1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::FunctionCallee getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::FunctionCallee getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::FunctionCallee getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::FunctionCallee getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::FunctionCallee getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::FunctionCallee getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::FunctionCallee getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::FunctionCallee getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::FunctionCallee getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::FunctionCallee getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::FunctionCallee getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::FunctionCallee GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::FunctionCallee getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::FunctionCallee getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::FunctionCallee getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::FunctionCallee getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::FunctionCallee getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::FunctionCallee getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::FunctionCallee getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::FunctionCallee getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::FunctionCallee getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::FunctionCallee getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::FunctionCallee getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::FunctionCallee getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::FunctionCallee getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::FunctionCallee getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::FunctionCallee getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 } 719 720 llvm::FunctionCallee getObjCBeginCatchFn() { 721 llvm::Type *params[] = { Int8PtrTy }; 722 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 723 params, false), 724 "objc_begin_catch"); 725 } 726 727 /// Class objc_loadClassref (void *) 728 /// 729 /// Loads from a classref. For Objective-C stub classes, this invokes the 730 /// initialization callback stored inside the stub. For all other classes 731 /// this simply dereferences the pointer. 732 llvm::FunctionCallee getLoadClassrefFn() const { 733 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 734 // be called a lot. 735 // 736 // Also it is safe to make it readnone, since we never load or store the 737 // classref except by calling this function. 738 llvm::Type *params[] = { Int8PtrPtrTy }; 739 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 740 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 741 "objc_loadClassref", 742 llvm::AttributeList::get(CGM.getLLVMContext(), 743 llvm::AttributeList::FunctionIndex, 744 {llvm::Attribute::NonLazyBind, 745 llvm::Attribute::ReadNone, 746 llvm::Attribute::NoUnwind})); 747 if (!CGM.getTriple().isOSBinFormatCOFF()) 748 cast<llvm::Function>(F.getCallee())->setLinkage( 749 llvm::Function::ExternalWeakLinkage); 750 751 return F; 752 } 753 754 llvm::StructType *EHTypeTy; 755 llvm::Type *EHTypePtrTy; 756 757 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 758 }; 759 760 enum class ObjCLabelType { 761 ClassName, 762 MethodVarName, 763 MethodVarType, 764 PropertyName, 765 }; 766 767 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 768 public: 769 class SKIP_SCAN { 770 public: 771 unsigned skip; 772 unsigned scan; 773 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 774 : skip(_skip), scan(_scan) {} 775 }; 776 777 /// opcode for captured block variables layout 'instructions'. 778 /// In the following descriptions, 'I' is the value of the immediate field. 779 /// (field following the opcode). 780 /// 781 enum BLOCK_LAYOUT_OPCODE { 782 /// An operator which affects how the following layout should be 783 /// interpreted. 784 /// I == 0: Halt interpretation and treat everything else as 785 /// a non-pointer. Note that this instruction is equal 786 /// to '\0'. 787 /// I != 0: Currently unused. 788 BLOCK_LAYOUT_OPERATOR = 0, 789 790 /// The next I+1 bytes do not contain a value of object pointer type. 791 /// Note that this can leave the stream unaligned, meaning that 792 /// subsequent word-size instructions do not begin at a multiple of 793 /// the pointer size. 794 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 795 796 /// The next I+1 words do not contain a value of object pointer type. 797 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 798 /// when the required skip quantity is a multiple of the pointer size. 799 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 800 801 /// The next I+1 words are __strong pointers to Objective-C 802 /// objects or blocks. 803 BLOCK_LAYOUT_STRONG = 3, 804 805 /// The next I+1 words are pointers to __block variables. 806 BLOCK_LAYOUT_BYREF = 4, 807 808 /// The next I+1 words are __weak pointers to Objective-C 809 /// objects or blocks. 810 BLOCK_LAYOUT_WEAK = 5, 811 812 /// The next I+1 words are __unsafe_unretained pointers to 813 /// Objective-C objects or blocks. 814 BLOCK_LAYOUT_UNRETAINED = 6 815 816 /// The next I+1 words are block or object pointers with some 817 /// as-yet-unspecified ownership semantics. If we add more 818 /// flavors of ownership semantics, values will be taken from 819 /// this range. 820 /// 821 /// This is included so that older tools can at least continue 822 /// processing the layout past such things. 823 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 824 825 /// All other opcodes are reserved. Halt interpretation and 826 /// treat everything else as opaque. 827 }; 828 829 class RUN_SKIP { 830 public: 831 enum BLOCK_LAYOUT_OPCODE opcode; 832 CharUnits block_var_bytepos; 833 CharUnits block_var_size; 834 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 835 CharUnits BytePos = CharUnits::Zero(), 836 CharUnits Size = CharUnits::Zero()) 837 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 838 839 // Allow sorting based on byte pos. 840 bool operator<(const RUN_SKIP &b) const { 841 return block_var_bytepos < b.block_var_bytepos; 842 } 843 }; 844 845 protected: 846 llvm::LLVMContext &VMContext; 847 // FIXME! May not be needing this after all. 848 unsigned ObjCABI; 849 850 // arc/mrr layout of captured block literal variables. 851 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 852 853 /// LazySymbols - Symbols to generate a lazy reference for. See 854 /// DefinedSymbols and FinishModule(). 855 llvm::SetVector<IdentifierInfo*> LazySymbols; 856 857 /// DefinedSymbols - External symbols which are defined by this 858 /// module. The symbols in this list and LazySymbols are used to add 859 /// special linker symbols which ensure that Objective-C modules are 860 /// linked properly. 861 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 862 863 /// ClassNames - uniqued class names. 864 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 865 866 /// MethodVarNames - uniqued method variable names. 867 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 868 869 /// DefinedCategoryNames - list of category names in form Class_Category. 870 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 871 872 /// MethodVarTypes - uniqued method type signatures. We have to use 873 /// a StringMap here because have no other unique reference. 874 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 875 876 /// MethodDefinitions - map of methods which have been defined in 877 /// this translation unit. 878 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 879 880 /// DirectMethodDefinitions - map of direct methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 883 884 /// PropertyNames - uniqued method variable names. 885 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 886 887 /// ClassReferences - uniqued class references. 888 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 889 890 /// SelectorReferences - uniqued selector references. 891 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 892 893 /// Protocols - Protocols for which an objc_protocol structure has 894 /// been emitted. Forward declarations are handled by creating an 895 /// empty structure whose initializer is filled in when/if defined. 896 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 897 898 /// DefinedProtocols - Protocols which have actually been 899 /// defined. We should not need this, see FIXME in GenerateProtocol. 900 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 901 902 /// DefinedClasses - List of defined classes. 903 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 904 905 /// ImplementedClasses - List of @implemented classes. 906 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 907 908 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 909 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 910 911 /// DefinedCategories - List of defined categories. 912 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 913 914 /// DefinedStubCategories - List of defined categories on class stubs. 915 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 916 917 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 918 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 919 920 /// Cached reference to the class for constant strings. This value has type 921 /// int * but is actually an Obj-C class pointer. 922 llvm::WeakTrackingVH ConstantStringClassRef; 923 924 /// The LLVM type corresponding to NSConstantString. 925 llvm::StructType *NSConstantStringType = nullptr; 926 927 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 928 929 /// GetMethodVarName - Return a unique constant for the given 930 /// selector's name. The return value has type char *. 931 llvm::Constant *GetMethodVarName(Selector Sel); 932 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 933 934 /// GetMethodVarType - Return a unique constant for the given 935 /// method's type encoding string. The return value has type char *. 936 937 // FIXME: This is a horrible name. 938 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 939 bool Extended = false); 940 llvm::Constant *GetMethodVarType(const FieldDecl *D); 941 942 /// GetPropertyName - Return a unique constant for the given 943 /// name. The return value has type char *. 944 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 945 946 // FIXME: This can be dropped once string functions are unified. 947 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 948 const Decl *Container); 949 950 /// GetClassName - Return a unique constant for the given selector's 951 /// runtime name (which may change via use of objc_runtime_name attribute on 952 /// class or protocol definition. The return value has type char *. 953 llvm::Constant *GetClassName(StringRef RuntimeName); 954 955 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 956 957 /// BuildIvarLayout - Builds ivar layout bitmap for the class 958 /// implementation for the __strong or __weak case. 959 /// 960 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 961 /// are any weak ivars defined directly in the class. Meaningless unless 962 /// building a weak layout. Does not guarantee that the layout will 963 /// actually have any entries, because the ivar might be under-aligned. 964 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 965 CharUnits beginOffset, 966 CharUnits endOffset, 967 bool forStrongLayout, 968 bool hasMRCWeakIvars); 969 970 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 971 CharUnits beginOffset, 972 CharUnits endOffset) { 973 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 974 } 975 976 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 977 CharUnits beginOffset, 978 CharUnits endOffset, 979 bool hasMRCWeakIvars) { 980 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 981 } 982 983 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 984 985 void UpdateRunSkipBlockVars(bool IsByref, 986 Qualifiers::ObjCLifetime LifeTime, 987 CharUnits FieldOffset, 988 CharUnits FieldSize); 989 990 void BuildRCBlockVarRecordLayout(const RecordType *RT, 991 CharUnits BytePos, bool &HasUnion, 992 bool ByrefLayout=false); 993 994 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 995 const RecordDecl *RD, 996 ArrayRef<const FieldDecl*> RecFields, 997 CharUnits BytePos, bool &HasUnion, 998 bool ByrefLayout); 999 1000 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1001 1002 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1003 1004 /// GetIvarLayoutName - Returns a unique constant for the given 1005 /// ivar layout bitmap. 1006 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1007 const ObjCCommonTypesHelper &ObjCTypes); 1008 1009 /// EmitPropertyList - Emit the given property list. The return 1010 /// value has type PropertyListPtrTy. 1011 llvm::Constant *EmitPropertyList(Twine Name, 1012 const Decl *Container, 1013 const ObjCContainerDecl *OCD, 1014 const ObjCCommonTypesHelper &ObjCTypes, 1015 bool IsClassProperty); 1016 1017 /// EmitProtocolMethodTypes - Generate the array of extended method type 1018 /// strings. The return value has type Int8PtrPtrTy. 1019 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1020 ArrayRef<llvm::Constant*> MethodTypes, 1021 const ObjCCommonTypesHelper &ObjCTypes); 1022 1023 /// GetProtocolRef - Return a reference to the internal protocol 1024 /// description, creating an empty one if it has not been 1025 /// defined. The return value has type ProtocolPtrTy. 1026 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1027 1028 /// Return a reference to the given Class using runtime calls rather than 1029 /// by a symbol reference. 1030 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1031 const ObjCInterfaceDecl *ID, 1032 ObjCCommonTypesHelper &ObjCTypes); 1033 1034 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1035 1036 public: 1037 /// CreateMetadataVar - Create a global variable with internal 1038 /// linkage for use by the Objective-C runtime. 1039 /// 1040 /// This is a convenience wrapper which not only creates the 1041 /// variable, but also sets the section and alignment and adds the 1042 /// global to the "llvm.used" list. 1043 /// 1044 /// \param Name - The variable name. 1045 /// \param Init - The variable initializer; this is also used to 1046 /// define the type of the variable. 1047 /// \param Section - The section the variable should go into, or empty. 1048 /// \param Align - The alignment for the variable, or 0. 1049 /// \param AddToUsed - Whether the variable should be added to 1050 /// "llvm.used". 1051 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1052 ConstantStructBuilder &Init, 1053 StringRef Section, CharUnits Align, 1054 bool AddToUsed); 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 llvm::Constant *Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 1060 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1061 ObjCLabelType LabelType, 1062 bool ForceNonFragileABI = false, 1063 bool NullTerminate = true); 1064 1065 protected: 1066 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1067 ReturnValueSlot Return, 1068 QualType ResultType, 1069 Selector Sel, 1070 llvm::Value *Arg0, 1071 QualType Arg0Ty, 1072 bool IsSuper, 1073 const CallArgList &CallArgs, 1074 const ObjCMethodDecl *OMD, 1075 const ObjCInterfaceDecl *ClassReceiver, 1076 const ObjCCommonTypesHelper &ObjCTypes); 1077 1078 /// EmitImageInfo - Emit the image info marker used to encode some module 1079 /// level information. 1080 void EmitImageInfo(); 1081 1082 public: 1083 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1084 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1085 1086 bool isNonFragileABI() const { 1087 return ObjCABI == 2; 1088 } 1089 1090 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1091 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1092 1093 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1094 const ObjCContainerDecl *CD=nullptr) override; 1095 1096 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1097 const ObjCContainerDecl *CD); 1098 1099 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1100 const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD) override; 1102 1103 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1104 1105 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1106 /// object for the given declaration, emitting it if needed. These 1107 /// forward references will be filled in with empty bodies if no 1108 /// definition is seen. The return value has type ProtocolPtrTy. 1109 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1110 1111 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1112 1113 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1114 const CGBlockInfo &blockInfo) override; 1115 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1116 const CGBlockInfo &blockInfo) override; 1117 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 1120 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1121 QualType T) override; 1122 1123 private: 1124 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1125 }; 1126 1127 namespace { 1128 1129 enum class MethodListType { 1130 CategoryInstanceMethods, 1131 CategoryClassMethods, 1132 InstanceMethods, 1133 ClassMethods, 1134 ProtocolInstanceMethods, 1135 ProtocolClassMethods, 1136 OptionalProtocolInstanceMethods, 1137 OptionalProtocolClassMethods, 1138 }; 1139 1140 /// A convenience class for splitting the methods of a protocol into 1141 /// the four interesting groups. 1142 class ProtocolMethodLists { 1143 public: 1144 enum Kind { 1145 RequiredInstanceMethods, 1146 RequiredClassMethods, 1147 OptionalInstanceMethods, 1148 OptionalClassMethods 1149 }; 1150 enum { 1151 NumProtocolMethodLists = 4 1152 }; 1153 1154 static MethodListType getMethodListKind(Kind kind) { 1155 switch (kind) { 1156 case RequiredInstanceMethods: 1157 return MethodListType::ProtocolInstanceMethods; 1158 case RequiredClassMethods: 1159 return MethodListType::ProtocolClassMethods; 1160 case OptionalInstanceMethods: 1161 return MethodListType::OptionalProtocolInstanceMethods; 1162 case OptionalClassMethods: 1163 return MethodListType::OptionalProtocolClassMethods; 1164 } 1165 llvm_unreachable("bad kind"); 1166 } 1167 1168 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1169 1170 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1171 ProtocolMethodLists result; 1172 1173 for (auto MD : PD->methods()) { 1174 size_t index = (2 * size_t(MD->isOptional())) 1175 + (size_t(MD->isClassMethod())); 1176 result.Methods[index].push_back(MD); 1177 } 1178 1179 return result; 1180 } 1181 1182 template <class Self> 1183 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1184 // In both ABIs, the method types list is parallel with the 1185 // concatenation of the methods arrays in the following order: 1186 // instance methods 1187 // class methods 1188 // optional instance methods 1189 // optional class methods 1190 SmallVector<llvm::Constant*, 8> result; 1191 1192 // Methods is already in the correct order for both ABIs. 1193 for (auto &list : Methods) { 1194 for (auto MD : list) { 1195 result.push_back(self->GetMethodVarType(MD, true)); 1196 } 1197 } 1198 1199 return result; 1200 } 1201 1202 template <class Self> 1203 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1204 Kind kind) const { 1205 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1206 getMethodListKind(kind), Methods[kind]); 1207 } 1208 }; 1209 1210 } // end anonymous namespace 1211 1212 class CGObjCMac : public CGObjCCommonMac { 1213 private: 1214 friend ProtocolMethodLists; 1215 1216 ObjCTypesHelper ObjCTypes; 1217 1218 /// EmitModuleInfo - Another marker encoding module level 1219 /// information. 1220 void EmitModuleInfo(); 1221 1222 /// EmitModuleSymols - Emit module symbols, the list of defined 1223 /// classes and categories. The result has type SymtabPtrTy. 1224 llvm::Constant *EmitModuleSymbols(); 1225 1226 /// FinishModule - Write out global data structures at the end of 1227 /// processing a translation unit. 1228 void FinishModule(); 1229 1230 /// EmitClassExtension - Generate the class extension structure used 1231 /// to store the weak ivar layout and properties. The return value 1232 /// has type ClassExtensionPtrTy. 1233 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1234 CharUnits instanceSize, 1235 bool hasMRCWeakIvars, 1236 bool isMetaclass); 1237 1238 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1239 /// for the given class. 1240 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1241 const ObjCInterfaceDecl *ID); 1242 1243 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1244 IdentifierInfo *II); 1245 1246 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1247 1248 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1249 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1250 1251 /// EmitIvarList - Emit the ivar list for the given 1252 /// implementation. If ForClass is true the list of class ivars 1253 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1254 /// interface ivars will be emitted. The return value has type 1255 /// IvarListPtrTy. 1256 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1257 bool ForClass); 1258 1259 /// EmitMetaClass - Emit a forward reference to the class structure 1260 /// for the metaclass of the given interface. The return value has 1261 /// type ClassPtrTy. 1262 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1263 1264 /// EmitMetaClass - Emit a class structure for the metaclass of the 1265 /// given implementation. The return value has type ClassPtrTy. 1266 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1267 llvm::Constant *Protocols, 1268 ArrayRef<const ObjCMethodDecl *> Methods); 1269 1270 void emitMethodConstant(ConstantArrayBuilder &builder, 1271 const ObjCMethodDecl *MD); 1272 1273 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1274 const ObjCMethodDecl *MD); 1275 1276 /// EmitMethodList - Emit the method list for the given 1277 /// implementation. The return value has type MethodListPtrTy. 1278 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1279 ArrayRef<const ObjCMethodDecl *> Methods); 1280 1281 /// GetOrEmitProtocol - Get the protocol object for the given 1282 /// declaration, emitting it if necessary. The return value has type 1283 /// ProtocolPtrTy. 1284 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1285 1286 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1287 /// object for the given declaration, emitting it if needed. These 1288 /// forward references will be filled in with empty bodies if no 1289 /// definition is seen. The return value has type ProtocolPtrTy. 1290 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1291 1292 /// EmitProtocolExtension - Generate the protocol extension 1293 /// structure used to store optional instance and class methods, and 1294 /// protocol properties. The return value has type 1295 /// ProtocolExtensionPtrTy. 1296 llvm::Constant * 1297 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1298 const ProtocolMethodLists &methodLists); 1299 1300 /// EmitProtocolList - Generate the list of referenced 1301 /// protocols. The return value has type ProtocolListPtrTy. 1302 llvm::Constant *EmitProtocolList(Twine Name, 1303 ObjCProtocolDecl::protocol_iterator begin, 1304 ObjCProtocolDecl::protocol_iterator end); 1305 1306 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1307 /// for the given selector. 1308 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1309 Address EmitSelectorAddr(Selector Sel); 1310 1311 public: 1312 CGObjCMac(CodeGen::CodeGenModule &cgm); 1313 1314 llvm::Constant *getNSConstantStringClassRef() override; 1315 1316 llvm::Function *ModuleInitFunction() override; 1317 1318 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1319 ReturnValueSlot Return, 1320 QualType ResultType, 1321 Selector Sel, llvm::Value *Receiver, 1322 const CallArgList &CallArgs, 1323 const ObjCInterfaceDecl *Class, 1324 const ObjCMethodDecl *Method) override; 1325 1326 CodeGen::RValue 1327 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1328 ReturnValueSlot Return, QualType ResultType, 1329 Selector Sel, const ObjCInterfaceDecl *Class, 1330 bool isCategoryImpl, llvm::Value *Receiver, 1331 bool IsClassMessage, const CallArgList &CallArgs, 1332 const ObjCMethodDecl *Method) override; 1333 1334 llvm::Value *GetClass(CodeGenFunction &CGF, 1335 const ObjCInterfaceDecl *ID) override; 1336 1337 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1338 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1339 1340 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1341 /// untyped one. 1342 llvm::Value *GetSelector(CodeGenFunction &CGF, 1343 const ObjCMethodDecl *Method) override; 1344 1345 llvm::Constant *GetEHType(QualType T) override; 1346 1347 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1348 1349 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1350 1351 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1352 1353 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1354 const ObjCProtocolDecl *PD) override; 1355 1356 llvm::FunctionCallee GetPropertyGetFunction() override; 1357 llvm::FunctionCallee GetPropertySetFunction() override; 1358 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1359 bool copy) override; 1360 llvm::FunctionCallee GetGetStructFunction() override; 1361 llvm::FunctionCallee GetSetStructFunction() override; 1362 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1363 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1364 llvm::FunctionCallee EnumerationMutationFunction() override; 1365 1366 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1367 const ObjCAtTryStmt &S) override; 1368 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1369 const ObjCAtSynchronizedStmt &S) override; 1370 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1371 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1372 bool ClearInsertionPoint=true) override; 1373 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1374 Address AddrWeakObj) override; 1375 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1376 llvm::Value *src, Address dst) override; 1377 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1378 llvm::Value *src, Address dest, 1379 bool threadlocal = false) override; 1380 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1381 llvm::Value *src, Address dest, 1382 llvm::Value *ivarOffset) override; 1383 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1384 llvm::Value *src, Address dest) override; 1385 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1386 Address dest, Address src, 1387 llvm::Value *size) override; 1388 1389 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1390 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1391 unsigned CVRQualifiers) override; 1392 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1393 const ObjCInterfaceDecl *Interface, 1394 const ObjCIvarDecl *Ivar) override; 1395 }; 1396 1397 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1398 private: 1399 friend ProtocolMethodLists; 1400 ObjCNonFragileABITypesHelper ObjCTypes; 1401 llvm::GlobalVariable* ObjCEmptyCacheVar; 1402 llvm::Constant* ObjCEmptyVtableVar; 1403 1404 /// SuperClassReferences - uniqued super class references. 1405 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1406 1407 /// MetaClassReferences - uniqued meta class references. 1408 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1409 1410 /// EHTypeReferences - uniqued class ehtype references. 1411 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1412 1413 /// VTableDispatchMethods - List of methods for which we generate 1414 /// vtable-based message dispatch. 1415 llvm::DenseSet<Selector> VTableDispatchMethods; 1416 1417 /// DefinedMetaClasses - List of defined meta-classes. 1418 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1419 1420 /// isVTableDispatchedSelector - Returns true if SEL is a 1421 /// vtable-based selector. 1422 bool isVTableDispatchedSelector(Selector Sel); 1423 1424 /// FinishNonFragileABIModule - Write out global data structures at the end of 1425 /// processing a translation unit. 1426 void FinishNonFragileABIModule(); 1427 1428 /// AddModuleClassList - Add the given list of class pointers to the 1429 /// module with the provided symbol and section names. 1430 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1431 StringRef SymbolName, StringRef SectionName); 1432 1433 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1434 unsigned InstanceStart, 1435 unsigned InstanceSize, 1436 const ObjCImplementationDecl *ID); 1437 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1438 bool isMetaclass, 1439 llvm::Constant *IsAGV, 1440 llvm::Constant *SuperClassGV, 1441 llvm::Constant *ClassRoGV, 1442 bool HiddenVisibility); 1443 1444 void emitMethodConstant(ConstantArrayBuilder &builder, 1445 const ObjCMethodDecl *MD, 1446 bool forProtocol); 1447 1448 /// Emit the method list for the given implementation. The return value 1449 /// has type MethodListnfABITy. 1450 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1451 ArrayRef<const ObjCMethodDecl *> Methods); 1452 1453 /// EmitIvarList - Emit the ivar list for the given 1454 /// implementation. If ForClass is true the list of class ivars 1455 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1456 /// interface ivars will be emitted. The return value has type 1457 /// IvarListnfABIPtrTy. 1458 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1459 1460 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1461 const ObjCIvarDecl *Ivar, 1462 unsigned long int offset); 1463 1464 /// GetOrEmitProtocol - Get the protocol object for the given 1465 /// declaration, emitting it if necessary. The return value has type 1466 /// ProtocolPtrTy. 1467 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1468 1469 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1470 /// object for the given declaration, emitting it if needed. These 1471 /// forward references will be filled in with empty bodies if no 1472 /// definition is seen. The return value has type ProtocolPtrTy. 1473 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1474 1475 /// EmitProtocolList - Generate the list of referenced 1476 /// protocols. The return value has type ProtocolListPtrTy. 1477 llvm::Constant *EmitProtocolList(Twine Name, 1478 ObjCProtocolDecl::protocol_iterator begin, 1479 ObjCProtocolDecl::protocol_iterator end); 1480 1481 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1482 ReturnValueSlot Return, 1483 QualType ResultType, 1484 Selector Sel, 1485 llvm::Value *Receiver, 1486 QualType Arg0Ty, 1487 bool IsSuper, 1488 const CallArgList &CallArgs, 1489 const ObjCMethodDecl *Method); 1490 1491 /// GetClassGlobal - Return the global variable for the Objective-C 1492 /// class of the given name. 1493 llvm::Constant *GetClassGlobal(StringRef Name, 1494 ForDefinition_t IsForDefinition, 1495 bool Weak = false, bool DLLImport = false); 1496 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1497 bool isMetaclass, 1498 ForDefinition_t isForDefinition); 1499 1500 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1501 1502 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1503 const ObjCInterfaceDecl *ID, 1504 llvm::GlobalVariable *Entry); 1505 1506 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1507 /// for the given class reference. 1508 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1509 const ObjCInterfaceDecl *ID); 1510 1511 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1512 IdentifierInfo *II, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1516 1517 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1518 /// for the given super class reference. 1519 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1520 const ObjCInterfaceDecl *ID); 1521 1522 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1523 /// meta-data 1524 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1525 const ObjCInterfaceDecl *ID, bool Weak); 1526 1527 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1528 /// the given ivar. 1529 /// 1530 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1531 const ObjCInterfaceDecl *ID, 1532 const ObjCIvarDecl *Ivar); 1533 1534 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1535 /// for the given selector. 1536 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1537 Address EmitSelectorAddr(Selector Sel); 1538 1539 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1540 /// interface. The return value has type EHTypePtrTy. 