1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::FunctionCallee getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::FunctionCallee getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::FunctionCallee getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::FunctionCallee getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::FunctionCallee getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::FunctionCallee getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::FunctionCallee getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::FunctionCallee getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::FunctionCallee getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::FunctionCallee getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::FunctionCallee getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::FunctionCallee GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::FunctionCallee getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::FunctionCallee getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::FunctionCallee getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::FunctionCallee getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::FunctionCallee getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::FunctionCallee getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::FunctionCallee getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::FunctionCallee getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::FunctionCallee getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::FunctionCallee getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::FunctionCallee getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::FunctionCallee getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::FunctionCallee getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::FunctionCallee getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::FunctionCallee getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 } 719 720 llvm::FunctionCallee getObjCBeginCatchFn() { 721 llvm::Type *params[] = { Int8PtrTy }; 722 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 723 params, false), 724 "objc_begin_catch"); 725 } 726 727 /// Class objc_loadClassref (void *) 728 /// 729 /// Loads from a classref. For Objective-C stub classes, this invokes the 730 /// initialization callback stored inside the stub. For all other classes 731 /// this simply dereferences the pointer. 732 llvm::FunctionCallee getLoadClassrefFn() const { 733 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 734 // be called a lot. 735 // 736 // Also it is safe to make it readnone, since we never load or store the 737 // classref except by calling this function. 738 llvm::Type *params[] = { Int8PtrPtrTy }; 739 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 740 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 741 "objc_loadClassref", 742 llvm::AttributeList::get(CGM.getLLVMContext(), 743 llvm::AttributeList::FunctionIndex, 744 {llvm::Attribute::NonLazyBind, 745 llvm::Attribute::ReadNone, 746 llvm::Attribute::NoUnwind})); 747 if (!CGM.getTriple().isOSBinFormatCOFF()) 748 cast<llvm::Function>(F.getCallee())->setLinkage( 749 llvm::Function::ExternalWeakLinkage); 750 751 return F; 752 } 753 754 llvm::StructType *EHTypeTy; 755 llvm::Type *EHTypePtrTy; 756 757 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 758 }; 759 760 enum class ObjCLabelType { 761 ClassName, 762 MethodVarName, 763 MethodVarType, 764 PropertyName, 765 }; 766 767 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 768 public: 769 class SKIP_SCAN { 770 public: 771 unsigned skip; 772 unsigned scan; 773 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 774 : skip(_skip), scan(_scan) {} 775 }; 776 777 /// opcode for captured block variables layout 'instructions'. 778 /// In the following descriptions, 'I' is the value of the immediate field. 779 /// (field following the opcode). 780 /// 781 enum BLOCK_LAYOUT_OPCODE { 782 /// An operator which affects how the following layout should be 783 /// interpreted. 784 /// I == 0: Halt interpretation and treat everything else as 785 /// a non-pointer. Note that this instruction is equal 786 /// to '\0'. 787 /// I != 0: Currently unused. 788 BLOCK_LAYOUT_OPERATOR = 0, 789 790 /// The next I+1 bytes do not contain a value of object pointer type. 791 /// Note that this can leave the stream unaligned, meaning that 792 /// subsequent word-size instructions do not begin at a multiple of 793 /// the pointer size. 794 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 795 796 /// The next I+1 words do not contain a value of object pointer type. 797 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 798 /// when the required skip quantity is a multiple of the pointer size. 799 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 800 801 /// The next I+1 words are __strong pointers to Objective-C 802 /// objects or blocks. 803 BLOCK_LAYOUT_STRONG = 3, 804 805 /// The next I+1 words are pointers to __block variables. 806 BLOCK_LAYOUT_BYREF = 4, 807 808 /// The next I+1 words are __weak pointers to Objective-C 809 /// objects or blocks. 810 BLOCK_LAYOUT_WEAK = 5, 811 812 /// The next I+1 words are __unsafe_unretained pointers to 813 /// Objective-C objects or blocks. 814 BLOCK_LAYOUT_UNRETAINED = 6 815 816 /// The next I+1 words are block or object pointers with some 817 /// as-yet-unspecified ownership semantics. If we add more 818 /// flavors of ownership semantics, values will be taken from 819 /// this range. 820 /// 821 /// This is included so that older tools can at least continue 822 /// processing the layout past such things. 823 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 824 825 /// All other opcodes are reserved. Halt interpretation and 826 /// treat everything else as opaque. 827 }; 828 829 class RUN_SKIP { 830 public: 831 enum BLOCK_LAYOUT_OPCODE opcode; 832 CharUnits block_var_bytepos; 833 CharUnits block_var_size; 834 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 835 CharUnits BytePos = CharUnits::Zero(), 836 CharUnits Size = CharUnits::Zero()) 837 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 838 839 // Allow sorting based on byte pos. 840 bool operator<(const RUN_SKIP &b) const { 841 return block_var_bytepos < b.block_var_bytepos; 842 } 843 }; 844 845 protected: 846 llvm::LLVMContext &VMContext; 847 // FIXME! May not be needing this after all. 848 unsigned ObjCABI; 849 850 // arc/mrr layout of captured block literal variables. 851 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 852 853 /// LazySymbols - Symbols to generate a lazy reference for. See 854 /// DefinedSymbols and FinishModule(). 855 llvm::SetVector<IdentifierInfo*> LazySymbols; 856 857 /// DefinedSymbols - External symbols which are defined by this 858 /// module. The symbols in this list and LazySymbols are used to add 859 /// special linker symbols which ensure that Objective-C modules are 860 /// linked properly. 861 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 862 863 /// ClassNames - uniqued class names. 864 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 865 866 /// MethodVarNames - uniqued method variable names. 867 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 868 869 /// DefinedCategoryNames - list of category names in form Class_Category. 870 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 871 872 /// MethodVarTypes - uniqued method type signatures. We have to use 873 /// a StringMap here because have no other unique reference. 874 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 875 876 /// MethodDefinitions - map of methods which have been defined in 877 /// this translation unit. 878 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 879 880 /// DirectMethodDefinitions - map of direct methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 883 884 /// PropertyNames - uniqued method variable names. 885 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 886 887 /// ClassReferences - uniqued class references. 888 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 889 890 /// SelectorReferences - uniqued selector references. 891 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 892 893 /// Protocols - Protocols for which an objc_protocol structure has 894 /// been emitted. Forward declarations are handled by creating an 895 /// empty structure whose initializer is filled in when/if defined. 896 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 897 898 /// DefinedProtocols - Protocols which have actually been 899 /// defined. We should not need this, see FIXME in GenerateProtocol. 900 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 901 902 /// DefinedClasses - List of defined classes. 903 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 904 905 /// ImplementedClasses - List of @implemented classes. 906 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 907 908 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 909 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 910 911 /// DefinedCategories - List of defined categories. 912 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 913 914 /// DefinedStubCategories - List of defined categories on class stubs. 915 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 916 917 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 918 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 919 920 /// Cached reference to the class for constant strings. This value has type 921 /// int * but is actually an Obj-C class pointer. 922 llvm::WeakTrackingVH ConstantStringClassRef; 923 924 /// The LLVM type corresponding to NSConstantString. 925 llvm::StructType *NSConstantStringType = nullptr; 926 927 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 928 929 /// GetMethodVarName - Return a unique constant for the given 930 /// selector's name. The return value has type char *. 931 llvm::Constant *GetMethodVarName(Selector Sel); 932 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 933 934 /// GetMethodVarType - Return a unique constant for the given 935 /// method's type encoding string. The return value has type char *. 936 937 // FIXME: This is a horrible name. 938 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 939 bool Extended = false); 940 llvm::Constant *GetMethodVarType(const FieldDecl *D); 941 942 /// GetPropertyName - Return a unique constant for the given 943 /// name. The return value has type char *. 944 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 945 946 // FIXME: This can be dropped once string functions are unified. 947 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 948 const Decl *Container); 949 950 /// GetClassName - Return a unique constant for the given selector's 951 /// runtime name (which may change via use of objc_runtime_name attribute on 952 /// class or protocol definition. The return value has type char *. 953 llvm::Constant *GetClassName(StringRef RuntimeName); 954 955 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 956 957 /// BuildIvarLayout - Builds ivar layout bitmap for the class 958 /// implementation for the __strong or __weak case. 959 /// 960 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 961 /// are any weak ivars defined directly in the class. Meaningless unless 962 /// building a weak layout. Does not guarantee that the layout will 963 /// actually have any entries, because the ivar might be under-aligned. 964 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 965 CharUnits beginOffset, 966 CharUnits endOffset, 967 bool forStrongLayout, 968 bool hasMRCWeakIvars); 969 970 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 971 CharUnits beginOffset, 972 CharUnits endOffset) { 973 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 974 } 975 976 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 977 CharUnits beginOffset, 978 CharUnits endOffset, 979 bool hasMRCWeakIvars) { 980 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 981 } 982 983 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 984 985 void UpdateRunSkipBlockVars(bool IsByref, 986 Qualifiers::ObjCLifetime LifeTime, 987 CharUnits FieldOffset, 988 CharUnits FieldSize); 989 990 void BuildRCBlockVarRecordLayout(const RecordType *RT, 991 CharUnits BytePos, bool &HasUnion, 992 bool ByrefLayout=false); 993 994 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 995 const RecordDecl *RD, 996 ArrayRef<const FieldDecl*> RecFields, 997 CharUnits BytePos, bool &HasUnion, 998 bool ByrefLayout); 999 1000 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1001 1002 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1003 1004 /// GetIvarLayoutName - Returns a unique constant for the given 1005 /// ivar layout bitmap. 1006 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1007 const ObjCCommonTypesHelper &ObjCTypes); 1008 1009 /// EmitPropertyList - Emit the given property list. The return 1010 /// value has type PropertyListPtrTy. 1011 llvm::Constant *EmitPropertyList(Twine Name, 1012 const Decl *Container, 1013 const ObjCContainerDecl *OCD, 1014 const ObjCCommonTypesHelper &ObjCTypes, 1015 bool IsClassProperty); 1016 1017 /// EmitProtocolMethodTypes - Generate the array of extended method type 1018 /// strings. The return value has type Int8PtrPtrTy. 1019 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1020 ArrayRef<llvm::Constant*> MethodTypes, 1021 const ObjCCommonTypesHelper &ObjCTypes); 1022 1023 /// GetProtocolRef - Return a reference to the internal protocol 1024 /// description, creating an empty one if it has not been 1025 /// defined. The return value has type ProtocolPtrTy. 1026 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1027 1028 /// Return a reference to the given Class using runtime calls rather than 1029 /// by a symbol reference. 1030 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1031 const ObjCInterfaceDecl *ID, 1032 ObjCCommonTypesHelper &ObjCTypes); 1033 1034 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1035 1036 public: 1037 /// CreateMetadataVar - Create a global variable with internal 1038 /// linkage for use by the Objective-C runtime. 1039 /// 1040 /// This is a convenience wrapper which not only creates the 1041 /// variable, but also sets the section and alignment and adds the 1042 /// global to the "llvm.used" list. 1043 /// 1044 /// \param Name - The variable name. 1045 /// \param Init - The variable initializer; this is also used to 1046 /// define the type of the variable. 1047 /// \param Section - The section the variable should go into, or empty. 1048 /// \param Align - The alignment for the variable, or 0. 1049 /// \param AddToUsed - Whether the variable should be added to 1050 /// "llvm.used". 1051 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1052 ConstantStructBuilder &Init, 1053 StringRef Section, CharUnits Align, 1054 bool AddToUsed); 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 llvm::Constant *Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 1060 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1061 ObjCLabelType LabelType, 1062 bool ForceNonFragileABI = false, 1063 bool NullTerminate = true); 1064 1065 protected: 1066 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1067 ReturnValueSlot Return, 1068 QualType ResultType, 1069 Selector Sel, 1070 llvm::Value *Arg0, 1071 QualType Arg0Ty, 1072 bool IsSuper, 1073 const CallArgList &CallArgs, 1074 const ObjCMethodDecl *OMD, 1075 const ObjCInterfaceDecl *ClassReceiver, 1076 const ObjCCommonTypesHelper &ObjCTypes); 1077 1078 /// EmitImageInfo - Emit the image info marker used to encode some module 1079 /// level information. 1080 void EmitImageInfo(); 1081 1082 public: 1083 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1084 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1085 1086 bool isNonFragileABI() const { 1087 return ObjCABI == 2; 1088 } 1089 1090 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1091 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1092 1093 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1094 const ObjCContainerDecl *CD=nullptr) override; 1095 1096 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1097 const ObjCContainerDecl *CD); 1098 1099 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1100 const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD) override; 1102 1103 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1104 1105 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1106 /// object for the given declaration, emitting it if needed. These 1107 /// forward references will be filled in with empty bodies if no 1108 /// definition is seen. The return value has type ProtocolPtrTy. 1109 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1110 1111 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1112 1113 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1114 const CGBlockInfo &blockInfo) override; 1115 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1116 const CGBlockInfo &blockInfo) override; 1117 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 1120 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1121 QualType T) override; 1122 1123 private: 1124 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1125 }; 1126 1127 namespace { 1128 1129 enum class MethodListType { 1130 CategoryInstanceMethods, 1131 CategoryClassMethods, 1132 InstanceMethods, 1133 ClassMethods, 1134 ProtocolInstanceMethods, 1135 ProtocolClassMethods, 1136 OptionalProtocolInstanceMethods, 1137 OptionalProtocolClassMethods, 1138 }; 1139 1140 /// A convenience class for splitting the methods of a protocol into 1141 /// the four interesting groups. 1142 class ProtocolMethodLists { 1143 public: 1144 enum Kind { 1145 RequiredInstanceMethods, 1146 RequiredClassMethods, 1147 OptionalInstanceMethods, 1148 OptionalClassMethods 1149 }; 1150 enum { 1151 NumProtocolMethodLists = 4 1152 }; 1153 1154 static MethodListType getMethodListKind(Kind kind) { 1155 switch (kind) { 1156 case RequiredInstanceMethods: 1157 return MethodListType::ProtocolInstanceMethods; 1158 case RequiredClassMethods: 1159 return MethodListType::ProtocolClassMethods; 1160 case OptionalInstanceMethods: 1161 return MethodListType::OptionalProtocolInstanceMethods; 1162 case OptionalClassMethods: 1163 return MethodListType::OptionalProtocolClassMethods; 1164 } 1165 llvm_unreachable("bad kind"); 1166 } 1167 1168 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1169 1170 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1171 ProtocolMethodLists result; 1172 1173 for (auto MD : PD->methods()) { 1174 size_t index = (2 * size_t(MD->isOptional())) 1175 + (size_t(MD->isClassMethod())); 1176 result.Methods[index].push_back(MD); 1177 } 1178 1179 return result; 1180 } 1181 1182 template <class Self> 1183 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1184 // In both ABIs, the method types list is parallel with the 1185 // concatenation of the methods arrays in the following order: 1186 // instance methods 1187 // class methods 1188 // optional instance methods 1189 // optional class methods 1190 SmallVector<llvm::Constant*, 8> result; 1191 1192 // Methods is already in the correct order for both ABIs. 1193 for (auto &list : Methods) { 1194 for (auto MD : list) { 1195 result.push_back(self->GetMethodVarType(MD, true)); 1196 } 1197 } 1198 1199 return result; 1200 } 1201 1202 template <class Self> 1203 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1204 Kind kind) const { 1205 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1206 getMethodListKind(kind), Methods[kind]); 1207 } 1208 }; 1209 1210 } // end anonymous namespace 1211 1212 class CGObjCMac : public CGObjCCommonMac { 1213 private: 1214 friend ProtocolMethodLists; 1215 1216 ObjCTypesHelper ObjCTypes; 1217 1218 /// EmitModuleInfo - Another marker encoding module level 1219 /// information. 1220 void EmitModuleInfo(); 1221 1222 /// EmitModuleSymols - Emit module symbols, the list of defined 1223 /// classes and categories. The result has type SymtabPtrTy. 1224 llvm::Constant *EmitModuleSymbols(); 1225 1226 /// FinishModule - Write out global data structures at the end of 1227 /// processing a translation unit. 1228 void FinishModule(); 1229 1230 /// EmitClassExtension - Generate the class extension structure used 1231 /// to store the weak ivar layout and properties. The return value 1232 /// has type ClassExtensionPtrTy. 