1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGObjCRuntime.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cstdio> 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 namespace { 45 46 // FIXME: We should find a nicer way to make the labels for metadata, string 47 // concatenation is lame. 48 49 class ObjCCommonTypesHelper { 50 protected: 51 llvm::LLVMContext &VMContext; 52 53 private: 54 // The types of these functions don't really matter because we 55 // should always bitcast before calling them. 56 57 /// id objc_msgSend (id, SEL, ...) 58 /// 59 /// The default messenger, used for sends whose ABI is unchanged from 60 /// the all-integer/pointer case. 61 llvm::Constant *getMessageSendFn() const { 62 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 63 // be called a lot. 64 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 65 return 66 CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 67 params, true), 68 "objc_msgSend", 69 llvm::AttributeSet::get(CGM.getLLVMContext(), 70 llvm::AttributeSet::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType, nullptr); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy; 176 llvm::Type *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::Type *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::Type *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::Type *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::Type *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::Type *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::Type *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 SmallVector<CanQualType,4> Params; 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 Params.push_back(IdType); 243 Params.push_back(SelType); 244 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 245 Params.push_back(Ctx.BoolTy); 246 llvm::FunctionType *FTy = 247 Types.GetFunctionType( 248 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 249 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 250 } 251 252 llvm::Constant *getSetPropertyFn() { 253 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 254 ASTContext &Ctx = CGM.getContext(); 255 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 256 SmallVector<CanQualType,6> Params; 257 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 258 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 259 Params.push_back(IdType); 260 Params.push_back(SelType); 261 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 262 Params.push_back(IdType); 263 Params.push_back(Ctx.BoolTy); 264 Params.push_back(Ctx.BoolTy); 265 llvm::FunctionType *FTy = 266 Types.GetFunctionType( 267 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 268 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 269 } 270 271 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 272 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 273 ASTContext &Ctx = CGM.getContext(); 274 // void objc_setProperty_atomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_nonatomic(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 281 // id newValue, ptrdiff_t offset); 282 283 SmallVector<CanQualType,4> Params; 284 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 285 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 286 Params.push_back(IdType); 287 Params.push_back(SelType); 288 Params.push_back(IdType); 289 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 290 llvm::FunctionType *FTy = 291 Types.GetFunctionType( 292 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 293 const char *name; 294 if (atomic && copy) 295 name = "objc_setProperty_atomic_copy"; 296 else if (atomic && !copy) 297 name = "objc_setProperty_atomic"; 298 else if (!atomic && copy) 299 name = "objc_setProperty_nonatomic_copy"; 300 else 301 name = "objc_setProperty_nonatomic"; 302 303 return CGM.CreateRuntimeFunction(FTy, name); 304 } 305 306 llvm::Constant *getCopyStructFn() { 307 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 308 ASTContext &Ctx = CGM.getContext(); 309 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 310 SmallVector<CanQualType,5> Params; 311 Params.push_back(Ctx.VoidPtrTy); 312 Params.push_back(Ctx.VoidPtrTy); 313 Params.push_back(Ctx.LongTy); 314 Params.push_back(Ctx.BoolTy); 315 Params.push_back(Ctx.BoolTy); 316 llvm::FunctionType *FTy = 317 Types.GetFunctionType( 318 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 319 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 320 } 321 322 /// This routine declares and returns address of: 323 /// void objc_copyCppObjectAtomic( 324 /// void *dest, const void *src, 325 /// void (*copyHelper) (void *dest, const void *source)); 326 llvm::Constant *getCppAtomicObjectFunction() { 327 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 328 ASTContext &Ctx = CGM.getContext(); 329 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 330 SmallVector<CanQualType,3> Params; 331 Params.push_back(Ctx.VoidPtrTy); 332 Params.push_back(Ctx.VoidPtrTy); 333 Params.push_back(Ctx.VoidPtrTy); 334 llvm::FunctionType *FTy = 335 Types.GetFunctionType( 336 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 337 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 338 } 339 340 llvm::Constant *getEnumerationMutationFn() { 341 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 342 ASTContext &Ctx = CGM.getContext(); 343 // void objc_enumerationMutation (id) 344 SmallVector<CanQualType,1> Params; 345 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 346 llvm::FunctionType *FTy = 347 Types.GetFunctionType( 348 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 349 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 350 } 351 352 llvm::Constant *getLookUpClassFn() { 353 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 354 ASTContext &Ctx = CGM.getContext(); 355 // Class objc_lookUpClass (const char *) 356 SmallVector<CanQualType,1> Params; 357 Params.push_back( 358 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 359 llvm::FunctionType *FTy = 360 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 361 Ctx.getCanonicalType(Ctx.getObjCClassType()), 362 Params)); 363 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 364 } 365 366 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 367 llvm::Constant *getGcReadWeakFn() { 368 // id objc_read_weak (id *) 369 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 370 llvm::FunctionType *FTy = 371 llvm::FunctionType::get(ObjectPtrTy, args, false); 372 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 373 } 374 375 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 376 llvm::Constant *getGcAssignWeakFn() { 377 // id objc_assign_weak (id, id *) 378 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 379 llvm::FunctionType *FTy = 380 llvm::FunctionType::get(ObjectPtrTy, args, false); 381 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 382 } 383 384 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 385 llvm::Constant *getGcAssignGlobalFn() { 386 // id objc_assign_global(id, id *) 387 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 388 llvm::FunctionType *FTy = 389 llvm::FunctionType::get(ObjectPtrTy, args, false); 390 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 391 } 392 393 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 394 llvm::Constant *getGcAssignThreadLocalFn() { 395 // id objc_assign_threadlocal(id src, id * dest) 396 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 397 llvm::FunctionType *FTy = 398 llvm::FunctionType::get(ObjectPtrTy, args, false); 399 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 400 } 401 402 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 403 llvm::Constant *getGcAssignIvarFn() { 404 // id objc_assign_ivar(id, id *, ptrdiff_t) 405 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 406 CGM.PtrDiffTy }; 407 llvm::FunctionType *FTy = 408 llvm::FunctionType::get(ObjectPtrTy, args, false); 409 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 410 } 411 412 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 413 llvm::Constant *GcMemmoveCollectableFn() { 414 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 415 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 416 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 417 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 418 } 419 420 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 421 llvm::Constant *getGcAssignStrongCastFn() { 422 // id objc_assign_strongCast(id, id *) 423 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 424 llvm::FunctionType *FTy = 425 llvm::FunctionType::get(ObjectPtrTy, args, false); 426 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 427 } 428 429 /// ExceptionThrowFn - LLVM objc_exception_throw function. 430 llvm::Constant *getExceptionThrowFn() { 431 // void objc_exception_throw(id) 432 llvm::Type *args[] = { ObjectPtrTy }; 433 llvm::FunctionType *FTy = 434 llvm::FunctionType::get(CGM.VoidTy, args, false); 435 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 436 } 437 438 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 439 llvm::Constant *getExceptionRethrowFn() { 440 // void objc_exception_rethrow(void) 441 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 442 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 443 } 444 445 /// SyncEnterFn - LLVM object_sync_enter function. 446 llvm::Constant *getSyncEnterFn() { 447 // int objc_sync_enter (id) 448 llvm::Type *args[] = { ObjectPtrTy }; 449 llvm::FunctionType *FTy = 450 llvm::FunctionType::get(CGM.IntTy, args, false); 451 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 452 } 453 454 /// SyncExitFn - LLVM object_sync_exit function. 455 llvm::Constant *getSyncExitFn() { 456 // int objc_sync_exit (id) 457 llvm::Type *args[] = { ObjectPtrTy }; 458 llvm::FunctionType *FTy = 459 llvm::FunctionType::get(CGM.IntTy, args, false); 460 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 461 } 462 463 llvm::Constant *getSendFn(bool IsSuper) const { 464 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 465 } 466 467 llvm::Constant *getSendFn2(bool IsSuper) const { 468 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 469 } 470 471 llvm::Constant *getSendStretFn(bool IsSuper) const { 472 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 473 } 474 475 llvm::Constant *getSendStretFn2(bool IsSuper) const { 476 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 477 } 478 479 llvm::Constant *getSendFpretFn(bool IsSuper) const { 480 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 481 } 482 483 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 484 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 485 } 486 487 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 488 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 489 } 490 491 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 492 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 493 } 494 495 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 496 }; 497 498 /// ObjCTypesHelper - Helper class that encapsulates lazy 499 /// construction of varies types used during ObjC generation. 500 class ObjCTypesHelper : public ObjCCommonTypesHelper { 501 public: 502 /// SymtabTy - LLVM type for struct objc_symtab. 503 llvm::StructType *SymtabTy; 504 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 505 llvm::Type *SymtabPtrTy; 506 /// ModuleTy - LLVM type for struct objc_module. 507 llvm::StructType *ModuleTy; 508 509 /// ProtocolTy - LLVM type for struct objc_protocol. 510 llvm::StructType *ProtocolTy; 511 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 512 llvm::Type *ProtocolPtrTy; 513 /// ProtocolExtensionTy - LLVM type for struct 514 /// objc_protocol_extension. 515 llvm::StructType *ProtocolExtensionTy; 516 /// ProtocolExtensionTy - LLVM type for struct 517 /// objc_protocol_extension *. 518 llvm::Type *ProtocolExtensionPtrTy; 519 /// MethodDescriptionTy - LLVM type for struct 520 /// objc_method_description. 521 llvm::StructType *MethodDescriptionTy; 522 /// MethodDescriptionListTy - LLVM type for struct 523 /// objc_method_description_list. 524 llvm::StructType *MethodDescriptionListTy; 525 /// MethodDescriptionListPtrTy - LLVM type for struct 526 /// objc_method_description_list *. 527 llvm::Type *MethodDescriptionListPtrTy; 528 /// ProtocolListTy - LLVM type for struct objc_property_list. 529 llvm::StructType *ProtocolListTy; 530 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 531 llvm::Type *ProtocolListPtrTy; 532 /// CategoryTy - LLVM type for struct objc_category. 533 llvm::StructType *CategoryTy; 534 /// ClassTy - LLVM type for struct objc_class. 535 llvm::StructType *ClassTy; 536 /// ClassPtrTy - LLVM type for struct objc_class *. 537 llvm::Type *ClassPtrTy; 538 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 539 llvm::StructType *ClassExtensionTy; 540 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 541 llvm::Type *ClassExtensionPtrTy; 542 // IvarTy - LLVM type for struct objc_ivar. 543 llvm::StructType *IvarTy; 544 /// IvarListTy - LLVM type for struct objc_ivar_list. 545 llvm::Type *IvarListTy; 546 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 547 llvm::Type *IvarListPtrTy; 548 /// MethodListTy - LLVM type for struct objc_method_list. 549 llvm::Type *MethodListTy; 550 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 551 llvm::Type *MethodListPtrTy; 552 553 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 554 llvm::Type *ExceptionDataTy; 555 556 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 557 llvm::Constant *getExceptionTryEnterFn() { 558 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 559 return CGM.CreateRuntimeFunction( 560 llvm::FunctionType::get(CGM.VoidTy, params, false), 561 "objc_exception_try_enter"); 562 } 563 564 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 565 llvm::Constant *getExceptionTryExitFn() { 566 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 567 return CGM.CreateRuntimeFunction( 568 llvm::FunctionType::get(CGM.VoidTy, params, false), 569 "objc_exception_try_exit"); 570 } 571 572 /// ExceptionExtractFn - LLVM objc_exception_extract function. 573 llvm::Constant *getExceptionExtractFn() { 574 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 575 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 576 params, false), 577 "objc_exception_extract"); 578 } 579 580 /// ExceptionMatchFn - LLVM objc_exception_match function. 581 llvm::Constant *getExceptionMatchFn() { 582 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 583 return CGM.CreateRuntimeFunction( 584 llvm::FunctionType::get(CGM.Int32Ty, params, false), 585 "objc_exception_match"); 586 } 587 588 /// SetJmpFn - LLVM _setjmp function. 589 llvm::Constant *getSetJmpFn() { 590 // This is specifically the prototype for x86. 591 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 592 return 593 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, 594 params, false), 595 "_setjmp", 596 llvm::AttributeSet::get(CGM.getLLVMContext(), 597 llvm::AttributeSet::FunctionIndex, 598 llvm::Attribute::NonLazyBind)); 599 } 600 601 public: 602 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 603 }; 604 605 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 606 /// modern abi 607 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 608 public: 609 // MethodListnfABITy - LLVM for struct _method_list_t 610 llvm::StructType *MethodListnfABITy; 611 612 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 613 llvm::Type *MethodListnfABIPtrTy; 614 615 // ProtocolnfABITy = LLVM for struct _protocol_t 616 llvm::StructType *ProtocolnfABITy; 617 618 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 619 llvm::Type *ProtocolnfABIPtrTy; 620 621 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 622 llvm::StructType *ProtocolListnfABITy; 623 624 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 625 llvm::Type *ProtocolListnfABIPtrTy; 626 627 // ClassnfABITy - LLVM for struct _class_t 628 llvm::StructType *ClassnfABITy; 629 630 // ClassnfABIPtrTy - LLVM for struct _class_t* 631 llvm::Type *ClassnfABIPtrTy; 632 633 // IvarnfABITy - LLVM for struct _ivar_t 634 llvm::StructType *IvarnfABITy; 635 636 // IvarListnfABITy - LLVM for struct _ivar_list_t 637 llvm::StructType *IvarListnfABITy; 638 639 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 640 llvm::Type *IvarListnfABIPtrTy; 641 642 // ClassRonfABITy - LLVM for struct _class_ro_t 643 llvm::StructType *ClassRonfABITy; 644 645 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 646 llvm::Type *ImpnfABITy; 647 648 // CategorynfABITy - LLVM for struct _category_t 649 llvm::StructType *CategorynfABITy; 650 651 // New types for nonfragile abi messaging. 652 653 // MessageRefTy - LLVM for: 654 // struct _message_ref_t { 655 // IMP messenger; 656 // SEL name; 657 // }; 658 llvm::StructType *MessageRefTy; 659 // MessageRefCTy - clang type for struct _message_ref_t 660 QualType MessageRefCTy; 661 662 // MessageRefPtrTy - LLVM for struct _message_ref_t* 663 llvm::Type *MessageRefPtrTy; 664 // MessageRefCPtrTy - clang type for struct _message_ref_t* 665 QualType MessageRefCPtrTy; 666 667 // SuperMessageRefTy - LLVM for: 668 // struct _super_message_ref_t { 669 // SUPER_IMP messenger; 670 // SEL name; 671 // }; 672 llvm::StructType *SuperMessageRefTy; 673 674 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 675 llvm::Type *SuperMessageRefPtrTy; 676 677 llvm::Constant *getMessageSendFixupFn() { 678 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 679 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 680 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 681 params, true), 682 "objc_msgSend_fixup"); 683 } 684 685 llvm::Constant *getMessageSendFpretFixupFn() { 686 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 687 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 688 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 689 params, true), 690 "objc_msgSend_fpret_fixup"); 691 } 692 693 llvm::Constant *getMessageSendStretFixupFn() { 694 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 695 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 696 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 697 params, true), 698 "objc_msgSend_stret_fixup"); 699 } 700 701 llvm::Constant *getMessageSendSuper2FixupFn() { 702 // id objc_msgSendSuper2_fixup (struct objc_super *, 703 // struct _super_message_ref_t*, ...) 704 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 705 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 706 params, true), 707 "objc_msgSendSuper2_fixup"); 708 } 709 710 llvm::Constant *getMessageSendSuper2StretFixupFn() { 711 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 712 // struct _super_message_ref_t*, ...) 713 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 714 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 715 params, true), 716 "objc_msgSendSuper2_stret_fixup"); 717 } 718 719 llvm::Constant *getObjCEndCatchFn() { 720 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 721 "objc_end_catch"); 722 723 } 724 725 llvm::Constant *getObjCBeginCatchFn() { 726 llvm::Type *params[] = { Int8PtrTy }; 727 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 728 params, false), 729 "objc_begin_catch"); 730 } 731 732 llvm::StructType *EHTypeTy; 733 llvm::Type *EHTypePtrTy; 734 735 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 736 }; 737 738 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 739 public: 740 class SKIP_SCAN { 741 public: 742 unsigned skip; 743 unsigned scan; 744 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 745 : skip(_skip), scan(_scan) {} 746 }; 747 748 /// opcode for captured block variables layout 'instructions'. 749 /// In the following descriptions, 'I' is the value of the immediate field. 750 /// (field following the opcode). 751 /// 752 enum BLOCK_LAYOUT_OPCODE { 753 /// An operator which affects how the following layout should be 754 /// interpreted. 755 /// I == 0: Halt interpretation and treat everything else as 756 /// a non-pointer. Note that this instruction is equal 757 /// to '\0'. 758 /// I != 0: Currently unused. 759 BLOCK_LAYOUT_OPERATOR = 0, 760 761 /// The next I+1 bytes do not contain a value of object pointer type. 762 /// Note that this can leave the stream unaligned, meaning that 763 /// subsequent word-size instructions do not begin at a multiple of 764 /// the pointer size. 765 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 766 767 /// The next I+1 words do not contain a value of object pointer type. 768 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 769 /// when the required skip quantity is a multiple of the pointer size. 770 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 771 772 /// The next I+1 words are __strong pointers to Objective-C 773 /// objects or blocks. 774 BLOCK_LAYOUT_STRONG = 3, 775 776 /// The next I+1 words are pointers to __block variables. 777 BLOCK_LAYOUT_BYREF = 4, 778 779 /// The next I+1 words are __weak pointers to Objective-C 780 /// objects or blocks. 781 BLOCK_LAYOUT_WEAK = 5, 782 783 /// The next I+1 words are __unsafe_unretained pointers to 784 /// Objective-C objects or blocks. 785 BLOCK_LAYOUT_UNRETAINED = 6 786 787 /// The next I+1 words are block or object pointers with some 788 /// as-yet-unspecified ownership semantics. If we add more 789 /// flavors of ownership semantics, values will be taken from 790 /// this range. 791 /// 792 /// This is included so that older tools can at least continue 793 /// processing the layout past such things. 794 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 795 796 /// All other opcodes are reserved. Halt interpretation and 797 /// treat everything else as opaque. 798 }; 799 800 class RUN_SKIP { 801 public: 802 enum BLOCK_LAYOUT_OPCODE opcode; 803 CharUnits block_var_bytepos; 804 CharUnits block_var_size; 805 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 806 CharUnits BytePos = CharUnits::Zero(), 807 CharUnits Size = CharUnits::Zero()) 808 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 809 810 // Allow sorting based on byte pos. 811 bool operator<(const RUN_SKIP &b) const { 812 return block_var_bytepos < b.block_var_bytepos; 813 } 814 }; 815 816 protected: 817 llvm::LLVMContext &VMContext; 818 // FIXME! May not be needing this after all. 819 unsigned ObjCABI; 820 821 // arc/mrr layout of captured block literal variables. 822 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 823 824 /// LazySymbols - Symbols to generate a lazy reference for. See 825 /// DefinedSymbols and FinishModule(). 826 llvm::SetVector<IdentifierInfo*> LazySymbols; 827 828 /// DefinedSymbols - External symbols which are defined by this 829 /// module. The symbols in this list and LazySymbols are used to add 830 /// special linker symbols which ensure that Objective-C modules are 831 /// linked properly. 832 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 833 834 /// ClassNames - uniqued class names. 835 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 836 837 /// MethodVarNames - uniqued method variable names. 838 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 839 840 /// DefinedCategoryNames - list of category names in form Class_Category. 841 llvm::SmallSetVector<std::string, 16> DefinedCategoryNames; 842 843 /// MethodVarTypes - uniqued method type signatures. We have to use 844 /// a StringMap here because have no other unique reference. 845 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 846 847 /// MethodDefinitions - map of methods which have been defined in 848 /// this translation unit. 849 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 850 851 /// PropertyNames - uniqued method variable names. 852 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 853 854 /// ClassReferences - uniqued class references. 855 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 856 857 /// SelectorReferences - uniqued selector references. 858 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 859 860 /// Protocols - Protocols for which an objc_protocol structure has 861 /// been emitted. Forward declarations are handled by creating an 862 /// empty structure whose initializer is filled in when/if defined. 863 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 864 865 /// DefinedProtocols - Protocols which have actually been 866 /// defined. We should not need this, see FIXME in GenerateProtocol. 867 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 868 869 /// DefinedClasses - List of defined classes. 870 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 871 872 /// ImplementedClasses - List of @implemented classes. 873 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 874 875 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 876 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 877 878 /// DefinedCategories - List of defined categories. 879 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 880 881 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 882 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 883 884 /// GetNameForMethod - Return a name for the given method. 885 /// \param[out] NameOut - The return value. 886 void GetNameForMethod(const ObjCMethodDecl *OMD, 887 const ObjCContainerDecl *CD, 888 SmallVectorImpl<char> &NameOut); 889 890 /// GetMethodVarName - Return a unique constant for the given 891 /// selector's name. The return value has type char *. 892 llvm::Constant *GetMethodVarName(Selector Sel); 893 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 894 895 /// GetMethodVarType - Return a unique constant for the given 896 /// method's type encoding string. The return value has type char *. 897 898 // FIXME: This is a horrible name. 899 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 900 bool Extended = false); 901 llvm::Constant *GetMethodVarType(const FieldDecl *D); 902 903 /// GetPropertyName - Return a unique constant for the given 904 /// name. The return value has type char *. 905 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 906 907 // FIXME: This can be dropped once string functions are unified. 908 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 909 const Decl *Container); 910 911 /// GetClassName - Return a unique constant for the given selector's 912 /// runtime name (which may change via use of objc_runtime_name attribute on 913 /// class or protocol definition. The return value has type char *. 914 llvm::Constant *GetClassName(StringRef RuntimeName); 915 916 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 917 918 /// BuildIvarLayout - Builds ivar layout bitmap for the class 919 /// implementation for the __strong or __weak case. 920 /// 921 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 922 /// are any weak ivars defined directly in the class. Meaningless unless 923 /// building a weak layout. Does not guarantee that the layout will 924 /// actually have any entries, because the ivar might be under-aligned. 925 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 926 CharUnits beginOffset, 927 CharUnits endOffset, 928 bool forStrongLayout, 929 bool hasMRCWeakIvars); 930 931 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 932 CharUnits beginOffset, 933 CharUnits endOffset) { 934 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 935 } 936 937 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 938 CharUnits beginOffset, 939 CharUnits endOffset, 940 bool hasMRCWeakIvars) { 941 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 942 } 943 944 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 945 946 void UpdateRunSkipBlockVars(bool IsByref, 947 Qualifiers::ObjCLifetime LifeTime, 948 CharUnits FieldOffset, 949 CharUnits FieldSize); 950 951 void BuildRCBlockVarRecordLayout(const RecordType *RT, 952 CharUnits BytePos, bool &HasUnion, 953 bool ByrefLayout=false); 954 955 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 956 const RecordDecl *RD, 957 ArrayRef<const FieldDecl*> RecFields, 958 CharUnits BytePos, bool &HasUnion, 959 bool ByrefLayout); 960 961 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 962 963 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 964 965 /// GetIvarLayoutName - Returns a unique constant for the given 966 /// ivar layout bitmap. 967 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 968 const ObjCCommonTypesHelper &ObjCTypes); 969 970 /// EmitPropertyList - Emit the given property list. The return 971 /// value has type PropertyListPtrTy. 972 llvm::Constant *EmitPropertyList(Twine Name, 973 const Decl *Container, 974 const ObjCContainerDecl *OCD, 975 const ObjCCommonTypesHelper &ObjCTypes, 976 bool IsClassProperty); 977 978 /// EmitProtocolMethodTypes - Generate the array of extended method type 979 /// strings. The return value has type Int8PtrPtrTy. 980 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 981 ArrayRef<llvm::Constant*> MethodTypes, 982 const ObjCCommonTypesHelper &ObjCTypes); 983 984 /// PushProtocolProperties - Push protocol's property on the input stack. 985 void PushProtocolProperties( 986 llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 987 SmallVectorImpl<llvm::Constant*> &Properties, 988 const Decl *Container, 989 const ObjCProtocolDecl *Proto, 990 const ObjCCommonTypesHelper &ObjCTypes, 991 bool IsClassProperty); 992 993 /// GetProtocolRef - Return a reference to the internal protocol 994 /// description, creating an empty one if it has not been 995 /// defined. The return value has type ProtocolPtrTy. 996 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 997 998 /// Return a reference to the given Class using runtime calls rather than 999 /// by a symbol reference. 1000 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1001 const ObjCInterfaceDecl *ID, 1002 ObjCCommonTypesHelper &ObjCTypes); 1003 1004 public: 1005 /// CreateMetadataVar - Create a global variable with internal 1006 /// linkage for use by the Objective-C runtime. 1007 /// 1008 /// This is a convenience wrapper which not only creates the 1009 /// variable, but also sets the section and alignment and adds the 1010 /// global to the "llvm.used" list. 1011 /// 1012 /// \param Name - The variable name. 1013 /// \param Init - The variable initializer; this is also used to 1014 /// define the type of the variable. 1015 /// \param Section - The section the variable should go into, or empty. 1016 /// \param Align - The alignment for the variable, or 0. 1017 /// \param AddToUsed - Whether the variable should be added to 1018 /// "llvm.used". 1019 llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init, 1020 StringRef Section, CharUnits Align, 1021 bool AddToUsed); 1022 1023 protected: 1024 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1025 ReturnValueSlot Return, 1026 QualType ResultType, 1027 llvm::Value *Sel, 1028 llvm::Value *Arg0, 1029 QualType Arg0Ty, 1030 bool IsSuper, 1031 const CallArgList &CallArgs, 1032 const ObjCMethodDecl *OMD, 1033 const ObjCInterfaceDecl *ClassReceiver, 1034 const ObjCCommonTypesHelper &ObjCTypes); 1035 1036 /// EmitImageInfo - Emit the image info marker used to encode some module 1037 /// level information. 1038 void EmitImageInfo(); 1039 1040 public: 1041 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1042 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1043 1044 bool isNonFragileABI() const { 1045 return ObjCABI == 2; 1046 } 1047 1048 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1049 1050 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1051 const ObjCContainerDecl *CD=nullptr) override; 1052 1053 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1054 1055 /// GetOrEmitProtocol - Get the protocol object for the given 1056 /// declaration, emitting it if necessary. The return value has type 1057 /// ProtocolPtrTy. 1058 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1059 1060 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1061 /// object for the given declaration, emitting it if needed. These 1062 /// forward references will be filled in with empty bodies if no 1063 /// definition is seen. The return value has type ProtocolPtrTy. 1064 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1065 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1066 const CGBlockInfo &blockInfo) override; 1067 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1068 const CGBlockInfo &blockInfo) override; 1069 1070 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1071 QualType T) override; 1072 }; 1073 1074 class CGObjCMac : public CGObjCCommonMac { 1075 private: 1076 ObjCTypesHelper ObjCTypes; 1077 1078 /// EmitModuleInfo - Another marker encoding module level 1079 /// information. 