1541 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1542 ForDefinition_t IsForDefinition); 1543 1544 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1545 1546 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1547 1548 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1549 uint32_t &InstanceStart, 1550 uint32_t &InstanceSize); 1551 1552 // Shamelessly stolen from Analysis/CFRefCount.cpp 1553 Selector GetNullarySelector(const char* name) const { 1554 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1555 return CGM.getContext().Selectors.getSelector(0, &II); 1556 } 1557 1558 Selector GetUnarySelector(const char* name) const { 1559 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1560 return CGM.getContext().Selectors.getSelector(1, &II); 1561 } 1562 1563 /// ImplementationIsNonLazy - Check whether the given category or 1564 /// class implementation is "non-lazy". 1565 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1566 1567 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1568 const ObjCIvarDecl *IV) { 1569 // Annotate the load as an invariant load iff inside an instance method 1570 // and ivar belongs to instance method's class and one of its super class. 1571 // This check is needed because the ivar offset is a lazily 1572 // initialised value that may depend on objc_msgSend to perform a fixup on 1573 // the first message dispatch. 1574 // 1575 // An additional opportunity to mark the load as invariant arises when the 1576 // base of the ivar access is a parameter to an Objective C method. 1577 // However, because the parameters are not available in the current 1578 // interface, we cannot perform this check. 1579 // 1580 // Note that for direct methods, because objc_msgSend is skipped, 1581 // and that the method may be inlined, this optimization actually 1582 // can't be performed. 1583 if (const ObjCMethodDecl *MD = 1584 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1585 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1586 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1587 return IV->getContainingInterface()->isSuperClassOf(ID); 1588 return false; 1589 } 1590 1591 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1592 // NSObject is a fixed size. If we can see the @implementation of a class 1593 // which inherits from NSObject then we know that all it's offsets also must 1594 // be fixed. FIXME: Can we do this if see a chain of super classes with 1595 // implementations leading to NSObject? 1596 return ID->getImplementation() && ID->getSuperClass() && 1597 ID->getSuperClass()->getName() == "NSObject"; 1598 } 1599 1600 public: 1601 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1602 1603 llvm::Constant *getNSConstantStringClassRef() override; 1604 1605 llvm::Function *ModuleInitFunction() override; 1606 1607 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1608 ReturnValueSlot Return, 1609 QualType ResultType, Selector Sel, 1610 llvm::Value *Receiver, 1611 const CallArgList &CallArgs, 1612 const ObjCInterfaceDecl *Class, 1613 const ObjCMethodDecl *Method) override; 1614 1615 CodeGen::RValue 1616 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1617 ReturnValueSlot Return, QualType ResultType, 1618 Selector Sel, const ObjCInterfaceDecl *Class, 1619 bool isCategoryImpl, llvm::Value *Receiver, 1620 bool IsClassMessage, const CallArgList &CallArgs, 1621 const ObjCMethodDecl *Method) override; 1622 1623 llvm::Value *GetClass(CodeGenFunction &CGF, 1624 const ObjCInterfaceDecl *ID) override; 1625 1626 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1627 { return EmitSelector(CGF, Sel); } 1628 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1629 { return EmitSelectorAddr(Sel); } 1630 1631 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1632 /// untyped one. 1633 llvm::Value *GetSelector(CodeGenFunction &CGF, 1634 const ObjCMethodDecl *Method) override 1635 { return EmitSelector(CGF, Method->getSelector()); } 1636 1637 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1638 1639 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1640 1641 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1642 1643 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1644 const ObjCProtocolDecl *PD) override; 1645 1646 llvm::Constant *GetEHType(QualType T) override; 1647 1648 llvm::FunctionCallee GetPropertyGetFunction() override { 1649 return ObjCTypes.getGetPropertyFn(); 1650 } 1651 llvm::FunctionCallee GetPropertySetFunction() override { 1652 return ObjCTypes.getSetPropertyFn(); 1653 } 1654 1655 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1656 bool copy) override { 1657 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1658 } 1659 1660 llvm::FunctionCallee GetSetStructFunction() override { 1661 return ObjCTypes.getCopyStructFn(); 1662 } 1663 1664 llvm::FunctionCallee GetGetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1669 return ObjCTypes.getCppAtomicObjectFunction(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee EnumerationMutationFunction() override { 1677 return ObjCTypes.getEnumerationMutationFn(); 1678 } 1679 1680 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1681 const ObjCAtTryStmt &S) override; 1682 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1683 const ObjCAtSynchronizedStmt &S) override; 1684 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1685 bool ClearInsertionPoint=true) override; 1686 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1687 Address AddrWeakObj) override; 1688 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1689 llvm::Value *src, Address edst) override; 1690 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1691 llvm::Value *src, Address dest, 1692 bool threadlocal = false) override; 1693 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1694 llvm::Value *src, Address dest, 1695 llvm::Value *ivarOffset) override; 1696 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1697 llvm::Value *src, Address dest) override; 1698 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1699 Address dest, Address src, 1700 llvm::Value *size) override; 1701 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1702 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1703 unsigned CVRQualifiers) override; 1704 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1705 const ObjCInterfaceDecl *Interface, 1706 const ObjCIvarDecl *Ivar) override; 1707 }; 1708 1709 /// A helper class for performing the null-initialization of a return 1710 /// value. 1711 struct NullReturnState { 1712 llvm::BasicBlock *NullBB; 1713 NullReturnState() : NullBB(nullptr) {} 1714 1715 /// Perform a null-check of the given receiver. 1716 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1717 // Make blocks for the null-receiver and call edges. 1718 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1719 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1720 1721 // Check for a null receiver and, if there is one, jump to the 1722 // null-receiver block. There's no point in trying to avoid it: 1723 // we're always going to put *something* there, because otherwise 1724 // we shouldn't have done this null-check in the first place. 1725 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1726 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1727 1728 // Otherwise, start performing the call. 1729 CGF.EmitBlock(callBB); 1730 } 1731 1732 /// Complete the null-return operation. It is valid to call this 1733 /// regardless of whether 'init' has been called. 1734 RValue complete(CodeGenFunction &CGF, 1735 ReturnValueSlot returnSlot, 1736 RValue result, 1737 QualType resultType, 1738 const CallArgList &CallArgs, 1739 const ObjCMethodDecl *Method) { 1740 // If we never had to do a null-check, just use the raw result. 1741 if (!NullBB) return result; 1742 1743 // The continuation block. This will be left null if we don't have an 1744 // IP, which can happen if the method we're calling is marked noreturn. 1745 llvm::BasicBlock *contBB = nullptr; 1746 1747 // Finish the call path. 1748 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1749 if (callBB) { 1750 contBB = CGF.createBasicBlock("msgSend.cont"); 1751 CGF.Builder.CreateBr(contBB); 1752 } 1753 1754 // Okay, start emitting the null-receiver block. 1755 CGF.EmitBlock(NullBB); 1756 1757 // Destroy any consumed arguments we've got. 1758 if (Method) { 1759 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 1760 } 1761 1762 // The phi code below assumes that we haven't needed any control flow yet. 1763 assert(CGF.Builder.GetInsertBlock() == NullBB); 1764 1765 // If we've got a void return, just jump to the continuation block. 1766 if (result.isScalar() && resultType->isVoidType()) { 1767 // No jumps required if the message-send was noreturn. 1768 if (contBB) CGF.EmitBlock(contBB); 1769 return result; 1770 } 1771 1772 // If we've got a scalar return, build a phi. 1773 if (result.isScalar()) { 1774 // Derive the null-initialization value. 1775 llvm::Value *null = 1776 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1777 1778 // If no join is necessary, just flow out. 1779 if (!contBB) return RValue::get(null); 1780 1781 // Otherwise, build a phi. 1782 CGF.EmitBlock(contBB); 1783 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1784 phi->addIncoming(result.getScalarVal(), callBB); 1785 phi->addIncoming(null, NullBB); 1786 return RValue::get(phi); 1787 } 1788 1789 // If we've got an aggregate return, null the buffer out. 1790 // FIXME: maybe we should be doing things differently for all the 1791 // cases where the ABI has us returning (1) non-agg values in 1792 // memory or (2) agg values in registers. 1793 if (result.isAggregate()) { 1794 assert(result.isAggregate() && "null init of non-aggregate result?"); 1795 if (!returnSlot.isUnused()) 1796 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1797 if (contBB) CGF.EmitBlock(contBB); 1798 return result; 1799 } 1800 1801 // Complex types. 1802 CGF.EmitBlock(contBB); 1803 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1804 1805 // Find the scalar type and its zero value. 1806 llvm::Type *scalarTy = callResult.first->getType(); 1807 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1808 1809 // Build phis for both coordinates. 1810 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1811 real->addIncoming(callResult.first, callBB); 1812 real->addIncoming(scalarZero, NullBB); 1813 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1814 imag->addIncoming(callResult.second, callBB); 1815 imag->addIncoming(scalarZero, NullBB); 1816 return RValue::getComplex(real, imag); 1817 } 1818 }; 1819 1820 } // end anonymous namespace 1821 1822 /* *** Helper Functions *** */ 1823 1824 /// getConstantGEP() - Help routine to construct simple GEPs. 1825 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1826 llvm::GlobalVariable *C, unsigned idx0, 1827 unsigned idx1) { 1828 llvm::Value *Idxs[] = { 1829 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1830 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1831 }; 1832 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1833 } 1834 1835 /// hasObjCExceptionAttribute - Return true if this class or any super 1836 /// class has the __objc_exception__ attribute. 1837 static bool hasObjCExceptionAttribute(ASTContext &Context, 1838 const ObjCInterfaceDecl *OID) { 1839 if (OID->hasAttr<ObjCExceptionAttr>()) 1840 return true; 1841 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1842 return hasObjCExceptionAttribute(Context, Super); 1843 return false; 1844 } 1845 1846 static llvm::GlobalValue::LinkageTypes 1847 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1848 if (CGM.getTriple().isOSBinFormatMachO() && 1849 (Section.empty() || Section.startswith("__DATA"))) 1850 return llvm::GlobalValue::InternalLinkage; 1851 return llvm::GlobalValue::PrivateLinkage; 1852 } 1853 1854 /// A helper function to create an internal or private global variable. 1855 static llvm::GlobalVariable * 1856 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1857 const llvm::Twine &Name, CodeGenModule &CGM) { 1858 std::string SectionName; 1859 if (CGM.getTriple().isOSBinFormatMachO()) 1860 SectionName = "__DATA, __objc_const"; 1861 auto *GV = Builder.finishAndCreateGlobal( 1862 Name, CGM.getPointerAlign(), /*constant*/ false, 1863 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1864 GV->setSection(SectionName); 1865 return GV; 1866 } 1867 1868 /* *** CGObjCMac Public Interface *** */ 1869 1870 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1871 ObjCTypes(cgm) { 1872 ObjCABI = 1; 1873 EmitImageInfo(); 1874 } 1875 1876 /// GetClass - Return a reference to the class for the given interface 1877 /// decl. 1878 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1879 const ObjCInterfaceDecl *ID) { 1880 return EmitClassRef(CGF, ID); 1881 } 1882 1883 /// GetSelector - Return the pointer to the unique'd string for this selector. 1884 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1885 return EmitSelector(CGF, Sel); 1886 } 1887 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1888 return EmitSelectorAddr(Sel); 1889 } 1890 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1891 *Method) { 1892 return EmitSelector(CGF, Method->getSelector()); 1893 } 1894 1895 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1896 if (T->isObjCIdType() || 1897 T->isObjCQualifiedIdType()) { 1898 return CGM.GetAddrOfRTTIDescriptor( 1899 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1900 } 1901 if (T->isObjCClassType() || 1902 T->isObjCQualifiedClassType()) { 1903 return CGM.GetAddrOfRTTIDescriptor( 1904 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1905 } 1906 if (T->isObjCObjectPointerType()) 1907 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1908 1909 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1910 } 1911 1912 /// Generate a constant CFString object. 1913 /* 1914 struct __builtin_CFString { 1915 const int *isa; // point to __CFConstantStringClassReference 1916 int flags; 1917 const char *str; 1918 long length; 1919 }; 1920 */ 1921 1922 /// or Generate a constant NSString object. 1923 /* 1924 struct __builtin_NSString { 1925 const int *isa; // point to __NSConstantStringClassReference 1926 const char *str; 1927 unsigned int length; 1928 }; 1929 */ 1930 1931 ConstantAddress 1932 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1933 return (!CGM.getLangOpts().NoConstantCFStrings 1934 ? CGM.GetAddrOfConstantCFString(SL) 1935 : GenerateConstantNSString(SL)); 1936 } 1937 1938 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1939 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1940 const StringLiteral *Literal, unsigned &StringLength) { 1941 StringRef String = Literal->getString(); 1942 StringLength = String.size(); 1943 return *Map.insert(std::make_pair(String, nullptr)).first; 1944 } 1945 1946 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1947 if (llvm::Value *V = ConstantStringClassRef) 1948 return cast<llvm::Constant>(V); 1949 1950 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1951 std::string str = 1952 StringClass.empty() ? "_NSConstantStringClassReference" 1953 : "_" + StringClass + "ClassReference"; 1954 1955 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1956 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1957 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1958 ConstantStringClassRef = V; 1959 return V; 1960 } 1961 1962 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1963 if (llvm::Value *V = ConstantStringClassRef) 1964 return cast<llvm::Constant>(V); 1965 1966 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1967 std::string str = 1968 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1969 : "OBJC_CLASS_$_" + StringClass; 1970 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1971 1972 // Make sure the result is of the correct type. 1973 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1974 1975 ConstantStringClassRef = V; 1976 return V; 1977 } 1978 1979 ConstantAddress 1980 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1981 unsigned StringLength = 0; 1982 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1983 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1984 1985 if (auto *C = Entry.second) 1986 return ConstantAddress( 1987 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 1988 1989 // If we don't already have it, get _NSConstantStringClassReference. 1990 llvm::Constant *Class = getNSConstantStringClassRef(); 1991 1992 // If we don't already have it, construct the type for a constant NSString. 1993 if (!NSConstantStringType) { 1994 NSConstantStringType = 1995 llvm::StructType::create({ 1996 CGM.Int32Ty->getPointerTo(), 1997 CGM.Int8PtrTy, 1998 CGM.IntTy 1999 }, "struct.__builtin_NSString"); 2000 } 2001 2002 ConstantInitBuilder Builder(CGM); 2003 auto Fields = Builder.beginStruct(NSConstantStringType); 2004 2005 // Class pointer. 2006 Fields.add(Class); 2007 2008 // String pointer. 2009 llvm::Constant *C = 2010 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2011 2012 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2013 bool isConstant = !CGM.getLangOpts().WritableStrings; 2014 2015 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2016 Linkage, C, ".str"); 2017 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2018 // Don't enforce the target's minimum global alignment, since the only use 2019 // of the string is via this class initializer. 2020 GV->setAlignment(llvm::Align(1)); 2021 Fields.addBitCast(GV, CGM.Int8PtrTy); 2022 2023 // String length. 2024 Fields.addInt(CGM.IntTy, StringLength); 2025 2026 // The struct. 2027 CharUnits Alignment = CGM.getPointerAlign(); 2028 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2029 /*constant*/ true, 2030 llvm::GlobalVariable::PrivateLinkage); 2031 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2032 const char *NSStringNonFragileABISection = 2033 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2034 // FIXME. Fix section. 2035 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2036 ? NSStringNonFragileABISection 2037 : NSStringSection); 2038 Entry.second = GV; 2039 2040 return ConstantAddress(GV, GV->getValueType(), Alignment); 2041 } 2042 2043 enum { 2044 kCFTaggedObjectID_Integer = (1 << 1) + 1 2045 }; 2046 2047 /// Generates a message send where the super is the receiver. This is 2048 /// a message send to self with special delivery semantics indicating 2049 /// which class's method should be called. 2050 CodeGen::RValue 2051 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2052 ReturnValueSlot Return, 2053 QualType ResultType, 2054 Selector Sel, 2055 const ObjCInterfaceDecl *Class, 2056 bool isCategoryImpl, 2057 llvm::Value *Receiver, 2058 bool IsClassMessage, 2059 const CodeGen::CallArgList &CallArgs, 2060 const ObjCMethodDecl *Method) { 2061 // Create and init a super structure; this is a (receiver, class) 2062 // pair we will pass to objc_msgSendSuper. 2063 Address ObjCSuper = 2064 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2065 "objc_super"); 2066 llvm::Value *ReceiverAsObject = 2067 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2068 CGF.Builder.CreateStore(ReceiverAsObject, 2069 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2070 2071 // If this is a class message the metaclass is passed as the target. 2072 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy); 2073 llvm::Value *Target; 2074 if (IsClassMessage) { 2075 if (isCategoryImpl) { 2076 // Message sent to 'super' in a class method defined in a category 2077 // implementation requires an odd treatment. 2078 // If we are in a class method, we must retrieve the 2079 // _metaclass_ for the current class, pointed at by 2080 // the class's "isa" pointer. The following assumes that 2081 // isa" is the first ivar in a class (which it must be). 2082 Target = EmitClassRef(CGF, Class->getSuperClass()); 2083 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2084 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target, 2085 CGF.getPointerAlign()); 2086 } else { 2087 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2088 llvm::Value *SuperPtr = 2089 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2090 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr, 2091 CGF.getPointerAlign()); 2092 Target = Super; 2093 } 2094 } else if (isCategoryImpl) 2095 Target = EmitClassRef(CGF, Class->getSuperClass()); 2096 else { 2097 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2098 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2099 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr, 2100 CGF.getPointerAlign()); 2101 } 2102 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2103 // ObjCTypes types. 2104 llvm::Type *ClassTy = 2105 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2106 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2107 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2108 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2109 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2110 ObjCTypes); 2111 } 2112 2113 /// Generate code for a message send expression. 2114 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2115 ReturnValueSlot Return, 2116 QualType ResultType, 2117 Selector Sel, 2118 llvm::Value *Receiver, 2119 const CallArgList &CallArgs, 2120 const ObjCInterfaceDecl *Class, 2121 const ObjCMethodDecl *Method) { 2122 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2123 CGF.getContext().getObjCIdType(), false, CallArgs, 2124 Method, Class, ObjCTypes); 2125 } 2126 2127 CodeGen::RValue 2128 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2129 ReturnValueSlot Return, 2130 QualType ResultType, 2131 Selector Sel, 2132 llvm::Value *Arg0, 2133 QualType Arg0Ty, 2134 bool IsSuper, 2135 const CallArgList &CallArgs, 2136 const ObjCMethodDecl *Method, 2137 const ObjCInterfaceDecl *ClassReceiver, 2138 const ObjCCommonTypesHelper &ObjCTypes) { 2139 CodeGenTypes &Types = CGM.getTypes(); 2140 auto selTy = CGF.getContext().getObjCSelType(); 2141 llvm::Value *SelValue; 2142 2143 if (Method && Method->isDirectMethod()) { 2144 // Direct methods will synthesize the proper `_cmd` internally, 2145 // so just don't bother with setting the `_cmd` argument. 2146 assert(!IsSuper); 2147 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2148 } else { 2149 SelValue = GetSelector(CGF, Sel); 2150 } 2151 2152 CallArgList ActualArgs; 2153 if (!IsSuper) 2154 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2155 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2156 ActualArgs.add(RValue::get(SelValue), selTy); 2157 ActualArgs.addFrom(CallArgs); 2158 2159 // If we're calling a method, use the formal signature. 2160 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2161 2162 if (Method) 2163 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2164 CGM.getContext().getCanonicalType(ResultType) && 2165 "Result type mismatch!"); 2166 2167 bool ReceiverCanBeNull = 2168 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0); 2169 2170 bool RequiresNullCheck = false; 2171 2172 llvm::FunctionCallee Fn = nullptr; 2173 if (Method && Method->isDirectMethod()) { 2174 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2175 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2176 if (ReceiverCanBeNull) RequiresNullCheck = true; 2177 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2178 : ObjCTypes.getSendStretFn(IsSuper); 2179 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2180 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2181 : ObjCTypes.getSendFpretFn(IsSuper); 2182 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2183 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2184 : ObjCTypes.getSendFp2retFn(IsSuper); 2185 } else { 2186 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2187 // must be made for it. 2188 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2189 RequiresNullCheck = true; 2190 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2191 : ObjCTypes.getSendFn(IsSuper); 2192 } 2193 2194 // Cast function to proper signature 2195 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2196 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2197 2198 // We don't need to emit a null check to zero out an indirect result if the 2199 // result is ignored. 2200 if (Return.isUnused()) 2201 RequiresNullCheck = false; 2202 2203 // Emit a null-check if there's a consumed argument other than the receiver. 2204 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee()) 2205 RequiresNullCheck = true; 2206 2207 NullReturnState nullReturn; 2208 if (RequiresNullCheck) { 2209 nullReturn.init(CGF, Arg0); 2210 } 2211 2212 llvm::CallBase *CallSite; 2213 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2214 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2215 &CallSite); 2216 2217 // Mark the call as noreturn if the method is marked noreturn and the 2218 // receiver cannot be null. 2219 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2220 CallSite->setDoesNotReturn(); 2221 } 2222 2223 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2224 RequiresNullCheck ? Method : nullptr); 2225 } 2226 2227 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2228 bool pointee = false) { 2229 // Note that GC qualification applies recursively to C pointer types 2230 // that aren't otherwise decorated. This is weird, but it's probably 2231 // an intentional workaround to the unreliable placement of GC qualifiers. 2232 if (FQT.isObjCGCStrong()) 2233 return Qualifiers::Strong; 2234 2235 if (FQT.isObjCGCWeak()) 2236 return Qualifiers::Weak; 2237 2238 if (auto ownership = FQT.getObjCLifetime()) { 2239 // Ownership does not apply recursively to C pointer types. 2240 if (pointee) return Qualifiers::GCNone; 2241 switch (ownership) { 2242 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2243 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2244 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2245 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2246 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2247 } 2248 llvm_unreachable("bad objc ownership"); 2249 } 2250 2251 // Treat unqualified retainable pointers as strong. 2252 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2253 return Qualifiers::Strong; 2254 2255 // Walk into C pointer types, but only in GC. 2256 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2257 if (const PointerType *PT = FQT->getAs<PointerType>()) 2258 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2259 } 2260 2261 return Qualifiers::GCNone; 2262 } 2263 2264 namespace { 2265 struct IvarInfo { 2266 CharUnits Offset; 2267 uint64_t SizeInWords; 2268 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2269 : Offset(offset), SizeInWords(sizeInWords) {} 2270 2271 // Allow sorting based on byte pos. 2272 bool operator<(const IvarInfo &other) const { 2273 return Offset < other.Offset; 2274 } 2275 }; 2276 2277 /// A helper class for building GC layout strings. 2278 class IvarLayoutBuilder { 2279 CodeGenModule &CGM; 2280 2281 /// The start of the layout. Offsets will be relative to this value, 2282 /// and entries less than this value will be silently discarded. 2283 CharUnits InstanceBegin; 2284 2285 /// The end of the layout. Offsets will never exceed this value. 2286 CharUnits InstanceEnd; 2287 2288 /// Whether we're generating the strong layout or the weak layout. 2289 bool ForStrongLayout; 2290 2291 /// Whether the offsets in IvarsInfo might be out-of-order. 2292 bool IsDisordered = false; 2293 2294 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2295 2296 public: 2297 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2298 CharUnits instanceEnd, bool forStrongLayout) 2299 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2300 ForStrongLayout(forStrongLayout) { 2301 } 2302 2303 void visitRecord(const RecordType *RT, CharUnits offset); 2304 2305 template <class Iterator, class GetOffsetFn> 2306 void visitAggregate(Iterator begin, Iterator end, 2307 CharUnits aggrOffset, 2308 const GetOffsetFn &getOffset); 2309 2310 void visitField(const FieldDecl *field, CharUnits offset); 2311 2312 /// Add the layout of a block implementation. 2313 void visitBlock(const CGBlockInfo &blockInfo); 2314 2315 /// Is there any information for an interesting bitmap? 2316 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2317 2318 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2319 llvm::SmallVectorImpl<unsigned char> &buffer); 2320 2321 static void dump(ArrayRef<unsigned char> buffer) { 2322 const unsigned char *s = buffer.data(); 2323 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2324 if (!(s[i] & 0xf0)) 2325 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2326 else 2327 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2328 printf("\n"); 2329 } 2330 }; 2331 } // end anonymous namespace 2332 2333 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2334 const CGBlockInfo &blockInfo) { 2335 2336 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2337 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2338 return nullPtr; 2339 2340 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2341 /*for strong layout*/ true); 2342 2343 builder.visitBlock(blockInfo); 2344 2345 if (!builder.hasBitmapData()) 2346 return nullPtr; 2347 2348 llvm::SmallVector<unsigned char, 32> buffer; 2349 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2350 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2351 printf("\n block variable layout for block: "); 2352 builder.dump(buffer); 2353 } 2354 2355 return C; 2356 } 2357 2358 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2359 // __isa is the first field in block descriptor and must assume by runtime's 2360 // convention that it is GC'able. 2361 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2362 2363 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2364 2365 // Ignore the optional 'this' capture: C++ objects are not assumed 2366 // to be GC'ed. 2367 2368 CharUnits lastFieldOffset; 2369 2370 // Walk the captured variables. 2371 for (const auto &CI : blockDecl->captures()) { 2372 const VarDecl *variable = CI.getVariable(); 2373 QualType type = variable->getType(); 2374 2375 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2376 2377 // Ignore constant captures. 2378 if (capture.isConstant()) continue; 2379 2380 CharUnits fieldOffset = capture.getOffset(); 2381 2382 // Block fields are not necessarily ordered; if we detect that we're 2383 // adding them out-of-order, make sure we sort later. 2384 if (fieldOffset < lastFieldOffset) 2385 IsDisordered = true; 2386 lastFieldOffset = fieldOffset; 2387 2388 // __block variables are passed by their descriptor address. 2389 if (CI.isByRef()) { 2390 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2391 continue; 2392 } 2393 2394 assert(!type->isArrayType() && "array variable should not be caught"); 2395 if (const RecordType *record = type->getAs<RecordType>()) { 2396 visitRecord(record, fieldOffset); 2397 continue; 2398 } 2399 2400 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2401 2402 if (GCAttr == Qualifiers::Strong) { 2403 assert(CGM.getContext().getTypeSize(type) 2404 == CGM.getTarget().getPointerWidth(0)); 2405 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2406 } 2407 } 2408 } 2409 2410 /// getBlockCaptureLifetime - This routine returns life time of the captured 2411 /// block variable for the purpose of block layout meta-data generation. FQT is 2412 /// the type of the variable captured in the block. 2413 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2414 bool ByrefLayout) { 2415 // If it has an ownership qualifier, we're done. 2416 if (auto lifetime = FQT.getObjCLifetime()) 2417 return lifetime; 2418 2419 // If it doesn't, and this is ARC, it has no ownership. 2420 if (CGM.getLangOpts().ObjCAutoRefCount) 2421 return Qualifiers::OCL_None; 2422 2423 // In MRC, retainable pointers are owned by non-__block variables. 2424 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2425 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2426 2427 return Qualifiers::OCL_None; 2428 } 2429 2430 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2431 Qualifiers::ObjCLifetime LifeTime, 2432 CharUnits FieldOffset, 2433 CharUnits FieldSize) { 2434 // __block variables are passed by their descriptor address. 