1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Support/ScopedPrinter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::FunctionCallee getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::FunctionCallee getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 } 85 86 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 87 /// 88 /// The messenger used when the return value is returned on the x87 89 /// floating-point stack; without a special entrypoint, the nil case 90 /// would be unbalanced. 91 llvm::FunctionCallee getMessageSendFpretFn() const { 92 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 93 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 94 params, true), 95 "objc_msgSend_fpret"); 96 } 97 98 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 99 /// 100 /// The messenger used when the return value is returned in two values on the 101 /// x87 floating point stack; without a special entrypoint, the nil case 102 /// would be unbalanced. Only used on 64-bit X86. 103 llvm::FunctionCallee getMessageSendFp2retFn() const { 104 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 105 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 106 llvm::Type *resultType = 107 llvm::StructType::get(longDoubleType, longDoubleType); 108 109 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 110 params, true), 111 "objc_msgSend_fp2ret"); 112 } 113 114 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 115 /// 116 /// The messenger used for super calls, which have different dispatch 117 /// semantics. The class passed is the superclass of the current 118 /// class. 119 llvm::FunctionCallee getMessageSendSuperFn() const { 120 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 121 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 122 params, true), 123 "objc_msgSendSuper"); 124 } 125 126 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 127 /// 128 /// A slightly different messenger used for super calls. The class 129 /// passed is the current class. 130 llvm::FunctionCallee getMessageSendSuperFn2() const { 131 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 132 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 133 params, true), 134 "objc_msgSendSuper2"); 135 } 136 137 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 138 /// SEL op, ...) 139 /// 140 /// The messenger used for super calls which return an aggregate indirectly. 141 llvm::FunctionCallee getMessageSendSuperStretFn() const { 142 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 143 return CGM.CreateRuntimeFunction( 144 llvm::FunctionType::get(CGM.VoidTy, params, true), 145 "objc_msgSendSuper_stret"); 146 } 147 148 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 149 /// SEL op, ...) 150 /// 151 /// objc_msgSendSuper_stret with the super2 semantics. 152 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 153 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 154 return CGM.CreateRuntimeFunction( 155 llvm::FunctionType::get(CGM.VoidTy, params, true), 156 "objc_msgSendSuper2_stret"); 157 } 158 159 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 160 // There is no objc_msgSendSuper_fpret? How can that work? 161 return getMessageSendSuperFn(); 162 } 163 164 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 165 // There is no objc_msgSendSuper_fpret? How can that work? 166 return getMessageSendSuperFn2(); 167 } 168 169 protected: 170 CodeGen::CodeGenModule &CGM; 171 172 public: 173 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 174 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 175 llvm::Type *IvarOffsetVarTy; 176 177 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 178 llvm::PointerType *ObjectPtrTy; 179 180 /// PtrObjectPtrTy - LLVM type for id * 181 llvm::PointerType *PtrObjectPtrTy; 182 183 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 184 llvm::PointerType *SelectorPtrTy; 185 186 private: 187 /// ProtocolPtrTy - LLVM type for external protocol handles 188 /// (typeof(Protocol)) 189 llvm::Type *ExternalProtocolPtrTy; 190 191 public: 192 llvm::Type *getExternalProtocolPtrTy() { 193 if (!ExternalProtocolPtrTy) { 194 // FIXME: It would be nice to unify this with the opaque type, so that the 195 // IR comes out a bit cleaner. 196 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 197 ASTContext &Ctx = CGM.getContext(); 198 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 199 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 200 } 201 202 return ExternalProtocolPtrTy; 203 } 204 205 // SuperCTy - clang type for struct objc_super. 206 QualType SuperCTy; 207 // SuperPtrCTy - clang type for struct objc_super *. 208 QualType SuperPtrCTy; 209 210 /// SuperTy - LLVM type for struct objc_super. 211 llvm::StructType *SuperTy; 212 /// SuperPtrTy - LLVM type for struct objc_super *. 213 llvm::PointerType *SuperPtrTy; 214 215 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 216 /// in GCC parlance). 217 llvm::StructType *PropertyTy; 218 219 /// PropertyListTy - LLVM type for struct objc_property_list 220 /// (_prop_list_t in GCC parlance). 221 llvm::StructType *PropertyListTy; 222 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 223 llvm::PointerType *PropertyListPtrTy; 224 225 // MethodTy - LLVM type for struct objc_method. 226 llvm::StructType *MethodTy; 227 228 /// CacheTy - LLVM type for struct objc_cache. 229 llvm::Type *CacheTy; 230 /// CachePtrTy - LLVM type for struct objc_cache *. 231 llvm::PointerType *CachePtrTy; 232 233 llvm::FunctionCallee getGetPropertyFn() { 234 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 235 ASTContext &Ctx = CGM.getContext(); 236 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 237 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 238 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 239 CanQualType Params[] = { 240 IdType, SelType, 241 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 242 llvm::FunctionType *FTy = 243 Types.GetFunctionType( 244 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 245 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 246 } 247 248 llvm::FunctionCallee getSetPropertyFn() { 249 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 250 ASTContext &Ctx = CGM.getContext(); 251 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 252 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 253 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 254 CanQualType Params[] = { 255 IdType, 256 SelType, 257 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 258 IdType, 259 Ctx.BoolTy, 260 Ctx.BoolTy}; 261 llvm::FunctionType *FTy = 262 Types.GetFunctionType( 263 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 264 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 265 } 266 267 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 268 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 269 ASTContext &Ctx = CGM.getContext(); 270 // void objc_setProperty_atomic(id self, SEL _cmd, 271 // id newValue, ptrdiff_t offset); 272 // void objc_setProperty_nonatomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 279 SmallVector<CanQualType,4> Params; 280 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 281 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 282 Params.push_back(IdType); 283 Params.push_back(SelType); 284 Params.push_back(IdType); 285 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 286 llvm::FunctionType *FTy = 287 Types.GetFunctionType( 288 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 289 const char *name; 290 if (atomic && copy) 291 name = "objc_setProperty_atomic_copy"; 292 else if (atomic && !copy) 293 name = "objc_setProperty_atomic"; 294 else if (!atomic && copy) 295 name = "objc_setProperty_nonatomic_copy"; 296 else 297 name = "objc_setProperty_nonatomic"; 298 299 return CGM.CreateRuntimeFunction(FTy, name); 300 } 301 302 llvm::FunctionCallee getCopyStructFn() { 303 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 304 ASTContext &Ctx = CGM.getContext(); 305 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 306 SmallVector<CanQualType,5> Params; 307 Params.push_back(Ctx.VoidPtrTy); 308 Params.push_back(Ctx.VoidPtrTy); 309 Params.push_back(Ctx.getSizeType()); 310 Params.push_back(Ctx.BoolTy); 311 Params.push_back(Ctx.BoolTy); 312 llvm::FunctionType *FTy = 313 Types.GetFunctionType( 314 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 315 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 316 } 317 318 /// This routine declares and returns address of: 319 /// void objc_copyCppObjectAtomic( 320 /// void *dest, const void *src, 321 /// void (*copyHelper) (void *dest, const void *source)); 322 llvm::FunctionCallee getCppAtomicObjectFunction() { 323 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 324 ASTContext &Ctx = CGM.getContext(); 325 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 326 SmallVector<CanQualType,3> Params; 327 Params.push_back(Ctx.VoidPtrTy); 328 Params.push_back(Ctx.VoidPtrTy); 329 Params.push_back(Ctx.VoidPtrTy); 330 llvm::FunctionType *FTy = 331 Types.GetFunctionType( 332 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 333 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 334 } 335 336 llvm::FunctionCallee getEnumerationMutationFn() { 337 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 338 ASTContext &Ctx = CGM.getContext(); 339 // void objc_enumerationMutation (id) 340 SmallVector<CanQualType,1> Params; 341 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 342 llvm::FunctionType *FTy = 343 Types.GetFunctionType( 344 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 345 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 346 } 347 348 llvm::FunctionCallee getLookUpClassFn() { 349 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 350 ASTContext &Ctx = CGM.getContext(); 351 // Class objc_lookUpClass (const char *) 352 SmallVector<CanQualType,1> Params; 353 Params.push_back( 354 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 355 llvm::FunctionType *FTy = 356 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 357 Ctx.getCanonicalType(Ctx.getObjCClassType()), 358 Params)); 359 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 360 } 361 362 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 363 llvm::FunctionCallee getGcReadWeakFn() { 364 // id objc_read_weak (id *) 365 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 366 llvm::FunctionType *FTy = 367 llvm::FunctionType::get(ObjectPtrTy, args, false); 368 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 369 } 370 371 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 372 llvm::FunctionCallee getGcAssignWeakFn() { 373 // id objc_assign_weak (id, id *) 374 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 375 llvm::FunctionType *FTy = 376 llvm::FunctionType::get(ObjectPtrTy, args, false); 377 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 378 } 379 380 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 381 llvm::FunctionCallee getGcAssignGlobalFn() { 382 // id objc_assign_global(id, id *) 383 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 384 llvm::FunctionType *FTy = 385 llvm::FunctionType::get(ObjectPtrTy, args, false); 386 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 387 } 388 389 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 390 llvm::FunctionCallee getGcAssignThreadLocalFn() { 391 // id objc_assign_threadlocal(id src, id * dest) 392 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 393 llvm::FunctionType *FTy = 394 llvm::FunctionType::get(ObjectPtrTy, args, false); 395 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 396 } 397 398 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 399 llvm::FunctionCallee getGcAssignIvarFn() { 400 // id objc_assign_ivar(id, id *, ptrdiff_t) 401 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 402 CGM.PtrDiffTy }; 403 llvm::FunctionType *FTy = 404 llvm::FunctionType::get(ObjectPtrTy, args, false); 405 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 406 } 407 408 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 409 llvm::FunctionCallee GcMemmoveCollectableFn() { 410 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 411 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 412 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 413 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 414 } 415 416 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 417 llvm::FunctionCallee getGcAssignStrongCastFn() { 418 // id objc_assign_strongCast(id, id *) 419 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 420 llvm::FunctionType *FTy = 421 llvm::FunctionType::get(ObjectPtrTy, args, false); 422 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 423 } 424 425 /// ExceptionThrowFn - LLVM objc_exception_throw function. 426 llvm::FunctionCallee getExceptionThrowFn() { 427 // void objc_exception_throw(id) 428 llvm::Type *args[] = { ObjectPtrTy }; 429 llvm::FunctionType *FTy = 430 llvm::FunctionType::get(CGM.VoidTy, args, false); 431 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 432 } 433 434 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 435 llvm::FunctionCallee getExceptionRethrowFn() { 436 // void objc_exception_rethrow(void) 437 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 438 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 439 } 440 441 /// SyncEnterFn - LLVM object_sync_enter function. 442 llvm::FunctionCallee getSyncEnterFn() { 443 // int objc_sync_enter (id) 444 llvm::Type *args[] = { ObjectPtrTy }; 445 llvm::FunctionType *FTy = 446 llvm::FunctionType::get(CGM.IntTy, args, false); 447 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 448 } 449 450 /// SyncExitFn - LLVM object_sync_exit function. 451 llvm::FunctionCallee getSyncExitFn() { 452 // int objc_sync_exit (id) 453 llvm::Type *args[] = { ObjectPtrTy }; 454 llvm::FunctionType *FTy = 455 llvm::FunctionType::get(CGM.IntTy, args, false); 456 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 457 } 458 459 llvm::FunctionCallee getSendFn(bool IsSuper) const { 460 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 461 } 462 463 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 464 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 465 } 466 467 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 468 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 469 } 470 471 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 472 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 473 } 474 475 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 476 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 477 } 478 479 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 480 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 481 } 482 483 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 484 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 485 } 486 487 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 488 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 489 } 490 491 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 492 }; 493 494 /// ObjCTypesHelper - Helper class that encapsulates lazy 495 /// construction of varies types used during ObjC generation. 496 class ObjCTypesHelper : public ObjCCommonTypesHelper { 497 public: 498 /// SymtabTy - LLVM type for struct objc_symtab. 499 llvm::StructType *SymtabTy; 500 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 501 llvm::PointerType *SymtabPtrTy; 502 /// ModuleTy - LLVM type for struct objc_module. 503 llvm::StructType *ModuleTy; 504 505 /// ProtocolTy - LLVM type for struct objc_protocol. 506 llvm::StructType *ProtocolTy; 507 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 508 llvm::PointerType *ProtocolPtrTy; 509 /// ProtocolExtensionTy - LLVM type for struct 510 /// objc_protocol_extension. 511 llvm::StructType *ProtocolExtensionTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension *. 514 llvm::PointerType *ProtocolExtensionPtrTy; 515 /// MethodDescriptionTy - LLVM type for struct 516 /// objc_method_description. 517 llvm::StructType *MethodDescriptionTy; 518 /// MethodDescriptionListTy - LLVM type for struct 519 /// objc_method_description_list. 520 llvm::StructType *MethodDescriptionListTy; 521 /// MethodDescriptionListPtrTy - LLVM type for struct 522 /// objc_method_description_list *. 523 llvm::PointerType *MethodDescriptionListPtrTy; 524 /// ProtocolListTy - LLVM type for struct objc_property_list. 525 llvm::StructType *ProtocolListTy; 526 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 527 llvm::PointerType *ProtocolListPtrTy; 528 /// CategoryTy - LLVM type for struct objc_category. 529 llvm::StructType *CategoryTy; 530 /// ClassTy - LLVM type for struct objc_class. 531 llvm::StructType *ClassTy; 532 /// ClassPtrTy - LLVM type for struct objc_class *. 533 llvm::PointerType *ClassPtrTy; 534 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 535 llvm::StructType *ClassExtensionTy; 536 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 537 llvm::PointerType *ClassExtensionPtrTy; 538 // IvarTy - LLVM type for struct objc_ivar. 539 llvm::StructType *IvarTy; 540 /// IvarListTy - LLVM type for struct objc_ivar_list. 541 llvm::StructType *IvarListTy; 542 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 543 llvm::PointerType *IvarListPtrTy; 544 /// MethodListTy - LLVM type for struct objc_method_list. 545 llvm::StructType *MethodListTy; 546 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 547 llvm::PointerType *MethodListPtrTy; 548 549 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 550 llvm::StructType *ExceptionDataTy; 551 552 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 553 llvm::FunctionCallee getExceptionTryEnterFn() { 554 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 555 return CGM.CreateRuntimeFunction( 556 llvm::FunctionType::get(CGM.VoidTy, params, false), 557 "objc_exception_try_enter"); 558 } 559 560 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 561 llvm::FunctionCallee getExceptionTryExitFn() { 562 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 563 return CGM.CreateRuntimeFunction( 564 llvm::FunctionType::get(CGM.VoidTy, params, false), 565 "objc_exception_try_exit"); 566 } 567 568 /// ExceptionExtractFn - LLVM objc_exception_extract function. 569 llvm::FunctionCallee getExceptionExtractFn() { 570 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 571 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 572 params, false), 573 "objc_exception_extract"); 574 } 575 576 /// ExceptionMatchFn - LLVM objc_exception_match function. 577 llvm::FunctionCallee getExceptionMatchFn() { 578 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 579 return CGM.CreateRuntimeFunction( 580 llvm::FunctionType::get(CGM.Int32Ty, params, false), 581 "objc_exception_match"); 582 } 583 584 /// SetJmpFn - LLVM _setjmp function. 585 llvm::FunctionCallee getSetJmpFn() { 586 // This is specifically the prototype for x86. 587 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 588 return CGM.CreateRuntimeFunction( 589 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 590 llvm::AttributeList::get(CGM.getLLVMContext(), 591 llvm::AttributeList::FunctionIndex, 592 llvm::Attribute::NonLazyBind)); 593 } 594 595 public: 596 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 597 }; 598 599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600 /// modern abi 601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602 public: 603 // MethodListnfABITy - LLVM for struct _method_list_t 604 llvm::StructType *MethodListnfABITy; 605 606 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 607 llvm::PointerType *MethodListnfABIPtrTy; 608 609 // ProtocolnfABITy = LLVM for struct _protocol_t 610 llvm::StructType *ProtocolnfABITy; 611 612 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 613 llvm::PointerType *ProtocolnfABIPtrTy; 614 615 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 616 llvm::StructType *ProtocolListnfABITy; 617 618 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 619 llvm::PointerType *ProtocolListnfABIPtrTy; 620 621 // ClassnfABITy - LLVM for struct _class_t 622 llvm::StructType *ClassnfABITy; 623 624 // ClassnfABIPtrTy - LLVM for struct _class_t* 625 llvm::PointerType *ClassnfABIPtrTy; 626 627 // IvarnfABITy - LLVM for struct _ivar_t 628 llvm::StructType *IvarnfABITy; 629 630 // IvarListnfABITy - LLVM for struct _ivar_list_t 631 llvm::StructType *IvarListnfABITy; 632 633 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 634 llvm::PointerType *IvarListnfABIPtrTy; 635 636 // ClassRonfABITy - LLVM for struct _class_ro_t 637 llvm::StructType *ClassRonfABITy; 638 639 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 640 llvm::PointerType *ImpnfABITy; 641 642 // CategorynfABITy - LLVM for struct _category_t 643 llvm::StructType *CategorynfABITy; 644 645 // New types for nonfragile abi messaging. 646 647 // MessageRefTy - LLVM for: 648 // struct _message_ref_t { 649 // IMP messenger; 650 // SEL name; 651 // }; 652 llvm::StructType *MessageRefTy; 653 // MessageRefCTy - clang type for struct _message_ref_t 654 QualType MessageRefCTy; 655 656 // MessageRefPtrTy - LLVM for struct _message_ref_t* 657 llvm::Type *MessageRefPtrTy; 658 // MessageRefCPtrTy - clang type for struct _message_ref_t* 659 QualType MessageRefCPtrTy; 660 661 // SuperMessageRefTy - LLVM for: 662 // struct _super_message_ref_t { 663 // SUPER_IMP messenger; 664 // SEL name; 665 // }; 666 llvm::StructType *SuperMessageRefTy; 667 668 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 669 llvm::PointerType *SuperMessageRefPtrTy; 670 671 llvm::FunctionCallee getMessageSendFixupFn() { 672 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 673 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 674 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 675 params, true), 676 "objc_msgSend_fixup"); 677 } 678 679 llvm::FunctionCallee getMessageSendFpretFixupFn() { 680 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 681 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 682 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 683 params, true), 684 "objc_msgSend_fpret_fixup"); 685 } 686 687 llvm::FunctionCallee getMessageSendStretFixupFn() { 688 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 689 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 690 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 691 params, true), 692 "objc_msgSend_stret_fixup"); 693 } 694 695 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 696 // id objc_msgSendSuper2_fixup (struct objc_super *, 697 // struct _super_message_ref_t*, ...) 698 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 699 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 700 params, true), 701 "objc_msgSendSuper2_fixup"); 702 } 703 704 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 705 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 706 // struct _super_message_ref_t*, ...) 707 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 708 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 709 params, true), 710 "objc_msgSendSuper2_stret_fixup"); 711 } 712 713 llvm::FunctionCallee getObjCEndCatchFn() { 714 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 715 "objc_end_catch"); 716 } 717 718 llvm::FunctionCallee getObjCBeginCatchFn() { 719 llvm::Type *params[] = { Int8PtrTy }; 720 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 721 params, false), 722 "objc_begin_catch"); 723 } 724 725 /// Class objc_loadClassref (void *) 726 /// 727 /// Loads from a classref. For Objective-C stub classes, this invokes the 728 /// initialization callback stored inside the stub. For all other classes 729 /// this simply dereferences the pointer. 730 llvm::FunctionCallee getLoadClassrefFn() const { 731 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 732 // be called a lot. 733 // 734 // Also it is safe to make it readnone, since we never load or store the 735 // classref except by calling this function. 736 llvm::Type *params[] = { Int8PtrPtrTy }; 737 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 738 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 739 "objc_loadClassref", 740 llvm::AttributeList::get(CGM.getLLVMContext(), 741 llvm::AttributeList::FunctionIndex, 742 {llvm::Attribute::NonLazyBind, 743 llvm::Attribute::ReadNone, 744 llvm::Attribute::NoUnwind})); 745 if (!CGM.getTriple().isOSBinFormatCOFF()) 746 cast<llvm::Function>(F.getCallee())->setLinkage( 747 llvm::Function::ExternalWeakLinkage); 748 749 return F; 750 } 751 752 llvm::StructType *EHTypeTy; 753 llvm::Type *EHTypePtrTy; 754 755 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 756 }; 757 758 enum class ObjCLabelType { 759 ClassName, 760 MethodVarName, 761 MethodVarType, 762 PropertyName, 763 }; 764 765 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 766 public: 767 class SKIP_SCAN { 768 public: 769 unsigned skip; 770 unsigned scan; 771 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 772 : skip(_skip), scan(_scan) {} 773 }; 774 775 /// opcode for captured block variables layout 'instructions'. 776 /// In the following descriptions, 'I' is the value of the immediate field. 777 /// (field following the opcode). 778 /// 779 enum BLOCK_LAYOUT_OPCODE { 780 /// An operator which affects how the following layout should be 781 /// interpreted. 782 /// I == 0: Halt interpretation and treat everything else as 783 /// a non-pointer. Note that this instruction is equal 784 /// to '\0'. 785 /// I != 0: Currently unused. 786 BLOCK_LAYOUT_OPERATOR = 0, 787 788 /// The next I+1 bytes do not contain a value of object pointer type. 789 /// Note that this can leave the stream unaligned, meaning that 790 /// subsequent word-size instructions do not begin at a multiple of 791 /// the pointer size. 792 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 793 794 /// The next I+1 words do not contain a value of object pointer type. 795 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 796 /// when the required skip quantity is a multiple of the pointer size. 797 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 798 799 /// The next I+1 words are __strong pointers to Objective-C 800 /// objects or blocks. 801 BLOCK_LAYOUT_STRONG = 3, 802 803 /// The next I+1 words are pointers to __block variables. 804 BLOCK_LAYOUT_BYREF = 4, 805 806 /// The next I+1 words are __weak pointers to Objective-C 807 /// objects or blocks. 808 BLOCK_LAYOUT_WEAK = 5, 809 810 /// The next I+1 words are __unsafe_unretained pointers to 811 /// Objective-C objects or blocks. 812 BLOCK_LAYOUT_UNRETAINED = 6 813 814 /// The next I+1 words are block or object pointers with some 815 /// as-yet-unspecified ownership semantics. If we add more 816 /// flavors of ownership semantics, values will be taken from 817 /// this range. 818 /// 819 /// This is included so that older tools can at least continue 820 /// processing the layout past such things. 821 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 822 823 /// All other opcodes are reserved. Halt interpretation and 824 /// treat everything else as opaque. 825 }; 826 827 class RUN_SKIP { 828 public: 829 enum BLOCK_LAYOUT_OPCODE opcode; 830 CharUnits block_var_bytepos; 831 CharUnits block_var_size; 832 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 833 CharUnits BytePos = CharUnits::Zero(), 834 CharUnits Size = CharUnits::Zero()) 835 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 836 837 // Allow sorting based on byte pos. 838 bool operator<(const RUN_SKIP &b) const { 839 return block_var_bytepos < b.block_var_bytepos; 840 } 841 }; 842 843 protected: 844 llvm::LLVMContext &VMContext; 845 // FIXME! May not be needing this after all. 846 unsigned ObjCABI; 847 848 // arc/mrr layout of captured block literal variables. 849 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 850 851 /// LazySymbols - Symbols to generate a lazy reference for. See 852 /// DefinedSymbols and FinishModule(). 853 llvm::SetVector<IdentifierInfo*> LazySymbols; 854 855 /// DefinedSymbols - External symbols which are defined by this 856 /// module. The symbols in this list and LazySymbols are used to add 857 /// special linker symbols which ensure that Objective-C modules are 858 /// linked properly. 859 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 860 861 /// ClassNames - uniqued class names. 862 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 863 864 /// MethodVarNames - uniqued method variable names. 865 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 866 867 /// DefinedCategoryNames - list of category names in form Class_Category. 868 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 869 870 /// MethodVarTypes - uniqued method type signatures. We have to use 871 /// a StringMap here because have no other unique reference. 872 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 873 874 /// MethodDefinitions - map of methods which have been defined in 875 /// this translation unit. 876 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 877 878 /// DirectMethodDefinitions - map of direct methods which have been defined in 879 /// this translation unit. 880 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 881 882 /// PropertyNames - uniqued method variable names. 883 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 884 885 /// ClassReferences - uniqued class references. 886 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 887 888 /// SelectorReferences - uniqued selector references. 889 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 890 891 /// Protocols - Protocols for which an objc_protocol structure has 892 /// been emitted. Forward declarations are handled by creating an 893 /// empty structure whose initializer is filled in when/if defined. 894 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 895 896 /// DefinedProtocols - Protocols which have actually been 897 /// defined. We should not need this, see FIXME in GenerateProtocol. 898 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 899 900 /// DefinedClasses - List of defined classes. 901 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 902 903 /// ImplementedClasses - List of @implemented classes. 904 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 905 906 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 908 909 /// DefinedCategories - List of defined categories. 910 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 911 912 /// DefinedStubCategories - List of defined categories on class stubs. 913 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 914 915 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 917 918 /// Cached reference to the class for constant strings. This value has type 919 /// int * but is actually an Obj-C class pointer. 920 llvm::WeakTrackingVH ConstantStringClassRef; 921 922 /// The LLVM type corresponding to NSConstantString. 923 llvm::StructType *NSConstantStringType = nullptr; 924 925 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 926 927 /// GetNameForMethod - Return a name for the given method. 928 /// \param[out] NameOut - The return value. 929 void GetNameForMethod(const ObjCMethodDecl *OMD, 930 const ObjCContainerDecl *CD, 931 SmallVectorImpl<char> &NameOut, 932 bool ignoreCategoryNamespace = false); 933 934 /// GetMethodVarName - Return a unique constant for the given 935 /// selector's name. The return value has type char *. 936 llvm::Constant *GetMethodVarName(Selector Sel); 937 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 938 939 /// GetMethodVarType - Return a unique constant for the given 940 /// method's type encoding string. The return value has type char *. 941 942 // FIXME: This is a horrible name. 943 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 944 bool Extended = false); 945 llvm::Constant *GetMethodVarType(const FieldDecl *D); 946 947 /// GetPropertyName - Return a unique constant for the given 948 /// name. The return value has type char *. 949 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 950 951 // FIXME: This can be dropped once string functions are unified. 952 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 953 const Decl *Container); 954 955 /// GetClassName - Return a unique constant for the given selector's 956 /// runtime name (which may change via use of objc_runtime_name attribute on 957 /// class or protocol definition. The return value has type char *. 958 llvm::Constant *GetClassName(StringRef RuntimeName); 959 960 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 961 962 /// BuildIvarLayout - Builds ivar layout bitmap for the class 963 /// implementation for the __strong or __weak case. 964 /// 965 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 966 /// are any weak ivars defined directly in the class. Meaningless unless 967 /// building a weak layout. Does not guarantee that the layout will 968 /// actually have any entries, because the ivar might be under-aligned. 969 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 970 CharUnits beginOffset, 971 CharUnits endOffset, 972 bool forStrongLayout, 973 bool hasMRCWeakIvars); 974 975 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 976 CharUnits beginOffset, 977 CharUnits endOffset) { 978 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 979 } 980 981 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 982 CharUnits beginOffset, 983 CharUnits endOffset, 984 bool hasMRCWeakIvars) { 985 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 986 } 987 988 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 989 990 void UpdateRunSkipBlockVars(bool IsByref, 991 Qualifiers::ObjCLifetime LifeTime, 992 CharUnits FieldOffset, 993 CharUnits FieldSize); 994 995 void BuildRCBlockVarRecordLayout(const RecordType *RT, 996 CharUnits BytePos, bool &HasUnion, 997 bool ByrefLayout=false); 998 999 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 1000 const RecordDecl *RD, 1001 ArrayRef<const FieldDecl*> RecFields, 1002 CharUnits BytePos, bool &HasUnion, 1003 bool ByrefLayout); 1004 1005 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1006 1007 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1008 1009 /// GetIvarLayoutName - Returns a unique constant for the given 1010 /// ivar layout bitmap. 1011 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1012 const ObjCCommonTypesHelper &ObjCTypes); 1013 1014 /// EmitPropertyList - Emit the given property list. The return 1015 /// value has type PropertyListPtrTy. 1016 llvm::Constant *EmitPropertyList(Twine Name, 1017 const Decl *Container, 1018 const ObjCContainerDecl *OCD, 1019 const ObjCCommonTypesHelper &ObjCTypes, 1020 bool IsClassProperty); 1021 1022 /// EmitProtocolMethodTypes - Generate the array of extended method type 1023 /// strings. The return value has type Int8PtrPtrTy. 1024 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1025 ArrayRef<llvm::Constant*> MethodTypes, 1026 const ObjCCommonTypesHelper &ObjCTypes); 1027 1028 /// GetProtocolRef - Return a reference to the internal protocol 1029 /// description, creating an empty one if it has not been 1030 /// defined. The return value has type ProtocolPtrTy. 1031 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1032 1033 /// Return a reference to the given Class using runtime calls rather than 1034 /// by a symbol reference. 