1233 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1234 CharUnits instanceSize, 1235 bool hasMRCWeakIvars, 1236 bool isMetaclass); 1237 1238 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1239 /// for the given class. 1240 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1241 const ObjCInterfaceDecl *ID); 1242 1243 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1244 IdentifierInfo *II); 1245 1246 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1247 1248 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1249 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1250 1251 /// EmitIvarList - Emit the ivar list for the given 1252 /// implementation. If ForClass is true the list of class ivars 1253 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1254 /// interface ivars will be emitted. The return value has type 1255 /// IvarListPtrTy. 1256 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1257 bool ForClass); 1258 1259 /// EmitMetaClass - Emit a forward reference to the class structure 1260 /// for the metaclass of the given interface. The return value has 1261 /// type ClassPtrTy. 1262 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1263 1264 /// EmitMetaClass - Emit a class structure for the metaclass of the 1265 /// given implementation. The return value has type ClassPtrTy. 1266 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1267 llvm::Constant *Protocols, 1268 ArrayRef<const ObjCMethodDecl *> Methods); 1269 1270 void emitMethodConstant(ConstantArrayBuilder &builder, 1271 const ObjCMethodDecl *MD); 1272 1273 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1274 const ObjCMethodDecl *MD); 1275 1276 /// EmitMethodList - Emit the method list for the given 1277 /// implementation. The return value has type MethodListPtrTy. 1278 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1279 ArrayRef<const ObjCMethodDecl *> Methods); 1280 1281 /// GetOrEmitProtocol - Get the protocol object for the given 1282 /// declaration, emitting it if necessary. The return value has type 1283 /// ProtocolPtrTy. 1284 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1285 1286 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1287 /// object for the given declaration, emitting it if needed. These 1288 /// forward references will be filled in with empty bodies if no 1289 /// definition is seen. The return value has type ProtocolPtrTy. 1290 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1291 1292 /// EmitProtocolExtension - Generate the protocol extension 1293 /// structure used to store optional instance and class methods, and 1294 /// protocol properties. The return value has type 1295 /// ProtocolExtensionPtrTy. 1296 llvm::Constant * 1297 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1298 const ProtocolMethodLists &methodLists); 1299 1300 /// EmitProtocolList - Generate the list of referenced 1301 /// protocols. The return value has type ProtocolListPtrTy. 1302 llvm::Constant *EmitProtocolList(Twine Name, 1303 ObjCProtocolDecl::protocol_iterator begin, 1304 ObjCProtocolDecl::protocol_iterator end); 1305 1306 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1307 /// for the given selector. 1308 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1309 Address EmitSelectorAddr(Selector Sel); 1310 1311 public: 1312 CGObjCMac(CodeGen::CodeGenModule &cgm); 1313 1314 llvm::Constant *getNSConstantStringClassRef() override; 1315 1316 llvm::Function *ModuleInitFunction() override; 1317 1318 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1319 ReturnValueSlot Return, 1320 QualType ResultType, 1321 Selector Sel, llvm::Value *Receiver, 1322 const CallArgList &CallArgs, 1323 const ObjCInterfaceDecl *Class, 1324 const ObjCMethodDecl *Method) override; 1325 1326 CodeGen::RValue 1327 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1328 ReturnValueSlot Return, QualType ResultType, 1329 Selector Sel, const ObjCInterfaceDecl *Class, 1330 bool isCategoryImpl, llvm::Value *Receiver, 1331 bool IsClassMessage, const CallArgList &CallArgs, 1332 const ObjCMethodDecl *Method) override; 1333 1334 llvm::Value *GetClass(CodeGenFunction &CGF, 1335 const ObjCInterfaceDecl *ID) override; 1336 1337 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1338 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1339 1340 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1341 /// untyped one. 1342 llvm::Value *GetSelector(CodeGenFunction &CGF, 1343 const ObjCMethodDecl *Method) override; 1344 1345 llvm::Constant *GetEHType(QualType T) override; 1346 1347 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1348 1349 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1350 1351 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1352 1353 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1354 const ObjCProtocolDecl *PD) override; 1355 1356 llvm::FunctionCallee GetPropertyGetFunction() override; 1357 llvm::FunctionCallee GetPropertySetFunction() override; 1358 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1359 bool copy) override; 1360 llvm::FunctionCallee GetGetStructFunction() override; 1361 llvm::FunctionCallee GetSetStructFunction() override; 1362 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1363 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1364 llvm::FunctionCallee EnumerationMutationFunction() override; 1365 1366 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1367 const ObjCAtTryStmt &S) override; 1368 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1369 const ObjCAtSynchronizedStmt &S) override; 1370 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1371 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1372 bool ClearInsertionPoint=true) override; 1373 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1374 Address AddrWeakObj) override; 1375 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1376 llvm::Value *src, Address dst) override; 1377 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1378 llvm::Value *src, Address dest, 1379 bool threadlocal = false) override; 1380 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1381 llvm::Value *src, Address dest, 1382 llvm::Value *ivarOffset) override; 1383 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1384 llvm::Value *src, Address dest) override; 1385 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1386 Address dest, Address src, 1387 llvm::Value *size) override; 1388 1389 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1390 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1391 unsigned CVRQualifiers) override; 1392 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1393 const ObjCInterfaceDecl *Interface, 1394 const ObjCIvarDecl *Ivar) override; 1395 }; 1396 1397 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1398 private: 1399 friend ProtocolMethodLists; 1400 ObjCNonFragileABITypesHelper ObjCTypes; 1401 llvm::GlobalVariable* ObjCEmptyCacheVar; 1402 llvm::Constant* ObjCEmptyVtableVar; 1403 1404 /// SuperClassReferences - uniqued super class references. 1405 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1406 1407 /// MetaClassReferences - uniqued meta class references. 1408 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1409 1410 /// EHTypeReferences - uniqued class ehtype references. 1411 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1412 1413 /// VTableDispatchMethods - List of methods for which we generate 1414 /// vtable-based message dispatch. 1415 llvm::DenseSet<Selector> VTableDispatchMethods; 1416 1417 /// DefinedMetaClasses - List of defined meta-classes. 1418 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1419 1420 /// isVTableDispatchedSelector - Returns true if SEL is a 1421 /// vtable-based selector. 1422 bool isVTableDispatchedSelector(Selector Sel); 1423 1424 /// FinishNonFragileABIModule - Write out global data structures at the end of 1425 /// processing a translation unit. 1426 void FinishNonFragileABIModule(); 1427 1428 /// AddModuleClassList - Add the given list of class pointers to the 1429 /// module with the provided symbol and section names. 1430 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1431 StringRef SymbolName, StringRef SectionName); 1432 1433 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1434 unsigned InstanceStart, 1435 unsigned InstanceSize, 1436 const ObjCImplementationDecl *ID); 1437 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1438 bool isMetaclass, 1439 llvm::Constant *IsAGV, 1440 llvm::Constant *SuperClassGV, 1441 llvm::Constant *ClassRoGV, 1442 bool HiddenVisibility); 1443 1444 void emitMethodConstant(ConstantArrayBuilder &builder, 1445 const ObjCMethodDecl *MD, 1446 bool forProtocol); 1447 1448 /// Emit the method list for the given implementation. The return value 1449 /// has type MethodListnfABITy. 1450 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1451 ArrayRef<const ObjCMethodDecl *> Methods); 1452 1453 /// EmitIvarList - Emit the ivar list for the given 1454 /// implementation. If ForClass is true the list of class ivars 1455 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1456 /// interface ivars will be emitted. The return value has type 1457 /// IvarListnfABIPtrTy. 1458 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1459 1460 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1461 const ObjCIvarDecl *Ivar, 1462 unsigned long int offset); 1463 1464 /// GetOrEmitProtocol - Get the protocol object for the given 1465 /// declaration, emitting it if necessary. The return value has type 1466 /// ProtocolPtrTy. 1467 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1468 1469 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1470 /// object for the given declaration, emitting it if needed. These 1471 /// forward references will be filled in with empty bodies if no 1472 /// definition is seen. The return value has type ProtocolPtrTy. 1473 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1474 1475 /// EmitProtocolList - Generate the list of referenced 1476 /// protocols. The return value has type ProtocolListPtrTy. 1477 llvm::Constant *EmitProtocolList(Twine Name, 1478 ObjCProtocolDecl::protocol_iterator begin, 1479 ObjCProtocolDecl::protocol_iterator end); 1480 1481 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1482 ReturnValueSlot Return, 1483 QualType ResultType, 1484 Selector Sel, 1485 llvm::Value *Receiver, 1486 QualType Arg0Ty, 1487 bool IsSuper, 1488 const CallArgList &CallArgs, 1489 const ObjCMethodDecl *Method); 1490 1491 /// GetClassGlobal - Return the global variable for the Objective-C 1492 /// class of the given name. 1493 llvm::Constant *GetClassGlobal(StringRef Name, 1494 ForDefinition_t IsForDefinition, 1495 bool Weak = false, bool DLLImport = false); 1496 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1497 bool isMetaclass, 1498 ForDefinition_t isForDefinition); 1499 1500 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1501 1502 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1503 const ObjCInterfaceDecl *ID, 1504 llvm::GlobalVariable *Entry); 1505 1506 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1507 /// for the given class reference. 1508 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1509 const ObjCInterfaceDecl *ID); 1510 1511 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1512 IdentifierInfo *II, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1516 1517 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1518 /// for the given super class reference. 1519 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1520 const ObjCInterfaceDecl *ID); 1521 1522 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1523 /// meta-data 1524 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1525 const ObjCInterfaceDecl *ID, bool Weak); 1526 1527 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1528 /// the given ivar. 1529 /// 1530 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1531 const ObjCInterfaceDecl *ID, 1532 const ObjCIvarDecl *Ivar); 1533 1534 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1535 /// for the given selector. 1536 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1537 Address EmitSelectorAddr(Selector Sel); 1538 1539 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1540 /// interface. The return value has type EHTypePtrTy. 1541 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1542 ForDefinition_t IsForDefinition); 1543 1544 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1545 1546 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1547 1548 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1549 uint32_t &InstanceStart, 1550 uint32_t &InstanceSize); 1551 1552 // Shamelessly stolen from Analysis/CFRefCount.cpp 1553 Selector GetNullarySelector(const char* name) const { 1554 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1555 return CGM.getContext().Selectors.getSelector(0, &II); 1556 } 1557 1558 Selector GetUnarySelector(const char* name) const { 1559 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1560 return CGM.getContext().Selectors.getSelector(1, &II); 1561 } 1562 1563 /// ImplementationIsNonLazy - Check whether the given category or 1564 /// class implementation is "non-lazy". 1565 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1566 1567 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1568 const ObjCIvarDecl *IV) { 1569 // Annotate the load as an invariant load iff inside an instance method 1570 // and ivar belongs to instance method's class and one of its super class. 1571 // This check is needed because the ivar offset is a lazily 1572 // initialised value that may depend on objc_msgSend to perform a fixup on 1573 // the first message dispatch. 1574 // 1575 // An additional opportunity to mark the load as invariant arises when the 1576 // base of the ivar access is a parameter to an Objective C method. 1577 // However, because the parameters are not available in the current 1578 // interface, we cannot perform this check. 1579 // 1580 // Note that for direct methods, because objc_msgSend is skipped, 1581 // and that the method may be inlined, this optimization actually 1582 // can't be performed. 1583 if (const ObjCMethodDecl *MD = 1584 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1585 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1586 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1587 return IV->getContainingInterface()->isSuperClassOf(ID); 1588 return false; 1589 } 1590 1591 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1592 // NSObject is a fixed size. If we can see the @implementation of a class 1593 // which inherits from NSObject then we know that all it's offsets also must 1594 // be fixed. FIXME: Can we do this if see a chain of super classes with 1595 // implementations leading to NSObject? 1596 return ID->getImplementation() && ID->getSuperClass() && 1597 ID->getSuperClass()->getName() == "NSObject"; 1598 } 1599 1600 public: 1601 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1602 1603 llvm::Constant *getNSConstantStringClassRef() override; 1604 1605 llvm::Function *ModuleInitFunction() override; 1606 1607 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1608 ReturnValueSlot Return, 1609 QualType ResultType, Selector Sel, 1610 llvm::Value *Receiver, 1611 const CallArgList &CallArgs, 1612 const ObjCInterfaceDecl *Class, 1613 const ObjCMethodDecl *Method) override; 1614 1615 CodeGen::RValue 1616 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1617 ReturnValueSlot Return, QualType ResultType, 1618 Selector Sel, const ObjCInterfaceDecl *Class, 1619 bool isCategoryImpl, llvm::Value *Receiver, 1620 bool IsClassMessage, const CallArgList &CallArgs, 1621 const ObjCMethodDecl *Method) override; 1622 1623 llvm::Value *GetClass(CodeGenFunction &CGF, 1624 const ObjCInterfaceDecl *ID) override; 1625 1626 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1627 { return EmitSelector(CGF, Sel); } 1628 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1629 { return EmitSelectorAddr(Sel); } 1630 1631 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1632 /// untyped one. 1633 llvm::Value *GetSelector(CodeGenFunction &CGF, 1634 const ObjCMethodDecl *Method) override 1635 { return EmitSelector(CGF, Method->getSelector()); } 1636 1637 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1638 1639 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1640 1641 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1642 1643 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1644 const ObjCProtocolDecl *PD) override; 1645 1646 llvm::Constant *GetEHType(QualType T) override; 1647 1648 llvm::FunctionCallee GetPropertyGetFunction() override { 1649 return ObjCTypes.getGetPropertyFn(); 1650 } 1651 llvm::FunctionCallee GetPropertySetFunction() override { 1652 return ObjCTypes.getSetPropertyFn(); 1653 } 1654 1655 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1656 bool copy) override { 1657 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1658 } 1659 1660 llvm::FunctionCallee GetSetStructFunction() override { 1661 return ObjCTypes.getCopyStructFn(); 1662 } 1663 1664 llvm::FunctionCallee GetGetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1669 return ObjCTypes.getCppAtomicObjectFunction(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee EnumerationMutationFunction() override { 1677 return ObjCTypes.getEnumerationMutationFn(); 1678 } 1679 1680 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1681 const ObjCAtTryStmt &S) override; 1682 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1683 const ObjCAtSynchronizedStmt &S) override; 1684 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1685 bool ClearInsertionPoint=true) override; 1686 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1687 Address AddrWeakObj) override; 1688 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1689 llvm::Value *src, Address edst) override; 1690 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1691 llvm::Value *src, Address dest, 1692 bool threadlocal = false) override; 1693 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1694 llvm::Value *src, Address dest, 1695 llvm::Value *ivarOffset) override; 1696 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1697 llvm::Value *src, Address dest) override; 1698 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1699 Address dest, Address src, 1700 llvm::Value *size) override; 1701 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1702 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1703 unsigned CVRQualifiers) override; 1704 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1705 const ObjCInterfaceDecl *Interface, 1706 const ObjCIvarDecl *Ivar) override; 1707 }; 1708 1709 /// A helper class for performing the null-initialization of a return 1710 /// value. 1711 struct NullReturnState { 1712 llvm::BasicBlock *NullBB; 1713 NullReturnState() : NullBB(nullptr) {} 1714 1715 /// Perform a null-check of the given receiver. 1716 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1717 // Make blocks for the null-receiver and call edges. 1718 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1719 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1720 1721 // Check for a null receiver and, if there is one, jump to the 1722 // null-receiver block. There's no point in trying to avoid it: 1723 // we're always going to put *something* there, because otherwise 1724 // we shouldn't have done this null-check in the first place. 1725 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1726 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1727 1728 // Otherwise, start performing the call. 1729 CGF.EmitBlock(callBB); 1730 } 1731 1732 /// Complete the null-return operation. It is valid to call this 1733 /// regardless of whether 'init' has been called. 1734 RValue complete(CodeGenFunction &CGF, 1735 ReturnValueSlot returnSlot, 1736 RValue result, 1737 QualType resultType, 1738 const CallArgList &CallArgs, 1739 const ObjCMethodDecl *Method) { 1740 // If we never had to do a null-check, just use the raw result. 1741 if (!NullBB) return result; 1742 1743 // The continuation block. This will be left null if we don't have an 1744 // IP, which can happen if the method we're calling is marked noreturn. 1745 llvm::BasicBlock *contBB = nullptr; 1746 1747 // Finish the call path. 1748 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1749 if (callBB) { 1750 contBB = CGF.createBasicBlock("msgSend.cont"); 1751 CGF.Builder.CreateBr(contBB); 1752 } 1753 1754 // Okay, start emitting the null-receiver block. 