.finishAndAddTo(values);
6647 
6648   auto *GV = values.finishAndCreateGlobal(prefix + name, CGM.getPointerAlign(),
6649                                           /*constant*/ false,
6650                                           llvm::GlobalValue::PrivateLinkage);
6651   if (CGM.getTriple().isOSBinFormatMachO())
6652     GV->setSection("__DATA, __objc_const");
6653   CGM.addCompilerUsedGlobal(GV);
6654   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6655 }
6656 
6657 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6658 /// the given ivar.
6659 llvm::GlobalVariable *
6660 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6661                                                const ObjCIvarDecl *Ivar) {
6662   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6663   llvm::SmallString<64> Name("OBJC_IVAR_$_");
6664   Name += Container->getObjCRuntimeNameAsString();
6665   Name += ".";
6666   Name += Ivar->getName();
6667   llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name);
6668   if (!IvarOffsetGV) {
6669     IvarOffsetGV =
6670         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy,
6671                                  false, llvm::GlobalValue::ExternalLinkage,
6672                                  nullptr, Name.str());
6673     if (CGM.getTriple().isOSBinFormatCOFF()) {
6674       bool IsPrivateOrPackage =
6675           Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6676           Ivar->getAccessControl() == ObjCIvarDecl::Package;
6677 
6678       const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface();
6679 
6680       if (ContainingID->hasAttr<DLLImportAttr>())
6681         IvarOffsetGV
6682             ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6683       else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage)
6684         IvarOffsetGV
6685             ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6686     }
6687   }
6688   return IvarOffsetGV;
6689 }
6690 
6691 llvm::Constant *
6692 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6693                                           const ObjCIvarDecl *Ivar,
6694                                           unsigned long int Offset) {
6695   llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6696   IvarOffsetGV->setInitializer(
6697       llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6698   IvarOffsetGV->setAlignment(
6699       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy));
6700 
6701   if (!CGM.getTriple().isOSBinFormatCOFF()) {
6702     // FIXME: This matches gcc, but shouldn't the visibility be set on the use
6703     // as well (i.e., in ObjCIvarOffsetVariable).
6704     if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6705         Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6706         ID->getVisibility() == HiddenVisibility)
6707       IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6708     else
6709       IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6710   }
6711 
6712   // If ID's layout is known, then make the global constant. This serves as a
6713   // useful assertion: we'll never use this variable to calculate ivar offsets,
6714   // so if the runtime tries to patch it then we should crash.
6715   if (isClassLayoutKnownStatically(ID))
6716     IvarOffsetGV->setConstant(true);
6717 
6718   if (CGM.getTriple().isOSBinFormatMachO())
6719     IvarOffsetGV->setSection("__DATA, __objc_ivar");
6720   return IvarOffsetGV;
6721 }
6722 
6723 /// EmitIvarList - Emit the ivar list for the given
6724 /// implementation. The return value has type
6725 /// IvarListnfABIPtrTy.
6726 ///  struct _ivar_t {
6727 ///   unsigned [long] int *offset;  // pointer to ivar offset location
6728 ///   char *name;
6729 ///   char *type;
6730 ///   uint32_t alignment;
6731 ///   uint32_t size;
6732 /// }
6733 /// struct _ivar_list_t {
6734 ///   uint32 entsize;  // sizeof(struct _ivar_t)
6735 ///   uint32 count;
6736 ///   struct _iver_t list[count];
6737 /// }
6738 ///
6739 
6740 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6741   const ObjCImplementationDecl *ID) {
6742 
6743   ConstantInitBuilder builder(CGM);
6744   auto ivarList = builder.beginStruct();
6745   ivarList.addInt(ObjCTypes.IntTy,
6746                   CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy));
6747   auto ivarCountSlot = ivarList.addPlaceholder();
6748   auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy);
6749 
6750   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6751   assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6752 
6753   // FIXME. Consolidate this with similar code in GenerateClass.
6754 
6755   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6756        IVD; IVD = IVD->getNextIvar()) {
6757     // Ignore unnamed bit-fields.
6758     if (!IVD->getDeclName())
6759       continue;
6760 
6761     auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy);
6762     ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6763                                ComputeIvarBaseOffset(CGM, ID, IVD)));
6764     ivar.add(GetMethodVarName(IVD->getIdentifier()));
6765     ivar.add(GetMethodVarType(IVD));
6766     llvm::Type *FieldTy =
6767       CGM.getTypes().ConvertTypeForMem(IVD->getType());
6768     unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6769     unsigned Align = CGM.getContext().getPreferredTypeAlign(
6770       IVD->getType().getTypePtr()) >> 3;
6771     Align = llvm::Log2_32(Align);
6772     ivar.addInt(ObjCTypes.IntTy, Align);
6773     // NOTE. Size of a bitfield does not match gcc's, because of the
6774     // way bitfields are treated special in each. But I am told that
6775     // 'size' for bitfield ivars is ignored by the runtime so it does
6776     // not matter.  If it matters, there is enough info to get the
6777     // bitfield right!