1035 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1036 const ObjCInterfaceDecl *ID, 1037 ObjCCommonTypesHelper &ObjCTypes); 1038 1039 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1040 1041 public: 1042 /// CreateMetadataVar - Create a global variable with internal 1043 /// linkage for use by the Objective-C runtime. 1044 /// 1045 /// This is a convenience wrapper which not only creates the 1046 /// variable, but also sets the section and alignment and adds the 1047 /// global to the "llvm.used" list. 1048 /// 1049 /// \param Name - The variable name. 1050 /// \param Init - The variable initializer; this is also used to 1051 /// define the type of the variable. 1052 /// \param Section - The section the variable should go into, or empty. 1053 /// \param Align - The alignment for the variable, or 0. 1054 /// \param AddToUsed - Whether the variable should be added to 1055 /// "llvm.used". 1056 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1057 ConstantStructBuilder &Init, 1058 StringRef Section, CharUnits Align, 1059 bool AddToUsed); 1060 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1061 llvm::Constant *Init, 1062 StringRef Section, CharUnits Align, 1063 bool AddToUsed); 1064 1065 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1066 ObjCLabelType LabelType, 1067 bool ForceNonFragileABI = false, 1068 bool NullTerminate = true); 1069 1070 protected: 1071 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1072 ReturnValueSlot Return, 1073 QualType ResultType, 1074 Selector Sel, 1075 llvm::Value *Arg0, 1076 QualType Arg0Ty, 1077 bool IsSuper, 1078 const CallArgList &CallArgs, 1079 const ObjCMethodDecl *OMD, 1080 const ObjCInterfaceDecl *ClassReceiver, 1081 const ObjCCommonTypesHelper &ObjCTypes); 1082 1083 /// EmitImageInfo - Emit the image info marker used to encode some module 1084 /// level information. 1085 void EmitImageInfo(); 1086 1087 public: 1088 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1089 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1090 1091 bool isNonFragileABI() const { 1092 return ObjCABI == 2; 1093 } 1094 1095 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1096 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1097 1098 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1099 const ObjCContainerDecl *CD=nullptr) override; 1100 1101 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1102 const ObjCContainerDecl *CD); 1103 1104 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1105 const ObjCMethodDecl *OMD, 1106 const ObjCContainerDecl *CD) override; 1107 1108 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1109 1110 /// GetOrEmitProtocol - Get the protocol object for the given 1111 /// declaration, emitting it if necessary. The return value has type 1112 /// ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1114 1115 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1116 /// object for the given declaration, emitting it if needed. These 1117 /// forward references will be filled in with empty bodies if no 1118 /// definition is seen. The return value has type ProtocolPtrTy. 1119 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1120 1121 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1122 1123 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1124 const CGBlockInfo &blockInfo) override; 1125 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1126 const CGBlockInfo &blockInfo) override; 1127 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1128 const CGBlockInfo &blockInfo) override; 1129 1130 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1131 QualType T) override; 1132 1133 private: 1134 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1135 }; 1136 1137 namespace { 1138 1139 enum class MethodListType { 1140 CategoryInstanceMethods, 1141 CategoryClassMethods, 1142 InstanceMethods, 1143 ClassMethods, 1144 ProtocolInstanceMethods, 1145 ProtocolClassMethods, 1146 OptionalProtocolInstanceMethods, 1147 OptionalProtocolClassMethods, 1148 }; 1149 1150 /// A convenience class for splitting the methods of a protocol into 1151 /// the four interesting groups. 1152 class ProtocolMethodLists { 1153 public: 1154 enum Kind { 1155 RequiredInstanceMethods, 1156 RequiredClassMethods, 1157 OptionalInstanceMethods, 1158 OptionalClassMethods 1159 }; 1160 enum { 1161 NumProtocolMethodLists = 4 1162 }; 1163 1164 static MethodListType getMethodListKind(Kind kind) { 1165 switch (kind) { 1166 case RequiredInstanceMethods: 1167 return MethodListType::ProtocolInstanceMethods; 1168 case RequiredClassMethods: 1169 return MethodListType::ProtocolClassMethods; 1170 case OptionalInstanceMethods: 1171 return MethodListType::OptionalProtocolInstanceMethods; 1172 case OptionalClassMethods: 1173 return MethodListType::OptionalProtocolClassMethods; 1174 } 1175 llvm_unreachable("bad kind"); 1176 } 1177 1178 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1179 1180 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1181 ProtocolMethodLists result; 1182 1183 for (auto MD : PD->methods()) { 1184 size_t index = (2 * size_t(MD->isOptional())) 1185 + (size_t(MD->isClassMethod())); 1186 result.Methods[index].push_back(MD); 1187 } 1188 1189 return result; 1190 } 1191 1192 template <class Self> 1193 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1194 // In both ABIs, the method types list is parallel with the 1195 // concatenation of the methods arrays in the following order: 1196 // instance methods 1197 // class methods 1198 // optional instance methods 1199 // optional class methods 1200 SmallVector<llvm::Constant*, 8> result; 1201 1202 // Methods is already in the correct order for both ABIs. 1203 for (auto &list : Methods) { 1204 for (auto MD : list) { 1205 result.push_back(self->GetMethodVarType(MD, true)); 1206 } 1207 } 1208 1209 return result; 1210 } 1211 1212 template <class Self> 1213 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1214 Kind kind) const { 1215 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1216 getMethodListKind(kind), Methods[kind]); 1217 } 1218 }; 1219 1220 } // end anonymous namespace 1221 1222 class CGObjCMac : public CGObjCCommonMac { 1223 private: 1224 friend ProtocolMethodLists; 1225 1226 ObjCTypesHelper ObjCTypes; 1227 1228 /// EmitModuleInfo - Another marker encoding module level 1229 /// information. 1230 void EmitModuleInfo(); 1231 1232 /// EmitModuleSymols - Emit module symbols, the list of defined 1233 /// classes and categories. The result has type SymtabPtrTy. 1234 llvm::Constant *EmitModuleSymbols(); 1235 1236 /// FinishModule - Write out global data structures at the end of 1237 /// processing a translation unit. 1238 void FinishModule(); 1239 1240 /// EmitClassExtension - Generate the class extension structure used 1241 /// to store the weak ivar layout and properties. The return value 1242 /// has type ClassExtensionPtrTy. 1243 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1244 CharUnits instanceSize, 1245 bool hasMRCWeakIvars, 1246 bool isMetaclass); 1247 1248 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1249 /// for the given class. 1250 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1251 const ObjCInterfaceDecl *ID); 1252 1253 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1254 IdentifierInfo *II); 1255 1256 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1257 1258 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1259 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1260 1261 /// EmitIvarList - Emit the ivar list for the given 1262 /// implementation. If ForClass is true the list of class ivars 1263 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1264 /// interface ivars will be emitted. The return value has type 1265 /// IvarListPtrTy. 1266 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1267 bool ForClass); 1268 1269 /// EmitMetaClass - Emit a forward reference to the class structure 1270 /// for the metaclass of the given interface. The return value has 1271 /// type ClassPtrTy. 1272 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1273 1274 /// EmitMetaClass - Emit a class structure for the metaclass of the 1275 /// given implementation. The return value has type ClassPtrTy. 1276 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1277 llvm::Constant *Protocols, 1278 ArrayRef<const ObjCMethodDecl *> Methods); 1279 1280 void emitMethodConstant(ConstantArrayBuilder &builder, 1281 const ObjCMethodDecl *MD); 1282 1283 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1284 const ObjCMethodDecl *MD); 1285 1286 /// EmitMethodList - Emit the method list for the given 1287 /// implementation. The return value has type MethodListPtrTy. 1288 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1289 ArrayRef<const ObjCMethodDecl *> Methods); 1290 1291 /// GetOrEmitProtocol - Get the protocol object for the given 1292 /// declaration, emitting it if necessary. The return value has type 1293 /// ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1295 1296 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1297 /// object for the given declaration, emitting it if needed. These 1298 /// forward references will be filled in with empty bodies if no 1299 /// definition is seen. The return value has type ProtocolPtrTy. 1300 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1301 1302 /// EmitProtocolExtension - Generate the protocol extension 1303 /// structure used to store optional instance and class methods, and 1304 /// protocol properties. The return value has type 1305 /// ProtocolExtensionPtrTy. 1306 llvm::Constant * 1307 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1308 const ProtocolMethodLists &methodLists); 1309 1310 /// EmitProtocolList - Generate the list of referenced 1311 /// protocols. The return value has type ProtocolListPtrTy. 1312 llvm::Constant *EmitProtocolList(Twine Name, 1313 ObjCProtocolDecl::protocol_iterator begin, 1314 ObjCProtocolDecl::protocol_iterator end); 1315 1316 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1317 /// for the given selector. 1318 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1319 Address EmitSelectorAddr(Selector Sel); 1320 1321 public: 1322 CGObjCMac(CodeGen::CodeGenModule &cgm); 1323 1324 llvm::Constant *getNSConstantStringClassRef() override; 1325 1326 llvm::Function *ModuleInitFunction() override; 1327 1328 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1329 ReturnValueSlot Return, 1330 QualType ResultType, 1331 Selector Sel, llvm::Value *Receiver, 1332 const CallArgList &CallArgs, 1333 const ObjCInterfaceDecl *Class, 1334 const ObjCMethodDecl *Method) override; 1335 1336 CodeGen::RValue 1337 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1338 ReturnValueSlot Return, QualType ResultType, 1339 Selector Sel, const ObjCInterfaceDecl *Class, 1340 bool isCategoryImpl, llvm::Value *Receiver, 1341 bool IsClassMessage, const CallArgList &CallArgs, 1342 const ObjCMethodDecl *Method) override; 1343 1344 llvm::Value *GetClass(CodeGenFunction &CGF, 1345 const ObjCInterfaceDecl *ID) override; 1346 1347 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1348 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1349 1350 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1351 /// untyped one. 1352 llvm::Value *GetSelector(CodeGenFunction &CGF, 1353 const ObjCMethodDecl *Method) override; 1354 1355 llvm::Constant *GetEHType(QualType T) override; 1356 1357 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1358 1359 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1360 1361 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1362 1363 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1364 const ObjCProtocolDecl *PD) override; 1365 1366 llvm::FunctionCallee GetPropertyGetFunction() override; 1367 llvm::FunctionCallee GetPropertySetFunction() override; 1368 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1369 bool copy) override; 1370 llvm::FunctionCallee GetGetStructFunction() override; 1371 llvm::FunctionCallee GetSetStructFunction() override; 1372 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1373 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1374 llvm::FunctionCallee EnumerationMutationFunction() override; 1375 1376 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1377 const ObjCAtTryStmt &S) override; 1378 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1379 const ObjCAtSynchronizedStmt &S) override; 1380 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1381 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1382 bool ClearInsertionPoint=true) override; 1383 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1384 Address AddrWeakObj) override; 1385 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1386 llvm::Value *src, Address dst) override; 1387 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest, 1389 bool threadlocal = false) override; 1390 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1391 llvm::Value *src, Address dest, 1392 llvm::Value *ivarOffset) override; 1393 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1394 llvm::Value *src, Address dest) override; 1395 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1396 Address dest, Address src, 1397 llvm::Value *size) override; 1398 1399 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1400 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1401 unsigned CVRQualifiers) override; 1402 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1403 const ObjCInterfaceDecl *Interface, 1404 const ObjCIvarDecl *Ivar) override; 1405 }; 1406 1407 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1408 private: 1409 friend ProtocolMethodLists; 1410 ObjCNonFragileABITypesHelper ObjCTypes; 1411 llvm::GlobalVariable* ObjCEmptyCacheVar; 1412 llvm::Constant* ObjCEmptyVtableVar; 1413 1414 /// SuperClassReferences - uniqued super class references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1416 1417 /// MetaClassReferences - uniqued meta class references. 1418 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1419 1420 /// EHTypeReferences - uniqued class ehtype references. 1421 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1422 1423 /// VTableDispatchMethods - List of methods for which we generate 1424 /// vtable-based message dispatch. 1425 llvm::DenseSet<Selector> VTableDispatchMethods; 1426 1427 /// DefinedMetaClasses - List of defined meta-classes. 1428 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1429 1430 /// isVTableDispatchedSelector - Returns true if SEL is a 1431 /// vtable-based selector. 1432 bool isVTableDispatchedSelector(Selector Sel); 1433 1434 /// FinishNonFragileABIModule - Write out global data structures at the end of 1435 /// processing a translation unit. 1436 void FinishNonFragileABIModule(); 1437 1438 /// AddModuleClassList - Add the given list of class pointers to the 1439 /// module with the provided symbol and section names. 1440 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1441 StringRef SymbolName, StringRef SectionName); 1442 1443 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1444 unsigned InstanceStart, 1445 unsigned InstanceSize, 1446 const ObjCImplementationDecl *ID); 1447 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1448 bool isMetaclass, 1449 llvm::Constant *IsAGV, 1450 llvm::Constant *SuperClassGV, 1451 llvm::Constant *ClassRoGV, 1452 bool HiddenVisibility); 1453 1454 void emitMethodConstant(ConstantArrayBuilder &builder, 1455 const ObjCMethodDecl *MD, 1456 bool forProtocol); 1457 1458 /// Emit the method list for the given implementation. The return value 1459 /// has type MethodListnfABITy. 1460 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1461 ArrayRef<const ObjCMethodDecl *> Methods); 1462 1463 /// EmitIvarList - Emit the ivar list for the given 1464 /// implementation. If ForClass is true the list of class ivars 1465 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1466 /// interface ivars will be emitted. The return value has type 1467 /// IvarListnfABIPtrTy. 1468 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1469 1470 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1471 const ObjCIvarDecl *Ivar, 1472 unsigned long int offset); 1473 1474 /// GetOrEmitProtocol - Get the protocol object for the given 1475 /// declaration, emitting it if necessary. The return value has type 1476 /// ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1478 1479 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1480 /// object for the given declaration, emitting it if needed. These 1481 /// forward references will be filled in with empty bodies if no 1482 /// definition is seen. The return value has type ProtocolPtrTy. 1483 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1484 1485 /// EmitProtocolList - Generate the list of referenced 1486 /// protocols. The return value has type ProtocolListPtrTy. 1487 llvm::Constant *EmitProtocolList(Twine Name, 1488 ObjCProtocolDecl::protocol_iterator begin, 1489 ObjCProtocolDecl::protocol_iterator end); 1490 1491 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1492 ReturnValueSlot Return, 1493 QualType ResultType, 1494 Selector Sel, 1495 llvm::Value *Receiver, 1496 QualType Arg0Ty, 1497 bool IsSuper, 1498 const CallArgList &CallArgs, 1499 const ObjCMethodDecl *Method); 1500 1501 /// GetClassGlobal - Return the global variable for the Objective-C 1502 /// class of the given name. 1503 llvm::Constant *GetClassGlobal(StringRef Name, 1504 ForDefinition_t IsForDefinition, 1505 bool Weak = false, bool DLLImport = false); 1506 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1507 bool isMetaclass, 1508 ForDefinition_t isForDefinition); 1509 1510 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1511 1512 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID, 1514 llvm::GlobalVariable *Entry); 1515 1516 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1517 /// for the given class reference. 1518 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1519 const ObjCInterfaceDecl *ID); 1520 1521 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1522 IdentifierInfo *II, 1523 const ObjCInterfaceDecl *ID); 1524 1525 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1526 1527 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1528 /// for the given super class reference. 1529 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1530 const ObjCInterfaceDecl *ID); 1531 1532 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1533 /// meta-data 1534 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1535 const ObjCInterfaceDecl *ID, bool Weak); 1536 1537 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1538 /// the given ivar. 1539 /// 1540 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1541 const ObjCInterfaceDecl *ID, 1542 const ObjCIvarDecl *Ivar); 1543 1544 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1545 /// for the given selector. 1546 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1547 Address EmitSelectorAddr(Selector Sel); 1548 1549 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1550 /// interface. The return value has type EHTypePtrTy. 1551 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1552 ForDefinition_t IsForDefinition); 1553 1554 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1555 1556 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1557 1558 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1559 uint32_t &InstanceStart, 1560 uint32_t &InstanceSize); 1561 1562 // Shamelessly stolen from Analysis/CFRefCount.cpp 1563 Selector GetNullarySelector(const char* name) const { 1564 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1565 return CGM.getContext().Selectors.getSelector(0, &II); 1566 } 1567 1568 Selector GetUnarySelector(const char* name) const { 1569 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1570 return CGM.getContext().Selectors.getSelector(1, &II); 1571 } 1572 1573 /// ImplementationIsNonLazy - Check whether the given category or 1574 /// class implementation is "non-lazy". 1575 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1576 1577 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1578 const ObjCIvarDecl *IV) { 1579 // Annotate the load as an invariant load iff inside an instance method 1580 // and ivar belongs to instance method's class and one of its super class. 1581 // This check is needed because the ivar offset is a lazily 1582 // initialised value that may depend on objc_msgSend to perform a fixup on 1583 // the first message dispatch. 1584 // 1585 // An additional opportunity to mark the load as invariant arises when the 1586 // base of the ivar access is a parameter to an Objective C method. 1587 // However, because the parameters are not available in the current 1588 // interface, we cannot perform this check. 1589 // 1590 // Note that for direct methods, because objc_msgSend is skipped, 1591 // and that the method may be inlined, this optimization actually 1592 // can't be performed. 1593 if (const ObjCMethodDecl *MD = 1594 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1595 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1596 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1597 return IV->getContainingInterface()->isSuperClassOf(ID); 1598 return false; 1599 } 1600 1601 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1602 // NSObject is a fixed size. If we can see the @implementation of a class 1603 // which inherits from NSObject then we know that all it's offsets also must 1604 // be fixed. FIXME: Can we do this if see a chain of super classes with 1605 // implementations leading to NSObject? 1606 return ID->getImplementation() && ID->getSuperClass() && 1607 ID->getSuperClass()->getName() == "NSObject"; 1608 } 1609 1610 public: 1611 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1612 1613 llvm::Constant *getNSConstantStringClassRef() override; 1614 1615 llvm::Function *ModuleInitFunction() override; 1616 1617 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1618 ReturnValueSlot Return, 1619 QualType ResultType, Selector Sel, 1620 llvm::Value *Receiver, 1621 const CallArgList &CallArgs, 1622 const ObjCInterfaceDecl *Class, 1623 const ObjCMethodDecl *Method) override; 1624 1625 CodeGen::RValue 1626 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1627 ReturnValueSlot Return, QualType ResultType, 1628 Selector Sel, const ObjCInterfaceDecl *Class, 1629 bool isCategoryImpl, llvm::Value *Receiver, 1630 bool IsClassMessage, const CallArgList &CallArgs, 1631 const ObjCMethodDecl *Method) override; 1632 1633 llvm::Value *GetClass(CodeGenFunction &CGF, 1634 const ObjCInterfaceDecl *ID) override; 1635 1636 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1637 { return EmitSelector(CGF, Sel); } 1638 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1639 { return EmitSelectorAddr(Sel); } 1640 1641 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1642 /// untyped one. 1643 llvm::Value *GetSelector(CodeGenFunction &CGF, 1644 const ObjCMethodDecl *Method) override 1645 { return EmitSelector(CGF, Method->getSelector()); } 1646 1647 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1648 1649 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1650 1651 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1652 1653 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1654 const ObjCProtocolDecl *PD) override; 1655 1656 llvm::Constant *GetEHType(QualType T) override; 1657 1658 llvm::FunctionCallee GetPropertyGetFunction() override { 1659 return ObjCTypes.getGetPropertyFn(); 1660 } 1661 llvm::FunctionCallee GetPropertySetFunction() override { 1662 return ObjCTypes.getSetPropertyFn(); 1663 } 1664 1665 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1666 bool copy) override { 1667 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1668 } 1669 1670 llvm::FunctionCallee GetSetStructFunction() override { 1671 return ObjCTypes.getCopyStructFn(); 1672 } 1673 1674 llvm::FunctionCallee GetGetStructFunction() override { 1675 return ObjCTypes.getCopyStructFn(); 1676 } 1677 1678 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1679 return ObjCTypes.getCppAtomicObjectFunction(); 1680 } 1681 1682 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1683 return ObjCTypes.getCppAtomicObjectFunction(); 1684 } 1685 1686 llvm::FunctionCallee EnumerationMutationFunction() override { 1687 return ObjCTypes.getEnumerationMutationFn(); 1688 } 1689 1690 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1691 const ObjCAtTryStmt &S) override; 1692 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1693 const ObjCAtSynchronizedStmt &S) override; 1694 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1695 bool ClearInsertionPoint=true) override; 1696 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1697 Address AddrWeakObj) override; 1698 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1699 llvm::Value *src, Address edst) override; 1700 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest, 1702 bool threadlocal = false) override; 1703 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1704 llvm::Value *src, Address dest, 1705 llvm::Value *ivarOffset) override; 1706 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1707 llvm::Value *src, Address dest) override; 1708 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1709 Address dest, Address src, 1710 llvm::Value *size) override; 1711 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1712 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1713 unsigned CVRQualifiers) override; 1714 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1715 const ObjCInterfaceDecl *Interface, 1716 const ObjCIvarDecl *Ivar) override; 1717 }; 1718 1719 /// A helper class for performing the null-initialization of a return 1720 /// value. 1721 struct NullReturnState { 1722 llvm::BasicBlock *NullBB; 1723 NullReturnState() : NullBB(nullptr) {} 1724 1725 /// Perform a null-check of the given receiver. 1726 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1727 // Make blocks for the null-receiver and call edges. 1728 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1729 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1730 1731 // Check for a null receiver and, if there is one, jump to the 1732 // null-receiver block. There's no point in trying to avoid it: 1733 // we're always going to put *something* there, because otherwise 1734 // we shouldn't have done this null-check in the first place. 1735 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1736 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1737 1738 // Otherwise, start performing the call. 1739 CGF.EmitBlock(callBB); 1740 } 1741 1742 /// Complete the null-return operation. It is valid to call this 1743 /// regardless of whether 'init' has been called. 1744 RValue complete(CodeGenFunction &CGF, 1745 ReturnValueSlot returnSlot, 1746 RValue result, 1747 QualType resultType, 1748 const CallArgList &CallArgs, 1749 const ObjCMethodDecl *Method) { 1750 // If we never had to do a null-check, just use the raw result. 1751 if (!NullBB) return result; 1752 1753 // The continuation block. This will be left null if we don't have an 1754 // IP, which can happen if the method we're calling is marked noreturn. 1755 llvm::BasicBlock *contBB = nullptr; 1756 1757 // Finish the call path. 1758 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1759 if (callBB) { 1760 contBB = CGF.createBasicBlock("msgSend.cont"); 1761 CGF.Builder.CreateBr(contBB); 1762 } 1763 1764 // Okay, start emitting the null-receiver block. 1765 CGF.EmitBlock(NullBB); 1766 1767 // Release any consumed arguments we've got. 1768 if (Method) { 1769 CallArgList::const_iterator I = CallArgs.begin(); 1770 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1771 e = Method->param_end(); i != e; ++i, ++I) { 1772 const ParmVarDecl *ParamDecl = (*i); 1773 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1774 RValue RV = I->getRValue(CGF); 1775 assert(RV.isScalar() && 1776 "NullReturnState::complete - arg not on object"); 1777 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1778 } 1779 } 1780 } 1781 1782 // The phi code below assumes that we haven't needed any control flow yet. 1783 assert(CGF.Builder.GetInsertBlock() == NullBB); 1784 1785 // If we've got a void return, just jump to the continuation block. 1786 if (result.isScalar() && resultType->isVoidType()) { 1787 // No jumps required if the message-send was noreturn. 1788 if (contBB) CGF.EmitBlock(contBB); 1789 return result; 1790 } 1791 1792 // If we've got a scalar return, build a phi. 1793 if (result.isScalar()) { 1794 // Derive the null-initialization value. 1795 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1796 1797 // If no join is necessary, just flow out. 1798 if (!contBB) return RValue::get(null); 1799 1800 // Otherwise, build a phi. 1801 CGF.EmitBlock(contBB); 1802 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1803 phi->addIncoming(result.getScalarVal(), callBB); 1804 phi->addIncoming(null, NullBB); 1805 return RValue::get(phi); 1806 } 1807 1808 // If we've got an aggregate return, null the buffer out. 1809 // FIXME: maybe we should be doing things differently for all the 1810 // cases where the ABI has us returning (1) non-agg values in 1811 // memory or (2) agg values in registers. 1812 if (result.isAggregate()) { 1813 assert(result.isAggregate() && "null init of non-aggregate result?"); 1814 if (!returnSlot.isUnused()) 1815 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1816 if (contBB) CGF.EmitBlock(contBB); 1817 return result; 1818 } 1819 1820 // Complex types. 1821 CGF.EmitBlock(contBB); 1822 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1823 1824 // Find the scalar type and its zero value. 1825 llvm::Type *scalarTy = callResult.first->getType(); 1826 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1827 1828 // Build phis for both coordinates. 1829 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1830 real->addIncoming(callResult.first, callBB); 1831 real->addIncoming(scalarZero, NullBB); 1832 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1833 imag->addIncoming(callResult.second, callBB); 1834 imag->addIncoming(scalarZero, NullBB); 1835 return RValue::getComplex(real, imag); 1836 } 1837 }; 1838 1839 } // end anonymous namespace 1840 1841 /* *** Helper Functions *** */ 1842 1843 /// getConstantGEP() - Help routine to construct simple GEPs. 1844 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1845 llvm::GlobalVariable *C, unsigned idx0, 1846 unsigned idx1) { 1847 llvm::Value *Idxs[] = { 1848 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1849 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1850 }; 1851 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1852 } 1853 1854 /// hasObjCExceptionAttribute - Return true if this class or any super 1855 /// class has the __objc_exception__ attribute. 1856 static bool hasObjCExceptionAttribute(ASTContext &Context, 1857 const ObjCInterfaceDecl *OID) { 1858 if (OID->hasAttr<ObjCExceptionAttr>()) 1859 return true; 1860 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1861 return hasObjCExceptionAttribute(Context, Super); 1862 return false; 1863 } 1864 1865 static llvm::GlobalValue::LinkageTypes 1866 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1867 if (CGM.getTriple().isOSBinFormatMachO() && 1868 (Section.empty() || Section.startswith("__DATA"))) 1869 return llvm::GlobalValue::InternalLinkage; 1870 return llvm::GlobalValue::PrivateLinkage; 1871 } 1872 1873 /// A helper function to create an internal or private global variable. 1874 static llvm::GlobalVariable * 1875 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1876 const llvm::Twine &Name, CodeGenModule &CGM) { 1877 std::string SectionName; 1878 if (CGM.getTriple().isOSBinFormatMachO()) 1879 SectionName = "__DATA, __objc_const"; 1880 auto *GV = Builder.finishAndCreateGlobal( 1881 Name, CGM.getPointerAlign(), /*constant*/ false, 1882 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1883 GV->setSection(SectionName); 1884 return GV; 1885 } 1886 1887 /* *** CGObjCMac Public Interface *** */ 1888 1889 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1890 ObjCTypes(cgm) { 1891 ObjCABI = 1; 1892 EmitImageInfo(); 1893 } 1894 1895 /// GetClass - Return a reference to the class for the given interface 1896 /// decl. 1897 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1898 const ObjCInterfaceDecl *ID) { 1899 return EmitClassRef(CGF, ID); 1900 } 1901 1902 /// GetSelector - Return the pointer to the unique'd string for this selector. 1903 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1904 return EmitSelector(CGF, Sel); 1905 } 1906 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1907 return EmitSelectorAddr(Sel); 1908 } 1909 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1910 *Method) { 1911 return EmitSelector(CGF, Method->getSelector()); 1912 } 1913 1914 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1915 if (T->isObjCIdType() || 1916 T->isObjCQualifiedIdType()) { 1917 return CGM.GetAddrOfRTTIDescriptor( 1918 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1919 } 1920 if (T->isObjCClassType() || 1921 T->isObjCQualifiedClassType()) { 1922 return CGM.GetAddrOfRTTIDescriptor( 1923 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1924 } 1925 if (T->isObjCObjectPointerType()) 1926 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1927 1928 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1929 } 1930 1931 /// Generate a constant CFString object. 1932 /* 1933 struct __builtin_CFString { 1934 const int *isa; // point to __CFConstantStringClassReference 1935 int flags; 1936 const char *str; 1937 long length; 1938 }; 1939 */ 1940 1941 /// or Generate a constant NSString object. 1942 /* 1943 struct __builtin_NSString { 1944 const int *isa; // point to __NSConstantStringClassReference 1945 const char *str; 1946 unsigned int length; 1947 }; 1948 */ 1949 1950 ConstantAddress 1951 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1952 return (!CGM.getLangOpts().NoConstantCFStrings 1953 ? CGM.GetAddrOfConstantCFString(SL) 1954 : GenerateConstantNSString(SL)); 1955 } 1956 1957 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1958 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1959 const StringLiteral *Literal, unsigned &StringLength) { 1960 StringRef String = Literal->getString(); 1961 StringLength = String.size(); 1962 return *Map.insert(std::make_pair(String, nullptr)).first; 1963 } 1964 1965 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1966 if (llvm::Value *V = ConstantStringClassRef) 1967 return cast<llvm::Constant>(V); 1968 1969 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1970 std::string str = 1971 StringClass.empty() ? "_NSConstantStringClassReference" 1972 : "_" + StringClass + "ClassReference"; 1973 1974 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1975 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1976 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1977 ConstantStringClassRef = V; 1978 return V; 1979 } 1980 1981 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1982 if (llvm::Value *V = ConstantStringClassRef) 1983 return cast<llvm::Constant>(V); 1984 1985 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1986 std::string str = 1987 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1988 : "OBJC_CLASS_$_" + StringClass; 1989 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1990 1991 // Make sure the result is of the correct type. 1992 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1993 1994 ConstantStringClassRef = V; 1995 return V; 1996 } 1997 1998 ConstantAddress 1999 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 2000 unsigned StringLength = 0; 2001 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2002 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 2003 2004 if (auto *C = Entry.second) 2005 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2006 2007 // If we don't already have it, get _NSConstantStringClassReference. 