1755 CGF.EmitBlock(NullBB); 1756 1757 // Destroy any consumed arguments we've got. 1758 if (Method) { 1759 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 1760 } 1761 1762 // The phi code below assumes that we haven't needed any control flow yet. 1763 assert(CGF.Builder.GetInsertBlock() == NullBB); 1764 1765 // If we've got a void return, just jump to the continuation block. 1766 if (result.isScalar() && resultType->isVoidType()) { 1767 // No jumps required if the message-send was noreturn. 1768 if (contBB) CGF.EmitBlock(contBB); 1769 return result; 1770 } 1771 1772 // If we've got a scalar return, build a phi. 1773 if (result.isScalar()) { 1774 // Derive the null-initialization value. 1775 llvm::Value *null = 1776 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1777 1778 // If no join is necessary, just flow out. 1779 if (!contBB) return RValue::get(null); 1780 1781 // Otherwise, build a phi. 1782 CGF.EmitBlock(contBB); 1783 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1784 phi->addIncoming(result.getScalarVal(), callBB); 1785 phi->addIncoming(null, NullBB); 1786 return RValue::get(phi); 1787 } 1788 1789 // If we've got an aggregate return, null the buffer out. 1790 // FIXME: maybe we should be doing things differently for all the 1791 // cases where the ABI has us returning (1) non-agg values in 1792 // memory or (2) agg values in registers. 1793 if (result.isAggregate()) { 1794 assert(result.isAggregate() && "null init of non-aggregate result?"); 1795 if (!returnSlot.isUnused()) 1796 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1797 if (contBB) CGF.EmitBlock(contBB); 1798 return result; 1799 } 1800 1801 // Complex types. 1802 CGF.EmitBlock(contBB); 1803 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1804 1805 // Find the scalar type and its zero value. 1806 llvm::Type *scalarTy = callResult.first->getType(); 1807 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1808 1809 // Build phis for both coordinates. 1810 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1811 real->addIncoming(callResult.first, callBB); 1812 real->addIncoming(scalarZero, NullBB); 1813 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1814 imag->addIncoming(callResult.second, callBB); 1815 imag->addIncoming(scalarZero, NullBB); 1816 return RValue::getComplex(real, imag); 1817 } 1818 }; 1819 1820 } // end anonymous namespace 1821 1822 /* *** Helper Functions *** */ 1823 1824 /// getConstantGEP() - Help routine to construct simple GEPs. 1825 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1826 llvm::GlobalVariable *C, unsigned idx0, 1827 unsigned idx1) { 1828 llvm::Value *Idxs[] = { 1829 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1830 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1831 }; 1832 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1833 } 1834 1835 /// hasObjCExceptionAttribute - Return true if this class or any super 1836 /// class has the __objc_exception__ attribute. 1837 static bool hasObjCExceptionAttribute(ASTContext &Context, 1838 const ObjCInterfaceDecl *OID) { 1839 if (OID->hasAttr<ObjCExceptionAttr>()) 1840 return true; 1841 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1842 return hasObjCExceptionAttribute(Context, Super); 1843 return false; 1844 } 1845 1846 static llvm::GlobalValue::LinkageTypes 1847 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1848 if (CGM.getTriple().isOSBinFormatMachO() && 1849 (Section.empty() || Section.startswith("__DATA"))) 1850 return llvm::GlobalValue::InternalLinkage; 1851 return llvm::GlobalValue::PrivateLinkage; 1852 } 1853 1854 /// A helper function to create an internal or private global variable. 1855 static llvm::GlobalVariable * 1856 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1857 const llvm::Twine &Name, CodeGenModule &CGM) { 1858 std::string SectionName; 1859 if (CGM.getTriple().isOSBinFormatMachO()) 1860 SectionName = "__DATA, __objc_const"; 1861 auto *GV = Builder.finishAndCreateGlobal( 1862 Name, CGM.getPointerAlign(), /*constant*/ false, 1863 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1864 GV->setSection(SectionName); 1865 return GV; 1866 } 1867 1868 /* *** CGObjCMac Public Interface *** */ 1869 1870 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1871 ObjCTypes(cgm) { 1872 ObjCABI = 1; 1873 EmitImageInfo(); 1874 } 1875 1876 /// GetClass - Return a reference to the class for the given interface 1877 /// decl. 1878 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1879 const ObjCInterfaceDecl *ID) { 1880 return EmitClassRef(CGF, ID); 1881 } 1882 1883 /// GetSelector - Return the pointer to the unique'd string for this selector. 1884 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1885 return EmitSelector(CGF, Sel); 1886 } 1887 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1888 return EmitSelectorAddr(Sel); 1889 } 1890 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1891 *Method) { 1892 return EmitSelector(CGF, Method->getSelector()); 1893 } 1894 1895 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1896 if (T->isObjCIdType() || 1897 T->isObjCQualifiedIdType()) { 1898 return CGM.GetAddrOfRTTIDescriptor( 1899 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1900 } 1901 if (T->isObjCClassType() || 1902 T->isObjCQualifiedClassType()) { 1903 return CGM.GetAddrOfRTTIDescriptor( 1904 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1905 } 1906 if (T->isObjCObjectPointerType()) 1907 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1908 1909 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1910 } 1911 1912 /// Generate a constant CFString object. 1913 /* 1914 struct __builtin_CFString { 1915 const int *isa; // point to __CFConstantStringClassReference 1916 int flags; 1917 const char *str; 1918 long length; 1919 }; 1920 */ 1921 1922 /// or Generate a constant NSString object. 1923 /* 1924 struct __builtin_NSString { 1925 const int *isa; // point to __NSConstantStringClassReference 1926 const char *str; 1927 unsigned int length; 1928 }; 1929 */ 1930 1931 ConstantAddress 1932 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1933 return (!CGM.getLangOpts().NoConstantCFStrings 1934 ? CGM.GetAddrOfConstantCFString(SL) 1935 : GenerateConstantNSString(SL)); 1936 } 1937 1938 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1939 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1940 const StringLiteral *Literal, unsigned &StringLength) { 1941 StringRef String = Literal->getString(); 1942 StringLength = String.size(); 1943 return *Map.insert(std::make_pair(String, nullptr)).first; 1944 } 1945 1946 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1947 if (llvm::Value *V = ConstantStringClassRef) 1948 return cast<llvm::Constant>(V); 1949 1950 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1951 std::string str = 1952 StringClass.empty() ? "_NSConstantStringClassReference" 1953 : "_" + StringClass + "ClassReference"; 1954 1955 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1956 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1957 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1958 ConstantStringClassRef = V; 1959 return V; 1960 } 1961 1962 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1963 if (llvm::Value *V = ConstantStringClassRef) 1964 return cast<llvm::Constant>(V); 1965 1966 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1967 std::string str = 1968 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1969 : "OBJC_CLASS_$_" + StringClass; 1970 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1971 1972 // Make sure the result is of the correct type. 1973 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1974 1975 ConstantStringClassRef = V; 1976 return V; 1977 } 1978 1979 ConstantAddress 1980 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1981 unsigned StringLength = 0; 1982 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1983 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1984 1985 if (auto *C = Entry.second) 1986 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 1987 1988 // If we don't already have it, get _NSConstantStringClassReference. 1989 llvm::Constant *Class = getNSConstantStringClassRef(); 1990 1991 // If we don't already have it, construct the type for a constant NSString. 1992 if (!NSConstantStringType) { 1993 NSConstantStringType = 1994 llvm::StructType::create({ 1995 CGM.Int32Ty->getPointerTo(), 1996 CGM.Int8PtrTy, 1997 CGM.IntTy 1998 }, "struct.__builtin_NSString"); 1999 } 2000 2001 ConstantInitBuilder Builder(CGM); 2002 auto Fields = Builder.beginStruct(NSConstantStringType); 2003 2004 // Class pointer. 2005 Fields.add(Class); 2006 2007 // String pointer. 2008 llvm::Constant *C = 2009 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2010 2011 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2012 bool isConstant = !CGM.getLangOpts().WritableStrings; 2013 2014 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2015 Linkage, C, ".str"); 2016 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2017 // Don't enforce the target's minimum global alignment, since the only use 2018 // of the string is via this class initializer. 2019 GV->setAlignment(llvm::Align(1)); 2020 Fields.addBitCast(GV, CGM.Int8PtrTy); 2021 2022 // String length. 2023 Fields.addInt(CGM.IntTy, StringLength); 2024 2025 // The struct. 2026 CharUnits Alignment = CGM.getPointerAlign(); 2027 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2028 /*constant*/ true, 2029 llvm::GlobalVariable::PrivateLinkage); 2030 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2031 const char *NSStringNonFragileABISection = 2032 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2033 // FIXME. Fix section. 2034 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2035 ? NSStringNonFragileABISection 2036 : NSStringSection); 2037 Entry.second = GV; 2038 2039 return ConstantAddress(GV, Alignment); 2040 } 2041 2042 enum { 2043 kCFTaggedObjectID_Integer = (1 << 1) + 1 2044 }; 2045 2046 /// Generates a message send where the super is the receiver. This is 2047 /// a message send to self with special delivery semantics indicating 2048 /// which class's method should be called. 2049 CodeGen::RValue 2050 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2051 ReturnValueSlot Return, 2052 QualType ResultType, 2053 Selector Sel, 2054 const ObjCInterfaceDecl *Class, 2055 bool isCategoryImpl, 2056 llvm::Value *Receiver, 2057 bool IsClassMessage, 2058 const CodeGen::CallArgList &CallArgs, 2059 const ObjCMethodDecl *Method) { 2060 // Create and init a super structure; this is a (receiver, class) 2061 // pair we will pass to objc_msgSendSuper. 2062 Address ObjCSuper = 2063 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2064 "objc_super"); 2065 llvm::Value *ReceiverAsObject = 2066 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2067 CGF.Builder.CreateStore(ReceiverAsObject, 2068 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2069 2070 // If this is a class message the metaclass is passed as the target. 2071 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy); 2072 llvm::Value *Target; 2073 if (IsClassMessage) { 2074 if (isCategoryImpl) { 2075 // Message sent to 'super' in a class method defined in a category 2076 // implementation requires an odd treatment. 2077 // If we are in a class method, we must retrieve the 2078 // _metaclass_ for the current class, pointed at by 2079 // the class's "isa" pointer. The following assumes that 2080 // isa" is the first ivar in a class (which it must be). 2081 Target = EmitClassRef(CGF, Class->getSuperClass()); 2082 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2083 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target, 2084 CGF.getPointerAlign()); 2085 } else { 2086 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2087 llvm::Value *SuperPtr = 2088 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2089 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr, 2090 CGF.getPointerAlign()); 2091 Target = Super; 2092 } 2093 } else if (isCategoryImpl) 2094 Target = EmitClassRef(CGF, Class->getSuperClass()); 2095 else { 2096 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2097 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2098 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr, 2099 CGF.getPointerAlign()); 2100 } 2101 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2102 // ObjCTypes types. 2103 llvm::Type *ClassTy = 2104 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2105 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2106 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2107 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2108 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2109 ObjCTypes); 2110 } 2111 2112 /// Generate code for a message send expression. 2113 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2114 ReturnValueSlot Return, 2115 QualType ResultType, 2116 Selector Sel, 2117 llvm::Value *Receiver, 2118 const CallArgList &CallArgs, 2119 const ObjCInterfaceDecl *Class, 2120 const ObjCMethodDecl *Method) { 2121 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2122 CGF.getContext().getObjCIdType(), false, CallArgs, 2123 Method, Class, ObjCTypes); 2124 } 2125 2126 CodeGen::RValue 2127 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2128 ReturnValueSlot Return, 2129 QualType ResultType, 2130 Selector Sel, 2131 llvm::Value *Arg0, 2132 QualType Arg0Ty, 2133 bool IsSuper, 2134 const CallArgList &CallArgs, 2135 const ObjCMethodDecl *Method, 2136 const ObjCInterfaceDecl *ClassReceiver, 2137 const ObjCCommonTypesHelper &ObjCTypes) { 2138 CodeGenTypes &Types = CGM.getTypes(); 2139 auto selTy = CGF.getContext().getObjCSelType(); 2140 llvm::Value *SelValue; 2141 2142 if (Method && Method->isDirectMethod()) { 2143 // Direct methods will synthesize the proper `_cmd` internally, 2144 // so just don't bother with setting the `_cmd` argument. 2145 assert(!IsSuper); 2146 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2147 } else { 2148 SelValue = GetSelector(CGF, Sel); 2149 } 2150 2151 CallArgList ActualArgs; 2152 if (!IsSuper) 2153 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2154 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2155 ActualArgs.add(RValue::get(SelValue), selTy); 2156 ActualArgs.addFrom(CallArgs); 2157 2158 // If we're calling a method, use the formal signature. 2159 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2160 2161 if (Method) 2162 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2163 CGM.getContext().getCanonicalType(ResultType) && 2164 "Result type mismatch!"); 2165 2166 bool ReceiverCanBeNull = 2167 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0); 2168 2169 bool RequiresNullCheck = false; 2170 2171 llvm::FunctionCallee Fn = nullptr; 2172 if (Method && Method->isDirectMethod()) { 2173 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2174 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2175 if (ReceiverCanBeNull) RequiresNullCheck = true; 2176 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2177 : ObjCTypes.getSendStretFn(IsSuper); 2178 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2179 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2180 : ObjCTypes.getSendFpretFn(IsSuper); 2181 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2182 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2183 : ObjCTypes.getSendFp2retFn(IsSuper); 2184 } else { 2185 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2186 // must be made for it. 2187 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2188 RequiresNullCheck = true; 2189 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2190 : ObjCTypes.getSendFn(IsSuper); 2191 } 2192 2193 // Cast function to proper signature 2194 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2195 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2196 2197 // We don't need to emit a null check to zero out an indirect result if the 2198 // result is ignored. 2199 if (Return.isUnused()) 2200 RequiresNullCheck = false; 2201 2202 // Emit a null-check if there's a consumed argument other than the receiver. 2203 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee()) 2204 RequiresNullCheck = true; 2205 2206 NullReturnState nullReturn; 2207 if (RequiresNullCheck) { 2208 nullReturn.init(CGF, Arg0); 2209 } 2210 2211 llvm::CallBase *CallSite; 2212 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2213 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2214 &CallSite); 2215 2216 // Mark the call as noreturn if the method is marked noreturn and the 2217 // receiver cannot be null. 2218 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2219 CallSite->setDoesNotReturn(); 2220 } 2221 2222 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2223 RequiresNullCheck ? Method : nullptr); 2224 } 2225 2226 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2227 bool pointee = false) { 2228 // Note that GC qualification applies recursively to C pointer types 2229 // that aren't otherwise decorated. This is weird, but it's probably 2230 // an intentional workaround to the unreliable placement of GC qualifiers. 2231 if (FQT.isObjCGCStrong()) 2232 return Qualifiers::Strong; 2233 2234 if (FQT.isObjCGCWeak()) 2235 return Qualifiers::Weak; 2236 2237 if (auto ownership = FQT.getObjCLifetime()) { 2238 // Ownership does not apply recursively to C pointer types. 2239 if (pointee) return Qualifiers::GCNone; 2240 switch (ownership) { 2241 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2242 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2243 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2244 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2245 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2246 } 2247 llvm_unreachable("bad objc ownership"); 2248 } 2249 2250 // Treat unqualified retainable pointers as strong. 2251 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2252 return Qualifiers::Strong; 2253 2254 // Walk into C pointer types, but only in GC. 2255 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2256 if (const PointerType *PT = FQT->getAs<PointerType>()) 2257 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2258 } 2259 2260 return Qualifiers::GCNone; 2261 } 2262 2263 namespace { 2264 struct IvarInfo { 2265 CharUnits Offset; 2266 uint64_t SizeInWords; 2267 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2268 : Offset(offset), SizeInWords(sizeInWords) {} 2269 2270 // Allow sorting based on byte pos. 2271 bool operator<(const IvarInfo &other) const { 2272 return Offset < other.Offset; 2273 } 2274 }; 2275 2276 /// A helper class for building GC layout strings. 2277 class IvarLayoutBuilder { 2278 CodeGenModule &CGM; 2279 2280 /// The start of the layout. Offsets will be relative to this value, 2281 /// and entries less than this value will be silently discarded. 2282 CharUnits InstanceBegin; 2283 2284 /// The end of the layout. Offsets will never exceed this value. 2285 CharUnits InstanceEnd; 2286 2287 /// Whether we're generating the strong layout or the weak layout. 2288 bool ForStrongLayout; 2289 2290 /// Whether the offsets in IvarsInfo might be out-of-order. 2291 bool IsDisordered = false; 2292 2293 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2294 2295 public: 2296 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2297 CharUnits instanceEnd, bool forStrongLayout) 2298 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2299 ForStrongLayout(forStrongLayout) { 2300 } 2301 2302 void visitRecord(const RecordType *RT, CharUnits offset); 2303 2304 template <class Iterator, class GetOffsetFn> 2305 void visitAggregate(Iterator begin, Iterator end, 2306 CharUnits aggrOffset, 2307 const GetOffsetFn &getOffset); 2308 2309 void visitField(const FieldDecl *field, CharUnits offset); 2310 2311 /// Add the layout of a block implementation. 2312 void visitBlock(const CGBlockInfo &blockInfo); 2313 2314 /// Is there any information for an interesting bitmap? 2315 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2316 2317 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2318 llvm::SmallVectorImpl<unsigned char> &buffer); 2319 2320 static void dump(ArrayRef<unsigned char> buffer) { 2321 const unsigned char *s = buffer.data(); 2322 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2323 if (!