2435 if (IsByref) 2436 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2437 FieldSize)); 2438 else if (LifeTime == Qualifiers::OCL_Strong) 2439 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2440 FieldSize)); 2441 else if (LifeTime == Qualifiers::OCL_Weak) 2442 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2443 FieldSize)); 2444 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2445 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2446 FieldSize)); 2447 else 2448 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2449 FieldOffset, 2450 FieldSize)); 2451 } 2452 2453 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2454 const RecordDecl *RD, 2455 ArrayRef<const FieldDecl*> RecFields, 2456 CharUnits BytePos, bool &HasUnion, 2457 bool ByrefLayout) { 2458 bool IsUnion = (RD && RD->isUnion()); 2459 CharUnits MaxUnionSize = CharUnits::Zero(); 2460 const FieldDecl *MaxField = nullptr; 2461 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2462 CharUnits MaxFieldOffset = CharUnits::Zero(); 2463 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2464 2465 if (RecFields.empty()) 2466 return; 2467 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2468 2469 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2470 const FieldDecl *Field = RecFields[i]; 2471 // Note that 'i' here is actually the field index inside RD of Field, 2472 // although this dependency is hidden. 2473 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2474 CharUnits FieldOffset = 2475 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2476 2477 // Skip over unnamed or bitfields 2478 if (!Field->getIdentifier() || Field->isBitField()) { 2479 LastFieldBitfieldOrUnnamed = Field; 2480 LastBitfieldOrUnnamedOffset = FieldOffset; 2481 continue; 2482 } 2483 2484 LastFieldBitfieldOrUnnamed = nullptr; 2485 QualType FQT = Field->getType(); 2486 if (FQT->isRecordType() || FQT->isUnionType()) { 2487 if (FQT->isUnionType()) 2488 HasUnion = true; 2489 2490 BuildRCBlockVarRecordLayout(FQT->castAs<RecordType>(), 2491 BytePos + FieldOffset, HasUnion); 2492 continue; 2493 } 2494 2495 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2496 auto *CArray = cast<ConstantArrayType>(Array); 2497 uint64_t ElCount = CArray->getSize().getZExtValue(); 2498 assert(CArray && "only array with known element size is supported"); 2499 FQT = CArray->getElementType(); 2500 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2501 auto *CArray = cast<ConstantArrayType>(Array); 2502 ElCount *= CArray->getSize().getZExtValue(); 2503 FQT = CArray->getElementType(); 2504 } 2505 if (FQT->isRecordType() && ElCount) { 2506 int OldIndex = RunSkipBlockVars.size() - 1; 2507 auto *RT = FQT->castAs<RecordType>(); 2508 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2509 2510 // Replicate layout information for each array element. Note that 2511 // one element is already done. 2512 uint64_t ElIx = 1; 2513 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2514 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2515 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2516 RunSkipBlockVars.push_back( 2517 RUN_SKIP(RunSkipBlockVars[i].opcode, 2518 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2519 RunSkipBlockVars[i].block_var_size)); 2520 } 2521 continue; 2522 } 2523 } 2524 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2525 if (IsUnion) { 2526 CharUnits UnionIvarSize = FieldSize; 2527 if (UnionIvarSize > MaxUnionSize) { 2528 MaxUnionSize = UnionIvarSize; 2529 MaxField = Field; 2530 MaxFieldOffset = FieldOffset; 2531 } 2532 } else { 2533 UpdateRunSkipBlockVars(false, 2534 getBlockCaptureLifetime(FQT, ByrefLayout), 2535 BytePos + FieldOffset, 2536 FieldSize); 2537 } 2538 } 2539 2540 if (LastFieldBitfieldOrUnnamed) { 2541 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2542 // Last field was a bitfield. Must update the info. 2543 uint64_t BitFieldSize 2544 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2545 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2546 ((BitFieldSize % ByteSizeInBits) != 0); 2547 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2548 Size += LastBitfieldOrUnnamedOffset; 2549 UpdateRunSkipBlockVars(false, 2550 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2551 ByrefLayout), 2552 BytePos + LastBitfieldOrUnnamedOffset, 2553 Size); 2554 } else { 2555 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2556 // Last field was unnamed. Must update skip info. 2557 CharUnits FieldSize 2558 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2559 UpdateRunSkipBlockVars(false, 2560 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2561 ByrefLayout), 2562 BytePos + LastBitfieldOrUnnamedOffset, 2563 FieldSize); 2564 } 2565 } 2566 2567 if (MaxField) 2568 UpdateRunSkipBlockVars(false, 2569 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2570 BytePos + MaxFieldOffset, 2571 MaxUnionSize); 2572 } 2573 2574 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2575 CharUnits BytePos, 2576 bool &HasUnion, 2577 bool ByrefLayout) { 2578 const RecordDecl *RD = RT->getDecl(); 2579 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2580 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2581 const llvm::StructLayout *RecLayout = 2582 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2583 2584 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2585 } 2586 2587 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2588 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2589 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2590 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2591 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2592 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2593 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2594 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2595 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2596 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2597 SmallVectorImpl<unsigned char> &Layout) { 2598 uint64_t Result = 0; 2599 if (Layout.size() <= 3) { 2600 unsigned size = Layout.size(); 2601 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2602 unsigned char inst; 2603 enum BLOCK_LAYOUT_OPCODE opcode ; 2604 switch (size) { 2605 case 3: 2606 inst = Layout[0]; 2607 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2608 if (opcode == BLOCK_LAYOUT_STRONG) 2609 strong_word_count = (inst & 0xF)+1; 2610 else 2611 return 0; 2612 inst = Layout[1]; 2613 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2614 if (opcode == BLOCK_LAYOUT_BYREF) 2615 byref_word_count = (inst & 0xF)+1; 2616 else 2617 return 0; 2618 inst = Layout[2]; 2619 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2620 if (opcode == BLOCK_LAYOUT_WEAK) 2621 weak_word_count = (inst & 0xF)+1; 2622 else 2623 return 0; 2624 break; 2625 2626 case 2: 2627 inst = Layout[0]; 2628 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2629 if (opcode == BLOCK_LAYOUT_STRONG) { 2630 strong_word_count = (inst & 0xF)+1; 2631 inst = Layout[1]; 2632 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2633 if (opcode == BLOCK_LAYOUT_BYREF) 2634 byref_word_count = (inst & 0xF)+1; 2635 else if (opcode == BLOCK_LAYOUT_WEAK) 2636 weak_word_count = (inst & 0xF)+1; 2637 else 2638 return 0; 2639 } 2640 else if (opcode == BLOCK_LAYOUT_BYREF) { 2641 byref_word_count = (inst & 0xF)+1; 2642 inst = Layout[1]; 2643 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2644 if (opcode == BLOCK_LAYOUT_WEAK) 2645 weak_word_count = (inst & 0xF)+1; 2646 else 2647 return 0; 2648 } 2649 else 2650 return 0; 2651 break; 2652 2653 case 1: 2654 inst = Layout[0]; 2655 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2656 if (opcode == BLOCK_LAYOUT_STRONG) 2657 strong_word_count = (inst & 0xF)+1; 2658 else if (opcode == BLOCK_LAYOUT_BYREF) 2659 byref_word_count = (inst & 0xF)+1; 2660 else if (opcode == BLOCK_LAYOUT_WEAK) 2661 weak_word_count = (inst & 0xF)+1; 2662 else 2663 return 0; 2664 break; 2665 2666 default: 2667 return 0; 2668 } 2669 2670 // Cannot inline when any of the word counts is 15. Because this is one less 2671 // than the actual work count (so 15 means 16 actual word counts), 2672 // and we can only display 0 thru 15 word counts. 2673 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2674 return 0; 2675 2676 unsigned count = 2677 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2678 2679 if (size == count) { 2680 if (strong_word_count) 2681 Result = strong_word_count; 2682 Result <<= 4; 2683 if (byref_word_count) 2684 Result += byref_word_count; 2685 Result <<= 4; 2686 if (weak_word_count) 2687 Result += weak_word_count; 2688 } 2689 } 2690 return Result; 2691 } 2692 2693 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2694 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2695 if (RunSkipBlockVars.empty()) 2696 return nullPtr; 2697 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2698 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2699 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2700 2701 // Sort on byte position; captures might not be allocated in order, 2702 // and unions can do funny things. 2703 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2704 SmallVector<unsigned char, 16> Layout; 2705 2706 unsigned size = RunSkipBlockVars.size(); 2707 for (unsigned i = 0; i < size; i++) { 2708 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2709 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2710 CharUnits end_byte_pos = start_byte_pos; 2711 unsigned j = i+1; 2712 while (j < size) { 2713 if (opcode == RunSkipBlockVars[j].opcode) { 2714 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2715 i++; 2716 } 2717 else 2718 break; 2719 } 2720 CharUnits size_in_bytes = 2721 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2722 if (j < size) { 2723 CharUnits gap = 2724 RunSkipBlockVars[j].block_var_bytepos - 2725 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2726 size_in_bytes += gap; 2727 } 2728 CharUnits residue_in_bytes = CharUnits::Zero(); 2729 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2730 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2731 size_in_bytes -= residue_in_bytes; 2732 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2733 } 2734 2735 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2736 while (size_in_words >= 16) { 2737 // Note that value in imm. is one less that the actual 2738 // value. So, 0xf means 16 words follow! 2739 unsigned char inst = (opcode << 4) | 0xf; 2740 Layout.push_back(inst); 2741 size_in_words -= 16; 2742 } 2743 if (size_in_words > 0) { 2744 // Note that value in imm. is one less that the actual 2745 // value. So, we subtract 1 away! 2746 unsigned char inst = (opcode << 4) | (size_in_words-1); 2747 Layout.push_back(inst); 2748 } 2749 if (residue_in_bytes > CharUnits::Zero()) { 2750 unsigned char inst = 2751 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2752 Layout.push_back(inst); 2753 } 2754 } 2755 2756 while (!Layout.empty()) { 2757 unsigned char inst = Layout.back(); 2758 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2759 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2760 Layout.pop_back(); 2761 else 2762 break; 2763 } 2764 2765 uint64_t Result = InlineLayoutInstruction(Layout); 2766 if (Result != 0) { 2767 // Block variable layout instruction has been inlined. 2768 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2769 if (ComputeByrefLayout) 2770 printf("\n Inline BYREF variable layout: "); 2771 else 2772 printf("\n Inline block variable layout: "); 2773 printf("0x0%" PRIx64 "", Result); 2774 if (auto numStrong = (Result & 0xF00) >> 8) 2775 printf(", BL_STRONG:%d", (int) numStrong); 2776 if (auto numByref = (Result & 0x0F0) >> 4) 2777 printf(", BL_BYREF:%d", (int) numByref); 2778 if (auto numWeak = (Result & 0x00F) >> 0) 2779 printf(", BL_WEAK:%d", (int) numWeak); 2780 printf(", BL_OPERATOR:0\n"); 2781 } 2782 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2783 } 2784 2785 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2786 Layout.push_back(inst); 2787 std::string BitMap; 2788 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2789 BitMap += Layout[i]; 2790 2791 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2792 if (ComputeByrefLayout) 2793 printf("\n Byref variable layout: "); 2794 else 2795 printf("\n Block variable layout: "); 2796 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2797 unsigned char inst = BitMap[i]; 2798 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2799 unsigned delta = 1; 2800 switch (opcode) { 2801 case BLOCK_LAYOUT_OPERATOR: 2802 printf("BL_OPERATOR:"); 2803 delta = 0; 2804 break; 2805 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2806 printf("BL_NON_OBJECT_BYTES:"); 2807 break; 2808 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2809 printf("BL_NON_OBJECT_WORD:"); 2810 break; 2811 case BLOCK_LAYOUT_STRONG: 2812 printf("BL_STRONG:"); 2813 break; 2814 case BLOCK_LAYOUT_BYREF: 2815 printf("BL_BYREF:"); 2816 break; 2817 case BLOCK_LAYOUT_WEAK: 2818 printf("BL_WEAK:"); 2819 break; 2820 case BLOCK_LAYOUT_UNRETAINED: 2821 printf("BL_UNRETAINED:"); 2822 break; 2823 } 2824 // Actual value of word count is one more that what is in the imm. 2825 // field of the instruction 2826 printf("%d", (inst & 0xf) + delta); 2827 if (i < e-1) 2828 printf(", "); 2829 else 2830 printf("\n"); 2831 } 2832 } 2833 2834 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2835 /*ForceNonFragileABI=*/true, 2836 /*NullTerminate=*/false); 2837 return getConstantGEP(VMContext, Entry, 0, 0); 2838 } 2839 2840 static std::string getBlockLayoutInfoString( 2841 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2842 bool HasCopyDisposeHelpers) { 2843 std::string Str; 2844 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2845 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2846 // Copy/dispose helpers don't have any information about 2847 // __unsafe_unretained captures, so unconditionally concatenate a string. 2848 Str += "u"; 2849 } else if (HasCopyDisposeHelpers) { 2850 // Information about __strong, __weak, or byref captures has already been 2851 // encoded into the names of the copy/dispose helpers. We have to add a 2852 // string here only when the copy/dispose helpers aren't generated (which 2853 // happens when the block is non-escaping). 2854 continue; 2855 } else { 2856 switch (R.opcode) { 2857 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2858 Str += "s"; 2859 break; 2860 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2861 Str += "r"; 2862 break; 2863 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2864 Str += "w"; 2865 break; 2866 default: 2867 continue; 2868 } 2869 } 2870 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2871 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2872 } 2873 return Str; 2874 } 2875 2876 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2877 const CGBlockInfo &blockInfo) { 2878 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2879 2880 RunSkipBlockVars.clear(); 2881 bool hasUnion = false; 2882 2883 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2884 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2885 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2886 2887 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2888 2889 // Calculate the basic layout of the block structure. 2890 const llvm::StructLayout *layout = 2891 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2892 2893 // Ignore the optional 'this' capture: C++ objects are not assumed 2894 // to be GC'ed. 2895 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2896 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2897 blockInfo.BlockHeaderForcedGapOffset, 2898 blockInfo.BlockHeaderForcedGapSize); 2899 // Walk the captured variables. 2900 for (const auto &CI : blockDecl->captures()) { 2901 const VarDecl *variable = CI.getVariable(); 2902 QualType type = variable->getType(); 2903 2904 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2905 2906 // Ignore constant captures. 2907 if (capture.isConstant()) continue; 2908 2909 CharUnits fieldOffset = 2910 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2911 2912 assert(!type->isArrayType() && "array variable should not be caught"); 2913 if (!CI.isByRef()) 2914 if (const RecordType *record = type->getAs<RecordType>()) { 2915 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2916 continue; 2917 } 2918 CharUnits fieldSize; 2919 if (CI.isByRef()) 2920 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2921 else 2922 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2923 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2924 fieldOffset, fieldSize); 2925 } 2926 } 2927 2928 llvm::Constant * 2929 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2930 const CGBlockInfo &blockInfo) { 2931 fillRunSkipBlockVars(CGM, blockInfo); 2932 return getBitmapBlockLayout(false); 2933 } 2934 2935 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2936 const CGBlockInfo &blockInfo) { 2937 fillRunSkipBlockVars(CGM, blockInfo); 2938 return getBlockLayoutInfoString(RunSkipBlockVars, blockInfo.NeedsCopyDispose); 2939 } 2940 2941 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2942 QualType T) { 2943 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2944 assert(!T->isArrayType() && "__block array variable should not be caught"); 2945 CharUnits fieldOffset; 2946 RunSkipBlockVars.clear(); 2947 bool hasUnion = false; 2948 if (const RecordType *record = T->getAs<RecordType>()) { 2949 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2950 llvm::Constant *Result = getBitmapBlockLayout(true); 2951 if (isa<llvm::ConstantInt>(Result)) 2952 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2953 return Result; 2954 } 2955 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2956 return nullPtr; 2957 } 2958 2959 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2960 const ObjCProtocolDecl *PD) { 2961 // FIXME: I don't understand why gcc generates this, or where it is 2962 // resolved. Investigate. Its also wasteful to look this up over and over. 2963 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2964 2965 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2966 ObjCTypes.getExternalProtocolPtrTy()); 2967 } 2968 2969 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2970 // FIXME: We shouldn't need this, the protocol decl should contain enough 2971 // information to tell us whether this was a declaration or a definition. 2972 DefinedProtocols.insert(PD->getIdentifier()); 2973 2974 // If we have generated a forward reference to this protocol, emit 2975 // it now. Otherwise do nothing, the protocol objects are lazily 2976 // emitted. 2977 if (Protocols.count(PD->getIdentifier())) 2978 GetOrEmitProtocol(PD); 2979 } 2980 2981 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2982 if (DefinedProtocols.count(PD->getIdentifier())) 2983 return GetOrEmitProtocol(PD); 2984 2985 return GetOrEmitProtocolRef(PD); 2986 } 2987 2988 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2989 CodeGenFunction &CGF, 2990 const ObjCInterfaceDecl *ID, 2991 ObjCCommonTypesHelper &ObjCTypes) { 2992 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2993 2994 llvm::Value *className = CGF.CGM 2995 .GetAddrOfConstantCString(std::string( 2996 ID->getObjCRuntimeNameAsString())) 2997 .getPointer(); 2998 ASTContext &ctx = CGF.CGM.getContext(); 2999 className = 3000 CGF.Builder.CreateBitCast(className, 3001 CGF.ConvertType( 3002 ctx.getPointerType(ctx.CharTy.withConst()))); 3003 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3004 call->setDoesNotThrow(); 3005 return call; 3006 } 3007 3008 /* 3009 // Objective-C 1.0 extensions 3010 struct _objc_protocol { 3011 struct _objc_protocol_extension *isa; 3012 char *protocol_name; 3013 struct _objc_protocol_list *protocol_list; 3014 struct _objc__method_prototype_list *instance_methods; 3015 struct _objc__method_prototype_list *class_methods 3016 }; 3017 3018 See EmitProtocolExtension(). 3019 */ 3020 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3021 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3022 3023 // Early exit if a defining object has already been generated. 3024 if (Entry && Entry->hasInitializer()) 3025 return Entry; 3026 3027 // Use the protocol definition, if there is one. 3028 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3029 PD = Def; 3030 3031 // FIXME: I don't understand why gcc generates this, or where it is 3032 // resolved. Investigate. Its also wasteful to look this up over and over. 3033 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3034 3035 // Construct method lists. 3036 auto methodLists = ProtocolMethodLists::get(PD); 3037 3038 ConstantInitBuilder builder(CGM); 3039 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3040 values.add(EmitProtocolExtension(PD, methodLists)); 3041 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3042 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3043 PD->protocol_begin(), PD->protocol_end())); 3044 values.add(methodLists.emitMethodList(this, PD, 3045 ProtocolMethodLists::RequiredInstanceMethods)); 3046 values.add(methodLists.emitMethodList(this, PD, 3047 ProtocolMethodLists::RequiredClassMethods)); 3048 3049 if (Entry) { 3050 // Already created, update the initializer. 3051 assert(Entry->hasPrivateLinkage()); 3052 values.finishAndSetAsInitializer(Entry); 3053 } else { 3054 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3055 CGM.getPointerAlign(), 3056 /*constant*/ false, 3057 llvm::GlobalValue::PrivateLinkage); 3058 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3059 3060 Protocols[PD->getIdentifier()] = Entry; 3061 } 3062 CGM.addCompilerUsedGlobal(Entry); 3063 3064 return Entry; 3065 } 3066 3067 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3068 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3069 3070 if (!Entry) { 3071 // We use the initializer as a marker of whether this is a forward 3072 // reference or not. At module finalization we add the empty 3073 // contents for protocols which were referenced but never defined. 3074 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3075 false, llvm::GlobalValue::PrivateLinkage, 3076 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3077 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3078 // FIXME: Is this necessary? Why only for protocol? 3079 Entry->setAlignment(llvm::Align(4)); 3080 } 3081 3082 return Entry; 3083 } 3084 3085 /* 3086 struct _objc_protocol_extension { 3087 uint32_t size; 3088 struct objc_method_description_list *optional_instance_methods; 3089 struct objc_method_description_list *optional_class_methods; 3090 struct objc_property_list *instance_properties; 3091 const char ** extendedMethodTypes; 3092 struct objc_property_list *class_properties; 3093 }; 3094 */ 3095 llvm::Constant * 3096 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3097 const ProtocolMethodLists &methodLists) { 3098 auto optInstanceMethods = 3099 methodLists.emitMethodList(this, PD, 3100 ProtocolMethodLists::OptionalInstanceMethods); 3101 auto optClassMethods = 3102 methodLists.emitMethodList(this, PD, 3103 ProtocolMethodLists::OptionalClassMethods); 3104 3105 auto extendedMethodTypes = 3106 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3107 methodLists.emitExtendedTypesArray(this), 3108 ObjCTypes); 3109 3110 auto instanceProperties = 3111 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3112 ObjCTypes, false); 3113 auto classProperties = 3114 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3115 PD, ObjCTypes, true); 3116 3117 // Return null if no extension bits are used. 3118 if (optInstanceMethods->isNullValue() && 3119 optClassMethods->isNullValue() && 3120 extendedMethodTypes->isNullValue() && 3121 instanceProperties->isNullValue() && 3122 classProperties->isNullValue()) { 3123 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3124 } 3125 3126 uint64_t size = 3127 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3128 3129 ConstantInitBuilder builder(CGM); 3130 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3131 values.addInt(ObjCTypes.IntTy, size); 3132 values.add(optInstanceMethods); 3133 values.add(optClassMethods); 3134 values.add(instanceProperties); 3135 values.add(extendedMethodTypes); 3136 values.add(classProperties); 3137 3138 // No special section, but goes in llvm.used 3139 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3140 StringRef(), CGM.getPointerAlign(), true); 3141 } 3142 3143 /* 3144 struct objc_protocol_list { 3145 struct objc_protocol_list *next; 3146 long count; 3147 Protocol *list[]; 3148 }; 3149 */ 3150 llvm::Constant * 3151 CGObjCMac::EmitProtocolList(Twine name, 3152 ObjCProtocolDecl::protocol_iterator begin, 3153 ObjCProtocolDecl::protocol_iterator end) { 3154 // Just return null for empty protocol lists 3155 auto PDs = GetRuntimeProtocolList(begin, end); 3156 if (PDs.empty()) 3157 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3158 3159 ConstantInitBuilder builder(CGM); 3160 auto values = builder.beginStruct(); 3161 3162 // This field is only used by the runtime. 3163 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3164 3165 // Reserve a slot for the count. 3166 auto countSlot = values.addPlaceholder(); 3167 3168 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3169 for (const auto *Proto : PDs) 3170 refsArray.add(GetProtocolRef(Proto)); 3171 3172 auto count = refsArray.size(); 3173 3174 // This list is null terminated. 3175 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3176 3177 refsArray.finishAndAddTo(values); 3178 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3179 3180 StringRef section; 3181 if (CGM.getTriple().isOSBinFormatMachO()) 3182 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3183 3184 llvm::GlobalVariable *GV = 3185 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3186 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3187 } 3188 3189 static void 3190 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3191 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3192 const ObjCProtocolDecl *Proto, 3193 bool IsClassProperty) { 3194 for (const auto *PD : Proto->properties()) { 3195 if (IsClassProperty != PD->isClassProperty()) 3196 continue; 3197 if (!PropertySet.insert(PD->getIdentifier()).second) 3198 continue; 3199 Properties.push_back(PD); 3200 } 3201 3202 for (const auto *P : Proto->protocols()) 3203 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3204 } 3205 3206 /* 3207 struct _objc_property { 3208 const char * const name; 3209 const char * const attributes; 3210 }; 3211 3212 struct _objc_property_list { 3213 uint32_t entsize; // sizeof (struct _objc_property) 3214 uint32_t prop_count; 3215 struct _objc_property[prop_count]; 3216 }; 3217 */ 3218 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3219 const Decl *Container, 3220 const ObjCContainerDecl *OCD, 3221 const ObjCCommonTypesHelper &ObjCTypes, 3222 bool IsClassProperty) { 3223 if (IsClassProperty) { 3224 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3225 // with deployment target < 9.0. 3226 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3227 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3228 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3229 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3230 } 3231 3232 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3233 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3234 3235 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3236 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3237 for (auto *PD : ClassExt->properties()) { 3238 if (IsClassProperty != PD->isClassProperty()) 3239 continue; 3240 if (PD->isDirectProperty()) 3241 continue; 3242 PropertySet.insert(PD->getIdentifier()); 3243 Properties.push_back(PD); 3244 } 3245 3246 for (const auto *PD : OCD->properties()) { 3247 if (IsClassProperty != PD->isClassProperty()) 3248 continue; 3249 // Don't emit duplicate metadata for properties that were already in a 3250 // class extension. 3251 if (!PropertySet.insert(PD->getIdentifier()).second) 3252 continue; 3253 if (PD->isDirectProperty()) 3254 continue; 3255 Properties.push_back(PD); 3256 } 3257 3258 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3259 for (const auto *P : OID->all_referenced_protocols()) 3260 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3261 } 3262 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3263 for (const auto *P : CD->protocols()) 3264 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3265 } 3266 3267 // Return null for empty list. 3268 if (Properties.empty()) 3269 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3270 3271 unsigned propertySize = 3272 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3273 3274 ConstantInitBuilder builder(CGM); 3275 auto values = builder.beginStruct(); 3276 values.addInt(ObjCTypes.IntTy, propertySize); 3277 values.addInt(ObjCTypes.IntTy, Properties.size()); 3278 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3279 for (auto PD : Properties) { 3280 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3281 property.add(GetPropertyName(PD->getIdentifier())); 3282 property.add(GetPropertyTypeString(PD, Container)); 3283 property.finishAndAddTo(propertiesArray); 3284 } 3285 propertiesArray.finishAndAddTo(values); 3286 3287 StringRef Section; 3288 if (CGM.getTriple().isOSBinFormatMachO()) 3289 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3290 : "__OBJC,__property,regular,no_dead_strip"; 3291 3292 llvm::GlobalVariable *GV = 3293 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3294 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3295 } 3296 3297 llvm::Constant * 3298 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3299 ArrayRef<llvm::Constant*> MethodTypes, 3300 const ObjCCommonTypesHelper &ObjCTypes) { 3301 // Return null for empty list. 3302 if (MethodTypes.empty()) 3303 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3304 3305 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3306 MethodTypes.size()); 3307 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3308 3309 StringRef Section; 3310 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3311 Section = "__DATA, __objc_const"; 3312 3313 llvm::GlobalVariable *GV = 3314 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3315 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3316 } 3317 3318 /* 3319 struct _objc_category { 3320 char *category_name; 3321 char *class_name; 3322 struct _objc_method_list *instance_methods; 3323 struct _objc_method_list *class_methods; 3324 struct _objc_protocol_list *protocols; 3325 uint32_t size; // <rdar://4585769> 3326 struct _objc_property_list *instance_properties; 3327 struct _objc_property_list *class_properties; 3328 }; 3329 */ 3330 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3331 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3332 3333 // FIXME: This is poor design, the OCD should have a pointer to the category 3334 // decl. Additionally, note that Category can be null for the @implementation 3335 // w/o an @interface case. Sema should just create one for us as it does for 3336 // @implementation so everyone else can live life under a clear blue sky. 3337 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3338 const ObjCCategoryDecl *Category = 3339 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3340 3341 SmallString<256> ExtName; 3342 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3343 << OCD->getName(); 3344 3345 ConstantInitBuilder Builder(CGM); 3346 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3347 3348 enum { 3349 InstanceMethods, 3350 ClassMethods, 3351 NumMethodLists 3352 }; 3353 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3354 for (const auto *MD : OCD->methods()) { 3355 if (!MD->isDirectMethod()) 3356 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3357 } 3358 3359 Values.add(GetClassName(OCD->getName())); 3360 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3361 LazySymbols.insert(Interface->getIdentifier()); 3362 3363 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3364 Methods[InstanceMethods])); 3365 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3366 Methods[ClassMethods])); 3367 if (Category) { 3368 Values.add( 3369 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3370 Category->protocol_begin(), Category->protocol_end())); 3371 } else { 3372 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3373 } 3374 Values.addInt(ObjCTypes.IntTy, Size); 3375 3376 // If there is no category @interface then there can be no properties. 3377 if (Category) { 3378 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3379 OCD, Category, ObjCTypes, false)); 3380 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3381 OCD, Category, ObjCTypes, true)); 3382 } else { 3383 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3384 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3385 } 3386 3387 llvm::GlobalVariable *GV = 3388 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3389 "__OBJC,__category,regular,no_dead_strip", 3390 CGM.getPointerAlign(), true); 3391 DefinedCategories.push_back(GV); 3392 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3393 // method definition entries must be clear for next implementation. 