2008 llvm::Constant *Class = getNSConstantStringClassRef(); 2009 2010 // If we don't already have it, construct the type for a constant NSString. 2011 if (!NSConstantStringType) { 2012 NSConstantStringType = 2013 llvm::StructType::create({ 2014 CGM.Int32Ty->getPointerTo(), 2015 CGM.Int8PtrTy, 2016 CGM.IntTy 2017 }, "struct.__builtin_NSString"); 2018 } 2019 2020 ConstantInitBuilder Builder(CGM); 2021 auto Fields = Builder.beginStruct(NSConstantStringType); 2022 2023 // Class pointer. 2024 Fields.add(Class); 2025 2026 // String pointer. 2027 llvm::Constant *C = 2028 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2029 2030 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2031 bool isConstant = !CGM.getLangOpts().WritableStrings; 2032 2033 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2034 Linkage, C, ".str"); 2035 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2036 // Don't enforce the target's minimum global alignment, since the only use 2037 // of the string is via this class initializer. 2038 GV->setAlignment(llvm::Align(1)); 2039 Fields.addBitCast(GV, CGM.Int8PtrTy); 2040 2041 // String length. 2042 Fields.addInt(CGM.IntTy, StringLength); 2043 2044 // The struct. 2045 CharUnits Alignment = CGM.getPointerAlign(); 2046 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2047 /*constant*/ true, 2048 llvm::GlobalVariable::PrivateLinkage); 2049 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2050 const char *NSStringNonFragileABISection = 2051 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2052 // FIXME. Fix section. 2053 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2054 ? NSStringNonFragileABISection 2055 : NSStringSection); 2056 Entry.second = GV; 2057 2058 return ConstantAddress(GV, Alignment); 2059 } 2060 2061 enum { 2062 kCFTaggedObjectID_Integer = (1 << 1) + 1 2063 }; 2064 2065 /// Generates a message send where the super is the receiver. This is 2066 /// a message send to self with special delivery semantics indicating 2067 /// which class's method should be called. 2068 CodeGen::RValue 2069 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2070 ReturnValueSlot Return, 2071 QualType ResultType, 2072 Selector Sel, 2073 const ObjCInterfaceDecl *Class, 2074 bool isCategoryImpl, 2075 llvm::Value *Receiver, 2076 bool IsClassMessage, 2077 const CodeGen::CallArgList &CallArgs, 2078 const ObjCMethodDecl *Method) { 2079 // Create and init a super structure; this is a (receiver, class) 2080 // pair we will pass to objc_msgSendSuper. 2081 Address ObjCSuper = 2082 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2083 "objc_super"); 2084 llvm::Value *ReceiverAsObject = 2085 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2086 CGF.Builder.CreateStore(ReceiverAsObject, 2087 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2088 2089 // If this is a class message the metaclass is passed as the target. 2090 llvm::Value *Target; 2091 if (IsClassMessage) { 2092 if (isCategoryImpl) { 2093 // Message sent to 'super' in a class method defined in a category 2094 // implementation requires an odd treatment. 2095 // If we are in a class method, we must retrieve the 2096 // _metaclass_ for the current class, pointed at by 2097 // the class's "isa" pointer. The following assumes that 2098 // isa" is the first ivar in a class (which it must be). 2099 Target = EmitClassRef(CGF, Class->getSuperClass()); 2100 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2101 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2102 } else { 2103 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2104 llvm::Value *SuperPtr = 2105 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2106 llvm::Value *Super = 2107 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2108 Target = Super; 2109 } 2110 } else if (isCategoryImpl) 2111 Target = EmitClassRef(CGF, Class->getSuperClass()); 2112 else { 2113 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2114 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2115 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2116 } 2117 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2118 // ObjCTypes types. 2119 llvm::Type *ClassTy = 2120 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2121 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2122 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2123 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2124 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2125 ObjCTypes); 2126 } 2127 2128 /// Generate code for a message send expression. 2129 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2130 ReturnValueSlot Return, 2131 QualType ResultType, 2132 Selector Sel, 2133 llvm::Value *Receiver, 2134 const CallArgList &CallArgs, 2135 const ObjCInterfaceDecl *Class, 2136 const ObjCMethodDecl *Method) { 2137 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2138 CGF.getContext().getObjCIdType(), false, CallArgs, 2139 Method, Class, ObjCTypes); 2140 } 2141 2142 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2143 do { 2144 if (ID->isWeakImported()) 2145 return true; 2146 } while ((ID = ID->getSuperClass())); 2147 2148 return false; 2149 } 2150 2151 CodeGen::RValue 2152 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2153 ReturnValueSlot Return, 2154 QualType ResultType, 2155 Selector Sel, 2156 llvm::Value *Arg0, 2157 QualType Arg0Ty, 2158 bool IsSuper, 2159 const CallArgList &CallArgs, 2160 const ObjCMethodDecl *Method, 2161 const ObjCInterfaceDecl *ClassReceiver, 2162 const ObjCCommonTypesHelper &ObjCTypes) { 2163 CodeGenTypes &Types = CGM.getTypes(); 2164 auto selTy = CGF.getContext().getObjCSelType(); 2165 llvm::Value *SelValue; 2166 2167 if (Method && Method->isDirectMethod()) { 2168 // Direct methods will synthesize the proper `_cmd` internally, 2169 // so just don't bother with setting the `_cmd` argument. 2170 assert(!IsSuper); 2171 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2172 } else { 2173 SelValue = GetSelector(CGF, Sel); 2174 } 2175 2176 CallArgList ActualArgs; 2177 if (!IsSuper) 2178 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2179 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2180 ActualArgs.add(RValue::get(SelValue), selTy); 2181 ActualArgs.addFrom(CallArgs); 2182 2183 // If we're calling a method, use the formal signature. 2184 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2185 2186 if (Method) 2187 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2188 CGM.getContext().getCanonicalType(ResultType) && 2189 "Result type mismatch!"); 2190 2191 bool ReceiverCanBeNull = true; 2192 2193 // Super dispatch assumes that self is non-null; even the messenger 2194 // doesn't have a null check internally. 2195 if (IsSuper) { 2196 ReceiverCanBeNull = false; 2197 2198 // If this is a direct dispatch of a class method, check whether the class, 2199 // or anything in its hierarchy, was weak-linked. 2200 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2201 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2202 2203 // If we're emitting a method, and self is const (meaning just ARC, for now), 2204 // and the receiver is a load of self, then self is a valid object. 2205 } else if (auto CurMethod = 2206 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2207 auto Self = CurMethod->getSelfDecl(); 2208 if (Self->getType().isConstQualified()) { 2209 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2210 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2211 if (SelfAddr == LI->getPointerOperand()) { 2212 ReceiverCanBeNull = false; 2213 } 2214 } 2215 } 2216 } 2217 2218 bool RequiresNullCheck = false; 2219 2220 llvm::FunctionCallee Fn = nullptr; 2221 if (Method && Method->isDirectMethod()) { 2222 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2223 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2224 if (ReceiverCanBeNull) RequiresNullCheck = true; 2225 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2226 : ObjCTypes.getSendStretFn(IsSuper); 2227 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2228 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2229 : ObjCTypes.getSendFpretFn(IsSuper); 2230 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2231 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2232 : ObjCTypes.getSendFp2retFn(IsSuper); 2233 } else { 2234 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2235 // must be made for it. 2236 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2237 RequiresNullCheck = true; 2238 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2239 : ObjCTypes.getSendFn(IsSuper); 2240 } 2241 2242 // Cast function to proper signature 2243 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2244 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2245 2246 // We don't need to emit a null check to zero out an indirect result if the 2247 // result is ignored. 2248 if (Return.isUnused()) 2249 RequiresNullCheck = false; 2250 2251 // Emit a null-check if there's a consumed argument other than the receiver. 2252 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2253 for (const auto *ParamDecl : Method->parameters()) { 2254 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2255 RequiresNullCheck = true; 2256 break; 2257 } 2258 } 2259 } 2260 2261 NullReturnState nullReturn; 2262 if (RequiresNullCheck) { 2263 nullReturn.init(CGF, Arg0); 2264 } 2265 2266 llvm::CallBase *CallSite; 2267 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2268 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2269 &CallSite); 2270 2271 // Mark the call as noreturn if the method is marked noreturn and the 2272 // receiver cannot be null. 2273 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2274 CallSite->setDoesNotReturn(); 2275 } 2276 2277 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2278 RequiresNullCheck ? Method : nullptr); 2279 } 2280 2281 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2282 bool pointee = false) { 2283 // Note that GC qualification applies recursively to C pointer types 2284 // that aren't otherwise decorated. This is weird, but it's probably 2285 // an intentional workaround to the unreliable placement of GC qualifiers. 2286 if (FQT.isObjCGCStrong()) 2287 return Qualifiers::Strong; 2288 2289 if (FQT.isObjCGCWeak()) 2290 return Qualifiers::Weak; 2291 2292 if (auto ownership = FQT.getObjCLifetime()) { 2293 // Ownership does not apply recursively to C pointer types. 2294 if (pointee) return Qualifiers::GCNone; 2295 switch (ownership) { 2296 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2297 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2298 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2299 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2300 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2301 } 2302 llvm_unreachable("bad objc ownership"); 2303 } 2304 2305 // Treat unqualified retainable pointers as strong. 2306 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2307 return Qualifiers::Strong; 2308 2309 // Walk into C pointer types, but only in GC. 2310 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2311 if (const PointerType *PT = FQT->getAs<PointerType>()) 2312 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2313 } 2314 2315 return Qualifiers::GCNone; 2316 } 2317 2318 namespace { 2319 struct IvarInfo { 2320 CharUnits Offset; 2321 uint64_t SizeInWords; 2322 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2323 : Offset(offset), SizeInWords(sizeInWords) {} 2324 2325 // Allow sorting based on byte pos. 2326 bool operator<(const IvarInfo &other) const { 2327 return Offset < other.Offset; 2328 } 2329 }; 2330 2331 /// A helper class for building GC layout strings. 2332 class IvarLayoutBuilder { 2333 CodeGenModule &CGM; 2334 2335 /// The start of the layout. Offsets will be relative to this value, 2336 /// and entries less than this value will be silently discarded. 2337 CharUnits InstanceBegin; 2338 2339 /// The end of the layout. Offsets will never exceed this value. 2340 CharUnits InstanceEnd; 2341 2342 /// Whether we're generating the strong layout or the weak layout. 2343 bool ForStrongLayout; 2344 2345 /// Whether the offsets in IvarsInfo might be out-of-order. 2346 bool IsDisordered = false; 2347 2348 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2349 2350 public: 2351 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2352 CharUnits instanceEnd, bool forStrongLayout) 2353 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2354 ForStrongLayout(forStrongLayout) { 2355 } 2356 2357 void visitRecord(const RecordType *RT, CharUnits offset); 2358 2359 template <class Iterator, class GetOffsetFn> 2360 void visitAggregate(Iterator begin, Iterator end, 2361 CharUnits aggrOffset, 2362 const GetOffsetFn &getOffset); 2363 2364 void visitField(const FieldDecl *field, CharUnits offset); 2365 2366 /// Add the layout of a block implementation. 2367 void visitBlock(const CGBlockInfo &blockInfo); 2368 2369 /// Is there any information for an interesting bitmap? 2370 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2371 2372 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2373 llvm::SmallVectorImpl<unsigned char> &buffer); 2374 2375 static void dump(ArrayRef<unsigned char> buffer) { 2376 const unsigned char *s = buffer.data(); 2377 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2378 if (!(s[i] & 0xf0)) 2379 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2380 else 2381 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2382 printf("\n"); 2383 } 2384 }; 2385 } // end anonymous namespace 2386 2387 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2388 const CGBlockInfo &blockInfo) { 2389 2390 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2391 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2392 return nullPtr; 2393 2394 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2395 /*for strong layout*/ true); 2396 2397 builder.visitBlock(blockInfo); 2398 2399 if (!builder.hasBitmapData()) 2400 return nullPtr; 2401 2402 llvm::SmallVector<unsigned char, 32> buffer; 2403 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2404 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2405 printf("\n block variable layout for block: "); 2406 builder.dump(buffer); 2407 } 2408 2409 return C; 2410 } 2411 2412 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2413 // __isa is the first field in block descriptor and must assume by runtime's 2414 // convention that it is GC'able. 2415 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2416 2417 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2418 2419 // Ignore the optional 'this' capture: C++ objects are not assumed 2420 // to be GC'ed. 2421 2422 CharUnits lastFieldOffset; 2423 2424 // Walk the captured variables. 2425 for (const auto &CI : blockDecl->captures()) { 2426 const VarDecl *variable = CI.getVariable(); 2427 QualType type = variable->getType(); 2428 2429 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2430 2431 // Ignore constant captures. 2432 if (capture.isConstant()) continue; 2433 2434 CharUnits fieldOffset = capture.getOffset(); 2435 2436 // Block fields are not necessarily ordered; if we detect that we're 2437 // adding them out-of-order, make sure we sort later. 2438 if (fieldOffset < lastFieldOffset) 2439 IsDisordered = true; 2440 lastFieldOffset = fieldOffset; 2441 2442 // __block variables are passed by their descriptor address. 2443 if (CI.isByRef()) { 2444 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2445 continue; 2446 } 2447 2448 assert(!type->isArrayType() && "array variable should not be caught"); 2449 if (const RecordType *record = type->getAs<RecordType>()) { 2450 visitRecord(record, fieldOffset); 2451 continue; 2452 } 2453 2454 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2455 2456 if (GCAttr == Qualifiers::Strong) { 2457 assert(CGM.getContext().getTypeSize(type) 2458 == CGM.getTarget().getPointerWidth(0)); 2459 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2460 } 2461 } 2462 } 2463 2464 /// getBlockCaptureLifetime - This routine returns life time of the captured 2465 /// block variable for the purpose of block layout meta-data generation. FQT is 2466 /// the type of the variable captured in the block. 2467 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2468 bool ByrefLayout) { 2469 // If it has an ownership qualifier, we're done. 2470 if (auto lifetime = FQT.getObjCLifetime()) 2471 return lifetime; 2472 2473 // If it doesn't, and this is ARC, it has no ownership. 2474 if (CGM.getLangOpts().ObjCAutoRefCount) 2475 return Qualifiers::OCL_None; 2476 2477 // In MRC, retainable pointers are owned by non-__block variables. 2478 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2479 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2480 2481 return Qualifiers::OCL_None; 2482 } 2483 2484 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2485 Qualifiers::ObjCLifetime LifeTime, 2486 CharUnits FieldOffset, 2487 CharUnits FieldSize) { 2488 // __block variables are passed by their descriptor address. 2489 if (IsByref) 2490 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2491 FieldSize)); 2492 else if (LifeTime == Qualifiers::OCL_Strong) 2493 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2494 FieldSize)); 2495 else if (LifeTime == Qualifiers::OCL_Weak) 2496 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2497 FieldSize)); 2498 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2499 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2500 FieldSize)); 2501 else 2502 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2503 FieldOffset, 2504 FieldSize)); 2505 } 2506 2507 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2508 const RecordDecl *RD, 2509 ArrayRef<const FieldDecl*> RecFields, 2510 CharUnits BytePos, bool &HasUnion, 2511 bool ByrefLayout) { 2512 bool IsUnion = (RD && RD->isUnion()); 2513 CharUnits MaxUnionSize = CharUnits::Zero(); 2514 const FieldDecl *MaxField = nullptr; 2515 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2516 CharUnits MaxFieldOffset = CharUnits::Zero(); 2517 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2518 2519 if (RecFields.empty()) 2520 return; 2521 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2522 2523 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2524 const FieldDecl *Field = RecFields[i]; 2525 // Note that 'i' here is actually the field index inside RD of Field, 2526 // although this dependency is hidden. 2527 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2528 CharUnits FieldOffset = 2529 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2530 2531 // Skip over unnamed or bitfields 2532 if (!Field->getIdentifier() || Field->isBitField()) { 2533 LastFieldBitfieldOrUnnamed = Field; 2534 LastBitfieldOrUnnamedOffset = FieldOffset; 2535 continue; 2536 } 2537 2538 LastFieldBitfieldOrUnnamed = nullptr; 2539 QualType FQT = Field->getType(); 2540 if (FQT->isRecordType() || FQT->isUnionType()) { 2541 if (FQT->isUnionType()) 2542 HasUnion = true; 2543 2544 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2545 BytePos + FieldOffset, HasUnion); 2546 continue; 2547 } 2548 2549 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2550 auto *CArray = cast<ConstantArrayType>(Array); 2551 uint64_t ElCount = CArray->getSize().getZExtValue(); 2552 assert(CArray && "only array with known element size is supported"); 2553 FQT = CArray->getElementType(); 2554 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2555 auto *CArray = cast<ConstantArrayType>(Array); 2556 ElCount *= CArray->getSize().getZExtValue(); 2557 FQT = CArray->getElementType(); 2558 } 2559 if (FQT->isRecordType() && ElCount) { 2560 int OldIndex = RunSkipBlockVars.size() - 1; 2561 const RecordType *RT = FQT->getAs<RecordType>(); 2562 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2563 HasUnion); 2564 2565 // Replicate layout information for each array element. Note that 2566 // one element is already done. 2567 uint64_t ElIx = 1; 2568 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2569 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2570 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2571 RunSkipBlockVars.push_back( 2572 RUN_SKIP(RunSkipBlockVars[i].opcode, 2573 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2574 RunSkipBlockVars[i].block_var_size)); 2575 } 2576 continue; 2577 } 2578 } 2579 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2580 if (IsUnion) { 2581 CharUnits UnionIvarSize = FieldSize; 2582 if (UnionIvarSize > MaxUnionSize) { 2583 MaxUnionSize = UnionIvarSize; 2584 MaxField = Field; 2585 MaxFieldOffset = FieldOffset; 2586 } 2587 } else { 2588 UpdateRunSkipBlockVars(false, 2589 getBlockCaptureLifetime(FQT, ByrefLayout), 2590 BytePos + FieldOffset, 2591 FieldSize); 2592 } 2593 } 2594 2595 if (LastFieldBitfieldOrUnnamed) { 2596 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2597 // Last field was a bitfield. Must update the info. 2598 uint64_t BitFieldSize 2599 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2600 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2601 ((BitFieldSize % ByteSizeInBits) != 0); 2602 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2603 Size += LastBitfieldOrUnnamedOffset; 2604 UpdateRunSkipBlockVars(false, 2605 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2606 ByrefLayout), 2607 BytePos + LastBitfieldOrUnnamedOffset, 2608 Size); 2609 } else { 2610 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2611 // Last field was unnamed. Must update skip info. 2612 CharUnits FieldSize 2613 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2614 UpdateRunSkipBlockVars(false, 2615 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2616 ByrefLayout), 2617 BytePos + LastBitfieldOrUnnamedOffset, 2618 FieldSize); 2619 } 2620 } 2621 2622 if (MaxField) 2623 UpdateRunSkipBlockVars(false, 2624 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2625 BytePos + MaxFieldOffset, 2626 MaxUnionSize); 2627 } 2628 2629 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2630 CharUnits BytePos, 2631 bool &HasUnion, 2632 bool ByrefLayout) { 2633 const RecordDecl *RD = RT->getDecl(); 2634 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2635 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2636 const llvm::StructLayout *RecLayout = 2637 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2638 2639 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2640 } 2641 2642 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2643 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2644 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2645 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2646 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2647 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2648 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2649 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2650 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2651 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2652 SmallVectorImpl<unsigned char> &Layout) { 2653 uint64_t Result = 0; 2654 if (Layout.size() <= 3) { 2655 unsigned size = Layout.size(); 2656 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2657 unsigned char inst; 2658 enum BLOCK_LAYOUT_OPCODE opcode ; 2659 switch (size) { 2660 case 3: 2661 inst = Layout[0]; 2662 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2663 if (opcode == BLOCK_LAYOUT_STRONG) 2664 strong_word_count = (inst & 0xF)+1; 2665 else 2666 return 0; 2667 inst = Layout[1]; 2668 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2669 if (opcode == BLOCK_LAYOUT_BYREF) 2670 byref_word_count = (inst & 0xF)+1; 2671 else 2672 return 0; 2673 inst = Layout[2]; 2674 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2675 if (opcode == BLOCK_LAYOUT_WEAK) 2676 weak_word_count = (inst & 0xF)+1; 2677 else 2678 return 0; 2679 break; 2680 2681 case 2: 2682 inst = Layout[0]; 2683 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2684 if (opcode == BLOCK_LAYOUT_STRONG) { 2685 strong_word_count = (inst & 0xF)+1; 2686 inst = Layout[1]; 2687 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2688 if (opcode == BLOCK_LAYOUT_BYREF) 2689 byref_word_count = (inst & 0xF)+1; 2690 else if (opcode == BLOCK_LAYOUT_WEAK) 2691 weak_word_count = (inst & 0xF)+1; 2692 else 2693 return 0; 2694 } 2695 else if (opcode == BLOCK_LAYOUT_BYREF) { 2696 byref_word_count = (inst & 0xF)+1; 2697 inst = Layout[1]; 2698 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2699 if (opcode == BLOCK_LAYOUT_WEAK) 2700 weak_word_count = (inst & 0xF)+1; 2701 else 2702 return 0; 2703 } 2704 else 2705 return 0; 2706 break; 2707 2708 case 1: 2709 inst = Layout[0]; 2710 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2711 if (opcode == BLOCK_LAYOUT_STRONG) 2712 strong_word_count = (inst & 0xF)+1; 2713 else if (opcode == BLOCK_LAYOUT_BYREF) 2714 byref_word_count = (inst & 0xF)+1; 2715 else if (opcode == BLOCK_LAYOUT_WEAK) 2716 weak_word_count = (inst & 0xF)+1; 2717 else 2718 return 0; 2719 break; 2720 2721 default: 2722 return 0; 2723 } 2724 2725 // Cannot inline when any of the word counts is 15. Because this is one less 2726 // than the actual work count (so 15 means 16 actual word counts), 2727 // and we can only display 0 thru 15 word counts. 2728 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2729 return 0; 2730 2731 unsigned count = 2732 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2733 2734 if (size == count) { 2735 if (strong_word_count) 2736 Result = strong_word_count; 2737 Result <<= 4; 2738 if (byref_word_count) 2739 Result += byref_word_count; 2740 Result <<= 4; 2741 if (weak_word_count) 2742 Result += weak_word_count; 2743 } 2744 } 2745 return Result; 2746 } 2747 2748 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2749 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2750 if (RunSkipBlockVars.empty()) 2751 return nullPtr; 2752 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2753 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2754 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2755 2756 // Sort on byte position; captures might not be allocated in order, 2757 // and unions can do funny things. 2758 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2759 SmallVector<unsigned char, 16> Layout; 2760 2761 unsigned size = RunSkipBlockVars.size(); 2762 for (unsigned i = 0; i < size; i++) { 2763 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2764 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2765 CharUnits end_byte_pos = start_byte_pos; 2766 unsigned j = i+1; 2767 while (j < size) { 2768 if (opcode == RunSkipBlockVars[j].opcode) { 2769 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2770 i++; 2771 } 2772 else 2773 break; 2774 } 2775 CharUnits size_in_bytes = 2776 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2777 if (j < size) { 2778 CharUnits gap = 2779 RunSkipBlockVars[j].block_var_bytepos - 2780 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2781 size_in_bytes += gap; 2782 } 2783 CharUnits residue_in_bytes = CharUnits::Zero(); 2784 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2785 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2786 size_in_bytes -= residue_in_bytes; 2787 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2788 } 2789 2790 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2791 while (size_in_words >= 16) { 2792 // Note that value in imm. is one less that the actual 2793 // value. So, 0xf means 16 words follow! 2794 unsigned char inst = (opcode << 4) | 0xf; 2795 Layout.push_back(inst); 2796 size_in_words -= 16; 2797 } 2798 if (size_in_words > 0) { 2799 // Note that value in imm. is one less that the actual 2800 // value. So, we subtract 1 away! 2801 unsigned char inst = (opcode << 4) | (size_in_words-1); 2802 Layout.push_back(inst); 2803 } 2804 if (residue_in_bytes > CharUnits::Zero()) { 2805 unsigned char inst = 2806 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2807 Layout.push_back(inst); 2808 } 2809 } 2810 2811 while (!Layout.empty()) { 2812 unsigned char inst = Layout.back(); 2813 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2814 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2815 Layout.pop_back(); 2816 else 2817 break; 2818 } 2819 2820 uint64_t Result = InlineLayoutInstruction(Layout); 2821 if (Result != 0) { 2822 // Block variable layout instruction has been inlined. 2823 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2824 if (ComputeByrefLayout) 2825 printf("\n Inline BYREF variable layout: "); 2826 else 2827 printf("\n Inline block variable layout: "); 2828 printf("0x0%" PRIx64 "", Result); 2829 if (auto numStrong = (Result & 0xF00) >> 8) 2830 printf(", BL_STRONG:%d", (int) numStrong); 2831 if (auto numByref = (Result & 0x0F0) >> 4) 2832 printf(", BL_BYREF:%d", (int) numByref); 2833 if (auto numWeak = (Result & 0x00F) >> 0) 2834 printf(", BL_WEAK:%d", (int) numWeak); 2835 printf(", BL_OPERATOR:0\n"); 2836 } 2837 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2838 } 2839 2840 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2841 Layout.push_back(inst); 2842 std::string BitMap; 2843 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2844 BitMap += Layout[i]; 2845 2846 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2847 if (ComputeByrefLayout) 2848 printf("\n Byref variable layout: "); 2849 else 2850 printf("\n Block variable layout: "); 2851 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2852 unsigned char inst = BitMap[i]; 2853 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2854 unsigned delta = 1; 2855 switch (opcode) { 2856 case BLOCK_LAYOUT_OPERATOR: 2857 printf("BL_OPERATOR:"); 2858 delta = 0; 2859 break; 2860 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2861 printf("BL_NON_OBJECT_BYTES:"); 2862 break; 2863 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2864 printf("BL_NON_OBJECT_WORD:"); 2865 break; 2866 case BLOCK_LAYOUT_STRONG: 2867 printf("BL_STRONG:"); 2868 break; 2869 case BLOCK_LAYOUT_BYREF: 2870 printf("BL_BYREF:"); 2871 break; 2872 case BLOCK_LAYOUT_WEAK: 2873 printf("BL_WEAK:"); 2874 break; 2875 case BLOCK_LAYOUT_UNRETAINED: 2876 printf("BL_UNRETAINED:"); 2877 break; 2878 } 2879 // Actual value of word count is one more that what is in the imm. 2880 // field of the instruction 2881 printf("%d", (inst & 0xf) + delta); 2882 if (i < e-1) 2883 printf(", "); 2884 else 2885 printf("\n"); 2886 } 2887 } 2888 2889 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2890 /*ForceNonFragileABI=*/true, 2891 /*NullTerminate=*/false); 2892 return getConstantGEP(VMContext, Entry, 0, 0); 2893 } 2894 2895 static std::string getBlockLayoutInfoString( 2896 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2897 bool HasCopyDisposeHelpers) { 2898 std::string Str; 2899 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2900 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2901 // Copy/dispose helpers don't have any information about 2902 // __unsafe_unretained captures, so unconditionally concatenate a string. 2903 Str += "u"; 2904 } else if (HasCopyDisposeHelpers) { 2905 // Information about __strong, __weak, or byref captures has already been 2906 // encoded into the names of the copy/dispose helpers. We have to add a 2907 // string here only when the copy/dispose helpers aren't generated (which 2908 // happens when the block is non-escaping). 2909 continue; 2910 } else { 2911 switch (R.opcode) { 2912 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2913 Str += "s"; 2914 break; 2915 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2916 Str += "r"; 2917 break; 2918 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2919 Str += "w"; 2920 break; 2921 default: 2922 continue; 2923 } 2924 } 2925 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2926 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2927 } 2928 return Str; 2929 } 2930 2931 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2932 const CGBlockInfo &blockInfo) { 2933 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2934 2935 RunSkipBlockVars.clear(); 2936 bool hasUnion = false; 2937 2938 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2939 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2940 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2941 2942 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2943 2944 // Calculate the basic layout of the block structure. 2945 const llvm::StructLayout *layout = 2946 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2947 2948 // Ignore the optional 'this' capture: C++ objects are not assumed 2949 // to be GC'ed. 2950 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2951 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2952 blockInfo.BlockHeaderForcedGapOffset, 2953 blockInfo.BlockHeaderForcedGapSize); 2954 // Walk the captured variables. 2955 for (const auto &CI : blockDecl->captures()) { 2956 const VarDecl *variable = CI.getVariable(); 2957 QualType type = variable->getType(); 2958 2959 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2960 2961 // Ignore constant captures. 2962 if (capture.isConstant()) continue; 2963 2964 CharUnits fieldOffset = 2965 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2966 2967 assert(!type->isArrayType() && "array variable should not be caught"); 2968 if (!CI.isByRef()) 2969 if (const RecordType *record = type->getAs<RecordType>()) { 2970 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2971 continue; 2972 } 2973 CharUnits fieldSize; 2974 if (CI.isByRef()) 2975 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2976 else 2977 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2978 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2979 fieldOffset, fieldSize); 2980 } 2981 } 2982 2983 llvm::Constant * 2984 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2985 const CGBlockInfo &blockInfo) { 2986 fillRunSkipBlockVars(CGM, blockInfo); 2987 return getBitmapBlockLayout(false); 2988 } 2989 2990 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2991 const CGBlockInfo &blockInfo) { 2992 fillRunSkipBlockVars(CGM, blockInfo); 2993 return getBlockLayoutInfoString(RunSkipBlockVars, 2994 blockInfo.needsCopyDisposeHelpers()); 2995 } 2996 2997 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2998 QualType T) { 2999 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3000 assert(!T->isArrayType() && "__block array variable should not be caught"); 3001 CharUnits fieldOffset; 3002 RunSkipBlockVars.clear(); 3003 bool hasUnion = false; 3004 if (const RecordType *record = T->getAs<RecordType>()) { 3005 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 3006 llvm::Constant *Result = getBitmapBlockLayout(true); 3007 if (isa<llvm::ConstantInt>(Result)) 3008 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 3009 return Result; 3010 } 3011 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 3012 return nullPtr; 3013 } 3014 3015 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 3016 const ObjCProtocolDecl *PD) { 3017 // FIXME: I don't understand why gcc generates this, or where it is 3018 // resolved. Investigate. Its also wasteful to look this up over and over. 3019 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3020 3021 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 3022 ObjCTypes.getExternalProtocolPtrTy()); 3023 } 3024 3025 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 3026 // FIXME: We shouldn't need this, the protocol decl should contain enough 3027 // information to tell us whether this was a declaration or a definition. 