6778     ivar.addInt(ObjCTypes.IntTy, Size);
6779     ivar.finishAndAddTo(ivars);
6780   }
6781   // Return null for empty list.
6782   if (ivars.empty()) {
6783     ivars.abandon();
6784     ivarList.abandon();
6785     return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6786   }
6787 
6788   auto ivarCount = ivars.size();
6789   ivars.finishAndAddTo(ivarList);
6790   ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount);
6791 
6792   const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
6793   llvm::GlobalVariable *GV =
6794     ivarList.finishAndCreateGlobal(Prefix + OID->getObjCRuntimeNameAsString(),
6795                                    CGM.getPointerAlign(), /*constant*/ false,
6796                                    llvm::GlobalValue::PrivateLinkage);
6797   if (CGM.getTriple().isOSBinFormatMachO())
6798     GV->setSection("__DATA, __objc_const");
6799   CGM.addCompilerUsedGlobal(GV);
6800   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6801 }
6802 
6803 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6804   const ObjCProtocolDecl *PD) {
6805   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6806 
6807   if (!Entry) {
6808     // We use the initializer as a marker of whether this is a forward
6809     // reference or not. At module finalization we add the empty
6810     // contents for protocols which were referenced but never defined.
6811     llvm::SmallString<64> Protocol;
6812     llvm::raw_svector_ostream(Protocol) << "\01l_OBJC_PROTOCOL_$_"
6813                                         << PD->getObjCRuntimeNameAsString();
6814 
6815     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6816                                      false, llvm::GlobalValue::ExternalLinkage,
6817                                      nullptr, Protocol);
6818     if (!CGM.getTriple().isOSBinFormatMachO())
6819       Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol));
6820   }
6821 
6822   return Entry;
6823 }
6824 
6825 /// GetOrEmitProtocol - Generate the protocol meta-data:
6826 /// @code
6827 /// struct _protocol_t {
6828 ///   id isa;  // NULL
6829 ///   const char * const protocol_name;
6830 ///   const struct _protocol_list_t * protocol_list; // super protocols
6831 ///   const struct method_list_t * const instance_methods;
6832 ///   const struct method_list_t * const class_methods;
6833 ///   const struct method_list_t *optionalInstanceMethods;
6834 ///   const struct method_list_t *optionalClassMethods;
6835 ///   const struct _prop_list_t * properties;
6836 ///   const uint32_t size;  // sizeof(struct _protocol_t)
6837 ///   const uint32_t flags;  // = 0
6838 ///   const char ** extendedMethodTypes;
6839 ///   const char *demangledName;
6840 ///   const struct _prop_list_t * class_properties;
6841 /// }
6842 /// @endcode
6843 ///
6844 
6845 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
6846   const ObjCProtocolDecl *PD) {
6847   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
6848 
6849   // Early exit if a defining object has already been generated.
6850   if (Entry && Entry->hasInitializer())
6851     return Entry;
6852 
6853   // Use the protocol definition, if there is one.
6854   assert(PD->hasDefinition() &&
6855          "emitting protocol metadata without definition");
6856   PD = PD->getDefinition();
6857 
6858   auto methodLists = ProtocolMethodLists::get(PD);
6859 
6860   ConstantInitBuilder builder(CGM);
6861   auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy);
6862 
6863   // isa is NULL
6864   values.addNullPointer(ObjCTypes.ObjectPtrTy);
6865   values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
6866   values.add(EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_"
6867                                 + PD->getObjCRuntimeNameAsString(),
6868                                PD->protocol_begin(),
6869                                PD->protocol_end()));
6870   values.add(methodLists.emitMethodList(this, PD,
6871                                  ProtocolMethodLists::RequiredInstanceMethods));
6872   values.add(methodLists.emitMethodList(this, PD,
6873                                  ProtocolMethodLists::RequiredClassMethods));
6874   values.add(methodLists.emitMethodList(this, PD,
6875                                  ProtocolMethodLists::OptionalInstanceMethods));
6876   values.add(methodLists.emitMethodList(this, PD,
6877                                  ProtocolMethodLists::OptionalClassMethods));
6878   values.add(EmitPropertyList(
6879                "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6880                nullptr, PD, ObjCTypes, false));
6881   uint32_t Size =
6882     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
6883   values.addInt(ObjCTypes.IntTy, Size);
6884   values.addInt(ObjCTypes.IntTy, 0);
6885   values.add(EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_"
6886                                        + PD->getObjCRuntimeNameAsString(),
6887                                      methodLists.emitExtendedTypesArray(this),
6888                                      ObjCTypes));
6889 
6890   // const char *demangledName;
6891   values.addNullPointer(ObjCTypes.Int8PtrTy);
6892 
6893   values.add(EmitPropertyList(
6894       "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6895       nullptr, PD, ObjCTypes, true));
6896 
6897   if (Entry) {
6898     // Already created, fix the linkage and update the initializer.