3394 MethodDefinitions.clear(); 3395 } 3396 3397 enum FragileClassFlags { 3398 /// Apparently: is not a meta-class. 3399 FragileABI_Class_Factory = 0x00001, 3400 3401 /// Is a meta-class. 3402 FragileABI_Class_Meta = 0x00002, 3403 3404 /// Has a non-trivial constructor or destructor. 3405 FragileABI_Class_HasCXXStructors = 0x02000, 3406 3407 /// Has hidden visibility. 3408 FragileABI_Class_Hidden = 0x20000, 3409 3410 /// Class implementation was compiled under ARC. 3411 FragileABI_Class_CompiledByARC = 0x04000000, 3412 3413 /// Class implementation was compiled under MRC and has MRC weak ivars. 3414 /// Exclusive with CompiledByARC. 3415 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3416 }; 3417 3418 enum NonFragileClassFlags { 3419 /// Is a meta-class. 3420 NonFragileABI_Class_Meta = 0x00001, 3421 3422 /// Is a root class. 3423 NonFragileABI_Class_Root = 0x00002, 3424 3425 /// Has a non-trivial constructor or destructor. 3426 NonFragileABI_Class_HasCXXStructors = 0x00004, 3427 3428 /// Has hidden visibility. 3429 NonFragileABI_Class_Hidden = 0x00010, 3430 3431 /// Has the exception attribute. 3432 NonFragileABI_Class_Exception = 0x00020, 3433 3434 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3435 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3436 3437 /// Class implementation was compiled under ARC. 3438 NonFragileABI_Class_CompiledByARC = 0x00080, 3439 3440 /// Class has non-trivial destructors, but zero-initialization is okay. 3441 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3442 3443 /// Class implementation was compiled under MRC and has MRC weak ivars. 3444 /// Exclusive with CompiledByARC. 3445 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3446 }; 3447 3448 static bool hasWeakMember(QualType type) { 3449 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3450 return true; 3451 } 3452 3453 if (auto recType = type->getAs<RecordType>()) { 3454 for (auto field : recType->getDecl()->fields()) { 3455 if (hasWeakMember(field->getType())) 3456 return true; 3457 } 3458 } 3459 3460 return false; 3461 } 3462 3463 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3464 /// (and actually fill in a layout string) if we really do have any 3465 /// __weak ivars. 3466 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3467 const ObjCImplementationDecl *ID) { 3468 if (!CGM.getLangOpts().ObjCWeak) return false; 3469 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3470 3471 for (const ObjCIvarDecl *ivar = 3472 ID->getClassInterface()->all_declared_ivar_begin(); 3473 ivar; ivar = ivar->getNextIvar()) { 3474 if (hasWeakMember(ivar->getType())) 3475 return true; 3476 } 3477 3478 return false; 3479 } 3480 3481 /* 3482 struct _objc_class { 3483 Class isa; 3484 Class super_class; 3485 const char *name; 3486 long version; 3487 long info; 3488 long instance_size; 3489 struct _objc_ivar_list *ivars; 3490 struct _objc_method_list *methods; 3491 struct _objc_cache *cache; 3492 struct _objc_protocol_list *protocols; 3493 // Objective-C 1.0 extensions (<rdr://4585769>) 3494 const char *ivar_layout; 3495 struct _objc_class_ext *ext; 3496 }; 3497 3498 See EmitClassExtension(); 3499 */ 3500 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3501 IdentifierInfo *RuntimeName = 3502 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3503 DefinedSymbols.insert(RuntimeName); 3504 3505 std::string ClassName = ID->getNameAsString(); 3506 // FIXME: Gross 3507 ObjCInterfaceDecl *Interface = 3508 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3509 llvm::Constant *Protocols = 3510 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3511 Interface->all_referenced_protocol_begin(), 3512 Interface->all_referenced_protocol_end()); 3513 unsigned Flags = FragileABI_Class_Factory; 3514 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3515 Flags |= FragileABI_Class_HasCXXStructors; 3516 3517 bool hasMRCWeak = false; 3518 3519 if (CGM.getLangOpts().ObjCAutoRefCount) 3520 Flags |= FragileABI_Class_CompiledByARC; 3521 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3522 Flags |= FragileABI_Class_HasMRCWeakIvars; 3523 3524 CharUnits Size = 3525 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3526 3527 // FIXME: Set CXX-structors flag. 3528 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3529 Flags |= FragileABI_Class_Hidden; 3530 3531 enum { 3532 InstanceMethods, 3533 ClassMethods, 3534 NumMethodLists 3535 }; 3536 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3537 for (const auto *MD : ID->methods()) { 3538 if (!MD->isDirectMethod()) 3539 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3540 } 3541 3542 for (const auto *PID : ID->property_impls()) { 3543 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3544 if (PID->getPropertyDecl()->isDirectProperty()) 3545 continue; 3546 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3547 if (GetMethodDefinition(MD)) 3548 Methods[InstanceMethods].push_back(MD); 3549 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3550 if (GetMethodDefinition(MD)) 3551 Methods[InstanceMethods].push_back(MD); 3552 } 3553 } 3554 3555 ConstantInitBuilder builder(CGM); 3556 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3557 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3558 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3559 // Record a reference to the super class. 3560 LazySymbols.insert(Super->getIdentifier()); 3561 3562 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3563 ObjCTypes.ClassPtrTy); 3564 } else { 3565 values.addNullPointer(ObjCTypes.ClassPtrTy); 3566 } 3567 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3568 // Version is always 0. 3569 values.addInt(ObjCTypes.LongTy, 0); 3570 values.addInt(ObjCTypes.LongTy, Flags); 3571 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3572 values.add(EmitIvarList(ID, false)); 3573 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3574 Methods[InstanceMethods])); 3575 // cache is always NULL. 3576 values.addNullPointer(ObjCTypes.CachePtrTy); 3577 values.add(Protocols); 3578 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3579 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3580 /*isMetaclass*/ false)); 3581 3582 std::string Name("OBJC_CLASS_"); 3583 Name += ClassName; 3584 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3585 // Check for a forward reference. 3586 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3587 if (GV) { 3588 assert(GV->getValueType() == ObjCTypes.ClassTy && 3589 "Forward metaclass reference has incorrect type."); 3590 values.finishAndSetAsInitializer(GV); 3591 GV->setSection(Section); 3592 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3593 CGM.addCompilerUsedGlobal(GV); 3594 } else 3595 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3596 DefinedClasses.push_back(GV); 3597 ImplementedClasses.push_back(Interface); 3598 // method definition entries must be clear for next implementation. 3599 MethodDefinitions.clear(); 3600 } 3601 3602 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3603 llvm::Constant *Protocols, 3604 ArrayRef<const ObjCMethodDecl*> Methods) { 3605 unsigned Flags = FragileABI_Class_Meta; 3606 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3607 3608 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3609 Flags |= FragileABI_Class_Hidden; 3610 3611 ConstantInitBuilder builder(CGM); 3612 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3613 // The isa for the metaclass is the root of the hierarchy. 3614 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3615 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3616 Root = Super; 3617 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3618 ObjCTypes.ClassPtrTy); 3619 // The super class for the metaclass is emitted as the name of the 3620 // super class. The runtime fixes this up to point to the 3621 // *metaclass* for the super class. 3622 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3623 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3624 ObjCTypes.ClassPtrTy); 3625 } else { 3626 values.addNullPointer(ObjCTypes.ClassPtrTy); 3627 } 3628 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3629 // Version is always 0. 3630 values.addInt(ObjCTypes.LongTy, 0); 3631 values.addInt(ObjCTypes.LongTy, Flags); 3632 values.addInt(ObjCTypes.LongTy, Size); 3633 values.add(EmitIvarList(ID, true)); 3634 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3635 Methods)); 3636 // cache is always NULL. 3637 values.addNullPointer(ObjCTypes.CachePtrTy); 3638 values.add(Protocols); 3639 // ivar_layout for metaclass is always NULL. 3640 values.addNullPointer(ObjCTypes.Int8PtrTy); 3641 // The class extension is used to store class properties for metaclasses. 3642 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3643 /*isMetaclass*/true)); 3644 3645 std::string Name("OBJC_METACLASS_"); 3646 Name += ID->getName(); 3647 3648 // Check for a forward reference. 3649 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3650 if (GV) { 3651 assert(GV->getValueType() == ObjCTypes.ClassTy && 3652 "Forward metaclass reference has incorrect type."); 3653 values.finishAndSetAsInitializer(GV); 3654 } else { 3655 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3656 /*constant*/ false, 3657 llvm::GlobalValue::PrivateLinkage); 3658 } 3659 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3660 CGM.addCompilerUsedGlobal(GV); 3661 3662 return GV; 3663 } 3664 3665 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3666 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3667 3668 // FIXME: Should we look these up somewhere other than the module. Its a bit 3669 // silly since we only generate these while processing an implementation, so 3670 // exactly one pointer would work if know when we entered/exitted an 3671 // implementation block. 3672 3673 // Check for an existing forward reference. 3674 // Previously, metaclass with internal linkage may have been defined. 3675 // pass 'true' as 2nd argument so it is returned. 3676 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3677 if (!GV) 3678 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3679 llvm::GlobalValue::PrivateLinkage, nullptr, 3680 Name); 3681 3682 assert(GV->getValueType() == ObjCTypes.ClassTy && 3683 "Forward metaclass reference has incorrect type."); 3684 return GV; 3685 } 3686 3687 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3688 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3689 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3690 3691 if (!GV) 3692 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3693 llvm::GlobalValue::PrivateLinkage, nullptr, 3694 Name); 3695 3696 assert(GV->getValueType() == ObjCTypes.ClassTy && 3697 "Forward class metadata reference has incorrect type."); 3698 return GV; 3699 } 3700 3701 /* 3702 Emit a "class extension", which in this specific context means extra 3703 data that doesn't fit in the normal fragile-ABI class structure, and 3704 has nothing to do with the language concept of a class extension. 3705 3706 struct objc_class_ext { 3707 uint32_t size; 3708 const char *weak_ivar_layout; 3709 struct _objc_property_list *properties; 3710 }; 3711 */ 3712 llvm::Constant * 3713 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3714 CharUnits InstanceSize, bool hasMRCWeakIvars, 3715 bool isMetaclass) { 3716 // Weak ivar layout. 3717 llvm::Constant *layout; 3718 if (isMetaclass) { 3719 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3720 } else { 3721 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3722 hasMRCWeakIvars); 3723 } 3724 3725 // Properties. 3726 llvm::Constant *propertyList = 3727 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3728 : Twine("_OBJC_$_PROP_LIST_")) 3729 + ID->getName(), 3730 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3731 3732 // Return null if no extension bits are used. 3733 if (layout->isNullValue() && propertyList->isNullValue()) { 3734 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3735 } 3736 3737 uint64_t size = 3738 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3739 3740 ConstantInitBuilder builder(CGM); 3741 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3742 values.addInt(ObjCTypes.IntTy, size); 3743 values.add(layout); 3744 values.add(propertyList); 3745 3746 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3747 "__OBJC,__class_ext,regular,no_dead_strip", 3748 CGM.getPointerAlign(), true); 3749 } 3750 3751 /* 3752 struct objc_ivar { 3753 char *ivar_name; 3754 char *ivar_type; 3755 int ivar_offset; 3756 }; 3757 3758 struct objc_ivar_list { 3759 int ivar_count; 3760 struct objc_ivar list[count]; 3761 }; 3762 */ 3763 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3764 bool ForClass) { 3765 // When emitting the root class GCC emits ivar entries for the 3766 // actual class structure. It is not clear if we need to follow this 3767 // behavior; for now lets try and get away with not doing it. If so, 3768 // the cleanest solution would be to make up an ObjCInterfaceDecl 3769 // for the class. 3770 if (ForClass) 3771 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3772 3773 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3774 3775 ConstantInitBuilder builder(CGM); 3776 auto ivarList = builder.beginStruct(); 3777 auto countSlot = ivarList.addPlaceholder(); 3778 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3779 3780 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3781 IVD; IVD = IVD->getNextIvar()) { 3782 // Ignore unnamed bit-fields. 3783 if (!IVD->getDeclName()) 3784 continue; 3785 3786 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3787 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3788 ivar.add(GetMethodVarType(IVD)); 3789 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3790 ivar.finishAndAddTo(ivars); 3791 } 3792 3793 // Return null for empty list. 3794 auto count = ivars.size(); 3795 if (count == 0) { 3796 ivars.abandon(); 3797 ivarList.abandon(); 3798 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3799 } 3800 3801 ivars.finishAndAddTo(ivarList); 3802 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3803 3804 llvm::GlobalVariable *GV; 3805 if (ForClass) 3806 GV = 3807 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3808 "__OBJC,__class_vars,regular,no_dead_strip", 3809 CGM.getPointerAlign(), true); 3810 else 3811 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3812 "__OBJC,__instance_vars,regular,no_dead_strip", 3813 CGM.getPointerAlign(), true); 3814 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3815 } 3816 3817 /// Build a struct objc_method_description constant for the given method. 3818 /// 3819 /// struct objc_method_description { 3820 /// SEL method_name; 3821 /// char *method_types; 3822 /// }; 3823 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3824 const ObjCMethodDecl *MD) { 3825 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3826 description.addBitCast(GetMethodVarName(MD->getSelector()), 3827 ObjCTypes.SelectorPtrTy); 3828 description.add(GetMethodVarType(MD)); 3829 description.finishAndAddTo(builder); 3830 } 3831 3832 /// Build a struct objc_method constant for the given method. 3833 /// 3834 /// struct objc_method { 3835 /// SEL method_name; 3836 /// char *method_types; 3837 /// void *method; 3838 /// }; 3839 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3840 const ObjCMethodDecl *MD) { 3841 llvm::Function *fn = GetMethodDefinition(MD); 3842 assert(fn && "no definition registered for method"); 3843 3844 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3845 method.addBitCast(GetMethodVarName(MD->getSelector()), 3846 ObjCTypes.SelectorPtrTy); 3847 method.add(GetMethodVarType(MD)); 3848 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3849 method.finishAndAddTo(builder); 3850 } 3851 3852 /// Build a struct objc_method_list or struct objc_method_description_list, 3853 /// as appropriate. 3854 /// 3855 /// struct objc_method_list { 3856 /// struct objc_method_list *obsolete; 3857 /// int count; 3858 /// struct objc_method methods_list[count]; 3859 /// }; 3860 /// 3861 /// struct objc_method_description_list { 3862 /// int count; 3863 /// struct objc_method_description list[count]; 3864 /// }; 3865 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3866 ArrayRef<const ObjCMethodDecl *> methods) { 3867 StringRef prefix; 3868 StringRef section; 3869 bool forProtocol = false; 3870 switch (MLT) { 3871 case MethodListType::CategoryInstanceMethods: 3872 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3873 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3874 forProtocol = false; 3875 break; 3876 case MethodListType::CategoryClassMethods: 3877 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3878 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3879 forProtocol = false; 3880 break; 3881 case MethodListType::InstanceMethods: 3882 prefix = "OBJC_INSTANCE_METHODS_"; 3883 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3884 forProtocol = false; 3885 break; 3886 case MethodListType::ClassMethods: 3887 prefix = "OBJC_CLASS_METHODS_"; 3888 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3889 forProtocol = false; 3890 break; 3891 case MethodListType::ProtocolInstanceMethods: 3892 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3893 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3894 forProtocol = true; 3895 break; 3896 case MethodListType::ProtocolClassMethods: 3897 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3898 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3899 forProtocol = true; 3900 break; 3901 case MethodListType::OptionalProtocolInstanceMethods: 3902 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3903 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3904 forProtocol = true; 3905 break; 3906 case MethodListType::OptionalProtocolClassMethods: 3907 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3908 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3909 forProtocol = true; 3910 break; 3911 } 3912 3913 // Return null for empty list. 3914 if (methods.empty()) 3915 return llvm::Constant::getNullValue(forProtocol 3916 ? ObjCTypes.MethodDescriptionListPtrTy 3917 : ObjCTypes.MethodListPtrTy); 3918 3919 // For protocols, this is an objc_method_description_list, which has 3920 // a slightly different structure. 3921 if (forProtocol) { 3922 ConstantInitBuilder builder(CGM); 3923 auto values = builder.beginStruct(); 3924 values.addInt(ObjCTypes.IntTy, methods.size()); 3925 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3926 for (auto MD : methods) { 3927 emitMethodDescriptionConstant(methodArray, MD); 3928 } 3929 methodArray.finishAndAddTo(values); 3930 3931 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3932 CGM.getPointerAlign(), true); 3933 return llvm::ConstantExpr::getBitCast(GV, 3934 ObjCTypes.MethodDescriptionListPtrTy); 3935 } 3936 3937 // Otherwise, it's an objc_method_list. 3938 ConstantInitBuilder builder(CGM); 3939 auto values = builder.beginStruct(); 3940 values.addNullPointer(ObjCTypes.Int8PtrTy); 3941 values.addInt(ObjCTypes.IntTy, methods.size()); 3942 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3943 for (auto MD : methods) { 3944 if (!MD->isDirectMethod()) 3945 emitMethodConstant(methodArray, MD); 3946 } 3947 methodArray.finishAndAddTo(values); 3948 3949 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3950 CGM.getPointerAlign(), true); 3951 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3952 } 3953 3954 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3955 const ObjCContainerDecl *CD) { 3956 llvm::Function *Method; 3957 3958 if (OMD->isDirectMethod()) { 3959 Method = GenerateDirectMethod(OMD, CD); 3960 } else { 3961 auto Name = getSymbolNameForMethod(OMD); 3962 3963 CodeGenTypes &Types = CGM.getTypes(); 3964 llvm::FunctionType *MethodTy = 3965 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3966 Method = 3967 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 3968 Name, &CGM.getModule()); 3969 } 3970 3971 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3972 3973 return Method; 3974 } 3975 3976 llvm::Function * 3977 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 3978 const ObjCContainerDecl *CD) { 3979 auto *COMD = OMD->getCanonicalDecl(); 3980 auto I = DirectMethodDefinitions.find(COMD); 3981 llvm::Function *OldFn = nullptr, *Fn = nullptr; 3982 3983 if (I != DirectMethodDefinitions.end()) { 3984 // Objective-C allows for the declaration and implementation types 3985 // to differ slightly. 3986 // 3987 // If we're being asked for the Function associated for a method 3988 // implementation, a previous value might have been cached 3989 // based on the type of the canonical declaration. 3990 // 3991 // If these do not match, then we'll replace this function with 3992 // a new one that has the proper type below. 3993 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 3994 return I->second; 3995 OldFn = I->second; 3996 } 3997 3998 CodeGenTypes &Types = CGM.getTypes(); 3999 llvm::FunctionType *MethodTy = 4000 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4001 4002 if (OldFn) { 4003 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4004 "", &CGM.getModule()); 4005 Fn->takeName(OldFn); 4006 OldFn->replaceAllUsesWith( 4007 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4008 OldFn->eraseFromParent(); 4009 4010 // Replace the cached function in the map. 4011 I->second = Fn; 4012 } else { 4013 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 4014 4015 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4016 Name, &CGM.getModule()); 4017 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4018 } 4019 4020 return Fn; 4021 } 4022 4023 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4024 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4025 const ObjCContainerDecl *CD) { 4026 auto &Builder = CGF.Builder; 4027 bool ReceiverCanBeNull = true; 4028 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4029 auto selfValue = Builder.CreateLoad(selfAddr); 4030 4031 // Generate: 4032 // 4033 // /* for class methods only to force class lazy initialization */ 4034 // self = [self self]; 4035 // 4036 // /* unless the receiver is never NULL */ 4037 // if (self == nil) { 4038 // return (ReturnType){ }; 4039 // } 4040 // 4041 // _cmd = @selector(...) 4042 // ... 4043 4044 if (OMD->isClassMethod()) { 4045 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4046 assert(OID && 4047 "GenerateDirectMethod() should be called with the Class Interface"); 4048 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4049 auto ResultType = CGF.getContext().getObjCIdType(); 4050 RValue result; 4051 CallArgList Args; 4052 4053 // TODO: If this method is inlined, the caller might know that `self` is 4054 // already initialized; for example, it might be an ordinary Objective-C 4055 // method which always receives an initialized `self`, or it might have just 4056 // forced initialization on its own. 4057 // 4058 // We should find a way to eliminate this unnecessary initialization in such 4059 // cases in LLVM. 4060 result = GeneratePossiblySpecializedMessageSend( 4061 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4062 nullptr, true); 4063 Builder.CreateStore(result.getScalarVal(), selfAddr); 4064 4065 // Nullable `Class` expressions cannot be messaged with a direct method 4066 // so the only reason why the receive can be null would be because 4067 // of weak linking. 4068 ReceiverCanBeNull = isWeakLinkedClass(OID); 4069 } 4070 4071 if (ReceiverCanBeNull) { 4072 llvm::BasicBlock *SelfIsNilBlock = 4073 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4074 llvm::BasicBlock *ContBlock = 4075 CGF.createBasicBlock("objc_direct_method.cont"); 4076 4077 // if (self == nil) { 4078 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4079 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4080 4081 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4082 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4083 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4084 4085 CGF.EmitBlock(SelfIsNilBlock); 4086 4087 // return (ReturnType){ }; 4088 auto retTy = OMD->getReturnType(); 4089 Builder.SetInsertPoint(SelfIsNilBlock); 4090 if (!retTy->isVoidType()) { 4091 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4092 } 4093 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4094 // } 4095 4096 // rest of the body 4097 CGF.EmitBlock(ContBlock); 4098 Builder.SetInsertPoint(ContBlock); 4099 } 4100 4101 // only synthesize _cmd if it's referenced 4102 if (OMD->getCmdDecl()->isUsed()) { 4103 Builder.CreateStore(GetSelector(CGF, OMD), 4104 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4105 } 4106 } 4107 4108 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4109 ConstantStructBuilder &Init, 4110 StringRef Section, 4111 CharUnits Align, 4112 bool AddToUsed) { 4113 llvm::GlobalValue::LinkageTypes LT = 4114 getLinkageTypeForObjCMetadata(CGM, Section); 4115 llvm::GlobalVariable *GV = 4116 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4117 if (!Section.empty()) 4118 GV->setSection(Section); 4119 if (AddToUsed) 4120 CGM.addCompilerUsedGlobal(GV); 4121 return GV; 4122 } 4123 4124 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4125 llvm::Constant *Init, 4126 StringRef Section, 4127 CharUnits Align, 4128 bool AddToUsed) { 4129 llvm::Type *Ty = Init->getType(); 4130 llvm::GlobalValue::LinkageTypes LT = 4131 getLinkageTypeForObjCMetadata(CGM, Section); 4132 llvm::GlobalVariable *GV = 4133 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4134 if (!Section.empty()) 4135 GV->setSection(Section); 4136 GV->setAlignment(Align.getAsAlign()); 4137 if (AddToUsed) 4138 CGM.addCompilerUsedGlobal(GV); 4139 return GV; 4140 } 4141 4142 llvm::GlobalVariable * 4143 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4144 bool ForceNonFragileABI, 4145 bool NullTerminate) { 4146 StringRef Label; 4147 switch (Type) { 4148 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4149 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4150 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4151 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4152 } 4153 4154 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4155 4156 StringRef Section; 4157 switch (Type) { 4158 case ObjCLabelType::ClassName: 4159 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4160 : "__TEXT,__cstring,cstring_literals"; 4161 break; 4162 case ObjCLabelType::MethodVarName: 4163 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4164 : "__TEXT,__cstring,cstring_literals"; 4165 break; 4166 case ObjCLabelType::MethodVarType: 4167 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4168 : "__TEXT,__cstring,cstring_literals"; 4169 break; 4170 case ObjCLabelType::PropertyName: 4171 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4172 : "__TEXT,__cstring,cstring_literals"; 4173 break; 4174 } 4175 4176 llvm::Constant *Value = 4177 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4178 llvm::GlobalVariable *GV = 4179 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4180 /*isConstant=*/true, 4181 llvm::GlobalValue::PrivateLinkage, Value, Label); 4182 if (CGM.getTriple().isOSBinFormatMachO()) 4183 GV->setSection(Section); 4184 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4185 GV->setAlignment(CharUnits::One().getAsAlign()); 4186 CGM.addCompilerUsedGlobal(GV); 4187 4188 return GV; 4189 } 4190 4191 llvm::Function *CGObjCMac::ModuleInitFunction() { 4192 // Abuse this interface function as a place to finalize. 4193 FinishModule(); 4194 return nullptr; 4195 } 4196 4197 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4198 return ObjCTypes.getGetPropertyFn(); 4199 } 4200 4201 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4202 return ObjCTypes.getSetPropertyFn(); 4203 } 4204 4205 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4206 bool copy) { 4207 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4208 } 4209 4210 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4211 return ObjCTypes.getCopyStructFn(); 4212 } 4213 4214 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4215 return ObjCTypes.getCopyStructFn(); 4216 } 4217 4218 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4219 return ObjCTypes.getCppAtomicObjectFunction(); 4220 } 4221 4222 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4223 return ObjCTypes.getCppAtomicObjectFunction(); 4224 } 4225 4226 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4227 return ObjCTypes.getEnumerationMutationFn(); 4228 } 4229 4230 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4231 return EmitTryOrSynchronizedStmt(CGF, S); 4232 } 4233 4234 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4235 const ObjCAtSynchronizedStmt &S) { 4236 return EmitTryOrSynchronizedStmt(CGF, S); 4237 } 4238 4239 namespace { 4240 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4241 const Stmt &S; 4242 Address SyncArgSlot; 4243 Address CallTryExitVar; 4244 Address ExceptionData; 4245 ObjCTypesHelper &ObjCTypes; 4246 PerformFragileFinally(const Stmt *S, 4247 Address SyncArgSlot, 4248 Address CallTryExitVar, 4249 Address ExceptionData, 4250 ObjCTypesHelper *ObjCTypes) 4251 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4252 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4253 4254 void Emit(CodeGenFunction &CGF, Flags flags) override { 4255 // Check whether we need to call objc_exception_try_exit. 4256 // In optimized code, this branch will always be folded. 4257 llvm::BasicBlock *FinallyCallExit = 4258 CGF.createBasicBlock("finally.call_exit"); 4259 llvm::BasicBlock *FinallyNoCallExit = 4260 CGF.createBasicBlock("finally.no_call_exit"); 4261 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4262 FinallyCallExit, FinallyNoCallExit); 4263 4264 CGF.EmitBlock(FinallyCallExit); 4265 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4266 ExceptionData.getPointer()); 4267 4268 CGF.EmitBlock(FinallyNoCallExit); 4269 4270 if (isa<ObjCAtTryStmt>(S)) { 4271 if (const ObjCAtFinallyStmt* FinallyStmt = 4272 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4273 // Don't try to do the @finally if this is an EH cleanup. 4274 if (flags.isForEHCleanup()) return; 4275 4276 // Save the current cleanup destination in case there's 4277 // control flow inside the finally statement. 4278 llvm::Value *CurCleanupDest = 4279 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4280 4281 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4282 4283 if (CGF.HaveInsertPoint()) { 4284 CGF.Builder.CreateStore(CurCleanupDest, 4285 CGF.getNormalCleanupDestSlot()); 4286 } else { 4287 // Currently, the end of the cleanup must always exist. 4288 CGF.EnsureInsertPoint(); 4289 } 4290 } 4291 } else { 4292 // Emit objc_sync_exit(expr); as finally's sole statement for 4293 // @synchronized. 4294 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4295 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4296 } 4297 } 4298 }; 4299 4300 class FragileHazards { 4301 CodeGenFunction &CGF; 4302 SmallVector<llvm::Value*, 20> Locals; 4303 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4304 4305 llvm::InlineAsm *ReadHazard; 4306 llvm::InlineAsm *WriteHazard; 4307 4308 llvm::FunctionType *GetAsmFnType(); 4309 4310 void collectLocals(); 4311 void emitReadHazard(CGBuilderTy &Builder); 4312 4313 public: 4314 FragileHazards(CodeGenFunction &CGF); 4315 4316 void emitWriteHazard(); 4317 void emitHazardsInNewBlocks(); 4318 }; 4319 } // end anonymous namespace 4320 4321 /// Create the fragile-ABI read and write hazards based on the current 4322 /// state of the function, which is presumed to be immediately prior 4323 /// to a @try block. These hazards are used to maintain correct 4324 /// semantics in the face of optimization and the fragile ABI's 4325 /// cavalier use of setjmp/longjmp. 4326 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4327 collectLocals(); 4328 4329 if (Locals.empty()) return; 4330 4331 // Collect all the blocks in the function. 4332 for (llvm::Function::iterator 4333 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4334 BlocksBeforeTry.insert(&*I); 4335 4336 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4337 4338 // Create a read hazard for the allocas. This inhibits dead-store 4339 // optimizations and forces the values to memory. This hazard is 4340 // inserted before any 'throwing' calls in the protected scope to 4341 // reflect the possibility that the variables might be read from the 4342 // catch block if the call throws. 4343 { 4344 std::string Constraint; 4345 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4346 if (I) Constraint += ','; 4347 Constraint += "*m"; 4348 } 4349 4350 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4351 } 4352 4353 // Create a write hazard for the allocas. This inhibits folding 4354 // loads across the hazard. This hazard is inserted at the 4355 // beginning of the catch path to reflect the possibility that the 4356 // variables might have been written within the protected scope. 