1080 void EmitModuleInfo(); 1081 1082 /// EmitModuleSymols - Emit module symbols, the list of defined 1083 /// classes and categories. The result has type SymtabPtrTy. 1084 llvm::Constant *EmitModuleSymbols(); 1085 1086 /// FinishModule - Write out global data structures at the end of 1087 /// processing a translation unit. 1088 void FinishModule(); 1089 1090 /// EmitClassExtension - Generate the class extension structure used 1091 /// to store the weak ivar layout and properties. The return value 1092 /// has type ClassExtensionPtrTy. 1093 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1094 CharUnits instanceSize, 1095 bool hasMRCWeakIvars, 1096 bool isClassProperty); 1097 1098 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1099 /// for the given class. 1100 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1101 const ObjCInterfaceDecl *ID); 1102 1103 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1104 IdentifierInfo *II); 1105 1106 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1107 1108 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1109 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1110 1111 /// EmitIvarList - Emit the ivar list for the given 1112 /// implementation. If ForClass is true the list of class ivars 1113 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1114 /// interface ivars will be emitted. The return value has type 1115 /// IvarListPtrTy. 1116 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1117 bool ForClass); 1118 1119 /// EmitMetaClass - Emit a forward reference to the class structure 1120 /// for the metaclass of the given interface. The return value has 1121 /// type ClassPtrTy. 1122 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1123 1124 /// EmitMetaClass - Emit a class structure for the metaclass of the 1125 /// given implementation. The return value has type ClassPtrTy. 1126 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1127 llvm::Constant *Protocols, 1128 ArrayRef<llvm::Constant*> Methods); 1129 1130 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1131 1132 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1133 1134 /// EmitMethodList - Emit the method list for the given 1135 /// implementation. The return value has type MethodListPtrTy. 1136 llvm::Constant *EmitMethodList(Twine Name, 1137 const char *Section, 1138 ArrayRef<llvm::Constant*> Methods); 1139 1140 /// EmitMethodDescList - Emit a method description list for a list of 1141 /// method declarations. 1142 /// - TypeName: The name for the type containing the methods. 1143 /// - IsProtocol: True iff these methods are for a protocol. 1144 /// - ClassMethds: True iff these are class methods. 1145 /// - Required: When true, only "required" methods are 1146 /// listed. Similarly, when false only "optional" methods are 1147 /// listed. For classes this should always be true. 1148 /// - begin, end: The method list to output. 1149 /// 1150 /// The return value has type MethodDescriptionListPtrTy. 1151 llvm::Constant *EmitMethodDescList(Twine Name, 1152 const char *Section, 1153 ArrayRef<llvm::Constant*> Methods); 1154 1155 /// GetOrEmitProtocol - Get the protocol object for the given 1156 /// declaration, emitting it if necessary. The return value has type 1157 /// ProtocolPtrTy. 1158 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1159 1160 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1161 /// object for the given declaration, emitting it if needed. These 1162 /// forward references will be filled in with empty bodies if no 1163 /// definition is seen. The return value has type ProtocolPtrTy. 1164 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1165 1166 /// EmitProtocolExtension - Generate the protocol extension 1167 /// structure used to store optional instance and class methods, and 1168 /// protocol properties. The return value has type 1169 /// ProtocolExtensionPtrTy. 1170 llvm::Constant * 1171 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1172 ArrayRef<llvm::Constant*> OptInstanceMethods, 1173 ArrayRef<llvm::Constant*> OptClassMethods, 1174 ArrayRef<llvm::Constant*> MethodTypesExt); 1175 1176 /// EmitProtocolList - Generate the list of referenced 1177 /// protocols. The return value has type ProtocolListPtrTy. 1178 llvm::Constant *EmitProtocolList(Twine Name, 1179 ObjCProtocolDecl::protocol_iterator begin, 1180 ObjCProtocolDecl::protocol_iterator end); 1181 1182 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1183 /// for the given selector. 1184 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1185 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1186 1187 public: 1188 CGObjCMac(CodeGen::CodeGenModule &cgm); 1189 1190 llvm::Function *ModuleInitFunction() override; 1191 1192 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1193 ReturnValueSlot Return, 1194 QualType ResultType, 1195 Selector Sel, llvm::Value *Receiver, 1196 const CallArgList &CallArgs, 1197 const ObjCInterfaceDecl *Class, 1198 const ObjCMethodDecl *Method) override; 1199 1200 CodeGen::RValue 1201 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1202 ReturnValueSlot Return, QualType ResultType, 1203 Selector Sel, const ObjCInterfaceDecl *Class, 1204 bool isCategoryImpl, llvm::Value *Receiver, 1205 bool IsClassMessage, const CallArgList &CallArgs, 1206 const ObjCMethodDecl *Method) override; 1207 1208 llvm::Value *GetClass(CodeGenFunction &CGF, 1209 const ObjCInterfaceDecl *ID) override; 1210 1211 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1212 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1213 1214 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1215 /// untyped one. 1216 llvm::Value *GetSelector(CodeGenFunction &CGF, 1217 const ObjCMethodDecl *Method) override; 1218 1219 llvm::Constant *GetEHType(QualType T) override; 1220 1221 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1222 1223 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1224 1225 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1226 1227 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1228 const ObjCProtocolDecl *PD) override; 1229 1230 llvm::Constant *GetPropertyGetFunction() override; 1231 llvm::Constant *GetPropertySetFunction() override; 1232 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1233 bool copy) override; 1234 llvm::Constant *GetGetStructFunction() override; 1235 llvm::Constant *GetSetStructFunction() override; 1236 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1237 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1238 llvm::Constant *EnumerationMutationFunction() override; 1239 1240 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1241 const ObjCAtTryStmt &S) override; 1242 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1243 const ObjCAtSynchronizedStmt &S) override; 1244 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1245 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1246 bool ClearInsertionPoint=true) override; 1247 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1248 Address AddrWeakObj) override; 1249 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1250 llvm::Value *src, Address dst) override; 1251 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1252 llvm::Value *src, Address dest, 1253 bool threadlocal = false) override; 1254 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1255 llvm::Value *src, Address dest, 1256 llvm::Value *ivarOffset) override; 1257 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1258 llvm::Value *src, Address dest) override; 1259 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1260 Address dest, Address src, 1261 llvm::Value *size) override; 1262 1263 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1264 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1265 unsigned CVRQualifiers) override; 1266 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1267 const ObjCInterfaceDecl *Interface, 1268 const ObjCIvarDecl *Ivar) override; 1269 1270 /// GetClassGlobal - Return the global variable for the Objective-C 1271 /// class of the given name. 1272 llvm::GlobalVariable *GetClassGlobal(StringRef Name, 1273 bool Weak = false) override { 1274 llvm_unreachable("CGObjCMac::GetClassGlobal"); 1275 } 1276 }; 1277 1278 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1279 private: 1280 ObjCNonFragileABITypesHelper ObjCTypes; 1281 llvm::GlobalVariable* ObjCEmptyCacheVar; 1282 llvm::GlobalVariable* ObjCEmptyVtableVar; 1283 1284 /// SuperClassReferences - uniqued super class references. 1285 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1286 1287 /// MetaClassReferences - uniqued meta class references. 1288 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1289 1290 /// EHTypeReferences - uniqued class ehtype references. 1291 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1292 1293 /// VTableDispatchMethods - List of methods for which we generate 1294 /// vtable-based message dispatch. 1295 llvm::DenseSet<Selector> VTableDispatchMethods; 1296 1297 /// DefinedMetaClasses - List of defined meta-classes. 1298 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1299 1300 /// isVTableDispatchedSelector - Returns true if SEL is a 1301 /// vtable-based selector. 1302 bool isVTableDispatchedSelector(Selector Sel); 1303 1304 /// FinishNonFragileABIModule - Write out global data structures at the end of 1305 /// processing a translation unit. 1306 void FinishNonFragileABIModule(); 1307 1308 /// AddModuleClassList - Add the given list of class pointers to the 1309 /// module with the provided symbol and section names. 1310 void AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 1311 const char *SymbolName, 1312 const char *SectionName); 1313 1314 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1315 unsigned InstanceStart, 1316 unsigned InstanceSize, 1317 const ObjCImplementationDecl *ID); 1318 llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName, 1319 llvm::Constant *IsAGV, 1320 llvm::Constant *SuperClassGV, 1321 llvm::Constant *ClassRoGV, 1322 bool HiddenVisibility, 1323 bool Weak); 1324 1325 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1326 1327 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1328 1329 /// EmitMethodList - Emit the method list for the given 1330 /// implementation. The return value has type MethodListnfABITy. 1331 llvm::Constant *EmitMethodList(Twine Name, 1332 const char *Section, 1333 ArrayRef<llvm::Constant*> Methods); 1334 /// EmitIvarList - Emit the ivar list for the given 1335 /// implementation. If ForClass is true the list of class ivars 1336 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1337 /// interface ivars will be emitted. The return value has type 1338 /// IvarListnfABIPtrTy. 1339 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1340 1341 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1342 const ObjCIvarDecl *Ivar, 1343 unsigned long int offset); 1344 1345 /// GetOrEmitProtocol - Get the protocol object for the given 1346 /// declaration, emitting it if necessary. The return value has type 1347 /// ProtocolPtrTy. 1348 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1349 1350 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1351 /// object for the given declaration, emitting it if needed. These 1352 /// forward references will be filled in with empty bodies if no 1353 /// definition is seen. The return value has type ProtocolPtrTy. 1354 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1355 1356 /// EmitProtocolList - Generate the list of referenced 1357 /// protocols. The return value has type ProtocolListPtrTy. 1358 llvm::Constant *EmitProtocolList(Twine Name, 1359 ObjCProtocolDecl::protocol_iterator begin, 1360 ObjCProtocolDecl::protocol_iterator end); 1361 1362 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1363 ReturnValueSlot Return, 1364 QualType ResultType, 1365 Selector Sel, 1366 llvm::Value *Receiver, 1367 QualType Arg0Ty, 1368 bool IsSuper, 1369 const CallArgList &CallArgs, 1370 const ObjCMethodDecl *Method); 1371 1372 /// GetClassGlobal - Return the global variable for the Objective-C 1373 /// class of the given name. 1374 llvm::GlobalVariable *GetClassGlobal(StringRef Name, 1375 bool Weak = false) override; 1376 1377 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1378 /// for the given class reference. 1379 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1380 const ObjCInterfaceDecl *ID); 1381 1382 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1383 IdentifierInfo *II, bool Weak, 1384 const ObjCInterfaceDecl *ID); 1385 1386 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1387 1388 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1389 /// for the given super class reference. 1390 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1391 const ObjCInterfaceDecl *ID); 1392 1393 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1394 /// meta-data 1395 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1396 const ObjCInterfaceDecl *ID, bool Weak); 1397 1398 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1399 /// the given ivar. 1400 /// 1401 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1402 const ObjCInterfaceDecl *ID, 1403 const ObjCIvarDecl *Ivar); 1404 1405 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1406 /// for the given selector. 1407 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1408 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1409 1410 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1411 /// interface. The return value has type EHTypePtrTy. 1412 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1413 bool ForDefinition); 1414 1415 const char *getMetaclassSymbolPrefix() const { 1416 return "OBJC_METACLASS_$_"; 1417 } 1418 1419 const char *getClassSymbolPrefix() const { 1420 return "OBJC_CLASS_$_"; 1421 } 1422 1423 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1424 uint32_t &InstanceStart, 1425 uint32_t &InstanceSize); 1426 1427 // Shamelessly stolen from Analysis/CFRefCount.cpp 1428 Selector GetNullarySelector(const char* name) const { 1429 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1430 return CGM.getContext().Selectors.getSelector(0, &II); 1431 } 1432 1433 Selector GetUnarySelector(const char* name) const { 1434 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1435 return CGM.getContext().Selectors.getSelector(1, &II); 1436 } 1437 1438 /// ImplementationIsNonLazy - Check whether the given category or 1439 /// class implementation is "non-lazy". 1440 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1441 1442 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1443 const ObjCIvarDecl *IV) { 1444 // Annotate the load as an invariant load iff inside an instance method 1445 // and ivar belongs to instance method's class and one of its super class. 1446 // This check is needed because the ivar offset is a lazily 1447 // initialised value that may depend on objc_msgSend to perform a fixup on 1448 // the first message dispatch. 1449 // 1450 // An additional opportunity to mark the load as invariant arises when the 1451 // base of the ivar access is a parameter to an Objective C method. 1452 // However, because the parameters are not available in the current 1453 // interface, we cannot perform this check. 1454 if (const ObjCMethodDecl *MD = 1455 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1456 if (MD->isInstanceMethod()) 1457 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1458 return IV->getContainingInterface()->isSuperClassOf(ID); 1459 return false; 1460 } 1461 1462 public: 1463 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1464 // FIXME. All stubs for now! 1465 llvm::Function *ModuleInitFunction() override; 1466 1467 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1468 ReturnValueSlot Return, 1469 QualType ResultType, Selector Sel, 1470 llvm::Value *Receiver, 1471 const CallArgList &CallArgs, 1472 const ObjCInterfaceDecl *Class, 1473 const ObjCMethodDecl *Method) override; 1474 1475 CodeGen::RValue 1476 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1477 ReturnValueSlot Return, QualType ResultType, 1478 Selector Sel, const ObjCInterfaceDecl *Class, 1479 bool isCategoryImpl, llvm::Value *Receiver, 1480 bool IsClassMessage, const CallArgList &CallArgs, 1481 const ObjCMethodDecl *Method) override; 1482 1483 llvm::Value *GetClass(CodeGenFunction &CGF, 1484 const ObjCInterfaceDecl *ID) override; 1485 1486 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1487 { return EmitSelector(CGF, Sel); } 1488 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1489 { return EmitSelectorAddr(CGF, Sel); } 1490 1491 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1492 /// untyped one. 1493 llvm::Value *GetSelector(CodeGenFunction &CGF, 1494 const ObjCMethodDecl *Method) override 1495 { return EmitSelector(CGF, Method->getSelector()); } 1496 1497 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1498 1499 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1500 1501 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1502 1503 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1504 const ObjCProtocolDecl *PD) override; 1505 1506 llvm::Constant *GetEHType(QualType T) override; 1507 1508 llvm::Constant *GetPropertyGetFunction() override { 1509 return ObjCTypes.getGetPropertyFn(); 1510 } 1511 llvm::Constant *GetPropertySetFunction() override { 1512 return ObjCTypes.getSetPropertyFn(); 1513 } 1514 1515 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1516 bool copy) override { 1517 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1518 } 1519 1520 llvm::Constant *GetSetStructFunction() override { 1521 return ObjCTypes.getCopyStructFn(); 1522 } 1523 1524 llvm::Constant *GetGetStructFunction() override { 1525 return ObjCTypes.getCopyStructFn(); 1526 } 1527 1528 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1529 return ObjCTypes.getCppAtomicObjectFunction(); 1530 } 1531 1532 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1533 return ObjCTypes.getCppAtomicObjectFunction(); 1534 } 1535 1536 llvm::Constant *EnumerationMutationFunction() override { 1537 return ObjCTypes.getEnumerationMutationFn(); 1538 } 1539 1540 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1541 const ObjCAtTryStmt &S) override; 1542 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1543 const ObjCAtSynchronizedStmt &S) override; 1544 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1545 bool ClearInsertionPoint=true) override; 1546 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1547 Address AddrWeakObj) override; 1548 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1549 llvm::Value *src, Address edst) override; 1550 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1551 llvm::Value *src, Address dest, 1552 bool threadlocal = false) override; 1553 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1554 llvm::Value *src, Address dest, 1555 llvm::Value *ivarOffset) override; 1556 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1557 llvm::Value *src, Address dest) override; 1558 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1559 Address dest, Address src, 1560 llvm::Value *size) override; 1561 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1562 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1563 unsigned CVRQualifiers) override; 1564 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1565 const ObjCInterfaceDecl *Interface, 1566 const ObjCIvarDecl *Ivar) override; 1567 }; 1568 1569 /// A helper class for performing the null-initialization of a return 1570 /// value. 1571 struct NullReturnState { 1572 llvm::BasicBlock *NullBB; 1573 NullReturnState() : NullBB(nullptr) {} 1574 1575 /// Perform a null-check of the given receiver. 1576 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1577 // Make blocks for the null-receiver and call edges. 1578 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1579 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1580 1581 // Check for a null receiver and, if there is one, jump to the 1582 // null-receiver block. There's no point in trying to avoid it: 1583 // we're always going to put *something* there, because otherwise 1584 // we shouldn't have done this null-check in the first place. 1585 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1586 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1587 1588 // Otherwise, start performing the call. 1589 CGF.EmitBlock(callBB); 1590 } 1591 1592 /// Complete the null-return operation. It is valid to call this 1593 /// regardless of whether 'init' has been called. 1594 RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType, 1595 const CallArgList &CallArgs, 1596 const ObjCMethodDecl *Method) { 1597 // If we never had to do a null-check, just use the raw result. 1598 if (!NullBB) return result; 1599 1600 // The continuation block. This will be left null if we don't have an 1601 // IP, which can happen if the method we're calling is marked noreturn. 1602 llvm::BasicBlock *contBB = nullptr; 1603 1604 // Finish the call path. 1605 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1606 if (callBB) { 1607 contBB = CGF.createBasicBlock("msgSend.cont"); 1608 CGF.Builder.CreateBr(contBB); 1609 } 1610 1611 // Okay, start emitting the null-receiver block. 1612 CGF.EmitBlock(NullBB); 1613 1614 // Release any consumed arguments we've got. 1615 if (Method) { 1616 CallArgList::const_iterator I = CallArgs.begin(); 1617 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1618 e = Method->param_end(); i != e; ++i, ++I) { 1619 const ParmVarDecl *ParamDecl = (*i); 1620 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1621 RValue RV = I->RV; 1622 assert(RV.isScalar() && 1623 "NullReturnState::complete - arg not on object"); 1624 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1625 } 1626 } 1627 } 1628 1629 // The phi code below assumes that we haven't needed any control flow yet. 1630 assert(CGF.Builder.GetInsertBlock() == NullBB); 1631 1632 // If we've got a void return, just jump to the continuation block. 1633 if (result.isScalar() && resultType->isVoidType()) { 1634 // No jumps required if the message-send was noreturn. 1635 if (contBB) CGF.EmitBlock(contBB); 1636 return result; 1637 } 1638 1639 // If we've got a scalar return, build a phi. 1640 if (result.isScalar()) { 1641 // Derive the null-initialization value. 1642 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1643 1644 // If no join is necessary, just flow out. 1645 if (!contBB) return RValue::get(null); 1646 1647 // Otherwise, build a phi. 1648 CGF.EmitBlock(contBB); 1649 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1650 phi->addIncoming(result.getScalarVal(), callBB); 1651 phi->addIncoming(null, NullBB); 1652 return RValue::get(phi); 1653 } 1654 1655 // If we've got an aggregate return, null the buffer out. 1656 // FIXME: maybe we should be doing things differently for all the 1657 // cases where the ABI has us returning (1) non-agg values in 1658 // memory or (2) agg values in registers. 1659 if (result.isAggregate()) { 1660 assert(result.isAggregate() && "null init of non-aggregate result?"); 1661 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1662 if (contBB) CGF.EmitBlock(contBB); 1663 return result; 1664 } 1665 1666 // Complex types. 1667 CGF.EmitBlock(contBB); 1668 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1669 1670 // Find the scalar type and its zero value. 1671 llvm::Type *scalarTy = callResult.first->getType(); 1672 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1673 1674 // Build phis for both coordinates. 1675 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1676 real->addIncoming(callResult.first, callBB); 1677 real->addIncoming(scalarZero, NullBB); 1678 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1679 imag->addIncoming(callResult.second, callBB); 1680 imag->addIncoming(scalarZero, NullBB); 1681 return RValue::getComplex(real, imag); 1682 } 1683 }; 1684 1685 } // end anonymous namespace 1686 1687 /* *** Helper Functions *** */ 1688 1689 /// getConstantGEP() - Help routine to construct simple GEPs. 1690 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1691 llvm::GlobalVariable *C, unsigned idx0, 1692 unsigned idx1) { 1693 llvm::Value *Idxs[] = { 1694 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1695 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1696 }; 1697 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1698 } 1699 1700 /// hasObjCExceptionAttribute - Return true if this class or any super 1701 /// class has the __objc_exception__ attribute. 1702 static bool hasObjCExceptionAttribute(ASTContext &Context, 1703 const ObjCInterfaceDecl *OID) { 1704 if (OID->hasAttr<ObjCExceptionAttr>()) 1705 return true; 1706 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1707 return hasObjCExceptionAttribute(Context, Super); 1708 return false; 1709 } 1710 1711 /* *** CGObjCMac Public Interface *** */ 1712 1713 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1714 ObjCTypes(cgm) { 1715 ObjCABI = 1; 1716 EmitImageInfo(); 1717 } 1718 1719 /// GetClass - Return a reference to the class for the given interface 1720 /// decl. 1721 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1722 const ObjCInterfaceDecl *ID) { 1723 return EmitClassRef(CGF, ID); 1724 } 1725 1726 /// GetSelector - Return the pointer to the unique'd string for this selector. 1727 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1728 return EmitSelector(CGF, Sel); 1729 } 1730 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1731 return EmitSelectorAddr(CGF, Sel); 1732 } 1733 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1734 *Method) { 1735 return EmitSelector(CGF, Method->getSelector()); 1736 } 1737 1738 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1739 if (T->isObjCIdType() || 1740 T->isObjCQualifiedIdType()) { 1741 return CGM.GetAddrOfRTTIDescriptor( 1742 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1743 } 1744 if (T->isObjCClassType() || 1745 T->isObjCQualifiedClassType()) { 1746 return CGM.GetAddrOfRTTIDescriptor( 1747 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1748 } 1749 if (T->isObjCObjectPointerType()) 1750 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1751 1752 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1753 } 1754 1755 /// Generate a constant CFString object. 1756 /* 1757 struct __builtin_CFString { 1758 const int *isa; // point to __CFConstantStringClassReference 1759 int flags; 1760 const char *str; 1761 long length; 1762 }; 1763 */ 1764 1765 /// or Generate a constant NSString object. 1766 /* 1767 struct __builtin_NSString { 1768 const int *isa; // point to __NSConstantStringClassReference 1769 const char *str; 1770 unsigned int length; 1771 }; 1772 */ 1773 1774 ConstantAddress CGObjCCommonMac::GenerateConstantString( 1775 const StringLiteral *SL) { 1776 return (CGM.getLangOpts().NoConstantCFStrings == 0 ? 1777 CGM.GetAddrOfConstantCFString(SL) : 1778 CGM.GetAddrOfConstantString(SL)); 1779 } 1780 1781 enum { 1782 kCFTaggedObjectID_Integer = (1 << 1) + 1 1783 }; 1784 1785 /// Generates a message send where the super is the receiver. This is 1786 /// a message send to self with special delivery semantics indicating 1787 /// which class's method should be called. 1788 CodeGen::RValue 1789 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1790 ReturnValueSlot Return, 1791 QualType ResultType, 1792 Selector Sel, 1793 const ObjCInterfaceDecl *Class, 1794 bool isCategoryImpl, 1795 llvm::Value *Receiver, 1796 bool IsClassMessage, 1797 const CodeGen::CallArgList &CallArgs, 1798 const ObjCMethodDecl *Method) { 1799 // Create and init a super structure; this is a (receiver, class) 1800 // pair we will pass to objc_msgSendSuper. 1801 Address ObjCSuper = 1802 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1803 "objc_super"); 1804 llvm::Value *ReceiverAsObject = 1805 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 1806 CGF.Builder.CreateStore( 1807 ReceiverAsObject, 1808 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 1809 1810 // If this is a class message the metaclass is passed as the target. 1811 llvm::Value *Target; 1812 if (IsClassMessage) { 1813 if (isCategoryImpl) { 1814 // Message sent to 'super' in a class method defined in a category 1815 // implementation requires an odd treatment. 1816 // If we are in a class method, we must retrieve the 1817 // _metaclass_ for the current class, pointed at by 1818 // the class's "isa" pointer. The following assumes that 1819 // isa" is the first ivar in a class (which it must be). 1820 Target = EmitClassRef(CGF, Class->getSuperClass()); 1821 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 1822 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 1823 } else { 1824 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 1825 llvm::Value *SuperPtr = 1826 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 1827 llvm::Value *Super = 1828 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 1829 Target = Super; 1830 } 1831 } else if (isCategoryImpl) 1832 Target = EmitClassRef(CGF, Class->getSuperClass()); 1833 else { 1834 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 1835 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 1836 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 1837 } 1838 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 1839 // ObjCTypes types. 1840 llvm::Type *ClassTy = 1841 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 1842 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 1843 CGF.Builder.CreateStore(Target, 1844 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 1845 return EmitMessageSend(CGF, Return, ResultType, 1846 EmitSelector(CGF, Sel), 1847 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 1848 true, CallArgs, Method, Class, ObjCTypes); 1849 } 1850 1851 /// Generate code for a message send expression. 1852 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1853 ReturnValueSlot Return, 1854 QualType ResultType, 1855 Selector Sel, 1856 llvm::Value *Receiver, 1857 const CallArgList &CallArgs, 1858 const ObjCInterfaceDecl *Class, 1859 const ObjCMethodDecl *Method) { 1860 return EmitMessageSend(CGF, Return, ResultType, 1861 EmitSelector(CGF, Sel), 1862 Receiver, CGF.getContext().getObjCIdType(), 1863 false, CallArgs, Method, Class, ObjCTypes); 1864 } 1865 1866 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 1867 do { 1868 if (ID->isWeakImported()) 1869 return true; 1870 } while ((ID = ID->getSuperClass())); 1871 1872 return false; 1873 } 1874 1875 CodeGen::RValue 1876 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1877 ReturnValueSlot Return, 1878 QualType ResultType, 1879 llvm::Value *Sel, 1880 llvm::Value *Arg0, 1881 QualType Arg0Ty, 1882 bool IsSuper, 1883 const CallArgList &CallArgs, 1884 const ObjCMethodDecl *Method, 1885 const ObjCInterfaceDecl *ClassReceiver, 1886 const ObjCCommonTypesHelper &ObjCTypes) { 1887 CallArgList ActualArgs; 1888 if (!IsSuper) 1889 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 1890 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 1891 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 1892 ActualArgs.addFrom(CallArgs); 1893 1894 // If we're calling a method, use the formal signature. 1895 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1896 1897 if (Method) 1898 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 1899 CGM.getContext().getCanonicalType(ResultType) && 1900 "Result type mismatch!"); 1901 1902 bool ReceiverCanBeNull = true; 1903 1904 // Super dispatch assumes that self is non-null; even the messenger 1905 // doesn't have a null check internally. 1906 if (IsSuper) { 1907 ReceiverCanBeNull = false; 1908 1909 // If this is a direct dispatch of a class method, check whether the class, 1910 // or anything in its hierarchy, was weak-linked. 1911 } else if (ClassReceiver && Method && Method->isClassMethod()) { 1912 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 1913 1914 // If we're emitting a method, and self is const (meaning just ARC, for now), 1915 // and the receiver is a load of self, then self is a valid object. 