(s[i] & 0xf0)) 2324 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2325 else 2326 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2327 printf("\n"); 2328 } 2329 }; 2330 } // end anonymous namespace 2331 2332 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2333 const CGBlockInfo &blockInfo) { 2334 2335 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2336 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2337 return nullPtr; 2338 2339 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2340 /*for strong layout*/ true); 2341 2342 builder.visitBlock(blockInfo); 2343 2344 if (!builder.hasBitmapData()) 2345 return nullPtr; 2346 2347 llvm::SmallVector<unsigned char, 32> buffer; 2348 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2349 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2350 printf("\n block variable layout for block: "); 2351 builder.dump(buffer); 2352 } 2353 2354 return C; 2355 } 2356 2357 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2358 // __isa is the first field in block descriptor and must assume by runtime's 2359 // convention that it is GC'able. 2360 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2361 2362 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2363 2364 // Ignore the optional 'this' capture: C++ objects are not assumed 2365 // to be GC'ed. 2366 2367 CharUnits lastFieldOffset; 2368 2369 // Walk the captured variables. 2370 for (const auto &CI : blockDecl->captures()) { 2371 const VarDecl *variable = CI.getVariable(); 2372 QualType type = variable->getType(); 2373 2374 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2375 2376 // Ignore constant captures. 2377 if (capture.isConstant()) continue; 2378 2379 CharUnits fieldOffset = capture.getOffset(); 2380 2381 // Block fields are not necessarily ordered; if we detect that we're 2382 // adding them out-of-order, make sure we sort later. 2383 if (fieldOffset < lastFieldOffset) 2384 IsDisordered = true; 2385 lastFieldOffset = fieldOffset; 2386 2387 // __block variables are passed by their descriptor address. 2388 if (CI.isByRef()) { 2389 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2390 continue; 2391 } 2392 2393 assert(!type->isArrayType() && "array variable should not be caught"); 2394 if (const RecordType *record = type->getAs<RecordType>()) { 2395 visitRecord(record, fieldOffset); 2396 continue; 2397 } 2398 2399 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2400 2401 if (GCAttr == Qualifiers::Strong) { 2402 assert(CGM.getContext().getTypeSize(type) 2403 == CGM.getTarget().getPointerWidth(0)); 2404 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2405 } 2406 } 2407 } 2408 2409 /// getBlockCaptureLifetime - This routine returns life time of the captured 2410 /// block variable for the purpose of block layout meta-data generation. FQT is 2411 /// the type of the variable captured in the block. 2412 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2413 bool ByrefLayout) { 2414 // If it has an ownership qualifier, we're done. 2415 if (auto lifetime = FQT.getObjCLifetime()) 2416 return lifetime; 2417 2418 // If it doesn't, and this is ARC, it has no ownership. 2419 if (CGM.getLangOpts().ObjCAutoRefCount) 2420 return Qualifiers::OCL_None; 2421 2422 // In MRC, retainable pointers are owned by non-__block variables. 2423 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2424 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2425 2426 return Qualifiers::OCL_None; 2427 } 2428 2429 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2430 Qualifiers::ObjCLifetime LifeTime, 2431 CharUnits FieldOffset, 2432 CharUnits FieldSize) { 2433 // __block variables are passed by their descriptor address. 2434 if (IsByref) 2435 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2436 FieldSize)); 2437 else if (LifeTime == Qualifiers::OCL_Strong) 2438 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2439 FieldSize)); 2440 else if (LifeTime == Qualifiers::OCL_Weak) 2441 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2442 FieldSize)); 2443 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2444 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2445 FieldSize)); 2446 else 2447 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2448 FieldOffset, 2449 FieldSize)); 2450 } 2451 2452 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2453 const RecordDecl *RD, 2454 ArrayRef<const FieldDecl*> RecFields, 2455 CharUnits BytePos, bool &HasUnion, 2456 bool ByrefLayout) { 2457 bool IsUnion = (RD && RD->isUnion()); 2458 CharUnits MaxUnionSize = CharUnits::Zero(); 2459 const FieldDecl *MaxField = nullptr; 2460 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2461 CharUnits MaxFieldOffset = CharUnits::Zero(); 2462 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2463 2464 if (RecFields.empty()) 2465 return; 2466 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2467 2468 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2469 const FieldDecl *Field = RecFields[i]; 2470 // Note that 'i' here is actually the field index inside RD of Field, 2471 // although this dependency is hidden. 2472 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2473 CharUnits FieldOffset = 2474 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2475 2476 // Skip over unnamed or bitfields 2477 if (!Field->getIdentifier() || Field->isBitField()) { 2478 LastFieldBitfieldOrUnnamed = Field; 2479 LastBitfieldOrUnnamedOffset = FieldOffset; 2480 continue; 2481 } 2482 2483 LastFieldBitfieldOrUnnamed = nullptr; 2484 QualType FQT = Field->getType(); 2485 if (FQT->isRecordType() || FQT->isUnionType()) { 2486 if (FQT->isUnionType()) 2487 HasUnion = true; 2488 2489 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2490 BytePos + FieldOffset, HasUnion); 2491 continue; 2492 } 2493 2494 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2495 auto *CArray = cast<ConstantArrayType>(Array); 2496 uint64_t ElCount = CArray->getSize().getZExtValue(); 2497 assert(CArray && "only array with known element size is supported"); 2498 FQT = CArray->getElementType(); 2499 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2500 auto *CArray = cast<ConstantArrayType>(Array); 2501 ElCount *= CArray->getSize().getZExtValue(); 2502 FQT = CArray->getElementType(); 2503 } 2504 if (FQT->isRecordType() && ElCount) { 2505 int OldIndex = RunSkipBlockVars.size() - 1; 2506 auto *RT = FQT->castAs<RecordType>(); 2507 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2508 2509 // Replicate layout information for each array element. Note that 2510 // one element is already done. 2511 uint64_t ElIx = 1; 2512 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2513 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2514 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2515 RunSkipBlockVars.push_back( 2516 RUN_SKIP(RunSkipBlockVars[i].opcode, 2517 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2518 RunSkipBlockVars[i].block_var_size)); 2519 } 2520 continue; 2521 } 2522 } 2523 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2524 if (IsUnion) { 2525 CharUnits UnionIvarSize = FieldSize; 2526 if (UnionIvarSize > MaxUnionSize) { 2527 MaxUnionSize = UnionIvarSize; 2528 MaxField = Field; 2529 MaxFieldOffset = FieldOffset; 2530 } 2531 } else { 2532 UpdateRunSkipBlockVars(false, 2533 getBlockCaptureLifetime(FQT, ByrefLayout), 2534 BytePos + FieldOffset, 2535 FieldSize); 2536 } 2537 } 2538 2539 if (LastFieldBitfieldOrUnnamed) { 2540 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2541 // Last field was a bitfield. Must update the info. 2542 uint64_t BitFieldSize 2543 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2544 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2545 ((BitFieldSize % ByteSizeInBits) != 0); 2546 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2547 Size += LastBitfieldOrUnnamedOffset; 2548 UpdateRunSkipBlockVars(false, 2549 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2550 ByrefLayout), 2551 BytePos + LastBitfieldOrUnnamedOffset, 2552 Size); 2553 } else { 2554 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2555 // Last field was unnamed. Must update skip info. 2556 CharUnits FieldSize 2557 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2558 UpdateRunSkipBlockVars(false, 2559 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2560 ByrefLayout), 2561 BytePos + LastBitfieldOrUnnamedOffset, 2562 FieldSize); 2563 } 2564 } 2565 2566 if (MaxField) 2567 UpdateRunSkipBlockVars(false, 2568 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2569 BytePos + MaxFieldOffset, 2570 MaxUnionSize); 2571 } 2572 2573 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2574 CharUnits BytePos, 2575 bool &HasUnion, 2576 bool ByrefLayout) { 2577 const RecordDecl *RD = RT->getDecl(); 2578 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2579 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2580 const llvm::StructLayout *RecLayout = 2581 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2582 2583 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2584 } 2585 2586 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2587 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2588 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2589 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2590 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2591 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2592 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2593 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2594 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2595 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2596 SmallVectorImpl<unsigned char> &Layout) { 2597 uint64_t Result = 0; 2598 if (Layout.size() <= 3) { 2599 unsigned size = Layout.size(); 2600 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2601 unsigned char inst; 2602 enum BLOCK_LAYOUT_OPCODE opcode ; 2603 switch (size) { 2604 case 3: 2605 inst = Layout[0]; 2606 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2607 if (opcode == BLOCK_LAYOUT_STRONG) 2608 strong_word_count = (inst & 0xF)+1; 2609 else 2610 return 0; 2611 inst = Layout[1]; 2612 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2613 if (opcode == BLOCK_LAYOUT_BYREF) 2614 byref_word_count = (inst & 0xF)+1; 2615 else 2616 return 0; 2617 inst = Layout[2]; 2618 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2619 if (opcode == BLOCK_LAYOUT_WEAK) 2620 weak_word_count = (inst & 0xF)+1; 2621 else 2622 return 0; 2623 break; 2624 2625 case 2: 2626 inst = Layout[0]; 2627 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2628 if (opcode == BLOCK_LAYOUT_STRONG) { 2629 strong_word_count = (inst & 0xF)+1; 2630 inst = Layout[1]; 2631 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2632 if (opcode == BLOCK_LAYOUT_BYREF) 2633 byref_word_count = (inst & 0xF)+1; 2634 else if (opcode == BLOCK_LAYOUT_WEAK) 2635 weak_word_count = (inst & 0xF)+1; 2636 else 2637 return 0; 2638 } 2639 else if (opcode == BLOCK_LAYOUT_BYREF) { 2640 byref_word_count = (inst & 0xF)+1; 2641 inst = Layout[1]; 2642 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2643 if (opcode == BLOCK_LAYOUT_WEAK) 2644 weak_word_count = (inst & 0xF)+1; 2645 else 2646 return 0; 2647 } 2648 else 2649 return 0; 2650 break; 2651 2652 case 1: 2653 inst = Layout[0]; 2654 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2655 if (opcode == BLOCK_LAYOUT_STRONG) 2656 strong_word_count = (inst & 0xF)+1; 2657 else if (opcode == BLOCK_LAYOUT_BYREF) 2658 byref_word_count = (inst & 0xF)+1; 2659 else if (opcode == BLOCK_LAYOUT_WEAK) 2660 weak_word_count = (inst & 0xF)+1; 2661 else 2662 return 0; 2663 break; 2664 2665 default: 2666 return 0; 2667 } 2668 2669 // Cannot inline when any of the word counts is 15. Because this is one less 2670 // than the actual work count (so 15 means 16 actual word counts), 2671 // and we can only display 0 thru 15 word counts. 2672 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2673 return 0; 2674 2675 unsigned count = 2676 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2677 2678 if (size == count) { 2679 if (strong_word_count) 2680 Result = strong_word_count; 2681 Result <<= 4; 2682 if (byref_word_count) 2683 Result += byref_word_count; 2684 Result <<= 4; 2685 if (weak_word_count) 2686 Result += weak_word_count; 2687 } 2688 } 2689 return Result; 2690 } 2691 2692 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2693 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2694 if (RunSkipBlockVars.empty()) 2695 return nullPtr; 2696 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2697 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2698 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2699 2700 // Sort on byte position; captures might not be allocated in order, 2701 // and unions can do funny things. 2702 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2703 SmallVector<unsigned char, 16> Layout; 2704 2705 unsigned size = RunSkipBlockVars.size(); 2706 for (unsigned i = 0; i < size; i++) { 2707 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2708 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2709 CharUnits end_byte_pos = start_byte_pos; 2710 unsigned j = i+1; 2711 while (j < size) { 2712 if (opcode == RunSkipBlockVars[j].opcode) { 2713 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2714 i++; 2715 } 2716 else 2717 break; 2718 } 2719 CharUnits size_in_bytes = 2720 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2721 if (j < size) { 2722 CharUnits gap = 2723 RunSkipBlockVars[j].block_var_bytepos - 2724 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2725 size_in_bytes += gap; 2726 } 2727 CharUnits residue_in_bytes = CharUnits::Zero(); 2728 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2729 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2730 size_in_bytes -= residue_in_bytes; 2731 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2732 } 2733 2734 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2735 while (size_in_words >= 16) { 2736 // Note that value in imm. is one less that the actual 2737 // value. So, 0xf means 16 words follow! 2738 unsigned char inst = (opcode << 4) | 0xf; 2739 Layout.push_back(inst); 2740 size_in_words -= 16; 2741 } 2742 if (size_in_words > 0) { 2743 // Note that value in imm. is one less that the actual 2744 // value. So, we subtract 1 away! 2745 unsigned char inst = (opcode << 4) | (size_in_words-1); 2746 Layout.push_back(inst); 2747 } 2748 if (residue_in_bytes > CharUnits::Zero()) { 2749 unsigned char inst = 2750 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2751 Layout.push_back(inst); 2752 } 2753 } 2754 2755 while (!Layout.empty()) { 2756 unsigned char inst = Layout.back(); 2757 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2758 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2759 Layout.pop_back(); 2760 else 2761 break; 2762 } 2763 2764 uint64_t Result = InlineLayoutInstruction(Layout); 2765 if (Result != 0) { 2766 // Block variable layout instruction has been inlined. 2767 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2768 if (ComputeByrefLayout) 2769 printf("\n Inline BYREF variable layout: "); 2770 else 2771 printf("\n Inline block variable layout: "); 2772 printf("0x0%" PRIx64 "", Result); 2773 if (auto numStrong = (Result & 0xF00) >> 8) 2774 printf(", BL_STRONG:%d", (int) numStrong); 2775 if (auto numByref = (Result & 0x0F0) >> 4) 2776 printf(", BL_BYREF:%d", (int) numByref); 2777 if (auto numWeak = (Result & 0x00F) >> 0) 2778 printf(", BL_WEAK:%d", (int) numWeak); 2779 printf(", BL_OPERATOR:0\n"); 2780 } 2781 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2782 } 2783 2784 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2785 Layout.push_back(inst); 2786 std::string BitMap; 2787 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2788 BitMap += Layout[i]; 2789 2790 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2791 if (ComputeByrefLayout) 2792 printf("\n Byref variable layout: "); 2793 else 2794 printf("\n Block variable layout: "); 2795 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2796 unsigned char inst = BitMap[i]; 2797 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2798 unsigned delta = 1; 2799 switch (opcode) { 2800 case BLOCK_LAYOUT_OPERATOR: 2801 printf("BL_OPERATOR:"); 2802 delta = 0; 2803 break; 2804 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2805 printf("BL_NON_OBJECT_BYTES:"); 2806 break; 2807 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2808 printf("BL_NON_OBJECT_WORD:"); 2809 break; 2810 case BLOCK_LAYOUT_STRONG: 2811 printf("BL_STRONG:"); 2812 break; 2813 case BLOCK_LAYOUT_BYREF: 2814 printf("BL_BYREF:"); 2815 break; 2816 case BLOCK_LAYOUT_WEAK: 2817 printf("BL_WEAK:"); 2818 break; 2819 case BLOCK_LAYOUT_UNRETAINED: 2820 printf("BL_UNRETAINED:"); 2821 break; 2822 } 2823 // Actual value of word count is one more that what is in the imm. 2824 // field of the instruction 2825 printf("%d", (inst & 0xf) + delta); 2826 if (i < e-1) 2827 printf(", "); 2828 else 2829 printf("\n"); 2830 } 2831 } 2832 2833 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2834 /*ForceNonFragileABI=*/true, 2835 /*NullTerminate=*/false); 2836 return getConstantGEP(VMContext, Entry, 0, 0); 2837 } 2838 2839 static std::string getBlockLayoutInfoString( 2840 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2841 bool HasCopyDisposeHelpers) { 2842 std::string Str; 2843 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2844 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2845 // Copy/dispose helpers don't have any information about 2846 // __unsafe_unretained captures, so unconditionally concatenate a string. 2847 Str += "u"; 2848 } else if (HasCopyDisposeHelpers) { 2849 // Information about __strong, __weak, or byref captures has already been 2850 // encoded into the names of the copy/dispose helpers. We have to add a 2851 // string here only when the copy/dispose helpers aren't generated (which 2852 // happens when the block is non-escaping). 2853 continue; 2854 } else { 2855 switch (R.opcode) { 2856 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2857 Str += "s"; 2858 break; 2859 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2860 Str += "r"; 2861 break; 2862 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2863 Str += "w"; 2864 break; 2865 default: 2866 continue; 2867 } 2868 } 2869 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2870 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2871 } 2872 return Str; 2873 } 2874 2875 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2876 const CGBlockInfo &blockInfo) { 2877 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2878 2879 RunSkipBlockVars.clear(); 2880 bool hasUnion = false; 2881 2882 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2883 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2884 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2885 2886 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2887 2888 // Calculate the basic layout of the block structure. 2889 const llvm::StructLayout *layout = 2890 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2891 2892 // Ignore the optional 'this' capture: C++ objects are not assumed 2893 // to be GC'ed. 2894 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2895 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2896 blockInfo.BlockHeaderForcedGapOffset, 2897 blockInfo.BlockHeaderForcedGapSize); 2898 // Walk the captured variables. 2899 for (const auto &CI : blockDecl->captures()) { 2900 const VarDecl *variable = CI.getVariable(); 2901 QualType type = variable->getType(); 2902 2903 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2904 2905 // Ignore constant captures. 