6899     Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6900     values.finishAndSetAsInitializer(Entry);
6901   } else {
6902     llvm::SmallString<64> symbolName;
6903     llvm::raw_svector_ostream(symbolName)
6904       << "\01l_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString();
6905 
6906     Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(),
6907                                          /*constant*/ false,
6908                                          llvm::GlobalValue::WeakAnyLinkage);
6909     if (!CGM.getTriple().isOSBinFormatMachO())
6910       Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName));
6911 
6912     Protocols[PD->getIdentifier()] = Entry;
6913   }
6914   Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
6915   CGM.addUsedGlobal(Entry);
6916 
6917   // Use this protocol meta-data to build protocol list table in section
6918   // __DATA, __objc_protolist
6919   llvm::SmallString<64> ProtocolRef;
6920   llvm::raw_svector_ostream(ProtocolRef) << "\01l_OBJC_LABEL_PROTOCOL_$_"
6921                                          << PD->getObjCRuntimeNameAsString();
6922 
6923   llvm::GlobalVariable *PTGV =
6924     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
6925                              false, llvm::GlobalValue::WeakAnyLinkage, Entry,
6926                              ProtocolRef);
6927   if (!CGM.getTriple().isOSBinFormatMachO())
6928     PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef));
6929   PTGV->setAlignment(
6930     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
6931   PTGV->setSection(GetSectionName("__objc_protolist",
6932                                   "coalesced,no_dead_strip"));
6933   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6934   CGM.addUsedGlobal(PTGV);
6935   return Entry;
6936 }
6937 
6938 /// EmitProtocolList - Generate protocol list meta-data:
6939 /// @code
6940 /// struct _protocol_list_t {
6941 ///   long protocol_count;   // Note, this is 32/64 bit
6942 ///   struct _protocol_t[protocol_count];
6943 /// }
6944 /// @endcode
6945 ///
6946 llvm::Constant *
6947 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
6948                                       ObjCProtocolDecl::protocol_iterator begin,
6949                                       ObjCProtocolDecl::protocol_iterator end) {
6950   SmallVector<llvm::Constant *, 16> ProtocolRefs;
6951 
6952   // Just return null for empty protocol lists
6953   if (begin == end)
6954     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6955 
6956   // FIXME: We shouldn't need to do this lookup here, should we?
6957   SmallString<256> TmpName;
6958   Name.toVector(TmpName);
6959   llvm::GlobalVariable *GV =
6960     CGM.getModule().getGlobalVariable(TmpName.str(), true);
6961   if (GV)
6962     return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
6963 
6964   ConstantInitBuilder builder(CGM);
6965   auto values = builder.beginStruct();
6966   auto countSlot = values.addPlaceholder();
6967 
6968   // A null-terminated array of protocols.
6969   auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy);
6970   for (; begin != end; ++begin)
6971     array.add(GetProtocolRef(*begin));  // Implemented???
6972   auto count = array.size();
6973   array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy);
6974 
6975   array.finishAndAddTo(values);
6976   values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
6977 
6978   GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
6979                                     /*constant*/ false,
6980                                     llvm::GlobalValue::PrivateLinkage);
6981   if (CGM.getTriple().isOSBinFormatMachO())
6982     GV->setSection("__DATA, __objc_const");
6983   CGM.addCompilerUsedGlobal(GV);
6984   return llvm::ConstantExpr::getBitCast(GV,
6985                                         ObjCTypes.ProtocolListnfABIPtrTy);
6986 }
6987 
6988 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
6989 /// This code gen. amounts to generating code for:
6990 /// @code
6991 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
6992 /// @encode
6993 ///
6994 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
6995                                                CodeGen::CodeGenFunction &CGF,
6996                                                QualType ObjectTy,
6997                                                llvm::Value *BaseValue,
6998                                                const ObjCIvarDecl *Ivar,
6999                                                unsigned CVRQualifiers) {
7000   ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface();
7001   llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
7002   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
7003                                   Offset);
7004 }
7005 
7006 llvm::Value *
7007 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
7008                                        const ObjCInterfaceDecl *Interface,
7009                                        const ObjCIvarDecl *Ivar) {
7010   llvm::Value *IvarOffsetValue;
7011   if (isClassLayoutKnownStatically(Interface)) {
7012     IvarOffsetValue = llvm::ConstantInt::get(
7013         ObjCTypes.IvarOffsetVarTy,
7014         ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar));
7015   } else {
7016     llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar);
7017     IvarOffsetValue =
7018         CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar");
7019     if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
7020       cast<llvm::LoadInst>(IvarOffsetValue)
7021           ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7022                         llvm::MDNode::get(VMContext, None));
7023   }
7024 
7025   // This could be 32bit int or 64bit integer depending on the architecture.