1916 } else if (auto CurMethod = 1917 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 1918 auto Self = CurMethod->getSelfDecl(); 1919 if (Self->getType().isConstQualified()) { 1920 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 1921 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 1922 if (SelfAddr == LI->getPointerOperand()) { 1923 ReceiverCanBeNull = false; 1924 } 1925 } 1926 } 1927 } 1928 1929 NullReturnState nullReturn; 1930 1931 llvm::Constant *Fn = nullptr; 1932 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 1933 if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0); 1934 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 1935 : ObjCTypes.getSendStretFn(IsSuper); 1936 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1937 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 1938 : ObjCTypes.getSendFpretFn(IsSuper); 1939 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 1940 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 1941 : ObjCTypes.getSendFp2retFn(IsSuper); 1942 } else { 1943 // arm64 uses objc_msgSend for stret methods and yet null receiver check 1944 // must be made for it. 1945 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 1946 nullReturn.init(CGF, Arg0); 1947 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 1948 : ObjCTypes.getSendFn(IsSuper); 1949 } 1950 1951 // Emit a null-check if there's a consumed argument other than the receiver. 1952 bool RequiresNullCheck = false; 1953 if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) { 1954 for (const auto *ParamDecl : Method->params()) { 1955 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1956 if (!nullReturn.NullBB) 1957 nullReturn.init(CGF, Arg0); 1958 RequiresNullCheck = true; 1959 break; 1960 } 1961 } 1962 } 1963 1964 llvm::Instruction *CallSite; 1965 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 1966 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs, 1967 CGCalleeInfo(), &CallSite); 1968 1969 // Mark the call as noreturn if the method is marked noreturn and the 1970 // receiver cannot be null. 1971 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 1972 llvm::CallSite(CallSite).setDoesNotReturn(); 1973 } 1974 1975 return nullReturn.complete(CGF, rvalue, ResultType, CallArgs, 1976 RequiresNullCheck ? Method : nullptr); 1977 } 1978 1979 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 1980 bool pointee = false) { 1981 // Note that GC qualification applies recursively to C pointer types 1982 // that aren't otherwise decorated. This is weird, but it's probably 1983 // an intentional workaround to the unreliable placement of GC qualifiers. 1984 if (FQT.isObjCGCStrong()) 1985 return Qualifiers::Strong; 1986 1987 if (FQT.isObjCGCWeak()) 1988 return Qualifiers::Weak; 1989 1990 if (auto ownership = FQT.getObjCLifetime()) { 1991 // Ownership does not apply recursively to C pointer types. 1992 if (pointee) return Qualifiers::GCNone; 1993 switch (ownership) { 1994 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 1995 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 1996 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 1997 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 1998 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 1999 } 2000 llvm_unreachable("bad objc ownership"); 2001 } 2002 2003 // Treat unqualified retainable pointers as strong. 2004 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2005 return Qualifiers::Strong; 2006 2007 // Walk into C pointer types, but only in GC. 2008 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2009 if (const PointerType *PT = FQT->getAs<PointerType>()) 2010 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2011 } 2012 2013 return Qualifiers::GCNone; 2014 } 2015 2016 namespace { 2017 struct IvarInfo { 2018 CharUnits Offset; 2019 uint64_t SizeInWords; 2020 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2021 : Offset(offset), SizeInWords(sizeInWords) {} 2022 2023 // Allow sorting based on byte pos. 2024 bool operator<(const IvarInfo &other) const { 2025 return Offset < other.Offset; 2026 } 2027 }; 2028 2029 /// A helper class for building GC layout strings. 2030 class IvarLayoutBuilder { 2031 CodeGenModule &CGM; 2032 2033 /// The start of the layout. Offsets will be relative to this value, 2034 /// and entries less than this value will be silently discarded. 2035 CharUnits InstanceBegin; 2036 2037 /// The end of the layout. Offsets will never exceed this value. 2038 CharUnits InstanceEnd; 2039 2040 /// Whether we're generating the strong layout or the weak layout. 2041 bool ForStrongLayout; 2042 2043 /// Whether the offsets in IvarsInfo might be out-of-order. 2044 bool IsDisordered = false; 2045 2046 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2047 2048 public: 2049 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2050 CharUnits instanceEnd, bool forStrongLayout) 2051 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2052 ForStrongLayout(forStrongLayout) { 2053 } 2054 2055 void visitRecord(const RecordType *RT, CharUnits offset); 2056 2057 template <class Iterator, class GetOffsetFn> 2058 void visitAggregate(Iterator begin, Iterator end, 2059 CharUnits aggrOffset, 2060 const GetOffsetFn &getOffset); 2061 2062 void visitField(const FieldDecl *field, CharUnits offset); 2063 2064 /// Add the layout of a block implementation. 2065 void visitBlock(const CGBlockInfo &blockInfo); 2066 2067 /// Is there any information for an interesting bitmap? 2068 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2069 2070 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2071 llvm::SmallVectorImpl<unsigned char> &buffer); 2072 2073 static void dump(ArrayRef<unsigned char> buffer) { 2074 const unsigned char *s = buffer.data(); 2075 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2076 if (!(s[i] & 0xf0)) 2077 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2078 else 2079 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2080 printf("\n"); 2081 } 2082 }; 2083 } // end anonymous namespace 2084 2085 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2086 const CGBlockInfo &blockInfo) { 2087 2088 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2089 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2090 return nullPtr; 2091 2092 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2093 /*for strong layout*/ true); 2094 2095 builder.visitBlock(blockInfo); 2096 2097 if (!builder.hasBitmapData()) 2098 return nullPtr; 2099 2100 llvm::SmallVector<unsigned char, 32> buffer; 2101 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2102 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2103 printf("\n block variable layout for block: "); 2104 builder.dump(buffer); 2105 } 2106 2107 return C; 2108 } 2109 2110 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2111 // __isa is the first field in block descriptor and must assume by runtime's 2112 // convention that it is GC'able. 2113 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2114 2115 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2116 2117 // Ignore the optional 'this' capture: C++ objects are not assumed 2118 // to be GC'ed. 2119 2120 CharUnits lastFieldOffset; 2121 2122 // Walk the captured variables. 2123 for (const auto &CI : blockDecl->captures()) { 2124 const VarDecl *variable = CI.getVariable(); 2125 QualType type = variable->getType(); 2126 2127 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2128 2129 // Ignore constant captures. 2130 if (capture.isConstant()) continue; 2131 2132 CharUnits fieldOffset = capture.getOffset(); 2133 2134 // Block fields are not necessarily ordered; if we detect that we're 2135 // adding them out-of-order, make sure we sort later. 2136 if (fieldOffset < lastFieldOffset) 2137 IsDisordered = true; 2138 lastFieldOffset = fieldOffset; 2139 2140 // __block variables are passed by their descriptor address. 2141 if (CI.isByRef()) { 2142 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2143 continue; 2144 } 2145 2146 assert(!type->isArrayType() && "array variable should not be caught"); 2147 if (const RecordType *record = type->getAs<RecordType>()) { 2148 visitRecord(record, fieldOffset); 2149 continue; 2150 } 2151 2152 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2153 2154 if (GCAttr == Qualifiers::Strong) { 2155 assert(CGM.getContext().getTypeSize(type) 2156 == CGM.getTarget().getPointerWidth(0)); 2157 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2158 } 2159 } 2160 } 2161 2162 /// getBlockCaptureLifetime - This routine returns life time of the captured 2163 /// block variable for the purpose of block layout meta-data generation. FQT is 2164 /// the type of the variable captured in the block. 2165 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2166 bool ByrefLayout) { 2167 // If it has an ownership qualifier, we're done. 2168 if (auto lifetime = FQT.getObjCLifetime()) 2169 return lifetime; 2170 2171 // If it doesn't, and this is ARC, it has no ownership. 2172 if (CGM.getLangOpts().ObjCAutoRefCount) 2173 return Qualifiers::OCL_None; 2174 2175 // In MRC, retainable pointers are owned by non-__block variables. 2176 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2177 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2178 2179 return Qualifiers::OCL_None; 2180 } 2181 2182 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2183 Qualifiers::ObjCLifetime LifeTime, 2184 CharUnits FieldOffset, 2185 CharUnits FieldSize) { 2186 // __block variables are passed by their descriptor address. 2187 if (IsByref) 2188 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2189 FieldSize)); 2190 else if (LifeTime == Qualifiers::OCL_Strong) 2191 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2192 FieldSize)); 2193 else if (LifeTime == Qualifiers::OCL_Weak) 2194 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2195 FieldSize)); 2196 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2197 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2198 FieldSize)); 2199 else 2200 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2201 FieldOffset, 2202 FieldSize)); 2203 } 2204 2205 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2206 const RecordDecl *RD, 2207 ArrayRef<const FieldDecl*> RecFields, 2208 CharUnits BytePos, bool &HasUnion, 2209 bool ByrefLayout) { 2210 bool IsUnion = (RD && RD->isUnion()); 2211 CharUnits MaxUnionSize = CharUnits::Zero(); 2212 const FieldDecl *MaxField = nullptr; 2213 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2214 CharUnits MaxFieldOffset = CharUnits::Zero(); 2215 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2216 2217 if (RecFields.empty()) 2218 return; 2219 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2220 2221 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2222 const FieldDecl *Field = RecFields[i]; 2223 // Note that 'i' here is actually the field index inside RD of Field, 2224 // although this dependency is hidden. 2225 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2226 CharUnits FieldOffset = 2227 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2228 2229 // Skip over unnamed or bitfields 2230 if (!Field->getIdentifier() || Field->isBitField()) { 2231 LastFieldBitfieldOrUnnamed = Field; 2232 LastBitfieldOrUnnamedOffset = FieldOffset; 2233 continue; 2234 } 2235 2236 LastFieldBitfieldOrUnnamed = nullptr; 2237 QualType FQT = Field->getType(); 2238 if (FQT->isRecordType() || FQT->isUnionType()) { 2239 if (FQT->isUnionType()) 2240 HasUnion = true; 2241 2242 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2243 BytePos + FieldOffset, HasUnion); 2244 continue; 2245 } 2246 2247 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2248 const ConstantArrayType *CArray = 2249 dyn_cast_or_null<ConstantArrayType>(Array); 2250 uint64_t ElCount = CArray->getSize().getZExtValue(); 2251 assert(CArray && "only array with known element size is supported"); 2252 FQT = CArray->getElementType(); 2253 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2254 const ConstantArrayType *CArray = 2255 dyn_cast_or_null<ConstantArrayType>(Array); 2256 ElCount *= CArray->getSize().getZExtValue(); 2257 FQT = CArray->getElementType(); 2258 } 2259 if (FQT->isRecordType() && ElCount) { 2260 int OldIndex = RunSkipBlockVars.size() - 1; 2261 const RecordType *RT = FQT->getAs<RecordType>(); 2262 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2263 HasUnion); 2264 2265 // Replicate layout information for each array element. Note that 2266 // one element is already done. 2267 uint64_t ElIx = 1; 2268 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2269 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2270 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2271 RunSkipBlockVars.push_back( 2272 RUN_SKIP(RunSkipBlockVars[i].opcode, 2273 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2274 RunSkipBlockVars[i].block_var_size)); 2275 } 2276 continue; 2277 } 2278 } 2279 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2280 if (IsUnion) { 2281 CharUnits UnionIvarSize = FieldSize; 2282 if (UnionIvarSize > MaxUnionSize) { 2283 MaxUnionSize = UnionIvarSize; 2284 MaxField = Field; 2285 MaxFieldOffset = FieldOffset; 2286 } 2287 } else { 2288 UpdateRunSkipBlockVars(false, 2289 getBlockCaptureLifetime(FQT, ByrefLayout), 2290 BytePos + FieldOffset, 2291 FieldSize); 2292 } 2293 } 2294 2295 if (LastFieldBitfieldOrUnnamed) { 2296 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2297 // Last field was a bitfield. Must update the info. 2298 uint64_t BitFieldSize 2299 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2300 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2301 ((BitFieldSize % ByteSizeInBits) != 0); 2302 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2303 Size += LastBitfieldOrUnnamedOffset; 2304 UpdateRunSkipBlockVars(false, 2305 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2306 ByrefLayout), 2307 BytePos + LastBitfieldOrUnnamedOffset, 2308 Size); 2309 } else { 2310 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2311 // Last field was unnamed. Must update skip info. 2312 CharUnits FieldSize 2313 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2314 UpdateRunSkipBlockVars(false, 2315 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2316 ByrefLayout), 2317 BytePos + LastBitfieldOrUnnamedOffset, 2318 FieldSize); 2319 } 2320 } 2321 2322 if (MaxField) 2323 UpdateRunSkipBlockVars(false, 2324 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2325 BytePos + MaxFieldOffset, 2326 MaxUnionSize); 2327 } 2328 2329 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2330 CharUnits BytePos, 2331 bool &HasUnion, 2332 bool ByrefLayout) { 2333 const RecordDecl *RD = RT->getDecl(); 2334 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2335 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2336 const llvm::StructLayout *RecLayout = 2337 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2338 2339 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2340 } 2341 2342 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2343 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2344 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2345 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2346 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2347 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2348 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2349 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2350 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2351 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2352 SmallVectorImpl<unsigned char> &Layout) { 2353 uint64_t Result = 0; 2354 if (Layout.size() <= 3) { 2355 unsigned size = Layout.size(); 2356 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2357 unsigned char inst; 2358 enum BLOCK_LAYOUT_OPCODE opcode ; 2359 switch (size) { 2360 case 3: 2361 inst = Layout[0]; 2362 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2363 if (opcode == BLOCK_LAYOUT_STRONG) 2364 strong_word_count = (inst & 0xF)+1; 2365 else 2366 return 0; 2367 inst = Layout[1]; 2368 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2369 if (opcode == BLOCK_LAYOUT_BYREF) 2370 byref_word_count = (inst & 0xF)+1; 2371 else 2372 return 0; 2373 inst = Layout[2]; 2374 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2375 if (opcode == BLOCK_LAYOUT_WEAK) 2376 weak_word_count = (inst & 0xF)+1; 2377 else 2378 return 0; 2379 break; 2380 2381 case 2: 2382 inst = Layout[0]; 2383 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2384 if (opcode == BLOCK_LAYOUT_STRONG) { 2385 strong_word_count = (inst & 0xF)+1; 2386 inst = Layout[1]; 2387 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2388 if (opcode == BLOCK_LAYOUT_BYREF) 2389 byref_word_count = (inst & 0xF)+1; 2390 else if (opcode == BLOCK_LAYOUT_WEAK) 2391 weak_word_count = (inst & 0xF)+1; 2392 else 2393 return 0; 2394 } 2395 else if (opcode == BLOCK_LAYOUT_BYREF) { 2396 byref_word_count = (inst & 0xF)+1; 2397 inst = Layout[1]; 2398 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2399 if (opcode == BLOCK_LAYOUT_WEAK) 2400 weak_word_count = (inst & 0xF)+1; 2401 else 2402 return 0; 2403 } 2404 else 2405 return 0; 2406 break; 2407 2408 case 1: 2409 inst = Layout[0]; 2410 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2411 if (opcode == BLOCK_LAYOUT_STRONG) 2412 strong_word_count = (inst & 0xF)+1; 2413 else if (opcode == BLOCK_LAYOUT_BYREF) 2414 byref_word_count = (inst & 0xF)+1; 2415 else if (opcode == BLOCK_LAYOUT_WEAK) 2416 weak_word_count = (inst & 0xF)+1; 2417 else 2418 return 0; 2419 break; 2420 2421 default: 2422 return 0; 2423 } 2424 2425 // Cannot inline when any of the word counts is 15. Because this is one less 2426 // than the actual work count (so 15 means 16 actual word counts), 2427 // and we can only display 0 thru 15 word counts. 2428 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2429 return 0; 2430 2431 unsigned count = 2432 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2433 2434 if (size == count) { 2435 if (strong_word_count) 2436 Result = strong_word_count; 2437 Result <<= 4; 2438 if (byref_word_count) 2439 Result += byref_word_count; 2440 Result <<= 4; 2441 if (weak_word_count) 2442 Result += weak_word_count; 2443 } 2444 } 2445 return Result; 2446 } 2447 2448 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2449 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2450 if (RunSkipBlockVars.empty()) 2451 return nullPtr; 2452 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2453 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2454 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2455 2456 // Sort on byte position; captures might not be allocated in order, 2457 // and unions can do funny things. 2458 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2459 SmallVector<unsigned char, 16> Layout; 2460 2461 unsigned size = RunSkipBlockVars.size(); 2462 for (unsigned i = 0; i < size; i++) { 2463 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2464 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2465 CharUnits end_byte_pos = start_byte_pos; 2466 unsigned j = i+1; 2467 while (j < size) { 2468 if (opcode == RunSkipBlockVars[j].opcode) { 2469 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2470 i++; 2471 } 2472 else 2473 break; 2474 } 2475 CharUnits size_in_bytes = 2476 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2477 if (j < size) { 2478 CharUnits gap = 2479 RunSkipBlockVars[j].block_var_bytepos - 2480 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2481 size_in_bytes += gap; 2482 } 2483 CharUnits residue_in_bytes = CharUnits::Zero(); 2484 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2485 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2486 size_in_bytes -= residue_in_bytes; 2487 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2488 } 2489 2490 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2491 while (size_in_words >= 16) { 2492 // Note that value in imm. is one less that the actual 2493 // value. So, 0xf means 16 words follow! 2494 unsigned char inst = (opcode << 4) | 0xf; 2495 Layout.push_back(inst); 2496 size_in_words -= 16; 2497 } 2498 if (size_in_words > 0) { 2499 // Note that value in imm. is one less that the actual 2500 // value. So, we subtract 1 away! 2501 unsigned char inst = (opcode << 4) | (size_in_words-1); 2502 Layout.push_back(inst); 2503 } 2504 if (residue_in_bytes > CharUnits::Zero()) { 2505 unsigned char inst = 2506 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2507 Layout.push_back(inst); 2508 } 2509 } 2510 2511 while (!Layout.empty()) { 2512 unsigned char inst = Layout.back(); 2513 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2514 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2515 Layout.pop_back(); 2516 else 2517 break; 2518 } 2519 2520 uint64_t Result = InlineLayoutInstruction(Layout); 2521 if (Result != 0) { 2522 // Block variable layout instruction has been inlined. 2523 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2524 if (ComputeByrefLayout) 2525 printf("\n Inline BYREF variable layout: "); 2526 else 2527 printf("\n Inline block variable layout: "); 2528 printf("0x0%" PRIx64 "", Result); 2529 if (auto numStrong = (Result & 0xF00) >> 8) 2530 printf(", BL_STRONG:%d", (int) numStrong); 2531 if (auto numByref = (Result & 0x0F0) >> 4) 2532 printf(", BL_BYREF:%d", (int) numByref); 2533 if (auto numWeak = (Result & 0x00F) >> 0) 2534 printf(", BL_WEAK:%d", (int) numWeak); 2535 printf(", BL_OPERATOR:0\n"); 2536 } 2537 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2538 } 2539 2540 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2541 Layout.push_back(inst); 2542 std::string BitMap; 2543 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2544 BitMap += Layout[i]; 2545 2546 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2547 if (ComputeByrefLayout) 2548 printf("\n Byref variable layout: "); 2549 else 2550 printf("\n Block variable layout: "); 2551 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2552 unsigned char inst = BitMap[i]; 2553 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2554 unsigned delta = 1; 2555 switch (opcode) { 2556 case BLOCK_LAYOUT_OPERATOR: 2557 printf("BL_OPERATOR:"); 2558 delta = 0; 2559 break; 2560 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2561 printf("BL_NON_OBJECT_BYTES:"); 2562 break; 2563 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2564 printf("BL_NON_OBJECT_WORD:"); 2565 break; 2566 case BLOCK_LAYOUT_STRONG: 2567 printf("BL_STRONG:"); 2568 break; 2569 case BLOCK_LAYOUT_BYREF: 2570 printf("BL_BYREF:"); 2571 break; 2572 case BLOCK_LAYOUT_WEAK: 2573 printf("BL_WEAK:"); 2574 break; 2575 case BLOCK_LAYOUT_UNRETAINED: 2576 printf("BL_UNRETAINED:"); 2577 break; 2578 } 2579 // Actual value of word count is one more that what is in the imm. 2580 // field of the instruction 2581 printf("%d", (inst & 0xf) + delta); 2582 if (i < e-1) 2583 printf(", "); 2584 else 2585 printf("\n"); 2586 } 2587 } 2588 2589 llvm::GlobalVariable *Entry = CreateMetadataVar( 2590 "OBJC_CLASS_NAME_", 2591 llvm::ConstantDataArray::getString(VMContext, BitMap, false), 2592 "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true); 2593 return getConstantGEP(VMContext, Entry, 0, 0); 2594 } 2595 2596 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2597 const CGBlockInfo &blockInfo) { 2598 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2599 2600 RunSkipBlockVars.clear(); 2601 bool hasUnion = false; 2602 2603 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2604 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2605 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2606 2607 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2608 2609 // Calculate the basic layout of the block structure. 2610 const llvm::StructLayout *layout = 2611 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2612 2613 // Ignore the optional 'this' capture: C++ objects are not assumed 2614 // to be GC'ed. 2615 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2616 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2617 blockInfo.BlockHeaderForcedGapOffset, 2618 blockInfo.BlockHeaderForcedGapSize); 2619 // Walk the captured variables. 2620 for (const auto &CI : blockDecl->captures()) { 2621 const VarDecl *variable = CI.getVariable(); 2622 QualType type = variable->getType(); 2623 2624 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2625 2626 // Ignore constant captures. 2627 if (capture.isConstant()) continue; 2628 2629 CharUnits fieldOffset = 2630 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2631 2632 assert(!type->isArrayType() && "array variable should not be caught"); 2633 if (!CI.isByRef()) 2634 if (const RecordType *record = type->getAs<RecordType>()) { 2635 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2636 continue; 2637 } 2638 CharUnits fieldSize; 2639 if (CI.isByRef()) 2640 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2641 else 2642 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2643 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2644 fieldOffset, fieldSize); 2645 } 2646 return getBitmapBlockLayout(false); 2647 } 2648 2649 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2650 QualType T) { 2651 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2652 assert(!T->isArrayType() && "__block array variable should not be caught"); 2653 CharUnits fieldOffset; 2654 RunSkipBlockVars.clear(); 2655 bool hasUnion = false; 2656 if (const RecordType *record = T->getAs<RecordType>()) { 2657 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2658 llvm::Constant *Result = getBitmapBlockLayout(true); 2659 if (isa<llvm::ConstantInt>(Result)) 2660 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2661 return Result; 2662 } 2663 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2664 return nullPtr; 2665 } 2666 2667 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2668 const ObjCProtocolDecl *PD) { 2669 // FIXME: I don't understand why gcc generates this, or where it is 2670 // resolved. Investigate. Its also wasteful to look this up over and over. 2671 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2672 2673 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2674 ObjCTypes.getExternalProtocolPtrTy()); 2675 } 2676 2677 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2678 // FIXME: We shouldn't need this, the protocol decl should contain enough 2679 // information to tell us whether this was a declaration or a definition. 2680 DefinedProtocols.insert(PD->getIdentifier()); 2681 2682 // If we have generated a forward reference to this protocol, emit 2683 // it now. Otherwise do nothing, the protocol objects are lazily 2684 // emitted. 2685 if (Protocols.count(PD->getIdentifier())) 2686 GetOrEmitProtocol(PD); 2687 } 2688 2689 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2690 if (DefinedProtocols.count(PD->getIdentifier())) 2691 return GetOrEmitProtocol(PD); 2692 2693 return GetOrEmitProtocolRef(PD); 2694 } 2695 2696 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2697 CodeGenFunction &CGF, 2698 const ObjCInterfaceDecl *ID, 2699 ObjCCommonTypesHelper &ObjCTypes) { 2700 llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2701 2702 llvm::Value *className = 2703 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 2704 .getPointer(); 2705 ASTContext &ctx = CGF.CGM.getContext(); 2706 className = 2707 CGF.Builder.CreateBitCast(className, 2708 CGF.ConvertType( 2709 ctx.getPointerType(ctx.CharTy.withConst()))); 2710 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 2711 call->setDoesNotThrow(); 2712 return call; 2713 } 2714 2715 /* 2716 // Objective-C 1.0 extensions 2717 struct _objc_protocol { 2718 struct _objc_protocol_extension *isa; 2719 char *protocol_name; 2720 struct _objc_protocol_list *protocol_list; 2721 struct _objc__method_prototype_list *instance_methods; 2722 struct _objc__method_prototype_list *class_methods 2723 }; 2724 2725 See EmitProtocolExtension(). 2726 */ 2727 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2728 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2729 2730 // Early exit if a defining object has already been generated. 2731 if (Entry && Entry->hasInitializer()) 2732 return Entry; 2733 2734 // Use the protocol definition, if there is one. 2735 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2736 PD = Def; 2737 2738 // FIXME: I don't understand why gcc generates this, or where it is 2739 // resolved. Investigate. Its also wasteful to look this up over and over. 2740 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2741 2742 // Construct method lists. 2743 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2744 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 2745 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 2746 for (const auto *MD : PD->instance_methods()) { 2747 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2748 if (!C) 2749 return GetOrEmitProtocolRef(PD); 2750 2751 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2752 OptInstanceMethods.push_back(C); 2753 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2754 } else { 2755 InstanceMethods.push_back(C); 2756 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2757 } 2758 } 2759 2760 for (const auto *MD : PD->class_methods()) { 2761 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2762 if (!C) 2763 return GetOrEmitProtocolRef(PD); 2764 2765 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2766 OptClassMethods.push_back(C); 2767 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2768 } else { 2769 ClassMethods.push_back(C); 2770 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2771 } 2772 } 2773 2774 MethodTypesExt.insert(MethodTypesExt.end(), 2775 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 2776 2777 llvm::Constant *Values[] = { 2778 EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods, 2779 MethodTypesExt), 2780 GetClassName(PD->getObjCRuntimeNameAsString()), 2781 EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2782 PD->protocol_begin(), PD->protocol_end()), 2783 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(), 2784 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2785 InstanceMethods), 2786 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(), 2787 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2788 ClassMethods)}; 2789 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 2790 Values); 2791 2792 if (Entry) { 2793 // Already created, update the initializer. 2794 assert(Entry->hasPrivateLinkage()); 2795 Entry->setInitializer(Init); 2796 } else { 2797 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2798 false, llvm::GlobalValue::PrivateLinkage, 2799 Init, "OBJC_PROTOCOL_" + PD->getName()); 2800 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2801 // FIXME: Is this necessary? Why only for protocol? 2802 Entry->setAlignment(4); 2803 2804 Protocols[PD->getIdentifier()] = Entry; 2805 } 2806 CGM.addCompilerUsedGlobal(Entry); 2807 2808 return Entry; 2809 } 2810 2811 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2812 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2813 2814 if (!Entry) { 2815 // We use the initializer as a marker of whether this is a forward 2816 // reference or not. At module finalization we add the empty 2817 // contents for protocols which were referenced but never defined. 2818 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2819 false, llvm::GlobalValue::PrivateLinkage, 2820 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2821 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2822 // FIXME: Is this necessary? Why only for protocol? 2823 Entry->setAlignment(4); 2824 } 2825 2826 return Entry; 2827 } 2828 2829 /* 2830 struct _objc_protocol_extension { 2831 uint32_t size; 2832 struct objc_method_description_list *optional_instance_methods; 2833 struct objc_method_description_list *optional_class_methods; 2834 struct objc_property_list *instance_properties; 2835 const char ** extendedMethodTypes; 2836 struct objc_property_list *class_properties; 2837 }; 2838 */ 2839 llvm::Constant * 2840 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 2841 ArrayRef<llvm::Constant*> OptInstanceMethods, 2842 ArrayRef<llvm::Constant*> OptClassMethods, 2843 ArrayRef<llvm::Constant*> MethodTypesExt) { 2844 uint64_t Size = 2845 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 2846 llvm::Constant *Values[] = { 2847 llvm::ConstantInt::get(ObjCTypes.IntTy, Size), 2848 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(), 2849 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2850 OptInstanceMethods), 2851 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(), 2852 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2853 OptClassMethods), 2854 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 2855 ObjCTypes, false), 2856 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 2857 MethodTypesExt, ObjCTypes), 2858 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 2859 PD, ObjCTypes, true)}; 2860 2861 // Return null if no extension bits are used. 2862 if (Values[1]->isNullValue() && Values[2]->isNullValue() && 2863 Values[3]->isNullValue() && Values[4]->isNullValue() && 2864 Values[5]->isNullValue()) 2865 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 2866 2867 llvm::Constant *Init = 2868 llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); 2869 2870 // No special section, but goes in llvm.used 2871 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init, 2872 StringRef(), CGM.getPointerAlign(), true); 2873 } 2874 2875 /* 2876 struct objc_protocol_list { 2877 struct objc_protocol_list *next; 2878 long count; 2879 Protocol *list[]; 2880 }; 2881 */ 2882 llvm::Constant * 2883 CGObjCMac::EmitProtocolList(Twine Name, 2884 ObjCProtocolDecl::protocol_iterator begin, 2885 ObjCProtocolDecl::protocol_iterator end) { 2886 SmallVector<llvm::Constant *, 16> ProtocolRefs; 2887 2888 for (; begin != end; ++begin) 2889 ProtocolRefs.push_back(GetProtocolRef(*begin)); 2890 2891 // Just return null for empty protocol lists 2892 if (ProtocolRefs.empty()) 2893 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2894 2895 // This list is null terminated. 