4357 { 4358 std::string Constraint; 4359 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4360 if (I) Constraint += ','; 4361 Constraint += "=*m"; 4362 } 4363 4364 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4365 } 4366 } 4367 4368 /// Emit a write hazard at the current location. 4369 void FragileHazards::emitWriteHazard() { 4370 if (Locals.empty()) return; 4371 4372 llvm::CallInst *Call = CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4373 for (auto Pair : llvm::enumerate(Locals)) 4374 Call->addParamAttr(Pair.index(), llvm::Attribute::get( 4375 CGF.getLLVMContext(), llvm::Attribute::ElementType, 4376 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4377 } 4378 4379 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4380 assert(!Locals.empty()); 4381 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4382 call->setDoesNotThrow(); 4383 call->setCallingConv(CGF.getRuntimeCC()); 4384 for (auto Pair : llvm::enumerate(Locals)) 4385 call->addParamAttr(Pair.index(), llvm::Attribute::get( 4386 Builder.getContext(), llvm::Attribute::ElementType, 4387 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4388 } 4389 4390 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4391 /// which have been inserted since the beginning of the try. 4392 void FragileHazards::emitHazardsInNewBlocks() { 4393 if (Locals.empty()) return; 4394 4395 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4396 4397 // Iterate through all blocks, skipping those prior to the try. 4398 for (llvm::Function::iterator 4399 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4400 llvm::BasicBlock &BB = *FI; 4401 if (BlocksBeforeTry.count(&BB)) continue; 4402 4403 // Walk through all the calls in the block. 4404 for (llvm::BasicBlock::iterator 4405 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4406 llvm::Instruction &I = *BI; 4407 4408 // Ignore instructions that aren't non-intrinsic calls. 4409 // These are the only calls that can possibly call longjmp. 4410 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4411 continue; 4412 if (isa<llvm::IntrinsicInst>(I)) 4413 continue; 4414 4415 // Ignore call sites marked nounwind. This may be questionable, 4416 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4417 if (cast<llvm::CallBase>(I).doesNotThrow()) 4418 continue; 4419 4420 // Insert a read hazard before the call. This will ensure that 4421 // any writes to the locals are performed before making the 4422 // call. If the call throws, then this is sufficient to 4423 // guarantee correctness as long as it doesn't also write to any 4424 // locals. 4425 Builder.SetInsertPoint(&BB, BI); 4426 emitReadHazard(Builder); 4427 } 4428 } 4429 } 4430 4431 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4432 if (V.isValid()) S.insert(V.getPointer()); 4433 } 4434 4435 void FragileHazards::collectLocals() { 4436 // Compute a set of allocas to ignore. 4437 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4438 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4439 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4440 4441 // Collect all the allocas currently in the function. This is 4442 // probably way too aggressive. 4443 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4444 for (llvm::BasicBlock::iterator 4445 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4446 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4447 Locals.push_back(&*I); 4448 } 4449 4450 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4451 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4452 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4453 tys[i] = Locals[i]->getType(); 4454 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4455 } 4456 4457 /* 4458 4459 Objective-C setjmp-longjmp (sjlj) Exception Handling 4460 -- 4461 4462 A catch buffer is a setjmp buffer plus: 4463 - a pointer to the exception that was caught 4464 - a pointer to the previous exception data buffer 4465 - two pointers of reserved storage 4466 Therefore catch buffers form a stack, with a pointer to the top 4467 of the stack kept in thread-local storage. 4468 4469 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4470 objc_exception_try_exit pops the given catch buffer, which is 4471 required to be the top of the EH stack. 4472 objc_exception_throw pops the top of the EH stack, writes the 4473 thrown exception into the appropriate field, and longjmps 4474 to the setjmp buffer. It crashes the process (with a printf 4475 and an abort()) if there are no catch buffers on the stack. 4476 objc_exception_extract just reads the exception pointer out of the 4477 catch buffer. 4478 4479 There's no reason an implementation couldn't use a light-weight 4480 setjmp here --- something like __builtin_setjmp, but API-compatible 4481 with the heavyweight setjmp. This will be more important if we ever 4482 want to implement correct ObjC/C++ exception interactions for the 4483 fragile ABI. 4484 4485 Note that for this use of setjmp/longjmp to be correct, we may need 4486 to mark some local variables volatile: if a non-volatile local 4487 variable is modified between the setjmp and the longjmp, it has 4488 indeterminate value. For the purposes of LLVM IR, it may be 4489 sufficient to make loads and stores within the @try (to variables 4490 declared outside the @try) volatile. This is necessary for 4491 optimized correctness, but is not currently being done; this is 4492 being tracked as rdar://problem/8160285 4493 4494 The basic framework for a @try-catch-finally is as follows: 4495 { 4496 objc_exception_data d; 4497 id _rethrow = null; 4498 bool _call_try_exit = true; 4499 4500 objc_exception_try_enter(&d); 4501 if (!setjmp(d.jmp_buf)) { 4502 ... try body ... 4503 } else { 4504 // exception path 4505 id _caught = objc_exception_extract(&d); 4506 4507 // enter new try scope for handlers 4508 if (!setjmp(d.jmp_buf)) { 4509 ... match exception and execute catch blocks ... 4510 4511 // fell off end, rethrow. 4512 _rethrow = _caught; 4513 ... jump-through-finally to finally_rethrow ... 4514 } else { 4515 // exception in catch block 4516 _rethrow = objc_exception_extract(&d); 4517 _call_try_exit = false; 4518 ... jump-through-finally to finally_rethrow ... 4519 } 4520 } 4521 ... jump-through-finally to finally_end ... 4522 4523 finally: 4524 if (_call_try_exit) 4525 objc_exception_try_exit(&d); 4526 4527 ... finally block .... 4528 ... dispatch to finally destination ... 4529 4530 finally_rethrow: 4531 objc_exception_throw(_rethrow); 4532 4533 finally_end: 4534 } 4535 4536 This framework differs slightly from the one gcc uses, in that gcc 4537 uses _rethrow to determine if objc_exception_try_exit should be called 4538 and if the object should be rethrown. This breaks in the face of 4539 throwing nil and introduces unnecessary branches. 4540 4541 We specialize this framework for a few particular circumstances: 4542 4543 - If there are no catch blocks, then we avoid emitting the second 4544 exception handling context. 4545 4546 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4547 e)) we avoid emitting the code to rethrow an uncaught exception. 4548 4549 - FIXME: If there is no @finally block we can do a few more 4550 simplifications. 4551 4552 Rethrows and Jumps-Through-Finally 4553 -- 4554 4555 '@throw;' is supported by pushing the currently-caught exception 4556 onto ObjCEHStack while the @catch blocks are emitted. 4557 4558 Branches through the @finally block are handled with an ordinary 4559 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4560 exceptions are not compatible with C++ exceptions, and this is 4561 hardly the only place where this will go wrong. 4562 4563 @synchronized(expr) { stmt; } is emitted as if it were: 4564 id synch_value = expr; 4565 objc_sync_enter(synch_value); 4566 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4567 */ 4568 4569 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4570 const Stmt &S) { 4571 bool isTry = isa<ObjCAtTryStmt>(S); 4572 4573 // A destination for the fall-through edges of the catch handlers to 4574 // jump to. 4575 CodeGenFunction::JumpDest FinallyEnd = 4576 CGF.getJumpDestInCurrentScope("finally.end"); 4577 4578 // A destination for the rethrow edge of the catch handlers to jump 4579 // to. 4580 CodeGenFunction::JumpDest FinallyRethrow = 4581 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4582 4583 // For @synchronized, call objc_sync_enter(sync.expr). The 4584 // evaluation of the expression must occur before we enter the 4585 // @synchronized. We can't avoid a temp here because we need the 4586 // value to be preserved. If the backend ever does liveness 4587 // correctly after setjmp, this will be unnecessary. 4588 Address SyncArgSlot = Address::invalid(); 4589 if (!isTry) { 4590 llvm::Value *SyncArg = 4591 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4592 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4593 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4594 4595 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4596 CGF.getPointerAlign(), "sync.arg"); 4597 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4598 } 4599 4600 // Allocate memory for the setjmp buffer. This needs to be kept 4601 // live throughout the try and catch blocks. 4602 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4603 CGF.getPointerAlign(), 4604 "exceptiondata.ptr"); 4605 4606 // Create the fragile hazards. Note that this will not capture any 4607 // of the allocas required for exception processing, but will 4608 // capture the current basic block (which extends all the way to the 4609 // setjmp call) as "before the @try". 4610 FragileHazards Hazards(CGF); 4611 4612 // Create a flag indicating whether the cleanup needs to call 4613 // objc_exception_try_exit. This is true except when 4614 // - no catches match and we're branching through the cleanup 4615 // just to rethrow the exception, or 4616 // - a catch matched and we're falling out of the catch handler. 4617 // The setjmp-safety rule here is that we should always store to this 4618 // variable in a place that dominates the branch through the cleanup 4619 // without passing through any setjmps. 4620 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4621 CharUnits::One(), 4622 "_call_try_exit"); 4623 4624 // A slot containing the exception to rethrow. Only needed when we 4625 // have both a @catch and a @finally. 4626 Address PropagatingExnVar = Address::invalid(); 4627 4628 // Push a normal cleanup to leave the try scope. 4629 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4630 SyncArgSlot, 4631 CallTryExitVar, 4632 ExceptionData, 4633 &ObjCTypes); 4634 4635 // Enter a try block: 4636 // - Call objc_exception_try_enter to push ExceptionData on top of 4637 // the EH stack. 4638 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4639 ExceptionData.getPointer()); 4640 4641 // - Call setjmp on the exception data buffer. 4642 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4643 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4644 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4645 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4646 "setjmp_buffer"); 4647 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4648 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4649 SetJmpResult->setCanReturnTwice(); 4650 4651 // If setjmp returned 0, enter the protected block; otherwise, 4652 // branch to the handler. 4653 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4654 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4655 llvm::Value *DidCatch = 4656 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4657 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4658 4659 // Emit the protected block. 4660 CGF.EmitBlock(TryBlock); 4661 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4662 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4663 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4664 4665 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4666 4667 // Emit the exception handler block. 4668 CGF.EmitBlock(TryHandler); 4669 4670 // Don't optimize loads of the in-scope locals across this point. 4671 Hazards.emitWriteHazard(); 4672 4673 // For a @synchronized (or a @try with no catches), just branch 4674 // through the cleanup to the rethrow block. 4675 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4676 // Tell the cleanup not to re-pop the exit. 4677 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4678 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4679 4680 // Otherwise, we have to match against the caught exceptions. 4681 } else { 4682 // Retrieve the exception object. We may emit multiple blocks but 4683 // nothing can cross this so the value is already in SSA form. 4684 llvm::CallInst *Caught = 4685 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4686 ExceptionData.getPointer(), "caught"); 4687 4688 // Push the exception to rethrow onto the EH value stack for the 4689 // benefit of any @throws in the handlers. 4690 CGF.ObjCEHValueStack.push_back(Caught); 4691 4692 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4693 4694 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4695 4696 llvm::BasicBlock *CatchBlock = nullptr; 4697 llvm::BasicBlock *CatchHandler = nullptr; 4698 if (HasFinally) { 4699 // Save the currently-propagating exception before 4700 // objc_exception_try_enter clears the exception slot. 4701 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4702 CGF.getPointerAlign(), 4703 "propagating_exception"); 4704 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4705 4706 // Enter a new exception try block (in case a @catch block 4707 // throws an exception). 4708 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4709 ExceptionData.getPointer()); 4710 4711 llvm::CallInst *SetJmpResult = 4712 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4713 SetJmpBuffer, "setjmp.result"); 4714 SetJmpResult->setCanReturnTwice(); 4715 4716 llvm::Value *Threw = 4717 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4718 4719 CatchBlock = CGF.createBasicBlock("catch"); 4720 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4721 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4722 4723 CGF.EmitBlock(CatchBlock); 4724 } 4725 4726 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4727 4728 // Handle catch list. As a special case we check if everything is 4729 // matched and avoid generating code for falling off the end if 4730 // so. 4731 bool AllMatched = false; 4732 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) { 4733 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4734 const ObjCObjectPointerType *OPT = nullptr; 4735 4736 // catch(...) always matches. 4737 if (!CatchParam) { 4738 AllMatched = true; 4739 } else { 4740 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4741 4742 // catch(id e) always matches under this ABI, since only 4743 // ObjC exceptions end up here in the first place. 4744 // FIXME: For the time being we also match id<X>; this should 4745 // be rejected by Sema instead. 4746 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4747 AllMatched = true; 4748 } 4749 4750 // If this is a catch-all, we don't need to test anything. 4751 if (AllMatched) { 4752 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4753 4754 if (CatchParam) { 4755 CGF.EmitAutoVarDecl(*CatchParam); 4756 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4757 4758 // These types work out because ConvertType(id) == i8*. 4759 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4760 } 4761 4762 CGF.EmitStmt(CatchStmt->getCatchBody()); 4763 4764 // The scope of the catch variable ends right here. 4765 CatchVarCleanups.ForceCleanup(); 4766 4767 CGF.EmitBranchThroughCleanup(FinallyEnd); 4768 break; 4769 } 4770 4771 assert(OPT && "Unexpected non-object pointer type in @catch"); 4772 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4773 4774 // FIXME: @catch (Class c) ? 4775 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4776 assert(IDecl && "Catch parameter must have Objective-C type!"); 4777 4778 // Check if the @catch block matches the exception object. 4779 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4780 4781 llvm::Value *matchArgs[] = { Class, Caught }; 4782 llvm::CallInst *Match = 4783 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4784 matchArgs, "match"); 4785 4786 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4787 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4788 4789 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4790 MatchedBlock, NextCatchBlock); 4791 4792 // Emit the @catch block. 4793 CGF.EmitBlock(MatchedBlock); 4794 4795 // Collect any cleanups for the catch variable. The scope lasts until 4796 // the end of the catch body. 4797 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4798 4799 CGF.EmitAutoVarDecl(*CatchParam); 4800 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4801 4802 // Initialize the catch variable. 4803 llvm::Value *Tmp = 4804 CGF.Builder.CreateBitCast(Caught, 4805 CGF.ConvertType(CatchParam->getType())); 4806 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4807 4808 CGF.EmitStmt(CatchStmt->getCatchBody()); 4809 4810 // We're done with the catch variable. 4811 CatchVarCleanups.ForceCleanup(); 4812 4813 CGF.EmitBranchThroughCleanup(FinallyEnd); 4814 4815 CGF.EmitBlock(NextCatchBlock); 4816 } 4817 4818 CGF.ObjCEHValueStack.pop_back(); 4819 4820 // If nothing wanted anything to do with the caught exception, 4821 // kill the extract call. 4822 if (Caught->use_empty()) 4823 Caught->eraseFromParent(); 4824 4825 if (!AllMatched) 4826 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4827 4828 if (HasFinally) { 4829 // Emit the exception handler for the @catch blocks. 4830 CGF.EmitBlock(CatchHandler); 4831 4832 // In theory we might now need a write hazard, but actually it's 4833 // unnecessary because there's no local-accessing code between 4834 // the try's write hazard and here. 4835 //Hazards.emitWriteHazard(); 4836 4837 // Extract the new exception and save it to the 4838 // propagating-exception slot. 4839 assert(PropagatingExnVar.isValid()); 4840 llvm::CallInst *NewCaught = 4841 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4842 ExceptionData.getPointer(), "caught"); 4843 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4844 4845 // Don't pop the catch handler; the throw already did. 4846 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4847 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4848 } 4849 } 4850 4851 // Insert read hazards as required in the new blocks. 4852 Hazards.emitHazardsInNewBlocks(); 4853 4854 // Pop the cleanup. 4855 CGF.Builder.restoreIP(TryFallthroughIP); 4856 if (CGF.HaveInsertPoint()) 4857 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4858 CGF.PopCleanupBlock(); 4859 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4860 4861 // Emit the rethrow block. 4862 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4863 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4864 if (CGF.HaveInsertPoint()) { 4865 // If we have a propagating-exception variable, check it. 4866 llvm::Value *PropagatingExn; 4867 if (PropagatingExnVar.isValid()) { 4868 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4869 4870 // Otherwise, just look in the buffer for the exception to throw. 4871 } else { 4872 llvm::CallInst *Caught = 4873 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4874 ExceptionData.getPointer()); 4875 PropagatingExn = Caught; 4876 } 4877 4878 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4879 PropagatingExn); 4880 CGF.Builder.CreateUnreachable(); 4881 } 4882 4883 CGF.Builder.restoreIP(SavedIP); 4884 } 4885 4886 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4887 const ObjCAtThrowStmt &S, 4888 bool ClearInsertionPoint) { 4889 llvm::Value *ExceptionAsObject; 4890 4891 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4892 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4893 ExceptionAsObject = 4894 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4895 } else { 4896 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4897 "Unexpected rethrow outside @catch block."); 4898 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4899 } 4900 4901 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4902 ->setDoesNotReturn(); 4903 CGF.Builder.CreateUnreachable(); 4904 4905 // Clear the insertion point to indicate we are in unreachable code. 4906 if (ClearInsertionPoint) 4907 CGF.Builder.ClearInsertionPoint(); 4908 } 4909 4910 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4911 /// object: objc_read_weak (id *src) 4912 /// 4913 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4914 Address AddrWeakObj) { 4915 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4916 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4917 ObjCTypes.PtrObjectPtrTy); 4918 llvm::Value *read_weak = 4919 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4920 AddrWeakObj.getPointer(), "weakread"); 4921 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4922 return read_weak; 4923 } 4924 4925 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4926 /// objc_assign_weak (id src, id *dst) 4927 /// 4928 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4929 llvm::Value *src, Address dst) { 4930 llvm::Type * SrcTy = src->getType(); 4931 if (!isa<llvm::PointerType>(SrcTy)) { 4932 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4933 assert(Size <= 8 && "does not support size > 8"); 4934 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4935 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4936 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4937 } 4938 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4939 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4940 llvm::Value *args[] = { src, dst.getPointer() }; 4941 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4942 args, "weakassign"); 4943 } 4944 4945 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4946 /// objc_assign_global (id src, id *dst) 4947 /// 4948 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4949 llvm::Value *src, Address dst, 4950 bool threadlocal) { 4951 llvm::Type * SrcTy = src->getType(); 4952 if (!isa<llvm::PointerType>(SrcTy)) { 4953 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4954 assert(Size <= 8 && "does not support size > 8"); 4955 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4956 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4957 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4958 } 4959 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4960 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4961 llvm::Value *args[] = { src, dst.getPointer() }; 4962 if (!threadlocal) 4963 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4964 args, "globalassign"); 4965 else 4966 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4967 args, "threadlocalassign"); 4968 } 4969 4970 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4971 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4972 /// 4973 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4974 llvm::Value *src, Address dst, 4975 llvm::Value *ivarOffset) { 4976 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4977 llvm::Type * SrcTy = src->getType(); 4978 if (!isa<llvm::PointerType>(SrcTy)) { 4979 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4980 assert(Size <= 8 && "does not support size > 8"); 4981 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4982 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4983 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4984 } 4985 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4986 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4987 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4988 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4989 } 4990 4991 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4992 /// objc_assign_strongCast (id src, id *dst) 4993 /// 4994 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4995 llvm::Value *src, Address dst) { 4996 llvm::Type * SrcTy = src->getType(); 4997 if (!isa<llvm::PointerType>(SrcTy)) { 4998 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4999 assert(Size <= 8 && "does not support size > 8"); 5000 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5001 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5002 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5003 } 5004 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5005 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5006 llvm::Value *args[] = { src, dst.getPointer() }; 5007 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5008 args, "strongassign"); 5009 } 5010 5011 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5012 Address DestPtr, 5013 Address SrcPtr, 5014 llvm::Value *size) { 5015 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5016 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5017 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5018 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5019 } 5020 5021 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5022 /// 5023 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5024 QualType ObjectTy, 5025 llvm::Value *BaseValue, 5026 const ObjCIvarDecl *Ivar, 5027 unsigned CVRQualifiers) { 5028 const ObjCInterfaceDecl *ID = 5029 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5030 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5031 EmitIvarOffset(CGF, ID, Ivar)); 5032 } 5033 5034 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5035 const ObjCInterfaceDecl *Interface, 5036 const ObjCIvarDecl *Ivar) { 5037 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5038 return llvm::ConstantInt::get( 5039 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5040 Offset); 5041 } 5042 5043 /* *** Private Interface *** */ 5044 5045 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5046 StringRef MachOAttributes) { 5047 switch (CGM.getTriple().getObjectFormat()) { 5048 case llvm::Triple::UnknownObjectFormat: 5049 llvm_unreachable("unexpected object file format"); 5050 case llvm::Triple::MachO: { 5051 if (MachOAttributes.empty()) 5052 return ("__DATA," + Section).str(); 5053 return ("__DATA," + Section + "," + MachOAttributes).str(); 5054 } 5055 case llvm::Triple::ELF: 5056 assert(Section.substr(0, 2) == "__" && 5057 "expected the name to begin with __"); 5058 return Section.substr(2).str(); 5059 case llvm::Triple::COFF: 5060 assert(Section.substr(0, 2) == "__" && 5061 "expected the name to begin with __"); 5062 return ("." + Section.substr(2) + "$B").str(); 5063 case llvm::Triple::Wasm: 5064 case llvm::Triple::GOFF: 5065 case llvm::Triple::XCOFF: 5066 llvm::report_fatal_error( 5067 "Objective-C support is unimplemented for object file format"); 5068 } 5069 5070 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5071 } 5072 5073 /// EmitImageInfo - Emit the image info marker used to encode some module 5074 /// level information. 5075 /// 5076 /// See: <rdr://4810609&4810587&4810587> 5077 /// struct IMAGE_INFO { 5078 /// unsigned version; 5079 /// unsigned flags; 5080 /// }; 5081 enum ImageInfoFlags { 5082 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5083 eImageInfo_GarbageCollected = (1 << 1), 5084 eImageInfo_GCOnly = (1 << 2), 5085 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5086 5087 // A flag indicating that the module has no instances of a @synthesize of a 5088 // superclass variable. <rdar://problem/6803242> 5089 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5090 eImageInfo_ImageIsSimulated = (1 << 5), 5091 eImageInfo_ClassProperties = (1 << 6) 5092 }; 5093 5094 void CGObjCCommonMac::EmitImageInfo() { 5095 unsigned version = 0; // Version is unused? 5096 std::string Section = 5097 (ObjCABI == 1) 5098 ? "__OBJC,__image_info,regular" 5099 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5100 5101 // Generate module-level named metadata to convey this information to the 5102 // linker and code-gen. 5103 llvm::Module &Mod = CGM.getModule(); 5104 5105 // Add the ObjC ABI version to the module flags. 5106 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5107 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5108 version); 5109 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5110 llvm::MDString::get(VMContext, Section)); 5111 5112 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5113 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5114 // Non-GC overrides those files which specify GC. 5115 Mod.addModuleFlag(llvm::Module::Error, 5116 "Objective-C Garbage Collection", 5117 llvm::ConstantInt::get(Int8Ty,0)); 5118 } else { 5119 // Add the ObjC garbage collection value. 5120 Mod.addModuleFlag(llvm::Module::Error, 5121 "Objective-C Garbage Collection", 5122 llvm::ConstantInt::get(Int8Ty, 5123 (uint8_t)eImageInfo_GarbageCollected)); 5124 5125 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5126 // Add the ObjC GC Only value. 5127 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5128 eImageInfo_GCOnly); 5129 5130 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5131 llvm::Metadata *Ops[2] = { 5132 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5133 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5134 Int8Ty, eImageInfo_GarbageCollected))}; 5135 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5136 llvm::MDNode::get(VMContext, Ops)); 5137 } 5138 } 5139 5140 // Indicate whether we're compiling this to run on a simulator. 5141 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5142 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5143 eImageInfo_ImageIsSimulated); 5144 5145 // Indicate whether we are generating class properties. 5146 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5147 eImageInfo_ClassProperties); 5148 } 5149 5150 // struct objc_module { 5151 // unsigned long version; 5152 // unsigned long size; 5153 // const char *name; 5154 // Symtab symtab; 5155 // }; 5156 5157 // FIXME: Get from somewhere 5158 static const int ModuleVersion = 7; 5159 5160 void CGObjCMac::EmitModuleInfo() { 5161 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5162 5163 ConstantInitBuilder builder(CGM); 5164 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5165 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5166 values.addInt(ObjCTypes.LongTy, Size); 5167 // This used to be the filename, now it is unused. <rdr://4327263> 5168 values.add(GetClassName(StringRef(""))); 5169 values.add(EmitModuleSymbols()); 5170 CreateMetadataVar("OBJC_MODULES", values, 5171 "__OBJC,__module_info,regular,no_dead_strip", 5172 CGM.getPointerAlign(), true); 5173 } 5174 5175 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5176 unsigned NumClasses = DefinedClasses.size(); 5177 unsigned NumCategories = DefinedCategories.size(); 5178 5179 // Return null if no symbols were defined. 5180 if (!NumClasses && !NumCategories) 5181 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5182 5183 ConstantInitBuilder builder(CGM); 5184 auto values = builder.beginStruct(); 5185 values.addInt(ObjCTypes.LongTy, 0); 5186 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5187 values.addInt(ObjCTypes.ShortTy, NumClasses); 5188 values.addInt(ObjCTypes.ShortTy, NumCategories); 5189 5190 // The runtime expects exactly the list of defined classes followed 5191 // by the list of defined categories, in a single array. 5192 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5193 for (unsigned i=0; i<NumClasses; i++) { 5194 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5195 assert(ID); 5196 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5197 // We are implementing a weak imported interface. Give it external linkage 5198 if (ID->isWeakImported() && !IMP->isWeakImported()) 5199 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5200 5201 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5202 } 5203 for (unsigned i=0; i<NumCategories; i++) 5204 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5205 5206 array.finishAndAddTo(values); 5207 5208 llvm::GlobalVariable *GV = CreateMetadataVar( 5209 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5210 CGM.getPointerAlign(), true); 5211 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5212 } 5213 5214 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5215 IdentifierInfo *II) { 5216 LazySymbols.insert(II); 5217 5218 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5219 5220 if (!Entry) { 5221 llvm::Constant *Casted = 5222 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5223 ObjCTypes.ClassPtrTy); 5224 Entry = CreateMetadataVar( 5225 "OBJC_CLASS_REFERENCES_", Casted, 5226 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5227 CGM.getPointerAlign(), true); 5228 } 5229 5230 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, 5231 CGF.getPointerAlign()); 5232 } 5233 5234 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5235 const ObjCInterfaceDecl *ID) { 5236 // If the class has the objc_runtime_visible attribute, we need to 5237 // use the Objective-C runtime to get the class. 