7026   // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
7027   //  as this is what caller always expects.
7028   if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
7029     IvarOffsetValue = CGF.Builder.CreateIntCast(
7030         IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
7031   return IvarOffsetValue;
7032 }
7033 
7034 static void appendSelectorForMessageRefTable(std::string &buffer,
7035                                              Selector selector) {
7036   if (selector.isUnarySelector()) {
7037     buffer += selector.getNameForSlot(0);
7038     return;
7039   }
7040 
7041   for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
7042     buffer += selector.getNameForSlot(i);
7043     buffer += '_';
7044   }
7045 }
7046 
7047 /// Emit a "vtable" message send.  We emit a weak hidden-visibility
7048 /// struct, initially containing the selector pointer and a pointer to
7049 /// a "fixup" variant of the appropriate objc_msgSend.  To call, we
7050 /// load and call the function pointer, passing the address of the
7051 /// struct as the second parameter.  The runtime determines whether
7052 /// the selector is currently emitted using vtable dispatch; if so, it
7053 /// substitutes a stub function which simply tail-calls through the
7054 /// appropriate vtable slot, and if not, it substitues a stub function
7055 /// which tail-calls objc_msgSend.  Both stubs adjust the selector
7056 /// argument to correctly point to the selector.
7057 RValue
7058 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
7059                                               ReturnValueSlot returnSlot,
7060                                               QualType resultType,
7061                                               Selector selector,
7062                                               llvm::Value *arg0,
7063                                               QualType arg0Type,
7064                                               bool isSuper,
7065                                               const CallArgList &formalArgs,
7066                                               const ObjCMethodDecl *method) {
7067   // Compute the actual arguments.
7068   CallArgList args;
7069 
7070   // First argument: the receiver / super-call structure.
7071   if (!isSuper)
7072     arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
7073   args.add(RValue::get(arg0), arg0Type);
7074 
7075   // Second argument: a pointer to the message ref structure.  Leave
7076   // the actual argument value blank for now.
7077   args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
7078 
7079   args.insert(args.end(), formalArgs.begin(), formalArgs.end());
7080 
7081   MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
7082 
7083   NullReturnState nullReturn;
7084 
7085   // Find the function to call and the mangled name for the message
7086   // ref structure.  Using a different mangled name wouldn't actually
7087   // be a problem; it would just be a waste.
7088   //
7089   // The runtime currently never uses vtable dispatch for anything
7090   // except normal, non-super message-sends.
7091   // FIXME: don't use this for that.
7092   llvm::FunctionCallee fn = nullptr;
7093   std::string messageRefName("\01l_");
7094   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
7095     if (isSuper) {
7096       fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
7097       messageRefName += "objc_msgSendSuper2_stret_fixup";
7098     } else {
7099       nullReturn.init(CGF, arg0);
7100       fn = ObjCTypes.getMessageSendStretFixupFn();
7101       messageRefName += "objc_msgSend_stret_fixup";
7102     }
7103   } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
7104     fn = ObjCTypes.getMessageSendFpretFixupFn();
7105     messageRefName += "objc_msgSend_fpret_fixup";
7106   } else {
7107     if (isSuper) {
7108       fn = ObjCTypes.getMessageSendSuper2FixupFn();
7109       messageRefName += "objc_msgSendSuper2_fixup";
7110     } else {
7111       fn = ObjCTypes.getMessageSendFixupFn();
7112       messageRefName += "objc_msgSend_fixup";
7113     }
7114   }
7115   assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
7116   messageRefName += '_';
7117 
7118   // Append the selector name, except use underscores anywhere we
7119   // would have used colons.
7120   appendSelectorForMessageRefTable(messageRefName, selector);
7121 
7122   llvm::GlobalVariable *messageRef
7123     = CGM.getModule().getGlobalVariable(messageRefName);
7124   if (!messageRef) {
7125     // Build the message ref structure.