2896 ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); 2897 2898 llvm::Constant *Values[3]; 2899 // This field is only used by the runtime. 2900 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2901 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, 2902 ProtocolRefs.size() - 1); 2903 Values[2] = 2904 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, 2905 ProtocolRefs.size()), 2906 ProtocolRefs); 2907 2908 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2909 llvm::GlobalVariable *GV = 2910 CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2911 CGM.getPointerAlign(), false); 2912 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 2913 } 2914 2915 void CGObjCCommonMac:: 2916 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 2917 SmallVectorImpl<llvm::Constant *> &Properties, 2918 const Decl *Container, 2919 const ObjCProtocolDecl *Proto, 2920 const ObjCCommonTypesHelper &ObjCTypes, 2921 bool IsClassProperty) { 2922 for (const auto *P : Proto->protocols()) 2923 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes, 2924 IsClassProperty); 2925 2926 for (const auto *PD : Proto->properties()) { 2927 if (IsClassProperty != PD->isClassProperty()) 2928 continue; 2929 if (!PropertySet.insert(PD->getIdentifier()).second) 2930 continue; 2931 llvm::Constant *Prop[] = { 2932 GetPropertyName(PD->getIdentifier()), 2933 GetPropertyTypeString(PD, Container) 2934 }; 2935 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2936 } 2937 } 2938 2939 /* 2940 struct _objc_property { 2941 const char * const name; 2942 const char * const attributes; 2943 }; 2944 2945 struct _objc_property_list { 2946 uint32_t entsize; // sizeof (struct _objc_property) 2947 uint32_t prop_count; 2948 struct _objc_property[prop_count]; 2949 }; 2950 */ 2951 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 2952 const Decl *Container, 2953 const ObjCContainerDecl *OCD, 2954 const ObjCCommonTypesHelper &ObjCTypes, 2955 bool IsClassProperty) { 2956 SmallVector<llvm::Constant *, 16> Properties; 2957 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 2958 2959 auto AddProperty = [&](const ObjCPropertyDecl *PD) { 2960 llvm::Constant *Prop[] = {GetPropertyName(PD->getIdentifier()), 2961 GetPropertyTypeString(PD, Container)}; 2962 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2963 }; 2964 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 2965 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 2966 for (auto *PD : ClassExt->properties()) { 2967 if (IsClassProperty != PD->isClassProperty()) 2968 continue; 2969 PropertySet.insert(PD->getIdentifier()); 2970 AddProperty(PD); 2971 } 2972 2973 for (const auto *PD : OCD->properties()) { 2974 if (IsClassProperty != PD->isClassProperty()) 2975 continue; 2976 // Don't emit duplicate metadata for properties that were already in a 2977 // class extension. 2978 if (!PropertySet.insert(PD->getIdentifier()).second) 2979 continue; 2980 AddProperty(PD); 2981 } 2982 2983 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 2984 for (const auto *P : OID->all_referenced_protocols()) 2985 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes, 2986 IsClassProperty); 2987 } 2988 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 2989 for (const auto *P : CD->protocols()) 2990 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes, 2991 IsClassProperty); 2992 } 2993 2994 // Return null for empty list. 2995 if (Properties.empty()) 2996 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2997 2998 unsigned PropertySize = 2999 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3000 llvm::Constant *Values[3]; 3001 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); 3002 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); 3003 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, 3004 Properties.size()); 3005 Values[2] = llvm::ConstantArray::get(AT, Properties); 3006 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3007 3008 llvm::GlobalVariable *GV = 3009 CreateMetadataVar(Name, Init, 3010 (ObjCABI == 2) ? "__DATA, __objc_const" : 3011 "__OBJC,__property,regular,no_dead_strip", 3012 CGM.getPointerAlign(), 3013 true); 3014 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3015 } 3016 3017 llvm::Constant * 3018 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3019 ArrayRef<llvm::Constant*> MethodTypes, 3020 const ObjCCommonTypesHelper &ObjCTypes) { 3021 // Return null for empty list. 3022 if (MethodTypes.empty()) 3023 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3024 3025 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3026 MethodTypes.size()); 3027 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3028 3029 llvm::GlobalVariable *GV = CreateMetadataVar( 3030 Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(), 3031 CGM.getPointerAlign(), true); 3032 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3033 } 3034 3035 /* 3036 struct objc_method_description_list { 3037 int count; 3038 struct objc_method_description list[]; 3039 }; 3040 */ 3041 llvm::Constant * 3042 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 3043 llvm::Constant *Desc[] = { 3044 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3045 ObjCTypes.SelectorPtrTy), 3046 GetMethodVarType(MD) 3047 }; 3048 if (!Desc[1]) 3049 return nullptr; 3050 3051 return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, 3052 Desc); 3053 } 3054 3055 llvm::Constant * 3056 CGObjCMac::EmitMethodDescList(Twine Name, const char *Section, 3057 ArrayRef<llvm::Constant*> Methods) { 3058 // Return null for empty list. 3059 if (Methods.empty()) 3060 return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 3061 3062 llvm::Constant *Values[2]; 3063 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3064 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, 3065 Methods.size()); 3066 Values[1] = llvm::ConstantArray::get(AT, Methods); 3067 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3068 3069 llvm::GlobalVariable *GV = 3070 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3071 return llvm::ConstantExpr::getBitCast(GV, 3072 ObjCTypes.MethodDescriptionListPtrTy); 3073 } 3074 3075 /* 3076 struct _objc_category { 3077 char *category_name; 3078 char *class_name; 3079 struct _objc_method_list *instance_methods; 3080 struct _objc_method_list *class_methods; 3081 struct _objc_protocol_list *protocols; 3082 uint32_t size; // <rdar://4585769> 3083 struct _objc_property_list *instance_properties; 3084 struct _objc_property_list *class_properties; 3085 }; 3086 */ 3087 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3088 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3089 3090 // FIXME: This is poor design, the OCD should have a pointer to the category 3091 // decl. Additionally, note that Category can be null for the @implementation 3092 // w/o an @interface case. Sema should just create one for us as it does for 3093 // @implementation so everyone else can live life under a clear blue sky. 3094 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3095 const ObjCCategoryDecl *Category = 3096 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3097 3098 SmallString<256> ExtName; 3099 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3100 << OCD->getName(); 3101 3102 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3103 for (const auto *I : OCD->instance_methods()) 3104 // Instance methods should always be defined. 3105 InstanceMethods.push_back(GetMethodConstant(I)); 3106 3107 for (const auto *I : OCD->class_methods()) 3108 // Class methods should always be defined. 3109 ClassMethods.push_back(GetMethodConstant(I)); 3110 3111 llvm::Constant *Values[8]; 3112 Values[0] = GetClassName(OCD->getName()); 3113 Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString()); 3114 LazySymbols.insert(Interface->getIdentifier()); 3115 Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(), 3116 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 3117 InstanceMethods); 3118 Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(), 3119 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 3120 ClassMethods); 3121 if (Category) { 3122 Values[4] = 3123 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3124 Category->protocol_begin(), Category->protocol_end()); 3125 } else { 3126 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3127 } 3128 Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3129 3130 // If there is no category @interface then there can be no properties. 3131 if (Category) { 3132 Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3133 OCD, Category, ObjCTypes, false); 3134 Values[7] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3135 OCD, Category, ObjCTypes, true); 3136 } else { 3137 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3138 Values[7] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3139 } 3140 3141 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, 3142 Values); 3143 3144 llvm::GlobalVariable *GV = 3145 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init, 3146 "__OBJC,__category,regular,no_dead_strip", 3147 CGM.getPointerAlign(), true); 3148 DefinedCategories.push_back(GV); 3149 DefinedCategoryNames.insert(ExtName.str()); 3150 // method definition entries must be clear for next implementation. 3151 MethodDefinitions.clear(); 3152 } 3153 3154 enum FragileClassFlags { 3155 /// Apparently: is not a meta-class. 3156 FragileABI_Class_Factory = 0x00001, 3157 3158 /// Is a meta-class. 3159 FragileABI_Class_Meta = 0x00002, 3160 3161 /// Has a non-trivial constructor or destructor. 3162 FragileABI_Class_HasCXXStructors = 0x02000, 3163 3164 /// Has hidden visibility. 3165 FragileABI_Class_Hidden = 0x20000, 3166 3167 /// Class implementation was compiled under ARC. 3168 FragileABI_Class_CompiledByARC = 0x04000000, 3169 3170 /// Class implementation was compiled under MRC and has MRC weak ivars. 3171 /// Exclusive with CompiledByARC. 3172 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3173 }; 3174 3175 enum NonFragileClassFlags { 3176 /// Is a meta-class. 3177 NonFragileABI_Class_Meta = 0x00001, 3178 3179 /// Is a root class. 3180 NonFragileABI_Class_Root = 0x00002, 3181 3182 /// Has a non-trivial constructor or destructor. 3183 NonFragileABI_Class_HasCXXStructors = 0x00004, 3184 3185 /// Has hidden visibility. 3186 NonFragileABI_Class_Hidden = 0x00010, 3187 3188 /// Has the exception attribute. 3189 NonFragileABI_Class_Exception = 0x00020, 3190 3191 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3192 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3193 3194 /// Class implementation was compiled under ARC. 3195 NonFragileABI_Class_CompiledByARC = 0x00080, 3196 3197 /// Class has non-trivial destructors, but zero-initialization is okay. 3198 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3199 3200 /// Class implementation was compiled under MRC and has MRC weak ivars. 3201 /// Exclusive with CompiledByARC. 3202 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3203 }; 3204 3205 static bool hasWeakMember(QualType type) { 3206 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3207 return true; 3208 } 3209 3210 if (auto recType = type->getAs<RecordType>()) { 3211 for (auto field : recType->getDecl()->fields()) { 3212 if (hasWeakMember(field->getType())) 3213 return true; 3214 } 3215 } 3216 3217 return false; 3218 } 3219 3220 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3221 /// (and actually fill in a layout string) if we really do have any 3222 /// __weak ivars. 3223 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3224 const ObjCImplementationDecl *ID) { 3225 if (!CGM.getLangOpts().ObjCWeak) return false; 3226 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3227 3228 for (const ObjCIvarDecl *ivar = 3229 ID->getClassInterface()->all_declared_ivar_begin(); 3230 ivar; ivar = ivar->getNextIvar()) { 3231 if (hasWeakMember(ivar->getType())) 3232 return true; 3233 } 3234 3235 return false; 3236 } 3237 3238 /* 3239 struct _objc_class { 3240 Class isa; 3241 Class super_class; 3242 const char *name; 3243 long version; 3244 long info; 3245 long instance_size; 3246 struct _objc_ivar_list *ivars; 3247 struct _objc_method_list *methods; 3248 struct _objc_cache *cache; 3249 struct _objc_protocol_list *protocols; 3250 // Objective-C 1.0 extensions (<rdr://4585769>) 3251 const char *ivar_layout; 3252 struct _objc_class_ext *ext; 3253 }; 3254 3255 See EmitClassExtension(); 3256 */ 3257 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3258 DefinedSymbols.insert(ID->getIdentifier()); 3259 3260 std::string ClassName = ID->getNameAsString(); 3261 // FIXME: Gross 3262 ObjCInterfaceDecl *Interface = 3263 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3264 llvm::Constant *Protocols = 3265 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3266 Interface->all_referenced_protocol_begin(), 3267 Interface->all_referenced_protocol_end()); 3268 unsigned Flags = FragileABI_Class_Factory; 3269 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3270 Flags |= FragileABI_Class_HasCXXStructors; 3271 3272 bool hasMRCWeak = false; 3273 3274 if (CGM.getLangOpts().ObjCAutoRefCount) 3275 Flags |= FragileABI_Class_CompiledByARC; 3276 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3277 Flags |= FragileABI_Class_HasMRCWeakIvars; 3278 3279 CharUnits Size = 3280 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3281 3282 // FIXME: Set CXX-structors flag. 3283 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3284 Flags |= FragileABI_Class_Hidden; 3285 3286 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3287 for (const auto *I : ID->instance_methods()) 3288 // Instance methods should always be defined. 3289 InstanceMethods.push_back(GetMethodConstant(I)); 3290 3291 for (const auto *I : ID->class_methods()) 3292 // Class methods should always be defined. 3293 ClassMethods.push_back(GetMethodConstant(I)); 3294 3295 for (const auto *PID : ID->property_impls()) { 3296 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3297 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3298 3299 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3300 if (llvm::Constant *C = GetMethodConstant(MD)) 3301 InstanceMethods.push_back(C); 3302 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3303 if (llvm::Constant *C = GetMethodConstant(MD)) 3304 InstanceMethods.push_back(C); 3305 } 3306 } 3307 3308 llvm::Constant *Values[12]; 3309 Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods); 3310 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3311 // Record a reference to the super class. 3312 LazySymbols.insert(Super->getIdentifier()); 3313 3314 Values[ 1] = 3315 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3316 ObjCTypes.ClassPtrTy); 3317 } else { 3318 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3319 } 3320 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3321 // Version is always 0. 3322 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3323 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3324 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity()); 3325 Values[ 6] = EmitIvarList(ID, false); 3326 Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(), 3327 "__OBJC,__inst_meth,regular,no_dead_strip", 3328 InstanceMethods); 3329 // cache is always NULL. 3330 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3331 Values[ 9] = Protocols; 3332 Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size); 3333 Values[11] = EmitClassExtension(ID, Size, hasMRCWeak, 3334 false/*isClassProperty*/); 3335 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3336 Values); 3337 std::string Name("OBJC_CLASS_"); 3338 Name += ClassName; 3339 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3340 // Check for a forward reference. 3341 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3342 if (GV) { 3343 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3344 "Forward metaclass reference has incorrect type."); 3345 GV->setInitializer(Init); 3346 GV->setSection(Section); 3347 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3348 CGM.addCompilerUsedGlobal(GV); 3349 } else 3350 GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3351 DefinedClasses.push_back(GV); 3352 ImplementedClasses.push_back(Interface); 3353 // method definition entries must be clear for next implementation. 3354 MethodDefinitions.clear(); 3355 } 3356 3357 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3358 llvm::Constant *Protocols, 3359 ArrayRef<llvm::Constant*> Methods) { 3360 unsigned Flags = FragileABI_Class_Meta; 3361 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3362 3363 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3364 Flags |= FragileABI_Class_Hidden; 3365 3366 llvm::Constant *Values[12]; 3367 // The isa for the metaclass is the root of the hierarchy. 3368 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3369 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3370 Root = Super; 3371 Values[ 0] = 3372 llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3373 ObjCTypes.ClassPtrTy); 3374 // The super class for the metaclass is emitted as the name of the 3375 // super class. The runtime fixes this up to point to the 3376 // *metaclass* for the super class. 3377 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3378 Values[ 1] = 3379 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3380 ObjCTypes.ClassPtrTy); 3381 } else { 3382 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3383 } 3384 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3385 // Version is always 0. 3386 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3387 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3388 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3389 Values[ 6] = EmitIvarList(ID, true); 3390 Values[7] = 3391 EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(), 3392 "__OBJC,__cls_meth,regular,no_dead_strip", Methods); 3393 // cache is always NULL. 3394 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3395 Values[ 9] = Protocols; 3396 // ivar_layout for metaclass is always NULL. 3397 Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3398 // The class extension is used to store class properties for metaclasses. 3399 Values[11] = EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3400 true/*isClassProperty*/); 3401 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3402 Values); 3403 3404 std::string Name("OBJC_METACLASS_"); 3405 Name += ID->getName(); 3406 3407 // Check for a forward reference. 3408 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3409 if (GV) { 3410 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3411 "Forward metaclass reference has incorrect type."); 3412 GV->setInitializer(Init); 3413 } else { 3414 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3415 llvm::GlobalValue::PrivateLinkage, 3416 Init, Name); 3417 } 3418 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3419 GV->setAlignment(4); 3420 CGM.addCompilerUsedGlobal(GV); 3421 3422 return GV; 3423 } 3424 3425 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3426 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3427 3428 // FIXME: Should we look these up somewhere other than the module. Its a bit 3429 // silly since we only generate these while processing an implementation, so 3430 // exactly one pointer would work if know when we entered/exitted an 3431 // implementation block. 3432 3433 // Check for an existing forward reference. 3434 // Previously, metaclass with internal linkage may have been defined. 3435 // pass 'true' as 2nd argument so it is returned. 3436 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3437 if (!GV) 3438 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3439 llvm::GlobalValue::PrivateLinkage, nullptr, 3440 Name); 3441 3442 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3443 "Forward metaclass reference has incorrect type."); 3444 return GV; 3445 } 3446 3447 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3448 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3449 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3450 3451 if (!GV) 3452 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3453 llvm::GlobalValue::PrivateLinkage, nullptr, 3454 Name); 3455 3456 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3457 "Forward class metadata reference has incorrect type."); 3458 return GV; 3459 } 3460 3461 /* 3462 Emit a "class extension", which in this specific context means extra 3463 data that doesn't fit in the normal fragile-ABI class structure, and 3464 has nothing to do with the language concept of a class extension. 3465 3466 struct objc_class_ext { 3467 uint32_t size; 3468 const char *weak_ivar_layout; 3469 struct _objc_property_list *properties; 3470 }; 3471 */ 3472 llvm::Constant * 3473 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3474 CharUnits InstanceSize, bool hasMRCWeakIvars, 3475 bool isClassProperty) { 3476 uint64_t Size = 3477 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3478 3479 llvm::Constant *Values[3]; 3480 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3481 if (isClassProperty) { 3482 llvm::Type *PtrTy = CGM.Int8PtrTy; 3483 Values[1] = llvm::Constant::getNullValue(PtrTy); 3484 } else 3485 Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3486 hasMRCWeakIvars); 3487 if (isClassProperty) 3488 Values[2] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getName(), 3489 ID, ID->getClassInterface(), ObjCTypes, true); 3490 else 3491 Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 3492 ID, ID->getClassInterface(), ObjCTypes, false); 3493 3494 // Return null if no extension bits are used. 3495 if ((!Values[1] || Values[1]->isNullValue()) && Values[2]->isNullValue()) 3496 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3497 3498 llvm::Constant *Init = 3499 llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); 3500 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init, 3501 "__OBJC,__class_ext,regular,no_dead_strip", 3502 CGM.getPointerAlign(), true); 3503 } 3504 3505 /* 3506 struct objc_ivar { 3507 char *ivar_name; 3508 char *ivar_type; 3509 int ivar_offset; 3510 }; 3511 3512 struct objc_ivar_list { 3513 int ivar_count; 3514 struct objc_ivar list[count]; 3515 }; 3516 */ 3517 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3518 bool ForClass) { 3519 std::vector<llvm::Constant*> Ivars; 3520 3521 // When emitting the root class GCC emits ivar entries for the 3522 // actual class structure. It is not clear if we need to follow this 3523 // behavior; for now lets try and get away with not doing it. If so, 3524 // the cleanest solution would be to make up an ObjCInterfaceDecl 3525 // for the class. 3526 if (ForClass) 3527 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3528 3529 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3530 3531 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3532 IVD; IVD = IVD->getNextIvar()) { 3533 // Ignore unnamed bit-fields. 3534 if (!IVD->getDeclName()) 3535 continue; 3536 llvm::Constant *Ivar[] = { 3537 GetMethodVarName(IVD->getIdentifier()), 3538 GetMethodVarType(IVD), 3539 llvm::ConstantInt::get(ObjCTypes.IntTy, 3540 ComputeIvarBaseOffset(CGM, OID, IVD)) 3541 }; 3542 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); 3543 } 3544 3545 // Return null for empty list. 3546 if (Ivars.empty()) 3547 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3548 3549 llvm::Constant *Values[2]; 3550 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 3551 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, 3552 Ivars.size()); 3553 Values[1] = llvm::ConstantArray::get(AT, Ivars); 3554 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3555 3556 llvm::GlobalVariable *GV; 3557 if (ForClass) 3558 GV = 3559 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init, 3560 "__OBJC,__class_vars,regular,no_dead_strip", 3561 CGM.getPointerAlign(), true); 3562 else 3563 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init, 3564 "__OBJC,__instance_vars,regular,no_dead_strip", 3565 CGM.getPointerAlign(), true); 3566 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3567 } 3568 3569 /* 3570 struct objc_method { 3571 SEL method_name; 3572 char *method_types; 3573 void *method; 3574 }; 3575 3576 struct objc_method_list { 3577 struct objc_method_list *obsolete; 3578 int count; 3579 struct objc_method methods_list[count]; 3580 }; 3581 */ 3582 3583 /// GetMethodConstant - Return a struct objc_method constant for the 3584 /// given method if it has been defined. The result is null if the 3585 /// method has not been defined. The return value has type MethodPtrTy. 3586 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { 3587 llvm::Function *Fn = GetMethodDefinition(MD); 3588 if (!Fn) 3589 return nullptr; 3590 3591 llvm::Constant *Method[] = { 3592 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3593 ObjCTypes.SelectorPtrTy), 3594 GetMethodVarType(MD), 3595 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 3596 }; 3597 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 3598 } 3599 3600 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, 3601 const char *Section, 3602 ArrayRef<llvm::Constant*> Methods) { 3603 // Return null for empty list. 3604 if (Methods.empty()) 3605 return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); 3606 3607 llvm::Constant *Values[3]; 3608 Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3609 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3610 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 3611 Methods.size()); 3612 Values[2] = llvm::ConstantArray::get(AT, Methods); 3613 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3614 3615 llvm::GlobalVariable *GV = 3616 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3617 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3618 } 3619 3620 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3621 const ObjCContainerDecl *CD) { 3622 SmallString<256> Name; 3623 GetNameForMethod(OMD, CD, Name); 3624 3625 CodeGenTypes &Types = CGM.getTypes(); 3626 llvm::FunctionType *MethodTy = 3627 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3628 llvm::Function *Method = 3629 llvm::Function::Create(MethodTy, 3630 llvm::GlobalValue::InternalLinkage, 3631 Name.str(), 3632 &CGM.getModule()); 3633 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3634 3635 return Method; 3636 } 3637 3638 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3639 llvm::Constant *Init, 3640 StringRef Section, 3641 CharUnits Align, 3642 bool AddToUsed) { 3643 llvm::Type *Ty = Init->getType(); 3644 llvm::GlobalVariable *GV = 3645 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3646 llvm::GlobalValue::PrivateLinkage, Init, Name); 3647 if (!Section.empty()) 3648 GV->setSection(Section); 3649 GV->setAlignment(Align.getQuantity()); 3650 if (AddToUsed) 3651 CGM.addCompilerUsedGlobal(GV); 3652 return GV; 3653 } 3654 3655 llvm::Function *CGObjCMac::ModuleInitFunction() { 3656 // Abuse this interface function as a place to finalize. 3657 FinishModule(); 3658 return nullptr; 3659 } 3660 3661 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3662 return ObjCTypes.getGetPropertyFn(); 3663 } 3664 3665 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3666 return ObjCTypes.getSetPropertyFn(); 3667 } 3668 3669 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3670 bool copy) { 3671 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3672 } 3673 3674 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3675 return ObjCTypes.getCopyStructFn(); 3676 } 3677 3678 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3679 return ObjCTypes.getCopyStructFn(); 3680 } 3681 3682 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3683 return ObjCTypes.getCppAtomicObjectFunction(); 3684 } 3685 3686 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3687 return ObjCTypes.getCppAtomicObjectFunction(); 3688 } 3689 3690 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3691 return ObjCTypes.getEnumerationMutationFn(); 3692 } 3693 3694 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3695 return EmitTryOrSynchronizedStmt(CGF, S); 3696 } 3697 3698 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3699 const ObjCAtSynchronizedStmt &S) { 3700 return EmitTryOrSynchronizedStmt(CGF, S); 3701 } 3702 3703 namespace { 3704 struct PerformFragileFinally final : EHScopeStack::Cleanup { 3705 const Stmt &S; 3706 Address SyncArgSlot; 3707 Address CallTryExitVar; 3708 Address ExceptionData; 3709 ObjCTypesHelper &ObjCTypes; 3710 PerformFragileFinally(const Stmt *S, 3711 Address SyncArgSlot, 3712 Address CallTryExitVar, 3713 Address ExceptionData, 3714 ObjCTypesHelper *ObjCTypes) 3715 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 3716 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 3717 3718 void Emit(CodeGenFunction &CGF, Flags flags) override { 3719 // Check whether we need to call objc_exception_try_exit. 3720 // In optimized code, this branch will always be folded. 3721 llvm::BasicBlock *FinallyCallExit = 3722 CGF.createBasicBlock("finally.call_exit"); 3723 llvm::BasicBlock *FinallyNoCallExit = 3724 CGF.createBasicBlock("finally.no_call_exit"); 3725 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 3726 FinallyCallExit, FinallyNoCallExit); 3727 3728 CGF.EmitBlock(FinallyCallExit); 3729 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 3730 ExceptionData.getPointer()); 3731 3732 CGF.EmitBlock(FinallyNoCallExit); 3733 3734 if (isa<ObjCAtTryStmt>(S)) { 3735 if (const ObjCAtFinallyStmt* FinallyStmt = 3736 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 3737 // Don't try to do the @finally if this is an EH cleanup. 3738 if (flags.isForEHCleanup()) return; 3739 3740 // Save the current cleanup destination in case there's 3741 // control flow inside the finally statement. 3742 llvm::Value *CurCleanupDest = 3743 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 3744 3745 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 3746 3747 if (CGF.HaveInsertPoint()) { 3748 CGF.Builder.CreateStore(CurCleanupDest, 3749 CGF.getNormalCleanupDestSlot()); 3750 } else { 3751 // Currently, the end of the cleanup must always exist. 3752 CGF.EnsureInsertPoint(); 3753 } 3754 } 3755 } else { 3756 // Emit objc_sync_exit(expr); as finally's sole statement for 3757 // @synchronized. 3758 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 3759 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 3760 } 3761 } 3762 }; 3763 3764 class FragileHazards { 3765 CodeGenFunction &CGF; 3766 SmallVector<llvm::Value*, 20> Locals; 3767 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 3768 3769 llvm::InlineAsm *ReadHazard; 3770 llvm::InlineAsm *WriteHazard; 3771 3772 llvm::FunctionType *GetAsmFnType(); 3773 3774 void collectLocals(); 3775 void emitReadHazard(CGBuilderTy &Builder); 3776 3777 public: 3778 FragileHazards(CodeGenFunction &CGF); 3779 3780 void emitWriteHazard(); 3781 void emitHazardsInNewBlocks(); 3782 }; 3783 } // end anonymous namespace 3784 3785 /// Create the fragile-ABI read and write hazards based on the current 3786 /// state of the function, which is presumed to be immediately prior 3787 /// to a @try block. These hazards are used to maintain correct 3788 /// semantics in the face of optimization and the fragile ABI's 3789 /// cavalier use of setjmp/longjmp. 3790 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 3791 collectLocals(); 3792 3793 if (Locals.empty()) return; 3794 3795 // Collect all the blocks in the function. 3796 for (llvm::Function::iterator 3797 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 3798 BlocksBeforeTry.insert(&*I); 3799 3800 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 3801 3802 // Create a read hazard for the allocas. This inhibits dead-store 3803 // optimizations and forces the values to memory. This hazard is 3804 // inserted before any 'throwing' calls in the protected scope to 3805 // reflect the possibility that the variables might be read from the 3806 // catch block if the call throws. 