5238 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5239 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5240 5241 IdentifierInfo *RuntimeName = 5242 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5243 return EmitClassRefFromId(CGF, RuntimeName); 5244 } 5245 5246 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5247 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5248 return EmitClassRefFromId(CGF, II); 5249 } 5250 5251 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5252 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5253 } 5254 5255 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5256 CharUnits Align = CGM.getPointerAlign(); 5257 5258 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5259 if (!Entry) { 5260 llvm::Constant *Casted = 5261 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5262 ObjCTypes.SelectorPtrTy); 5263 Entry = CreateMetadataVar( 5264 "OBJC_SELECTOR_REFERENCES_", Casted, 5265 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5266 Entry->setExternallyInitialized(true); 5267 } 5268 5269 return Address(Entry, Align); 5270 } 5271 5272 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5273 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5274 if (!Entry) 5275 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5276 return getConstantGEP(VMContext, Entry, 0, 0); 5277 } 5278 5279 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5280 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5281 I = MethodDefinitions.find(MD); 5282 if (I != MethodDefinitions.end()) 5283 return I->second; 5284 5285 return nullptr; 5286 } 5287 5288 /// GetIvarLayoutName - Returns a unique constant for the given 5289 /// ivar layout bitmap. 5290 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5291 const ObjCCommonTypesHelper &ObjCTypes) { 5292 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5293 } 5294 5295 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5296 CharUnits offset) { 5297 const RecordDecl *RD = RT->getDecl(); 5298 5299 // If this is a union, remember that we had one, because it might mess 5300 // up the ordering of layout entries. 5301 if (RD->isUnion()) 5302 IsDisordered = true; 5303 5304 const ASTRecordLayout *recLayout = nullptr; 5305 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5306 [&](const FieldDecl *field) -> CharUnits { 5307 if (!recLayout) 5308 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5309 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5310 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5311 }); 5312 } 5313 5314 template <class Iterator, class GetOffsetFn> 5315 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5316 CharUnits aggregateOffset, 5317 const GetOffsetFn &getOffset) { 5318 for (; begin != end; ++begin) { 5319 auto field = *begin; 5320 5321 // Skip over bitfields. 5322 if (field->isBitField()) { 5323 continue; 5324 } 5325 5326 // Compute the offset of the field within the aggregate. 5327 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5328 5329 visitField(field, fieldOffset); 5330 } 5331 } 5332 5333 /// Collect layout information for the given fields into IvarsInfo. 5334 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5335 CharUnits fieldOffset) { 5336 QualType fieldType = field->getType(); 5337 5338 // Drill down into arrays. 5339 uint64_t numElts = 1; 5340 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5341 numElts = 0; 5342 fieldType = arrayType->getElementType(); 5343 } 5344 // Unlike incomplete arrays, constant arrays can be nested. 5345 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5346 numElts *= arrayType->getSize().getZExtValue(); 5347 fieldType = arrayType->getElementType(); 5348 } 5349 5350 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5351 5352 // If we ended up with a zero-sized array, we've done what we can do within 5353 // the limits of this layout encoding. 5354 if (numElts == 0) return; 5355 5356 // Recurse if the base element type is a record type. 5357 if (auto recType = fieldType->getAs<RecordType>()) { 5358 size_t oldEnd = IvarsInfo.size(); 5359 5360 visitRecord(recType, fieldOffset); 5361 5362 // If we have an array, replicate the first entry's layout information. 5363 auto numEltEntries = IvarsInfo.size() - oldEnd; 5364 if (numElts != 1 && numEltEntries != 0) { 5365 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5366 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5367 // Copy the last numEltEntries onto the end of the array, adjusting 5368 // each for the element size. 5369 for (size_t i = 0; i != numEltEntries; ++i) { 5370 auto firstEntry = IvarsInfo[oldEnd + i]; 5371 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5372 firstEntry.SizeInWords)); 5373 } 5374 } 5375 } 5376 5377 return; 5378 } 5379 5380 // Classify the element type. 5381 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5382 5383 // If it matches what we're looking for, add an entry. 5384 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5385 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5386 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5387 == CGM.getPointerSize()); 5388 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5389 } 5390 } 5391 5392 /// buildBitmap - This routine does the horsework of taking the offsets of 5393 /// strong/weak references and creating a bitmap. The bitmap is also 5394 /// returned in the given buffer, suitable for being passed to \c dump(). 5395 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5396 llvm::SmallVectorImpl<unsigned char> &buffer) { 5397 // The bitmap is a series of skip/scan instructions, aligned to word 5398 // boundaries. The skip is performed first. 5399 const unsigned char MaxNibble = 0xF; 5400 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5401 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5402 5403 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5404 5405 // Sort the ivar info on byte position in case we encounterred a 5406 // union nested in the ivar list. 5407 if (IsDisordered) { 5408 // This isn't a stable sort, but our algorithm should handle it fine. 5409 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5410 } else { 5411 assert(llvm::is_sorted(IvarsInfo)); 5412 } 5413 assert(IvarsInfo.back().Offset < InstanceEnd); 5414 5415 assert(buffer.empty()); 5416 5417 // Skip the next N words. 5418 auto skip = [&](unsigned numWords) { 5419 assert(numWords > 0); 5420 5421 // Try to merge into the previous byte. Since scans happen second, we 5422 // can't do this if it includes a scan. 5423 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5424 unsigned lastSkip = buffer.back() >> SkipShift; 5425 if (lastSkip < MaxNibble) { 5426 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5427 numWords -= claimed; 5428 lastSkip += claimed; 5429 buffer.back() = (lastSkip << SkipShift); 5430 } 5431 } 5432 5433 while (numWords >= MaxNibble) { 5434 buffer.push_back(MaxNibble << SkipShift); 5435 numWords -= MaxNibble; 5436 } 5437 if (numWords) { 5438 buffer.push_back(numWords << SkipShift); 5439 } 5440 }; 5441 5442 // Scan the next N words. 5443 auto scan = [&](unsigned numWords) { 5444 assert(numWords > 0); 5445 5446 // Try to merge into the previous byte. Since scans happen second, we can 5447 // do this even if it includes a skip. 5448 if (!buffer.empty()) { 5449 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5450 if (lastScan < MaxNibble) { 5451 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5452 numWords -= claimed; 5453 lastScan += claimed; 5454 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5455 } 5456 } 5457 5458 while (numWords >= MaxNibble) { 5459 buffer.push_back(MaxNibble << ScanShift); 5460 numWords -= MaxNibble; 5461 } 5462 if (numWords) { 5463 buffer.push_back(numWords << ScanShift); 5464 } 5465 }; 5466 5467 // One past the end of the last scan. 5468 unsigned endOfLastScanInWords = 0; 5469 const CharUnits WordSize = CGM.getPointerSize(); 5470 5471 // Consider all the scan requests. 5472 for (auto &request : IvarsInfo) { 5473 CharUnits beginOfScan = request.Offset - InstanceBegin; 5474 5475 // Ignore scan requests that don't start at an even multiple of the 5476 // word size. We can't encode them. 5477 if ((beginOfScan % WordSize) != 0) continue; 5478 5479 // Ignore scan requests that start before the instance start. 5480 // This assumes that scans never span that boundary. The boundary 5481 // isn't the true start of the ivars, because in the fragile-ARC case 5482 // it's rounded up to word alignment, but the test above should leave 5483 // us ignoring that possibility. 5484 if (beginOfScan.isNegative()) { 5485 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5486 continue; 5487 } 5488 5489 unsigned beginOfScanInWords = beginOfScan / WordSize; 5490 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5491 5492 // If the scan starts some number of words after the last one ended, 5493 // skip forward. 5494 if (beginOfScanInWords > endOfLastScanInWords) { 5495 skip(beginOfScanInWords - endOfLastScanInWords); 5496 5497 // Otherwise, start scanning where the last left off. 5498 } else { 5499 beginOfScanInWords = endOfLastScanInWords; 5500 5501 // If that leaves us with nothing to scan, ignore this request. 5502 if (beginOfScanInWords >= endOfScanInWords) continue; 5503 } 5504 5505 // Scan to the end of the request. 5506 assert(beginOfScanInWords < endOfScanInWords); 5507 scan(endOfScanInWords - beginOfScanInWords); 5508 endOfLastScanInWords = endOfScanInWords; 5509 } 5510 5511 if (buffer.empty()) 5512 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5513 5514 // For GC layouts, emit a skip to the end of the allocation so that we 5515 // have precise information about the entire thing. This isn't useful 5516 // or necessary for the ARC-style layout strings. 5517 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5518 unsigned lastOffsetInWords = 5519 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5520 if (lastOffsetInWords > endOfLastScanInWords) { 5521 skip(lastOffsetInWords - endOfLastScanInWords); 5522 } 5523 } 5524 5525 // Null terminate the string. 5526 buffer.push_back(0); 5527 5528 auto *Entry = CGObjC.CreateCStringLiteral( 5529 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5530 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5531 } 5532 5533 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5534 /// implementation for the __strong or __weak case. 5535 /// The layout map displays which words in ivar list must be skipped 5536 /// and which must be scanned by GC (see below). String is built of bytes. 5537 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5538 /// of words to skip and right nibble is count of words to scan. So, each 5539 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5540 /// represented by a 0x00 byte which also ends the string. 5541 /// 1. when ForStrongLayout is true, following ivars are scanned: 5542 /// - id, Class 5543 /// - object * 5544 /// - __strong anything 5545 /// 5546 /// 2. When ForStrongLayout is false, following ivars are scanned: 5547 /// - __weak anything 5548 /// 5549 llvm::Constant * 5550 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5551 CharUnits beginOffset, CharUnits endOffset, 5552 bool ForStrongLayout, bool HasMRCWeakIvars) { 5553 // If this is MRC, and we're either building a strong layout or there 5554 // are no weak ivars, bail out early. 5555 llvm::Type *PtrTy = CGM.Int8PtrTy; 5556 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5557 !CGM.getLangOpts().ObjCAutoRefCount && 5558 (ForStrongLayout || !HasMRCWeakIvars)) 5559 return llvm::Constant::getNullValue(PtrTy); 5560 5561 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5562 SmallVector<const ObjCIvarDecl*, 32> ivars; 5563 5564 // GC layout strings include the complete object layout, possibly 5565 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5566 // up. 5567 // 5568 // ARC layout strings only include the class's ivars. In non-fragile 5569 // runtimes, that means starting at InstanceStart, rounded up to word 5570 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5571 // starting at the offset of the first ivar, rounded up to word alignment. 5572 // 5573 // MRC weak layout strings follow the ARC style. 5574 CharUnits baseOffset; 5575 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5576 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5577 IVD; IVD = IVD->getNextIvar()) 5578 ivars.push_back(IVD); 5579 5580 if (isNonFragileABI()) { 5581 baseOffset = beginOffset; // InstanceStart 5582 } else if (!ivars.empty()) { 5583 baseOffset = 5584 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5585 } else { 5586 baseOffset = CharUnits::Zero(); 5587 } 5588 5589 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5590 } 5591 else { 5592 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5593 5594 baseOffset = CharUnits::Zero(); 5595 } 5596 5597 if (ivars.empty()) 5598 return llvm::Constant::getNullValue(PtrTy); 5599 5600 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5601 5602 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5603 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5604 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5605 }); 5606 5607 if (!builder.hasBitmapData()) 5608 return llvm::Constant::getNullValue(PtrTy); 5609 5610 llvm::SmallVector<unsigned char, 4> buffer; 5611 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5612 5613 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5614 printf("\n%s ivar layout for class '%s': ", 5615 ForStrongLayout ? "strong" : "weak", 5616 OMD->getClassInterface()->getName().str().c_str()); 5617 builder.dump(buffer); 5618 } 5619 return C; 5620 } 5621 5622 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5623 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5624 // FIXME: Avoid std::string in "Sel.getAsString()" 5625 if (!Entry) 5626 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5627 return getConstantGEP(VMContext, Entry, 0, 0); 5628 } 5629 5630 // FIXME: Merge into a single cstring creation function. 5631 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5632 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5633 } 5634 5635 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5636 std::string TypeStr; 5637 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5638 5639 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5640 if (!Entry) 5641 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5642 return getConstantGEP(VMContext, Entry, 0, 0); 5643 } 5644 5645 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5646 bool Extended) { 5647 std::string TypeStr = 5648 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5649 5650 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5651 if (!Entry) 5652 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5653 return getConstantGEP(VMContext, Entry, 0, 0); 5654 } 5655 5656 // FIXME: Merge into a single cstring creation function. 5657 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5658 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5659 if (!Entry) 5660 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5661 return getConstantGEP(VMContext, Entry, 0, 0); 5662 } 5663 5664 // FIXME: Merge into a single cstring creation function. 5665 // FIXME: This Decl should be more precise. 5666 llvm::Constant * 5667 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5668 const Decl *Container) { 5669 std::string TypeStr = 5670 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5671 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5672 } 5673 5674 void CGObjCMac::FinishModule() { 5675 EmitModuleInfo(); 5676 5677 // Emit the dummy bodies for any protocols which were referenced but 5678 // never defined. 5679 for (auto &entry : Protocols) { 5680 llvm::GlobalVariable *global = entry.second; 5681 if (global->hasInitializer()) 5682 continue; 5683 5684 ConstantInitBuilder builder(CGM); 5685 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5686 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5687 values.add(GetClassName(entry.first->getName())); 5688 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5689 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5690 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5691 values.finishAndSetAsInitializer(global); 5692 CGM.addCompilerUsedGlobal(global); 5693 } 5694 5695 // Add assembler directives to add lazy undefined symbol references 5696 // for classes which are referenced but not defined. This is 5697 // important for correct linker interaction. 5698 // 5699 // FIXME: It would be nice if we had an LLVM construct for this. 5700 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5701 CGM.getTriple().isOSBinFormatMachO()) { 5702 SmallString<256> Asm; 5703 Asm += CGM.getModule().getModuleInlineAsm(); 5704 if (!Asm.empty() && Asm.back() != '\n') 5705 Asm += '\n'; 5706 5707 llvm::raw_svector_ostream OS(Asm); 5708 for (const auto *Sym : DefinedSymbols) 5709 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5710 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5711 for (const auto *Sym : LazySymbols) 5712 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5713 for (const auto &Category : DefinedCategoryNames) 5714 OS << "\t.objc_category_name_" << Category << "=0\n" 5715 << "\t.globl .objc_category_name_" << Category << "\n"; 5716 5717 CGM.getModule().setModuleInlineAsm(OS.str()); 5718 } 5719 } 5720 5721 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5722 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5723 ObjCEmptyVtableVar(nullptr) { 5724 ObjCABI = 2; 5725 } 5726 5727 /* *** */ 5728 5729 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5730 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5731 { 5732 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5733 ASTContext &Ctx = CGM.getContext(); 5734 5735 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5736 IntTy = CGM.IntTy; 5737 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5738 Int8PtrTy = CGM.Int8PtrTy; 5739 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5740 5741 // arm64 targets use "int" ivar offset variables. All others, 5742 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5743 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5744 IvarOffsetVarTy = IntTy; 5745 else 5746 IvarOffsetVarTy = LongTy; 5747 5748 ObjectPtrTy = 5749 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5750 PtrObjectPtrTy = 5751 llvm::PointerType::getUnqual(ObjectPtrTy); 5752 SelectorPtrTy = 5753 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5754 5755 // I'm not sure I like this. The implicit coordination is a bit 5756 // gross. We should solve this in a reasonable fashion because this 5757 // is a pretty common task (match some runtime data structure with 5758 // an LLVM data structure). 5759 5760 // FIXME: This is leaked. 5761 // FIXME: Merge with rewriter code? 5762 5763 // struct _objc_super { 5764 // id self; 5765 // Class cls; 5766 // } 5767 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5768 Ctx.getTranslationUnitDecl(), 5769 SourceLocation(), SourceLocation(), 5770 &Ctx.Idents.get("_objc_super")); 5771 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5772 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5773 false, ICIS_NoInit)); 5774 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5775 nullptr, Ctx.getObjCClassType(), nullptr, 5776 nullptr, false, ICIS_NoInit)); 5777 RD->completeDefinition(); 5778 5779 SuperCTy = Ctx.getTagDeclType(RD); 5780 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5781 5782 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5783 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5784 5785 // struct _prop_t { 5786 // char *name; 5787 // char *attributes; 5788 // } 5789 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5790 5791 // struct _prop_list_t { 5792 // uint32_t entsize; // sizeof(struct _prop_t) 5793 // uint32_t count_of_properties; 5794 // struct _prop_t prop_list[count_of_properties]; 5795 // } 5796 PropertyListTy = llvm::StructType::create( 5797 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5798 // struct _prop_list_t * 5799 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5800 5801 // struct _objc_method { 5802 // SEL _cmd; 5803 // char *method_type; 5804 // char *_imp; 5805 // } 5806 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5807 Int8PtrTy, Int8PtrTy); 5808 5809 // struct _objc_cache * 5810 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5811 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5812 } 5813 5814 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5815 : ObjCCommonTypesHelper(cgm) { 5816 // struct _objc_method_description { 5817 // SEL name; 5818 // char *types; 5819 // } 5820 MethodDescriptionTy = llvm::StructType::create( 5821 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5822 5823 // struct _objc_method_description_list { 5824 // int count; 5825 // struct _objc_method_description[1]; 5826 // } 5827 MethodDescriptionListTy = 5828 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5829 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5830 5831 // struct _objc_method_description_list * 5832 MethodDescriptionListPtrTy = 5833 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5834 5835 // Protocol description structures 5836 5837 // struct _objc_protocol_extension { 5838 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5839 // struct _objc_method_description_list *optional_instance_methods; 5840 // struct _objc_method_description_list *optional_class_methods; 5841 // struct _objc_property_list *instance_properties; 5842 // const char ** extendedMethodTypes; 5843 // struct _objc_property_list *class_properties; 5844 // } 5845 ProtocolExtensionTy = llvm::StructType::create( 5846 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5847 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5848 PropertyListPtrTy); 5849 5850 // struct _objc_protocol_extension * 5851 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5852 5853 // Handle recursive construction of Protocol and ProtocolList types 5854 5855 ProtocolTy = 5856 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5857 5858 ProtocolListTy = 5859 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5860 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5861 llvm::ArrayType::get(ProtocolTy, 0)); 5862 5863 // struct _objc_protocol { 5864 // struct _objc_protocol_extension *isa; 5865 // char *protocol_name; 5866 // struct _objc_protocol **_objc_protocol_list; 5867 // struct _objc_method_description_list *instance_methods; 5868 // struct _objc_method_description_list *class_methods; 5869 // } 5870 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5871 llvm::PointerType::getUnqual(ProtocolListTy), 5872 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5873 5874 // struct _objc_protocol_list * 5875 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5876 5877 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5878 5879 // Class description structures 5880 5881 // struct _objc_ivar { 5882 // char *ivar_name; 5883 // char *ivar_type; 5884 // int ivar_offset; 5885 // } 5886 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5887 IntTy); 5888 5889 // struct _objc_ivar_list * 5890 IvarListTy = 5891 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5892 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5893 5894 // struct _objc_method_list * 5895 MethodListTy = 5896 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5897 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5898 5899 // struct _objc_class_extension * 5900 ClassExtensionTy = llvm::StructType::create( 5901 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5902 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5903 5904 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5905 5906 // struct _objc_class { 5907 // Class isa; 5908 // Class super_class; 5909 // char *name; 5910 // long version; 5911 // long info; 5912 // long instance_size; 5913 // struct _objc_ivar_list *ivars; 5914 // struct _objc_method_list *methods; 5915 // struct _objc_cache *cache; 5916 // struct _objc_protocol_list *protocols; 5917 // char *ivar_layout; 5918 // struct _objc_class_ext *ext; 5919 // }; 5920 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5921 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5922 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5923 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5924 5925 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5926 5927 // struct _objc_category { 5928 // char *category_name; 5929 // char *class_name; 5930 // struct _objc_method_list *instance_method; 5931 // struct _objc_method_list *class_method; 5932 // struct _objc_protocol_list *protocols; 5933 // uint32_t size; // sizeof(struct _objc_category) 5934 // struct _objc_property_list *instance_properties;// category's @property 5935 // struct _objc_property_list *class_properties; 5936 // } 5937 CategoryTy = llvm::StructType::create( 5938 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5939 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5940 PropertyListPtrTy); 5941 5942 // Global metadata structures 5943 5944 // struct _objc_symtab { 5945 // long sel_ref_cnt; 5946 // SEL *refs; 5947 // short cls_def_cnt; 5948 // short cat_def_cnt; 5949 // char *defs[cls_def_cnt + cat_def_cnt]; 5950 // } 5951 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5952 SelectorPtrTy, ShortTy, ShortTy, 5953 llvm::ArrayType::get(Int8PtrTy, 0)); 5954 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5955 5956 // struct _objc_module { 5957 // long version; 5958 // long size; // sizeof(struct _objc_module) 5959 // char *name; 5960 // struct _objc_symtab* symtab; 5961 // } 5962 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5963 Int8PtrTy, SymtabPtrTy); 5964 5965 // FIXME: This is the size of the setjmp buffer and should be target 5966 // specific. 18 is what's used on 32-bit X86. 5967 uint64_t SetJmpBufferSize = 18; 5968 5969 // Exceptions 5970 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5971 5972 ExceptionDataTy = llvm::StructType::create( 5973 "struct._objc_exception_data", 5974 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5975 } 5976 5977 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5978 : ObjCCommonTypesHelper(cgm) { 5979 // struct _method_list_t { 5980 // uint32_t entsize; // sizeof(struct _objc_method) 5981 // uint32_t method_count; 5982 // struct _objc_method method_list[method_count]; 5983 // } 5984 MethodListnfABITy = 5985 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5986 llvm::ArrayType::get(MethodTy, 0)); 5987 // struct method_list_t * 5988 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5989 5990 // struct _protocol_t { 5991 // id isa; // NULL 5992 // const char * const protocol_name; 5993 // const struct _protocol_list_t * protocol_list; // super protocols 5994 // const struct method_list_t * const instance_methods; 5995 // const struct method_list_t * const class_methods; 5996 // const struct method_list_t *optionalInstanceMethods; 5997 // const struct method_list_t *optionalClassMethods; 5998 // const struct _prop_list_t * properties; 5999 // const uint32_t size; // sizeof(struct _protocol_t) 6000 // const uint32_t flags; // = 0 6001 // const char ** extendedMethodTypes; 6002 // const char *demangledName; 6003 // const struct _prop_list_t * class_properties; 6004 // } 6005 6006 // Holder for struct _protocol_list_t * 6007 ProtocolListnfABITy = 6008 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6009 6010 ProtocolnfABITy = llvm::StructType::create( 6011 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6012 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6013 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6014 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6015 PropertyListPtrTy); 6016 6017 // struct _protocol_t* 6018 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6019 6020 // struct _protocol_list_t { 6021 // long protocol_count; // Note, this is 32/64 bit 6022 // struct _protocol_t *[protocol_count]; 6023 // } 6024 ProtocolListnfABITy->setBody(LongTy, 6025 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6026 6027 // struct _objc_protocol_list* 6028 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6029 6030 // struct _ivar_t { 6031 // unsigned [long] int *offset; // pointer to ivar offset location 6032 // char *name; 6033 // char *type; 6034 // uint32_t alignment; 6035 // uint32_t size; 6036 // } 6037 IvarnfABITy = llvm::StructType::create( 6038 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6039 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6040 6041 // struct _ivar_list_t { 6042 // uint32 entsize; // sizeof(struct _ivar_t) 6043 // uint32 count; 6044 // struct _iver_t list[count]; 6045 // } 6046 IvarListnfABITy = 6047 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6048 llvm::ArrayType::get(IvarnfABITy, 0)); 6049 6050 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6051 6052 // struct _class_ro_t { 6053 // uint32_t const flags; 6054 // uint32_t const instanceStart; 6055 // uint32_t const instanceSize; 6056 // uint32_t const reserved; // only when building for 64bit targets 6057 // const uint8_t * const ivarLayout; 6058 // const char *const name; 6059 // const struct _method_list_t * const baseMethods; 6060 // const struct _objc_protocol_list *const baseProtocols; 6061 // const struct _ivar_list_t *const ivars; 6062 // const uint8_t * const weakIvarLayout; 6063 // const struct _prop_list_t * const properties; 6064 // } 6065 6066 // FIXME. Add 'reserved' field in 64bit abi mode! 6067 ClassRonfABITy = llvm::StructType::create( 6068 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6069 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6070 Int8PtrTy, PropertyListPtrTy); 6071 6072 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6073 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6074 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6075 ->getPointerTo(); 6076 6077 // struct _class_t { 6078 // struct _class_t *isa; 6079 // struct _class_t * const superclass; 6080 // void *cache; 6081 // IMP *vtable; 6082 // struct class_ro_t *ro; 6083 // } 6084 6085 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6086 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6087 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6088 llvm::PointerType::getUnqual(ImpnfABITy), 6089 llvm::PointerType::getUnqual(ClassRonfABITy)); 6090 6091 // LLVM for struct _class_t * 6092 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6093 6094 // struct _category_t { 6095 // const char * const name; 6096 // struct _class_t *const cls; 6097 // const struct _method_list_t * const instance_methods; 6098 // const struct _method_list_t * const class_methods; 6099 // const struct _protocol_list_t * const protocols; 6100 // const struct _prop_list_t * const properties; 6101 // const struct _prop_list_t * const class_properties; 6102 // const uint32_t size; 6103 // } 6104 CategorynfABITy = llvm::StructType::create( 6105 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6106 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6107 PropertyListPtrTy, IntTy); 6108 6109 // New types for nonfragile abi messaging. 