3028 DefinedProtocols.insert(PD->getIdentifier()); 3029 3030 // If we have generated a forward reference to this protocol, emit 3031 // it now. Otherwise do nothing, the protocol objects are lazily 3032 // emitted. 3033 if (Protocols.count(PD->getIdentifier())) 3034 GetOrEmitProtocol(PD); 3035 } 3036 3037 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 3038 if (DefinedProtocols.count(PD->getIdentifier())) 3039 return GetOrEmitProtocol(PD); 3040 3041 return GetOrEmitProtocolRef(PD); 3042 } 3043 3044 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 3045 CodeGenFunction &CGF, 3046 const ObjCInterfaceDecl *ID, 3047 ObjCCommonTypesHelper &ObjCTypes) { 3048 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3049 3050 llvm::Value *className = 3051 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 3052 .getPointer(); 3053 ASTContext &ctx = CGF.CGM.getContext(); 3054 className = 3055 CGF.Builder.CreateBitCast(className, 3056 CGF.ConvertType( 3057 ctx.getPointerType(ctx.CharTy.withConst()))); 3058 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3059 call->setDoesNotThrow(); 3060 return call; 3061 } 3062 3063 /* 3064 // Objective-C 1.0 extensions 3065 struct _objc_protocol { 3066 struct _objc_protocol_extension *isa; 3067 char *protocol_name; 3068 struct _objc_protocol_list *protocol_list; 3069 struct _objc__method_prototype_list *instance_methods; 3070 struct _objc__method_prototype_list *class_methods 3071 }; 3072 3073 See EmitProtocolExtension(). 3074 */ 3075 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3076 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3077 3078 // Early exit if a defining object has already been generated. 3079 if (Entry && Entry->hasInitializer()) 3080 return Entry; 3081 3082 // Use the protocol definition, if there is one. 3083 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3084 PD = Def; 3085 3086 // FIXME: I don't understand why gcc generates this, or where it is 3087 // resolved. Investigate. Its also wasteful to look this up over and over. 3088 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3089 3090 // Construct method lists. 3091 auto methodLists = ProtocolMethodLists::get(PD); 3092 3093 ConstantInitBuilder builder(CGM); 3094 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3095 values.add(EmitProtocolExtension(PD, methodLists)); 3096 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3097 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3098 PD->protocol_begin(), PD->protocol_end())); 3099 values.add(methodLists.emitMethodList(this, PD, 3100 ProtocolMethodLists::RequiredInstanceMethods)); 3101 values.add(methodLists.emitMethodList(this, PD, 3102 ProtocolMethodLists::RequiredClassMethods)); 3103 3104 if (Entry) { 3105 // Already created, update the initializer. 3106 assert(Entry->hasPrivateLinkage()); 3107 values.finishAndSetAsInitializer(Entry); 3108 } else { 3109 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3110 CGM.getPointerAlign(), 3111 /*constant*/ false, 3112 llvm::GlobalValue::PrivateLinkage); 3113 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3114 3115 Protocols[PD->getIdentifier()] = Entry; 3116 } 3117 CGM.addCompilerUsedGlobal(Entry); 3118 3119 return Entry; 3120 } 3121 3122 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3123 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3124 3125 if (!Entry) { 3126 // We use the initializer as a marker of whether this is a forward 3127 // reference or not. At module finalization we add the empty 3128 // contents for protocols which were referenced but never defined. 3129 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3130 false, llvm::GlobalValue::PrivateLinkage, 3131 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3132 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3133 // FIXME: Is this necessary? Why only for protocol? 3134 Entry->setAlignment(llvm::Align(4)); 3135 } 3136 3137 return Entry; 3138 } 3139 3140 /* 3141 struct _objc_protocol_extension { 3142 uint32_t size; 3143 struct objc_method_description_list *optional_instance_methods; 3144 struct objc_method_description_list *optional_class_methods; 3145 struct objc_property_list *instance_properties; 3146 const char ** extendedMethodTypes; 3147 struct objc_property_list *class_properties; 3148 }; 3149 */ 3150 llvm::Constant * 3151 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3152 const ProtocolMethodLists &methodLists) { 3153 auto optInstanceMethods = 3154 methodLists.emitMethodList(this, PD, 3155 ProtocolMethodLists::OptionalInstanceMethods); 3156 auto optClassMethods = 3157 methodLists.emitMethodList(this, PD, 3158 ProtocolMethodLists::OptionalClassMethods); 3159 3160 auto extendedMethodTypes = 3161 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3162 methodLists.emitExtendedTypesArray(this), 3163 ObjCTypes); 3164 3165 auto instanceProperties = 3166 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3167 ObjCTypes, false); 3168 auto classProperties = 3169 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3170 PD, ObjCTypes, true); 3171 3172 // Return null if no extension bits are used. 3173 if (optInstanceMethods->isNullValue() && 3174 optClassMethods->isNullValue() && 3175 extendedMethodTypes->isNullValue() && 3176 instanceProperties->isNullValue() && 3177 classProperties->isNullValue()) { 3178 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3179 } 3180 3181 uint64_t size = 3182 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3183 3184 ConstantInitBuilder builder(CGM); 3185 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3186 values.addInt(ObjCTypes.IntTy, size); 3187 values.add(optInstanceMethods); 3188 values.add(optClassMethods); 3189 values.add(instanceProperties); 3190 values.add(extendedMethodTypes); 3191 values.add(classProperties); 3192 3193 // No special section, but goes in llvm.used 3194 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3195 StringRef(), CGM.getPointerAlign(), true); 3196 } 3197 3198 /* 3199 struct objc_protocol_list { 3200 struct objc_protocol_list *next; 3201 long count; 3202 Protocol *list[]; 3203 }; 3204 */ 3205 llvm::Constant * 3206 CGObjCMac::EmitProtocolList(Twine name, 3207 ObjCProtocolDecl::protocol_iterator begin, 3208 ObjCProtocolDecl::protocol_iterator end) { 3209 // Just return null for empty protocol lists 3210 if (begin == end) 3211 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3212 3213 ConstantInitBuilder builder(CGM); 3214 auto values = builder.beginStruct(); 3215 3216 // This field is only used by the runtime. 3217 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3218 3219 // Reserve a slot for the count. 3220 auto countSlot = values.addPlaceholder(); 3221 3222 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3223 for (; begin != end; ++begin) { 3224 refsArray.add(GetProtocolRef(*begin)); 3225 } 3226 auto count = refsArray.size(); 3227 3228 // This list is null terminated. 3229 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3230 3231 refsArray.finishAndAddTo(values); 3232 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3233 3234 StringRef section; 3235 if (CGM.getTriple().isOSBinFormatMachO()) 3236 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3237 3238 llvm::GlobalVariable *GV = 3239 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3240 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3241 } 3242 3243 static void 3244 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3245 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3246 const ObjCProtocolDecl *Proto, 3247 bool IsClassProperty) { 3248 for (const auto *PD : Proto->properties()) { 3249 if (IsClassProperty != PD->isClassProperty()) 3250 continue; 3251 if (!PropertySet.insert(PD->getIdentifier()).second) 3252 continue; 3253 Properties.push_back(PD); 3254 } 3255 3256 for (const auto *P : Proto->protocols()) 3257 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3258 } 3259 3260 /* 3261 struct _objc_property { 3262 const char * const name; 3263 const char * const attributes; 3264 }; 3265 3266 struct _objc_property_list { 3267 uint32_t entsize; // sizeof (struct _objc_property) 3268 uint32_t prop_count; 3269 struct _objc_property[prop_count]; 3270 }; 3271 */ 3272 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3273 const Decl *Container, 3274 const ObjCContainerDecl *OCD, 3275 const ObjCCommonTypesHelper &ObjCTypes, 3276 bool IsClassProperty) { 3277 if (IsClassProperty) { 3278 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3279 // with deployment target < 9.0. 3280 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3281 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3282 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3283 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3284 } 3285 3286 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3287 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3288 3289 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3290 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3291 for (auto *PD : ClassExt->properties()) { 3292 if (IsClassProperty != PD->isClassProperty()) 3293 continue; 3294 if (PD->isDirectProperty()) 3295 continue; 3296 PropertySet.insert(PD->getIdentifier()); 3297 Properties.push_back(PD); 3298 } 3299 3300 for (const auto *PD : OCD->properties()) { 3301 if (IsClassProperty != PD->isClassProperty()) 3302 continue; 3303 // Don't emit duplicate metadata for properties that were already in a 3304 // class extension. 3305 if (!PropertySet.insert(PD->getIdentifier()).second) 3306 continue; 3307 if (PD->isDirectProperty()) 3308 continue; 3309 Properties.push_back(PD); 3310 } 3311 3312 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3313 for (const auto *P : OID->all_referenced_protocols()) 3314 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3315 } 3316 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3317 for (const auto *P : CD->protocols()) 3318 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3319 } 3320 3321 // Return null for empty list. 3322 if (Properties.empty()) 3323 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3324 3325 unsigned propertySize = 3326 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3327 3328 ConstantInitBuilder builder(CGM); 3329 auto values = builder.beginStruct(); 3330 values.addInt(ObjCTypes.IntTy, propertySize); 3331 values.addInt(ObjCTypes.IntTy, Properties.size()); 3332 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3333 for (auto PD : Properties) { 3334 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3335 property.add(GetPropertyName(PD->getIdentifier())); 3336 property.add(GetPropertyTypeString(PD, Container)); 3337 property.finishAndAddTo(propertiesArray); 3338 } 3339 propertiesArray.finishAndAddTo(values); 3340 3341 StringRef Section; 3342 if (CGM.getTriple().isOSBinFormatMachO()) 3343 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3344 : "__OBJC,__property,regular,no_dead_strip"; 3345 3346 llvm::GlobalVariable *GV = 3347 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3348 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3349 } 3350 3351 llvm::Constant * 3352 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3353 ArrayRef<llvm::Constant*> MethodTypes, 3354 const ObjCCommonTypesHelper &ObjCTypes) { 3355 // Return null for empty list. 3356 if (MethodTypes.empty()) 3357 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3358 3359 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3360 MethodTypes.size()); 3361 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3362 3363 StringRef Section; 3364 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3365 Section = "__DATA, __objc_const"; 3366 3367 llvm::GlobalVariable *GV = 3368 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3369 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3370 } 3371 3372 /* 3373 struct _objc_category { 3374 char *category_name; 3375 char *class_name; 3376 struct _objc_method_list *instance_methods; 3377 struct _objc_method_list *class_methods; 3378 struct _objc_protocol_list *protocols; 3379 uint32_t size; // <rdar://4585769> 3380 struct _objc_property_list *instance_properties; 3381 struct _objc_property_list *class_properties; 3382 }; 3383 */ 3384 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3385 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3386 3387 // FIXME: This is poor design, the OCD should have a pointer to the category 3388 // decl. Additionally, note that Category can be null for the @implementation 3389 // w/o an @interface case. Sema should just create one for us as it does for 3390 // @implementation so everyone else can live life under a clear blue sky. 3391 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3392 const ObjCCategoryDecl *Category = 3393 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3394 3395 SmallString<256> ExtName; 3396 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3397 << OCD->getName(); 3398 3399 ConstantInitBuilder Builder(CGM); 3400 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3401 3402 enum { 3403 InstanceMethods, 3404 ClassMethods, 3405 NumMethodLists 3406 }; 3407 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3408 for (const auto *MD : OCD->methods()) { 3409 if (!MD->isDirectMethod()) 3410 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3411 } 3412 3413 Values.add(GetClassName(OCD->getName())); 3414 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3415 LazySymbols.insert(Interface->getIdentifier()); 3416 3417 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3418 Methods[InstanceMethods])); 3419 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3420 Methods[ClassMethods])); 3421 if (Category) { 3422 Values.add( 3423 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3424 Category->protocol_begin(), Category->protocol_end())); 3425 } else { 3426 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3427 } 3428 Values.addInt(ObjCTypes.IntTy, Size); 3429 3430 // If there is no category @interface then there can be no properties. 3431 if (Category) { 3432 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3433 OCD, Category, ObjCTypes, false)); 3434 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3435 OCD, Category, ObjCTypes, true)); 3436 } else { 3437 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3438 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3439 } 3440 3441 llvm::GlobalVariable *GV = 3442 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3443 "__OBJC,__category,regular,no_dead_strip", 3444 CGM.getPointerAlign(), true); 3445 DefinedCategories.push_back(GV); 3446 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3447 // method definition entries must be clear for next implementation. 3448 MethodDefinitions.clear(); 3449 } 3450 3451 enum FragileClassFlags { 3452 /// Apparently: is not a meta-class. 3453 FragileABI_Class_Factory = 0x00001, 3454 3455 /// Is a meta-class. 3456 FragileABI_Class_Meta = 0x00002, 3457 3458 /// Has a non-trivial constructor or destructor. 3459 FragileABI_Class_HasCXXStructors = 0x02000, 3460 3461 /// Has hidden visibility. 3462 FragileABI_Class_Hidden = 0x20000, 3463 3464 /// Class implementation was compiled under ARC. 3465 FragileABI_Class_CompiledByARC = 0x04000000, 3466 3467 /// Class implementation was compiled under MRC and has MRC weak ivars. 3468 /// Exclusive with CompiledByARC. 3469 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3470 }; 3471 3472 enum NonFragileClassFlags { 3473 /// Is a meta-class. 3474 NonFragileABI_Class_Meta = 0x00001, 3475 3476 /// Is a root class. 3477 NonFragileABI_Class_Root = 0x00002, 3478 3479 /// Has a non-trivial constructor or destructor. 3480 NonFragileABI_Class_HasCXXStructors = 0x00004, 3481 3482 /// Has hidden visibility. 3483 NonFragileABI_Class_Hidden = 0x00010, 3484 3485 /// Has the exception attribute. 3486 NonFragileABI_Class_Exception = 0x00020, 3487 3488 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3489 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3490 3491 /// Class implementation was compiled under ARC. 3492 NonFragileABI_Class_CompiledByARC = 0x00080, 3493 3494 /// Class has non-trivial destructors, but zero-initialization is okay. 3495 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3496 3497 /// Class implementation was compiled under MRC and has MRC weak ivars. 3498 /// Exclusive with CompiledByARC. 3499 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3500 }; 3501 3502 static bool hasWeakMember(QualType type) { 3503 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3504 return true; 3505 } 3506 3507 if (auto recType = type->getAs<RecordType>()) { 3508 for (auto field : recType->getDecl()->fields()) { 3509 if (hasWeakMember(field->getType())) 3510 return true; 3511 } 3512 } 3513 3514 return false; 3515 } 3516 3517 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3518 /// (and actually fill in a layout string) if we really do have any 3519 /// __weak ivars. 3520 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3521 const ObjCImplementationDecl *ID) { 3522 if (!CGM.getLangOpts().ObjCWeak) return false; 3523 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3524 3525 for (const ObjCIvarDecl *ivar = 3526 ID->getClassInterface()->all_declared_ivar_begin(); 3527 ivar; ivar = ivar->getNextIvar()) { 3528 if (hasWeakMember(ivar->getType())) 3529 return true; 3530 } 3531 3532 return false; 3533 } 3534 3535 /* 3536 struct _objc_class { 3537 Class isa; 3538 Class super_class; 3539 const char *name; 3540 long version; 3541 long info; 3542 long instance_size; 3543 struct _objc_ivar_list *ivars; 3544 struct _objc_method_list *methods; 3545 struct _objc_cache *cache; 3546 struct _objc_protocol_list *protocols; 3547 // Objective-C 1.0 extensions (<rdr://4585769>) 3548 const char *ivar_layout; 3549 struct _objc_class_ext *ext; 3550 }; 3551 3552 See EmitClassExtension(); 3553 */ 3554 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3555 IdentifierInfo *RuntimeName = 3556 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3557 DefinedSymbols.insert(RuntimeName); 3558 3559 std::string ClassName = ID->getNameAsString(); 3560 // FIXME: Gross 3561 ObjCInterfaceDecl *Interface = 3562 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3563 llvm::Constant *Protocols = 3564 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3565 Interface->all_referenced_protocol_begin(), 3566 Interface->all_referenced_protocol_end()); 3567 unsigned Flags = FragileABI_Class_Factory; 3568 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3569 Flags |= FragileABI_Class_HasCXXStructors; 3570 3571 bool hasMRCWeak = false; 3572 3573 if (CGM.getLangOpts().ObjCAutoRefCount) 3574 Flags |= FragileABI_Class_CompiledByARC; 3575 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3576 Flags |= FragileABI_Class_HasMRCWeakIvars; 3577 3578 CharUnits Size = 3579 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3580 3581 // FIXME: Set CXX-structors flag. 3582 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3583 Flags |= FragileABI_Class_Hidden; 3584 3585 enum { 3586 InstanceMethods, 3587 ClassMethods, 3588 NumMethodLists 3589 }; 3590 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3591 for (const auto *MD : ID->methods()) { 3592 if (!MD->isDirectMethod()) 3593 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3594 } 3595 3596 for (const auto *PID : ID->property_impls()) { 3597 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3598 if (PID->getPropertyDecl()->isDirectProperty()) 3599 continue; 3600 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3601 if (GetMethodDefinition(MD)) 3602 Methods[InstanceMethods].push_back(MD); 3603 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3604 if (GetMethodDefinition(MD)) 3605 Methods[InstanceMethods].push_back(MD); 3606 } 3607 } 3608 3609 ConstantInitBuilder builder(CGM); 3610 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3611 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3612 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3613 // Record a reference to the super class. 3614 LazySymbols.insert(Super->getIdentifier()); 3615 3616 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3617 ObjCTypes.ClassPtrTy); 3618 } else { 3619 values.addNullPointer(ObjCTypes.ClassPtrTy); 3620 } 3621 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3622 // Version is always 0. 3623 values.addInt(ObjCTypes.LongTy, 0); 3624 values.addInt(ObjCTypes.LongTy, Flags); 3625 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3626 values.add(EmitIvarList(ID, false)); 3627 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3628 Methods[InstanceMethods])); 3629 // cache is always NULL. 3630 values.addNullPointer(ObjCTypes.CachePtrTy); 3631 values.add(Protocols); 3632 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3633 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3634 /*isMetaclass*/ false)); 3635 3636 std::string Name("OBJC_CLASS_"); 3637 Name += ClassName; 3638 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3639 // Check for a forward reference. 3640 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3641 if (GV) { 3642 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3643 "Forward metaclass reference has incorrect type."); 3644 values.finishAndSetAsInitializer(GV); 3645 GV->setSection(Section); 3646 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3647 CGM.addCompilerUsedGlobal(GV); 3648 } else 3649 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3650 DefinedClasses.push_back(GV); 3651 ImplementedClasses.push_back(Interface); 3652 // method definition entries must be clear for next implementation. 3653 MethodDefinitions.clear(); 3654 } 3655 3656 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3657 llvm::Constant *Protocols, 3658 ArrayRef<const ObjCMethodDecl*> Methods) { 3659 unsigned Flags = FragileABI_Class_Meta; 3660 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3661 3662 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3663 Flags |= FragileABI_Class_Hidden; 3664 3665 ConstantInitBuilder builder(CGM); 3666 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3667 // The isa for the metaclass is the root of the hierarchy. 3668 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3669 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3670 Root = Super; 3671 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3672 ObjCTypes.ClassPtrTy); 3673 // The super class for the metaclass is emitted as the name of the 3674 // super class. The runtime fixes this up to point to the 3675 // *metaclass* for the super class. 3676 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3677 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3678 ObjCTypes.ClassPtrTy); 3679 } else { 3680 values.addNullPointer(ObjCTypes.ClassPtrTy); 3681 } 3682 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3683 // Version is always 0. 3684 values.addInt(ObjCTypes.LongTy, 0); 3685 values.addInt(ObjCTypes.LongTy, Flags); 3686 values.addInt(ObjCTypes.LongTy, Size); 3687 values.add(EmitIvarList(ID, true)); 3688 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3689 Methods)); 3690 // cache is always NULL. 3691 values.addNullPointer(ObjCTypes.CachePtrTy); 3692 values.add(Protocols); 3693 // ivar_layout for metaclass is always NULL. 3694 values.addNullPointer(ObjCTypes.Int8PtrTy); 3695 // The class extension is used to store class properties for metaclasses. 3696 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3697 /*isMetaclass*/true)); 3698 3699 std::string Name("OBJC_METACLASS_"); 3700 Name += ID->getName(); 3701 3702 // Check for a forward reference. 3703 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3704 if (GV) { 3705 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3706 "Forward metaclass reference has incorrect type."); 3707 values.finishAndSetAsInitializer(GV); 3708 } else { 3709 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3710 /*constant*/ false, 3711 llvm::GlobalValue::PrivateLinkage); 3712 } 3713 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3714 CGM.addCompilerUsedGlobal(GV); 3715 3716 return GV; 3717 } 3718 3719 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3720 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3721 3722 // FIXME: Should we look these up somewhere other than the module. Its a bit 3723 // silly since we only generate these while processing an implementation, so 3724 // exactly one pointer would work if know when we entered/exitted an 3725 // implementation block. 3726 3727 // Check for an existing forward reference. 3728 // Previously, metaclass with internal linkage may have been defined. 3729 // pass 'true' as 2nd argument so it is returned. 3730 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3731 if (!GV) 3732 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3733 llvm::GlobalValue::PrivateLinkage, nullptr, 3734 Name); 3735 3736 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3737 "Forward metaclass reference has incorrect type."); 3738 return GV; 3739 } 3740 3741 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3742 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3743 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3744 3745 if (!GV) 3746 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3747 llvm::GlobalValue::PrivateLinkage, nullptr, 3748 Name); 3749 3750 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3751 "Forward class metadata reference has incorrect type."); 3752 return GV; 3753 } 3754 3755 /* 3756 Emit a "class extension", which in this specific context means extra 3757 data that doesn't fit in the normal fragile-ABI class structure, and 3758 has nothing to do with the language concept of a class extension. 3759 3760 struct objc_class_ext { 3761 uint32_t size; 3762 const char *weak_ivar_layout; 3763 struct _objc_property_list *properties; 3764 }; 3765 */ 3766 llvm::Constant * 3767 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3768 CharUnits InstanceSize, bool hasMRCWeakIvars, 3769 bool isMetaclass) { 3770 // Weak ivar layout. 3771 llvm::Constant *layout; 3772 if (isMetaclass) { 3773 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3774 } else { 3775 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3776 hasMRCWeakIvars); 3777 } 3778 3779 // Properties. 3780 llvm::Constant *propertyList = 3781 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3782 : Twine("_OBJC_$_PROP_LIST_")) 3783 + ID->getName(), 3784 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3785 3786 // Return null if no extension bits are used. 3787 if (layout->isNullValue() && propertyList->isNullValue()) { 3788 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3789 } 3790 3791 uint64_t size = 3792 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3793 3794 ConstantInitBuilder builder(CGM); 3795 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3796 values.addInt(ObjCTypes.IntTy, size); 3797 values.add(layout); 3798 values.add(propertyList); 3799 3800 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3801 "__OBJC,__class_ext,regular,no_dead_strip", 3802 CGM.getPointerAlign(), true); 3803 } 3804 3805 /* 3806 struct objc_ivar { 3807 char *ivar_name; 3808 char *ivar_type; 3809 int ivar_offset; 3810 }; 3811 3812 struct objc_ivar_list { 3813 int ivar_count; 3814 struct objc_ivar list[count]; 3815 }; 3816 */ 3817 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3818 bool ForClass) { 3819 // When emitting the root class GCC emits ivar entries for the 3820 // actual class structure. It is not clear if we need to follow this 3821 // behavior; for now lets try and get away with not doing it. If so, 3822 // the cleanest solution would be to make up an ObjCInterfaceDecl 3823 // for the class. 3824 if (ForClass) 3825 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3826 3827 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3828 3829 ConstantInitBuilder builder(CGM); 3830 auto ivarList = builder.beginStruct(); 3831 auto countSlot = ivarList.addPlaceholder(); 3832 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3833 3834 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3835 IVD; IVD = IVD->getNextIvar()) { 3836 // Ignore unnamed bit-fields. 3837 if (!IVD->getDeclName()) 3838 continue; 3839 3840 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3841 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3842 ivar.add(GetMethodVarType(IVD)); 3843 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3844 ivar.finishAndAddTo(ivars); 3845 } 3846 3847 // Return null for empty list. 3848 auto count = ivars.size(); 3849 if (count == 0) { 3850 ivars.abandon(); 3851 ivarList.abandon(); 3852 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3853 } 3854 3855 ivars.finishAndAddTo(ivarList); 3856 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3857 3858 llvm::GlobalVariable *GV; 3859 if (ForClass) 3860 GV = 3861 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3862 "__OBJC,__class_vars,regular,no_dead_strip", 3863 CGM.getPointerAlign(), true); 3864 else 3865 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3866 "__OBJC,__instance_vars,regular,no_dead_strip", 3867 CGM.getPointerAlign(), true); 3868 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3869 } 3870 3871 /// Build a struct objc_method_description constant for the given method. 3872 /// 3873 /// struct objc_method_description { 3874 /// SEL method_name; 3875 /// char *method_types; 3876 /// }; 3877 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3878 const ObjCMethodDecl *MD) { 3879 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3880 description.addBitCast(GetMethodVarName(MD->getSelector()), 3881 ObjCTypes.SelectorPtrTy); 3882 description.add(GetMethodVarType(MD)); 3883 description.finishAndAddTo(builder); 3884 } 3885 3886 /// Build a struct objc_method constant for the given method. 3887 /// 3888 /// struct objc_method { 3889 /// SEL method_name; 3890 /// char *method_types; 3891 /// void *method; 3892 /// }; 3893 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3894 const ObjCMethodDecl *MD) { 3895 llvm::Function *fn = GetMethodDefinition(MD); 3896 assert(fn && "no definition registered for method"); 3897 3898 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3899 method.addBitCast(GetMethodVarName(MD->getSelector()), 3900 ObjCTypes.SelectorPtrTy); 3901 method.add(GetMethodVarType(MD)); 3902 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3903 method.finishAndAddTo(builder); 3904 } 3905 3906 /// Build a struct objc_method_list or struct objc_method_description_list, 3907 /// as appropriate. 3908 /// 3909 /// struct objc_method_list { 3910 /// struct objc_method_list *obsolete; 3911 /// int count; 3912 /// struct objc_method methods_list[count]; 3913 /// }; 3914 /// 3915 /// struct objc_method_description_list { 3916 /// int count; 3917 /// struct objc_method_description list[count]; 3918 /// }; 3919 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3920 ArrayRef<const ObjCMethodDecl *> methods) { 3921 StringRef prefix; 3922 StringRef section; 3923 bool forProtocol = false; 3924 switch (MLT) { 3925 case MethodListType::CategoryInstanceMethods: 3926 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3927 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3928 forProtocol = false; 3929 break; 3930 case MethodListType::CategoryClassMethods: 3931 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3932 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3933 forProtocol = false; 3934 break; 3935 case MethodListType::InstanceMethods: 3936 prefix = "OBJC_INSTANCE_METHODS_"; 3937 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3938 forProtocol = false; 3939 break; 3940 case MethodListType::ClassMethods: 3941 prefix = "OBJC_CLASS_METHODS_"; 3942 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3943 forProtocol = false; 3944 break; 3945 case MethodListType::ProtocolInstanceMethods: 3946 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3947 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3948 forProtocol = true; 3949 break; 3950 case MethodListType::ProtocolClassMethods: 3951 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3952 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3953 forProtocol = true; 3954 break; 3955 case MethodListType::OptionalProtocolInstanceMethods: 3956 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3957 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3958 forProtocol = true; 3959 break; 3960 case MethodListType::OptionalProtocolClassMethods: 3961 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3962 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3963 forProtocol = true; 3964 break; 3965 } 3966 3967 // Return null for empty list. 3968 if (methods.empty()) 3969 return llvm::Constant::getNullValue(forProtocol 3970 ? ObjCTypes.MethodDescriptionListPtrTy 3971 : ObjCTypes.MethodListPtrTy); 3972 3973 // For protocols, this is an objc_method_description_list, which has 3974 // a slightly different structure. 3975 if (forProtocol) { 3976 ConstantInitBuilder builder(CGM); 3977 auto values = builder.beginStruct(); 3978 values.addInt(ObjCTypes.IntTy, methods.size()); 3979 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3980 for (auto MD : methods) { 3981 emitMethodDescriptionConstant(methodArray, MD); 3982 } 3983 methodArray.finishAndAddTo(values); 3984 3985 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3986 CGM.getPointerAlign(), true); 3987 return llvm::ConstantExpr::getBitCast(GV, 3988 ObjCTypes.MethodDescriptionListPtrTy); 3989 } 3990 3991 // Otherwise, it's an objc_method_list. 3992 ConstantInitBuilder builder(CGM); 3993 auto values = builder.beginStruct(); 3994 values.addNullPointer(ObjCTypes.Int8PtrTy); 3995 values.addInt(ObjCTypes.IntTy, methods.size()); 3996 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3997 for (auto MD : methods) { 3998 if (!MD->isDirectMethod()) 3999 emitMethodConstant(methodArray, MD); 4000 } 4001 methodArray.finishAndAddTo(values); 4002 4003 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 4004 CGM.getPointerAlign(), true); 4005 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 4006 } 4007 4008 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 4009 const ObjCContainerDecl *CD) { 4010 llvm::Function *Method; 4011 4012 if (OMD->isDirectMethod()) { 4013 Method = GenerateDirectMethod(OMD, CD); 4014 } else { 4015 SmallString<256> Name; 4016 GetNameForMethod(OMD, CD, Name); 4017 4018 CodeGenTypes &Types = CGM.getTypes(); 4019 llvm::FunctionType *MethodTy = 4020 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4021 Method = 4022 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 4023 Name.str(), &CGM.getModule()); 4024 } 4025 4026 MethodDefinitions.insert(std::make_pair(OMD, Method)); 4027 4028 return Method; 4029 } 4030 4031 llvm::Function * 4032 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 4033 const ObjCContainerDecl *CD) { 4034 auto I = DirectMethodDefinitions.find(OMD->getCanonicalDecl()); 4035 if (I != DirectMethodDefinitions.end()) 4036 return I->second; 4037 4038 SmallString<256> Name; 4039 GetNameForMethod(OMD, CD, Name, /*ignoreCategoryNamespace*/true); 4040 4041 CodeGenTypes &Types = CGM.getTypes(); 4042 llvm::FunctionType *MethodTy = 4043 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4044 llvm::Function *Method = 4045 llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4046 Name.str(), &CGM.getModule()); 4047 DirectMethodDefinitions.insert(std::make_pair(OMD->getCanonicalDecl(), Method)); 4048 4049 return Method; 4050 } 4051 4052 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4053 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4054 const ObjCContainerDecl *CD) { 4055 auto &Builder = CGF.Builder; 4056 bool ReceiverCanBeNull = true; 4057 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4058 auto selfValue = Builder.CreateLoad(selfAddr); 4059 4060 // Generate: 4061 // 4062 // /* for class methods only to force class lazy initialization */ 4063 // self = [self self]; 4064 // 4065 // /* unless the receiver is never NULL */ 4066 // if (self == nil) { 4067 // return (ReturnType){ }; 4068 // } 4069 // 4070 // _cmd = @selector(...) 