3807 { 3808 std::string Constraint; 3809 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3810 if (I) Constraint += ','; 3811 Constraint += "*m"; 3812 } 3813 3814 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3815 } 3816 3817 // Create a write hazard for the allocas. This inhibits folding 3818 // loads across the hazard. This hazard is inserted at the 3819 // beginning of the catch path to reflect the possibility that the 3820 // variables might have been written within the protected scope. 3821 { 3822 std::string Constraint; 3823 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3824 if (I) Constraint += ','; 3825 Constraint += "=*m"; 3826 } 3827 3828 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3829 } 3830 } 3831 3832 /// Emit a write hazard at the current location. 3833 void FragileHazards::emitWriteHazard() { 3834 if (Locals.empty()) return; 3835 3836 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 3837 } 3838 3839 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 3840 assert(!Locals.empty()); 3841 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 3842 call->setDoesNotThrow(); 3843 call->setCallingConv(CGF.getRuntimeCC()); 3844 } 3845 3846 /// Emit read hazards in all the protected blocks, i.e. all the blocks 3847 /// which have been inserted since the beginning of the try. 3848 void FragileHazards::emitHazardsInNewBlocks() { 3849 if (Locals.empty()) return; 3850 3851 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 3852 3853 // Iterate through all blocks, skipping those prior to the try. 3854 for (llvm::Function::iterator 3855 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 3856 llvm::BasicBlock &BB = *FI; 3857 if (BlocksBeforeTry.count(&BB)) continue; 3858 3859 // Walk through all the calls in the block. 3860 for (llvm::BasicBlock::iterator 3861 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 3862 llvm::Instruction &I = *BI; 3863 3864 // Ignore instructions that aren't non-intrinsic calls. 3865 // These are the only calls that can possibly call longjmp. 3866 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 3867 if (isa<llvm::IntrinsicInst>(I)) 3868 continue; 3869 3870 // Ignore call sites marked nounwind. This may be questionable, 3871 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 3872 llvm::CallSite CS(&I); 3873 if (CS.doesNotThrow()) continue; 3874 3875 // Insert a read hazard before the call. This will ensure that 3876 // any writes to the locals are performed before making the 3877 // call. If the call throws, then this is sufficient to 3878 // guarantee correctness as long as it doesn't also write to any 3879 // locals. 3880 Builder.SetInsertPoint(&BB, BI); 3881 emitReadHazard(Builder); 3882 } 3883 } 3884 } 3885 3886 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 3887 if (V) S.insert(V); 3888 } 3889 3890 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 3891 if (V.isValid()) S.insert(V.getPointer()); 3892 } 3893 3894 void FragileHazards::collectLocals() { 3895 // Compute a set of allocas to ignore. 3896 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 3897 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 3898 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 3899 3900 // Collect all the allocas currently in the function. This is 3901 // probably way too aggressive. 3902 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 3903 for (llvm::BasicBlock::iterator 3904 I = Entry.begin(), E = Entry.end(); I != E; ++I) 3905 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 3906 Locals.push_back(&*I); 3907 } 3908 3909 llvm::FunctionType *FragileHazards::GetAsmFnType() { 3910 SmallVector<llvm::Type *, 16> tys(Locals.size()); 3911 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 3912 tys[i] = Locals[i]->getType(); 3913 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 3914 } 3915 3916 /* 3917 3918 Objective-C setjmp-longjmp (sjlj) Exception Handling 3919 -- 3920 3921 A catch buffer is a setjmp buffer plus: 3922 - a pointer to the exception that was caught 3923 - a pointer to the previous exception data buffer 3924 - two pointers of reserved storage 3925 Therefore catch buffers form a stack, with a pointer to the top 3926 of the stack kept in thread-local storage. 3927 3928 objc_exception_try_enter pushes a catch buffer onto the EH stack. 3929 objc_exception_try_exit pops the given catch buffer, which is 3930 required to be the top of the EH stack. 3931 objc_exception_throw pops the top of the EH stack, writes the 3932 thrown exception into the appropriate field, and longjmps 3933 to the setjmp buffer. It crashes the process (with a printf 3934 and an abort()) if there are no catch buffers on the stack. 3935 objc_exception_extract just reads the exception pointer out of the 3936 catch buffer. 3937 3938 There's no reason an implementation couldn't use a light-weight 3939 setjmp here --- something like __builtin_setjmp, but API-compatible 3940 with the heavyweight setjmp. This will be more important if we ever 3941 want to implement correct ObjC/C++ exception interactions for the 3942 fragile ABI. 3943 3944 Note that for this use of setjmp/longjmp to be correct, we may need 3945 to mark some local variables volatile: if a non-volatile local 3946 variable is modified between the setjmp and the longjmp, it has 3947 indeterminate value. For the purposes of LLVM IR, it may be 3948 sufficient to make loads and stores within the @try (to variables 3949 declared outside the @try) volatile. This is necessary for 3950 optimized correctness, but is not currently being done; this is 3951 being tracked as rdar://problem/8160285 3952 3953 The basic framework for a @try-catch-finally is as follows: 3954 { 3955 objc_exception_data d; 3956 id _rethrow = null; 3957 bool _call_try_exit = true; 3958 3959 objc_exception_try_enter(&d); 3960 if (!setjmp(d.jmp_buf)) { 3961 ... try body ... 3962 } else { 3963 // exception path 3964 id _caught = objc_exception_extract(&d); 3965 3966 // enter new try scope for handlers 3967 if (!setjmp(d.jmp_buf)) { 3968 ... match exception and execute catch blocks ... 3969 3970 // fell off end, rethrow. 3971 _rethrow = _caught; 3972 ... jump-through-finally to finally_rethrow ... 3973 } else { 3974 // exception in catch block 3975 _rethrow = objc_exception_extract(&d); 3976 _call_try_exit = false; 3977 ... jump-through-finally to finally_rethrow ... 3978 } 3979 } 3980 ... jump-through-finally to finally_end ... 3981 3982 finally: 3983 if (_call_try_exit) 3984 objc_exception_try_exit(&d); 3985 3986 ... finally block .... 3987 ... dispatch to finally destination ... 3988 3989 finally_rethrow: 3990 objc_exception_throw(_rethrow); 3991 3992 finally_end: 3993 } 3994 3995 This framework differs slightly from the one gcc uses, in that gcc 3996 uses _rethrow to determine if objc_exception_try_exit should be called 3997 and if the object should be rethrown. This breaks in the face of 3998 throwing nil and introduces unnecessary branches. 3999 4000 We specialize this framework for a few particular circumstances: 4001 4002 - If there are no catch blocks, then we avoid emitting the second 4003 exception handling context. 4004 4005 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4006 e)) we avoid emitting the code to rethrow an uncaught exception. 4007 4008 - FIXME: If there is no @finally block we can do a few more 4009 simplifications. 4010 4011 Rethrows and Jumps-Through-Finally 4012 -- 4013 4014 '@throw;' is supported by pushing the currently-caught exception 4015 onto ObjCEHStack while the @catch blocks are emitted. 4016 4017 Branches through the @finally block are handled with an ordinary 4018 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4019 exceptions are not compatible with C++ exceptions, and this is 4020 hardly the only place where this will go wrong. 4021 4022 @synchronized(expr) { stmt; } is emitted as if it were: 4023 id synch_value = expr; 4024 objc_sync_enter(synch_value); 4025 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4026 */ 4027 4028 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4029 const Stmt &S) { 4030 bool isTry = isa<ObjCAtTryStmt>(S); 4031 4032 // A destination for the fall-through edges of the catch handlers to 4033 // jump to. 4034 CodeGenFunction::JumpDest FinallyEnd = 4035 CGF.getJumpDestInCurrentScope("finally.end"); 4036 4037 // A destination for the rethrow edge of the catch handlers to jump 4038 // to. 4039 CodeGenFunction::JumpDest FinallyRethrow = 4040 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4041 4042 // For @synchronized, call objc_sync_enter(sync.expr). The 4043 // evaluation of the expression must occur before we enter the 4044 // @synchronized. We can't avoid a temp here because we need the 4045 // value to be preserved. If the backend ever does liveness 4046 // correctly after setjmp, this will be unnecessary. 4047 Address SyncArgSlot = Address::invalid(); 4048 if (!isTry) { 4049 llvm::Value *SyncArg = 4050 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4051 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4052 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4053 4054 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4055 CGF.getPointerAlign(), "sync.arg"); 4056 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4057 } 4058 4059 // Allocate memory for the setjmp buffer. This needs to be kept 4060 // live throughout the try and catch blocks. 4061 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4062 CGF.getPointerAlign(), 4063 "exceptiondata.ptr"); 4064 4065 // Create the fragile hazards. Note that this will not capture any 4066 // of the allocas required for exception processing, but will 4067 // capture the current basic block (which extends all the way to the 4068 // setjmp call) as "before the @try". 4069 FragileHazards Hazards(CGF); 4070 4071 // Create a flag indicating whether the cleanup needs to call 4072 // objc_exception_try_exit. This is true except when 4073 // - no catches match and we're branching through the cleanup 4074 // just to rethrow the exception, or 4075 // - a catch matched and we're falling out of the catch handler. 4076 // The setjmp-safety rule here is that we should always store to this 4077 // variable in a place that dominates the branch through the cleanup 4078 // without passing through any setjmps. 4079 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4080 CharUnits::One(), 4081 "_call_try_exit"); 4082 4083 // A slot containing the exception to rethrow. Only needed when we 4084 // have both a @catch and a @finally. 4085 Address PropagatingExnVar = Address::invalid(); 4086 4087 // Push a normal cleanup to leave the try scope. 4088 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4089 SyncArgSlot, 4090 CallTryExitVar, 4091 ExceptionData, 4092 &ObjCTypes); 4093 4094 // Enter a try block: 4095 // - Call objc_exception_try_enter to push ExceptionData on top of 4096 // the EH stack. 4097 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4098 ExceptionData.getPointer()); 4099 4100 // - Call setjmp on the exception data buffer. 4101 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4102 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4103 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4104 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4105 "setjmp_buffer"); 4106 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4107 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4108 SetJmpResult->setCanReturnTwice(); 4109 4110 // If setjmp returned 0, enter the protected block; otherwise, 4111 // branch to the handler. 4112 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4113 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4114 llvm::Value *DidCatch = 4115 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4116 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4117 4118 // Emit the protected block. 4119 CGF.EmitBlock(TryBlock); 4120 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4121 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4122 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4123 4124 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4125 4126 // Emit the exception handler block. 4127 CGF.EmitBlock(TryHandler); 4128 4129 // Don't optimize loads of the in-scope locals across this point. 4130 Hazards.emitWriteHazard(); 4131 4132 // For a @synchronized (or a @try with no catches), just branch 4133 // through the cleanup to the rethrow block. 4134 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4135 // Tell the cleanup not to re-pop the exit. 4136 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4137 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4138 4139 // Otherwise, we have to match against the caught exceptions. 4140 } else { 4141 // Retrieve the exception object. We may emit multiple blocks but 4142 // nothing can cross this so the value is already in SSA form. 4143 llvm::CallInst *Caught = 4144 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4145 ExceptionData.getPointer(), "caught"); 4146 4147 // Push the exception to rethrow onto the EH value stack for the 4148 // benefit of any @throws in the handlers. 4149 CGF.ObjCEHValueStack.push_back(Caught); 4150 4151 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4152 4153 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4154 4155 llvm::BasicBlock *CatchBlock = nullptr; 4156 llvm::BasicBlock *CatchHandler = nullptr; 4157 if (HasFinally) { 4158 // Save the currently-propagating exception before 4159 // objc_exception_try_enter clears the exception slot. 4160 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4161 CGF.getPointerAlign(), 4162 "propagating_exception"); 4163 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4164 4165 // Enter a new exception try block (in case a @catch block 4166 // throws an exception). 4167 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4168 ExceptionData.getPointer()); 4169 4170 llvm::CallInst *SetJmpResult = 4171 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4172 SetJmpBuffer, "setjmp.result"); 4173 SetJmpResult->setCanReturnTwice(); 4174 4175 llvm::Value *Threw = 4176 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4177 4178 CatchBlock = CGF.createBasicBlock("catch"); 4179 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4180 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4181 4182 CGF.EmitBlock(CatchBlock); 4183 } 4184 4185 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4186 4187 // Handle catch list. As a special case we check if everything is 4188 // matched and avoid generating code for falling off the end if 4189 // so. 4190 bool AllMatched = false; 4191 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4192 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4193 4194 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4195 const ObjCObjectPointerType *OPT = nullptr; 4196 4197 // catch(...) always matches. 4198 if (!CatchParam) { 4199 AllMatched = true; 4200 } else { 4201 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4202 4203 // catch(id e) always matches under this ABI, since only 4204 // ObjC exceptions end up here in the first place. 4205 // FIXME: For the time being we also match id<X>; this should 4206 // be rejected by Sema instead. 4207 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4208 AllMatched = true; 4209 } 4210 4211 // If this is a catch-all, we don't need to test anything. 4212 if (AllMatched) { 4213 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4214 4215 if (CatchParam) { 4216 CGF.EmitAutoVarDecl(*CatchParam); 4217 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4218 4219 // These types work out because ConvertType(id) == i8*. 4220 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4221 } 4222 4223 CGF.EmitStmt(CatchStmt->getCatchBody()); 4224 4225 // The scope of the catch variable ends right here. 4226 CatchVarCleanups.ForceCleanup(); 4227 4228 CGF.EmitBranchThroughCleanup(FinallyEnd); 4229 break; 4230 } 4231 4232 assert(OPT && "Unexpected non-object pointer type in @catch"); 4233 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4234 4235 // FIXME: @catch (Class c) ? 4236 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4237 assert(IDecl && "Catch parameter must have Objective-C type!"); 4238 4239 // Check if the @catch block matches the exception object. 4240 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4241 4242 llvm::Value *matchArgs[] = { Class, Caught }; 4243 llvm::CallInst *Match = 4244 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4245 matchArgs, "match"); 4246 4247 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4248 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4249 4250 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4251 MatchedBlock, NextCatchBlock); 4252 4253 // Emit the @catch block. 4254 CGF.EmitBlock(MatchedBlock); 4255 4256 // Collect any cleanups for the catch variable. The scope lasts until 4257 // the end of the catch body. 4258 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4259 4260 CGF.EmitAutoVarDecl(*CatchParam); 4261 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4262 4263 // Initialize the catch variable. 4264 llvm::Value *Tmp = 4265 CGF.Builder.CreateBitCast(Caught, 4266 CGF.ConvertType(CatchParam->getType())); 4267 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4268 4269 CGF.EmitStmt(CatchStmt->getCatchBody()); 4270 4271 // We're done with the catch variable. 4272 CatchVarCleanups.ForceCleanup(); 4273 4274 CGF.EmitBranchThroughCleanup(FinallyEnd); 4275 4276 CGF.EmitBlock(NextCatchBlock); 4277 } 4278 4279 CGF.ObjCEHValueStack.pop_back(); 4280 4281 // If nothing wanted anything to do with the caught exception, 4282 // kill the extract call. 4283 if (Caught->use_empty()) 4284 Caught->eraseFromParent(); 4285 4286 if (!AllMatched) 4287 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4288 4289 if (HasFinally) { 4290 // Emit the exception handler for the @catch blocks. 4291 CGF.EmitBlock(CatchHandler); 4292 4293 // In theory we might now need a write hazard, but actually it's 4294 // unnecessary because there's no local-accessing code between 4295 // the try's write hazard and here. 4296 //Hazards.emitWriteHazard(); 4297 4298 // Extract the new exception and save it to the 4299 // propagating-exception slot. 4300 assert(PropagatingExnVar.isValid()); 4301 llvm::CallInst *NewCaught = 4302 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4303 ExceptionData.getPointer(), "caught"); 4304 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4305 4306 // Don't pop the catch handler; the throw already did. 4307 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4308 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4309 } 4310 } 4311 4312 // Insert read hazards as required in the new blocks. 4313 Hazards.emitHazardsInNewBlocks(); 4314 4315 // Pop the cleanup. 4316 CGF.Builder.restoreIP(TryFallthroughIP); 4317 if (CGF.HaveInsertPoint()) 4318 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4319 CGF.PopCleanupBlock(); 4320 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4321 4322 // Emit the rethrow block. 4323 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4324 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4325 if (CGF.HaveInsertPoint()) { 4326 // If we have a propagating-exception variable, check it. 4327 llvm::Value *PropagatingExn; 4328 if (PropagatingExnVar.isValid()) { 4329 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4330 4331 // Otherwise, just look in the buffer for the exception to throw. 4332 } else { 4333 llvm::CallInst *Caught = 4334 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4335 ExceptionData.getPointer()); 4336 PropagatingExn = Caught; 4337 } 4338 4339 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4340 PropagatingExn); 4341 CGF.Builder.CreateUnreachable(); 4342 } 4343 4344 CGF.Builder.restoreIP(SavedIP); 4345 } 4346 4347 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4348 const ObjCAtThrowStmt &S, 4349 bool ClearInsertionPoint) { 4350 llvm::Value *ExceptionAsObject; 4351 4352 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4353 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4354 ExceptionAsObject = 4355 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4356 } else { 4357 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4358 "Unexpected rethrow outside @catch block."); 4359 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4360 } 4361 4362 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4363 ->setDoesNotReturn(); 4364 CGF.Builder.CreateUnreachable(); 4365 4366 // Clear the insertion point to indicate we are in unreachable code. 4367 if (ClearInsertionPoint) 4368 CGF.Builder.ClearInsertionPoint(); 4369 } 4370 4371 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4372 /// object: objc_read_weak (id *src) 4373 /// 4374 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4375 Address AddrWeakObj) { 4376 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4377 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4378 ObjCTypes.PtrObjectPtrTy); 4379 llvm::Value *read_weak = 4380 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4381 AddrWeakObj.getPointer(), "weakread"); 4382 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4383 return read_weak; 4384 } 4385 4386 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4387 /// objc_assign_weak (id src, id *dst) 4388 /// 4389 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4390 llvm::Value *src, Address dst) { 4391 llvm::Type * SrcTy = src->getType(); 4392 if (!isa<llvm::PointerType>(SrcTy)) { 4393 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4394 assert(Size <= 8 && "does not support size > 8"); 4395 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4396 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4397 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4398 } 4399 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4400 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4401 llvm::Value *args[] = { src, dst.getPointer() }; 4402 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4403 args, "weakassign"); 4404 } 4405 4406 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4407 /// objc_assign_global (id src, id *dst) 4408 /// 4409 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4410 llvm::Value *src, Address dst, 4411 bool threadlocal) { 4412 llvm::Type * SrcTy = src->getType(); 4413 if (!isa<llvm::PointerType>(SrcTy)) { 4414 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4415 assert(Size <= 8 && "does not support size > 8"); 4416 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4417 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4418 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4419 } 4420 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4421 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4422 llvm::Value *args[] = { src, dst.getPointer() }; 4423 if (!threadlocal) 4424 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4425 args, "globalassign"); 4426 else 4427 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4428 args, "threadlocalassign"); 4429 } 4430 4431 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4432 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4433 /// 4434 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4435 llvm::Value *src, Address dst, 4436 llvm::Value *ivarOffset) { 4437 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4438 llvm::Type * SrcTy = src->getType(); 4439 if (!isa<llvm::PointerType>(SrcTy)) { 4440 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4441 assert(Size <= 8 && "does not support size > 8"); 4442 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4443 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4444 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4445 } 4446 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4447 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4448 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4449 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4450 } 4451 4452 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4453 /// objc_assign_strongCast (id src, id *dst) 4454 /// 4455 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4456 llvm::Value *src, Address dst) { 4457 llvm::Type * SrcTy = src->getType(); 4458 if (!isa<llvm::PointerType>(SrcTy)) { 4459 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4460 assert(Size <= 8 && "does not support size > 8"); 4461 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4462 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4463 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4464 } 4465 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4466 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4467 llvm::Value *args[] = { src, dst.getPointer() }; 4468 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4469 args, "strongassign"); 4470 } 4471 4472 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4473 Address DestPtr, 4474 Address SrcPtr, 4475 llvm::Value *size) { 4476 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4477 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4478 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4479 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4480 } 4481 4482 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4483 /// 4484 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4485 QualType ObjectTy, 4486 llvm::Value *BaseValue, 4487 const ObjCIvarDecl *Ivar, 4488 unsigned CVRQualifiers) { 4489 const ObjCInterfaceDecl *ID = 4490 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4491 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4492 EmitIvarOffset(CGF, ID, Ivar)); 4493 } 4494 4495 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4496 const ObjCInterfaceDecl *Interface, 4497 const ObjCIvarDecl *Ivar) { 4498 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4499 return llvm::ConstantInt::get( 4500 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4501 Offset); 4502 } 4503 4504 /* *** Private Interface *** */ 4505 4506 /// EmitImageInfo - Emit the image info marker used to encode some module 4507 /// level information. 4508 /// 4509 /// See: <rdr://4810609&4810587&4810587> 4510 /// struct IMAGE_INFO { 4511 /// unsigned version; 4512 /// unsigned flags; 4513 /// }; 4514 enum ImageInfoFlags { 4515 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4516 eImageInfo_GarbageCollected = (1 << 1), 4517 eImageInfo_GCOnly = (1 << 2), 4518 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4519 4520 // A flag indicating that the module has no instances of a @synthesize of a 4521 // superclass variable. <rdar://problem/6803242> 4522 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4523 eImageInfo_ImageIsSimulated = (1 << 5), 4524 eImageInfo_ClassProperties = (1 << 6) 4525 }; 4526 4527 void CGObjCCommonMac::EmitImageInfo() { 4528 unsigned version = 0; // Version is unused? 4529 const char *Section = (ObjCABI == 1) ? 4530 "__OBJC, __image_info,regular" : 4531 "__DATA, __objc_imageinfo, regular, no_dead_strip"; 4532 4533 // Generate module-level named metadata to convey this information to the 4534 // linker and code-gen. 4535 llvm::Module &Mod = CGM.getModule(); 4536 4537 // Add the ObjC ABI version to the module flags. 4538 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4539 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4540 version); 4541 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4542 llvm::MDString::get(VMContext,Section)); 4543 4544 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4545 // Non-GC overrides those files which specify GC. 4546 Mod.addModuleFlag(llvm::Module::Override, 4547 "Objective-C Garbage Collection", (uint32_t)0); 4548 } else { 4549 // Add the ObjC garbage collection value. 4550 Mod.addModuleFlag(llvm::Module::Error, 4551 "Objective-C Garbage Collection", 4552 eImageInfo_GarbageCollected); 4553 4554 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4555 // Add the ObjC GC Only value. 4556 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4557 eImageInfo_GCOnly); 4558 4559 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4560 llvm::Metadata *Ops[2] = { 4561 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4562 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4563 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4564 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4565 llvm::MDNode::get(VMContext, Ops)); 4566 } 4567 } 4568 4569 // Indicate whether we're compiling this to run on a simulator. 4570 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4571 if ((Triple.isiOS() || Triple.isWatchOS()) && 4572 (Triple.getArch() == llvm::Triple::x86 || 4573 Triple.getArch() == llvm::Triple::x86_64)) 4574 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4575 eImageInfo_ImageIsSimulated); 4576 4577 // Indicate whether we are generating class properties. 4578 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 4579 eImageInfo_ClassProperties); 4580 } 4581 4582 // struct objc_module { 4583 // unsigned long version; 4584 // unsigned long size; 4585 // const char *name; 4586 // Symtab symtab; 4587 // }; 4588 4589 // FIXME: Get from somewhere 4590 static const int ModuleVersion = 7; 4591 4592 void CGObjCMac::EmitModuleInfo() { 4593 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4594 4595 llvm::Constant *Values[] = { 4596 llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion), 4597 llvm::ConstantInt::get(ObjCTypes.LongTy, Size), 4598 // This used to be the filename, now it is unused. <rdr://4327263> 4599 GetClassName(StringRef("")), 4600 EmitModuleSymbols() 4601 }; 4602 CreateMetadataVar("OBJC_MODULES", 4603 llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), 4604 "__OBJC,__module_info,regular,no_dead_strip", 4605 CGM.getPointerAlign(), true); 4606 } 4607 4608 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4609 unsigned NumClasses = DefinedClasses.size(); 4610 unsigned NumCategories = DefinedCategories.size(); 4611 4612 // Return null if no symbols were defined. 4613 if (!NumClasses && !NumCategories) 4614 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4615 4616 llvm::Constant *Values[5]; 4617 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 4618 Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); 4619 Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); 4620 Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); 4621 4622 // The runtime expects exactly the list of defined classes followed 4623 // by the list of defined categories, in a single array. 4624 SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories); 4625 for (unsigned i=0; i<NumClasses; i++) { 4626 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4627 assert(ID); 4628 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4629 // We are implementing a weak imported interface. Give it external linkage 4630 if (ID->isWeakImported() && !IMP->isWeakImported()) 4631 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4632 4633 Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i], 4634 ObjCTypes.Int8PtrTy); 4635 } 4636 for (unsigned i=0; i<NumCategories; i++) 4637 Symbols[NumClasses + i] = 4638 llvm::ConstantExpr::getBitCast(DefinedCategories[i], 4639 ObjCTypes.Int8PtrTy); 4640 4641 Values[4] = 4642 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 4643 Symbols.size()), 4644 Symbols); 4645 4646 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 4647 4648 llvm::GlobalVariable *GV = CreateMetadataVar( 4649 "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip", 4650 CGM.getPointerAlign(), true); 4651 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4652 } 4653 4654 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4655 IdentifierInfo *II) { 4656 LazySymbols.insert(II); 4657 4658 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4659 4660 if (!Entry) { 4661 llvm::Constant *Casted = 4662 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4663 ObjCTypes.ClassPtrTy); 4664 Entry = CreateMetadataVar( 4665 "OBJC_CLASS_REFERENCES_", Casted, 4666 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4667 CGM.getPointerAlign(), true); 4668 } 4669 4670 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4671 } 4672 4673 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4674 const ObjCInterfaceDecl *ID) { 4675 // If the class has the objc_runtime_visible attribute, we need to 4676 // use the Objective-C runtime to get the class. 