7126     ConstantInitBuilder builder(CGM);
7127     auto values = builder.beginStruct();
7128     values.add(cast<llvm::Constant>(fn.getCallee()));
7129     values.add(GetMethodVarName(selector));
7130     messageRef = values.finishAndCreateGlobal(messageRefName,
7131                                               CharUnits::fromQuantity(16),
7132                                               /*constant*/ false,
7133                                         llvm::GlobalValue::WeakAnyLinkage);
7134     messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
7135     messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced"));
7136   }
7137 
7138   bool requiresnullCheck = false;
7139   if (CGM.getLangOpts().ObjCAutoRefCount && method)
7140     for (const auto *ParamDecl : method->parameters()) {
7141       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
7142         if (!nullReturn.NullBB)
7143           nullReturn.init(CGF, arg0);
7144         requiresnullCheck = true;
7145         break;
7146       }
7147     }
7148 
7149   Address mref =
7150     Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
7151             CGF.getPointerAlign());
7152 
7153   // Update the message ref argument.
7154   args[1].setRValue(RValue::get(mref.getPointer()));
7155 
7156   // Load the function to call from the message ref table.
7157   Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0);
7158   llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
7159 
7160   calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType);
7161   CGCallee callee(CGCalleeInfo(), calleePtr);
7162 
7163   RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
7164   return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs,
7165                              requiresnullCheck ? method : nullptr);
7166 }
7167 
7168 /// Generate code for a message send expression in the nonfragile abi.
7169 CodeGen::RValue
7170 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
7171                                             ReturnValueSlot Return,
7172                                             QualType ResultType,
7173                                             Selector Sel,
7174                                             llvm::Value *Receiver,
7175                                             const CallArgList &CallArgs,
7176                                             const ObjCInterfaceDecl *Class,
7177                                             const ObjCMethodDecl *Method) {
7178   return isVTableDispatchedSelector(Sel)
7179     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7180                             Receiver, CGF.getContext().getObjCIdType(),
7181                             false, CallArgs, Method)
7182     : EmitMessageSend(CGF, Return, ResultType,
7183                       EmitSelector(CGF, Sel),
7184                       Receiver, CGF.getContext().getObjCIdType(),
7185                       false, CallArgs, Method, Class, ObjCTypes);
7186 }
7187 
7188 llvm::Constant *
7189 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID,
7190                                        bool metaclass,
7191                                        ForDefinition_t isForDefinition) {
7192   auto prefix =
7193     (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix());
7194   return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(),
7195                         isForDefinition,
7196                         ID->isWeakImported(),
7197                         !isForDefinition
7198                           && CGM.getTriple().isOSBinFormatCOFF()
7199                           && ID->hasAttr<DLLImportAttr>());
7200 }
7201 
7202 llvm::Constant *
7203 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name,
7204                                        ForDefinition_t IsForDefinition,
7205                                        bool Weak, bool DLLImport) {
7206   llvm::GlobalValue::LinkageTypes L =
7207       Weak ? llvm::GlobalValue::ExternalWeakLinkage
7208            : llvm::GlobalValue::ExternalLinkage;
7209 
7210   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
7211   if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) {
7212     auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L,
7213                                            nullptr, Name);
7214 
7215     if (DLLImport)
7216       NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
7217 
7218     if (GV) {
7219       GV->replaceAllUsesWith(
7220           llvm::ConstantExpr::getBitCast(NewGV, GV->getType()));
7221       GV->eraseFromParent();
7222     }
7223     GV = NewGV;
7224     CGM.getModule().getGlobalList().push_back(GV);
7225   }
7226 
7227   assert(GV->getLinkage() == L);
7228   return GV;
7229 }
7230 
7231 llvm::Value *
7232 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
7233                                            IdentifierInfo *II,
7234                                            const ObjCInterfaceDecl *ID) {
7235   CharUnits Align = CGF.getPointerAlign();
7236   llvm::GlobalVariable *&Entry = ClassReferences[II];
7237 
7238   if (!Entry) {
7239     llvm::Constant *ClassGV;
7240     if (ID) {
7241       ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7242     } else {
7243       ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(),
7244                                NotForDefinition);
7245     }
7246 
7247     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7248                                      false, llvm::GlobalValue::PrivateLinkage,
7249                                      ClassGV, "OBJC_CLASSLIST_REFERENCES_$_");
7250     Entry->setAlignment(Align.getQuantity());
7251     Entry->setSection(GetSectionName("__objc_classrefs",
7252                                      "regular,no_dead_strip"));
7253     CGM.addCompilerUsedGlobal(Entry);
7254   }
7255   return CGF.Builder.CreateAlignedLoad(Entry, Align);
7256 }
7257 
7258 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
7259                                                   const ObjCInterfaceDecl *ID) {
7260   // If the class has the objc_runtime_visible attribute, we need to
7261   // use the Objective-C runtime to get the class.