4071 // ... 4072 4073 if (OMD->isClassMethod()) { 4074 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4075 assert(OID && 4076 "GenerateDirectMethod() should be called with the Class Interface"); 4077 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4078 auto ResultType = CGF.getContext().getObjCIdType(); 4079 RValue result; 4080 CallArgList Args; 4081 4082 // TODO: If this method is inlined, the caller might know that `self` is 4083 // already initialized; for example, it might be an ordinary Objective-C 4084 // method which always receives an initialized `self`, or it might have just 4085 // forced initialization on its own. 4086 // 4087 // We should find a way to eliminate this unnecessary initialization in such 4088 // cases in LLVM. 4089 result = GeneratePossiblySpecializedMessageSend( 4090 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4091 nullptr, true); 4092 Builder.CreateStore(result.getScalarVal(), selfAddr); 4093 4094 // Nullable `Class` expressions cannot be messaged with a direct method 4095 // so the only reason why the receive can be null would be because 4096 // of weak linking. 4097 ReceiverCanBeNull = isWeakLinkedClass(OID); 4098 } 4099 4100 if (ReceiverCanBeNull) { 4101 llvm::BasicBlock *SelfIsNilBlock = 4102 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4103 llvm::BasicBlock *ContBlock = 4104 CGF.createBasicBlock("objc_direct_method.cont"); 4105 4106 // if (self == nil) { 4107 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4108 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4109 4110 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4111 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4112 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4113 4114 CGF.EmitBlock(SelfIsNilBlock); 4115 4116 // return (ReturnType){ }; 4117 auto retTy = OMD->getReturnType(); 4118 Builder.SetInsertPoint(SelfIsNilBlock); 4119 if (!retTy->isVoidType()) { 4120 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4121 } 4122 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4123 // } 4124 4125 // rest of the body 4126 CGF.EmitBlock(ContBlock); 4127 Builder.SetInsertPoint(ContBlock); 4128 } 4129 4130 // only synthesize _cmd if it's referenced 4131 if (OMD->getCmdDecl()->isUsed()) { 4132 Builder.CreateStore(GetSelector(CGF, OMD), 4133 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4134 } 4135 } 4136 4137 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4138 ConstantStructBuilder &Init, 4139 StringRef Section, 4140 CharUnits Align, 4141 bool AddToUsed) { 4142 llvm::GlobalValue::LinkageTypes LT = 4143 getLinkageTypeForObjCMetadata(CGM, Section); 4144 llvm::GlobalVariable *GV = 4145 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4146 if (!Section.empty()) 4147 GV->setSection(Section); 4148 if (AddToUsed) 4149 CGM.addCompilerUsedGlobal(GV); 4150 return GV; 4151 } 4152 4153 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4154 llvm::Constant *Init, 4155 StringRef Section, 4156 CharUnits Align, 4157 bool AddToUsed) { 4158 llvm::Type *Ty = Init->getType(); 4159 llvm::GlobalValue::LinkageTypes LT = 4160 getLinkageTypeForObjCMetadata(CGM, Section); 4161 llvm::GlobalVariable *GV = 4162 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4163 if (!Section.empty()) 4164 GV->setSection(Section); 4165 GV->setAlignment(Align.getAsAlign()); 4166 if (AddToUsed) 4167 CGM.addCompilerUsedGlobal(GV); 4168 return GV; 4169 } 4170 4171 llvm::GlobalVariable * 4172 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4173 bool ForceNonFragileABI, 4174 bool NullTerminate) { 4175 StringRef Label; 4176 switch (Type) { 4177 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4178 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4179 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4180 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4181 } 4182 4183 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4184 4185 StringRef Section; 4186 switch (Type) { 4187 case ObjCLabelType::ClassName: 4188 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4189 : "__TEXT,__cstring,cstring_literals"; 4190 break; 4191 case ObjCLabelType::MethodVarName: 4192 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4193 : "__TEXT,__cstring,cstring_literals"; 4194 break; 4195 case ObjCLabelType::MethodVarType: 4196 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4197 : "__TEXT,__cstring,cstring_literals"; 4198 break; 4199 case ObjCLabelType::PropertyName: 4200 Section = "__TEXT,__cstring,cstring_literals"; 4201 break; 4202 } 4203 4204 llvm::Constant *Value = 4205 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4206 llvm::GlobalVariable *GV = 4207 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4208 /*isConstant=*/true, 4209 llvm::GlobalValue::PrivateLinkage, Value, Label); 4210 if (CGM.getTriple().isOSBinFormatMachO()) 4211 GV->setSection(Section); 4212 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4213 GV->setAlignment(CharUnits::One().getAsAlign()); 4214 CGM.addCompilerUsedGlobal(GV); 4215 4216 return GV; 4217 } 4218 4219 llvm::Function *CGObjCMac::ModuleInitFunction() { 4220 // Abuse this interface function as a place to finalize. 4221 FinishModule(); 4222 return nullptr; 4223 } 4224 4225 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4226 return ObjCTypes.getGetPropertyFn(); 4227 } 4228 4229 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4230 return ObjCTypes.getSetPropertyFn(); 4231 } 4232 4233 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4234 bool copy) { 4235 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4236 } 4237 4238 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4239 return ObjCTypes.getCopyStructFn(); 4240 } 4241 4242 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4243 return ObjCTypes.getCopyStructFn(); 4244 } 4245 4246 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4247 return ObjCTypes.getCppAtomicObjectFunction(); 4248 } 4249 4250 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4251 return ObjCTypes.getCppAtomicObjectFunction(); 4252 } 4253 4254 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4255 return ObjCTypes.getEnumerationMutationFn(); 4256 } 4257 4258 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4259 return EmitTryOrSynchronizedStmt(CGF, S); 4260 } 4261 4262 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4263 const ObjCAtSynchronizedStmt &S) { 4264 return EmitTryOrSynchronizedStmt(CGF, S); 4265 } 4266 4267 namespace { 4268 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4269 const Stmt &S; 4270 Address SyncArgSlot; 4271 Address CallTryExitVar; 4272 Address ExceptionData; 4273 ObjCTypesHelper &ObjCTypes; 4274 PerformFragileFinally(const Stmt *S, 4275 Address SyncArgSlot, 4276 Address CallTryExitVar, 4277 Address ExceptionData, 4278 ObjCTypesHelper *ObjCTypes) 4279 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4280 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4281 4282 void Emit(CodeGenFunction &CGF, Flags flags) override { 4283 // Check whether we need to call objc_exception_try_exit. 4284 // In optimized code, this branch will always be folded. 4285 llvm::BasicBlock *FinallyCallExit = 4286 CGF.createBasicBlock("finally.call_exit"); 4287 llvm::BasicBlock *FinallyNoCallExit = 4288 CGF.createBasicBlock("finally.no_call_exit"); 4289 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4290 FinallyCallExit, FinallyNoCallExit); 4291 4292 CGF.EmitBlock(FinallyCallExit); 4293 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4294 ExceptionData.getPointer()); 4295 4296 CGF.EmitBlock(FinallyNoCallExit); 4297 4298 if (isa<ObjCAtTryStmt>(S)) { 4299 if (const ObjCAtFinallyStmt* FinallyStmt = 4300 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4301 // Don't try to do the @finally if this is an EH cleanup. 4302 if (flags.isForEHCleanup()) return; 4303 4304 // Save the current cleanup destination in case there's 4305 // control flow inside the finally statement. 4306 llvm::Value *CurCleanupDest = 4307 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4308 4309 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4310 4311 if (CGF.HaveInsertPoint()) { 4312 CGF.Builder.CreateStore(CurCleanupDest, 4313 CGF.getNormalCleanupDestSlot()); 4314 } else { 4315 // Currently, the end of the cleanup must always exist. 4316 CGF.EnsureInsertPoint(); 4317 } 4318 } 4319 } else { 4320 // Emit objc_sync_exit(expr); as finally's sole statement for 4321 // @synchronized. 4322 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4323 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4324 } 4325 } 4326 }; 4327 4328 class FragileHazards { 4329 CodeGenFunction &CGF; 4330 SmallVector<llvm::Value*, 20> Locals; 4331 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4332 4333 llvm::InlineAsm *ReadHazard; 4334 llvm::InlineAsm *WriteHazard; 4335 4336 llvm::FunctionType *GetAsmFnType(); 4337 4338 void collectLocals(); 4339 void emitReadHazard(CGBuilderTy &Builder); 4340 4341 public: 4342 FragileHazards(CodeGenFunction &CGF); 4343 4344 void emitWriteHazard(); 4345 void emitHazardsInNewBlocks(); 4346 }; 4347 } // end anonymous namespace 4348 4349 /// Create the fragile-ABI read and write hazards based on the current 4350 /// state of the function, which is presumed to be immediately prior 4351 /// to a @try block. These hazards are used to maintain correct 4352 /// semantics in the face of optimization and the fragile ABI's 4353 /// cavalier use of setjmp/longjmp. 4354 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4355 collectLocals(); 4356 4357 if (Locals.empty()) return; 4358 4359 // Collect all the blocks in the function. 4360 for (llvm::Function::iterator 4361 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4362 BlocksBeforeTry.insert(&*I); 4363 4364 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4365 4366 // Create a read hazard for the allocas. This inhibits dead-store 4367 // optimizations and forces the values to memory. This hazard is 4368 // inserted before any 'throwing' calls in the protected scope to 4369 // reflect the possibility that the variables might be read from the 4370 // catch block if the call throws. 4371 { 4372 std::string Constraint; 4373 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4374 if (I) Constraint += ','; 4375 Constraint += "*m"; 4376 } 4377 4378 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4379 } 4380 4381 // Create a write hazard for the allocas. This inhibits folding 4382 // loads across the hazard. This hazard is inserted at the 4383 // beginning of the catch path to reflect the possibility that the 4384 // variables might have been written within the protected scope. 4385 { 4386 std::string Constraint; 4387 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4388 if (I) Constraint += ','; 4389 Constraint += "=*m"; 4390 } 4391 4392 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4393 } 4394 } 4395 4396 /// Emit a write hazard at the current location. 4397 void FragileHazards::emitWriteHazard() { 4398 if (Locals.empty()) return; 4399 4400 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4401 } 4402 4403 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4404 assert(!Locals.empty()); 4405 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4406 call->setDoesNotThrow(); 4407 call->setCallingConv(CGF.getRuntimeCC()); 4408 } 4409 4410 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4411 /// which have been inserted since the beginning of the try. 4412 void FragileHazards::emitHazardsInNewBlocks() { 4413 if (Locals.empty()) return; 4414 4415 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4416 4417 // Iterate through all blocks, skipping those prior to the try. 4418 for (llvm::Function::iterator 4419 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4420 llvm::BasicBlock &BB = *FI; 4421 if (BlocksBeforeTry.count(&BB)) continue; 4422 4423 // Walk through all the calls in the block. 4424 for (llvm::BasicBlock::iterator 4425 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4426 llvm::Instruction &I = *BI; 4427 4428 // Ignore instructions that aren't non-intrinsic calls. 4429 // These are the only calls that can possibly call longjmp. 4430 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4431 continue; 4432 if (isa<llvm::IntrinsicInst>(I)) 4433 continue; 4434 4435 // Ignore call sites marked nounwind. This may be questionable, 4436 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4437 if (cast<llvm::CallBase>(I).doesNotThrow()) 4438 continue; 4439 4440 // Insert a read hazard before the call. This will ensure that 4441 // any writes to the locals are performed before making the 4442 // call. If the call throws, then this is sufficient to 4443 // guarantee correctness as long as it doesn't also write to any 4444 // locals. 4445 Builder.SetInsertPoint(&BB, BI); 4446 emitReadHazard(Builder); 4447 } 4448 } 4449 } 4450 4451 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4452 if (V.isValid()) S.insert(V.getPointer()); 4453 } 4454 4455 void FragileHazards::collectLocals() { 4456 // Compute a set of allocas to ignore. 4457 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4458 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4459 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4460 4461 // Collect all the allocas currently in the function. This is 4462 // probably way too aggressive. 4463 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4464 for (llvm::BasicBlock::iterator 4465 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4466 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4467 Locals.push_back(&*I); 4468 } 4469 4470 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4471 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4472 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4473 tys[i] = Locals[i]->getType(); 4474 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4475 } 4476 4477 /* 4478 4479 Objective-C setjmp-longjmp (sjlj) Exception Handling 4480 -- 4481 4482 A catch buffer is a setjmp buffer plus: 4483 - a pointer to the exception that was caught 4484 - a pointer to the previous exception data buffer 4485 - two pointers of reserved storage 4486 Therefore catch buffers form a stack, with a pointer to the top 4487 of the stack kept in thread-local storage. 4488 4489 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4490 objc_exception_try_exit pops the given catch buffer, which is 4491 required to be the top of the EH stack. 4492 objc_exception_throw pops the top of the EH stack, writes the 4493 thrown exception into the appropriate field, and longjmps 4494 to the setjmp buffer. It crashes the process (with a printf 4495 and an abort()) if there are no catch buffers on the stack. 4496 objc_exception_extract just reads the exception pointer out of the 4497 catch buffer. 4498 4499 There's no reason an implementation couldn't use a light-weight 4500 setjmp here --- something like __builtin_setjmp, but API-compatible 4501 with the heavyweight setjmp. This will be more important if we ever 4502 want to implement correct ObjC/C++ exception interactions for the 4503 fragile ABI. 4504 4505 Note that for this use of setjmp/longjmp to be correct, we may need 4506 to mark some local variables volatile: if a non-volatile local 4507 variable is modified between the setjmp and the longjmp, it has 4508 indeterminate value. For the purposes of LLVM IR, it may be 4509 sufficient to make loads and stores within the @try (to variables 4510 declared outside the @try) volatile. This is necessary for 4511 optimized correctness, but is not currently being done; this is 4512 being tracked as rdar://problem/8160285 4513 4514 The basic framework for a @try-catch-finally is as follows: 4515 { 4516 objc_exception_data d; 4517 id _rethrow = null; 4518 bool _call_try_exit = true; 4519 4520 objc_exception_try_enter(&d); 4521 if (!setjmp(d.jmp_buf)) { 4522 ... try body ... 4523 } else { 4524 // exception path 4525 id _caught = objc_exception_extract(&d); 4526 4527 // enter new try scope for handlers 4528 if (!setjmp(d.jmp_buf)) { 4529 ... match exception and execute catch blocks ... 4530 4531 // fell off end, rethrow. 4532 _rethrow = _caught; 4533 ... jump-through-finally to finally_rethrow ... 4534 } else { 4535 // exception in catch block 4536 _rethrow = objc_exception_extract(&d); 4537 _call_try_exit = false; 4538 ... jump-through-finally to finally_rethrow ... 4539 } 4540 } 4541 ... jump-through-finally to finally_end ... 4542 4543 finally: 4544 if (_call_try_exit) 4545 objc_exception_try_exit(&d); 4546 4547 ... finally block .... 4548 ... dispatch to finally destination ... 4549 4550 finally_rethrow: 4551 objc_exception_throw(_rethrow); 4552 4553 finally_end: 4554 } 4555 4556 This framework differs slightly from the one gcc uses, in that gcc 4557 uses _rethrow to determine if objc_exception_try_exit should be called 4558 and if the object should be rethrown. This breaks in the face of 4559 throwing nil and introduces unnecessary branches. 4560 4561 We specialize this framework for a few particular circumstances: 4562 4563 - If there are no catch blocks, then we avoid emitting the second 4564 exception handling context. 4565 4566 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4567 e)) we avoid emitting the code to rethrow an uncaught exception. 4568 4569 - FIXME: If there is no @finally block we can do a few more 4570 simplifications. 4571 4572 Rethrows and Jumps-Through-Finally 4573 -- 4574 4575 '@throw;' is supported by pushing the currently-caught exception 4576 onto ObjCEHStack while the @catch blocks are emitted. 4577 4578 Branches through the @finally block are handled with an ordinary 4579 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4580 exceptions are not compatible with C++ exceptions, and this is 4581 hardly the only place where this will go wrong. 4582 4583 @synchronized(expr) { stmt; } is emitted as if it were: 4584 id synch_value = expr; 4585 objc_sync_enter(synch_value); 4586 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4587 */ 4588 4589 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4590 const Stmt &S) { 4591 bool isTry = isa<ObjCAtTryStmt>(S); 4592 4593 // A destination for the fall-through edges of the catch handlers to 4594 // jump to. 4595 CodeGenFunction::JumpDest FinallyEnd = 4596 CGF.getJumpDestInCurrentScope("finally.end"); 4597 4598 // A destination for the rethrow edge of the catch handlers to jump 4599 // to. 4600 CodeGenFunction::JumpDest FinallyRethrow = 4601 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4602 4603 // For @synchronized, call objc_sync_enter(sync.expr). The 4604 // evaluation of the expression must occur before we enter the 4605 // @synchronized. We can't avoid a temp here because we need the 4606 // value to be preserved. If the backend ever does liveness 4607 // correctly after setjmp, this will be unnecessary. 4608 Address SyncArgSlot = Address::invalid(); 4609 if (!isTry) { 4610 llvm::Value *SyncArg = 4611 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4612 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4613 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4614 4615 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4616 CGF.getPointerAlign(), "sync.arg"); 4617 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4618 } 4619 4620 // Allocate memory for the setjmp buffer. This needs to be kept 4621 // live throughout the try and catch blocks. 4622 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4623 CGF.getPointerAlign(), 4624 "exceptiondata.ptr"); 4625 4626 // Create the fragile hazards. Note that this will not capture any 4627 // of the allocas required for exception processing, but will 4628 // capture the current basic block (which extends all the way to the 4629 // setjmp call) as "before the @try". 4630 FragileHazards Hazards(CGF); 4631 4632 // Create a flag indicating whether the cleanup needs to call 4633 // objc_exception_try_exit. This is true except when 4634 // - no catches match and we're branching through the cleanup 4635 // just to rethrow the exception, or 4636 // - a catch matched and we're falling out of the catch handler. 4637 // The setjmp-safety rule here is that we should always store to this 4638 // variable in a place that dominates the branch through the cleanup 4639 // without passing through any setjmps. 4640 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4641 CharUnits::One(), 4642 "_call_try_exit"); 4643 4644 // A slot containing the exception to rethrow. Only needed when we 4645 // have both a @catch and a @finally. 4646 Address PropagatingExnVar = Address::invalid(); 4647 4648 // Push a normal cleanup to leave the try scope. 4649 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4650 SyncArgSlot, 4651 CallTryExitVar, 4652 ExceptionData, 4653 &ObjCTypes); 4654 4655 // Enter a try block: 4656 // - Call objc_exception_try_enter to push ExceptionData on top of 4657 // the EH stack. 4658 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4659 ExceptionData.getPointer()); 4660 4661 // - Call setjmp on the exception data buffer. 4662 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4663 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4664 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4665 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4666 "setjmp_buffer"); 4667 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4668 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4669 SetJmpResult->setCanReturnTwice(); 4670 4671 // If setjmp returned 0, enter the protected block; otherwise, 4672 // branch to the handler. 4673 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4674 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4675 llvm::Value *DidCatch = 4676 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4677 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4678 4679 // Emit the protected block. 4680 CGF.EmitBlock(TryBlock); 4681 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4682 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4683 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4684 4685 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4686 4687 // Emit the exception handler block. 4688 CGF.EmitBlock(TryHandler); 4689 4690 // Don't optimize loads of the in-scope locals across this point. 4691 Hazards.emitWriteHazard(); 4692 4693 // For a @synchronized (or a @try with no catches), just branch 4694 // through the cleanup to the rethrow block. 4695 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4696 // Tell the cleanup not to re-pop the exit. 4697 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4698 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4699 4700 // Otherwise, we have to match against the caught exceptions. 4701 } else { 4702 // Retrieve the exception object. We may emit multiple blocks but 4703 // nothing can cross this so the value is already in SSA form. 4704 llvm::CallInst *Caught = 4705 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4706 ExceptionData.getPointer(), "caught"); 4707 4708 // Push the exception to rethrow onto the EH value stack for the 4709 // benefit of any @throws in the handlers. 4710 CGF.ObjCEHValueStack.push_back(Caught); 4711 4712 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4713 4714 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4715 4716 llvm::BasicBlock *CatchBlock = nullptr; 4717 llvm::BasicBlock *CatchHandler = nullptr; 4718 if (HasFinally) { 4719 // Save the currently-propagating exception before 4720 // objc_exception_try_enter clears the exception slot. 4721 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4722 CGF.getPointerAlign(), 4723 "propagating_exception"); 4724 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4725 4726 // Enter a new exception try block (in case a @catch block 4727 // throws an exception). 4728 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4729 ExceptionData.getPointer()); 4730 4731 llvm::CallInst *SetJmpResult = 4732 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4733 SetJmpBuffer, "setjmp.result"); 4734 SetJmpResult->setCanReturnTwice(); 4735 4736 llvm::Value *Threw = 4737 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4738 4739 CatchBlock = CGF.createBasicBlock("catch"); 4740 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4741 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4742 4743 CGF.EmitBlock(CatchBlock); 4744 } 4745 4746 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4747 4748 // Handle catch list. As a special case we check if everything is 4749 // matched and avoid generating code for falling off the end if 4750 // so. 4751 bool AllMatched = false; 4752 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4753 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4754 4755 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4756 const ObjCObjectPointerType *OPT = nullptr; 4757 4758 // catch(...) always matches. 4759 if (!CatchParam) { 4760 AllMatched = true; 4761 } else { 4762 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4763 4764 // catch(id e) always matches under this ABI, since only 4765 // ObjC exceptions end up here in the first place. 4766 // FIXME: For the time being we also match id<X>; this should 4767 // be rejected by Sema instead. 4768 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4769 AllMatched = true; 4770 } 4771 4772 // If this is a catch-all, we don't need to test anything. 4773 if (AllMatched) { 4774 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4775 4776 if (CatchParam) { 4777 CGF.EmitAutoVarDecl(*CatchParam); 4778 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4779 4780 // These types work out because ConvertType(id) == i8*. 4781 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4782 } 4783 4784 CGF.EmitStmt(CatchStmt->getCatchBody()); 4785 4786 // The scope of the catch variable ends right here. 4787 CatchVarCleanups.ForceCleanup(); 4788 4789 CGF.EmitBranchThroughCleanup(FinallyEnd); 4790 break; 4791 } 4792 4793 assert(OPT && "Unexpected non-object pointer type in @catch"); 4794 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4795 4796 // FIXME: @catch (Class c) ? 4797 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4798 assert(IDecl && "Catch parameter must have Objective-C type!"); 4799 4800 // Check if the @catch block matches the exception object. 4801 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4802 4803 llvm::Value *matchArgs[] = { Class, Caught }; 4804 llvm::CallInst *Match = 4805 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4806 matchArgs, "match"); 4807 4808 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4809 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4810 4811 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4812 MatchedBlock, NextCatchBlock); 4813 4814 // Emit the @catch block. 4815 CGF.EmitBlock(MatchedBlock); 4816 4817 // Collect any cleanups for the catch variable. The scope lasts until 4818 // the end of the catch body. 4819 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4820 4821 CGF.EmitAutoVarDecl(*CatchParam); 4822 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4823 4824 // Initialize the catch variable. 4825 llvm::Value *Tmp = 4826 CGF.Builder.CreateBitCast(Caught, 4827 CGF.ConvertType(CatchParam->getType())); 4828 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4829 4830 CGF.EmitStmt(CatchStmt->getCatchBody()); 4831 4832 // We're done with the catch variable. 4833 CatchVarCleanups.ForceCleanup(); 4834 4835 CGF.EmitBranchThroughCleanup(FinallyEnd); 4836 4837 CGF.EmitBlock(NextCatchBlock); 4838 } 4839 4840 CGF.ObjCEHValueStack.pop_back(); 4841 4842 // If nothing wanted anything to do with the caught exception, 4843 // kill the extract call. 4844 if (Caught->use_empty()) 4845 Caught->eraseFromParent(); 4846 4847 if (!AllMatched) 4848 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4849 4850 if (HasFinally) { 4851 // Emit the exception handler for the @catch blocks. 4852 CGF.EmitBlock(CatchHandler); 4853 4854 // In theory we might now need a write hazard, but actually it's 4855 // unnecessary because there's no local-accessing code between 4856 // the try's write hazard and here. 4857 //Hazards.emitWriteHazard(); 4858 4859 // Extract the new exception and save it to the 4860 // propagating-exception slot. 4861 assert(PropagatingExnVar.isValid()); 4862 llvm::CallInst *NewCaught = 4863 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4864 ExceptionData.getPointer(), "caught"); 4865 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4866 4867 // Don't pop the catch handler; the throw already did. 4868 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4869 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4870 } 4871 } 4872 4873 // Insert read hazards as required in the new blocks. 4874 Hazards.emitHazardsInNewBlocks(); 4875 4876 // Pop the cleanup. 4877 CGF.Builder.restoreIP(TryFallthroughIP); 4878 if (CGF.HaveInsertPoint()) 4879 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4880 CGF.PopCleanupBlock(); 4881 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4882 4883 // Emit the rethrow block. 4884 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4885 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4886 if (CGF.HaveInsertPoint()) { 4887 // If we have a propagating-exception variable, check it. 4888 llvm::Value *PropagatingExn; 4889 if (PropagatingExnVar.isValid()) { 4890 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4891 4892 // Otherwise, just look in the buffer for the exception to throw. 4893 } else { 4894 llvm::CallInst *Caught = 4895 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4896 ExceptionData.getPointer()); 4897 PropagatingExn = Caught; 4898 } 4899 4900 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4901 PropagatingExn); 4902 CGF.Builder.CreateUnreachable(); 4903 } 4904 4905 CGF.Builder.restoreIP(SavedIP); 4906 } 4907 4908 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4909 const ObjCAtThrowStmt &S, 4910 bool ClearInsertionPoint) { 4911 llvm::Value *ExceptionAsObject; 4912 4913 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4914 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4915 ExceptionAsObject = 4916 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4917 } else { 4918 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4919 "Unexpected rethrow outside @catch block."); 4920 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4921 } 4922 4923 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4924 ->setDoesNotReturn(); 4925 CGF.Builder.CreateUnreachable(); 4926 4927 // Clear the insertion point to indicate we are in unreachable code. 4928 if (ClearInsertionPoint) 4929 CGF.Builder.ClearInsertionPoint(); 4930 } 4931 4932 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4933 /// object: objc_read_weak (id *src) 4934 /// 4935 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4936 Address AddrWeakObj) { 4937 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4938 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4939 ObjCTypes.PtrObjectPtrTy); 4940 llvm::Value *read_weak = 4941 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4942 AddrWeakObj.getPointer(), "weakread"); 4943 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4944 return read_weak; 4945 } 4946 4947 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4948 /// objc_assign_weak (id src, id *dst) 4949 /// 4950 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4951 llvm::Value *src, Address dst) { 4952 llvm::Type * SrcTy = src->getType(); 4953 if (!isa<llvm::PointerType>(SrcTy)) { 4954 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4955 assert(Size <= 8 && "does not support size > 8"); 4956 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4957 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4958 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4959 } 4960 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4961 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4962 llvm::Value *args[] = { src, dst.getPointer() }; 4963 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4964 args, "weakassign"); 4965 } 4966 4967 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4968 /// objc_assign_global (id src, id *dst) 4969 /// 4970 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4971 llvm::Value *src, Address dst, 4972 bool threadlocal) { 4973 llvm::Type * SrcTy = src->getType(); 4974 if (!isa<llvm::PointerType>(SrcTy)) { 4975 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4976 assert(Size <= 8 && "does not support size > 8"); 4977 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4978 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4979 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4980 } 4981 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4982 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4983 llvm::Value *args[] = { src, dst.getPointer() }; 4984 if (!threadlocal) 4985 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4986 args, "globalassign"); 4987 else 4988 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4989 args, "threadlocalassign"); 4990 } 4991 4992 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4993 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4994 /// 4995 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4996 llvm::Value *src, Address dst, 4997 llvm::Value *ivarOffset) { 4998 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4999 llvm::Type * SrcTy = src->getType(); 5000 if (!isa<llvm::PointerType>(SrcTy)) { 5001 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5002 assert(Size <= 8 && "does not support size > 8"); 5003 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5004 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5005 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5006 } 5007 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5008 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5009 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 5010 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 5011 } 5012 5013 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5014 /// objc_assign_strongCast (id src, id *dst) 5015 /// 5016 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5017 llvm::Value *src, Address dst) { 5018 llvm::Type * SrcTy = src->getType(); 5019 if (!isa<llvm::PointerType>(SrcTy)) { 5020 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5021 assert(Size <= 8 && "does not support size > 8"); 5022 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5023 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5024 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5025 } 5026 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5027 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5028 llvm::Value *args[] = { src, dst.getPointer() }; 5029 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5030 args, "strongassign"); 5031 } 5032 5033 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5034 Address DestPtr, 5035 Address SrcPtr, 5036 llvm::Value *size) { 5037 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5038 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5039 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5040 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5041 } 5042 5043 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5044 /// 5045 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5046 QualType ObjectTy, 5047 llvm::Value *BaseValue, 5048 const ObjCIvarDecl *Ivar, 5049 unsigned CVRQualifiers) { 5050 const ObjCInterfaceDecl *ID = 5051 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5052 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5053 EmitIvarOffset(CGF, ID, Ivar)); 5054 } 5055 5056 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5057 const ObjCInterfaceDecl *Interface, 5058 const ObjCIvarDecl *Ivar) { 5059 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5060 return llvm::ConstantInt::get( 5061 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5062 Offset); 5063 } 5064 5065 /* *** Private Interface *** */ 5066 5067 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5068 StringRef MachOAttributes) { 5069 switch (CGM.getTriple().getObjectFormat()) { 5070 case llvm::Triple::UnknownObjectFormat: 5071 llvm_unreachable("unexpected object file format"); 5072 case llvm::Triple::MachO: { 5073 if (MachOAttributes.empty()) 5074 return ("__DATA," + Section).str(); 5075 return ("__DATA," + Section + "," + MachOAttributes).str(); 5076 } 5077 case llvm::Triple::ELF: 5078 assert(Section.substr(0, 2) == "__" && 5079 "expected the name to begin with __"); 5080 return Section.substr(2).str(); 5081 case llvm::Triple::COFF: 5082 assert(Section.substr(0, 2) == "__" && 5083 "expected the name to begin with __"); 5084 return ("." + Section.substr(2) + "$B").str(); 5085 case llvm::Triple::Wasm: 5086 case llvm::Triple::XCOFF: 5087 llvm::report_fatal_error( 5088 "Objective-C support is unimplemented for object file format."); 5089 } 5090 5091 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5092 } 5093 5094 /// EmitImageInfo - Emit the image info marker used to encode some module 5095 /// level information. 