4677 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 4678 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 4679 4680 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4681 } 4682 4683 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4684 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4685 return EmitClassRefFromId(CGF, II); 4686 } 4687 4688 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4689 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 4690 } 4691 4692 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 4693 CharUnits Align = CGF.getPointerAlign(); 4694 4695 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 4696 if (!Entry) { 4697 llvm::Constant *Casted = 4698 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 4699 ObjCTypes.SelectorPtrTy); 4700 Entry = CreateMetadataVar( 4701 "OBJC_SELECTOR_REFERENCES_", Casted, 4702 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 4703 Entry->setExternallyInitialized(true); 4704 } 4705 4706 return Address(Entry, Align); 4707 } 4708 4709 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 4710 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 4711 if (!Entry) 4712 Entry = CreateMetadataVar( 4713 "OBJC_CLASS_NAME_", 4714 llvm::ConstantDataArray::getString(VMContext, RuntimeName), 4715 ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals" 4716 : "__TEXT,__cstring,cstring_literals"), 4717 CharUnits::One(), true); 4718 return getConstantGEP(VMContext, Entry, 0, 0); 4719 } 4720 4721 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 4722 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 4723 I = MethodDefinitions.find(MD); 4724 if (I != MethodDefinitions.end()) 4725 return I->second; 4726 4727 return nullptr; 4728 } 4729 4730 /// GetIvarLayoutName - Returns a unique constant for the given 4731 /// ivar layout bitmap. 4732 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 4733 const ObjCCommonTypesHelper &ObjCTypes) { 4734 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 4735 } 4736 4737 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 4738 CharUnits offset) { 4739 const RecordDecl *RD = RT->getDecl(); 4740 4741 // If this is a union, remember that we had one, because it might mess 4742 // up the ordering of layout entries. 4743 if (RD->isUnion()) 4744 IsDisordered = true; 4745 4746 const ASTRecordLayout *recLayout = nullptr; 4747 visitAggregate(RD->field_begin(), RD->field_end(), offset, 4748 [&](const FieldDecl *field) -> CharUnits { 4749 if (!recLayout) 4750 recLayout = &CGM.getContext().getASTRecordLayout(RD); 4751 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 4752 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 4753 }); 4754 } 4755 4756 template <class Iterator, class GetOffsetFn> 4757 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 4758 CharUnits aggregateOffset, 4759 const GetOffsetFn &getOffset) { 4760 for (; begin != end; ++begin) { 4761 auto field = *begin; 4762 4763 // Skip over bitfields. 4764 if (field->isBitField()) { 4765 continue; 4766 } 4767 4768 // Compute the offset of the field within the aggregate. 4769 CharUnits fieldOffset = aggregateOffset + getOffset(field); 4770 4771 visitField(field, fieldOffset); 4772 } 4773 } 4774 4775 /// Collect layout information for the given fields into IvarsInfo. 4776 void IvarLayoutBuilder::visitField(const FieldDecl *field, 4777 CharUnits fieldOffset) { 4778 QualType fieldType = field->getType(); 4779 4780 // Drill down into arrays. 4781 uint64_t numElts = 1; 4782 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 4783 numElts *= arrayType->getSize().getZExtValue(); 4784 fieldType = arrayType->getElementType(); 4785 } 4786 4787 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 4788 4789 // If we ended up with a zero-sized array, we've done what we can do within 4790 // the limits of this layout encoding. 4791 if (numElts == 0) return; 4792 4793 // Recurse if the base element type is a record type. 4794 if (auto recType = fieldType->getAs<RecordType>()) { 4795 size_t oldEnd = IvarsInfo.size(); 4796 4797 visitRecord(recType, fieldOffset); 4798 4799 // If we have an array, replicate the first entry's layout information. 4800 auto numEltEntries = IvarsInfo.size() - oldEnd; 4801 if (numElts != 1 && numEltEntries != 0) { 4802 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 4803 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 4804 // Copy the last numEltEntries onto the end of the array, adjusting 4805 // each for the element size. 4806 for (size_t i = 0; i != numEltEntries; ++i) { 4807 auto firstEntry = IvarsInfo[oldEnd + i]; 4808 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 4809 firstEntry.SizeInWords)); 4810 } 4811 } 4812 } 4813 4814 return; 4815 } 4816 4817 // Classify the element type. 4818 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 4819 4820 // If it matches what we're looking for, add an entry. 4821 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 4822 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 4823 assert(CGM.getContext().getTypeSizeInChars(fieldType) 4824 == CGM.getPointerSize()); 4825 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 4826 } 4827 } 4828 4829 /// buildBitmap - This routine does the horsework of taking the offsets of 4830 /// strong/weak references and creating a bitmap. The bitmap is also 4831 /// returned in the given buffer, suitable for being passed to \c dump(). 4832 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 4833 llvm::SmallVectorImpl<unsigned char> &buffer) { 4834 // The bitmap is a series of skip/scan instructions, aligned to word 4835 // boundaries. The skip is performed first. 4836 const unsigned char MaxNibble = 0xF; 4837 const unsigned char SkipMask = 0xF0, SkipShift = 4; 4838 const unsigned char ScanMask = 0x0F, ScanShift = 0; 4839 4840 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 4841 4842 // Sort the ivar info on byte position in case we encounterred a 4843 // union nested in the ivar list. 4844 if (IsDisordered) { 4845 // This isn't a stable sort, but our algorithm should handle it fine. 4846 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 4847 } else { 4848 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 4849 } 4850 assert(IvarsInfo.back().Offset < InstanceEnd); 4851 4852 assert(buffer.empty()); 4853 4854 // Skip the next N words. 4855 auto skip = [&](unsigned numWords) { 4856 assert(numWords > 0); 4857 4858 // Try to merge into the previous byte. Since scans happen second, we 4859 // can't do this if it includes a scan. 4860 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 4861 unsigned lastSkip = buffer.back() >> SkipShift; 4862 if (lastSkip < MaxNibble) { 4863 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 4864 numWords -= claimed; 4865 lastSkip += claimed; 4866 buffer.back() = (lastSkip << SkipShift); 4867 } 4868 } 4869 4870 while (numWords >= MaxNibble) { 4871 buffer.push_back(MaxNibble << SkipShift); 4872 numWords -= MaxNibble; 4873 } 4874 if (numWords) { 4875 buffer.push_back(numWords << SkipShift); 4876 } 4877 }; 4878 4879 // Scan the next N words. 4880 auto scan = [&](unsigned numWords) { 4881 assert(numWords > 0); 4882 4883 // Try to merge into the previous byte. Since scans happen second, we can 4884 // do this even if it includes a skip. 4885 if (!buffer.empty()) { 4886 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 4887 if (lastScan < MaxNibble) { 4888 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 4889 numWords -= claimed; 4890 lastScan += claimed; 4891 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 4892 } 4893 } 4894 4895 while (numWords >= MaxNibble) { 4896 buffer.push_back(MaxNibble << ScanShift); 4897 numWords -= MaxNibble; 4898 } 4899 if (numWords) { 4900 buffer.push_back(numWords << ScanShift); 4901 } 4902 }; 4903 4904 // One past the end of the last scan. 4905 unsigned endOfLastScanInWords = 0; 4906 const CharUnits WordSize = CGM.getPointerSize(); 4907 4908 // Consider all the scan requests. 4909 for (auto &request : IvarsInfo) { 4910 CharUnits beginOfScan = request.Offset - InstanceBegin; 4911 4912 // Ignore scan requests that don't start at an even multiple of the 4913 // word size. We can't encode them. 4914 if ((beginOfScan % WordSize) != 0) continue; 4915 4916 // Ignore scan requests that start before the instance start. 4917 // This assumes that scans never span that boundary. The boundary 4918 // isn't the true start of the ivars, because in the fragile-ARC case 4919 // it's rounded up to word alignment, but the test above should leave 4920 // us ignoring that possibility. 4921 if (beginOfScan.isNegative()) { 4922 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 4923 continue; 4924 } 4925 4926 unsigned beginOfScanInWords = beginOfScan / WordSize; 4927 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 4928 4929 // If the scan starts some number of words after the last one ended, 4930 // skip forward. 4931 if (beginOfScanInWords > endOfLastScanInWords) { 4932 skip(beginOfScanInWords - endOfLastScanInWords); 4933 4934 // Otherwise, start scanning where the last left off. 4935 } else { 4936 beginOfScanInWords = endOfLastScanInWords; 4937 4938 // If that leaves us with nothing to scan, ignore this request. 4939 if (beginOfScanInWords >= endOfScanInWords) continue; 4940 } 4941 4942 // Scan to the end of the request. 4943 assert(beginOfScanInWords < endOfScanInWords); 4944 scan(endOfScanInWords - beginOfScanInWords); 4945 endOfLastScanInWords = endOfScanInWords; 4946 } 4947 4948 if (buffer.empty()) 4949 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 4950 4951 // For GC layouts, emit a skip to the end of the allocation so that we 4952 // have precise information about the entire thing. This isn't useful 4953 // or necessary for the ARC-style layout strings. 4954 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 4955 unsigned lastOffsetInWords = 4956 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 4957 if (lastOffsetInWords > endOfLastScanInWords) { 4958 skip(lastOffsetInWords - endOfLastScanInWords); 4959 } 4960 } 4961 4962 // Null terminate the string. 4963 buffer.push_back(0); 4964 4965 bool isNonFragileABI = CGObjC.isNonFragileABI(); 4966 4967 llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar( 4968 "OBJC_CLASS_NAME_", 4969 llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer), 4970 (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals" 4971 : "__TEXT,__cstring,cstring_literals"), 4972 CharUnits::One(), true); 4973 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 4974 } 4975 4976 /// BuildIvarLayout - Builds ivar layout bitmap for the class 4977 /// implementation for the __strong or __weak case. 4978 /// The layout map displays which words in ivar list must be skipped 4979 /// and which must be scanned by GC (see below). String is built of bytes. 4980 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 4981 /// of words to skip and right nibble is count of words to scan. So, each 4982 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 4983 /// represented by a 0x00 byte which also ends the string. 4984 /// 1. when ForStrongLayout is true, following ivars are scanned: 4985 /// - id, Class 4986 /// - object * 4987 /// - __strong anything 4988 /// 4989 /// 2. When ForStrongLayout is false, following ivars are scanned: 4990 /// - __weak anything 4991 /// 4992 llvm::Constant * 4993 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 4994 CharUnits beginOffset, CharUnits endOffset, 4995 bool ForStrongLayout, bool HasMRCWeakIvars) { 4996 // If this is MRC, and we're either building a strong layout or there 4997 // are no weak ivars, bail out early. 4998 llvm::Type *PtrTy = CGM.Int8PtrTy; 4999 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5000 !CGM.getLangOpts().ObjCAutoRefCount && 5001 (ForStrongLayout || !HasMRCWeakIvars)) 5002 return llvm::Constant::getNullValue(PtrTy); 5003 5004 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5005 SmallVector<const ObjCIvarDecl*, 32> ivars; 5006 5007 // GC layout strings include the complete object layout, possibly 5008 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5009 // up. 5010 // 5011 // ARC layout strings only include the class's ivars. In non-fragile 5012 // runtimes, that means starting at InstanceStart, rounded up to word 5013 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5014 // starting at the offset of the first ivar, rounded up to word alignment. 5015 // 5016 // MRC weak layout strings follow the ARC style. 5017 CharUnits baseOffset; 5018 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5019 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5020 IVD; IVD = IVD->getNextIvar()) 5021 ivars.push_back(IVD); 5022 5023 if (isNonFragileABI()) { 5024 baseOffset = beginOffset; // InstanceStart 5025 } else if (!ivars.empty()) { 5026 baseOffset = 5027 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5028 } else { 5029 baseOffset = CharUnits::Zero(); 5030 } 5031 5032 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5033 } 5034 else { 5035 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5036 5037 baseOffset = CharUnits::Zero(); 5038 } 5039 5040 if (ivars.empty()) 5041 return llvm::Constant::getNullValue(PtrTy); 5042 5043 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5044 5045 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5046 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5047 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5048 }); 5049 5050 if (!builder.hasBitmapData()) 5051 return llvm::Constant::getNullValue(PtrTy); 5052 5053 llvm::SmallVector<unsigned char, 4> buffer; 5054 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5055 5056 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5057 printf("\n%s ivar layout for class '%s': ", 5058 ForStrongLayout ? "strong" : "weak", 5059 OMD->getClassInterface()->getName().str().c_str()); 5060 builder.dump(buffer); 5061 } 5062 return C; 5063 } 5064 5065 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5066 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5067 5068 // FIXME: Avoid std::string in "Sel.getAsString()" 5069 if (!Entry) 5070 Entry = CreateMetadataVar( 5071 "OBJC_METH_VAR_NAME_", 5072 llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()), 5073 ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals" 5074 : "__TEXT,__cstring,cstring_literals"), 5075 CharUnits::One(), true); 5076 5077 return getConstantGEP(VMContext, Entry, 0, 0); 5078 } 5079 5080 // FIXME: Merge into a single cstring creation function. 5081 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5082 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5083 } 5084 5085 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5086 std::string TypeStr; 5087 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5088 5089 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5090 5091 if (!Entry) 5092 Entry = CreateMetadataVar( 5093 "OBJC_METH_VAR_TYPE_", 5094 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5095 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5096 : "__TEXT,__cstring,cstring_literals"), 5097 CharUnits::One(), true); 5098 5099 return getConstantGEP(VMContext, Entry, 0, 0); 5100 } 5101 5102 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5103 bool Extended) { 5104 std::string TypeStr; 5105 if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended)) 5106 return nullptr; 5107 5108 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5109 5110 if (!Entry) 5111 Entry = CreateMetadataVar( 5112 "OBJC_METH_VAR_TYPE_", 5113 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5114 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5115 : "__TEXT,__cstring,cstring_literals"), 5116 CharUnits::One(), true); 5117 5118 return getConstantGEP(VMContext, Entry, 0, 0); 5119 } 5120 5121 // FIXME: Merge into a single cstring creation function. 5122 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5123 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5124 5125 if (!Entry) 5126 Entry = CreateMetadataVar( 5127 "OBJC_PROP_NAME_ATTR_", 5128 llvm::ConstantDataArray::getString(VMContext, Ident->getName()), 5129 "__TEXT,__cstring,cstring_literals", CharUnits::One(), true); 5130 5131 return getConstantGEP(VMContext, Entry, 0, 0); 5132 } 5133 5134 // FIXME: Merge into a single cstring creation function. 5135 // FIXME: This Decl should be more precise. 5136 llvm::Constant * 5137 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5138 const Decl *Container) { 5139 std::string TypeStr; 5140 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 5141 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5142 } 5143 5144 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5145 const ObjCContainerDecl *CD, 5146 SmallVectorImpl<char> &Name) { 5147 llvm::raw_svector_ostream OS(Name); 5148 assert (CD && "Missing container decl in GetNameForMethod"); 5149 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5150 << '[' << CD->getName(); 5151 if (const ObjCCategoryImplDecl *CID = 5152 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5153 OS << '(' << *CID << ')'; 5154 OS << ' ' << D->getSelector().getAsString() << ']'; 5155 } 5156 5157 void CGObjCMac::FinishModule() { 5158 EmitModuleInfo(); 5159 5160 // Emit the dummy bodies for any protocols which were referenced but 5161 // never defined. 5162 for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator 5163 I = Protocols.begin(), e = Protocols.end(); I != e; ++I) { 5164 if (I->second->hasInitializer()) 5165 continue; 5166 5167 llvm::Constant *Values[5]; 5168 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 5169 Values[1] = GetClassName(I->first->getName()); 5170 Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 5171 Values[3] = Values[4] = 5172 llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 5173 I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 5174 Values)); 5175 CGM.addCompilerUsedGlobal(I->second); 5176 } 5177 5178 // Add assembler directives to add lazy undefined symbol references 5179 // for classes which are referenced but not defined. This is 5180 // important for correct linker interaction. 5181 // 5182 // FIXME: It would be nice if we had an LLVM construct for this. 5183 if (!LazySymbols.empty() || !DefinedSymbols.empty()) { 5184 SmallString<256> Asm; 5185 Asm += CGM.getModule().getModuleInlineAsm(); 5186 if (!Asm.empty() && Asm.back() != '\n') 5187 Asm += '\n'; 5188 5189 llvm::raw_svector_ostream OS(Asm); 5190 for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(), 5191 e = DefinedSymbols.end(); I != e; ++I) 5192 OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n" 5193 << "\t.globl .objc_class_name_" << (*I)->getName() << "\n"; 5194 for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(), 5195 e = LazySymbols.end(); I != e; ++I) { 5196 OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n"; 5197 } 5198 5199 for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) { 5200 OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n" 5201 << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n"; 5202 } 5203 5204 CGM.getModule().setModuleInlineAsm(OS.str()); 5205 } 5206 } 5207 5208 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5209 : CGObjCCommonMac(cgm), 5210 ObjCTypes(cgm) { 5211 ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr; 5212 ObjCABI = 2; 5213 } 5214 5215 /* *** */ 5216 5217 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5218 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5219 { 5220 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5221 ASTContext &Ctx = CGM.getContext(); 5222 5223 ShortTy = Types.ConvertType(Ctx.ShortTy); 5224 IntTy = Types.ConvertType(Ctx.IntTy); 5225 LongTy = Types.ConvertType(Ctx.LongTy); 5226 LongLongTy = Types.ConvertType(Ctx.LongLongTy); 5227 Int8PtrTy = CGM.Int8PtrTy; 5228 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5229 5230 // arm64 targets use "int" ivar offset variables. All others, 5231 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5232 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5233 IvarOffsetVarTy = IntTy; 5234 else 5235 IvarOffsetVarTy = LongTy; 5236 5237 ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); 5238 PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy); 5239 SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); 5240 5241 // I'm not sure I like this. The implicit coordination is a bit 5242 // gross. We should solve this in a reasonable fashion because this 5243 // is a pretty common task (match some runtime data structure with 5244 // an LLVM data structure). 5245 5246 // FIXME: This is leaked. 5247 // FIXME: Merge with rewriter code? 5248 5249 // struct _objc_super { 5250 // id self; 5251 // Class cls; 5252 // } 5253 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5254 Ctx.getTranslationUnitDecl(), 5255 SourceLocation(), SourceLocation(), 5256 &Ctx.Idents.get("_objc_super")); 5257 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5258 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5259 false, ICIS_NoInit)); 5260 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5261 nullptr, Ctx.getObjCClassType(), nullptr, 5262 nullptr, false, ICIS_NoInit)); 5263 RD->completeDefinition(); 5264 5265 SuperCTy = Ctx.getTagDeclType(RD); 5266 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5267 5268 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5269 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5270 5271 // struct _prop_t { 5272 // char *name; 5273 // char *attributes; 5274 // } 5275 PropertyTy = llvm::StructType::create("struct._prop_t", 5276 Int8PtrTy, Int8PtrTy, nullptr); 5277 5278 // struct _prop_list_t { 5279 // uint32_t entsize; // sizeof(struct _prop_t) 5280 // uint32_t count_of_properties; 5281 // struct _prop_t prop_list[count_of_properties]; 5282 // } 5283 PropertyListTy = 5284 llvm::StructType::create("struct._prop_list_t", IntTy, IntTy, 5285 llvm::ArrayType::get(PropertyTy, 0), nullptr); 5286 // struct _prop_list_t * 5287 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5288 5289 // struct _objc_method { 5290 // SEL _cmd; 5291 // char *method_type; 5292 // char *_imp; 5293 // } 5294 MethodTy = llvm::StructType::create("struct._objc_method", 5295 SelectorPtrTy, Int8PtrTy, Int8PtrTy, 5296 nullptr); 5297 5298 // struct _objc_cache * 5299 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5300 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5301 } 5302 5303 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5304 : ObjCCommonTypesHelper(cgm) { 5305 // struct _objc_method_description { 5306 // SEL name; 5307 // char *types; 5308 // } 5309 MethodDescriptionTy = 5310 llvm::StructType::create("struct._objc_method_description", 5311 SelectorPtrTy, Int8PtrTy, nullptr); 5312 5313 // struct _objc_method_description_list { 5314 // int count; 5315 // struct _objc_method_description[1]; 5316 // } 5317 MethodDescriptionListTy = llvm::StructType::create( 5318 "struct._objc_method_description_list", IntTy, 5319 llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr); 5320 5321 // struct _objc_method_description_list * 5322 MethodDescriptionListPtrTy = 5323 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5324 5325 // Protocol description structures 5326 5327 // struct _objc_protocol_extension { 5328 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5329 // struct _objc_method_description_list *optional_instance_methods; 5330 // struct _objc_method_description_list *optional_class_methods; 5331 // struct _objc_property_list *instance_properties; 5332 // const char ** extendedMethodTypes; 5333 // struct _objc_property_list *class_properties; 5334 // } 5335 ProtocolExtensionTy = 5336 llvm::StructType::create("struct._objc_protocol_extension", 5337 IntTy, MethodDescriptionListPtrTy, 5338 MethodDescriptionListPtrTy, PropertyListPtrTy, 5339 Int8PtrPtrTy, PropertyListPtrTy, nullptr); 5340 5341 // struct _objc_protocol_extension * 5342 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5343 5344 // Handle recursive construction of Protocol and ProtocolList types 5345 5346 ProtocolTy = 5347 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5348 5349 ProtocolListTy = 5350 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5351 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), 5352 LongTy, 5353 llvm::ArrayType::get(ProtocolTy, 0), 5354 nullptr); 5355 5356 // struct _objc_protocol { 5357 // struct _objc_protocol_extension *isa; 5358 // char *protocol_name; 5359 // struct _objc_protocol **_objc_protocol_list; 5360 // struct _objc_method_description_list *instance_methods; 5361 // struct _objc_method_description_list *class_methods; 5362 // } 5363 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5364 llvm::PointerType::getUnqual(ProtocolListTy), 5365 MethodDescriptionListPtrTy, 5366 MethodDescriptionListPtrTy, 5367 nullptr); 5368 5369 // struct _objc_protocol_list * 5370 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5371 5372 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5373 5374 // Class description structures 5375 5376 // struct _objc_ivar { 5377 // char *ivar_name; 5378 // char *ivar_type; 5379 // int ivar_offset; 5380 // } 5381 IvarTy = llvm::StructType::create("struct._objc_ivar", 5382 Int8PtrTy, Int8PtrTy, IntTy, nullptr); 5383 5384 // struct _objc_ivar_list * 5385 IvarListTy = 5386 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5387 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5388 5389 // struct _objc_method_list * 5390 MethodListTy = 5391 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5392 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5393 5394 // struct _objc_class_extension * 5395 ClassExtensionTy = 5396 llvm::StructType::create("struct._objc_class_extension", 5397 IntTy, Int8PtrTy, PropertyListPtrTy, nullptr); 5398 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5399 5400 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5401 5402 // struct _objc_class { 5403 // Class isa; 5404 // Class super_class; 5405 // char *name; 5406 // long version; 5407 // long info; 5408 // long instance_size; 5409 // struct _objc_ivar_list *ivars; 5410 // struct _objc_method_list *methods; 5411 // struct _objc_cache *cache; 5412 // struct _objc_protocol_list *protocols; 5413 // char *ivar_layout; 5414 // struct _objc_class_ext *ext; 5415 // }; 5416 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5417 llvm::PointerType::getUnqual(ClassTy), 5418 Int8PtrTy, 5419 LongTy, 5420 LongTy, 5421 LongTy, 5422 IvarListPtrTy, 5423 MethodListPtrTy, 5424 CachePtrTy, 5425 ProtocolListPtrTy, 5426 Int8PtrTy, 5427 ClassExtensionPtrTy, 5428 nullptr); 5429 5430 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5431 5432 // struct _objc_category { 5433 // char *category_name; 5434 // char *class_name; 5435 // struct _objc_method_list *instance_method; 5436 // struct _objc_method_list *class_method; 5437 // struct _objc_protocol_list *protocols; 5438 // uint32_t size; // sizeof(struct _objc_category) 5439 // struct _objc_property_list *instance_properties;// category's @property 5440 // struct _objc_property_list *class_properties; 5441 // } 5442 CategoryTy = 5443 llvm::StructType::create("struct._objc_category", 5444 Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5445 MethodListPtrTy, ProtocolListPtrTy, 5446 IntTy, PropertyListPtrTy, PropertyListPtrTy, 5447 nullptr); 5448 5449 // Global metadata structures 5450 5451 // struct _objc_symtab { 5452 // long sel_ref_cnt; 5453 // SEL *refs; 5454 // short cls_def_cnt; 5455 // short cat_def_cnt; 5456 // char *defs[cls_def_cnt + cat_def_cnt]; 5457 // } 5458 SymtabTy = 5459 llvm::StructType::create("struct._objc_symtab", 5460 LongTy, SelectorPtrTy, ShortTy, ShortTy, 5461 llvm::ArrayType::get(Int8PtrTy, 0), nullptr); 5462 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5463 5464 // struct _objc_module { 5465 // long version; 5466 // long size; // sizeof(struct _objc_module) 5467 // char *name; 5468 // struct _objc_symtab* symtab; 5469 // } 5470 ModuleTy = 5471 llvm::StructType::create("struct._objc_module", 5472 LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr); 5473 5474 5475 // FIXME: This is the size of the setjmp buffer and should be target 5476 // specific. 18 is what's used on 32-bit X86. 5477 uint64_t SetJmpBufferSize = 18; 5478 5479 // Exceptions 5480 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5481 5482 ExceptionDataTy = 5483 llvm::StructType::create("struct._objc_exception_data", 5484 llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize), 5485 StackPtrTy, nullptr); 5486 } 5487 5488 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5489 : ObjCCommonTypesHelper(cgm) { 5490 // struct _method_list_t { 5491 // uint32_t entsize; // sizeof(struct _objc_method) 5492 // uint32_t method_count; 5493 // struct _objc_method method_list[method_count]; 5494 // } 5495 MethodListnfABITy = 5496 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5497 llvm::ArrayType::get(MethodTy, 0), nullptr); 5498 // struct method_list_t * 5499 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5500 5501 // struct _protocol_t { 5502 // id isa; // NULL 5503 // const char * const protocol_name; 5504 // const struct _protocol_list_t * protocol_list; // super protocols 5505 // const struct method_list_t * const instance_methods; 5506 // const struct method_list_t * const class_methods; 5507 // const struct method_list_t *optionalInstanceMethods; 5508 // const struct method_list_t *optionalClassMethods; 5509 // const struct _prop_list_t * properties; 5510 // const uint32_t size; // sizeof(struct _protocol_t) 5511 // const uint32_t flags; // = 0 5512 // const char ** extendedMethodTypes; 5513 // const char *demangledName; 5514 // const struct _prop_list_t * class_properties; 5515 // } 5516 5517 // Holder for struct _protocol_list_t * 5518 ProtocolListnfABITy = 5519 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5520 5521 ProtocolnfABITy = 5522 llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5523 llvm::PointerType::getUnqual(ProtocolListnfABITy), 5524 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5525 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5526 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, 5527 Int8PtrTy, PropertyListPtrTy, 5528 nullptr); 5529 5530 // struct _protocol_t* 5531 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5532 5533 // struct _protocol_list_t { 5534 // long protocol_count; // Note, this is 32/64 bit 5535 // struct _protocol_t *[protocol_count]; 5536 // } 5537 ProtocolListnfABITy->setBody(LongTy, 5538 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0), 5539 nullptr); 5540 5541 // struct _objc_protocol_list* 5542 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5543 5544 // struct _ivar_t { 5545 // unsigned [long] int *offset; // pointer to ivar offset location 5546 // char *name; 5547 // char *type; 5548 // uint32_t alignment; 5549 // uint32_t size; 5550 // } 5551 IvarnfABITy = llvm::StructType::create( 5552 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5553 Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr); 5554 5555 // struct _ivar_list_t { 5556 // uint32 entsize; // sizeof(struct _ivar_t) 5557 // uint32 count; 5558 // struct _iver_t list[count]; 5559 // } 5560 IvarListnfABITy = 5561 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5562 llvm::ArrayType::get(IvarnfABITy, 0), nullptr); 5563 5564 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5565 5566 // struct _class_ro_t { 5567 // uint32_t const flags; 5568 // uint32_t const instanceStart; 5569 // uint32_t const instanceSize; 5570 // uint32_t const reserved; // only when building for 64bit targets 5571 // const uint8_t * const ivarLayout; 5572 // const char *const name; 5573 // const struct _method_list_t * const baseMethods; 5574 // const struct _objc_protocol_list *const baseProtocols; 5575 // const struct _ivar_list_t *const ivars; 5576 // const uint8_t * const weakIvarLayout; 5577 // const struct _prop_list_t * const properties; 5578 // } 5579 5580 // FIXME. Add 'reserved' field in 64bit abi mode! 5581 ClassRonfABITy = llvm::StructType::create("struct._class_ro_t", 5582 IntTy, IntTy, IntTy, Int8PtrTy, 5583 Int8PtrTy, MethodListnfABIPtrTy, 5584 ProtocolListnfABIPtrTy, 5585 IvarListnfABIPtrTy, 5586 Int8PtrTy, PropertyListPtrTy, 5587 nullptr); 5588 5589 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5590 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5591 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5592 ->getPointerTo(); 5593 5594 // struct _class_t { 5595 // struct _class_t *isa; 5596 // struct _class_t * const superclass; 5597 // void *cache; 5598 // IMP *vtable; 5599 // struct class_ro_t *ro; 5600 // } 5601 5602 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5603 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5604 llvm::PointerType::getUnqual(ClassnfABITy), 5605 CachePtrTy, 5606 llvm::PointerType::getUnqual(ImpnfABITy), 5607 llvm::PointerType::getUnqual(ClassRonfABITy), 5608 nullptr); 5609 5610 // LLVM for struct _class_t * 5611 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5612 5613 // struct _category_t { 5614 // const char * const name; 5615 // struct _class_t *const cls; 5616 // const struct _method_list_t * const instance_methods; 5617 // const struct _method_list_t * const class_methods; 5618 // const struct _protocol_list_t * const protocols; 5619 // const struct _prop_list_t * const properties; 5620 // const struct _prop_list_t * const class_properties; 5621 // const uint32_t size; 5622 // } 5623 CategorynfABITy = llvm::StructType::create("struct._category_t", 5624 Int8PtrTy, ClassnfABIPtrTy, 5625 MethodListnfABIPtrTy, 5626 MethodListnfABIPtrTy, 5627 ProtocolListnfABIPtrTy, 5628 PropertyListPtrTy, 5629 PropertyListPtrTy, 5630 IntTy, 5631 nullptr); 5632 5633 // New types for nonfragile abi messaging. 