2906 if (capture.isConstant()) continue; 2907 2908 CharUnits fieldOffset = 2909 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2910 2911 assert(!type->isArrayType() && "array variable should not be caught"); 2912 if (!CI.isByRef()) 2913 if (const RecordType *record = type->getAs<RecordType>()) { 2914 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2915 continue; 2916 } 2917 CharUnits fieldSize; 2918 if (CI.isByRef()) 2919 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2920 else 2921 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2922 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2923 fieldOffset, fieldSize); 2924 } 2925 } 2926 2927 llvm::Constant * 2928 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2929 const CGBlockInfo &blockInfo) { 2930 fillRunSkipBlockVars(CGM, blockInfo); 2931 return getBitmapBlockLayout(false); 2932 } 2933 2934 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2935 const CGBlockInfo &blockInfo) { 2936 fillRunSkipBlockVars(CGM, blockInfo); 2937 return getBlockLayoutInfoString(RunSkipBlockVars, 2938 blockInfo.needsCopyDisposeHelpers()); 2939 } 2940 2941 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2942 QualType T) { 2943 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2944 assert(!T->isArrayType() && "__block array variable should not be caught"); 2945 CharUnits fieldOffset; 2946 RunSkipBlockVars.clear(); 2947 bool hasUnion = false; 2948 if (const RecordType *record = T->getAs<RecordType>()) { 2949 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2950 llvm::Constant *Result = getBitmapBlockLayout(true); 2951 if (isa<llvm::ConstantInt>(Result)) 2952 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2953 return Result; 2954 } 2955 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2956 return nullPtr; 2957 } 2958 2959 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2960 const ObjCProtocolDecl *PD) { 2961 // FIXME: I don't understand why gcc generates this, or where it is 2962 // resolved. Investigate. Its also wasteful to look this up over and over. 2963 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2964 2965 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2966 ObjCTypes.getExternalProtocolPtrTy()); 2967 } 2968 2969 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2970 // FIXME: We shouldn't need this, the protocol decl should contain enough 2971 // information to tell us whether this was a declaration or a definition. 2972 DefinedProtocols.insert(PD->getIdentifier()); 2973 2974 // If we have generated a forward reference to this protocol, emit 2975 // it now. Otherwise do nothing, the protocol objects are lazily 2976 // emitted. 2977 if (Protocols.count(PD->getIdentifier())) 2978 GetOrEmitProtocol(PD); 2979 } 2980 2981 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2982 if (DefinedProtocols.count(PD->getIdentifier())) 2983 return GetOrEmitProtocol(PD); 2984 2985 return GetOrEmitProtocolRef(PD); 2986 } 2987 2988 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2989 CodeGenFunction &CGF, 2990 const ObjCInterfaceDecl *ID, 2991 ObjCCommonTypesHelper &ObjCTypes) { 2992 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2993 2994 llvm::Value *className = CGF.CGM 2995 .GetAddrOfConstantCString(std::string( 2996 ID->getObjCRuntimeNameAsString())) 2997 .getPointer(); 2998 ASTContext &ctx = CGF.CGM.getContext(); 2999 className = 3000 CGF.Builder.CreateBitCast(className, 3001 CGF.ConvertType( 3002 ctx.getPointerType(ctx.CharTy.withConst()))); 3003 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3004 call->setDoesNotThrow(); 3005 return call; 3006 } 3007 3008 /* 3009 // Objective-C 1.0 extensions 3010 struct _objc_protocol { 3011 struct _objc_protocol_extension *isa; 3012 char *protocol_name; 3013 struct _objc_protocol_list *protocol_list; 3014 struct _objc__method_prototype_list *instance_methods; 3015 struct _objc__method_prototype_list *class_methods 3016 }; 3017 3018 See EmitProtocolExtension(). 3019 */ 3020 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3021 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3022 3023 // Early exit if a defining object has already been generated. 3024 if (Entry && Entry->hasInitializer()) 3025 return Entry; 3026 3027 // Use the protocol definition, if there is one. 3028 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3029 PD = Def; 3030 3031 // FIXME: I don't understand why gcc generates this, or where it is 3032 // resolved. Investigate. Its also wasteful to look this up over and over. 3033 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3034 3035 // Construct method lists. 3036 auto methodLists = ProtocolMethodLists::get(PD); 3037 3038 ConstantInitBuilder builder(CGM); 3039 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3040 values.add(EmitProtocolExtension(PD, methodLists)); 3041 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3042 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3043 PD->protocol_begin(), PD->protocol_end())); 3044 values.add(methodLists.emitMethodList(this, PD, 3045 ProtocolMethodLists::RequiredInstanceMethods)); 3046 values.add(methodLists.emitMethodList(this, PD, 3047 ProtocolMethodLists::RequiredClassMethods)); 3048 3049 if (Entry) { 3050 // Already created, update the initializer. 3051 assert(Entry->hasPrivateLinkage()); 3052 values.finishAndSetAsInitializer(Entry); 3053 } else { 3054 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3055 CGM.getPointerAlign(), 3056 /*constant*/ false, 3057 llvm::GlobalValue::PrivateLinkage); 3058 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3059 3060 Protocols[PD->getIdentifier()] = Entry; 3061 } 3062 CGM.addCompilerUsedGlobal(Entry); 3063 3064 return Entry; 3065 } 3066 3067 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3068 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3069 3070 if (!Entry) { 3071 // We use the initializer as a marker of whether this is a forward 3072 // reference or not. At module finalization we add the empty 3073 // contents for protocols which were referenced but never defined. 3074 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3075 false, llvm::GlobalValue::PrivateLinkage, 3076 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3077 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3078 // FIXME: Is this necessary? Why only for protocol? 3079 Entry->setAlignment(llvm::Align(4)); 3080 } 3081 3082 return Entry; 3083 } 3084 3085 /* 3086 struct _objc_protocol_extension { 3087 uint32_t size; 3088 struct objc_method_description_list *optional_instance_methods; 3089 struct objc_method_description_list *optional_class_methods; 3090 struct objc_property_list *instance_properties; 3091 const char ** extendedMethodTypes; 3092 struct objc_property_list *class_properties; 3093 }; 3094 */ 3095 llvm::Constant * 3096 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3097 const ProtocolMethodLists &methodLists) { 3098 auto optInstanceMethods = 3099 methodLists.emitMethodList(this, PD, 3100 ProtocolMethodLists::OptionalInstanceMethods); 3101 auto optClassMethods = 3102 methodLists.emitMethodList(this, PD, 3103 ProtocolMethodLists::OptionalClassMethods); 3104 3105 auto extendedMethodTypes = 3106 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3107 methodLists.emitExtendedTypesArray(this), 3108 ObjCTypes); 3109 3110 auto instanceProperties = 3111 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3112 ObjCTypes, false); 3113 auto classProperties = 3114 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3115 PD, ObjCTypes, true); 3116 3117 // Return null if no extension bits are used. 3118 if (optInstanceMethods->isNullValue() && 3119 optClassMethods->isNullValue() && 3120 extendedMethodTypes->isNullValue() && 3121 instanceProperties->isNullValue() && 3122 classProperties->isNullValue()) { 3123 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3124 } 3125 3126 uint64_t size = 3127 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3128 3129 ConstantInitBuilder builder(CGM); 3130 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3131 values.addInt(ObjCTypes.IntTy, size); 3132 values.add(optInstanceMethods); 3133 values.add(optClassMethods); 3134 values.add(instanceProperties); 3135 values.add(extendedMethodTypes); 3136 values.add(classProperties); 3137 3138 // No special section, but goes in llvm.used 3139 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3140 StringRef(), CGM.getPointerAlign(), true); 3141 } 3142 3143 /* 3144 struct objc_protocol_list { 3145 struct objc_protocol_list *next; 3146 long count; 3147 Protocol *list[]; 3148 }; 3149 */ 3150 llvm::Constant * 3151 CGObjCMac::EmitProtocolList(Twine name, 3152 ObjCProtocolDecl::protocol_iterator begin, 3153 ObjCProtocolDecl::protocol_iterator end) { 3154 // Just return null for empty protocol lists 3155 auto PDs = GetRuntimeProtocolList(begin, end); 3156 if (PDs.empty()) 3157 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3158 3159 ConstantInitBuilder builder(CGM); 3160 auto values = builder.beginStruct(); 3161 3162 // This field is only used by the runtime. 3163 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3164 3165 // Reserve a slot for the count. 3166 auto countSlot = values.addPlaceholder(); 3167 3168 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3169 for (const auto *Proto : PDs) 3170 refsArray.add(GetProtocolRef(Proto)); 3171 3172 auto count = refsArray.size(); 3173 3174 // This list is null terminated. 3175 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3176 3177 refsArray.finishAndAddTo(values); 3178 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3179 3180 StringRef section; 3181 if (CGM.getTriple().isOSBinFormatMachO()) 3182 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3183 3184 llvm::GlobalVariable *GV = 3185 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3186 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3187 } 3188 3189 static void 3190 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3191 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3192 const ObjCProtocolDecl *Proto, 3193 bool IsClassProperty) { 3194 for (const auto *PD : Proto->properties()) { 3195 if (IsClassProperty != PD->isClassProperty()) 3196 continue; 3197 if (!PropertySet.insert(PD->getIdentifier()).second) 3198 continue; 3199 Properties.push_back(PD); 3200 } 3201 3202 for (const auto *P : Proto->protocols()) 3203 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3204 } 3205 3206 /* 3207 struct _objc_property { 3208 const char * const name; 3209 const char * const attributes; 3210 }; 3211 3212 struct _objc_property_list { 3213 uint32_t entsize; // sizeof (struct _objc_property) 3214 uint32_t prop_count; 3215 struct _objc_property[prop_count]; 3216 }; 3217 */ 3218 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3219 const Decl *Container, 3220 const ObjCContainerDecl *OCD, 3221 const ObjCCommonTypesHelper &ObjCTypes, 3222 bool IsClassProperty) { 3223 if (IsClassProperty) { 3224 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3225 // with deployment target < 9.0. 3226 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3227 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3228 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3229 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3230 } 3231 3232 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3233 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3234 3235 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3236 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3237 for (auto *PD : ClassExt->properties()) { 3238 if (IsClassProperty != PD->isClassProperty()) 3239 continue; 3240 if (PD->isDirectProperty()) 3241 continue; 3242 PropertySet.insert(PD->getIdentifier()); 3243 Properties.push_back(PD); 3244 } 3245 3246 for (const auto *PD : OCD->properties()) { 3247 if (IsClassProperty != PD->isClassProperty()) 3248 continue; 3249 // Don't emit duplicate metadata for properties that were already in a 3250 // class extension. 3251 if (!PropertySet.insert(PD->getIdentifier()).second) 3252 continue; 3253 if (PD->isDirectProperty()) 3254 continue; 3255 Properties.push_back(PD); 3256 } 3257 3258 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3259 for (const auto *P : OID->all_referenced_protocols()) 3260 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3261 } 3262 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3263 for (const auto *P : CD->protocols()) 3264 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3265 } 3266 3267 // Return null for empty list. 3268 if (Properties.empty()) 3269 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3270 3271 unsigned propertySize = 3272 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3273 3274 ConstantInitBuilder builder(CGM); 3275 auto values = builder.beginStruct(); 3276 values.addInt(ObjCTypes.IntTy, propertySize); 3277 values.addInt(ObjCTypes.IntTy, Properties.size()); 3278 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3279 for (auto PD : Properties) { 3280 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3281 property.add(GetPropertyName(PD->getIdentifier())); 3282 property.add(GetPropertyTypeString(PD, Container)); 3283 property.finishAndAddTo(propertiesArray); 3284 } 3285 propertiesArray.finishAndAddTo(values); 3286 3287 StringRef Section; 3288 if (CGM.getTriple().isOSBinFormatMachO()) 3289 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3290 : "__OBJC,__property,regular,no_dead_strip"; 3291 3292 llvm::GlobalVariable *GV = 3293 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3294 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3295 } 3296 3297 llvm::Constant * 3298 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3299 ArrayRef<llvm::Constant*> MethodTypes, 3300 const ObjCCommonTypesHelper &ObjCTypes) { 3301 // Return null for empty list. 3302 if (MethodTypes.empty()) 3303 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3304 3305 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3306 MethodTypes.size()); 3307 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3308 3309 StringRef Section; 3310 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3311 Section = "__DATA, __objc_const"; 3312 3313 llvm::GlobalVariable *GV = 3314 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3315 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3316 } 3317 3318 /* 3319 struct _objc_category { 3320 char *category_name; 3321 char *class_name; 3322 struct _objc_method_list *instance_methods; 3323 struct _objc_method_list *class_methods; 3324 struct _objc_protocol_list *protocols; 3325 uint32_t size; // <rdar://4585769> 3326 struct _objc_property_list *instance_properties; 3327 struct _objc_property_list *class_properties; 3328 }; 3329 */ 3330 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3331 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3332 3333 // FIXME: This is poor design, the OCD should have a pointer to the category 3334 // decl. Additionally, note that Category can be null for the @implementation 3335 // w/o an @interface case. Sema should just create one for us as it does for 3336 // @implementation so everyone else can live life under a clear blue sky. 3337 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3338 const ObjCCategoryDecl *Category = 3339 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3340 3341 SmallString<256> ExtName; 3342 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3343 << OCD->getName(); 3344 3345 ConstantInitBuilder Builder(CGM); 3346 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3347 3348 enum { 3349 InstanceMethods, 3350 ClassMethods, 3351 NumMethodLists 3352 }; 3353 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3354 for (const auto *MD : OCD->methods()) { 3355 if (!MD->isDirectMethod()) 3356 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3357 } 3358 3359 Values.add(GetClassName(OCD->getName())); 3360 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3361 LazySymbols.insert(Interface->getIdentifier()); 3362 3363 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3364 Methods[InstanceMethods])); 3365 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3366 Methods[ClassMethods])); 3367 if (Category) { 3368 Values.add( 3369 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3370 Category->protocol_begin(), Category->protocol_end())); 3371 } else { 3372 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3373 } 3374 Values.addInt(ObjCTypes.IntTy, Size); 3375 3376 // If there is no category @interface then there can be no properties. 3377 if (Category) { 3378 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3379 OCD, Category, ObjCTypes, false)); 3380 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3381 OCD, Category, ObjCTypes, true)); 3382 } else { 3383 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3384 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3385 } 3386 3387 llvm::GlobalVariable *GV = 3388 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3389 "__OBJC,__category,regular,no_dead_strip", 3390 CGM.getPointerAlign(), true); 3391 DefinedCategories.push_back(GV); 3392 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3393 // method definition entries must be clear for next implementation. 3394 MethodDefinitions.clear(); 3395 } 3396 3397 enum FragileClassFlags { 3398 /// Apparently: is not a meta-class. 3399 FragileABI_Class_Factory = 0x00001, 3400 3401 /// Is a meta-class. 3402 FragileABI_Class_Meta = 0x00002, 3403 3404 /// Has a non-trivial constructor or destructor. 3405 FragileABI_Class_HasCXXStructors = 0x02000, 3406 3407 /// Has hidden visibility. 3408 FragileABI_Class_Hidden = 0x20000, 3409 3410 /// Class implementation was compiled under ARC. 3411 FragileABI_Class_CompiledByARC = 0x04000000, 3412 3413 /// Class implementation was compiled under MRC and has MRC weak ivars. 3414 /// Exclusive with CompiledByARC. 3415 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3416 }; 3417 3418 enum NonFragileClassFlags { 3419 /// Is a meta-class. 3420 NonFragileABI_Class_Meta = 0x00001, 3421 3422 /// Is a root class. 3423 NonFragileABI_Class_Root = 0x00002, 3424 3425 /// Has a non-trivial constructor or destructor. 3426 NonFragileABI_Class_HasCXXStructors = 0x00004, 3427 3428 /// Has hidden visibility. 3429 NonFragileABI_Class_Hidden = 0x00010, 3430 3431 /// Has the exception attribute. 3432 NonFragileABI_Class_Exception = 0x00020, 3433 3434 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3435 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3436 3437 /// Class implementation was compiled under ARC. 3438 NonFragileABI_Class_CompiledByARC = 0x00080, 3439 3440 /// Class has non-trivial destructors, but zero-initialization is okay. 3441 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3442 3443 /// Class implementation was compiled under MRC and has MRC weak ivars. 3444 /// Exclusive with CompiledByARC. 3445 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3446 }; 3447 3448 static bool hasWeakMember(QualType type) { 3449 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3450 return true; 3451 } 3452 3453 if (auto recType = type->getAs<RecordType>()) { 3454 for (auto field : recType->getDecl()->fields()) { 3455 if (hasWeakMember(field->getType())) 3456 return true; 3457 } 3458 } 3459 3460 return false; 3461 } 3462 3463 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3464 /// (and actually fill in a layout string) if we really do have any 3465 /// __weak ivars. 3466 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3467 const ObjCImplementationDecl *ID) { 3468 if (!CGM.getLangOpts().ObjCWeak) return false; 3469 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3470 3471 for (const ObjCIvarDecl *ivar = 3472 ID->getClassInterface()->all_declared_ivar_begin(); 3473 ivar; ivar = ivar->getNextIvar()) { 3474 if (hasWeakMember(ivar->getType())) 3475 return true; 3476 } 3477 3478 return false; 3479 } 3480 3481 /* 3482 struct _objc_class { 3483 Class isa; 3484 Class super_class; 3485 const char *name; 3486 long version; 3487 long info; 3488 long instance_size; 3489 struct _objc_ivar_list *ivars; 3490 struct _objc_method_list *methods; 3491 struct _objc_cache *cache; 3492 struct _objc_protocol_list *protocols; 3493 // Objective-C 1.0 extensions (<rdr://4585769>) 3494 const char *ivar_layout; 3495 struct _objc_class_ext *ext; 3496 }; 3497 3498 See EmitClassExtension(); 3499 */ 3500 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3501 IdentifierInfo *RuntimeName = 3502 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3503 DefinedSymbols.insert(RuntimeName); 3504 3505 std::string ClassName = ID->getNameAsString(); 3506 // FIXME: Gross 3507 ObjCInterfaceDecl *Interface = 3508 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3509 llvm::Constant *Protocols = 3510 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3511 Interface->all_referenced_protocol_begin(), 3512 Interface->all_referenced_protocol_end()); 3513 unsigned Flags = FragileABI_Class_Factory; 3514 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3515 Flags |= FragileABI_Class_HasCXXStructors; 3516 3517 bool hasMRCWeak = false; 3518 3519 if (CGM.getLangOpts().ObjCAutoRefCount) 3520 Flags |= FragileABI_Class_CompiledByARC; 3521 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3522 Flags |= FragileABI_Class_HasMRCWeakIvars; 3523 3524 CharUnits Size = 3525 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3526 3527 // FIXME: Set CXX-structors flag. 3528 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3529 Flags |= FragileABI_Class_Hidden; 3530 3531 enum { 3532 InstanceMethods, 3533 ClassMethods, 3534 NumMethodLists 3535 }; 3536 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3537 for (const auto *MD : ID->methods()) { 3538 if (!MD->isDirectMethod()) 3539 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3540 } 3541 3542 for (const auto *PID : ID->property_impls()) { 3543 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3544 if (PID->getPropertyDecl()->isDirectProperty()) 3545 continue; 3546 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3547 if (GetMethodDefinition(MD)) 3548 Methods[InstanceMethods].push_back(MD); 3549 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3550 if (GetMethodDefinition(MD)) 3551 Methods[InstanceMethods].push_back(MD); 3552 } 3553 } 3554 3555 ConstantInitBuilder builder(CGM); 3556 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3557 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3558 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3559 // Record a reference to the super class. 