5096 /// 5097 /// See: <rdr://4810609&4810587&4810587> 5098 /// struct IMAGE_INFO { 5099 /// unsigned version; 5100 /// unsigned flags; 5101 /// }; 5102 enum ImageInfoFlags { 5103 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5104 eImageInfo_GarbageCollected = (1 << 1), 5105 eImageInfo_GCOnly = (1 << 2), 5106 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5107 5108 // A flag indicating that the module has no instances of a @synthesize of a 5109 // superclass variable. <rdar://problem/6803242> 5110 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5111 eImageInfo_ImageIsSimulated = (1 << 5), 5112 eImageInfo_ClassProperties = (1 << 6) 5113 }; 5114 5115 void CGObjCCommonMac::EmitImageInfo() { 5116 unsigned version = 0; // Version is unused? 5117 std::string Section = 5118 (ObjCABI == 1) 5119 ? "__OBJC,__image_info,regular" 5120 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5121 5122 // Generate module-level named metadata to convey this information to the 5123 // linker and code-gen. 5124 llvm::Module &Mod = CGM.getModule(); 5125 5126 // Add the ObjC ABI version to the module flags. 5127 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5128 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5129 version); 5130 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5131 llvm::MDString::get(VMContext, Section)); 5132 5133 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5134 // Non-GC overrides those files which specify GC. 5135 Mod.addModuleFlag(llvm::Module::Override, 5136 "Objective-C Garbage Collection", (uint32_t)0); 5137 } else { 5138 // Add the ObjC garbage collection value. 5139 Mod.addModuleFlag(llvm::Module::Error, 5140 "Objective-C Garbage Collection", 5141 eImageInfo_GarbageCollected); 5142 5143 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5144 // Add the ObjC GC Only value. 5145 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5146 eImageInfo_GCOnly); 5147 5148 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5149 llvm::Metadata *Ops[2] = { 5150 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5151 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5152 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 5153 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5154 llvm::MDNode::get(VMContext, Ops)); 5155 } 5156 } 5157 5158 // Indicate whether we're compiling this to run on a simulator. 5159 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5160 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5161 eImageInfo_ImageIsSimulated); 5162 5163 // Indicate whether we are generating class properties. 5164 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5165 eImageInfo_ClassProperties); 5166 } 5167 5168 // struct objc_module { 5169 // unsigned long version; 5170 // unsigned long size; 5171 // const char *name; 5172 // Symtab symtab; 5173 // }; 5174 5175 // FIXME: Get from somewhere 5176 static const int ModuleVersion = 7; 5177 5178 void CGObjCMac::EmitModuleInfo() { 5179 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5180 5181 ConstantInitBuilder builder(CGM); 5182 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5183 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5184 values.addInt(ObjCTypes.LongTy, Size); 5185 // This used to be the filename, now it is unused. <rdr://4327263> 5186 values.add(GetClassName(StringRef(""))); 5187 values.add(EmitModuleSymbols()); 5188 CreateMetadataVar("OBJC_MODULES", values, 5189 "__OBJC,__module_info,regular,no_dead_strip", 5190 CGM.getPointerAlign(), true); 5191 } 5192 5193 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5194 unsigned NumClasses = DefinedClasses.size(); 5195 unsigned NumCategories = DefinedCategories.size(); 5196 5197 // Return null if no symbols were defined. 5198 if (!NumClasses && !NumCategories) 5199 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5200 5201 ConstantInitBuilder builder(CGM); 5202 auto values = builder.beginStruct(); 5203 values.addInt(ObjCTypes.LongTy, 0); 5204 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5205 values.addInt(ObjCTypes.ShortTy, NumClasses); 5206 values.addInt(ObjCTypes.ShortTy, NumCategories); 5207 5208 // The runtime expects exactly the list of defined classes followed 5209 // by the list of defined categories, in a single array. 5210 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5211 for (unsigned i=0; i<NumClasses; i++) { 5212 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5213 assert(ID); 5214 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5215 // We are implementing a weak imported interface. Give it external linkage 5216 if (ID->isWeakImported() && !IMP->isWeakImported()) 5217 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5218 5219 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5220 } 5221 for (unsigned i=0; i<NumCategories; i++) 5222 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5223 5224 array.finishAndAddTo(values); 5225 5226 llvm::GlobalVariable *GV = CreateMetadataVar( 5227 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5228 CGM.getPointerAlign(), true); 5229 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5230 } 5231 5232 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5233 IdentifierInfo *II) { 5234 LazySymbols.insert(II); 5235 5236 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5237 5238 if (!Entry) { 5239 llvm::Constant *Casted = 5240 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5241 ObjCTypes.ClassPtrTy); 5242 Entry = CreateMetadataVar( 5243 "OBJC_CLASS_REFERENCES_", Casted, 5244 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5245 CGM.getPointerAlign(), true); 5246 } 5247 5248 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 5249 } 5250 5251 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5252 const ObjCInterfaceDecl *ID) { 5253 // If the class has the objc_runtime_visible attribute, we need to 5254 // use the Objective-C runtime to get the class. 5255 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5256 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5257 5258 IdentifierInfo *RuntimeName = 5259 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5260 return EmitClassRefFromId(CGF, RuntimeName); 5261 } 5262 5263 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5264 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5265 return EmitClassRefFromId(CGF, II); 5266 } 5267 5268 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5269 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5270 } 5271 5272 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5273 CharUnits Align = CGM.getPointerAlign(); 5274 5275 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5276 if (!Entry) { 5277 llvm::Constant *Casted = 5278 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5279 ObjCTypes.SelectorPtrTy); 5280 Entry = CreateMetadataVar( 5281 "OBJC_SELECTOR_REFERENCES_", Casted, 5282 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5283 Entry->setExternallyInitialized(true); 5284 } 5285 5286 return Address(Entry, Align); 5287 } 5288 5289 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5290 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5291 if (!Entry) 5292 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5293 return getConstantGEP(VMContext, Entry, 0, 0); 5294 } 5295 5296 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5297 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5298 I = MethodDefinitions.find(MD); 5299 if (I != MethodDefinitions.end()) 5300 return I->second; 5301 5302 return nullptr; 5303 } 5304 5305 /// GetIvarLayoutName - Returns a unique constant for the given 5306 /// ivar layout bitmap. 5307 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5308 const ObjCCommonTypesHelper &ObjCTypes) { 5309 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5310 } 5311 5312 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5313 CharUnits offset) { 5314 const RecordDecl *RD = RT->getDecl(); 5315 5316 // If this is a union, remember that we had one, because it might mess 5317 // up the ordering of layout entries. 5318 if (RD->isUnion()) 5319 IsDisordered = true; 5320 5321 const ASTRecordLayout *recLayout = nullptr; 5322 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5323 [&](const FieldDecl *field) -> CharUnits { 5324 if (!recLayout) 5325 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5326 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5327 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5328 }); 5329 } 5330 5331 template <class Iterator, class GetOffsetFn> 5332 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5333 CharUnits aggregateOffset, 5334 const GetOffsetFn &getOffset) { 5335 for (; begin != end; ++begin) { 5336 auto field = *begin; 5337 5338 // Skip over bitfields. 5339 if (field->isBitField()) { 5340 continue; 5341 } 5342 5343 // Compute the offset of the field within the aggregate. 5344 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5345 5346 visitField(field, fieldOffset); 5347 } 5348 } 5349 5350 /// Collect layout information for the given fields into IvarsInfo. 5351 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5352 CharUnits fieldOffset) { 5353 QualType fieldType = field->getType(); 5354 5355 // Drill down into arrays. 5356 uint64_t numElts = 1; 5357 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5358 numElts = 0; 5359 fieldType = arrayType->getElementType(); 5360 } 5361 // Unlike incomplete arrays, constant arrays can be nested. 5362 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5363 numElts *= arrayType->getSize().getZExtValue(); 5364 fieldType = arrayType->getElementType(); 5365 } 5366 5367 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5368 5369 // If we ended up with a zero-sized array, we've done what we can do within 5370 // the limits of this layout encoding. 5371 if (numElts == 0) return; 5372 5373 // Recurse if the base element type is a record type. 5374 if (auto recType = fieldType->getAs<RecordType>()) { 5375 size_t oldEnd = IvarsInfo.size(); 5376 5377 visitRecord(recType, fieldOffset); 5378 5379 // If we have an array, replicate the first entry's layout information. 5380 auto numEltEntries = IvarsInfo.size() - oldEnd; 5381 if (numElts != 1 && numEltEntries != 0) { 5382 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5383 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5384 // Copy the last numEltEntries onto the end of the array, adjusting 5385 // each for the element size. 5386 for (size_t i = 0; i != numEltEntries; ++i) { 5387 auto firstEntry = IvarsInfo[oldEnd + i]; 5388 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5389 firstEntry.SizeInWords)); 5390 } 5391 } 5392 } 5393 5394 return; 5395 } 5396 5397 // Classify the element type. 5398 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5399 5400 // If it matches what we're looking for, add an entry. 5401 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5402 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5403 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5404 == CGM.getPointerSize()); 5405 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5406 } 5407 } 5408 5409 /// buildBitmap - This routine does the horsework of taking the offsets of 5410 /// strong/weak references and creating a bitmap. The bitmap is also 5411 /// returned in the given buffer, suitable for being passed to \c dump(). 5412 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5413 llvm::SmallVectorImpl<unsigned char> &buffer) { 5414 // The bitmap is a series of skip/scan instructions, aligned to word 5415 // boundaries. The skip is performed first. 5416 const unsigned char MaxNibble = 0xF; 5417 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5418 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5419 5420 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5421 5422 // Sort the ivar info on byte position in case we encounterred a 5423 // union nested in the ivar list. 5424 if (IsDisordered) { 5425 // This isn't a stable sort, but our algorithm should handle it fine. 5426 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5427 } else { 5428 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5429 } 5430 assert(IvarsInfo.back().Offset < InstanceEnd); 5431 5432 assert(buffer.empty()); 5433 5434 // Skip the next N words. 5435 auto skip = [&](unsigned numWords) { 5436 assert(numWords > 0); 5437 5438 // Try to merge into the previous byte. Since scans happen second, we 5439 // can't do this if it includes a scan. 5440 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5441 unsigned lastSkip = buffer.back() >> SkipShift; 5442 if (lastSkip < MaxNibble) { 5443 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5444 numWords -= claimed; 5445 lastSkip += claimed; 5446 buffer.back() = (lastSkip << SkipShift); 5447 } 5448 } 5449 5450 while (numWords >= MaxNibble) { 5451 buffer.push_back(MaxNibble << SkipShift); 5452 numWords -= MaxNibble; 5453 } 5454 if (numWords) { 5455 buffer.push_back(numWords << SkipShift); 5456 } 5457 }; 5458 5459 // Scan the next N words. 5460 auto scan = [&](unsigned numWords) { 5461 assert(numWords > 0); 5462 5463 // Try to merge into the previous byte. Since scans happen second, we can 5464 // do this even if it includes a skip. 5465 if (!buffer.empty()) { 5466 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5467 if (lastScan < MaxNibble) { 5468 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5469 numWords -= claimed; 5470 lastScan += claimed; 5471 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5472 } 5473 } 5474 5475 while (numWords >= MaxNibble) { 5476 buffer.push_back(MaxNibble << ScanShift); 5477 numWords -= MaxNibble; 5478 } 5479 if (numWords) { 5480 buffer.push_back(numWords << ScanShift); 5481 } 5482 }; 5483 5484 // One past the end of the last scan. 5485 unsigned endOfLastScanInWords = 0; 5486 const CharUnits WordSize = CGM.getPointerSize(); 5487 5488 // Consider all the scan requests. 5489 for (auto &request : IvarsInfo) { 5490 CharUnits beginOfScan = request.Offset - InstanceBegin; 5491 5492 // Ignore scan requests that don't start at an even multiple of the 5493 // word size. We can't encode them. 5494 if ((beginOfScan % WordSize) != 0) continue; 5495 5496 // Ignore scan requests that start before the instance start. 5497 // This assumes that scans never span that boundary. The boundary 5498 // isn't the true start of the ivars, because in the fragile-ARC case 5499 // it's rounded up to word alignment, but the test above should leave 5500 // us ignoring that possibility. 5501 if (beginOfScan.isNegative()) { 5502 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5503 continue; 5504 } 5505 5506 unsigned beginOfScanInWords = beginOfScan / WordSize; 5507 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5508 5509 // If the scan starts some number of words after the last one ended, 5510 // skip forward. 5511 if (beginOfScanInWords > endOfLastScanInWords) { 5512 skip(beginOfScanInWords - endOfLastScanInWords); 5513 5514 // Otherwise, start scanning where the last left off. 5515 } else { 5516 beginOfScanInWords = endOfLastScanInWords; 5517 5518 // If that leaves us with nothing to scan, ignore this request. 5519 if (beginOfScanInWords >= endOfScanInWords) continue; 5520 } 5521 5522 // Scan to the end of the request. 5523 assert(beginOfScanInWords < endOfScanInWords); 5524 scan(endOfScanInWords - beginOfScanInWords); 5525 endOfLastScanInWords = endOfScanInWords; 5526 } 5527 5528 if (buffer.empty()) 5529 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5530 5531 // For GC layouts, emit a skip to the end of the allocation so that we 5532 // have precise information about the entire thing. This isn't useful 5533 // or necessary for the ARC-style layout strings. 5534 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5535 unsigned lastOffsetInWords = 5536 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5537 if (lastOffsetInWords > endOfLastScanInWords) { 5538 skip(lastOffsetInWords - endOfLastScanInWords); 5539 } 5540 } 5541 5542 // Null terminate the string. 5543 buffer.push_back(0); 5544 5545 auto *Entry = CGObjC.CreateCStringLiteral( 5546 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5547 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5548 } 5549 5550 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5551 /// implementation for the __strong or __weak case. 5552 /// The layout map displays which words in ivar list must be skipped 5553 /// and which must be scanned by GC (see below). String is built of bytes. 5554 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5555 /// of words to skip and right nibble is count of words to scan. So, each 5556 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5557 /// represented by a 0x00 byte which also ends the string. 5558 /// 1. when ForStrongLayout is true, following ivars are scanned: 5559 /// - id, Class 5560 /// - object * 5561 /// - __strong anything 5562 /// 5563 /// 2. When ForStrongLayout is false, following ivars are scanned: 5564 /// - __weak anything 5565 /// 5566 llvm::Constant * 5567 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5568 CharUnits beginOffset, CharUnits endOffset, 5569 bool ForStrongLayout, bool HasMRCWeakIvars) { 5570 // If this is MRC, and we're either building a strong layout or there 5571 // are no weak ivars, bail out early. 5572 llvm::Type *PtrTy = CGM.Int8PtrTy; 5573 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5574 !CGM.getLangOpts().ObjCAutoRefCount && 5575 (ForStrongLayout || !HasMRCWeakIvars)) 5576 return llvm::Constant::getNullValue(PtrTy); 5577 5578 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5579 SmallVector<const ObjCIvarDecl*, 32> ivars; 5580 5581 // GC layout strings include the complete object layout, possibly 5582 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5583 // up. 5584 // 5585 // ARC layout strings only include the class's ivars. In non-fragile 5586 // runtimes, that means starting at InstanceStart, rounded up to word 5587 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5588 // starting at the offset of the first ivar, rounded up to word alignment. 5589 // 5590 // MRC weak layout strings follow the ARC style. 5591 CharUnits baseOffset; 5592 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5593 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5594 IVD; IVD = IVD->getNextIvar()) 5595 ivars.push_back(IVD); 5596 5597 if (isNonFragileABI()) { 5598 baseOffset = beginOffset; // InstanceStart 5599 } else if (!ivars.empty()) { 5600 baseOffset = 5601 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5602 } else { 5603 baseOffset = CharUnits::Zero(); 5604 } 5605 5606 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5607 } 5608 else { 5609 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5610 5611 baseOffset = CharUnits::Zero(); 5612 } 5613 5614 if (ivars.empty()) 5615 return llvm::Constant::getNullValue(PtrTy); 5616 5617 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5618 5619 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5620 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5621 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5622 }); 5623 5624 if (!builder.hasBitmapData()) 5625 return llvm::Constant::getNullValue(PtrTy); 5626 5627 llvm::SmallVector<unsigned char, 4> buffer; 5628 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5629 5630 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5631 printf("\n%s ivar layout for class '%s': ", 5632 ForStrongLayout ? "strong" : "weak", 5633 OMD->getClassInterface()->getName().str().c_str()); 5634 builder.dump(buffer); 5635 } 5636 return C; 5637 } 5638 5639 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5640 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5641 // FIXME: Avoid std::string in "Sel.getAsString()" 5642 if (!Entry) 5643 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5644 return getConstantGEP(VMContext, Entry, 0, 0); 5645 } 5646 5647 // FIXME: Merge into a single cstring creation function. 5648 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5649 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5650 } 5651 5652 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5653 std::string TypeStr; 5654 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5655 5656 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5657 if (!Entry) 5658 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5659 return getConstantGEP(VMContext, Entry, 0, 0); 5660 } 5661 5662 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5663 bool Extended) { 5664 std::string TypeStr = 5665 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5666 5667 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5668 if (!Entry) 5669 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5670 return getConstantGEP(VMContext, Entry, 0, 0); 5671 } 5672 5673 // FIXME: Merge into a single cstring creation function. 5674 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5675 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5676 if (!Entry) 5677 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5678 return getConstantGEP(VMContext, Entry, 0, 0); 5679 } 5680 5681 // FIXME: Merge into a single cstring creation function. 5682 // FIXME: This Decl should be more precise. 5683 llvm::Constant * 5684 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5685 const Decl *Container) { 5686 std::string TypeStr = 5687 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5688 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5689 } 5690 5691 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5692 const ObjCContainerDecl *CD, 5693 SmallVectorImpl<char> &Name, 5694 bool ignoreCategoryNamespace) { 5695 llvm::raw_svector_ostream OS(Name); 5696 assert (CD && "Missing container decl in GetNameForMethod"); 5697 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5698 << '[' << CD->getName(); 5699 if (!ignoreCategoryNamespace) 5700 if (const ObjCCategoryImplDecl *CID = 5701 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5702 OS << '(' << *CID << ')'; 5703 OS << ' ' << D->getSelector().getAsString() << ']'; 5704 } 5705 5706 void CGObjCMac::FinishModule() { 5707 EmitModuleInfo(); 5708 5709 // Emit the dummy bodies for any protocols which were referenced but 5710 // never defined. 5711 for (auto &entry : Protocols) { 5712 llvm::GlobalVariable *global = entry.second; 5713 if (global->hasInitializer()) 5714 continue; 5715 5716 ConstantInitBuilder builder(CGM); 5717 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5718 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5719 values.add(GetClassName(entry.first->getName())); 5720 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5721 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5722 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5723 values.finishAndSetAsInitializer(global); 5724 CGM.addCompilerUsedGlobal(global); 5725 } 5726 5727 // Add assembler directives to add lazy undefined symbol references 5728 // for classes which are referenced but not defined. This is 5729 // important for correct linker interaction. 5730 // 5731 // FIXME: It would be nice if we had an LLVM construct for this. 5732 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5733 CGM.getTriple().isOSBinFormatMachO()) { 5734 SmallString<256> Asm; 5735 Asm += CGM.getModule().getModuleInlineAsm(); 5736 if (!Asm.empty() && Asm.back() != '\n') 5737 Asm += '\n'; 5738 5739 llvm::raw_svector_ostream OS(Asm); 5740 for (const auto *Sym : DefinedSymbols) 5741 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5742 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5743 for (const auto *Sym : LazySymbols) 5744 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5745 for (const auto &Category : DefinedCategoryNames) 5746 OS << "\t.objc_category_name_" << Category << "=0\n" 5747 << "\t.globl .objc_category_name_" << Category << "\n"; 5748 5749 CGM.getModule().setModuleInlineAsm(OS.str()); 5750 } 5751 } 5752 5753 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5754 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5755 ObjCEmptyVtableVar(nullptr) { 5756 ObjCABI = 2; 5757 } 5758 5759 /* *** */ 5760 5761 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5762 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5763 { 5764 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5765 ASTContext &Ctx = CGM.getContext(); 5766 5767 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5768 IntTy = CGM.IntTy; 5769 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5770 Int8PtrTy = CGM.Int8PtrTy; 5771 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5772 5773 // arm64 targets use "int" ivar offset variables. All others, 5774 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5775 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5776 IvarOffsetVarTy = IntTy; 5777 else 5778 IvarOffsetVarTy = LongTy; 5779 5780 ObjectPtrTy = 5781 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5782 PtrObjectPtrTy = 5783 llvm::PointerType::getUnqual(ObjectPtrTy); 5784 SelectorPtrTy = 5785 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5786 5787 // I'm not sure I like this. The implicit coordination is a bit 5788 // gross. We should solve this in a reasonable fashion because this 5789 // is a pretty common task (match some runtime data structure with 5790 // an LLVM data structure). 5791 5792 // FIXME: This is leaked. 5793 // FIXME: Merge with rewriter code? 5794 5795 // struct _objc_super { 5796 // id self; 5797 // Class cls; 5798 // } 5799 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5800 Ctx.getTranslationUnitDecl(), 5801 SourceLocation(), SourceLocation(), 5802 &Ctx.Idents.get("_objc_super")); 5803 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5804 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5805 false, ICIS_NoInit)); 5806 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5807 nullptr, Ctx.getObjCClassType(), nullptr, 5808 nullptr, false, ICIS_NoInit)); 5809 RD->completeDefinition(); 5810 5811 SuperCTy = Ctx.getTagDeclType(RD); 5812 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5813 5814 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5815 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5816 5817 // struct _prop_t { 5818 // char *name; 5819 // char *attributes; 5820 // } 5821 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5822 5823 // struct _prop_list_t { 5824 // uint32_t entsize; // sizeof(struct _prop_t) 5825 // uint32_t count_of_properties; 5826 // struct _prop_t prop_list[count_of_properties]; 5827 // } 5828 PropertyListTy = llvm::StructType::create( 5829 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5830 // struct _prop_list_t * 5831 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5832 5833 // struct _objc_method { 5834 // SEL _cmd; 5835 // char *method_type; 5836 // char *_imp; 5837 // } 5838 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5839 Int8PtrTy, Int8PtrTy); 5840 5841 // struct _objc_cache * 5842 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5843 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5844 } 5845 5846 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5847 : ObjCCommonTypesHelper(cgm) { 5848 // struct _objc_method_description { 5849 // SEL name; 5850 // char *types; 5851 // } 5852 MethodDescriptionTy = llvm::StructType::create( 5853 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5854 5855 // struct _objc_method_description_list { 5856 // int count; 5857 // struct _objc_method_description[1]; 5858 // } 5859 MethodDescriptionListTy = 5860 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5861 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5862 5863 // struct _objc_method_description_list * 5864 MethodDescriptionListPtrTy = 5865 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5866 5867 // Protocol description structures 5868 5869 // struct _objc_protocol_extension { 5870 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5871 // struct _objc_method_description_list *optional_instance_methods; 5872 // struct _objc_method_description_list *optional_class_methods; 5873 // struct _objc_property_list *instance_properties; 5874 // const char ** extendedMethodTypes; 5875 // struct _objc_property_list *class_properties; 5876 // } 5877 ProtocolExtensionTy = llvm::StructType::create( 5878 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5879 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5880 PropertyListPtrTy); 5881 5882 // struct _objc_protocol_extension * 5883 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5884 5885 // Handle recursive construction of Protocol and ProtocolList types 5886 5887 ProtocolTy = 5888 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5889 5890 ProtocolListTy = 5891 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5892 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5893 llvm::ArrayType::get(ProtocolTy, 0)); 5894 5895 // struct _objc_protocol { 5896 // struct _objc_protocol_extension *isa; 5897 // char *protocol_name; 5898 // struct _objc_protocol **_objc_protocol_list; 5899 // struct _objc_method_description_list *instance_methods; 5900 // struct _objc_method_description_list *class_methods; 5901 // } 5902 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5903 llvm::PointerType::getUnqual(ProtocolListTy), 5904 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5905 5906 // struct _objc_protocol_list * 5907 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5908 5909 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5910 5911 // Class description structures 5912 5913 // struct _objc_ivar { 5914 // char *ivar_name; 5915 // char *ivar_type; 5916 // int ivar_offset; 5917 // } 5918 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5919 IntTy); 5920 5921 // struct _objc_ivar_list * 5922 IvarListTy = 5923 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5924 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5925 5926 // struct _objc_method_list * 5927 MethodListTy = 5928 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5929 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5930 5931 // struct _objc_class_extension * 5932 ClassExtensionTy = llvm::StructType::create( 5933 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5934 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5935 5936 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5937 5938 // struct _objc_class { 5939 // Class isa; 5940 // Class super_class; 5941 // char *name; 5942 // long version; 5943 // long info; 5944 // long instance_size; 5945 // struct _objc_ivar_list *ivars; 5946 // struct _objc_method_list *methods; 5947 // struct _objc_cache *cache; 5948 // struct _objc_protocol_list *protocols; 5949 // char *ivar_layout; 5950 // struct _objc_class_ext *ext; 5951 // }; 5952 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5953 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5954 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5955 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5956 5957 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5958 5959 // struct _objc_category { 5960 // char *category_name; 5961 // char *class_name; 5962 // struct _objc_method_list *instance_method; 5963 // struct _objc_method_list *class_method; 5964 // struct _objc_protocol_list *protocols; 5965 // uint32_t size; // sizeof(struct _objc_category) 5966 // struct _objc_property_list *instance_properties;// category's @property 5967 // struct _objc_property_list *class_properties; 5968 // } 5969 CategoryTy = llvm::StructType::create( 5970 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5971 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5972 PropertyListPtrTy); 5973 5974 // Global metadata structures 5975 5976 // struct _objc_symtab { 5977 // long sel_ref_cnt; 5978 // SEL *refs; 5979 // short cls_def_cnt; 5980 // short cat_def_cnt; 5981 // char *defs[cls_def_cnt + cat_def_cnt]; 5982 // } 5983 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5984 SelectorPtrTy, ShortTy, ShortTy, 5985 llvm::ArrayType::get(Int8PtrTy, 0)); 5986 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5987 5988 // struct _objc_module { 5989 // long version; 5990 // long size; // sizeof(struct _objc_module) 5991 // char *name; 5992 // struct _objc_symtab* symtab; 5993 // } 5994 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5995 Int8PtrTy, SymtabPtrTy); 5996 5997 // FIXME: This is the size of the setjmp buffer and should be target 5998 // specific. 