5634 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5635 ASTContext &Ctx = CGM.getContext(); 5636 5637 // MessageRefTy - LLVM for: 5638 // struct _message_ref_t { 5639 // IMP messenger; 5640 // SEL name; 5641 // }; 5642 5643 // First the clang type for struct _message_ref_t 5644 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5645 Ctx.getTranslationUnitDecl(), 5646 SourceLocation(), SourceLocation(), 5647 &Ctx.Idents.get("_message_ref_t")); 5648 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5649 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5650 ICIS_NoInit)); 5651 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5652 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5653 false, ICIS_NoInit)); 5654 RD->completeDefinition(); 5655 5656 MessageRefCTy = Ctx.getTagDeclType(RD); 5657 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5658 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5659 5660 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5661 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5662 5663 // SuperMessageRefTy - LLVM for: 5664 // struct _super_message_ref_t { 5665 // SUPER_IMP messenger; 5666 // SEL name; 5667 // }; 5668 SuperMessageRefTy = 5669 llvm::StructType::create("struct._super_message_ref_t", 5670 ImpnfABITy, SelectorPtrTy, nullptr); 5671 5672 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5673 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5674 5675 5676 // struct objc_typeinfo { 5677 // const void** vtable; // objc_ehtype_vtable + 2 5678 // const char* name; // c++ typeinfo string 5679 // Class cls; 5680 // }; 5681 EHTypeTy = 5682 llvm::StructType::create("struct._objc_typeinfo", 5683 llvm::PointerType::getUnqual(Int8PtrTy), 5684 Int8PtrTy, ClassnfABIPtrTy, nullptr); 5685 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5686 } 5687 5688 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5689 FinishNonFragileABIModule(); 5690 5691 return nullptr; 5692 } 5693 5694 void CGObjCNonFragileABIMac:: 5695 AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 5696 const char *SymbolName, 5697 const char *SectionName) { 5698 unsigned NumClasses = Container.size(); 5699 5700 if (!NumClasses) 5701 return; 5702 5703 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5704 for (unsigned i=0; i<NumClasses; i++) 5705 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5706 ObjCTypes.Int8PtrTy); 5707 llvm::Constant *Init = 5708 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5709 Symbols.size()), 5710 Symbols); 5711 5712 llvm::GlobalVariable *GV = 5713 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5714 llvm::GlobalValue::PrivateLinkage, 5715 Init, 5716 SymbolName); 5717 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5718 GV->setSection(SectionName); 5719 CGM.addCompilerUsedGlobal(GV); 5720 } 5721 5722 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5723 // nonfragile abi has no module definition. 5724 5725 // Build list of all implemented class addresses in array 5726 // L_OBJC_LABEL_CLASS_$. 5727 5728 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5729 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5730 assert(ID); 5731 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5732 // We are implementing a weak imported interface. Give it external linkage 5733 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5734 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5735 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5736 } 5737 } 5738 5739 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5740 "__DATA, __objc_classlist, regular, no_dead_strip"); 5741 5742 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5743 "__DATA, __objc_nlclslist, regular, no_dead_strip"); 5744 5745 // Build list of all implemented category addresses in array 5746 // L_OBJC_LABEL_CATEGORY_$. 5747 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5748 "__DATA, __objc_catlist, regular, no_dead_strip"); 5749 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5750 "__DATA, __objc_nlcatlist, regular, no_dead_strip"); 5751 5752 EmitImageInfo(); 5753 } 5754 5755 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5756 /// VTableDispatchMethods; false otherwise. What this means is that 5757 /// except for the 19 selectors in the list, we generate 32bit-style 5758 /// message dispatch call for all the rest. 5759 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5760 // At various points we've experimented with using vtable-based 5761 // dispatch for all methods. 5762 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5763 case CodeGenOptions::Legacy: 5764 return false; 5765 case CodeGenOptions::NonLegacy: 5766 return true; 5767 case CodeGenOptions::Mixed: 5768 break; 5769 } 5770 5771 // If so, see whether this selector is in the white-list of things which must 5772 // use the new dispatch convention. We lazily build a dense set for this. 5773 if (VTableDispatchMethods.empty()) { 5774 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 5775 VTableDispatchMethods.insert(GetNullarySelector("class")); 5776 VTableDispatchMethods.insert(GetNullarySelector("self")); 5777 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 5778 VTableDispatchMethods.insert(GetNullarySelector("length")); 5779 VTableDispatchMethods.insert(GetNullarySelector("count")); 5780 5781 // These are vtable-based if GC is disabled. 5782 // Optimistically use vtable dispatch for hybrid compiles. 5783 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 5784 VTableDispatchMethods.insert(GetNullarySelector("retain")); 5785 VTableDispatchMethods.insert(GetNullarySelector("release")); 5786 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 5787 } 5788 5789 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 5790 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 5791 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 5792 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 5793 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 5794 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 5795 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 5796 5797 // These are vtable-based if GC is enabled. 5798 // Optimistically use vtable dispatch for hybrid compiles. 5799 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5800 VTableDispatchMethods.insert(GetNullarySelector("hash")); 5801 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 5802 5803 // "countByEnumeratingWithState:objects:count" 5804 IdentifierInfo *KeyIdents[] = { 5805 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 5806 &CGM.getContext().Idents.get("objects"), 5807 &CGM.getContext().Idents.get("count") 5808 }; 5809 VTableDispatchMethods.insert( 5810 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 5811 } 5812 } 5813 5814 return VTableDispatchMethods.count(Sel); 5815 } 5816 5817 /// BuildClassRoTInitializer - generate meta-data for: 5818 /// struct _class_ro_t { 5819 /// uint32_t const flags; 5820 /// uint32_t const instanceStart; 5821 /// uint32_t const instanceSize; 5822 /// uint32_t const reserved; // only when building for 64bit targets 5823 /// const uint8_t * const ivarLayout; 5824 /// const char *const name; 5825 /// const struct _method_list_t * const baseMethods; 5826 /// const struct _protocol_list_t *const baseProtocols; 5827 /// const struct _ivar_list_t *const ivars; 5828 /// const uint8_t * const weakIvarLayout; 5829 /// const struct _prop_list_t * const properties; 5830 /// } 5831 /// 5832 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 5833 unsigned flags, 5834 unsigned InstanceStart, 5835 unsigned InstanceSize, 5836 const ObjCImplementationDecl *ID) { 5837 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5838 llvm::Constant *Values[10]; // 11 for 64bit targets! 5839 5840 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 5841 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 5842 5843 bool hasMRCWeak = false; 5844 if (CGM.getLangOpts().ObjCAutoRefCount) 5845 flags |= NonFragileABI_Class_CompiledByARC; 5846 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 5847 flags |= NonFragileABI_Class_HasMRCWeakIvars; 5848 5849 Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags); 5850 Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart); 5851 Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize); 5852 // FIXME. For 64bit targets add 0 here. 5853 Values[ 3] = (flags & NonFragileABI_Class_Meta) 5854 ? GetIvarLayoutName(nullptr, ObjCTypes) 5855 : BuildStrongIvarLayout(ID, beginInstance, endInstance); 5856 Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString()); 5857 // const struct _method_list_t * const baseMethods; 5858 std::vector<llvm::Constant*> Methods; 5859 std::string MethodListName("\01l_OBJC_$_"); 5860 if (flags & NonFragileABI_Class_Meta) { 5861 MethodListName += "CLASS_METHODS_"; 5862 MethodListName += ID->getObjCRuntimeNameAsString(); 5863 for (const auto *I : ID->class_methods()) 5864 // Class methods should always be defined. 5865 Methods.push_back(GetMethodConstant(I)); 5866 } else { 5867 MethodListName += "INSTANCE_METHODS_"; 5868 MethodListName += ID->getObjCRuntimeNameAsString(); 5869 for (const auto *I : ID->instance_methods()) 5870 // Instance methods should always be defined. 5871 Methods.push_back(GetMethodConstant(I)); 5872 5873 for (const auto *PID : ID->property_impls()) { 5874 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 5875 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5876 5877 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 5878 if (llvm::Constant *C = GetMethodConstant(MD)) 5879 Methods.push_back(C); 5880 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 5881 if (llvm::Constant *C = GetMethodConstant(MD)) 5882 Methods.push_back(C); 5883 } 5884 } 5885 } 5886 Values[ 5] = EmitMethodList(MethodListName, 5887 "__DATA, __objc_const", Methods); 5888 5889 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 5890 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 5891 Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 5892 + OID->getObjCRuntimeNameAsString(), 5893 OID->all_referenced_protocol_begin(), 5894 OID->all_referenced_protocol_end()); 5895 5896 if (flags & NonFragileABI_Class_Meta) { 5897 Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 5898 Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes); 5899 Values[ 9] = EmitPropertyList( 5900 "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 5901 ID, ID->getClassInterface(), ObjCTypes, true); 5902 } else { 5903 Values[ 7] = EmitIvarList(ID); 5904 Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance, 5905 hasMRCWeak); 5906 Values[ 9] = EmitPropertyList( 5907 "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 5908 ID, ID->getClassInterface(), ObjCTypes, false); 5909 } 5910 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy, 5911 Values); 5912 llvm::GlobalVariable *CLASS_RO_GV = 5913 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false, 5914 llvm::GlobalValue::PrivateLinkage, 5915 Init, 5916 (flags & NonFragileABI_Class_Meta) ? 5917 std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName : 5918 std::string("\01l_OBJC_CLASS_RO_$_")+ClassName); 5919 CLASS_RO_GV->setAlignment( 5920 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy)); 5921 CLASS_RO_GV->setSection("__DATA, __objc_const"); 5922 return CLASS_RO_GV; 5923 5924 } 5925 5926 /// BuildClassMetaData - This routine defines that to-level meta-data 5927 /// for the given ClassName for: 5928 /// struct _class_t { 5929 /// struct _class_t *isa; 5930 /// struct _class_t * const superclass; 5931 /// void *cache; 5932 /// IMP *vtable; 5933 /// struct class_ro_t *ro; 5934 /// } 5935 /// 5936 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData( 5937 const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV, 5938 llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) { 5939 llvm::Constant *Values[] = { 5940 IsAGV, 5941 SuperClassGV, 5942 ObjCEmptyCacheVar, // &ObjCEmptyCacheVar 5943 ObjCEmptyVtableVar, // &ObjCEmptyVtableVar 5944 ClassRoGV // &CLASS_RO_GV 5945 }; 5946 if (!Values[1]) 5947 Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy); 5948 if (!Values[3]) 5949 Values[3] = llvm::Constant::getNullValue( 5950 llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy)); 5951 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy, 5952 Values); 5953 llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak); 5954 GV->setInitializer(Init); 5955 GV->setSection("__DATA, __objc_data"); 5956 GV->setAlignment( 5957 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 5958 if (HiddenVisibility) 5959 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5960 return GV; 5961 } 5962 5963 bool 5964 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 5965 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 5966 } 5967 5968 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 5969 uint32_t &InstanceStart, 5970 uint32_t &InstanceSize) { 5971 const ASTRecordLayout &RL = 5972 CGM.getContext().getASTObjCImplementationLayout(OID); 5973 5974 // InstanceSize is really instance end. 5975 InstanceSize = RL.getDataSize().getQuantity(); 5976 5977 // If there are no fields, the start is the same as the end. 5978 if (!RL.getFieldCount()) 5979 InstanceStart = InstanceSize; 5980 else 5981 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 5982 } 5983 5984 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 5985 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5986 if (!ObjCEmptyCacheVar) { 5987 ObjCEmptyCacheVar = new llvm::GlobalVariable( 5988 CGM.getModule(), 5989 ObjCTypes.CacheTy, 5990 false, 5991 llvm::GlobalValue::ExternalLinkage, 5992 nullptr, 5993 "_objc_empty_cache"); 5994 5995 // Make this entry NULL for any iOS device target, any iOS simulator target, 5996 // OS X with deployment target 10.9 or later. 5997 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 5998 if (Triple.isiOS() || Triple.isWatchOS() || 5999 (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9))) 6000 // This entry will be null. 6001 ObjCEmptyVtableVar = nullptr; 6002 else 6003 ObjCEmptyVtableVar = new llvm::GlobalVariable( 6004 CGM.getModule(), 6005 ObjCTypes.ImpnfABITy, 6006 false, 6007 llvm::GlobalValue::ExternalLinkage, 6008 nullptr, 6009 "_objc_empty_vtable"); 6010 } 6011 assert(ID->getClassInterface() && 6012 "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6013 // FIXME: Is this correct (that meta class size is never computed)? 6014 uint32_t InstanceStart = 6015 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6016 uint32_t InstanceSize = InstanceStart; 6017 uint32_t flags = NonFragileABI_Class_Meta; 6018 llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix()); 6019 llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix()); 6020 llvm::SmallString<64> TClassName; 6021 6022 llvm::GlobalVariable *SuperClassGV, *IsAGV; 6023 6024 // Build the flags for the metaclass. 6025 bool classIsHidden = 6026 ID->getClassInterface()->getVisibility() == HiddenVisibility; 6027 if (classIsHidden) 6028 flags |= NonFragileABI_Class_Hidden; 6029 6030 // FIXME: why is this flag set on the metaclass? 6031 // ObjC metaclasses have no fields and don't really get constructed. 6032 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6033 flags |= NonFragileABI_Class_HasCXXStructors; 6034 if (!ID->hasNonZeroConstructors()) 6035 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6036 } 6037 6038 if (!ID->getClassInterface()->getSuperClass()) { 6039 // class is root 6040 flags |= NonFragileABI_Class_Root; 6041 TClassName = ObjCClassName; 6042 TClassName += ClassName; 6043 SuperClassGV = GetClassGlobal(TClassName.str(), 6044 ID->getClassInterface()->isWeakImported()); 6045 TClassName = ObjCMetaClassName; 6046 TClassName += ClassName; 6047 IsAGV = GetClassGlobal(TClassName.str(), 6048 ID->getClassInterface()->isWeakImported()); 6049 } else { 6050 // Has a root. Current class is not a root. 6051 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6052 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6053 Root = Super; 6054 TClassName = ObjCMetaClassName ; 6055 TClassName += Root->getObjCRuntimeNameAsString(); 6056 IsAGV = GetClassGlobal(TClassName.str(), 6057 Root->isWeakImported()); 6058 6059 // work on super class metadata symbol. 6060 TClassName = ObjCMetaClassName; 6061 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 6062 SuperClassGV = GetClassGlobal( 6063 TClassName.str(), 6064 ID->getClassInterface()->getSuperClass()->isWeakImported()); 6065 } 6066 llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags, 6067 InstanceStart, 6068 InstanceSize,ID); 6069 TClassName = ObjCMetaClassName; 6070 TClassName += ClassName; 6071 llvm::GlobalVariable *MetaTClass = BuildClassMetaData( 6072 TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden, 6073 ID->getClassInterface()->isWeakImported()); 6074 DefinedMetaClasses.push_back(MetaTClass); 6075 6076 // Metadata for the class 6077 flags = 0; 6078 if (classIsHidden) 6079 flags |= NonFragileABI_Class_Hidden; 6080 6081 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6082 flags |= NonFragileABI_Class_HasCXXStructors; 6083 6084 // Set a flag to enable a runtime optimization when a class has 6085 // fields that require destruction but which don't require 6086 // anything except zero-initialization during construction. This 6087 // is most notably true of __strong and __weak types, but you can 6088 // also imagine there being C++ types with non-trivial default 6089 // constructors that merely set all fields to null. 6090 if (!ID->hasNonZeroConstructors()) 6091 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6092 } 6093 6094 if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface())) 6095 flags |= NonFragileABI_Class_Exception; 6096 6097 if (!ID->getClassInterface()->getSuperClass()) { 6098 flags |= NonFragileABI_Class_Root; 6099 SuperClassGV = nullptr; 6100 } else { 6101 // Has a root. Current class is not a root. 6102 TClassName = ObjCClassName; 6103 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 6104 SuperClassGV = GetClassGlobal( 6105 TClassName.str(), 6106 ID->getClassInterface()->getSuperClass()->isWeakImported()); 6107 } 6108 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6109 CLASS_RO_GV = BuildClassRoTInitializer(flags, 6110 InstanceStart, 6111 InstanceSize, 6112 ID); 6113 6114 TClassName = ObjCClassName; 6115 TClassName += ClassName; 6116 llvm::GlobalVariable *ClassMD = 6117 BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV, 6118 classIsHidden, 6119 ID->getClassInterface()->isWeakImported()); 6120 DefinedClasses.push_back(ClassMD); 6121 ImplementedClasses.push_back(ID->getClassInterface()); 6122 6123 // Determine if this class is also "non-lazy". 6124 if (ImplementationIsNonLazy(ID)) 6125 DefinedNonLazyClasses.push_back(ClassMD); 6126 6127 // Force the definition of the EHType if necessary. 6128 if (flags & NonFragileABI_Class_Exception) 6129 GetInterfaceEHType(ID->getClassInterface(), true); 6130 // Make sure method definition entries are all clear for next implementation. 6131 MethodDefinitions.clear(); 6132 } 6133 6134 /// GenerateProtocolRef - This routine is called to generate code for 6135 /// a protocol reference expression; as in: 6136 /// @code 6137 /// @protocol(Proto1); 6138 /// @endcode 6139 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6140 /// which will hold address of the protocol meta-data. 6141 /// 6142 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6143 const ObjCProtocolDecl *PD) { 6144 6145 // This routine is called for @protocol only. So, we must build definition 6146 // of protocol's meta-data (not a reference to it!) 6147 // 6148 llvm::Constant *Init = 6149 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6150 ObjCTypes.getExternalProtocolPtrTy()); 6151 6152 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6153 ProtocolName += PD->getObjCRuntimeNameAsString(); 6154 6155 CharUnits Align = CGF.getPointerAlign(); 6156 6157 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6158 if (PTGV) 6159 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6160 PTGV = new llvm::GlobalVariable( 6161 CGM.getModule(), 6162 Init->getType(), false, 6163 llvm::GlobalValue::WeakAnyLinkage, 6164 Init, 6165 ProtocolName); 6166 PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip"); 6167 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6168 PTGV->setAlignment(Align.getQuantity()); 6169 CGM.addCompilerUsedGlobal(PTGV); 6170 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6171 } 6172 6173 /// GenerateCategory - Build metadata for a category implementation. 6174 /// struct _category_t { 6175 /// const char * const name; 6176 /// struct _class_t *const cls; 6177 /// const struct _method_list_t * const instance_methods; 6178 /// const struct _method_list_t * const class_methods; 6179 /// const struct _protocol_list_t * const protocols; 6180 /// const struct _prop_list_t * const properties; 6181 /// const struct _prop_list_t * const class_properties; 6182 /// const uint32_t size; 6183 /// } 6184 /// 6185 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6186 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6187 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6188 6189 llvm::SmallString<64> ExtCatName(Prefix); 6190 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6191 ExtCatName += "_$_"; 6192 ExtCatName += OCD->getNameAsString(); 6193 6194 llvm::SmallString<64> ExtClassName(getClassSymbolPrefix()); 6195 ExtClassName += Interface->getObjCRuntimeNameAsString(); 6196 6197 llvm::Constant *Values[8]; 6198 Values[0] = GetClassName(OCD->getIdentifier()->getName()); 6199 // meta-class entry symbol 6200 llvm::GlobalVariable *ClassGV = 6201 GetClassGlobal(ExtClassName.str(), Interface->isWeakImported()); 6202 6203 Values[1] = ClassGV; 6204 std::vector<llvm::Constant*> Methods; 6205 llvm::SmallString<64> MethodListName(Prefix); 6206 6207 MethodListName += "INSTANCE_METHODS_"; 6208 MethodListName += Interface->getObjCRuntimeNameAsString(); 6209 MethodListName += "_$_"; 6210 MethodListName += OCD->getName(); 6211 6212 for (const auto *I : OCD->instance_methods()) 6213 // Instance methods should always be defined. 6214 Methods.push_back(GetMethodConstant(I)); 6215 6216 Values[2] = EmitMethodList(MethodListName.str(), 6217 "__DATA, __objc_const", 6218 Methods); 6219 6220 MethodListName = Prefix; 6221 MethodListName += "CLASS_METHODS_"; 6222 MethodListName += Interface->getObjCRuntimeNameAsString(); 6223 MethodListName += "_$_"; 6224 MethodListName += OCD->getNameAsString(); 6225 6226 Methods.clear(); 6227 for (const auto *I : OCD->class_methods()) 6228 // Class methods should always be defined. 6229 Methods.push_back(GetMethodConstant(I)); 6230 6231 Values[3] = EmitMethodList(MethodListName.str(), 6232 "__DATA, __objc_const", 6233 Methods); 6234 const ObjCCategoryDecl *Category = 6235 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6236 if (Category) { 6237 SmallString<256> ExtName; 6238 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6239 << OCD->getName(); 6240 Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6241 + Interface->getObjCRuntimeNameAsString() + "_$_" 6242 + Category->getName(), 6243 Category->protocol_begin(), 6244 Category->protocol_end()); 6245 Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6246 OCD, Category, ObjCTypes, false); 6247 Values[6] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6248 OCD, Category, ObjCTypes, true); 6249 } else { 6250 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6251 Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6252 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6253 } 6254 6255 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6256 Values[7] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6257 6258 llvm::Constant *Init = 6259 llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy, 6260 Values); 6261 llvm::GlobalVariable *GCATV 6262 = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy, 6263 false, 6264 llvm::GlobalValue::PrivateLinkage, 6265 Init, 6266 ExtCatName.str()); 6267 GCATV->setAlignment( 6268 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy)); 6269 GCATV->setSection("__DATA, __objc_const"); 6270 CGM.addCompilerUsedGlobal(GCATV); 6271 DefinedCategories.push_back(GCATV); 6272 6273 // Determine if this category is also "non-lazy". 6274 if (ImplementationIsNonLazy(OCD)) 6275 DefinedNonLazyCategories.push_back(GCATV); 6276 // method definition entries must be clear for next implementation. 6277 MethodDefinitions.clear(); 6278 } 6279 6280 /// GetMethodConstant - Return a struct objc_method constant for the 6281 /// given method if it has been defined. The result is null if the 6282 /// method has not been defined. The return value has type MethodPtrTy. 6283 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant( 6284 const ObjCMethodDecl *MD) { 6285 llvm::Function *Fn = GetMethodDefinition(MD); 6286 if (!Fn) 6287 return nullptr; 6288 6289 llvm::Constant *Method[] = { 6290 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6291 ObjCTypes.SelectorPtrTy), 6292 GetMethodVarType(MD), 6293 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 6294 }; 6295 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 6296 } 6297 6298 /// EmitMethodList - Build meta-data for method declarations 6299 /// struct _method_list_t { 6300 /// uint32_t entsize; // sizeof(struct _objc_method) 6301 /// uint32_t method_count; 6302 /// struct _objc_method method_list[method_count]; 6303 /// } 6304 /// 6305 llvm::Constant * 6306 CGObjCNonFragileABIMac::EmitMethodList(Twine Name, 6307 const char *Section, 6308 ArrayRef<llvm::Constant*> Methods) { 6309 // Return null for empty list. 6310 if (Methods.empty()) 6311 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6312 6313 llvm::Constant *Values[3]; 6314 // sizeof(struct _objc_method) 6315 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6316 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6317 // method_count 6318 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 6319 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 6320 Methods.size()); 6321 Values[2] = llvm::ConstantArray::get(AT, Methods); 6322 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6323 6324 llvm::GlobalVariable *GV = 6325 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6326 llvm::GlobalValue::PrivateLinkage, Init, Name); 6327 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6328 GV->setSection(Section); 6329 CGM.addCompilerUsedGlobal(GV); 6330 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6331 } 6332 6333 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6334 /// the given ivar. 6335 llvm::GlobalVariable * 6336 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6337 const ObjCIvarDecl *Ivar) { 6338 6339 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6340 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6341 Name += Container->getObjCRuntimeNameAsString(); 6342 Name += "."; 6343 Name += Ivar->getName(); 6344 llvm::GlobalVariable *IvarOffsetGV = 6345 CGM.getModule().getGlobalVariable(Name); 6346 if (!IvarOffsetGV) 6347 IvarOffsetGV = new llvm::GlobalVariable( 6348 CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false, 6349 llvm::GlobalValue::ExternalLinkage, nullptr, Name.str()); 6350 return IvarOffsetGV; 6351 } 6352 6353 llvm::Constant * 6354 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6355 const ObjCIvarDecl *Ivar, 6356 unsigned long int Offset) { 6357 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6358 IvarOffsetGV->setInitializer( 6359 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6360 IvarOffsetGV->setAlignment( 6361 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6362 6363 // FIXME: This matches gcc, but shouldn't the visibility be set on the use as 6364 // well (i.e., in ObjCIvarOffsetVariable). 6365 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6366 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6367 ID->getVisibility() == HiddenVisibility) 6368 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6369 else 6370 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6371 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6372 return IvarOffsetGV; 6373 } 6374 6375 /// EmitIvarList - Emit the ivar list for the given 6376 /// implementation. The return value has type 6377 /// IvarListnfABIPtrTy. 6378 /// struct _ivar_t { 6379 /// unsigned [long] int *offset; // pointer to ivar offset location 6380 /// char *name; 6381 /// char *type; 6382 /// uint32_t alignment; 6383 /// uint32_t size; 6384 /// } 6385 /// struct _ivar_list_t { 6386 /// uint32 entsize; // sizeof(struct _ivar_t) 6387 /// uint32 count; 6388 /// struct _iver_t list[count]; 6389 /// } 6390 /// 6391 6392 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6393 const ObjCImplementationDecl *ID) { 6394 6395 std::vector<llvm::Constant*> Ivars; 6396 6397 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6398 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6399 6400 // FIXME. Consolidate this with similar code in GenerateClass. 6401 6402 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6403 IVD; IVD = IVD->getNextIvar()) { 6404 // Ignore unnamed bit-fields. 6405 if (!IVD->getDeclName()) 6406 continue; 6407 llvm::Constant *Ivar[5]; 6408 Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6409 ComputeIvarBaseOffset(CGM, ID, IVD)); 6410 Ivar[1] = GetMethodVarName(IVD->getIdentifier()); 6411 Ivar[2] = GetMethodVarType(IVD); 6412 llvm::Type *FieldTy = 6413 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6414 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6415 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6416 IVD->getType().getTypePtr()) >> 3; 6417 Align = llvm::Log2_32(Align); 6418 Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align); 6419 // NOTE. Size of a bitfield does not match gcc's, because of the 6420 // way bitfields are treated special in each. But I am told that 6421 // 'size' for bitfield ivars is ignored by the runtime so it does 6422 // not matter. If it matters, there is enough info to get the 6423 // bitfield right! 6424 Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6425 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar)); 6426 } 6427 // Return null for empty list. 6428 if (Ivars.empty()) 6429 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6430 6431 llvm::Constant *Values[3]; 6432 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy); 6433 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6434 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 6435 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy, 6436 Ivars.size()); 6437 Values[2] = llvm::ConstantArray::get(AT, Ivars); 6438 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6439 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6440 llvm::GlobalVariable *GV = 6441 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6442 llvm::GlobalValue::PrivateLinkage, 6443 Init, 6444 Prefix + OID->getObjCRuntimeNameAsString()); 6445 GV->setAlignment( 6446 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6447 GV->setSection("__DATA, __objc_const"); 6448 6449 CGM.addCompilerUsedGlobal(GV); 6450 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6451 } 6452 6453 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6454 const ObjCProtocolDecl *PD) { 6455 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6456 6457 if (!Entry) 6458 // We use the initializer as a marker of whether this is a forward 6459 // reference or not. At module finalization we add the empty 6460 // contents for protocols which were referenced but never defined. 