7262   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
7263     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
7264 
7265   return EmitClassRefFromId(CGF, ID->getIdentifier(), ID);
7266 }
7267 
7268 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
7269                                                     CodeGenFunction &CGF) {
7270   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
7271   return EmitClassRefFromId(CGF, II, nullptr);
7272 }
7273 
7274 llvm::Value *
7275 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
7276                                           const ObjCInterfaceDecl *ID) {
7277   CharUnits Align = CGF.getPointerAlign();
7278   llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
7279 
7280   if (!Entry) {
7281     auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7282     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7283                                      false, llvm::GlobalValue::PrivateLinkage,
7284                                      ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7285     Entry->setAlignment(Align.getQuantity());
7286     Entry->setSection(GetSectionName("__objc_superrefs",
7287                                      "regular,no_dead_strip"));
7288     CGM.addCompilerUsedGlobal(Entry);
7289   }
7290   return CGF.Builder.CreateAlignedLoad(Entry, Align);
7291 }
7292 
7293 /// EmitMetaClassRef - Return a Value * of the address of _class_t
7294 /// meta-data
7295 ///
7296 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
7297                                                       const ObjCInterfaceDecl *ID,
7298                                                       bool Weak) {
7299   CharUnits Align = CGF.getPointerAlign();
7300   llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
7301   if (!Entry) {
7302     auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition);
7303 
7304     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7305                                      false, llvm::GlobalValue::PrivateLinkage,
7306                                      MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7307     Entry->setAlignment(Align.getQuantity());
7308 
7309     Entry->setSection(GetSectionName("__objc_superrefs",
7310                                      "regular,no_dead_strip"));
7311     CGM.addCompilerUsedGlobal(Entry);
7312   }
7313 
7314   return CGF.Builder.CreateAlignedLoad(Entry, Align);
7315 }
7316 
7317 /// GetClass - Return a reference to the class for the given interface
7318 /// decl.
7319 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
7320                                               const ObjCInterfaceDecl *ID) {
7321   if (ID->isWeakImported()) {
7322     auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7323     (void)ClassGV;
7324     assert(!isa<llvm::GlobalVariable>(ClassGV) ||
7325            cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage());
7326   }
7327 
7328   return EmitClassRef(CGF, ID);
7329 }
7330 
7331 /// Generates a message send where the super is the receiver.  This is
7332 /// a message send to self with special delivery semantics indicating
7333 /// which class's method should be called.
7334 CodeGen::RValue
7335 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
7336                                                  ReturnValueSlot Return,
7337                                                  QualType ResultType,
7338                                                  Selector Sel,
7339                                                  const ObjCInterfaceDecl *Class,
7340                                                  bool isCategoryImpl,
7341                                                  llvm::Value *Receiver,
7342                                                  bool IsClassMessage,
7343                                                  const CodeGen::CallArgList &CallArgs,
7344                                                  const ObjCMethodDecl *Method) {
7345   // ...
7346   // Create and init a super structure; this is a (receiver, class)
7347   // pair we will pass to objc_msgSendSuper.
7348   Address ObjCSuper =
7349     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
7350                          "objc_super");
7351 
7352   llvm::Value *ReceiverAsObject =
7353     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7354   CGF.Builder.CreateStore(ReceiverAsObject,
7355                           CGF.Builder.CreateStructGEP(ObjCSuper, 0));
7356 
7357   // If this is a class message the metaclass is passed as the target.
7358   llvm::Value *Target;
7359   if (IsClassMessage)
7360       Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
7361   else
7362     Target = EmitSuperClassRef(CGF, Class);
7363 
7364   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7365   // ObjCTypes types.