3560 LazySymbols.insert(Super->getIdentifier()); 3561 3562 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3563 ObjCTypes.ClassPtrTy); 3564 } else { 3565 values.addNullPointer(ObjCTypes.ClassPtrTy); 3566 } 3567 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3568 // Version is always 0. 3569 values.addInt(ObjCTypes.LongTy, 0); 3570 values.addInt(ObjCTypes.LongTy, Flags); 3571 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3572 values.add(EmitIvarList(ID, false)); 3573 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3574 Methods[InstanceMethods])); 3575 // cache is always NULL. 3576 values.addNullPointer(ObjCTypes.CachePtrTy); 3577 values.add(Protocols); 3578 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3579 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3580 /*isMetaclass*/ false)); 3581 3582 std::string Name("OBJC_CLASS_"); 3583 Name += ClassName; 3584 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3585 // Check for a forward reference. 3586 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3587 if (GV) { 3588 assert(GV->getValueType() == ObjCTypes.ClassTy && 3589 "Forward metaclass reference has incorrect type."); 3590 values.finishAndSetAsInitializer(GV); 3591 GV->setSection(Section); 3592 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3593 CGM.addCompilerUsedGlobal(GV); 3594 } else 3595 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3596 DefinedClasses.push_back(GV); 3597 ImplementedClasses.push_back(Interface); 3598 // method definition entries must be clear for next implementation. 3599 MethodDefinitions.clear(); 3600 } 3601 3602 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3603 llvm::Constant *Protocols, 3604 ArrayRef<const ObjCMethodDecl*> Methods) { 3605 unsigned Flags = FragileABI_Class_Meta; 3606 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3607 3608 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3609 Flags |= FragileABI_Class_Hidden; 3610 3611 ConstantInitBuilder builder(CGM); 3612 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3613 // The isa for the metaclass is the root of the hierarchy. 3614 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3615 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3616 Root = Super; 3617 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3618 ObjCTypes.ClassPtrTy); 3619 // The super class for the metaclass is emitted as the name of the 3620 // super class. The runtime fixes this up to point to the 3621 // *metaclass* for the super class. 3622 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3623 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3624 ObjCTypes.ClassPtrTy); 3625 } else { 3626 values.addNullPointer(ObjCTypes.ClassPtrTy); 3627 } 3628 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3629 // Version is always 0. 3630 values.addInt(ObjCTypes.LongTy, 0); 3631 values.addInt(ObjCTypes.LongTy, Flags); 3632 values.addInt(ObjCTypes.LongTy, Size); 3633 values.add(EmitIvarList(ID, true)); 3634 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3635 Methods)); 3636 // cache is always NULL. 3637 values.addNullPointer(ObjCTypes.CachePtrTy); 3638 values.add(Protocols); 3639 // ivar_layout for metaclass is always NULL. 3640 values.addNullPointer(ObjCTypes.Int8PtrTy); 3641 // The class extension is used to store class properties for metaclasses. 3642 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3643 /*isMetaclass*/true)); 3644 3645 std::string Name("OBJC_METACLASS_"); 3646 Name += ID->getName(); 3647 3648 // Check for a forward reference. 3649 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3650 if (GV) { 3651 assert(GV->getValueType() == ObjCTypes.ClassTy && 3652 "Forward metaclass reference has incorrect type."); 3653 values.finishAndSetAsInitializer(GV); 3654 } else { 3655 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3656 /*constant*/ false, 3657 llvm::GlobalValue::PrivateLinkage); 3658 } 3659 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3660 CGM.addCompilerUsedGlobal(GV); 3661 3662 return GV; 3663 } 3664 3665 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3666 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3667 3668 // FIXME: Should we look these up somewhere other than the module. Its a bit 3669 // silly since we only generate these while processing an implementation, so 3670 // exactly one pointer would work if know when we entered/exitted an 3671 // implementation block. 3672 3673 // Check for an existing forward reference. 3674 // Previously, metaclass with internal linkage may have been defined. 3675 // pass 'true' as 2nd argument so it is returned. 3676 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3677 if (!GV) 3678 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3679 llvm::GlobalValue::PrivateLinkage, nullptr, 3680 Name); 3681 3682 assert(GV->getValueType() == ObjCTypes.ClassTy && 3683 "Forward metaclass reference has incorrect type."); 3684 return GV; 3685 } 3686 3687 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3688 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3689 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3690 3691 if (!GV) 3692 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3693 llvm::GlobalValue::PrivateLinkage, nullptr, 3694 Name); 3695 3696 assert(GV->getValueType() == ObjCTypes.ClassTy && 3697 "Forward class metadata reference has incorrect type."); 3698 return GV; 3699 } 3700 3701 /* 3702 Emit a "class extension", which in this specific context means extra 3703 data that doesn't fit in the normal fragile-ABI class structure, and 3704 has nothing to do with the language concept of a class extension. 3705 3706 struct objc_class_ext { 3707 uint32_t size; 3708 const char *weak_ivar_layout; 3709 struct _objc_property_list *properties; 3710 }; 3711 */ 3712 llvm::Constant * 3713 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3714 CharUnits InstanceSize, bool hasMRCWeakIvars, 3715 bool isMetaclass) { 3716 // Weak ivar layout. 3717 llvm::Constant *layout; 3718 if (isMetaclass) { 3719 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3720 } else { 3721 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3722 hasMRCWeakIvars); 3723 } 3724 3725 // Properties. 3726 llvm::Constant *propertyList = 3727 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3728 : Twine("_OBJC_$_PROP_LIST_")) 3729 + ID->getName(), 3730 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3731 3732 // Return null if no extension bits are used. 3733 if (layout->isNullValue() && propertyList->isNullValue()) { 3734 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3735 } 3736 3737 uint64_t size = 3738 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3739 3740 ConstantInitBuilder builder(CGM); 3741 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3742 values.addInt(ObjCTypes.IntTy, size); 3743 values.add(layout); 3744 values.add(propertyList); 3745 3746 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3747 "__OBJC,__class_ext,regular,no_dead_strip", 3748 CGM.getPointerAlign(), true); 3749 } 3750 3751 /* 3752 struct objc_ivar { 3753 char *ivar_name; 3754 char *ivar_type; 3755 int ivar_offset; 3756 }; 3757 3758 struct objc_ivar_list { 3759 int ivar_count; 3760 struct objc_ivar list[count]; 3761 }; 3762 */ 3763 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3764 bool ForClass) { 3765 // When emitting the root class GCC emits ivar entries for the 3766 // actual class structure. It is not clear if we need to follow this 3767 // behavior; for now lets try and get away with not doing it. If so, 3768 // the cleanest solution would be to make up an ObjCInterfaceDecl 3769 // for the class. 3770 if (ForClass) 3771 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3772 3773 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3774 3775 ConstantInitBuilder builder(CGM); 3776 auto ivarList = builder.beginStruct(); 3777 auto countSlot = ivarList.addPlaceholder(); 3778 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3779 3780 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3781 IVD; IVD = IVD->getNextIvar()) { 3782 // Ignore unnamed bit-fields. 3783 if (!IVD->getDeclName()) 3784 continue; 3785 3786 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3787 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3788 ivar.add(GetMethodVarType(IVD)); 3789 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3790 ivar.finishAndAddTo(ivars); 3791 } 3792 3793 // Return null for empty list. 3794 auto count = ivars.size(); 3795 if (count == 0) { 3796 ivars.abandon(); 3797 ivarList.abandon(); 3798 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3799 } 3800 3801 ivars.finishAndAddTo(ivarList); 3802 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3803 3804 llvm::GlobalVariable *GV; 3805 if (ForClass) 3806 GV = 3807 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3808 "__OBJC,__class_vars,regular,no_dead_strip", 3809 CGM.getPointerAlign(), true); 3810 else 3811 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3812 "__OBJC,__instance_vars,regular,no_dead_strip", 3813 CGM.getPointerAlign(), true); 3814 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3815 } 3816 3817 /// Build a struct objc_method_description constant for the given method. 3818 /// 3819 /// struct objc_method_description { 3820 /// SEL method_name; 3821 /// char *method_types; 3822 /// }; 3823 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3824 const ObjCMethodDecl *MD) { 3825 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3826 description.addBitCast(GetMethodVarName(MD->getSelector()), 3827 ObjCTypes.SelectorPtrTy); 3828 description.add(GetMethodVarType(MD)); 3829 description.finishAndAddTo(builder); 3830 } 3831 3832 /// Build a struct objc_method constant for the given method. 3833 /// 3834 /// struct objc_method { 3835 /// SEL method_name; 3836 /// char *method_types; 3837 /// void *method; 3838 /// }; 3839 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3840 const ObjCMethodDecl *MD) { 3841 llvm::Function *fn = GetMethodDefinition(MD); 3842 assert(fn && "no definition registered for method"); 3843 3844 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3845 method.addBitCast(GetMethodVarName(MD->getSelector()), 3846 ObjCTypes.SelectorPtrTy); 3847 method.add(GetMethodVarType(MD)); 3848 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3849 method.finishAndAddTo(builder); 3850 } 3851 3852 /// Build a struct objc_method_list or struct objc_method_description_list, 3853 /// as appropriate. 3854 /// 3855 /// struct objc_method_list { 3856 /// struct objc_method_list *obsolete; 3857 /// int count; 3858 /// struct objc_method methods_list[count]; 3859 /// }; 3860 /// 3861 /// struct objc_method_description_list { 3862 /// int count; 3863 /// struct objc_method_description list[count]; 3864 /// }; 3865 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3866 ArrayRef<const ObjCMethodDecl *> methods) { 3867 StringRef prefix; 3868 StringRef section; 3869 bool forProtocol = false; 3870 switch (MLT) { 3871 case MethodListType::CategoryInstanceMethods: 3872 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3873 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3874 forProtocol = false; 3875 break; 3876 case MethodListType::CategoryClassMethods: 3877 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3878 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3879 forProtocol = false; 3880 break; 3881 case MethodListType::InstanceMethods: 3882 prefix = "OBJC_INSTANCE_METHODS_"; 3883 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3884 forProtocol = false; 3885 break; 3886 case MethodListType::ClassMethods: 3887 prefix = "OBJC_CLASS_METHODS_"; 3888 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3889 forProtocol = false; 3890 break; 3891 case MethodListType::ProtocolInstanceMethods: 3892 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3893 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3894 forProtocol = true; 3895 break; 3896 case MethodListType::ProtocolClassMethods: 3897 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3898 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3899 forProtocol = true; 3900 break; 3901 case MethodListType::OptionalProtocolInstanceMethods: 3902 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3903 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3904 forProtocol = true; 3905 break; 3906 case MethodListType::OptionalProtocolClassMethods: 3907 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3908 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3909 forProtocol = true; 3910 break; 3911 } 3912 3913 // Return null for empty list. 3914 if (methods.empty()) 3915 return llvm::Constant::getNullValue(forProtocol 3916 ? ObjCTypes.MethodDescriptionListPtrTy 3917 : ObjCTypes.MethodListPtrTy); 3918 3919 // For protocols, this is an objc_method_description_list, which has 3920 // a slightly different structure. 3921 if (forProtocol) { 3922 ConstantInitBuilder builder(CGM); 3923 auto values = builder.beginStruct(); 3924 values.addInt(ObjCTypes.IntTy, methods.size()); 3925 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3926 for (auto MD : methods) { 3927 emitMethodDescriptionConstant(methodArray, MD); 3928 } 3929 methodArray.finishAndAddTo(values); 3930 3931 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3932 CGM.getPointerAlign(), true); 3933 return llvm::ConstantExpr::getBitCast(GV, 3934 ObjCTypes.MethodDescriptionListPtrTy); 3935 } 3936 3937 // Otherwise, it's an objc_method_list. 3938 ConstantInitBuilder builder(CGM); 3939 auto values = builder.beginStruct(); 3940 values.addNullPointer(ObjCTypes.Int8PtrTy); 3941 values.addInt(ObjCTypes.IntTy, methods.size()); 3942 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3943 for (auto MD : methods) { 3944 if (!MD->isDirectMethod()) 3945 emitMethodConstant(methodArray, MD); 3946 } 3947 methodArray.finishAndAddTo(values); 3948 3949 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3950 CGM.getPointerAlign(), true); 3951 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3952 } 3953 3954 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3955 const ObjCContainerDecl *CD) { 3956 llvm::Function *Method; 3957 3958 if (OMD->isDirectMethod()) { 3959 Method = GenerateDirectMethod(OMD, CD); 3960 } else { 3961 auto Name = getSymbolNameForMethod(OMD); 3962 3963 CodeGenTypes &Types = CGM.getTypes(); 3964 llvm::FunctionType *MethodTy = 3965 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3966 Method = 3967 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 3968 Name, &CGM.getModule()); 3969 } 3970 3971 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3972 3973 return Method; 3974 } 3975 3976 llvm::Function * 3977 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 3978 const ObjCContainerDecl *CD) { 3979 auto *COMD = OMD->getCanonicalDecl(); 3980 auto I = DirectMethodDefinitions.find(COMD); 3981 llvm::Function *OldFn = nullptr, *Fn = nullptr; 3982 3983 if (I != DirectMethodDefinitions.end()) { 3984 // Objective-C allows for the declaration and implementation types 3985 // to differ slightly. 3986 // 3987 // If we're being asked for the Function associated for a method 3988 // implementation, a previous value might have been cached 3989 // based on the type of the canonical declaration. 3990 // 3991 // If these do not match, then we'll replace this function with 3992 // a new one that has the proper type below. 3993 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 3994 return I->second; 3995 OldFn = I->second; 3996 } 3997 3998 CodeGenTypes &Types = CGM.getTypes(); 3999 llvm::FunctionType *MethodTy = 4000 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4001 4002 if (OldFn) { 4003 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4004 "", &CGM.getModule()); 4005 Fn->takeName(OldFn); 4006 OldFn->replaceAllUsesWith( 4007 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4008 OldFn->eraseFromParent(); 4009 4010 // Replace the cached function in the map. 4011 I->second = Fn; 4012 } else { 4013 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 4014 4015 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4016 Name, &CGM.getModule()); 4017 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4018 } 4019 4020 return Fn; 4021 } 4022 4023 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4024 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4025 const ObjCContainerDecl *CD) { 4026 auto &Builder = CGF.Builder; 4027 bool ReceiverCanBeNull = true; 4028 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4029 auto selfValue = Builder.CreateLoad(selfAddr); 4030 4031 // Generate: 4032 // 4033 // /* for class methods only to force class lazy initialization */ 4034 // self = [self self]; 4035 // 4036 // /* unless the receiver is never NULL */ 4037 // if (self == nil) { 4038 // return (ReturnType){ }; 4039 // } 4040 // 4041 // _cmd = @selector(...) 4042 // ... 4043 4044 if (OMD->isClassMethod()) { 4045 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4046 assert(OID && 4047 "GenerateDirectMethod() should be called with the Class Interface"); 4048 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4049 auto ResultType = CGF.getContext().getObjCIdType(); 4050 RValue result; 4051 CallArgList Args; 4052 4053 // TODO: If this method is inlined, the caller might know that `self` is 4054 // already initialized; for example, it might be an ordinary Objective-C 4055 // method which always receives an initialized `self`, or it might have just 4056 // forced initialization on its own. 4057 // 4058 // We should find a way to eliminate this unnecessary initialization in such 4059 // cases in LLVM. 4060 result = GeneratePossiblySpecializedMessageSend( 4061 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4062 nullptr, true); 4063 Builder.CreateStore(result.getScalarVal(), selfAddr); 4064 4065 // Nullable `Class` expressions cannot be messaged with a direct method 4066 // so the only reason why the receive can be null would be because 4067 // of weak linking. 