6461 Entry = 6462 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6463 false, llvm::GlobalValue::ExternalLinkage, 6464 nullptr, 6465 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6466 6467 return Entry; 6468 } 6469 6470 /// GetOrEmitProtocol - Generate the protocol meta-data: 6471 /// @code 6472 /// struct _protocol_t { 6473 /// id isa; // NULL 6474 /// const char * const protocol_name; 6475 /// const struct _protocol_list_t * protocol_list; // super protocols 6476 /// const struct method_list_t * const instance_methods; 6477 /// const struct method_list_t * const class_methods; 6478 /// const struct method_list_t *optionalInstanceMethods; 6479 /// const struct method_list_t *optionalClassMethods; 6480 /// const struct _prop_list_t * properties; 6481 /// const uint32_t size; // sizeof(struct _protocol_t) 6482 /// const uint32_t flags; // = 0 6483 /// const char ** extendedMethodTypes; 6484 /// const char *demangledName; 6485 /// const struct _prop_list_t * class_properties; 6486 /// } 6487 /// @endcode 6488 /// 6489 6490 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6491 const ObjCProtocolDecl *PD) { 6492 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6493 6494 // Early exit if a defining object has already been generated. 6495 if (Entry && Entry->hasInitializer()) 6496 return Entry; 6497 6498 // Use the protocol definition, if there is one. 6499 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6500 PD = Def; 6501 6502 // Construct method lists. 6503 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 6504 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 6505 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 6506 for (const auto *MD : PD->instance_methods()) { 6507 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6508 if (!C) 6509 return GetOrEmitProtocolRef(PD); 6510 6511 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6512 OptInstanceMethods.push_back(C); 6513 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6514 } else { 6515 InstanceMethods.push_back(C); 6516 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6517 } 6518 } 6519 6520 for (const auto *MD : PD->class_methods()) { 6521 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6522 if (!C) 6523 return GetOrEmitProtocolRef(PD); 6524 6525 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6526 OptClassMethods.push_back(C); 6527 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6528 } else { 6529 ClassMethods.push_back(C); 6530 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6531 } 6532 } 6533 6534 MethodTypesExt.insert(MethodTypesExt.end(), 6535 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 6536 6537 llvm::Constant *Values[13]; 6538 // isa is NULL 6539 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy); 6540 Values[1] = GetClassName(PD->getObjCRuntimeNameAsString()); 6541 Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(), 6542 PD->protocol_begin(), 6543 PD->protocol_end()); 6544 6545 Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_" 6546 + PD->getObjCRuntimeNameAsString(), 6547 "__DATA, __objc_const", 6548 InstanceMethods); 6549 Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_" 6550 + PD->getObjCRuntimeNameAsString(), 6551 "__DATA, __objc_const", 6552 ClassMethods); 6553 Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_" 6554 + PD->getObjCRuntimeNameAsString(), 6555 "__DATA, __objc_const", 6556 OptInstanceMethods); 6557 Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_" 6558 + PD->getObjCRuntimeNameAsString(), 6559 "__DATA, __objc_const", 6560 OptClassMethods); 6561 Values[7] = EmitPropertyList( 6562 "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6563 nullptr, PD, ObjCTypes, false); 6564 uint32_t Size = 6565 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6566 Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6567 Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy); 6568 Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6569 + PD->getObjCRuntimeNameAsString(), 6570 MethodTypesExt, ObjCTypes); 6571 // const char *demangledName; 6572 Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6573 6574 Values[12] = EmitPropertyList( 6575 "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6576 nullptr, PD, ObjCTypes, true); 6577 6578 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy, 6579 Values); 6580 6581 if (Entry) { 6582 // Already created, fix the linkage and update the initializer. 6583 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6584 Entry->setInitializer(Init); 6585 } else { 6586 Entry = 6587 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6588 false, llvm::GlobalValue::WeakAnyLinkage, Init, 6589 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6590 Entry->setAlignment( 6591 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy)); 6592 6593 Protocols[PD->getIdentifier()] = Entry; 6594 } 6595 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6596 CGM.addCompilerUsedGlobal(Entry); 6597 6598 // Use this protocol meta-data to build protocol list table in section 6599 // __DATA, __objc_protolist 6600 llvm::GlobalVariable *PTGV = 6601 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6602 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6603 "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6604 PTGV->setAlignment( 6605 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6606 PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip"); 6607 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6608 CGM.addCompilerUsedGlobal(PTGV); 6609 return Entry; 6610 } 6611 6612 /// EmitProtocolList - Generate protocol list meta-data: 6613 /// @code 6614 /// struct _protocol_list_t { 6615 /// long protocol_count; // Note, this is 32/64 bit 6616 /// struct _protocol_t[protocol_count]; 6617 /// } 6618 /// @endcode 6619 /// 6620 llvm::Constant * 6621 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6622 ObjCProtocolDecl::protocol_iterator begin, 6623 ObjCProtocolDecl::protocol_iterator end) { 6624 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6625 6626 // Just return null for empty protocol lists 6627 if (begin == end) 6628 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6629 6630 // FIXME: We shouldn't need to do this lookup here, should we? 6631 SmallString<256> TmpName; 6632 Name.toVector(TmpName); 6633 llvm::GlobalVariable *GV = 6634 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6635 if (GV) 6636 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6637 6638 for (; begin != end; ++begin) 6639 ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented??? 6640 6641 // This list is null terminated. 6642 ProtocolRefs.push_back(llvm::Constant::getNullValue( 6643 ObjCTypes.ProtocolnfABIPtrTy)); 6644 6645 llvm::Constant *Values[2]; 6646 Values[0] = 6647 llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); 6648 Values[1] = 6649 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy, 6650 ProtocolRefs.size()), 6651 ProtocolRefs); 6652 6653 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6654 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6655 llvm::GlobalValue::PrivateLinkage, 6656 Init, Name); 6657 GV->setSection("__DATA, __objc_const"); 6658 GV->setAlignment( 6659 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6660 CGM.addCompilerUsedGlobal(GV); 6661 return llvm::ConstantExpr::getBitCast(GV, 6662 ObjCTypes.ProtocolListnfABIPtrTy); 6663 } 6664 6665 /// GetMethodDescriptionConstant - This routine build following meta-data: 6666 /// struct _objc_method { 6667 /// SEL _cmd; 6668 /// char *method_type; 6669 /// char *_imp; 6670 /// } 6671 6672 llvm::Constant * 6673 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 6674 llvm::Constant *Desc[3]; 6675 Desc[0] = 6676 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6677 ObjCTypes.SelectorPtrTy); 6678 Desc[1] = GetMethodVarType(MD); 6679 if (!Desc[1]) 6680 return nullptr; 6681 6682 // Protocol methods have no implementation. So, this entry is always NULL. 6683 Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6684 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc); 6685 } 6686 6687 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6688 /// This code gen. amounts to generating code for: 6689 /// @code 6690 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6691 /// @encode 6692 /// 6693 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6694 CodeGen::CodeGenFunction &CGF, 6695 QualType ObjectTy, 6696 llvm::Value *BaseValue, 6697 const ObjCIvarDecl *Ivar, 6698 unsigned CVRQualifiers) { 6699 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6700 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6701 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6702 Offset); 6703 } 6704 6705 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6706 CodeGen::CodeGenFunction &CGF, 6707 const ObjCInterfaceDecl *Interface, 6708 const ObjCIvarDecl *Ivar) { 6709 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6710 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6711 CGF.getSizeAlign(), "ivar"); 6712 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6713 cast<llvm::LoadInst>(IvarOffsetValue) 6714 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6715 llvm::MDNode::get(VMContext, None)); 6716 6717 // This could be 32bit int or 64bit integer depending on the architecture. 6718 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6719 // as this is what caller always expectes. 6720 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6721 IvarOffsetValue = CGF.Builder.CreateIntCast( 6722 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6723 return IvarOffsetValue; 6724 } 6725 6726 static void appendSelectorForMessageRefTable(std::string &buffer, 6727 Selector selector) { 6728 if (selector.isUnarySelector()) { 6729 buffer += selector.getNameForSlot(0); 6730 return; 6731 } 6732 6733 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6734 buffer += selector.getNameForSlot(i); 6735 buffer += '_'; 6736 } 6737 } 6738 6739 /// Emit a "vtable" message send. We emit a weak hidden-visibility 6740 /// struct, initially containing the selector pointer and a pointer to 6741 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6742 /// load and call the function pointer, passing the address of the 6743 /// struct as the second parameter. The runtime determines whether 6744 /// the selector is currently emitted using vtable dispatch; if so, it 6745 /// substitutes a stub function which simply tail-calls through the 6746 /// appropriate vtable slot, and if not, it substitues a stub function 6747 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6748 /// argument to correctly point to the selector. 6749 RValue 6750 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6751 ReturnValueSlot returnSlot, 6752 QualType resultType, 6753 Selector selector, 6754 llvm::Value *arg0, 6755 QualType arg0Type, 6756 bool isSuper, 6757 const CallArgList &formalArgs, 6758 const ObjCMethodDecl *method) { 6759 // Compute the actual arguments. 6760 CallArgList args; 6761 6762 // First argument: the receiver / super-call structure. 6763 if (!isSuper) 6764 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6765 args.add(RValue::get(arg0), arg0Type); 6766 6767 // Second argument: a pointer to the message ref structure. Leave 6768 // the actual argument value blank for now. 6769 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 6770 6771 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 6772 6773 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 6774 6775 NullReturnState nullReturn; 6776 6777 // Find the function to call and the mangled name for the message 6778 // ref structure. Using a different mangled name wouldn't actually 6779 // be a problem; it would just be a waste. 6780 // 6781 // The runtime currently never uses vtable dispatch for anything 6782 // except normal, non-super message-sends. 6783 // FIXME: don't use this for that. 6784 llvm::Constant *fn = nullptr; 6785 std::string messageRefName("\01l_"); 6786 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 6787 if (isSuper) { 6788 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 6789 messageRefName += "objc_msgSendSuper2_stret_fixup"; 6790 } else { 6791 nullReturn.init(CGF, arg0); 6792 fn = ObjCTypes.getMessageSendStretFixupFn(); 6793 messageRefName += "objc_msgSend_stret_fixup"; 6794 } 6795 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 6796 fn = ObjCTypes.getMessageSendFpretFixupFn(); 6797 messageRefName += "objc_msgSend_fpret_fixup"; 6798 } else { 6799 if (isSuper) { 6800 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 6801 messageRefName += "objc_msgSendSuper2_fixup"; 6802 } else { 6803 fn = ObjCTypes.getMessageSendFixupFn(); 6804 messageRefName += "objc_msgSend_fixup"; 6805 } 6806 } 6807 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 6808 messageRefName += '_'; 6809 6810 // Append the selector name, except use underscores anywhere we 6811 // would have used colons. 6812 appendSelectorForMessageRefTable(messageRefName, selector); 6813 6814 llvm::GlobalVariable *messageRef 6815 = CGM.getModule().getGlobalVariable(messageRefName); 6816 if (!messageRef) { 6817 // Build the message ref structure. 6818 llvm::Constant *values[] = { fn, GetMethodVarName(selector) }; 6819 llvm::Constant *init = llvm::ConstantStruct::getAnon(values); 6820 messageRef = new llvm::GlobalVariable(CGM.getModule(), 6821 init->getType(), 6822 /*constant*/ false, 6823 llvm::GlobalValue::WeakAnyLinkage, 6824 init, 6825 messageRefName); 6826 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 6827 messageRef->setAlignment(16); 6828 messageRef->setSection("__DATA, __objc_msgrefs, coalesced"); 6829 } 6830 6831 bool requiresnullCheck = false; 6832 if (CGM.getLangOpts().ObjCAutoRefCount && method) 6833 for (const auto *ParamDecl : method->params()) { 6834 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 6835 if (!nullReturn.NullBB) 6836 nullReturn.init(CGF, arg0); 6837 requiresnullCheck = true; 6838 break; 6839 } 6840 } 6841 6842 Address mref = 6843 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 6844 CGF.getPointerAlign()); 6845 6846 // Update the message ref argument. 6847 args[1].RV = RValue::get(mref.getPointer()); 6848 6849 // Load the function to call from the message ref table. 6850 Address calleeAddr = 6851 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 6852 llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 6853 6854 callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType); 6855 6856 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 6857 return nullReturn.complete(CGF, result, resultType, formalArgs, 6858 requiresnullCheck ? method : nullptr); 6859 } 6860 6861 /// Generate code for a message send expression in the nonfragile abi. 6862 CodeGen::RValue 6863 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 6864 ReturnValueSlot Return, 6865 QualType ResultType, 6866 Selector Sel, 6867 llvm::Value *Receiver, 6868 const CallArgList &CallArgs, 6869 const ObjCInterfaceDecl *Class, 6870 const ObjCMethodDecl *Method) { 6871 return isVTableDispatchedSelector(Sel) 6872 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6873 Receiver, CGF.getContext().getObjCIdType(), 6874 false, CallArgs, Method) 6875 : EmitMessageSend(CGF, Return, ResultType, 6876 EmitSelector(CGF, Sel), 6877 Receiver, CGF.getContext().getObjCIdType(), 6878 false, CallArgs, Method, Class, ObjCTypes); 6879 } 6880 6881 llvm::GlobalVariable * 6882 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, bool Weak) { 6883 llvm::GlobalValue::LinkageTypes L = 6884 Weak ? llvm::GlobalValue::ExternalWeakLinkage 6885 : llvm::GlobalValue::ExternalLinkage; 6886 6887 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 6888 6889 if (!GV) 6890 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 6891 false, L, nullptr, Name); 6892 6893 assert(GV->getLinkage() == L); 6894 return GV; 6895 } 6896 6897 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 6898 IdentifierInfo *II, 6899 bool Weak, 6900 const ObjCInterfaceDecl *ID) { 6901 CharUnits Align = CGF.getPointerAlign(); 6902 llvm::GlobalVariable *&Entry = ClassReferences[II]; 6903 6904 if (!Entry) { 6905 std::string ClassName( 6906 getClassSymbolPrefix() + 6907 (ID ? ID->getObjCRuntimeNameAsString() : II->getName()).str()); 6908 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak); 6909 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6910 false, llvm::GlobalValue::PrivateLinkage, 6911 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 6912 Entry->setAlignment(Align.getQuantity()); 6913 Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip"); 6914 CGM.addCompilerUsedGlobal(Entry); 6915 } 6916 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6917 } 6918 6919 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 6920 const ObjCInterfaceDecl *ID) { 6921 // If the class has the objc_runtime_visible attribute, we need to 6922 // use the Objective-C runtime to get the class. 6923 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 6924 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 6925 6926 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID); 6927 } 6928 6929 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 6930 CodeGenFunction &CGF) { 6931 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 6932 return EmitClassRefFromId(CGF, II, false, nullptr); 6933 } 6934 6935 llvm::Value * 6936 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 6937 const ObjCInterfaceDecl *ID) { 6938 CharUnits Align = CGF.getPointerAlign(); 6939 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 6940 6941 if (!Entry) { 6942 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6943 ClassName += ID->getObjCRuntimeNameAsString(); 6944 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), 6945 ID->isWeakImported()); 6946 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6947 false, llvm::GlobalValue::PrivateLinkage, 6948 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6949 Entry->setAlignment(Align.getQuantity()); 6950 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6951 CGM.addCompilerUsedGlobal(Entry); 6952 } 6953 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6954 } 6955 6956 /// EmitMetaClassRef - Return a Value * of the address of _class_t 6957 /// meta-data 6958 /// 6959 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 6960 const ObjCInterfaceDecl *ID, 6961 bool Weak) { 6962 CharUnits Align = CGF.getPointerAlign(); 6963 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 6964 if (!Entry) { 6965 llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix()); 6966 MetaClassName += ID->getObjCRuntimeNameAsString(); 6967 llvm::GlobalVariable *MetaClassGV = 6968 GetClassGlobal(MetaClassName.str(), Weak); 6969 6970 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6971 false, llvm::GlobalValue::PrivateLinkage, 6972 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6973 Entry->setAlignment(Align.getQuantity()); 6974 6975 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6976 CGM.addCompilerUsedGlobal(Entry); 6977 } 6978 6979 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6980 } 6981 6982 /// GetClass - Return a reference to the class for the given interface 6983 /// decl. 6984 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 6985 const ObjCInterfaceDecl *ID) { 6986 if (ID->isWeakImported()) { 6987 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6988 ClassName += ID->getObjCRuntimeNameAsString(); 6989 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true); 6990 (void)ClassGV; 6991 assert(ClassGV->hasExternalWeakLinkage()); 6992 } 6993 6994 return EmitClassRef(CGF, ID); 6995 } 6996 6997 /// Generates a message send where the super is the receiver. This is 6998 /// a message send to self with special delivery semantics indicating 6999 /// which class's method should be called. 7000 CodeGen::RValue 7001 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7002 ReturnValueSlot Return, 7003 QualType ResultType, 7004 Selector Sel, 7005 const ObjCInterfaceDecl *Class, 7006 bool isCategoryImpl, 7007 llvm::Value *Receiver, 7008 bool IsClassMessage, 7009 const CodeGen::CallArgList &CallArgs, 7010 const ObjCMethodDecl *Method) { 7011 // ... 7012 // Create and init a super structure; this is a (receiver, class) 7013 // pair we will pass to objc_msgSendSuper. 7014 Address ObjCSuper = 7015 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7016 "objc_super"); 7017 7018 llvm::Value *ReceiverAsObject = 7019 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7020 CGF.Builder.CreateStore( 7021 ReceiverAsObject, 7022 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 7023 7024 // If this is a class message the metaclass is passed as the target. 7025 llvm::Value *Target; 7026 if (IsClassMessage) 7027 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7028 else 7029 Target = EmitSuperClassRef(CGF, Class); 7030 7031 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7032 // ObjCTypes types. 7033 llvm::Type *ClassTy = 7034 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7035 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7036 CGF.Builder.CreateStore( 7037 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 7038 7039 return (isVTableDispatchedSelector(Sel)) 7040 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7041 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7042 true, CallArgs, Method) 7043 : EmitMessageSend(CGF, Return, ResultType, 7044 EmitSelector(CGF, Sel), 7045 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7046 true, CallArgs, Method, Class, ObjCTypes); 7047 } 7048 7049 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7050 Selector Sel) { 7051 Address Addr = EmitSelectorAddr(CGF, Sel); 7052 7053 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7054 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7055 llvm::MDNode::get(VMContext, None)); 7056 return LI; 7057 } 7058 7059 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 7060 Selector Sel) { 7061 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7062 7063 CharUnits Align = CGF.getPointerAlign(); 7064 if (!Entry) { 7065 llvm::Constant *Casted = 7066 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7067 ObjCTypes.SelectorPtrTy); 7068 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 7069 false, llvm::GlobalValue::PrivateLinkage, 7070 Casted, "OBJC_SELECTOR_REFERENCES_"); 7071 Entry->setExternallyInitialized(true); 7072 Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip"); 7073 Entry->setAlignment(Align.getQuantity()); 7074 CGM.addCompilerUsedGlobal(Entry); 7075 } 7076 7077 return Address(Entry, Align); 7078 } 7079 7080 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7081 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7082 /// 7083 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7084 llvm::Value *src, 7085 Address dst, 7086 llvm::Value *ivarOffset) { 7087 llvm::Type * SrcTy = src->getType(); 7088 if (!isa<llvm::PointerType>(SrcTy)) { 7089 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7090 assert(Size <= 8 && "does not support size > 8"); 7091 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7092 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7093 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7094 } 7095 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7096 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7097 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7098 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7099 } 7100 7101 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7102 /// objc_assign_strongCast (id src, id *dst) 7103 /// 7104 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7105 CodeGen::CodeGenFunction &CGF, 7106 llvm::Value *src, Address dst) { 7107 llvm::Type * SrcTy = src->getType(); 7108 if (!isa<llvm::PointerType>(SrcTy)) { 7109 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7110 assert(Size <= 8 && "does not support size > 8"); 7111 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7112 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7113 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7114 } 7115 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7116 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7117 llvm::Value *args[] = { src, dst.getPointer() }; 7118 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7119 args, "weakassign"); 7120 } 7121 7122 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7123 CodeGen::CodeGenFunction &CGF, 7124 Address DestPtr, 7125 Address SrcPtr, 7126 llvm::Value *Size) { 7127 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7128 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7129 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7130 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7131 } 7132 7133 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7134 /// object: objc_read_weak (id *src) 7135 /// 7136 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7137 CodeGen::CodeGenFunction &CGF, 7138 Address AddrWeakObj) { 7139 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7140 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7141 llvm::Value *read_weak = 7142 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7143 AddrWeakObj.getPointer(), "weakread"); 7144 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7145 return read_weak; 7146 } 7147 7148 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7149 /// objc_assign_weak (id src, id *dst) 7150 /// 7151 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7152 llvm::Value *src, Address dst) { 7153 llvm::Type * SrcTy = src->getType(); 7154 if (!isa<llvm::PointerType>(SrcTy)) { 7155 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7156 assert(Size <= 8 && "does not support size > 8"); 7157 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7158 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7159 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7160 } 7161 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7162 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7163 llvm::Value *args[] = { src, dst.getPointer() }; 7164 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7165 args, "weakassign"); 7166 } 7167 7168 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7169 /// objc_assign_global (id src, id *dst) 7170 /// 7171 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7172 llvm::Value *src, Address dst, 7173 bool threadlocal) { 7174 llvm::Type * SrcTy = src->getType(); 7175 if (!isa<llvm::PointerType>(SrcTy)) { 7176 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7177 assert(Size <= 8 && "does not support size > 8"); 7178 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7179 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7180 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7181 } 7182 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7183 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7184 llvm::Value *args[] = { src, dst.getPointer() }; 7185 if (!threadlocal) 7186 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7187 args, "globalassign"); 7188 else 7189 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7190 args, "threadlocalassign"); 7191 } 7192 7193 void 7194 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7195 const ObjCAtSynchronizedStmt &S) { 7196 EmitAtSynchronizedStmt(CGF, S, 7197 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7198 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7199 } 7200 7201 llvm::Constant * 7202 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7203 // There's a particular fixed type info for 'id'. 7204 if (T->isObjCIdType() || 7205 T->isObjCQualifiedIdType()) { 7206 llvm::Constant *IDEHType = 7207 CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7208 if (!IDEHType) 7209 IDEHType = 7210 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7211 false, 7212 llvm::GlobalValue::ExternalLinkage, 7213 nullptr, "OBJC_EHTYPE_id"); 7214 return IDEHType; 7215 } 7216 7217 // All other types should be Objective-C interface pointer types. 7218 const ObjCObjectPointerType *PT = 7219 T->getAs<ObjCObjectPointerType>(); 7220 assert(PT && "Invalid @catch type."); 7221 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7222 assert(IT && "Invalid @catch type."); 7223 return GetInterfaceEHType(IT->getDecl(), false); 7224 } 7225 7226 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7227 const ObjCAtTryStmt &S) { 7228 EmitTryCatchStmt(CGF, S, 7229 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7230 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7231 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7232 } 7233 7234 /// EmitThrowStmt - Generate code for a throw statement. 7235 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7236 const ObjCAtThrowStmt &S, 7237 bool ClearInsertionPoint) { 7238 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7239 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7240 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7241 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7242 .setDoesNotReturn(); 7243 } else { 7244 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7245 .setDoesNotReturn(); 7246 } 7247 7248 CGF.Builder.CreateUnreachable(); 7249 if (ClearInsertionPoint) 7250 CGF.Builder.ClearInsertionPoint(); 7251 } 7252 7253 llvm::Constant * 7254 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7255 bool ForDefinition) { 7256 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7257 7258 // If we don't need a definition, return the entry if found or check 7259 // if we use an external reference. 7260 if (!ForDefinition) { 7261 if (Entry) 7262 return Entry; 7263 7264 // If this type (or a super class) has the __objc_exception__ 7265 // attribute, emit an external reference. 7266 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7267 return Entry = 7268 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7269 llvm::GlobalValue::ExternalLinkage, 7270 nullptr, 7271 ("OBJC_EHTYPE_$_" + 7272 ID->getObjCRuntimeNameAsString())); 7273 } 7274 7275 // Otherwise we need to either make a new entry or fill in the 7276 // initializer. 7277 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7278 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 7279 ClassName += ID->getObjCRuntimeNameAsString(); 7280 std::string VTableName = "objc_ehtype_vtable"; 7281 llvm::GlobalVariable *VTableGV = 7282 CGM.getModule().getGlobalVariable(VTableName); 7283 if (!VTableGV) 7284 VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, 7285 false, 7286 llvm::GlobalValue::ExternalLinkage, 7287 nullptr, VTableName); 7288 7289 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7290 7291 llvm::Constant *Values[] = { 7292 llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV, 7293 VTableIdx), 7294 GetClassName(ID->getObjCRuntimeNameAsString()), 7295 GetClassGlobal(ClassName.str())}; 7296 llvm::Constant *Init = 7297 llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values); 7298 7299 llvm::GlobalValue::LinkageTypes L = ForDefinition 7300 ? llvm::GlobalValue::ExternalLinkage 7301 : llvm::GlobalValue::WeakAnyLinkage; 7302 if (Entry) { 7303 Entry->setInitializer(Init); 7304 } else { 7305 llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_"); 7306 EHTYPEName += ID->getObjCRuntimeNameAsString(); 7307 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7308 L, 7309 Init, 7310 EHTYPEName.str()); 7311 } 7312 assert(Entry->getLinkage() == L); 7313 7314 if (ID->getVisibility() == HiddenVisibility) 7315 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7316 Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment( 7317 ObjCTypes.EHTypeTy)); 7318 7319 if (ForDefinition) 7320 Entry->setSection("__DATA,__objc_const"); 7321 7322 return Entry; 7323 } 7324 7325 /* *** */ 7326 7327 CodeGen::CGObjCRuntime * 7328 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7329 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7330 case ObjCRuntime::FragileMacOSX: 7331 return new CGObjCMac(CGM); 7332 7333 case ObjCRuntime::MacOSX: 7334 case ObjCRuntime::iOS: 7335 case ObjCRuntime::WatchOS: 7336 return new CGObjCNonFragileABIMac(CGM); 7337 7338 case ObjCRuntime::GNUstep: 7339 case ObjCRuntime::GCC: 7340 case ObjCRuntime::ObjFW: 7341 llvm_unreachable("these runtimes are not Mac runtimes"); 7342 } 7343 llvm_unreachable("bad runtime"); 7344 } 7345