6110 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6111 ASTContext &Ctx = CGM.getContext(); 6112 6113 // MessageRefTy - LLVM for: 6114 // struct _message_ref_t { 6115 // IMP messenger; 6116 // SEL name; 6117 // }; 6118 6119 // First the clang type for struct _message_ref_t 6120 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6121 Ctx.getTranslationUnitDecl(), 6122 SourceLocation(), SourceLocation(), 6123 &Ctx.Idents.get("_message_ref_t")); 6124 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6125 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6126 ICIS_NoInit)); 6127 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6128 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6129 false, ICIS_NoInit)); 6130 RD->completeDefinition(); 6131 6132 MessageRefCTy = Ctx.getTagDeclType(RD); 6133 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6134 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6135 6136 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6137 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6138 6139 // SuperMessageRefTy - LLVM for: 6140 // struct _super_message_ref_t { 6141 // SUPER_IMP messenger; 6142 // SEL name; 6143 // }; 6144 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6145 ImpnfABITy, SelectorPtrTy); 6146 6147 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6148 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6149 6150 6151 // struct objc_typeinfo { 6152 // const void** vtable; // objc_ehtype_vtable + 2 6153 // const char* name; // c++ typeinfo string 6154 // Class cls; 6155 // }; 6156 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6157 llvm::PointerType::getUnqual(Int8PtrTy), 6158 Int8PtrTy, ClassnfABIPtrTy); 6159 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6160 } 6161 6162 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6163 FinishNonFragileABIModule(); 6164 6165 return nullptr; 6166 } 6167 6168 void CGObjCNonFragileABIMac::AddModuleClassList( 6169 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6170 StringRef SectionName) { 6171 unsigned NumClasses = Container.size(); 6172 6173 if (!NumClasses) 6174 return; 6175 6176 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6177 for (unsigned i=0; i<NumClasses; i++) 6178 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6179 ObjCTypes.Int8PtrTy); 6180 llvm::Constant *Init = 6181 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6182 Symbols.size()), 6183 Symbols); 6184 6185 // Section name is obtained by calling GetSectionName, which returns 6186 // sections in the __DATA segment on MachO. 6187 assert((!CGM.getTriple().isOSBinFormatMachO() || 6188 SectionName.startswith("__DATA")) && 6189 "SectionName expected to start with __DATA on MachO"); 6190 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6191 CGM.getModule(), Init->getType(), false, 6192 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6193 GV->setAlignment( 6194 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6195 GV->setSection(SectionName); 6196 CGM.addCompilerUsedGlobal(GV); 6197 } 6198 6199 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6200 // nonfragile abi has no module definition. 6201 6202 // Build list of all implemented class addresses in array 6203 // L_OBJC_LABEL_CLASS_$. 6204 6205 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6206 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6207 assert(ID); 6208 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6209 // We are implementing a weak imported interface. Give it external linkage 6210 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6211 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6212 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6213 } 6214 } 6215 6216 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6217 GetSectionName("__objc_classlist", 6218 "regular,no_dead_strip")); 6219 6220 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6221 GetSectionName("__objc_nlclslist", 6222 "regular,no_dead_strip")); 6223 6224 // Build list of all implemented category addresses in array 6225 // L_OBJC_LABEL_CATEGORY_$. 6226 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6227 GetSectionName("__objc_catlist", 6228 "regular,no_dead_strip")); 6229 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6230 GetSectionName("__objc_catlist2", 6231 "regular,no_dead_strip")); 6232 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6233 GetSectionName("__objc_nlcatlist", 6234 "regular,no_dead_strip")); 6235 6236 EmitImageInfo(); 6237 } 6238 6239 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6240 /// VTableDispatchMethods; false otherwise. What this means is that 6241 /// except for the 19 selectors in the list, we generate 32bit-style 6242 /// message dispatch call for all the rest. 6243 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6244 // At various points we've experimented with using vtable-based 6245 // dispatch for all methods. 6246 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6247 case CodeGenOptions::Legacy: 6248 return false; 6249 case CodeGenOptions::NonLegacy: 6250 return true; 6251 case CodeGenOptions::Mixed: 6252 break; 6253 } 6254 6255 // If so, see whether this selector is in the white-list of things which must 6256 // use the new dispatch convention. We lazily build a dense set for this. 6257 if (VTableDispatchMethods.empty()) { 6258 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6259 VTableDispatchMethods.insert(GetNullarySelector("class")); 6260 VTableDispatchMethods.insert(GetNullarySelector("self")); 6261 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6262 VTableDispatchMethods.insert(GetNullarySelector("length")); 6263 VTableDispatchMethods.insert(GetNullarySelector("count")); 6264 6265 // These are vtable-based if GC is disabled. 6266 // Optimistically use vtable dispatch for hybrid compiles. 6267 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6268 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6269 VTableDispatchMethods.insert(GetNullarySelector("release")); 6270 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6271 } 6272 6273 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6274 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6275 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6276 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6277 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6278 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6279 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6280 6281 // These are vtable-based if GC is enabled. 6282 // Optimistically use vtable dispatch for hybrid compiles. 6283 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6284 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6285 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6286 6287 // "countByEnumeratingWithState:objects:count" 6288 IdentifierInfo *KeyIdents[] = { 6289 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6290 &CGM.getContext().Idents.get("objects"), 6291 &CGM.getContext().Idents.get("count") 6292 }; 6293 VTableDispatchMethods.insert( 6294 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6295 } 6296 } 6297 6298 return VTableDispatchMethods.count(Sel); 6299 } 6300 6301 /// BuildClassRoTInitializer - generate meta-data for: 6302 /// struct _class_ro_t { 6303 /// uint32_t const flags; 6304 /// uint32_t const instanceStart; 6305 /// uint32_t const instanceSize; 6306 /// uint32_t const reserved; // only when building for 64bit targets 6307 /// const uint8_t * const ivarLayout; 6308 /// const char *const name; 6309 /// const struct _method_list_t * const baseMethods; 6310 /// const struct _protocol_list_t *const baseProtocols; 6311 /// const struct _ivar_list_t *const ivars; 6312 /// const uint8_t * const weakIvarLayout; 6313 /// const struct _prop_list_t * const properties; 6314 /// } 6315 /// 6316 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6317 unsigned flags, 6318 unsigned InstanceStart, 6319 unsigned InstanceSize, 6320 const ObjCImplementationDecl *ID) { 6321 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6322 6323 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6324 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6325 6326 bool hasMRCWeak = false; 6327 if (CGM.getLangOpts().ObjCAutoRefCount) 6328 flags |= NonFragileABI_Class_CompiledByARC; 6329 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6330 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6331 6332 ConstantInitBuilder builder(CGM); 6333 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6334 6335 values.addInt(ObjCTypes.IntTy, flags); 6336 values.addInt(ObjCTypes.IntTy, InstanceStart); 6337 values.addInt(ObjCTypes.IntTy, InstanceSize); 6338 values.add((flags & NonFragileABI_Class_Meta) 6339 ? GetIvarLayoutName(nullptr, ObjCTypes) 6340 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6341 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6342 6343 // const struct _method_list_t * const baseMethods; 6344 SmallVector<const ObjCMethodDecl*, 16> methods; 6345 if (flags & NonFragileABI_Class_Meta) { 6346 for (const auto *MD : ID->class_methods()) 6347 if (!MD->isDirectMethod()) 6348 methods.push_back(MD); 6349 } else { 6350 for (const auto *MD : ID->instance_methods()) 6351 if (!MD->isDirectMethod()) 6352 methods.push_back(MD); 6353 } 6354 6355 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6356 (flags & NonFragileABI_Class_Meta) 6357 ? MethodListType::ClassMethods 6358 : MethodListType::InstanceMethods, 6359 methods)); 6360 6361 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6362 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6363 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6364 + OID->getObjCRuntimeNameAsString(), 6365 OID->all_referenced_protocol_begin(), 6366 OID->all_referenced_protocol_end())); 6367 6368 if (flags & NonFragileABI_Class_Meta) { 6369 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6370 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6371 values.add(EmitPropertyList( 6372 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6373 ID, ID->getClassInterface(), ObjCTypes, true)); 6374 } else { 6375 values.add(EmitIvarList(ID)); 6376 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6377 values.add(EmitPropertyList( 6378 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6379 ID, ID->getClassInterface(), ObjCTypes, false)); 6380 } 6381 6382 llvm::SmallString<64> roLabel; 6383 llvm::raw_svector_ostream(roLabel) 6384 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6385 : "_OBJC_CLASS_RO_$_") 6386 << ClassName; 6387 6388 return finishAndCreateGlobal(values, roLabel, CGM); 6389 } 6390 6391 /// Build the metaclass object for a class. 6392 /// 6393 /// struct _class_t { 6394 /// struct _class_t *isa; 6395 /// struct _class_t * const superclass; 6396 /// void *cache; 6397 /// IMP *vtable; 6398 /// struct class_ro_t *ro; 6399 /// } 6400 /// 6401 llvm::GlobalVariable * 6402 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6403 bool isMetaclass, 6404 llvm::Constant *IsAGV, 6405 llvm::Constant *SuperClassGV, 6406 llvm::Constant *ClassRoGV, 6407 bool HiddenVisibility) { 6408 ConstantInitBuilder builder(CGM); 6409 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6410 values.add(IsAGV); 6411 if (SuperClassGV) { 6412 values.add(SuperClassGV); 6413 } else { 6414 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6415 } 6416 values.add(ObjCEmptyCacheVar); 6417 values.add(ObjCEmptyVtableVar); 6418 values.add(ClassRoGV); 6419 6420 llvm::GlobalVariable *GV = 6421 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6422 values.finishAndSetAsInitializer(GV); 6423 6424 if (CGM.getTriple().isOSBinFormatMachO()) 6425 GV->setSection("__DATA, __objc_data"); 6426 GV->setAlignment(llvm::Align( 6427 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6428 if (!CGM.getTriple().isOSBinFormatCOFF()) 6429 if (HiddenVisibility) 6430 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6431 return GV; 6432 } 6433 6434 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6435 const ObjCImplDecl *OD) const { 6436 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6437 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6438 OD->hasAttr<ObjCNonLazyClassAttr>(); 6439 } 6440 6441 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6442 uint32_t &InstanceStart, 6443 uint32_t &InstanceSize) { 6444 const ASTRecordLayout &RL = 6445 CGM.getContext().getASTObjCImplementationLayout(OID); 6446 6447 // InstanceSize is really instance end. 6448 InstanceSize = RL.getDataSize().getQuantity(); 6449 6450 // If there are no fields, the start is the same as the end. 6451 if (!RL.getFieldCount()) 6452 InstanceStart = InstanceSize; 6453 else 6454 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6455 } 6456 6457 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6458 StringRef Name) { 6459 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6460 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6461 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6462 6463 const VarDecl *VD = nullptr; 6464 for (const auto *Result : DC->lookup(&II)) 6465 if ((VD = dyn_cast<VarDecl>(Result))) 6466 break; 6467 6468 if (!VD) 6469 return llvm::GlobalValue::DLLImportStorageClass; 6470 if (VD->hasAttr<DLLExportAttr>()) 6471 return llvm::GlobalValue::DLLExportStorageClass; 6472 if (VD->hasAttr<DLLImportAttr>()) 6473 return llvm::GlobalValue::DLLImportStorageClass; 6474 return llvm::GlobalValue::DefaultStorageClass; 6475 } 6476 6477 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6478 if (!ObjCEmptyCacheVar) { 6479 ObjCEmptyCacheVar = 6480 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6481 llvm::GlobalValue::ExternalLinkage, nullptr, 6482 "_objc_empty_cache"); 6483 if (CGM.getTriple().isOSBinFormatCOFF()) 6484 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6485 6486 // Only OS X with deployment version <10.9 use the empty vtable symbol 6487 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6488 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6489 ObjCEmptyVtableVar = 6490 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6491 llvm::GlobalValue::ExternalLinkage, nullptr, 6492 "_objc_empty_vtable"); 6493 else 6494 ObjCEmptyVtableVar = 6495 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6496 } 6497 6498 // FIXME: Is this correct (that meta class size is never computed)? 6499 uint32_t InstanceStart = 6500 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6501 uint32_t InstanceSize = InstanceStart; 6502 uint32_t flags = NonFragileABI_Class_Meta; 6503 6504 llvm::Constant *SuperClassGV, *IsAGV; 6505 6506 const auto *CI = ID->getClassInterface(); 6507 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6508 6509 // Build the flags for the metaclass. 6510 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6511 ? !CI->hasAttr<DLLExportAttr>() 6512 : CI->getVisibility() == HiddenVisibility; 6513 if (classIsHidden) 6514 flags |= NonFragileABI_Class_Hidden; 6515 6516 // FIXME: why is this flag set on the metaclass? 6517 // ObjC metaclasses have no fields and don't really get constructed. 6518 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6519 flags |= NonFragileABI_Class_HasCXXStructors; 6520 if (!ID->hasNonZeroConstructors()) 6521 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6522 } 6523 6524 if (!CI->getSuperClass()) { 6525 // class is root 6526 flags |= NonFragileABI_Class_Root; 6527 6528 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6529 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6530 } else { 6531 // Has a root. Current class is not a root. 6532 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6533 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6534 Root = Super; 6535 6536 const auto *Super = CI->getSuperClass(); 6537 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6538 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6539 } 6540 6541 llvm::GlobalVariable *CLASS_RO_GV = 6542 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6543 6544 llvm::GlobalVariable *MetaTClass = 6545 BuildClassObject(CI, /*metaclass*/ true, 6546 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6547 CGM.setGVProperties(MetaTClass, CI); 6548 DefinedMetaClasses.push_back(MetaTClass); 6549 6550 // Metadata for the class 6551 flags = 0; 6552 if (classIsHidden) 6553 flags |= NonFragileABI_Class_Hidden; 6554 6555 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6556 flags |= NonFragileABI_Class_HasCXXStructors; 6557 6558 // Set a flag to enable a runtime optimization when a class has 6559 // fields that require destruction but which don't require 6560 // anything except zero-initialization during construction. This 6561 // is most notably true of __strong and __weak types, but you can 6562 // also imagine there being C++ types with non-trivial default 6563 // constructors that merely set all fields to null. 6564 if (!ID->hasNonZeroConstructors()) 6565 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6566 } 6567 6568 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6569 flags |= NonFragileABI_Class_Exception; 6570 6571 if (!CI->getSuperClass()) { 6572 flags |= NonFragileABI_Class_Root; 6573 SuperClassGV = nullptr; 6574 } else { 6575 // Has a root. Current class is not a root. 6576 const auto *Super = CI->getSuperClass(); 6577 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6578 } 6579 6580 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6581 CLASS_RO_GV = 6582 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6583 6584 llvm::GlobalVariable *ClassMD = 6585 BuildClassObject(CI, /*metaclass*/ false, 6586 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6587 CGM.setGVProperties(ClassMD, CI); 6588 DefinedClasses.push_back(ClassMD); 6589 ImplementedClasses.push_back(CI); 6590 6591 // Determine if this class is also "non-lazy". 6592 if (ImplementationIsNonLazy(ID)) 6593 DefinedNonLazyClasses.push_back(ClassMD); 6594 6595 // Force the definition of the EHType if necessary. 6596 if (flags & NonFragileABI_Class_Exception) 6597 (void) GetInterfaceEHType(CI, ForDefinition); 6598 // Make sure method definition entries are all clear for next implementation. 6599 MethodDefinitions.clear(); 6600 } 6601 6602 /// GenerateProtocolRef - This routine is called to generate code for 6603 /// a protocol reference expression; as in: 6604 /// @code 6605 /// @protocol(Proto1); 6606 /// @endcode 6607 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6608 /// which will hold address of the protocol meta-data. 6609 /// 6610 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6611 const ObjCProtocolDecl *PD) { 6612 6613 // This routine is called for @protocol only. So, we must build definition 6614 // of protocol's meta-data (not a reference to it!) 6615 assert(!PD->isNonRuntimeProtocol() && 6616 "attempting to get a protocol ref to a static protocol."); 6617 llvm::Constant *Init = 6618 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6619 ObjCTypes.getExternalProtocolPtrTy()); 6620 6621 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6622 ProtocolName += PD->getObjCRuntimeNameAsString(); 6623 6624 CharUnits Align = CGF.getPointerAlign(); 6625 6626 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6627 if (PTGV) 6628 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6629 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6630 llvm::GlobalValue::WeakAnyLinkage, Init, 6631 ProtocolName); 6632 PTGV->setSection(GetSectionName("__objc_protorefs", 6633 "coalesced,no_dead_strip")); 6634 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6635 PTGV->setAlignment(Align.getAsAlign()); 6636 if (!CGM.getTriple().isOSBinFormatMachO()) 6637 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6638 CGM.addUsedGlobal(PTGV); 6639 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6640 } 6641 6642 /// GenerateCategory - Build metadata for a category implementation. 6643 /// struct _category_t { 6644 /// const char * const name; 6645 /// struct _class_t *const cls; 6646 /// const struct _method_list_t * const instance_methods; 6647 /// const struct _method_list_t * const class_methods; 6648 /// const struct _protocol_list_t * const protocols; 6649 /// const struct _prop_list_t * const properties; 6650 /// const struct _prop_list_t * const class_properties; 6651 /// const uint32_t size; 6652 /// } 6653 /// 6654 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6655 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6656 const char *Prefix = "_OBJC_$_CATEGORY_"; 6657 6658 llvm::SmallString<64> ExtCatName(Prefix); 6659 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6660 ExtCatName += "_$_"; 6661 ExtCatName += OCD->getNameAsString(); 6662 6663 ConstantInitBuilder builder(CGM); 6664 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6665 values.add(GetClassName(OCD->getIdentifier()->getName())); 6666 // meta-class entry symbol 6667 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6668 std::string listName = 6669 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6670 6671 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6672 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6673 for (const auto *MD : OCD->methods()) { 6674 if (MD->isDirectMethod()) 6675 continue; 6676 if (MD->isInstanceMethod()) { 6677 instanceMethods.push_back(MD); 6678 } else { 6679 classMethods.push_back(MD); 6680 } 6681 } 6682 6683 auto instanceMethodList = emitMethodList( 6684 listName, MethodListType::CategoryInstanceMethods, instanceMethods); 6685 auto classMethodList = emitMethodList( 6686 listName, MethodListType::CategoryClassMethods, classMethods); 6687 values.add(instanceMethodList); 6688 values.add(classMethodList); 6689 // Keep track of whether we have actual metadata to emit. 6690 bool isEmptyCategory = 6691 instanceMethodList->isNullValue() && classMethodList->isNullValue(); 6692 6693 const ObjCCategoryDecl *Category = 6694 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6695 if (Category) { 6696 SmallString<256> ExtName; 6697 llvm::raw_svector_ostream(ExtName) 6698 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName(); 6699 auto protocolList = 6700 EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" + 6701 Interface->getObjCRuntimeNameAsString() + "_$_" + 6702 Category->getName(), 6703 Category->protocol_begin(), Category->protocol_end()); 6704 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6705 OCD, Category, ObjCTypes, false); 6706 auto classPropertyList = 6707 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD, 6708 Category, ObjCTypes, true); 6709 values.add(protocolList); 6710 values.add(propertyList); 6711 values.add(classPropertyList); 6712 isEmptyCategory &= protocolList->isNullValue() && 6713 propertyList->isNullValue() && 6714 classPropertyList->isNullValue(); 6715 } else { 6716 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6717 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6718 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6719 } 6720 6721 if (isEmptyCategory) { 6722 // Empty category, don't emit any metadata. 6723 values.abandon(); 6724 MethodDefinitions.clear(); 6725 return; 6726 } 6727 6728 unsigned Size = 6729 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6730 values.addInt(ObjCTypes.IntTy, Size); 6731 6732 llvm::GlobalVariable *GCATV = 6733 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6734 CGM.addCompilerUsedGlobal(GCATV); 6735 if (Interface->hasAttr<ObjCClassStubAttr>()) 6736 DefinedStubCategories.push_back(GCATV); 6737 else 6738 DefinedCategories.push_back(GCATV); 6739 6740 // Determine if this category is also "non-lazy". 6741 if (ImplementationIsNonLazy(OCD)) 6742 DefinedNonLazyCategories.push_back(GCATV); 6743 // method definition entries must be clear for next implementation. 6744 MethodDefinitions.clear(); 6745 } 6746 6747 /// emitMethodConstant - Return a struct objc_method constant. If 6748 /// forProtocol is true, the implementation will be null; otherwise, 6749 /// the method must have a definition registered with the runtime. 6750 /// 6751 /// struct _objc_method { 6752 /// SEL _cmd; 6753 /// char *method_type; 6754 /// char *_imp; 6755 /// } 6756 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6757 const ObjCMethodDecl *MD, 6758 bool forProtocol) { 6759 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6760 method.addBitCast(GetMethodVarName(MD->getSelector()), 6761 ObjCTypes.SelectorPtrTy); 6762 method.add(GetMethodVarType(MD)); 6763 6764 if (forProtocol) { 6765 // Protocol methods have no implementation. So, this entry is always NULL. 6766 method.addNullPointer(ObjCTypes.Int8PtrTy); 6767 } else { 6768 llvm::Function *fn = GetMethodDefinition(MD); 6769 assert(fn && "no definition for method?"); 6770 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6771 } 6772 6773 method.finishAndAddTo(builder); 6774 } 6775 6776 /// Build meta-data for method declarations. 6777 /// 6778 /// struct _method_list_t { 6779 /// uint32_t entsize; // sizeof(struct _objc_method) 6780 /// uint32_t method_count; 6781 /// struct _objc_method method_list[method_count]; 6782 /// } 6783 /// 6784 llvm::Constant * 6785 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6786 ArrayRef<const ObjCMethodDecl *> methods) { 6787 // Return null for empty list. 6788 if (methods.empty()) 6789 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6790 6791 StringRef prefix; 6792 bool forProtocol; 6793 switch (kind) { 6794 case MethodListType::CategoryInstanceMethods: 6795 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6796 forProtocol = false; 6797 break; 6798 case MethodListType::CategoryClassMethods: 6799 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6800 forProtocol = false; 6801 break; 6802 case MethodListType::InstanceMethods: 6803 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6804 forProtocol = false; 6805 break; 6806 case MethodListType::ClassMethods: 6807 prefix = "_OBJC_$_CLASS_METHODS_"; 6808 forProtocol = false; 6809 break; 6810 6811 case MethodListType::ProtocolInstanceMethods: 6812 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6813 forProtocol = true; 6814 break; 6815 case MethodListType::ProtocolClassMethods: 6816 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6817 forProtocol = true; 6818 break; 6819 case MethodListType::OptionalProtocolInstanceMethods: 6820 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6821 forProtocol = true; 6822 break; 6823 case MethodListType::OptionalProtocolClassMethods: 6824 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6825 forProtocol = true; 6826 break; 6827 } 6828 6829 ConstantInitBuilder builder(CGM); 6830 auto values = builder.beginStruct(); 6831 6832 // sizeof(struct _objc_method) 6833 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6834 values.addInt(ObjCTypes.IntTy, Size); 6835 // method_count 6836 values.addInt(ObjCTypes.IntTy, methods.size()); 6837 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6838 for (auto MD : methods) 6839 emitMethodConstant(methodArray, MD, forProtocol); 6840 methodArray.finishAndAddTo(values); 6841 6842 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6843 CGM.addCompilerUsedGlobal(GV); 6844 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6845 } 6846 6847 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6848 /// the given ivar. 6849 llvm::GlobalVariable * 6850 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6851 const ObjCIvarDecl *Ivar) { 6852 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6853 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6854 Name += Container->getObjCRuntimeNameAsString(); 6855 Name += "."; 6856 Name += Ivar->getName(); 6857 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6858 if (!IvarOffsetGV) { 6859 IvarOffsetGV = 6860 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6861 false, llvm::GlobalValue::ExternalLinkage, 6862 nullptr, Name.str()); 6863 if (CGM.getTriple().isOSBinFormatCOFF()) { 6864 bool IsPrivateOrPackage = 6865 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6866 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6867 6868 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6869 6870 if (ContainingID->hasAttr<DLLImportAttr>()) 6871 IvarOffsetGV 6872 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6873 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6874 IvarOffsetGV 6875 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6876 } 6877 } 6878 return IvarOffsetGV; 6879 } 6880 6881 llvm::Constant * 6882 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6883 const ObjCIvarDecl *Ivar, 6884 unsigned long int Offset) { 6885 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6886 IvarOffsetGV->setInitializer( 6887 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6888 IvarOffsetGV->setAlignment(llvm::Align( 6889 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6890 6891 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6892 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6893 // as well (i.e., in ObjCIvarOffsetVariable). 6894 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6895 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6896 ID->getVisibility() == HiddenVisibility) 6897 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6898 else 6899 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6900 } 6901 6902 // If ID's layout is known, then make the global constant. This serves as a 6903 // useful assertion: we'll never use this variable to calculate ivar offsets, 6904 // so if the runtime tries to patch it then we should crash. 6905 if (isClassLayoutKnownStatically(ID)) 6906 IvarOffsetGV->setConstant(true); 6907 6908 if (CGM.getTriple().isOSBinFormatMachO()) 6909 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6910 return IvarOffsetGV; 6911 } 6912 6913 /// EmitIvarList - Emit the ivar list for the given 6914 /// implementation. The return value has type 6915 /// IvarListnfABIPtrTy. 6916 /// struct _ivar_t { 6917 /// unsigned [long] int *offset; // pointer to ivar offset location 6918 /// char *name; 6919 /// char *type; 6920 /// uint32_t alignment; 6921 /// uint32_t size; 6922 /// } 6923 /// struct _ivar_list_t { 6924 /// uint32 entsize; // sizeof(struct _ivar_t) 6925 /// uint32 count; 6926 /// struct _iver_t list[count]; 6927 /// } 6928 /// 6929 6930 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6931 const ObjCImplementationDecl *ID) { 6932 6933 ConstantInitBuilder builder(CGM); 6934 auto ivarList = builder.beginStruct(); 6935 ivarList.addInt(ObjCTypes.IntTy, 6936 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6937 auto ivarCountSlot = ivarList.addPlaceholder(); 6938 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6939 6940 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6941 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6942 6943 // FIXME. Consolidate this with similar code in GenerateClass. 6944 6945 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6946 IVD; IVD = IVD->getNextIvar()) { 6947 // Ignore unnamed bit-fields. 6948 if (!IVD->getDeclName()) 6949 continue; 6950 6951 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6952 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6953 ComputeIvarBaseOffset(CGM, ID, IVD))); 6954 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6955 ivar.add(GetMethodVarType(IVD)); 6956 llvm::Type *FieldTy = 6957 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6958 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6959 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6960 IVD->getType().getTypePtr()) >> 3; 6961 Align = llvm::Log2_32(Align); 6962 ivar.addInt(ObjCTypes.IntTy, Align); 6963 // NOTE. Size of a bitfield does not match gcc's, because of the 6964 // way bitfields are treated special in each. But I am told that 6965 // 'size' for bitfield ivars is ignored by the runtime so it does 6966 // not matter. If it matters, there is enough info to get the 6967 // bitfield right! 6968 ivar.addInt(ObjCTypes.IntTy, Size); 6969 ivar.finishAndAddTo(ivars); 6970 } 6971 // Return null for empty list. 6972 if (ivars.empty()) { 6973 ivars.abandon(); 6974 ivarList.abandon(); 6975 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6976 } 6977 6978 auto ivarCount = ivars.size(); 6979 ivars.finishAndAddTo(ivarList); 6980 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6981 6982 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6983 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6984 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6985 CGM.addCompilerUsedGlobal(GV); 6986 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6987 } 6988 6989 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6990 const ObjCProtocolDecl *PD) { 6991 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6992 6993 assert(!PD->isNonRuntimeProtocol() && 6994 "attempting to GetOrEmit a non-runtime protocol"); 6995 if (!Entry) { 6996 // We use the initializer as a marker of whether this is a forward 6997 // reference or not. At module finalization we add the empty 6998 // contents for protocols which were referenced but never defined. 