7366   llvm::Type *ClassTy =
7367     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
7368   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
7369   CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1));
7370 
7371   return (isVTableDispatchedSelector(Sel))
7372     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7373                             ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7374                             true, CallArgs, Method)
7375     : EmitMessageSend(CGF, Return, ResultType,
7376                       EmitSelector(CGF, Sel),
7377                       ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7378                       true, CallArgs, Method, Class, ObjCTypes);
7379 }
7380 
7381 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7382                                                   Selector Sel) {
7383   Address Addr = EmitSelectorAddr(CGF, Sel);
7384 
7385   llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7386   LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7387                   llvm::MDNode::get(VMContext, None));
7388   return LI;
7389 }
7390 
7391 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF,
7392                                                  Selector Sel) {
7393   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7394 
7395   CharUnits Align = CGF.getPointerAlign();
7396   if (!Entry) {
7397     llvm::Constant *Casted =
7398       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
7399                                      ObjCTypes.SelectorPtrTy);
7400     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy,
7401                                      false, llvm::GlobalValue::PrivateLinkage,
7402                                      Casted, "OBJC_SELECTOR_REFERENCES_");
7403     Entry->setExternallyInitialized(true);
7404     Entry->setSection(GetSectionName("__objc_selrefs",
7405                                      "literal_pointers,no_dead_strip"));
7406     Entry->setAlignment(Align.getQuantity());
7407     CGM.addCompilerUsedGlobal(Entry);
7408   }
7409 
7410   return Address(Entry, Align);
7411 }
7412 
7413 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7414 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7415 ///
7416 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7417                                                 llvm::Value *src,
7418                                                 Address dst,
7419                                                 llvm::Value *ivarOffset) {
7420   llvm::Type * SrcTy = src->getType();
7421   if (!isa<llvm::PointerType>(SrcTy)) {
7422     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7423     assert(Size <= 8 && "does not support size > 8");
7424     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7425            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7426     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7427   }
7428   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7429   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7430   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
7431   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7432 }
7433 
7434 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7435 /// objc_assign_strongCast (id src, id *dst)
7436 ///
7437 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7438   CodeGen::CodeGenFunction &CGF,
7439   llvm::Value *src, Address dst) {
7440   llvm::Type * SrcTy = src->getType();
7441   if (!isa<llvm::PointerType>(SrcTy)) {
7442     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7443     assert(Size <= 8 && "does not support size > 8");
7444     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7445            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7446     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7447   }
7448   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7449   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7450   llvm::Value *args[] = { src, dst.getPointer() };
7451   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7452                               args, "weakassign");
7453 }
7454 
7455 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7456   CodeGen::CodeGenFunction &CGF,
7457   Address DestPtr,
7458   Address SrcPtr,
7459   llvm::Value *Size) {
7460   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
7461   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
7462   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7463   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7464 }
7465 
7466 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7467 /// object: objc_read_weak (id *src)
7468 ///
7469 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7470   CodeGen::CodeGenFunction &CGF,
7471   Address AddrWeakObj) {
7472   llvm::Type *DestTy = AddrWeakObj.getElementType();
7473   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
7474   llvm::Value *read_weak =
7475     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7476                                 AddrWeakObj.getPointer(), "weakread");
7477   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7478   return read_weak;
7479 }
7480 
7481 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7482 /// objc_assign_weak (id src, id *dst)
7483 ///
7484 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7485                                                 llvm::Value *src, Address dst) {
7486   llvm::Type * SrcTy = src->getType();
7487   if (!isa<llvm::PointerType>(SrcTy)) {
7488     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7489     assert(Size <= 8 && "does not support size > 8");
7490     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7491            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7492     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7493   }
7494   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7495   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7496   llvm::Value *args[] = { src, dst.getPointer() };
7497   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7498                               args, "weakassign");
7499 }
7500 
7501 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7502 /// objc_assign_global (id src, id *dst)
7503 ///
7504 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7505                                           llvm::Value *src, Address dst,
7506                                           bool threadlocal) {
7507   llvm::Type * SrcTy = src->getType();
7508   if (!isa<llvm::PointerType>(SrcTy)) {
7509     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7510     assert(Size <= 8 && "does not support size > 8");
7511     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7512            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7513     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7514   }
7515   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7516   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7517   llvm::Value *args[] = { src, dst.getPointer() };
7518   if (!threadlocal)
7519     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7520                                 args, "globalassign");
7521   else
7522     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7523                                 args, "threadlocalassign");
7524 }
7525 
7526 void
7527 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7528                                              const ObjCAtSynchronizedStmt &S) {
7529   EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(),
7530                          ObjCTypes.getSyncExitFn());
7531 }
7532 
7533 llvm::Constant *
7534 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7535   // There's a particular fixed type info for 'id'.
7536   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
7537     auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7538     if (!IDEHType) {
7539       IDEHType =
7540           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7541                                    llvm::GlobalValue::ExternalLinkage, nullptr,
7542                                    "OBJC_EHTYPE_id");
7543       if (CGM.getTriple().isOSBinFormatCOFF())
7544         IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id"));
7545     }
7546     return IDEHType;
7547   }
7548 
7549   // All other types should be Objective-C interface pointer types.