18 is what's used on 32-bit X86. 5999 uint64_t SetJmpBufferSize = 18; 6000 6001 // Exceptions 6002 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 6003 6004 ExceptionDataTy = llvm::StructType::create( 6005 "struct._objc_exception_data", 6006 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 6007 } 6008 6009 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 6010 : ObjCCommonTypesHelper(cgm) { 6011 // struct _method_list_t { 6012 // uint32_t entsize; // sizeof(struct _objc_method) 6013 // uint32_t method_count; 6014 // struct _objc_method method_list[method_count]; 6015 // } 6016 MethodListnfABITy = 6017 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 6018 llvm::ArrayType::get(MethodTy, 0)); 6019 // struct method_list_t * 6020 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 6021 6022 // struct _protocol_t { 6023 // id isa; // NULL 6024 // const char * const protocol_name; 6025 // const struct _protocol_list_t * protocol_list; // super protocols 6026 // const struct method_list_t * const instance_methods; 6027 // const struct method_list_t * const class_methods; 6028 // const struct method_list_t *optionalInstanceMethods; 6029 // const struct method_list_t *optionalClassMethods; 6030 // const struct _prop_list_t * properties; 6031 // const uint32_t size; // sizeof(struct _protocol_t) 6032 // const uint32_t flags; // = 0 6033 // const char ** extendedMethodTypes; 6034 // const char *demangledName; 6035 // const struct _prop_list_t * class_properties; 6036 // } 6037 6038 // Holder for struct _protocol_list_t * 6039 ProtocolListnfABITy = 6040 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6041 6042 ProtocolnfABITy = llvm::StructType::create( 6043 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6044 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6045 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6046 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6047 PropertyListPtrTy); 6048 6049 // struct _protocol_t* 6050 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6051 6052 // struct _protocol_list_t { 6053 // long protocol_count; // Note, this is 32/64 bit 6054 // struct _protocol_t *[protocol_count]; 6055 // } 6056 ProtocolListnfABITy->setBody(LongTy, 6057 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6058 6059 // struct _objc_protocol_list* 6060 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6061 6062 // struct _ivar_t { 6063 // unsigned [long] int *offset; // pointer to ivar offset location 6064 // char *name; 6065 // char *type; 6066 // uint32_t alignment; 6067 // uint32_t size; 6068 // } 6069 IvarnfABITy = llvm::StructType::create( 6070 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6071 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6072 6073 // struct _ivar_list_t { 6074 // uint32 entsize; // sizeof(struct _ivar_t) 6075 // uint32 count; 6076 // struct _iver_t list[count]; 6077 // } 6078 IvarListnfABITy = 6079 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6080 llvm::ArrayType::get(IvarnfABITy, 0)); 6081 6082 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6083 6084 // struct _class_ro_t { 6085 // uint32_t const flags; 6086 // uint32_t const instanceStart; 6087 // uint32_t const instanceSize; 6088 // uint32_t const reserved; // only when building for 64bit targets 6089 // const uint8_t * const ivarLayout; 6090 // const char *const name; 6091 // const struct _method_list_t * const baseMethods; 6092 // const struct _objc_protocol_list *const baseProtocols; 6093 // const struct _ivar_list_t *const ivars; 6094 // const uint8_t * const weakIvarLayout; 6095 // const struct _prop_list_t * const properties; 6096 // } 6097 6098 // FIXME. Add 'reserved' field in 64bit abi mode! 6099 ClassRonfABITy = llvm::StructType::create( 6100 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6101 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6102 Int8PtrTy, PropertyListPtrTy); 6103 6104 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6105 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6106 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6107 ->getPointerTo(); 6108 6109 // struct _class_t { 6110 // struct _class_t *isa; 6111 // struct _class_t * const superclass; 6112 // void *cache; 6113 // IMP *vtable; 6114 // struct class_ro_t *ro; 6115 // } 6116 6117 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6118 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6119 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6120 llvm::PointerType::getUnqual(ImpnfABITy), 6121 llvm::PointerType::getUnqual(ClassRonfABITy)); 6122 6123 // LLVM for struct _class_t * 6124 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6125 6126 // struct _category_t { 6127 // const char * const name; 6128 // struct _class_t *const cls; 6129 // const struct _method_list_t * const instance_methods; 6130 // const struct _method_list_t * const class_methods; 6131 // const struct _protocol_list_t * const protocols; 6132 // const struct _prop_list_t * const properties; 6133 // const struct _prop_list_t * const class_properties; 6134 // const uint32_t size; 6135 // } 6136 CategorynfABITy = llvm::StructType::create( 6137 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6138 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6139 PropertyListPtrTy, IntTy); 6140 6141 // New types for nonfragile abi messaging. 6142 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6143 ASTContext &Ctx = CGM.getContext(); 6144 6145 // MessageRefTy - LLVM for: 6146 // struct _message_ref_t { 6147 // IMP messenger; 6148 // SEL name; 6149 // }; 6150 6151 // First the clang type for struct _message_ref_t 6152 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6153 Ctx.getTranslationUnitDecl(), 6154 SourceLocation(), SourceLocation(), 6155 &Ctx.Idents.get("_message_ref_t")); 6156 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6157 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6158 ICIS_NoInit)); 6159 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6160 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6161 false, ICIS_NoInit)); 6162 RD->completeDefinition(); 6163 6164 MessageRefCTy = Ctx.getTagDeclType(RD); 6165 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6166 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6167 6168 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6169 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6170 6171 // SuperMessageRefTy - LLVM for: 6172 // struct _super_message_ref_t { 6173 // SUPER_IMP messenger; 6174 // SEL name; 6175 // }; 6176 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6177 ImpnfABITy, SelectorPtrTy); 6178 6179 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6180 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6181 6182 6183 // struct objc_typeinfo { 6184 // const void** vtable; // objc_ehtype_vtable + 2 6185 // const char* name; // c++ typeinfo string 6186 // Class cls; 6187 // }; 6188 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6189 llvm::PointerType::getUnqual(Int8PtrTy), 6190 Int8PtrTy, ClassnfABIPtrTy); 6191 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6192 } 6193 6194 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6195 FinishNonFragileABIModule(); 6196 6197 return nullptr; 6198 } 6199 6200 void CGObjCNonFragileABIMac::AddModuleClassList( 6201 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6202 StringRef SectionName) { 6203 unsigned NumClasses = Container.size(); 6204 6205 if (!NumClasses) 6206 return; 6207 6208 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6209 for (unsigned i=0; i<NumClasses; i++) 6210 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6211 ObjCTypes.Int8PtrTy); 6212 llvm::Constant *Init = 6213 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6214 Symbols.size()), 6215 Symbols); 6216 6217 // Section name is obtained by calling GetSectionName, which returns 6218 // sections in the __DATA segment on MachO. 6219 assert((!CGM.getTriple().isOSBinFormatMachO() || 6220 SectionName.startswith("__DATA")) && 6221 "SectionName expected to start with __DATA on MachO"); 6222 llvm::GlobalValue::LinkageTypes LT = 6223 getLinkageTypeForObjCMetadata(CGM, SectionName); 6224 llvm::GlobalVariable *GV = 6225 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, LT, Init, 6226 SymbolName); 6227 GV->setAlignment( 6228 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6229 GV->setSection(SectionName); 6230 CGM.addCompilerUsedGlobal(GV); 6231 } 6232 6233 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6234 // nonfragile abi has no module definition. 6235 6236 // Build list of all implemented class addresses in array 6237 // L_OBJC_LABEL_CLASS_$. 6238 6239 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6240 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6241 assert(ID); 6242 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6243 // We are implementing a weak imported interface. Give it external linkage 6244 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6245 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6246 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6247 } 6248 } 6249 6250 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6251 GetSectionName("__objc_classlist", 6252 "regular,no_dead_strip")); 6253 6254 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6255 GetSectionName("__objc_nlclslist", 6256 "regular,no_dead_strip")); 6257 6258 // Build list of all implemented category addresses in array 6259 // L_OBJC_LABEL_CATEGORY_$. 6260 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6261 GetSectionName("__objc_catlist", 6262 "regular,no_dead_strip")); 6263 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6264 GetSectionName("__objc_catlist2", 6265 "regular,no_dead_strip")); 6266 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6267 GetSectionName("__objc_nlcatlist", 6268 "regular,no_dead_strip")); 6269 6270 EmitImageInfo(); 6271 } 6272 6273 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6274 /// VTableDispatchMethods; false otherwise. What this means is that 6275 /// except for the 19 selectors in the list, we generate 32bit-style 6276 /// message dispatch call for all the rest. 6277 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6278 // At various points we've experimented with using vtable-based 6279 // dispatch for all methods. 6280 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6281 case CodeGenOptions::Legacy: 6282 return false; 6283 case CodeGenOptions::NonLegacy: 6284 return true; 6285 case CodeGenOptions::Mixed: 6286 break; 6287 } 6288 6289 // If so, see whether this selector is in the white-list of things which must 6290 // use the new dispatch convention. We lazily build a dense set for this. 6291 if (VTableDispatchMethods.empty()) { 6292 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6293 VTableDispatchMethods.insert(GetNullarySelector("class")); 6294 VTableDispatchMethods.insert(GetNullarySelector("self")); 6295 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6296 VTableDispatchMethods.insert(GetNullarySelector("length")); 6297 VTableDispatchMethods.insert(GetNullarySelector("count")); 6298 6299 // These are vtable-based if GC is disabled. 6300 // Optimistically use vtable dispatch for hybrid compiles. 6301 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6302 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6303 VTableDispatchMethods.insert(GetNullarySelector("release")); 6304 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6305 } 6306 6307 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6308 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6309 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6310 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6311 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6312 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6313 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6314 6315 // These are vtable-based if GC is enabled. 6316 // Optimistically use vtable dispatch for hybrid compiles. 6317 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6318 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6319 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6320 6321 // "countByEnumeratingWithState:objects:count" 6322 IdentifierInfo *KeyIdents[] = { 6323 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6324 &CGM.getContext().Idents.get("objects"), 6325 &CGM.getContext().Idents.get("count") 6326 }; 6327 VTableDispatchMethods.insert( 6328 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6329 } 6330 } 6331 6332 return VTableDispatchMethods.count(Sel); 6333 } 6334 6335 /// BuildClassRoTInitializer - generate meta-data for: 6336 /// struct _class_ro_t { 6337 /// uint32_t const flags; 6338 /// uint32_t const instanceStart; 6339 /// uint32_t const instanceSize; 6340 /// uint32_t const reserved; // only when building for 64bit targets 6341 /// const uint8_t * const ivarLayout; 6342 /// const char *const name; 6343 /// const struct _method_list_t * const baseMethods; 6344 /// const struct _protocol_list_t *const baseProtocols; 6345 /// const struct _ivar_list_t *const ivars; 6346 /// const uint8_t * const weakIvarLayout; 6347 /// const struct _prop_list_t * const properties; 6348 /// } 6349 /// 6350 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6351 unsigned flags, 6352 unsigned InstanceStart, 6353 unsigned InstanceSize, 6354 const ObjCImplementationDecl *ID) { 6355 std::string ClassName = ID->getObjCRuntimeNameAsString(); 6356 6357 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6358 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6359 6360 bool hasMRCWeak = false; 6361 if (CGM.getLangOpts().ObjCAutoRefCount) 6362 flags |= NonFragileABI_Class_CompiledByARC; 6363 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6364 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6365 6366 ConstantInitBuilder builder(CGM); 6367 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6368 6369 values.addInt(ObjCTypes.IntTy, flags); 6370 values.addInt(ObjCTypes.IntTy, InstanceStart); 6371 values.addInt(ObjCTypes.IntTy, InstanceSize); 6372 values.add((flags & NonFragileABI_Class_Meta) 6373 ? GetIvarLayoutName(nullptr, ObjCTypes) 6374 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6375 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6376 6377 // const struct _method_list_t * const baseMethods; 6378 SmallVector<const ObjCMethodDecl*, 16> methods; 6379 if (flags & NonFragileABI_Class_Meta) { 6380 for (const auto *MD : ID->class_methods()) 6381 if (!MD->isDirectMethod()) 6382 methods.push_back(MD); 6383 } else { 6384 for (const auto *MD : ID->instance_methods()) 6385 if (!MD->isDirectMethod()) 6386 methods.push_back(MD); 6387 } 6388 6389 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6390 (flags & NonFragileABI_Class_Meta) 6391 ? MethodListType::ClassMethods 6392 : MethodListType::InstanceMethods, 6393 methods)); 6394 6395 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6396 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6397 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6398 + OID->getObjCRuntimeNameAsString(), 6399 OID->all_referenced_protocol_begin(), 6400 OID->all_referenced_protocol_end())); 6401 6402 if (flags & NonFragileABI_Class_Meta) { 6403 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6404 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6405 values.add(EmitPropertyList( 6406 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6407 ID, ID->getClassInterface(), ObjCTypes, true)); 6408 } else { 6409 values.add(EmitIvarList(ID)); 6410 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6411 values.add(EmitPropertyList( 6412 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6413 ID, ID->getClassInterface(), ObjCTypes, false)); 6414 } 6415 6416 llvm::SmallString<64> roLabel; 6417 llvm::raw_svector_ostream(roLabel) 6418 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6419 : "_OBJC_CLASS_RO_$_") 6420 << ClassName; 6421 6422 return finishAndCreateGlobal(values, roLabel, CGM); 6423 } 6424 6425 /// Build the metaclass object for a class. 6426 /// 6427 /// struct _class_t { 6428 /// struct _class_t *isa; 6429 /// struct _class_t * const superclass; 6430 /// void *cache; 6431 /// IMP *vtable; 6432 /// struct class_ro_t *ro; 6433 /// } 6434 /// 6435 llvm::GlobalVariable * 6436 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6437 bool isMetaclass, 6438 llvm::Constant *IsAGV, 6439 llvm::Constant *SuperClassGV, 6440 llvm::Constant *ClassRoGV, 6441 bool HiddenVisibility) { 6442 ConstantInitBuilder builder(CGM); 6443 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6444 values.add(IsAGV); 6445 if (SuperClassGV) { 6446 values.add(SuperClassGV); 6447 } else { 6448 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6449 } 6450 values.add(ObjCEmptyCacheVar); 6451 values.add(ObjCEmptyVtableVar); 6452 values.add(ClassRoGV); 6453 6454 llvm::GlobalVariable *GV = 6455 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6456 values.finishAndSetAsInitializer(GV); 6457 6458 if (CGM.getTriple().isOSBinFormatMachO()) 6459 GV->setSection("__DATA, __objc_data"); 6460 GV->setAlignment(llvm::Align( 6461 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6462 if (!CGM.getTriple().isOSBinFormatCOFF()) 6463 if (HiddenVisibility) 6464 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6465 return GV; 6466 } 6467 6468 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6469 const ObjCImplDecl *OD) const { 6470 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6471 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6472 OD->hasAttr<ObjCNonLazyClassAttr>(); 6473 } 6474 6475 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6476 uint32_t &InstanceStart, 6477 uint32_t &InstanceSize) { 6478 const ASTRecordLayout &RL = 6479 CGM.getContext().getASTObjCImplementationLayout(OID); 6480 6481 // InstanceSize is really instance end. 6482 InstanceSize = RL.getDataSize().getQuantity(); 6483 6484 // If there are no fields, the start is the same as the end. 6485 if (!RL.getFieldCount()) 6486 InstanceStart = InstanceSize; 6487 else 6488 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6489 } 6490 6491 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6492 StringRef Name) { 6493 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6494 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6495 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6496 6497 const VarDecl *VD = nullptr; 6498 for (const auto &Result : DC->lookup(&II)) 6499 if ((VD = dyn_cast<VarDecl>(Result))) 6500 break; 6501 6502 if (!VD) 6503 return llvm::GlobalValue::DLLImportStorageClass; 6504 if (VD->hasAttr<DLLExportAttr>()) 6505 return llvm::GlobalValue::DLLExportStorageClass; 6506 if (VD->hasAttr<DLLImportAttr>()) 6507 return llvm::GlobalValue::DLLImportStorageClass; 6508 return llvm::GlobalValue::DefaultStorageClass; 6509 } 6510 6511 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6512 if (!ObjCEmptyCacheVar) { 6513 ObjCEmptyCacheVar = 6514 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6515 llvm::GlobalValue::ExternalLinkage, nullptr, 6516 "_objc_empty_cache"); 6517 if (CGM.getTriple().isOSBinFormatCOFF()) 6518 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6519 6520 // Only OS X with deployment version <10.9 use the empty vtable symbol 6521 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6522 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6523 ObjCEmptyVtableVar = 6524 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6525 llvm::GlobalValue::ExternalLinkage, nullptr, 6526 "_objc_empty_vtable"); 6527 else 6528 ObjCEmptyVtableVar = 6529 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6530 } 6531 6532 // FIXME: Is this correct (that meta class size is never computed)? 6533 uint32_t InstanceStart = 6534 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6535 uint32_t InstanceSize = InstanceStart; 6536 uint32_t flags = NonFragileABI_Class_Meta; 6537 6538 llvm::Constant *SuperClassGV, *IsAGV; 6539 6540 const auto *CI = ID->getClassInterface(); 6541 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6542 6543 // Build the flags for the metaclass. 6544 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6545 ? !CI->hasAttr<DLLExportAttr>() 6546 : CI->getVisibility() == HiddenVisibility; 6547 if (classIsHidden) 6548 flags |= NonFragileABI_Class_Hidden; 6549 6550 // FIXME: why is this flag set on the metaclass? 6551 // ObjC metaclasses have no fields and don't really get constructed. 6552 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6553 flags |= NonFragileABI_Class_HasCXXStructors; 6554 if (!ID->hasNonZeroConstructors()) 6555 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6556 } 6557 6558 if (!CI->getSuperClass()) { 6559 // class is root 6560 flags |= NonFragileABI_Class_Root; 6561 6562 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6563 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6564 } else { 6565 // Has a root. Current class is not a root. 6566 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6567 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6568 Root = Super; 6569 6570 const auto *Super = CI->getSuperClass(); 6571 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6572 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6573 } 6574 6575 llvm::GlobalVariable *CLASS_RO_GV = 6576 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6577 6578 llvm::GlobalVariable *MetaTClass = 6579 BuildClassObject(CI, /*metaclass*/ true, 6580 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6581 CGM.setGVProperties(MetaTClass, CI); 6582 DefinedMetaClasses.push_back(MetaTClass); 6583 6584 // Metadata for the class 6585 flags = 0; 6586 if (classIsHidden) 6587 flags |= NonFragileABI_Class_Hidden; 6588 6589 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6590 flags |= NonFragileABI_Class_HasCXXStructors; 6591 6592 // Set a flag to enable a runtime optimization when a class has 6593 // fields that require destruction but which don't require 6594 // anything except zero-initialization during construction. This 6595 // is most notably true of __strong and __weak types, but you can 6596 // also imagine there being C++ types with non-trivial default 6597 // constructors that merely set all fields to null. 6598 if (!ID->hasNonZeroConstructors()) 6599 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6600 } 6601 6602 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6603 flags |= NonFragileABI_Class_Exception; 6604 6605 if (!CI->getSuperClass()) { 6606 flags |= NonFragileABI_Class_Root; 6607 SuperClassGV = nullptr; 6608 } else { 6609 // Has a root. Current class is not a root. 6610 const auto *Super = CI->getSuperClass(); 6611 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6612 } 6613 6614 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6615 CLASS_RO_GV = 6616 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6617 6618 llvm::GlobalVariable *ClassMD = 6619 BuildClassObject(CI, /*metaclass*/ false, 6620 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6621 CGM.setGVProperties(ClassMD, CI); 6622 DefinedClasses.push_back(ClassMD); 6623 ImplementedClasses.push_back(CI); 6624 6625 // Determine if this class is also "non-lazy". 6626 if (ImplementationIsNonLazy(ID)) 6627 DefinedNonLazyClasses.push_back(ClassMD); 6628 6629 // Force the definition of the EHType if necessary. 6630 if (flags & NonFragileABI_Class_Exception) 6631 (void) GetInterfaceEHType(CI, ForDefinition); 6632 // Make sure method definition entries are all clear for next implementation. 6633 MethodDefinitions.clear(); 6634 } 6635 6636 /// GenerateProtocolRef - This routine is called to generate code for 6637 /// a protocol reference expression; as in: 6638 /// @code 6639 /// @protocol(Proto1); 6640 /// @endcode 6641 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6642 /// which will hold address of the protocol meta-data. 6643 /// 6644 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6645 const ObjCProtocolDecl *PD) { 6646 6647 // This routine is called for @protocol only. So, we must build definition 6648 // of protocol's meta-data (not a reference to it!) 6649 // 6650 llvm::Constant *Init = 6651 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6652 ObjCTypes.getExternalProtocolPtrTy()); 6653 6654 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6655 ProtocolName += PD->getObjCRuntimeNameAsString(); 6656 6657 CharUnits Align = CGF.getPointerAlign(); 6658 6659 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6660 if (PTGV) 6661 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6662 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6663 llvm::GlobalValue::WeakAnyLinkage, Init, 6664 ProtocolName); 6665 PTGV->setSection(GetSectionName("__objc_protorefs", 6666 "coalesced,no_dead_strip")); 6667 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6668 PTGV->setAlignment(Align.getAsAlign()); 6669 if (!CGM.getTriple().isOSBinFormatMachO()) 6670 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6671 CGM.addUsedGlobal(PTGV); 6672 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6673 } 6674 6675 /// GenerateCategory - Build metadata for a category implementation. 6676 /// struct _category_t { 6677 /// const char * const name; 6678 /// struct _class_t *const cls; 6679 /// const struct _method_list_t * const instance_methods; 6680 /// const struct _method_list_t * const class_methods; 6681 /// const struct _protocol_list_t * const protocols; 6682 /// const struct _prop_list_t * const properties; 6683 /// const struct _prop_list_t * const class_properties; 6684 /// const uint32_t size; 6685 /// } 6686 /// 6687 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6688 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6689 const char *Prefix = "_OBJC_$_CATEGORY_"; 6690 6691 llvm::SmallString<64> ExtCatName(Prefix); 6692 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6693 ExtCatName += "_$_"; 6694 ExtCatName += OCD->getNameAsString(); 6695 6696 ConstantInitBuilder builder(CGM); 6697 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6698 values.add(GetClassName(OCD->getIdentifier()->getName())); 6699 // meta-class entry symbol 6700 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6701 std::string listName = 6702 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6703 6704 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6705 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6706 for (const auto *MD : OCD->methods()) { 6707 if (MD->isDirectMethod()) 6708 continue; 6709 if (MD->isInstanceMethod()) { 6710 instanceMethods.push_back(MD); 6711 } else { 6712 classMethods.push_back(MD); 6713 } 6714 } 6715 6716 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6717 instanceMethods)); 6718 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6719 classMethods)); 6720 6721 const ObjCCategoryDecl *Category = 6722 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6723 if (Category) { 6724 SmallString<256> ExtName; 6725 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6726 << OCD->getName(); 6727 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6728 + Interface->getObjCRuntimeNameAsString() + "_$_" 6729 + Category->getName(), 6730 Category->protocol_begin(), 6731 Category->protocol_end())); 6732 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6733 OCD, Category, ObjCTypes, false)); 6734 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6735 OCD, Category, ObjCTypes, true)); 6736 } else { 6737 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6738 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6739 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6740 } 6741 6742 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6743 values.addInt(ObjCTypes.IntTy, Size); 6744 6745 llvm::GlobalVariable *GCATV = 6746 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6747 CGM.addCompilerUsedGlobal(GCATV); 6748 if (Interface->hasAttr<ObjCClassStubAttr>()) 6749 DefinedStubCategories.push_back(GCATV); 6750 else 6751 DefinedCategories.push_back(GCATV); 6752 6753 // Determine if this category is also "non-lazy". 6754 if (ImplementationIsNonLazy(OCD)) 6755 DefinedNonLazyCategories.push_back(GCATV); 6756 // method definition entries must be clear for next implementation. 6757 MethodDefinitions.clear(); 6758 } 6759 6760 /// emitMethodConstant - Return a struct objc_method constant. If 6761 /// forProtocol is true, the implementation will be null; otherwise, 6762 /// the method must have a definition registered with the runtime. 6763 /// 6764 /// struct _objc_method { 6765 /// SEL _cmd; 6766 /// char *method_type; 6767 /// char *_imp; 6768 /// } 6769 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6770 const ObjCMethodDecl *MD, 6771 bool forProtocol) { 6772 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6773 method.addBitCast(GetMethodVarName(MD->getSelector()), 6774 ObjCTypes.SelectorPtrTy); 6775 method.add(GetMethodVarType(MD)); 6776 6777 if (forProtocol) { 6778 // Protocol methods have no implementation. So, this entry is always NULL. 6779 method.addNullPointer(ObjCTypes.Int8PtrTy); 6780 } else { 6781 llvm::Function *fn = GetMethodDefinition(MD); 6782 assert(fn && "no definition for method?"); 6783 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6784 } 6785 6786 method.finishAndAddTo(builder); 6787 } 6788 6789 /// Build meta-data for method declarations. 6790 /// 6791 /// struct _method_list_t { 6792 /// uint32_t entsize; // sizeof(struct _objc_method) 6793 /// uint32_t method_count; 6794 /// struct _objc_method method_list[method_count]; 6795 /// } 6796 /// 6797 llvm::Constant * 6798 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6799 ArrayRef<const ObjCMethodDecl *> methods) { 6800 // Return null for empty list. 6801 if (methods.empty()) 6802 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6803 6804 StringRef prefix; 6805 bool forProtocol; 6806 switch (kind) { 6807 case MethodListType::CategoryInstanceMethods: 6808 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6809 forProtocol = false; 6810 break; 6811 case MethodListType::CategoryClassMethods: 6812 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6813 forProtocol = false; 6814 break; 6815 case MethodListType::InstanceMethods: 6816 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6817 forProtocol = false; 6818 break; 6819 case MethodListType::ClassMethods: 6820 prefix = "_OBJC_$_CLASS_METHODS_"; 6821 forProtocol = false; 6822 break; 6823 6824 case MethodListType::ProtocolInstanceMethods: 6825 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6826 forProtocol = true; 6827 break; 6828 case MethodListType::ProtocolClassMethods: 6829 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6830 forProtocol = true; 6831 break; 6832 case MethodListType::OptionalProtocolInstanceMethods: 6833 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6834 forProtocol = true; 6835 break; 6836 case MethodListType::OptionalProtocolClassMethods: 6837 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6838 forProtocol = true; 6839 break; 6840 } 6841 6842 ConstantInitBuilder builder(CGM); 6843 auto values = builder.beginStruct(); 6844 6845 // sizeof(struct _objc_method) 6846 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6847 values.addInt(ObjCTypes.IntTy, Size); 6848 // method_count 6849 values.addInt(ObjCTypes.IntTy, methods.size()); 6850 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6851 for (auto MD : methods) 6852 emitMethodConstant(methodArray, MD, forProtocol); 6853 methodArray.finishAndAddTo(values); 6854 6855 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6856 CGM.addCompilerUsedGlobal(GV); 6857 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6858 } 6859 6860 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6861 /// the given ivar. 6862 llvm::GlobalVariable * 6863 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6864 const ObjCIvarDecl *Ivar) { 6865 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6866 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6867 Name += Container->getObjCRuntimeNameAsString(); 6868 Name += "."; 6869 Name += Ivar->getName(); 6870 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6871 if (!IvarOffsetGV) { 6872 IvarOffsetGV = 6873 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6874 false, llvm::GlobalValue::ExternalLinkage, 6875 nullptr, Name.str()); 6876 if (CGM.getTriple().isOSBinFormatCOFF()) { 6877 bool IsPrivateOrPackage = 6878 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6879 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6880 6881 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6882 6883 if (ContainingID->hasAttr<DLLImportAttr>()) 6884 IvarOffsetGV 6885 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6886 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6887 IvarOffsetGV 6888 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6889 } 6890 } 6891 return IvarOffsetGV; 6892 } 6893 6894 llvm::Constant * 6895 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6896 const ObjCIvarDecl *Ivar, 6897 unsigned long int Offset) { 6898 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6899 IvarOffsetGV->setInitializer( 6900 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6901 IvarOffsetGV->setAlignment(llvm::Align( 6902 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6903 6904 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6905 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6906 // as well (i.e., in ObjCIvarOffsetVariable). 6907 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6908 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6909 ID->getVisibility() == HiddenVisibility) 6910 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6911 else 6912 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6913 } 6914 6915 // If ID's layout is known, then make the global constant. This serves as a 6916 // useful assertion: we'll never use this variable to calculate ivar offsets, 6917 // so if the runtime tries to patch it then we should crash. 6918 if (isClassLayoutKnownStatically(ID)) 6919 IvarOffsetGV->setConstant(true); 6920 6921 if (CGM.getTriple().isOSBinFormatMachO()) 6922 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6923 return IvarOffsetGV; 6924 } 6925 6926 /// EmitIvarList - Emit the ivar list for the given 6927 /// implementation. The return value has type 6928 /// IvarListnfABIPtrTy. 6929 /// struct _ivar_t { 6930 /// unsigned [long] int *offset; // pointer to ivar offset location 6931 /// char *name; 6932 /// char *type; 6933 /// uint32_t alignment; 6934 /// uint32_t size; 6935 /// } 6936 /// struct _ivar_list_t { 6937 /// uint32 entsize; // sizeof(struct _ivar_t) 6938 /// uint32 count; 6939 /// struct _iver_t list[count]; 6940 /// } 6941 /// 6942 6943 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6944 const ObjCImplementationDecl *ID) { 6945 6946 ConstantInitBuilder builder(CGM); 6947 auto ivarList = builder.beginStruct(); 6948 ivarList.addInt(ObjCTypes.IntTy, 6949 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6950 auto ivarCountSlot = ivarList.addPlaceholder(); 6951 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6952 6953 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6954 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6955 6956 // FIXME. Consolidate this with similar code in GenerateClass. 