4068 ReceiverCanBeNull = isWeakLinkedClass(OID); 4069 } 4070 4071 if (ReceiverCanBeNull) { 4072 llvm::BasicBlock *SelfIsNilBlock = 4073 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4074 llvm::BasicBlock *ContBlock = 4075 CGF.createBasicBlock("objc_direct_method.cont"); 4076 4077 // if (self == nil) { 4078 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4079 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4080 4081 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4082 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4083 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4084 4085 CGF.EmitBlock(SelfIsNilBlock); 4086 4087 // return (ReturnType){ }; 4088 auto retTy = OMD->getReturnType(); 4089 Builder.SetInsertPoint(SelfIsNilBlock); 4090 if (!retTy->isVoidType()) { 4091 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4092 } 4093 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4094 // } 4095 4096 // rest of the body 4097 CGF.EmitBlock(ContBlock); 4098 Builder.SetInsertPoint(ContBlock); 4099 } 4100 4101 // only synthesize _cmd if it's referenced 4102 if (OMD->getCmdDecl()->isUsed()) { 4103 Builder.CreateStore(GetSelector(CGF, OMD), 4104 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4105 } 4106 } 4107 4108 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4109 ConstantStructBuilder &Init, 4110 StringRef Section, 4111 CharUnits Align, 4112 bool AddToUsed) { 4113 llvm::GlobalValue::LinkageTypes LT = 4114 getLinkageTypeForObjCMetadata(CGM, Section); 4115 llvm::GlobalVariable *GV = 4116 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4117 if (!Section.empty()) 4118 GV->setSection(Section); 4119 if (AddToUsed) 4120 CGM.addCompilerUsedGlobal(GV); 4121 return GV; 4122 } 4123 4124 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4125 llvm::Constant *Init, 4126 StringRef Section, 4127 CharUnits Align, 4128 bool AddToUsed) { 4129 llvm::Type *Ty = Init->getType(); 4130 llvm::GlobalValue::LinkageTypes LT = 4131 getLinkageTypeForObjCMetadata(CGM, Section); 4132 llvm::GlobalVariable *GV = 4133 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4134 if (!Section.empty()) 4135 GV->setSection(Section); 4136 GV->setAlignment(Align.getAsAlign()); 4137 if (AddToUsed) 4138 CGM.addCompilerUsedGlobal(GV); 4139 return GV; 4140 } 4141 4142 llvm::GlobalVariable * 4143 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4144 bool ForceNonFragileABI, 4145 bool NullTerminate) { 4146 StringRef Label; 4147 switch (Type) { 4148 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4149 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4150 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4151 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4152 } 4153 4154 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4155 4156 StringRef Section; 4157 switch (Type) { 4158 case ObjCLabelType::ClassName: 4159 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4160 : "__TEXT,__cstring,cstring_literals"; 4161 break; 4162 case ObjCLabelType::MethodVarName: 4163 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4164 : "__TEXT,__cstring,cstring_literals"; 4165 break; 4166 case ObjCLabelType::MethodVarType: 4167 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4168 : "__TEXT,__cstring,cstring_literals"; 4169 break; 4170 case ObjCLabelType::PropertyName: 4171 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4172 : "__TEXT,__cstring,cstring_literals"; 4173 break; 4174 } 4175 4176 llvm::Constant *Value = 4177 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4178 llvm::GlobalVariable *GV = 4179 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4180 /*isConstant=*/true, 4181 llvm::GlobalValue::PrivateLinkage, Value, Label); 4182 if (CGM.getTriple().isOSBinFormatMachO()) 4183 GV->setSection(Section); 4184 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4185 GV->setAlignment(CharUnits::One().getAsAlign()); 4186 CGM.addCompilerUsedGlobal(GV); 4187 4188 return GV; 4189 } 4190 4191 llvm::Function *CGObjCMac::ModuleInitFunction() { 4192 // Abuse this interface function as a place to finalize. 4193 FinishModule(); 4194 return nullptr; 4195 } 4196 4197 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4198 return ObjCTypes.getGetPropertyFn(); 4199 } 4200 4201 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4202 return ObjCTypes.getSetPropertyFn(); 4203 } 4204 4205 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4206 bool copy) { 4207 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4208 } 4209 4210 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4211 return ObjCTypes.getCopyStructFn(); 4212 } 4213 4214 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4215 return ObjCTypes.getCopyStructFn(); 4216 } 4217 4218 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4219 return ObjCTypes.getCppAtomicObjectFunction(); 4220 } 4221 4222 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4223 return ObjCTypes.getCppAtomicObjectFunction(); 4224 } 4225 4226 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4227 return ObjCTypes.getEnumerationMutationFn(); 4228 } 4229 4230 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4231 return EmitTryOrSynchronizedStmt(CGF, S); 4232 } 4233 4234 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4235 const ObjCAtSynchronizedStmt &S) { 4236 return EmitTryOrSynchronizedStmt(CGF, S); 4237 } 4238 4239 namespace { 4240 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4241 const Stmt &S; 4242 Address SyncArgSlot; 4243 Address CallTryExitVar; 4244 Address ExceptionData; 4245 ObjCTypesHelper &ObjCTypes; 4246 PerformFragileFinally(const Stmt *S, 4247 Address SyncArgSlot, 4248 Address CallTryExitVar, 4249 Address ExceptionData, 4250 ObjCTypesHelper *ObjCTypes) 4251 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4252 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4253 4254 void Emit(CodeGenFunction &CGF, Flags flags) override { 4255 // Check whether we need to call objc_exception_try_exit. 4256 // In optimized code, this branch will always be folded. 4257 llvm::BasicBlock *FinallyCallExit = 4258 CGF.createBasicBlock("finally.call_exit"); 4259 llvm::BasicBlock *FinallyNoCallExit = 4260 CGF.createBasicBlock("finally.no_call_exit"); 4261 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4262 FinallyCallExit, FinallyNoCallExit); 4263 4264 CGF.EmitBlock(FinallyCallExit); 4265 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4266 ExceptionData.getPointer()); 4267 4268 CGF.EmitBlock(FinallyNoCallExit); 4269 4270 if (isa<ObjCAtTryStmt>(S)) { 4271 if (const ObjCAtFinallyStmt* FinallyStmt = 4272 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4273 // Don't try to do the @finally if this is an EH cleanup. 4274 if (flags.isForEHCleanup()) return; 4275 4276 // Save the current cleanup destination in case there's 4277 // control flow inside the finally statement. 4278 llvm::Value *CurCleanupDest = 4279 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4280 4281 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4282 4283 if (CGF.HaveInsertPoint()) { 4284 CGF.Builder.CreateStore(CurCleanupDest, 4285 CGF.getNormalCleanupDestSlot()); 4286 } else { 4287 // Currently, the end of the cleanup must always exist. 4288 CGF.EnsureInsertPoint(); 4289 } 4290 } 4291 } else { 4292 // Emit objc_sync_exit(expr); as finally's sole statement for 4293 // @synchronized. 4294 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4295 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4296 } 4297 } 4298 }; 4299 4300 class FragileHazards { 4301 CodeGenFunction &CGF; 4302 SmallVector<llvm::Value*, 20> Locals; 4303 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4304 4305 llvm::InlineAsm *ReadHazard; 4306 llvm::InlineAsm *WriteHazard; 4307 4308 llvm::FunctionType *GetAsmFnType(); 4309 4310 void collectLocals(); 4311 void emitReadHazard(CGBuilderTy &Builder); 4312 4313 public: 4314 FragileHazards(CodeGenFunction &CGF); 4315 4316 void emitWriteHazard(); 4317 void emitHazardsInNewBlocks(); 4318 }; 4319 } // end anonymous namespace 4320 4321 /// Create the fragile-ABI read and write hazards based on the current 4322 /// state of the function, which is presumed to be immediately prior 4323 /// to a @try block. These hazards are used to maintain correct 4324 /// semantics in the face of optimization and the fragile ABI's 4325 /// cavalier use of setjmp/longjmp. 4326 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4327 collectLocals(); 4328 4329 if (Locals.empty()) return; 4330 4331 // Collect all the blocks in the function. 4332 for (llvm::Function::iterator 4333 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4334 BlocksBeforeTry.insert(&*I); 4335 4336 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4337 4338 // Create a read hazard for the allocas. This inhibits dead-store 4339 // optimizations and forces the values to memory. This hazard is 4340 // inserted before any 'throwing' calls in the protected scope to 4341 // reflect the possibility that the variables might be read from the 4342 // catch block if the call throws. 4343 { 4344 std::string Constraint; 4345 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4346 if (I) Constraint += ','; 4347 Constraint += "*m"; 4348 } 4349 4350 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4351 } 4352 4353 // Create a write hazard for the allocas. This inhibits folding 4354 // loads across the hazard. This hazard is inserted at the 4355 // beginning of the catch path to reflect the possibility that the 4356 // variables might have been written within the protected scope. 4357 { 4358 std::string Constraint; 4359 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4360 if (I) Constraint += ','; 4361 Constraint += "=*m"; 4362 } 4363 4364 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4365 } 4366 } 4367 4368 /// Emit a write hazard at the current location. 4369 void FragileHazards::emitWriteHazard() { 4370 if (Locals.empty()) return; 4371 4372 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4373 } 4374 4375 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4376 assert(!Locals.empty()); 4377 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4378 call->setDoesNotThrow(); 4379 call->setCallingConv(CGF.getRuntimeCC()); 4380 } 4381 4382 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4383 /// which have been inserted since the beginning of the try. 4384 void FragileHazards::emitHazardsInNewBlocks() { 4385 if (Locals.empty()) return; 4386 4387 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4388 4389 // Iterate through all blocks, skipping those prior to the try. 4390 for (llvm::Function::iterator 4391 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4392 llvm::BasicBlock &BB = *FI; 4393 if (BlocksBeforeTry.count(&BB)) continue; 4394 4395 // Walk through all the calls in the block. 4396 for (llvm::BasicBlock::iterator 4397 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4398 llvm::Instruction &I = *BI; 4399 4400 // Ignore instructions that aren't non-intrinsic calls. 4401 // These are the only calls that can possibly call longjmp. 4402 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4403 continue; 4404 if (isa<llvm::IntrinsicInst>(I)) 4405 continue; 4406 4407 // Ignore call sites marked nounwind. This may be questionable, 4408 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4409 if (cast<llvm::CallBase>(I).doesNotThrow()) 4410 continue; 4411 4412 // Insert a read hazard before the call. This will ensure that 4413 // any writes to the locals are performed before making the 4414 // call. If the call throws, then this is sufficient to 4415 // guarantee correctness as long as it doesn't also write to any 4416 // locals. 4417 Builder.SetInsertPoint(&BB, BI); 4418 emitReadHazard(Builder); 4419 } 4420 } 4421 } 4422 4423 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4424 if (V.isValid()) S.insert(V.getPointer()); 4425 } 4426 4427 void FragileHazards::collectLocals() { 4428 // Compute a set of allocas to ignore. 4429 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4430 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4431 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4432 4433 // Collect all the allocas currently in the function. This is 4434 // probably way too aggressive. 4435 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4436 for (llvm::BasicBlock::iterator 4437 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4438 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4439 Locals.push_back(&*I); 4440 } 4441 4442 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4443 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4444 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4445 tys[i] = Locals[i]->getType(); 4446 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4447 } 4448 4449 /* 4450 4451 Objective-C setjmp-longjmp (sjlj) Exception Handling 4452 -- 4453 4454 A catch buffer is a setjmp buffer plus: 4455 - a pointer to the exception that was caught 4456 - a pointer to the previous exception data buffer 4457 - two pointers of reserved storage 4458 Therefore catch buffers form a stack, with a pointer to the top 4459 of the stack kept in thread-local storage. 4460 4461 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4462 objc_exception_try_exit pops the given catch buffer, which is 4463 required to be the top of the EH stack. 4464 objc_exception_throw pops the top of the EH stack, writes the 4465 thrown exception into the appropriate field, and longjmps 4466 to the setjmp buffer. It crashes the process (with a printf 4467 and an abort()) if there are no catch buffers on the stack. 4468 objc_exception_extract just reads the exception pointer out of the 4469 catch buffer. 4470 4471 There's no reason an implementation couldn't use a light-weight 4472 setjmp here --- something like __builtin_setjmp, but API-compatible 4473 with the heavyweight setjmp. This will be more important if we ever 4474 want to implement correct ObjC/C++ exception interactions for the 4475 fragile ABI. 4476 4477 Note that for this use of setjmp/longjmp to be correct, we may need 4478 to mark some local variables volatile: if a non-volatile local 4479 variable is modified between the setjmp and the longjmp, it has 4480 indeterminate value. For the purposes of LLVM IR, it may be 4481 sufficient to make loads and stores within the @try (to variables 4482 declared outside the @try) volatile. This is necessary for 4483 optimized correctness, but is not currently being done; this is 4484 being tracked as rdar://problem/8160285 4485 4486 The basic framework for a @try-catch-finally is as follows: 4487 { 4488 objc_exception_data d; 4489 id _rethrow = null; 4490 bool _call_try_exit = true; 4491 4492 objc_exception_try_enter(&d); 4493 if (!setjmp(d.jmp_buf)) { 4494 ... try body ... 4495 } else { 4496 // exception path 4497 id _caught = objc_exception_extract(&d); 4498 4499 // enter new try scope for handlers 4500 if (!setjmp(d.jmp_buf)) { 4501 ... match exception and execute catch blocks ... 4502 4503 // fell off end, rethrow. 4504 _rethrow = _caught; 4505 ... jump-through-finally to finally_rethrow ... 4506 } else { 4507 // exception in catch block 4508 _rethrow = objc_exception_extract(&d); 4509 _call_try_exit = false; 4510 ... jump-through-finally to finally_rethrow ... 4511 } 4512 } 4513 ... jump-through-finally to finally_end ... 4514 4515 finally: 4516 if (_call_try_exit) 4517 objc_exception_try_exit(&d); 4518 4519 ... finally block .... 4520 ... dispatch to finally destination ... 4521 4522 finally_rethrow: 4523 objc_exception_throw(_rethrow); 4524 4525 finally_end: 4526 } 4527 4528 This framework differs slightly from the one gcc uses, in that gcc 4529 uses _rethrow to determine if objc_exception_try_exit should be called 4530 and if the object should be rethrown. This breaks in the face of 4531 throwing nil and introduces unnecessary branches. 4532 4533 We specialize this framework for a few particular circumstances: 4534 4535 - If there are no catch blocks, then we avoid emitting the second 4536 exception handling context. 4537 4538 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4539 e)) we avoid emitting the code to rethrow an uncaught exception. 4540 4541 - FIXME: If there is no @finally block we can do a few more 4542 simplifications. 4543 4544 Rethrows and Jumps-Through-Finally 4545 -- 4546 4547 '@throw;' is supported by pushing the currently-caught exception 4548 onto ObjCEHStack while the @catch blocks are emitted. 4549 4550 Branches through the @finally block are handled with an ordinary 4551 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4552 exceptions are not compatible with C++ exceptions, and this is 4553 hardly the only place where this will go wrong. 4554 4555 @synchronized(expr) { stmt; } is emitted as if it were: 4556 id synch_value = expr; 4557 objc_sync_enter(synch_value); 4558 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4559 */ 4560 4561 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4562 const Stmt &S) { 4563 bool isTry = isa<ObjCAtTryStmt>(S); 4564 4565 // A destination for the fall-through edges of the catch handlers to 4566 // jump to. 4567 CodeGenFunction::JumpDest FinallyEnd = 4568 CGF.getJumpDestInCurrentScope("finally.end"); 4569 4570 // A destination for the rethrow edge of the catch handlers to jump 4571 // to. 4572 CodeGenFunction::JumpDest FinallyRethrow = 4573 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4574 4575 // For @synchronized, call objc_sync_enter(sync.expr). The 4576 // evaluation of the expression must occur before we enter the 4577 // @synchronized. We can't avoid a temp here because we need the 4578 // value to be preserved. If the backend ever does liveness 4579 // correctly after setjmp, this will be unnecessary. 4580 Address SyncArgSlot = Address::invalid(); 4581 if (!isTry) { 4582 llvm::Value *SyncArg = 4583 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4584 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4585 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4586 4587 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4588 CGF.getPointerAlign(), "sync.arg"); 4589 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4590 } 4591 4592 // Allocate memory for the setjmp buffer. This needs to be kept 4593 // live throughout the try and catch blocks. 4594 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4595 CGF.getPointerAlign(), 4596 "exceptiondata.ptr"); 4597 4598 // Create the fragile hazards. Note that this will not capture any 4599 // of the allocas required for exception processing, but will 4600 // capture the current basic block (which extends all the way to the 4601 // setjmp call) as "before the @try". 4602 FragileHazards Hazards(CGF); 4603 4604 // Create a flag indicating whether the cleanup needs to call 4605 // objc_exception_try_exit. This is true except when 4606 // - no catches match and we're branching through the cleanup 4607 // just to rethrow the exception, or 4608 // - a catch matched and we're falling out of the catch handler. 4609 // The setjmp-safety rule here is that we should always store to this 4610 // variable in a place that dominates the branch through the cleanup 4611 // without passing through any setjmps. 4612 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4613 CharUnits::One(), 4614 "_call_try_exit"); 4615 4616 // A slot containing the exception to rethrow. Only needed when we 4617 // have both a @catch and a @finally. 4618 Address PropagatingExnVar = Address::invalid(); 4619 4620 // Push a normal cleanup to leave the try scope. 4621 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4622 SyncArgSlot, 4623 CallTryExitVar, 4624 ExceptionData, 4625 &ObjCTypes); 4626 4627 // Enter a try block: 4628 // - Call objc_exception_try_enter to push ExceptionData on top of 4629 // the EH stack. 4630 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4631 ExceptionData.getPointer()); 4632 4633 // - Call setjmp on the exception data buffer. 4634 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4635 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4636 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4637 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4638 "setjmp_buffer"); 4639 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4640 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4641 SetJmpResult->setCanReturnTwice(); 4642 4643 // If setjmp returned 0, enter the protected block; otherwise, 4644 // branch to the handler. 4645 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4646 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4647 llvm::Value *DidCatch = 4648 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4649 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4650 4651 // Emit the protected block. 4652 CGF.EmitBlock(TryBlock); 4653 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4654 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4655 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4656 4657 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4658 4659 // Emit the exception handler block. 4660 CGF.EmitBlock(TryHandler); 4661 4662 // Don't optimize loads of the in-scope locals across this point. 4663 Hazards.emitWriteHazard(); 4664 4665 // For a @synchronized (or a @try with no catches), just branch 4666 // through the cleanup to the rethrow block. 