6999 llvm::SmallString<64> Protocol; 7000 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7001 << PD->getObjCRuntimeNameAsString(); 7002 7003 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7004 false, llvm::GlobalValue::ExternalLinkage, 7005 nullptr, Protocol); 7006 if (!CGM.getTriple().isOSBinFormatMachO()) 7007 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7008 } 7009 7010 return Entry; 7011 } 7012 7013 /// GetOrEmitProtocol - Generate the protocol meta-data: 7014 /// @code 7015 /// struct _protocol_t { 7016 /// id isa; // NULL 7017 /// const char * const protocol_name; 7018 /// const struct _protocol_list_t * protocol_list; // super protocols 7019 /// const struct method_list_t * const instance_methods; 7020 /// const struct method_list_t * const class_methods; 7021 /// const struct method_list_t *optionalInstanceMethods; 7022 /// const struct method_list_t *optionalClassMethods; 7023 /// const struct _prop_list_t * properties; 7024 /// const uint32_t size; // sizeof(struct _protocol_t) 7025 /// const uint32_t flags; // = 0 7026 /// const char ** extendedMethodTypes; 7027 /// const char *demangledName; 7028 /// const struct _prop_list_t * class_properties; 7029 /// } 7030 /// @endcode 7031 /// 7032 7033 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7034 const ObjCProtocolDecl *PD) { 7035 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7036 7037 // Early exit if a defining object has already been generated. 7038 if (Entry && Entry->hasInitializer()) 7039 return Entry; 7040 7041 // Use the protocol definition, if there is one. 7042 assert(PD->hasDefinition() && 7043 "emitting protocol metadata without definition"); 7044 PD = PD->getDefinition(); 7045 7046 auto methodLists = ProtocolMethodLists::get(PD); 7047 7048 ConstantInitBuilder builder(CGM); 7049 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7050 7051 // isa is NULL 7052 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7053 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7054 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7055 + PD->getObjCRuntimeNameAsString(), 7056 PD->protocol_begin(), 7057 PD->protocol_end())); 7058 values.add(methodLists.emitMethodList(this, PD, 7059 ProtocolMethodLists::RequiredInstanceMethods)); 7060 values.add(methodLists.emitMethodList(this, PD, 7061 ProtocolMethodLists::RequiredClassMethods)); 7062 values.add(methodLists.emitMethodList(this, PD, 7063 ProtocolMethodLists::OptionalInstanceMethods)); 7064 values.add(methodLists.emitMethodList(this, PD, 7065 ProtocolMethodLists::OptionalClassMethods)); 7066 values.add(EmitPropertyList( 7067 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7068 nullptr, PD, ObjCTypes, false)); 7069 uint32_t Size = 7070 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7071 values.addInt(ObjCTypes.IntTy, Size); 7072 values.addInt(ObjCTypes.IntTy, 0); 7073 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7074 + PD->getObjCRuntimeNameAsString(), 7075 methodLists.emitExtendedTypesArray(this), 7076 ObjCTypes)); 7077 7078 // const char *demangledName; 7079 values.addNullPointer(ObjCTypes.Int8PtrTy); 7080 7081 values.add(EmitPropertyList( 7082 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7083 nullptr, PD, ObjCTypes, true)); 7084 7085 if (Entry) { 7086 // Already created, fix the linkage and update the initializer. 7087 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7088 values.finishAndSetAsInitializer(Entry); 7089 } else { 7090 llvm::SmallString<64> symbolName; 7091 llvm::raw_svector_ostream(symbolName) 7092 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7093 7094 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7095 /*constant*/ false, 7096 llvm::GlobalValue::WeakAnyLinkage); 7097 if (!CGM.getTriple().isOSBinFormatMachO()) 7098 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7099 7100 Protocols[PD->getIdentifier()] = Entry; 7101 } 7102 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7103 CGM.addUsedGlobal(Entry); 7104 7105 // Use this protocol meta-data to build protocol list table in section 7106 // __DATA, __objc_protolist 7107 llvm::SmallString<64> ProtocolRef; 7108 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7109 << PD->getObjCRuntimeNameAsString(); 7110 7111 llvm::GlobalVariable *PTGV = 7112 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7113 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7114 ProtocolRef); 7115 if (!CGM.getTriple().isOSBinFormatMachO()) 7116 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7117 PTGV->setAlignment(llvm::Align( 7118 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7119 PTGV->setSection(GetSectionName("__objc_protolist", 7120 "coalesced,no_dead_strip")); 7121 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7122 CGM.addUsedGlobal(PTGV); 7123 return Entry; 7124 } 7125 7126 /// EmitProtocolList - Generate protocol list meta-data: 7127 /// @code 7128 /// struct _protocol_list_t { 7129 /// long protocol_count; // Note, this is 32/64 bit 7130 /// struct _protocol_t[protocol_count]; 7131 /// } 7132 /// @endcode 7133 /// 7134 llvm::Constant * 7135 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7136 ObjCProtocolDecl::protocol_iterator begin, 7137 ObjCProtocolDecl::protocol_iterator end) { 7138 // Just return null for empty protocol lists 7139 auto Protocols = GetRuntimeProtocolList(begin, end); 7140 if (Protocols.empty()) 7141 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7142 7143 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7144 ProtocolRefs.reserve(Protocols.size()); 7145 7146 for (const auto *PD : Protocols) 7147 ProtocolRefs.push_back(GetProtocolRef(PD)); 7148 7149 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7150 // just return null 7151 if (ProtocolRefs.size() == 0) 7152 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7153 7154 // FIXME: We shouldn't need to do this lookup here, should we? 7155 SmallString<256> TmpName; 7156 Name.toVector(TmpName); 7157 llvm::GlobalVariable *GV = 7158 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7159 if (GV) 7160 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7161 7162 ConstantInitBuilder builder(CGM); 7163 auto values = builder.beginStruct(); 7164 auto countSlot = values.addPlaceholder(); 7165 7166 // A null-terminated array of protocols. 7167 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7168 for (auto const &proto : ProtocolRefs) 7169 array.add(proto); 7170 auto count = array.size(); 7171 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7172 7173 array.finishAndAddTo(values); 7174 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7175 7176 GV = finishAndCreateGlobal(values, Name, CGM); 7177 CGM.addCompilerUsedGlobal(GV); 7178 return llvm::ConstantExpr::getBitCast(GV, 7179 ObjCTypes.ProtocolListnfABIPtrTy); 7180 } 7181 7182 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7183 /// This code gen. amounts to generating code for: 7184 /// @code 7185 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7186 /// @encode 7187 /// 7188 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7189 CodeGen::CodeGenFunction &CGF, 7190 QualType ObjectTy, 7191 llvm::Value *BaseValue, 7192 const ObjCIvarDecl *Ivar, 7193 unsigned CVRQualifiers) { 7194 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7195 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7196 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7197 Offset); 7198 } 7199 7200 llvm::Value * 7201 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7202 const ObjCInterfaceDecl *Interface, 7203 const ObjCIvarDecl *Ivar) { 7204 llvm::Value *IvarOffsetValue; 7205 if (isClassLayoutKnownStatically(Interface)) { 7206 IvarOffsetValue = llvm::ConstantInt::get( 7207 ObjCTypes.IvarOffsetVarTy, 7208 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7209 } else { 7210 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7211 IvarOffsetValue = 7212 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV, 7213 CGF.getSizeAlign(), "ivar"); 7214 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7215 cast<llvm::LoadInst>(IvarOffsetValue) 7216 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7217 llvm::MDNode::get(VMContext, None)); 7218 } 7219 7220 // This could be 32bit int or 64bit integer depending on the architecture. 7221 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7222 // as this is what caller always expects. 7223 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7224 IvarOffsetValue = CGF.Builder.CreateIntCast( 7225 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7226 return IvarOffsetValue; 7227 } 7228 7229 static void appendSelectorForMessageRefTable(std::string &buffer, 7230 Selector selector) { 7231 if (selector.isUnarySelector()) { 7232 buffer += selector.getNameForSlot(0); 7233 return; 7234 } 7235 7236 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7237 buffer += selector.getNameForSlot(i); 7238 buffer += '_'; 7239 } 7240 } 7241 7242 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7243 /// struct, initially containing the selector pointer and a pointer to 7244 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7245 /// load and call the function pointer, passing the address of the 7246 /// struct as the second parameter. The runtime determines whether 7247 /// the selector is currently emitted using vtable dispatch; if so, it 7248 /// substitutes a stub function which simply tail-calls through the 7249 /// appropriate vtable slot, and if not, it substitues a stub function 7250 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7251 /// argument to correctly point to the selector. 7252 RValue 7253 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7254 ReturnValueSlot returnSlot, 7255 QualType resultType, 7256 Selector selector, 7257 llvm::Value *arg0, 7258 QualType arg0Type, 7259 bool isSuper, 7260 const CallArgList &formalArgs, 7261 const ObjCMethodDecl *method) { 7262 // Compute the actual arguments. 7263 CallArgList args; 7264 7265 // First argument: the receiver / super-call structure. 7266 if (!isSuper) 7267 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7268 args.add(RValue::get(arg0), arg0Type); 7269 7270 // Second argument: a pointer to the message ref structure. Leave 7271 // the actual argument value blank for now. 7272 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7273 7274 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7275 7276 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7277 7278 NullReturnState nullReturn; 7279 7280 // Find the function to call and the mangled name for the message 7281 // ref structure. Using a different mangled name wouldn't actually 7282 // be a problem; it would just be a waste. 7283 // 7284 // The runtime currently never uses vtable dispatch for anything 7285 // except normal, non-super message-sends. 7286 // FIXME: don't use this for that. 7287 llvm::FunctionCallee fn = nullptr; 7288 std::string messageRefName("_"); 7289 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7290 if (isSuper) { 7291 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7292 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7293 } else { 7294 nullReturn.init(CGF, arg0); 7295 fn = ObjCTypes.getMessageSendStretFixupFn(); 7296 messageRefName += "objc_msgSend_stret_fixup"; 7297 } 7298 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7299 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7300 messageRefName += "objc_msgSend_fpret_fixup"; 7301 } else { 7302 if (isSuper) { 7303 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7304 messageRefName += "objc_msgSendSuper2_fixup"; 7305 } else { 7306 fn = ObjCTypes.getMessageSendFixupFn(); 7307 messageRefName += "objc_msgSend_fixup"; 7308 } 7309 } 7310 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7311 messageRefName += '_'; 7312 7313 // Append the selector name, except use underscores anywhere we 7314 // would have used colons. 7315 appendSelectorForMessageRefTable(messageRefName, selector); 7316 7317 llvm::GlobalVariable *messageRef 7318 = CGM.getModule().getGlobalVariable(messageRefName); 7319 if (!messageRef) { 7320 // Build the message ref structure. 7321 ConstantInitBuilder builder(CGM); 7322 auto values = builder.beginStruct(); 7323 values.add(cast<llvm::Constant>(fn.getCallee())); 7324 values.add(GetMethodVarName(selector)); 7325 messageRef = values.finishAndCreateGlobal(messageRefName, 7326 CharUnits::fromQuantity(16), 7327 /*constant*/ false, 7328 llvm::GlobalValue::WeakAnyLinkage); 7329 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7330 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7331 } 7332 7333 bool requiresnullCheck = false; 7334 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7335 for (const auto *ParamDecl : method->parameters()) { 7336 if (ParamDecl->isDestroyedInCallee()) { 7337 if (!nullReturn.NullBB) 7338 nullReturn.init(CGF, arg0); 7339 requiresnullCheck = true; 7340 break; 7341 } 7342 } 7343 7344 Address mref = 7345 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7346 CGF.getPointerAlign()); 7347 7348 // Update the message ref argument. 7349 args[1].setRValue(RValue::get(mref.getPointer())); 7350 7351 // Load the function to call from the message ref table. 7352 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7353 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7354 7355 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7356 CGCallee callee(CGCalleeInfo(), calleePtr); 7357 7358 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7359 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7360 requiresnullCheck ? method : nullptr); 7361 } 7362 7363 /// Generate code for a message send expression in the nonfragile abi. 7364 CodeGen::RValue 7365 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7366 ReturnValueSlot Return, 7367 QualType ResultType, 7368 Selector Sel, 7369 llvm::Value *Receiver, 7370 const CallArgList &CallArgs, 7371 const ObjCInterfaceDecl *Class, 7372 const ObjCMethodDecl *Method) { 7373 return isVTableDispatchedSelector(Sel) 7374 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7375 Receiver, CGF.getContext().getObjCIdType(), 7376 false, CallArgs, Method) 7377 : EmitMessageSend(CGF, Return, ResultType, Sel, 7378 Receiver, CGF.getContext().getObjCIdType(), 7379 false, CallArgs, Method, Class, ObjCTypes); 7380 } 7381 7382 llvm::Constant * 7383 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7384 bool metaclass, 7385 ForDefinition_t isForDefinition) { 7386 auto prefix = 7387 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7388 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7389 isForDefinition, 7390 ID->isWeakImported(), 7391 !isForDefinition 7392 && CGM.getTriple().isOSBinFormatCOFF() 7393 && ID->hasAttr<DLLImportAttr>()); 7394 } 7395 7396 llvm::Constant * 7397 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7398 ForDefinition_t IsForDefinition, 7399 bool Weak, bool DLLImport) { 7400 llvm::GlobalValue::LinkageTypes L = 7401 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7402 : llvm::GlobalValue::ExternalLinkage; 7403 7404 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7405 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7406 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7407 nullptr, Name); 7408 7409 if (DLLImport) 7410 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7411 7412 if (GV) { 7413 GV->replaceAllUsesWith( 7414 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7415 GV->eraseFromParent(); 7416 } 7417 GV = NewGV; 7418 CGM.getModule().getGlobalList().push_back(GV); 7419 } 7420 7421 assert(GV->getLinkage() == L); 7422 return GV; 7423 } 7424 7425 llvm::Constant * 7426 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7427 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7428 NotForDefinition); 7429 7430 if (!ID->hasAttr<ObjCClassStubAttr>()) 7431 return ClassGV; 7432 7433 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7434 7435 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7436 // must set the least significant bit set to 1. 7437 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7438 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7439 } 7440 7441 llvm::Value * 7442 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7443 const ObjCInterfaceDecl *ID, 7444 llvm::GlobalVariable *Entry) { 7445 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7446 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7447 // a special runtime function. 7448 return CGF.EmitRuntimeCall( 7449 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7450 } 7451 7452 CharUnits Align = CGF.getPointerAlign(); 7453 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align); 7454 } 7455 7456 llvm::Value * 7457 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7458 IdentifierInfo *II, 7459 const ObjCInterfaceDecl *ID) { 7460 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7461 7462 if (!Entry) { 7463 llvm::Constant *ClassGV; 7464 if (ID) { 7465 ClassGV = GetClassGlobalForClassRef(ID); 7466 } else { 7467 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7468 NotForDefinition); 7469 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7470 "classref was emitted with the wrong type?"); 7471 } 7472 7473 std::string SectionName = 7474 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7475 Entry = new llvm::GlobalVariable( 7476 CGM.getModule(), ClassGV->getType(), false, 7477 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7478 "OBJC_CLASSLIST_REFERENCES_$_"); 7479 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7480 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7481 Entry->setSection(SectionName); 7482 7483 CGM.addCompilerUsedGlobal(Entry); 7484 } 7485 7486 return EmitLoadOfClassRef(CGF, ID, Entry); 7487 } 7488 7489 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7490 const ObjCInterfaceDecl *ID) { 7491 // If the class has the objc_runtime_visible attribute, we need to 7492 // use the Objective-C runtime to get the class. 7493 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7494 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7495 7496 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7497 } 7498 7499 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7500 CodeGenFunction &CGF) { 7501 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7502 return EmitClassRefFromId(CGF, II, nullptr); 7503 } 7504 7505 llvm::Value * 7506 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7507 const ObjCInterfaceDecl *ID) { 7508 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7509 7510 if (!Entry) { 7511 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7512 std::string SectionName = 7513 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7514 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7515 llvm::GlobalValue::PrivateLinkage, ClassGV, 7516 "OBJC_CLASSLIST_SUP_REFS_$_"); 7517 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7518 Entry->setSection(SectionName); 7519 CGM.addCompilerUsedGlobal(Entry); 7520 } 7521 7522 return EmitLoadOfClassRef(CGF, ID, Entry); 7523 } 7524 7525 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7526 /// meta-data 7527 /// 7528 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7529 const ObjCInterfaceDecl *ID, 7530 bool Weak) { 7531 CharUnits Align = CGF.getPointerAlign(); 7532 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7533 if (!Entry) { 7534 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7535 std::string SectionName = 7536 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7537 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7538 false, llvm::GlobalValue::PrivateLinkage, 7539 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7540 Entry->setAlignment(Align.getAsAlign()); 7541 Entry->setSection(SectionName); 7542 CGM.addCompilerUsedGlobal(Entry); 7543 } 7544 7545 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align); 7546 } 7547 7548 /// GetClass - Return a reference to the class for the given interface 7549 /// decl. 7550 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7551 const ObjCInterfaceDecl *ID) { 7552 if (ID->isWeakImported()) { 7553 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7554 (void)ClassGV; 7555 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7556 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7557 } 7558 7559 return EmitClassRef(CGF, ID); 7560 } 7561 7562 /// Generates a message send where the super is the receiver. This is 7563 /// a message send to self with special delivery semantics indicating 7564 /// which class's method should be called. 7565 CodeGen::RValue 7566 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7567 ReturnValueSlot Return, 7568 QualType ResultType, 7569 Selector Sel, 7570 const ObjCInterfaceDecl *Class, 7571 bool isCategoryImpl, 7572 llvm::Value *Receiver, 7573 bool IsClassMessage, 7574 const CodeGen::CallArgList &CallArgs, 7575 const ObjCMethodDecl *Method) { 7576 // ... 7577 // Create and init a super structure; this is a (receiver, class) 7578 // pair we will pass to objc_msgSendSuper. 7579 Address ObjCSuper = 7580 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7581 "objc_super"); 7582 7583 llvm::Value *ReceiverAsObject = 7584 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7585 CGF.Builder.CreateStore(ReceiverAsObject, 7586 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7587 7588 // If this is a class message the metaclass is passed as the target. 7589 llvm::Value *Target; 7590 if (IsClassMessage) 7591 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7592 else 7593 Target = EmitSuperClassRef(CGF, Class); 7594 7595 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7596 // ObjCTypes types. 7597 llvm::Type *ClassTy = 7598 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7599 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7600 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7601 7602 return (isVTableDispatchedSelector(Sel)) 7603 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7604 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7605 true, CallArgs, Method) 7606 : EmitMessageSend(CGF, Return, ResultType, Sel, 7607 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7608 true, CallArgs, Method, Class, ObjCTypes); 7609 } 7610 7611 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7612 Selector Sel) { 7613 Address Addr = EmitSelectorAddr(Sel); 7614 7615 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7616 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7617 llvm::MDNode::get(VMContext, None)); 7618 return LI; 7619 } 7620 7621 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7622 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7623 CharUnits Align = CGM.getPointerAlign(); 7624 if (!Entry) { 7625 llvm::Constant *Casted = 7626 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7627 ObjCTypes.SelectorPtrTy); 7628 std::string SectionName = 7629 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7630 Entry = new llvm::GlobalVariable( 7631 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7632 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7633 "OBJC_SELECTOR_REFERENCES_"); 7634 Entry->setExternallyInitialized(true); 7635 Entry->setSection(SectionName); 7636 Entry->setAlignment(Align.getAsAlign()); 7637 CGM.addCompilerUsedGlobal(Entry); 7638 } 7639 7640 return Address(Entry, Align); 7641 } 7642 7643 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7644 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7645 /// 7646 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7647 llvm::Value *src, 7648 Address dst, 7649 llvm::Value *ivarOffset) { 7650 llvm::Type * SrcTy = src->getType(); 7651 if (!isa<llvm::PointerType>(SrcTy)) { 7652 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7653 assert(Size <= 8 && "does not support size > 8"); 7654 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7655 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7656 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7657 } 7658 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7659 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7660 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7661 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7662 } 7663 7664 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7665 /// objc_assign_strongCast (id src, id *dst) 7666 /// 7667 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7668 CodeGen::CodeGenFunction &CGF, 7669 llvm::Value *src, Address dst) { 7670 llvm::Type * SrcTy = src->getType(); 7671 if (!isa<llvm::PointerType>(SrcTy)) { 7672 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7673 assert(Size <= 8 && "does not support size > 8"); 7674 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7675 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7676 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7677 } 7678 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7679 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7680 llvm::Value *args[] = { src, dst.getPointer() }; 7681 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7682 args, "weakassign"); 7683 } 7684 7685 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7686 CodeGen::CodeGenFunction &CGF, 7687 Address DestPtr, 7688 Address SrcPtr, 7689 llvm::Value *Size) { 7690 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7691 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7692 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7693 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7694 } 7695 7696 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7697 /// object: objc_read_weak (id *src) 7698 /// 7699 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7700 CodeGen::CodeGenFunction &CGF, 7701 Address AddrWeakObj) { 7702 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7703 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7704 llvm::Value *read_weak = 7705 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7706 AddrWeakObj.getPointer(), "weakread"); 7707 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7708 return read_weak; 7709 } 7710 7711 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7712 /// objc_assign_weak (id src, id *dst) 7713 /// 7714 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7715 llvm::Value *src, Address dst) { 7716 llvm::Type * SrcTy = src->getType(); 7717 if (!isa<llvm::PointerType>(SrcTy)) { 7718 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7719 assert(Size <= 8 && "does not support size > 8"); 7720 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7721 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7722 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7723 } 7724 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7725 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7726 llvm::Value *args[] = { src, dst.getPointer() }; 7727 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7728 args, "weakassign"); 7729 } 7730 7731 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7732 /// objc_assign_global (id src, id *dst) 7733 /// 7734 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7735 llvm::Value *src, Address dst, 7736 bool threadlocal) { 7737 llvm::Type * SrcTy = src->getType(); 7738 if (!isa<llvm::PointerType>(SrcTy)) { 7739 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7740 assert(Size <= 8 && "does not support size > 8"); 7741 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7742 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7743 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7744 } 7745 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7746 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7747 llvm::Value *args[] = { src, dst.getPointer() }; 7748 if (!threadlocal) 7749 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7750 args, "globalassign"); 7751 else 7752 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7753 args, "threadlocalassign"); 7754 } 7755 7756 void 7757 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7758 const ObjCAtSynchronizedStmt &S) { 7759 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7760 ObjCTypes.getSyncExitFn()); 7761 } 7762 7763 llvm::Constant * 7764 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7765 // There's a particular fixed type info for 'id'. 7766 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7767 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7768 if (!IDEHType) { 7769 IDEHType = 7770 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7771 llvm::GlobalValue::ExternalLinkage, nullptr, 7772 "OBJC_EHTYPE_id"); 7773 if (CGM.getTriple().isOSBinFormatCOFF()) 7774 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7775 } 7776 return IDEHType; 7777 } 7778 7779 // All other types should be Objective-C interface pointer types. 7780 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7781 assert(PT && "Invalid @catch type."); 7782 7783 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7784 assert(IT && "Invalid @catch type."); 7785 7786 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7787 } 7788 7789 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7790 const ObjCAtTryStmt &S) { 7791 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7792 ObjCTypes.getObjCEndCatchFn(), 7793 ObjCTypes.getExceptionRethrowFn()); 7794 } 7795 7796 /// EmitThrowStmt - Generate code for a throw statement. 7797 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7798 const ObjCAtThrowStmt &S, 7799 bool ClearInsertionPoint) { 7800 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7801 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7802 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7803 llvm::CallBase *Call = 7804 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7805 Call->setDoesNotReturn(); 7806 } else { 7807 llvm::CallBase *Call = 7808 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7809 Call->setDoesNotReturn(); 7810 } 7811 7812 CGF.Builder.CreateUnreachable(); 7813 if (ClearInsertionPoint) 7814 CGF.Builder.ClearInsertionPoint(); 7815 } 7816 7817 llvm::Constant * 7818 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7819 ForDefinition_t IsForDefinition) { 7820 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7821 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7822 7823 // If we don't need a definition, return the entry if found or check 7824 // if we use an external reference. 7825 if (!IsForDefinition) { 7826 if (Entry) 7827 return Entry; 7828 7829 // If this type (or a super class) has the __objc_exception__ 7830 // attribute, emit an external reference. 7831 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7832 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7833 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7834 false, llvm::GlobalValue::ExternalLinkage, 7835 nullptr, EHTypeName); 7836 CGM.setGVProperties(Entry, ID); 7837 return Entry; 7838 } 7839 } 7840 7841 // Otherwise we need to either make a new entry or fill in the initializer. 7842 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7843 7844 std::string VTableName = "objc_ehtype_vtable"; 7845 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7846 if (!VTableGV) { 7847 VTableGV = 7848 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7849 llvm::GlobalValue::ExternalLinkage, nullptr, 7850 VTableName); 7851 if (CGM.getTriple().isOSBinFormatCOFF()) 7852 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7853 } 7854 7855 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7856 ConstantInitBuilder builder(CGM); 7857 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7858 values.add( 7859 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7860 VTableGV, VTableIdx)); 7861 values.add(GetClassName(ClassName)); 7862 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7863 7864 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7865 ? llvm::GlobalValue::ExternalLinkage 7866 : llvm::GlobalValue::WeakAnyLinkage; 7867 if (Entry) { 7868 values.finishAndSetAsInitializer(Entry); 7869 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7870 } else { 7871 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7872 CGM.getPointerAlign(), 7873 /*constant*/ false, 7874 L); 7875 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7876 CGM.setGVProperties(Entry, ID); 7877 } 7878 assert(Entry->getLinkage() == L); 7879 7880 if (!CGM.getTriple().isOSBinFormatCOFF()) 7881 if (ID->getVisibility() == HiddenVisibility) 7882 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7883 7884 if (IsForDefinition) 7885 if (CGM.getTriple().isOSBinFormatMachO()) 7886 Entry->setSection("__DATA,__objc_const"); 7887 7888 return Entry; 7889 } 7890 7891 /* *** */ 7892 7893 CodeGen::CGObjCRuntime * 7894 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7895 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7896 case ObjCRuntime::FragileMacOSX: 7897 return new CGObjCMac(CGM); 7898 7899 case ObjCRuntime::MacOSX: 7900 case ObjCRuntime::iOS: 7901 case ObjCRuntime::WatchOS: 7902 return new CGObjCNonFragileABIMac(CGM); 7903 7904 case ObjCRuntime::GNUstep: 7905 case ObjCRuntime::GCC: 7906 case ObjCRuntime::ObjFW: 7907 llvm_unreachable("these runtimes are not Mac runtimes"); 7908 } 7909 llvm_unreachable("bad runtime"); 7910 } 7911