6957 6958 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6959 IVD; IVD = IVD->getNextIvar()) { 6960 // Ignore unnamed bit-fields. 6961 if (!IVD->getDeclName()) 6962 continue; 6963 6964 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6965 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6966 ComputeIvarBaseOffset(CGM, ID, IVD))); 6967 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6968 ivar.add(GetMethodVarType(IVD)); 6969 llvm::Type *FieldTy = 6970 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6971 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6972 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6973 IVD->getType().getTypePtr()) >> 3; 6974 Align = llvm::Log2_32(Align); 6975 ivar.addInt(ObjCTypes.IntTy, Align); 6976 // NOTE. Size of a bitfield does not match gcc's, because of the 6977 // way bitfields are treated special in each. But I am told that 6978 // 'size' for bitfield ivars is ignored by the runtime so it does 6979 // not matter. If it matters, there is enough info to get the 6980 // bitfield right! 6981 ivar.addInt(ObjCTypes.IntTy, Size); 6982 ivar.finishAndAddTo(ivars); 6983 } 6984 // Return null for empty list. 6985 if (ivars.empty()) { 6986 ivars.abandon(); 6987 ivarList.abandon(); 6988 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6989 } 6990 6991 auto ivarCount = ivars.size(); 6992 ivars.finishAndAddTo(ivarList); 6993 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6994 6995 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6996 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6997 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6998 CGM.addCompilerUsedGlobal(GV); 6999 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 7000 } 7001 7002 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 7003 const ObjCProtocolDecl *PD) { 7004 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 7005 7006 if (!Entry) { 7007 // We use the initializer as a marker of whether this is a forward 7008 // reference or not. At module finalization we add the empty 7009 // contents for protocols which were referenced but never defined. 7010 llvm::SmallString<64> Protocol; 7011 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7012 << PD->getObjCRuntimeNameAsString(); 7013 7014 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7015 false, llvm::GlobalValue::ExternalLinkage, 7016 nullptr, Protocol); 7017 if (!CGM.getTriple().isOSBinFormatMachO()) 7018 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7019 } 7020 7021 return Entry; 7022 } 7023 7024 /// GetOrEmitProtocol - Generate the protocol meta-data: 7025 /// @code 7026 /// struct _protocol_t { 7027 /// id isa; // NULL 7028 /// const char * const protocol_name; 7029 /// const struct _protocol_list_t * protocol_list; // super protocols 7030 /// const struct method_list_t * const instance_methods; 7031 /// const struct method_list_t * const class_methods; 7032 /// const struct method_list_t *optionalInstanceMethods; 7033 /// const struct method_list_t *optionalClassMethods; 7034 /// const struct _prop_list_t * properties; 7035 /// const uint32_t size; // sizeof(struct _protocol_t) 7036 /// const uint32_t flags; // = 0 7037 /// const char ** extendedMethodTypes; 7038 /// const char *demangledName; 7039 /// const struct _prop_list_t * class_properties; 7040 /// } 7041 /// @endcode 7042 /// 7043 7044 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7045 const ObjCProtocolDecl *PD) { 7046 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7047 7048 // Early exit if a defining object has already been generated. 7049 if (Entry && Entry->hasInitializer()) 7050 return Entry; 7051 7052 // Use the protocol definition, if there is one. 7053 assert(PD->hasDefinition() && 7054 "emitting protocol metadata without definition"); 7055 PD = PD->getDefinition(); 7056 7057 auto methodLists = ProtocolMethodLists::get(PD); 7058 7059 ConstantInitBuilder builder(CGM); 7060 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7061 7062 // isa is NULL 7063 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7064 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7065 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7066 + PD->getObjCRuntimeNameAsString(), 7067 PD->protocol_begin(), 7068 PD->protocol_end())); 7069 values.add(methodLists.emitMethodList(this, PD, 7070 ProtocolMethodLists::RequiredInstanceMethods)); 7071 values.add(methodLists.emitMethodList(this, PD, 7072 ProtocolMethodLists::RequiredClassMethods)); 7073 values.add(methodLists.emitMethodList(this, PD, 7074 ProtocolMethodLists::OptionalInstanceMethods)); 7075 values.add(methodLists.emitMethodList(this, PD, 7076 ProtocolMethodLists::OptionalClassMethods)); 7077 values.add(EmitPropertyList( 7078 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7079 nullptr, PD, ObjCTypes, false)); 7080 uint32_t Size = 7081 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7082 values.addInt(ObjCTypes.IntTy, Size); 7083 values.addInt(ObjCTypes.IntTy, 0); 7084 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7085 + PD->getObjCRuntimeNameAsString(), 7086 methodLists.emitExtendedTypesArray(this), 7087 ObjCTypes)); 7088 7089 // const char *demangledName; 7090 values.addNullPointer(ObjCTypes.Int8PtrTy); 7091 7092 values.add(EmitPropertyList( 7093 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7094 nullptr, PD, ObjCTypes, true)); 7095 7096 if (Entry) { 7097 // Already created, fix the linkage and update the initializer. 7098 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7099 values.finishAndSetAsInitializer(Entry); 7100 } else { 7101 llvm::SmallString<64> symbolName; 7102 llvm::raw_svector_ostream(symbolName) 7103 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7104 7105 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7106 /*constant*/ false, 7107 llvm::GlobalValue::WeakAnyLinkage); 7108 if (!CGM.getTriple().isOSBinFormatMachO()) 7109 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7110 7111 Protocols[PD->getIdentifier()] = Entry; 7112 } 7113 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7114 CGM.addUsedGlobal(Entry); 7115 7116 // Use this protocol meta-data to build protocol list table in section 7117 // __DATA, __objc_protolist 7118 llvm::SmallString<64> ProtocolRef; 7119 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7120 << PD->getObjCRuntimeNameAsString(); 7121 7122 llvm::GlobalVariable *PTGV = 7123 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7124 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7125 ProtocolRef); 7126 if (!CGM.getTriple().isOSBinFormatMachO()) 7127 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7128 PTGV->setAlignment(llvm::Align( 7129 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7130 PTGV->setSection(GetSectionName("__objc_protolist", 7131 "coalesced,no_dead_strip")); 7132 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7133 CGM.addUsedGlobal(PTGV); 7134 return Entry; 7135 } 7136 7137 /// EmitProtocolList - Generate protocol list meta-data: 7138 /// @code 7139 /// struct _protocol_list_t { 7140 /// long protocol_count; // Note, this is 32/64 bit 7141 /// struct _protocol_t[protocol_count]; 7142 /// } 7143 /// @endcode 7144 /// 7145 llvm::Constant * 7146 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7147 ObjCProtocolDecl::protocol_iterator begin, 7148 ObjCProtocolDecl::protocol_iterator end) { 7149 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7150 7151 // Just return null for empty protocol lists 7152 if (begin == end) 7153 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7154 7155 // FIXME: We shouldn't need to do this lookup here, should we? 7156 SmallString<256> TmpName; 7157 Name.toVector(TmpName); 7158 llvm::GlobalVariable *GV = 7159 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7160 if (GV) 7161 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7162 7163 ConstantInitBuilder builder(CGM); 7164 auto values = builder.beginStruct(); 7165 auto countSlot = values.addPlaceholder(); 7166 7167 // A null-terminated array of protocols. 7168 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7169 for (; begin != end; ++begin) 7170 array.add(GetProtocolRef(*begin)); // Implemented??? 7171 auto count = array.size(); 7172 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7173 7174 array.finishAndAddTo(values); 7175 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7176 7177 GV = finishAndCreateGlobal(values, Name, CGM); 7178 CGM.addCompilerUsedGlobal(GV); 7179 return llvm::ConstantExpr::getBitCast(GV, 7180 ObjCTypes.ProtocolListnfABIPtrTy); 7181 } 7182 7183 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7184 /// This code gen. amounts to generating code for: 7185 /// @code 7186 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7187 /// @encode 7188 /// 7189 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7190 CodeGen::CodeGenFunction &CGF, 7191 QualType ObjectTy, 7192 llvm::Value *BaseValue, 7193 const ObjCIvarDecl *Ivar, 7194 unsigned CVRQualifiers) { 7195 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7196 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7197 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7198 Offset); 7199 } 7200 7201 llvm::Value * 7202 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7203 const ObjCInterfaceDecl *Interface, 7204 const ObjCIvarDecl *Ivar) { 7205 llvm::Value *IvarOffsetValue; 7206 if (isClassLayoutKnownStatically(Interface)) { 7207 IvarOffsetValue = llvm::ConstantInt::get( 7208 ObjCTypes.IvarOffsetVarTy, 7209 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7210 } else { 7211 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7212 IvarOffsetValue = 7213 CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar"); 7214 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7215 cast<llvm::LoadInst>(IvarOffsetValue) 7216 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7217 llvm::MDNode::get(VMContext, None)); 7218 } 7219 7220 // This could be 32bit int or 64bit integer depending on the architecture. 7221 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7222 // as this is what caller always expects. 7223 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7224 IvarOffsetValue = CGF.Builder.CreateIntCast( 7225 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7226 return IvarOffsetValue; 7227 } 7228 7229 static void appendSelectorForMessageRefTable(std::string &buffer, 7230 Selector selector) { 7231 if (selector.isUnarySelector()) { 7232 buffer += selector.getNameForSlot(0); 7233 return; 7234 } 7235 7236 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7237 buffer += selector.getNameForSlot(i); 7238 buffer += '_'; 7239 } 7240 } 7241 7242 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7243 /// struct, initially containing the selector pointer and a pointer to 7244 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7245 /// load and call the function pointer, passing the address of the 7246 /// struct as the second parameter. The runtime determines whether 7247 /// the selector is currently emitted using vtable dispatch; if so, it 7248 /// substitutes a stub function which simply tail-calls through the 7249 /// appropriate vtable slot, and if not, it substitues a stub function 7250 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7251 /// argument to correctly point to the selector. 7252 RValue 7253 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7254 ReturnValueSlot returnSlot, 7255 QualType resultType, 7256 Selector selector, 7257 llvm::Value *arg0, 7258 QualType arg0Type, 7259 bool isSuper, 7260 const CallArgList &formalArgs, 7261 const ObjCMethodDecl *method) { 7262 // Compute the actual arguments. 7263 CallArgList args; 7264 7265 // First argument: the receiver / super-call structure. 7266 if (!isSuper) 7267 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7268 args.add(RValue::get(arg0), arg0Type); 7269 7270 // Second argument: a pointer to the message ref structure. Leave 7271 // the actual argument value blank for now. 7272 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7273 7274 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7275 7276 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7277 7278 NullReturnState nullReturn; 7279 7280 // Find the function to call and the mangled name for the message 7281 // ref structure. Using a different mangled name wouldn't actually 7282 // be a problem; it would just be a waste. 7283 // 7284 // The runtime currently never uses vtable dispatch for anything 7285 // except normal, non-super message-sends. 7286 // FIXME: don't use this for that. 7287 llvm::FunctionCallee fn = nullptr; 7288 std::string messageRefName("_"); 7289 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7290 if (isSuper) { 7291 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7292 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7293 } else { 7294 nullReturn.init(CGF, arg0); 7295 fn = ObjCTypes.getMessageSendStretFixupFn(); 7296 messageRefName += "objc_msgSend_stret_fixup"; 7297 } 7298 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7299 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7300 messageRefName += "objc_msgSend_fpret_fixup"; 7301 } else { 7302 if (isSuper) { 7303 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7304 messageRefName += "objc_msgSendSuper2_fixup"; 7305 } else { 7306 fn = ObjCTypes.getMessageSendFixupFn(); 7307 messageRefName += "objc_msgSend_fixup"; 7308 } 7309 } 7310 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7311 messageRefName += '_'; 7312 7313 // Append the selector name, except use underscores anywhere we 7314 // would have used colons. 7315 appendSelectorForMessageRefTable(messageRefName, selector); 7316 7317 llvm::GlobalVariable *messageRef 7318 = CGM.getModule().getGlobalVariable(messageRefName); 7319 if (!messageRef) { 7320 // Build the message ref structure. 7321 ConstantInitBuilder builder(CGM); 7322 auto values = builder.beginStruct(); 7323 values.add(cast<llvm::Constant>(fn.getCallee())); 7324 values.add(GetMethodVarName(selector)); 7325 messageRef = values.finishAndCreateGlobal(messageRefName, 7326 CharUnits::fromQuantity(16), 7327 /*constant*/ false, 7328 llvm::GlobalValue::WeakAnyLinkage); 7329 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7330 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7331 } 7332 7333 bool requiresnullCheck = false; 7334 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7335 for (const auto *ParamDecl : method->parameters()) { 7336 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7337 if (!nullReturn.NullBB) 7338 nullReturn.init(CGF, arg0); 7339 requiresnullCheck = true; 7340 break; 7341 } 7342 } 7343 7344 Address mref = 7345 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7346 CGF.getPointerAlign()); 7347 7348 // Update the message ref argument. 7349 args[1].setRValue(RValue::get(mref.getPointer())); 7350 7351 // Load the function to call from the message ref table. 7352 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7353 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7354 7355 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7356 CGCallee callee(CGCalleeInfo(), calleePtr); 7357 7358 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7359 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7360 requiresnullCheck ? method : nullptr); 7361 } 7362 7363 /// Generate code for a message send expression in the nonfragile abi. 7364 CodeGen::RValue 7365 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7366 ReturnValueSlot Return, 7367 QualType ResultType, 7368 Selector Sel, 7369 llvm::Value *Receiver, 7370 const CallArgList &CallArgs, 7371 const ObjCInterfaceDecl *Class, 7372 const ObjCMethodDecl *Method) { 7373 return isVTableDispatchedSelector(Sel) 7374 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7375 Receiver, CGF.getContext().getObjCIdType(), 7376 false, CallArgs, Method) 7377 : EmitMessageSend(CGF, Return, ResultType, Sel, 7378 Receiver, CGF.getContext().getObjCIdType(), 7379 false, CallArgs, Method, Class, ObjCTypes); 7380 } 7381 7382 llvm::Constant * 7383 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7384 bool metaclass, 7385 ForDefinition_t isForDefinition) { 7386 auto prefix = 7387 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7388 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7389 isForDefinition, 7390 ID->isWeakImported(), 7391 !isForDefinition 7392 && CGM.getTriple().isOSBinFormatCOFF() 7393 && ID->hasAttr<DLLImportAttr>()); 7394 } 7395 7396 llvm::Constant * 7397 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7398 ForDefinition_t IsForDefinition, 7399 bool Weak, bool DLLImport) { 7400 llvm::GlobalValue::LinkageTypes L = 7401 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7402 : llvm::GlobalValue::ExternalLinkage; 7403 7404 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7405 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7406 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7407 nullptr, Name); 7408 7409 if (DLLImport) 7410 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7411 7412 if (GV) { 7413 GV->replaceAllUsesWith( 7414 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7415 GV->eraseFromParent(); 7416 } 7417 GV = NewGV; 7418 CGM.getModule().getGlobalList().push_back(GV); 7419 } 7420 7421 assert(GV->getLinkage() == L); 7422 return GV; 7423 } 7424 7425 llvm::Constant * 7426 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7427 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7428 NotForDefinition); 7429 7430 if (!ID->hasAttr<ObjCClassStubAttr>()) 7431 return ClassGV; 7432 7433 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7434 7435 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7436 // must set the least significant bit set to 1. 7437 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7438 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7439 } 7440 7441 llvm::Value * 7442 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7443 const ObjCInterfaceDecl *ID, 7444 llvm::GlobalVariable *Entry) { 7445 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7446 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7447 // a special runtime function. 7448 return CGF.EmitRuntimeCall( 7449 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7450 } 7451 7452 CharUnits Align = CGF.getPointerAlign(); 7453 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7454 } 7455 7456 llvm::Value * 7457 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7458 IdentifierInfo *II, 7459 const ObjCInterfaceDecl *ID) { 7460 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7461 7462 if (!Entry) { 7463 llvm::Constant *ClassGV; 7464 if (ID) { 7465 ClassGV = GetClassGlobalForClassRef(ID); 7466 } else { 7467 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7468 NotForDefinition); 7469 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7470 "classref was emitted with the wrong type?"); 7471 } 7472 7473 std::string SectionName = 7474 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7475 Entry = new llvm::GlobalVariable( 7476 CGM.getModule(), ClassGV->getType(), false, 7477 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7478 "OBJC_CLASSLIST_REFERENCES_$_"); 7479 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7480 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7481 Entry->setSection(SectionName); 7482 7483 CGM.addCompilerUsedGlobal(Entry); 7484 } 7485 7486 return EmitLoadOfClassRef(CGF, ID, Entry); 7487 } 7488 7489 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7490 const ObjCInterfaceDecl *ID) { 7491 // If the class has the objc_runtime_visible attribute, we need to 7492 // use the Objective-C runtime to get the class. 7493 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7494 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7495 7496 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7497 } 7498 7499 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7500 CodeGenFunction &CGF) { 7501 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7502 return EmitClassRefFromId(CGF, II, nullptr); 7503 } 7504 7505 llvm::Value * 7506 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7507 const ObjCInterfaceDecl *ID) { 7508 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7509 7510 if (!Entry) { 7511 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7512 std::string SectionName = 7513 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7514 Entry = new llvm::GlobalVariable( 7515 CGM.getModule(), ClassGV->getType(), false, 7516 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7517 "OBJC_CLASSLIST_SUP_REFS_$_"); 7518 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7519 Entry->setSection(SectionName); 7520 CGM.addCompilerUsedGlobal(Entry); 7521 } 7522 7523 return EmitLoadOfClassRef(CGF, ID, Entry); 7524 } 7525 7526 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7527 /// meta-data 7528 /// 7529 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7530 const ObjCInterfaceDecl *ID, 7531 bool Weak) { 7532 CharUnits Align = CGF.getPointerAlign(); 7533 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7534 if (!Entry) { 7535 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7536 std::string SectionName = 7537 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7538 Entry = new llvm::GlobalVariable( 7539 CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false, 7540 getLinkageTypeForObjCMetadata(CGM, SectionName), MetaClassGV, 7541 "OBJC_CLASSLIST_SUP_REFS_$_"); 7542 Entry->setAlignment(Align.getAsAlign()); 7543 Entry->setSection(SectionName); 7544 CGM.addCompilerUsedGlobal(Entry); 7545 } 7546 7547 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7548 } 7549 7550 /// GetClass - Return a reference to the class for the given interface 7551 /// decl. 7552 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7553 const ObjCInterfaceDecl *ID) { 7554 if (ID->isWeakImported()) { 7555 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7556 (void)ClassGV; 7557 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7558 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7559 } 7560 7561 return EmitClassRef(CGF, ID); 7562 } 7563 7564 /// Generates a message send where the super is the receiver. This is 7565 /// a message send to self with special delivery semantics indicating 7566 /// which class's method should be called. 7567 CodeGen::RValue 7568 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7569 ReturnValueSlot Return, 7570 QualType ResultType, 7571 Selector Sel, 7572 const ObjCInterfaceDecl *Class, 7573 bool isCategoryImpl, 7574 llvm::Value *Receiver, 7575 bool IsClassMessage, 7576 const CodeGen::CallArgList &CallArgs, 7577 const ObjCMethodDecl *Method) { 7578 // ... 7579 // Create and init a super structure; this is a (receiver, class) 7580 // pair we will pass to objc_msgSendSuper. 7581 Address ObjCSuper = 7582 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7583 "objc_super"); 7584 7585 llvm::Value *ReceiverAsObject = 7586 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7587 CGF.Builder.CreateStore(ReceiverAsObject, 7588 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7589 7590 // If this is a class message the metaclass is passed as the target. 7591 llvm::Value *Target; 7592 if (IsClassMessage) 7593 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7594 else 7595 Target = EmitSuperClassRef(CGF, Class); 7596 7597 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7598 // ObjCTypes types. 7599 llvm::Type *ClassTy = 7600 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7601 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7602 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7603 7604 return (isVTableDispatchedSelector(Sel)) 7605 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7606 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7607 true, CallArgs, Method) 7608 : EmitMessageSend(CGF, Return, ResultType, Sel, 7609 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7610 true, CallArgs, Method, Class, ObjCTypes); 7611 } 7612 7613 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7614 Selector Sel) { 7615 Address Addr = EmitSelectorAddr(Sel); 7616 7617 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7618 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7619 llvm::MDNode::get(VMContext, None)); 7620 return LI; 7621 } 7622 7623 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7624 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7625 CharUnits Align = CGM.getPointerAlign(); 7626 if (!Entry) { 7627 llvm::Constant *Casted = 7628 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7629 ObjCTypes.SelectorPtrTy); 7630 std::string SectionName = 7631 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7632 Entry = new llvm::GlobalVariable( 7633 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7634 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7635 "OBJC_SELECTOR_REFERENCES_"); 7636 Entry->setExternallyInitialized(true); 7637 Entry->setSection(SectionName); 7638 Entry->setAlignment(Align.getAsAlign()); 7639 CGM.addCompilerUsedGlobal(Entry); 7640 } 7641 7642 return Address(Entry, Align); 7643 } 7644 7645 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7646 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7647 /// 7648 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7649 llvm::Value *src, 7650 Address dst, 7651 llvm::Value *ivarOffset) { 7652 llvm::Type * SrcTy = src->getType(); 7653 if (!isa<llvm::PointerType>(SrcTy)) { 7654 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7655 assert(Size <= 8 && "does not support size > 8"); 7656 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7657 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7658 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7659 } 7660 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7661 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7662 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7663 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7664 } 7665 7666 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7667 /// objc_assign_strongCast (id src, id *dst) 7668 /// 7669 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7670 CodeGen::CodeGenFunction &CGF, 7671 llvm::Value *src, Address dst) { 7672 llvm::Type * SrcTy = src->getType(); 7673 if (!isa<llvm::PointerType>(SrcTy)) { 7674 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7675 assert(Size <= 8 && "does not support size > 8"); 7676 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7677 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7678 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7679 } 7680 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7681 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7682 llvm::Value *args[] = { src, dst.getPointer() }; 7683 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7684 args, "weakassign"); 7685 } 7686 7687 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7688 CodeGen::CodeGenFunction &CGF, 7689 Address DestPtr, 7690 Address SrcPtr, 7691 llvm::Value *Size) { 7692 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7693 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7694 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7695 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7696 } 7697 7698 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7699 /// object: objc_read_weak (id *src) 7700 /// 7701 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7702 CodeGen::CodeGenFunction &CGF, 7703 Address AddrWeakObj) { 7704 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7705 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7706 llvm::Value *read_weak = 7707 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7708 AddrWeakObj.getPointer(), "weakread"); 7709 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7710 return read_weak; 7711 } 7712 7713 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7714 /// objc_assign_weak (id src, id *dst) 7715 /// 7716 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7717 llvm::Value *src, Address dst) { 7718 llvm::Type * SrcTy = src->getType(); 7719 if (!isa<llvm::PointerType>(SrcTy)) { 7720 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7721 assert(Size <= 8 && "does not support size > 8"); 7722 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7723 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7724 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7725 } 7726 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7727 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7728 llvm::Value *args[] = { src, dst.getPointer() }; 7729 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7730 args, "weakassign"); 7731 } 7732 7733 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7734 /// objc_assign_global (id src, id *dst) 7735 /// 7736 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7737 llvm::Value *src, Address dst, 7738 bool threadlocal) { 7739 llvm::Type * SrcTy = src->getType(); 7740 if (!isa<llvm::PointerType>(SrcTy)) { 7741 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7742 assert(Size <= 8 && "does not support size > 8"); 7743 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7744 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7745 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7746 } 7747 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7748 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7749 llvm::Value *args[] = { src, dst.getPointer() }; 7750 if (!threadlocal) 7751 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7752 args, "globalassign"); 7753 else 7754 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7755 args, "threadlocalassign"); 7756 } 7757 7758 void 7759 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7760 const ObjCAtSynchronizedStmt &S) { 7761 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7762 ObjCTypes.getSyncExitFn()); 7763 } 7764 7765 llvm::Constant * 7766 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7767 // There's a particular fixed type info for 'id'. 7768 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7769 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7770 if (!IDEHType) { 7771 IDEHType = 7772 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7773 llvm::GlobalValue::ExternalLinkage, nullptr, 7774 "OBJC_EHTYPE_id"); 7775 if (CGM.getTriple().isOSBinFormatCOFF()) 7776 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7777 } 7778 return IDEHType; 7779 } 7780 7781 // All other types should be Objective-C interface pointer types. 7782 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7783 assert(PT && "Invalid @catch type."); 7784 7785 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7786 assert(IT && "Invalid @catch type."); 7787 7788 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7789 } 7790 7791 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7792 const ObjCAtTryStmt &S) { 7793 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7794 ObjCTypes.getObjCEndCatchFn(), 7795 ObjCTypes.getExceptionRethrowFn()); 7796 } 7797 7798 /// EmitThrowStmt - Generate code for a throw statement. 7799 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7800 const ObjCAtThrowStmt &S, 7801 bool ClearInsertionPoint) { 7802 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7803 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7804 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7805 llvm::CallBase *Call = 7806 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7807 Call->setDoesNotReturn(); 7808 } else { 7809 llvm::CallBase *Call = 7810 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7811 Call->setDoesNotReturn(); 7812 } 7813 7814 CGF.Builder.CreateUnreachable(); 7815 if (ClearInsertionPoint) 7816 CGF.Builder.ClearInsertionPoint(); 7817 } 7818 7819 llvm::Constant * 7820 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7821 ForDefinition_t IsForDefinition) { 7822 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7823 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7824 7825 // If we don't need a definition, return the entry if found or check 7826 // if we use an external reference. 7827 if (!IsForDefinition) { 7828 if (Entry) 7829 return Entry; 7830 7831 // If this type (or a super class) has the __objc_exception__ 7832 // attribute, emit an external reference. 7833 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7834 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7835 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7836 false, llvm::GlobalValue::ExternalLinkage, 7837 nullptr, EHTypeName); 7838 CGM.setGVProperties(Entry, ID); 7839 return Entry; 7840 } 7841 } 7842 7843 // Otherwise we need to either make a new entry or fill in the initializer. 7844 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7845 7846 std::string VTableName = "objc_ehtype_vtable"; 7847 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7848 if (!VTableGV) { 7849 VTableGV = 7850 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7851 llvm::GlobalValue::ExternalLinkage, nullptr, 7852 VTableName); 7853 if (CGM.getTriple().isOSBinFormatCOFF()) 7854 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7855 } 7856 7857 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7858 ConstantInitBuilder builder(CGM); 7859 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7860 values.add( 7861 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7862 VTableGV, VTableIdx)); 7863 values.add(GetClassName(ClassName)); 7864 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7865 7866 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7867 ? llvm::GlobalValue::ExternalLinkage 7868 : llvm::GlobalValue::WeakAnyLinkage; 7869 if (Entry) { 7870 values.finishAndSetAsInitializer(Entry); 7871 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7872 } else { 7873 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7874 CGM.getPointerAlign(), 7875 /*constant*/ false, 7876 L); 7877 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7878 CGM.setGVProperties(Entry, ID); 7879 } 7880 assert(Entry->getLinkage() == L); 7881 7882 if (!CGM.getTriple().isOSBinFormatCOFF()) 7883 if (ID->getVisibility() == HiddenVisibility) 7884 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7885 7886 if (IsForDefinition) 7887 if (CGM.getTriple().isOSBinFormatMachO()) 7888 Entry->setSection("__DATA,__objc_const"); 7889 7890 return Entry; 7891 } 7892 7893 /* *** */ 7894 7895 CodeGen::CGObjCRuntime * 7896 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7897 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7898 case ObjCRuntime::FragileMacOSX: 7899 return new CGObjCMac(CGM); 7900 7901 case ObjCRuntime::MacOSX: 7902 case ObjCRuntime::iOS: 7903 case ObjCRuntime::WatchOS: 7904 return new CGObjCNonFragileABIMac(CGM); 7905 7906 case ObjCRuntime::GNUstep: 7907 case ObjCRuntime::GCC: 7908 case ObjCRuntime::ObjFW: 7909 llvm_unreachable("these runtimes are not Mac runtimes"); 7910 } 7911 llvm_unreachable("bad runtime"); 7912 } 7913