7550   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
7551   assert(PT && "Invalid @catch type.");
7552 
7553   const ObjCInterfaceType *IT = PT->getInterfaceType();
7554   assert(IT && "Invalid @catch type.");
7555 
7556   return GetInterfaceEHType(IT->getDecl(), NotForDefinition);
7557 }
7558 
7559 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7560                                          const ObjCAtTryStmt &S) {
7561   EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(),
7562                    ObjCTypes.getObjCEndCatchFn(),
7563                    ObjCTypes.getExceptionRethrowFn());
7564 }
7565 
7566 /// EmitThrowStmt - Generate code for a throw statement.
7567 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7568                                            const ObjCAtThrowStmt &S,
7569                                            bool ClearInsertionPoint) {
7570   if (const Expr *ThrowExpr = S.getThrowExpr()) {
7571     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7572     Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7573     llvm::CallBase *Call =
7574         CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception);
7575     Call->setDoesNotReturn();
7576   } else {
7577     llvm::CallBase *Call =
7578         CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn());
7579     Call->setDoesNotReturn();
7580   }
7581 
7582   CGF.Builder.CreateUnreachable();
7583   if (ClearInsertionPoint)
7584     CGF.Builder.ClearInsertionPoint();
7585 }
7586 
7587 llvm::Constant *
7588 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7589                                            ForDefinition_t IsForDefinition) {
7590   llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7591   StringRef ClassName = ID->getObjCRuntimeNameAsString();
7592 
7593   // If we don't need a definition, return the entry if found or check
7594   // if we use an external reference.
7595   if (!IsForDefinition) {
7596     if (Entry)
7597       return Entry;
7598 
7599     // If this type (or a super class) has the __objc_exception__
7600     // attribute, emit an external reference.
7601     if (hasObjCExceptionAttribute(CGM.getContext(), ID)) {
7602       std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str();
7603       Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7604                                        false, llvm::GlobalValue::ExternalLinkage,
7605                                        nullptr, EHTypeName);
7606       CGM.setGVProperties(Entry, ID);
7607       return Entry;
7608     }
7609   }
7610 
7611   // Otherwise we need to either make a new entry or fill in the initializer.
7612   assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7613 
7614   std::string VTableName = "objc_ehtype_vtable";
7615   auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName);
7616   if (!VTableGV) {
7617     VTableGV =
7618         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false,
7619                                  llvm::GlobalValue::ExternalLinkage, nullptr,
7620                                  VTableName);
7621     if (CGM.getTriple().isOSBinFormatCOFF())
7622       VTableGV->setDLLStorageClass(getStorage(CGM, VTableName));
7623   }
7624 
7625   llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7626   ConstantInitBuilder builder(CGM);
7627   auto values = builder.beginStruct(ObjCTypes.EHTypeTy);
7628   values.add(
7629     llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(),
7630                                                  VTableGV, VTableIdx));
7631   values.add(GetClassName(ClassName));
7632   values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition));
7633 
7634   llvm::GlobalValue::LinkageTypes L = IsForDefinition
7635                                           ? llvm::GlobalValue::ExternalLinkage
7636                                           : llvm::GlobalValue::WeakAnyLinkage;
7637   if (Entry) {
7638     values.finishAndSetAsInitializer(Entry);
7639     Entry->setAlignment(CGM.getPointerAlign().getQuantity());
7640   } else {
7641     Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName,
7642                                          CGM.getPointerAlign(),
7643                                          /*constant*/ false,
7644                                          L);
7645     if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7646       CGM.setGVProperties(Entry, ID);
7647   }
7648   assert(Entry->getLinkage() == L);
7649 
7650   if (!CGM.getTriple().isOSBinFormatCOFF())
7651     if (ID->getVisibility() == HiddenVisibility)
7652       Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7653 
7654   if (IsForDefinition)
7655     if (CGM.getTriple().isOSBinFormatMachO())
7656       Entry->setSection("__DATA,__objc_const");
7657 
7658   return Entry;
7659 }
7660 
7661 /* *** */
7662 
7663 CodeGen::CGObjCRuntime *
7664 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7665   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7666   case ObjCRuntime::FragileMacOSX:
7667   return new CGObjCMac(CGM);
7668 
7669   case ObjCRuntime::MacOSX:
7670   case ObjCRuntime::iOS:
7671   case ObjCRuntime::WatchOS:
7672     return new CGObjCNonFragileABIMac(CGM);
7673 
7674   case ObjCRuntime::GNUstep:
7675   case ObjCRuntime::GCC:
7676   case ObjCRuntime::ObjFW:
7677     llvm_unreachable("these runtimes are not Mac runtimes");
7678   }
7679   llvm_unreachable("bad runtime");
7680 }
7681