4667 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4668 // Tell the cleanup not to re-pop the exit. 4669 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4670 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4671 4672 // Otherwise, we have to match against the caught exceptions. 4673 } else { 4674 // Retrieve the exception object. We may emit multiple blocks but 4675 // nothing can cross this so the value is already in SSA form. 4676 llvm::CallInst *Caught = 4677 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4678 ExceptionData.getPointer(), "caught"); 4679 4680 // Push the exception to rethrow onto the EH value stack for the 4681 // benefit of any @throws in the handlers. 4682 CGF.ObjCEHValueStack.push_back(Caught); 4683 4684 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4685 4686 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4687 4688 llvm::BasicBlock *CatchBlock = nullptr; 4689 llvm::BasicBlock *CatchHandler = nullptr; 4690 if (HasFinally) { 4691 // Save the currently-propagating exception before 4692 // objc_exception_try_enter clears the exception slot. 4693 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4694 CGF.getPointerAlign(), 4695 "propagating_exception"); 4696 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4697 4698 // Enter a new exception try block (in case a @catch block 4699 // throws an exception). 4700 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4701 ExceptionData.getPointer()); 4702 4703 llvm::CallInst *SetJmpResult = 4704 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4705 SetJmpBuffer, "setjmp.result"); 4706 SetJmpResult->setCanReturnTwice(); 4707 4708 llvm::Value *Threw = 4709 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4710 4711 CatchBlock = CGF.createBasicBlock("catch"); 4712 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4713 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4714 4715 CGF.EmitBlock(CatchBlock); 4716 } 4717 4718 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4719 4720 // Handle catch list. As a special case we check if everything is 4721 // matched and avoid generating code for falling off the end if 4722 // so. 4723 bool AllMatched = false; 4724 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4725 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4726 4727 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4728 const ObjCObjectPointerType *OPT = nullptr; 4729 4730 // catch(...) always matches. 4731 if (!CatchParam) { 4732 AllMatched = true; 4733 } else { 4734 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4735 4736 // catch(id e) always matches under this ABI, since only 4737 // ObjC exceptions end up here in the first place. 4738 // FIXME: For the time being we also match id<X>; this should 4739 // be rejected by Sema instead. 4740 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4741 AllMatched = true; 4742 } 4743 4744 // If this is a catch-all, we don't need to test anything. 4745 if (AllMatched) { 4746 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4747 4748 if (CatchParam) { 4749 CGF.EmitAutoVarDecl(*CatchParam); 4750 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4751 4752 // These types work out because ConvertType(id) == i8*. 4753 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4754 } 4755 4756 CGF.EmitStmt(CatchStmt->getCatchBody()); 4757 4758 // The scope of the catch variable ends right here. 4759 CatchVarCleanups.ForceCleanup(); 4760 4761 CGF.EmitBranchThroughCleanup(FinallyEnd); 4762 break; 4763 } 4764 4765 assert(OPT && "Unexpected non-object pointer type in @catch"); 4766 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4767 4768 // FIXME: @catch (Class c) ? 4769 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4770 assert(IDecl && "Catch parameter must have Objective-C type!"); 4771 4772 // Check if the @catch block matches the exception object. 4773 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4774 4775 llvm::Value *matchArgs[] = { Class, Caught }; 4776 llvm::CallInst *Match = 4777 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4778 matchArgs, "match"); 4779 4780 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4781 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4782 4783 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4784 MatchedBlock, NextCatchBlock); 4785 4786 // Emit the @catch block. 4787 CGF.EmitBlock(MatchedBlock); 4788 4789 // Collect any cleanups for the catch variable. The scope lasts until 4790 // the end of the catch body. 4791 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4792 4793 CGF.EmitAutoVarDecl(*CatchParam); 4794 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4795 4796 // Initialize the catch variable. 4797 llvm::Value *Tmp = 4798 CGF.Builder.CreateBitCast(Caught, 4799 CGF.ConvertType(CatchParam->getType())); 4800 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4801 4802 CGF.EmitStmt(CatchStmt->getCatchBody()); 4803 4804 // We're done with the catch variable. 4805 CatchVarCleanups.ForceCleanup(); 4806 4807 CGF.EmitBranchThroughCleanup(FinallyEnd); 4808 4809 CGF.EmitBlock(NextCatchBlock); 4810 } 4811 4812 CGF.ObjCEHValueStack.pop_back(); 4813 4814 // If nothing wanted anything to do with the caught exception, 4815 // kill the extract call. 4816 if (Caught->use_empty()) 4817 Caught->eraseFromParent(); 4818 4819 if (!AllMatched) 4820 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4821 4822 if (HasFinally) { 4823 // Emit the exception handler for the @catch blocks. 4824 CGF.EmitBlock(CatchHandler); 4825 4826 // In theory we might now need a write hazard, but actually it's 4827 // unnecessary because there's no local-accessing code between 4828 // the try's write hazard and here. 4829 //Hazards.emitWriteHazard(); 4830 4831 // Extract the new exception and save it to the 4832 // propagating-exception slot. 4833 assert(PropagatingExnVar.isValid()); 4834 llvm::CallInst *NewCaught = 4835 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4836 ExceptionData.getPointer(), "caught"); 4837 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4838 4839 // Don't pop the catch handler; the throw already did. 4840 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4841 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4842 } 4843 } 4844 4845 // Insert read hazards as required in the new blocks. 4846 Hazards.emitHazardsInNewBlocks(); 4847 4848 // Pop the cleanup. 4849 CGF.Builder.restoreIP(TryFallthroughIP); 4850 if (CGF.HaveInsertPoint()) 4851 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4852 CGF.PopCleanupBlock(); 4853 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4854 4855 // Emit the rethrow block. 4856 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4857 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4858 if (CGF.HaveInsertPoint()) { 4859 // If we have a propagating-exception variable, check it. 4860 llvm::Value *PropagatingExn; 4861 if (PropagatingExnVar.isValid()) { 4862 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4863 4864 // Otherwise, just look in the buffer for the exception to throw. 4865 } else { 4866 llvm::CallInst *Caught = 4867 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4868 ExceptionData.getPointer()); 4869 PropagatingExn = Caught; 4870 } 4871 4872 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4873 PropagatingExn); 4874 CGF.Builder.CreateUnreachable(); 4875 } 4876 4877 CGF.Builder.restoreIP(SavedIP); 4878 } 4879 4880 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4881 const ObjCAtThrowStmt &S, 4882 bool ClearInsertionPoint) { 4883 llvm::Value *ExceptionAsObject; 4884 4885 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4886 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4887 ExceptionAsObject = 4888 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4889 } else { 4890 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4891 "Unexpected rethrow outside @catch block."); 4892 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4893 } 4894 4895 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4896 ->setDoesNotReturn(); 4897 CGF.Builder.CreateUnreachable(); 4898 4899 // Clear the insertion point to indicate we are in unreachable code. 4900 if (ClearInsertionPoint) 4901 CGF.Builder.ClearInsertionPoint(); 4902 } 4903 4904 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4905 /// object: objc_read_weak (id *src) 4906 /// 4907 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4908 Address AddrWeakObj) { 4909 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4910 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4911 ObjCTypes.PtrObjectPtrTy); 4912 llvm::Value *read_weak = 4913 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4914 AddrWeakObj.getPointer(), "weakread"); 4915 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4916 return read_weak; 4917 } 4918 4919 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4920 /// objc_assign_weak (id src, id *dst) 4921 /// 4922 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4923 llvm::Value *src, Address dst) { 4924 llvm::Type * SrcTy = src->getType(); 4925 if (!isa<llvm::PointerType>(SrcTy)) { 4926 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4927 assert(Size <= 8 && "does not support size > 8"); 4928 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4929 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4930 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4931 } 4932 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4933 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4934 llvm::Value *args[] = { src, dst.getPointer() }; 4935 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4936 args, "weakassign"); 4937 } 4938 4939 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4940 /// objc_assign_global (id src, id *dst) 4941 /// 4942 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4943 llvm::Value *src, Address dst, 4944 bool threadlocal) { 4945 llvm::Type * SrcTy = src->getType(); 4946 if (!isa<llvm::PointerType>(SrcTy)) { 4947 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4948 assert(Size <= 8 && "does not support size > 8"); 4949 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4950 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4951 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4952 } 4953 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4954 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4955 llvm::Value *args[] = { src, dst.getPointer() }; 4956 if (!threadlocal) 4957 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4958 args, "globalassign"); 4959 else 4960 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4961 args, "threadlocalassign"); 4962 } 4963 4964 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4965 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4966 /// 4967 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4968 llvm::Value *src, Address dst, 4969 llvm::Value *ivarOffset) { 4970 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4971 llvm::Type * SrcTy = src->getType(); 4972 if (!isa<llvm::PointerType>(SrcTy)) { 4973 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4974 assert(Size <= 8 && "does not support size > 8"); 4975 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4976 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4977 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4978 } 4979 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4980 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4981 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4982 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4983 } 4984 4985 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4986 /// objc_assign_strongCast (id src, id *dst) 4987 /// 4988 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4989 llvm::Value *src, Address dst) { 4990 llvm::Type * SrcTy = src->getType(); 4991 if (!isa<llvm::PointerType>(SrcTy)) { 4992 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4993 assert(Size <= 8 && "does not support size > 8"); 4994 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4995 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4996 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4997 } 4998 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4999 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5000 llvm::Value *args[] = { src, dst.getPointer() }; 5001 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5002 args, "strongassign"); 5003 } 5004 5005 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5006 Address DestPtr, 5007 Address SrcPtr, 5008 llvm::Value *size) { 5009 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5010 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5011 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5012 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5013 } 5014 5015 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5016 /// 5017 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5018 QualType ObjectTy, 5019 llvm::Value *BaseValue, 5020 const ObjCIvarDecl *Ivar, 5021 unsigned CVRQualifiers) { 5022 const ObjCInterfaceDecl *ID = 5023 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5024 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5025 EmitIvarOffset(CGF, ID, Ivar)); 5026 } 5027 5028 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5029 const ObjCInterfaceDecl *Interface, 5030 const ObjCIvarDecl *Ivar) { 5031 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5032 return llvm::ConstantInt::get( 5033 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5034 Offset); 5035 } 5036 5037 /* *** Private Interface *** */ 5038 5039 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5040 StringRef MachOAttributes) { 5041 switch (CGM.getTriple().getObjectFormat()) { 5042 case llvm::Triple::UnknownObjectFormat: 5043 llvm_unreachable("unexpected object file format"); 5044 case llvm::Triple::MachO: { 5045 if (MachOAttributes.empty()) 5046 return ("__DATA," + Section).str(); 5047 return ("__DATA," + Section + "," + MachOAttributes).str(); 5048 } 5049 case llvm::Triple::ELF: 5050 assert(Section.substr(0, 2) == "__" && 5051 "expected the name to begin with __"); 5052 return Section.substr(2).str(); 5053 case llvm::Triple::COFF: 5054 assert(Section.substr(0, 2) == "__" && 5055 "expected the name to begin with __"); 5056 return ("." + Section.substr(2) + "$B").str(); 5057 case llvm::Triple::Wasm: 5058 case llvm::Triple::GOFF: 5059 case llvm::Triple::XCOFF: 5060 llvm::report_fatal_error( 5061 "Objective-C support is unimplemented for object file format"); 5062 } 5063 5064 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5065 } 5066 5067 /// EmitImageInfo - Emit the image info marker used to encode some module 5068 /// level information. 5069 /// 5070 /// See: <rdr://4810609&4810587&4810587> 5071 /// struct IMAGE_INFO { 5072 /// unsigned version; 5073 /// unsigned flags; 5074 /// }; 5075 enum ImageInfoFlags { 5076 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5077 eImageInfo_GarbageCollected = (1 << 1), 5078 eImageInfo_GCOnly = (1 << 2), 5079 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5080 5081 // A flag indicating that the module has no instances of a @synthesize of a 5082 // superclass variable. <rdar://problem/6803242> 5083 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5084 eImageInfo_ImageIsSimulated = (1 << 5), 5085 eImageInfo_ClassProperties = (1 << 6) 5086 }; 5087 5088 void CGObjCCommonMac::EmitImageInfo() { 5089 unsigned version = 0; // Version is unused? 5090 std::string Section = 5091 (ObjCABI == 1) 5092 ? "__OBJC,__image_info,regular" 5093 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5094 5095 // Generate module-level named metadata to convey this information to the 5096 // linker and code-gen. 5097 llvm::Module &Mod = CGM.getModule(); 5098 5099 // Add the ObjC ABI version to the module flags. 5100 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5101 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5102 version); 5103 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5104 llvm::MDString::get(VMContext, Section)); 5105 5106 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5107 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5108 // Non-GC overrides those files which specify GC. 5109 Mod.addModuleFlag(llvm::Module::Error, 5110 "Objective-C Garbage Collection", 5111 llvm::ConstantInt::get(Int8Ty,0)); 5112 } else { 5113 // Add the ObjC garbage collection value. 5114 Mod.addModuleFlag(llvm::Module::Error, 5115 "Objective-C Garbage Collection", 5116 llvm::ConstantInt::get(Int8Ty, 5117 (uint8_t)eImageInfo_GarbageCollected)); 5118 5119 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5120 // Add the ObjC GC Only value. 5121 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5122 eImageInfo_GCOnly); 5123 5124 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5125 llvm::Metadata *Ops[2] = { 5126 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5127 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5128 Int8Ty, eImageInfo_GarbageCollected))}; 5129 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5130 llvm::MDNode::get(VMContext, Ops)); 5131 } 5132 } 5133 5134 // Indicate whether we're compiling this to run on a simulator. 5135 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5136 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5137 eImageInfo_ImageIsSimulated); 5138 5139 // Indicate whether we are generating class properties. 5140 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5141 eImageInfo_ClassProperties); 5142 } 5143 5144 // struct objc_module { 5145 // unsigned long version; 5146 // unsigned long size; 5147 // const char *name; 5148 // Symtab symtab; 5149 // }; 5150 5151 // FIXME: Get from somewhere 5152 static const int ModuleVersion = 7; 5153 5154 void CGObjCMac::EmitModuleInfo() { 5155 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5156 5157 ConstantInitBuilder builder(CGM); 5158 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5159 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5160 values.addInt(ObjCTypes.LongTy, Size); 5161 // This used to be the filename, now it is unused. <rdr://4327263> 5162 values.add(GetClassName(StringRef(""))); 5163 values.add(EmitModuleSymbols()); 5164 CreateMetadataVar("OBJC_MODULES", values, 5165 "__OBJC,__module_info,regular,no_dead_strip", 5166 CGM.getPointerAlign(), true); 5167 } 5168 5169 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5170 unsigned NumClasses = DefinedClasses.size(); 5171 unsigned NumCategories = DefinedCategories.size(); 5172 5173 // Return null if no symbols were defined. 5174 if (!NumClasses && !NumCategories) 5175 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5176 5177 ConstantInitBuilder builder(CGM); 5178 auto values = builder.beginStruct(); 5179 values.addInt(ObjCTypes.LongTy, 0); 5180 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5181 values.addInt(ObjCTypes.ShortTy, NumClasses); 5182 values.addInt(ObjCTypes.ShortTy, NumCategories); 5183 5184 // The runtime expects exactly the list of defined classes followed 5185 // by the list of defined categories, in a single array. 5186 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5187 for (unsigned i=0; i<NumClasses; i++) { 5188 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5189 assert(ID); 5190 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5191 // We are implementing a weak imported interface. Give it external linkage 5192 if (ID->isWeakImported() && !IMP->isWeakImported()) 5193 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5194 5195 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5196 } 5197 for (unsigned i=0; i<NumCategories; i++) 5198 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5199 5200 array.finishAndAddTo(values); 5201 5202 llvm::GlobalVariable *GV = CreateMetadataVar( 5203 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5204 CGM.getPointerAlign(), true); 5205 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5206 } 5207 5208 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5209 IdentifierInfo *II) { 5210 LazySymbols.insert(II); 5211 5212 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5213 5214 if (!Entry) { 5215 llvm::Constant *Casted = 5216 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5217 ObjCTypes.ClassPtrTy); 5218 Entry = CreateMetadataVar( 5219 "OBJC_CLASS_REFERENCES_", Casted, 5220 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5221 CGM.getPointerAlign(), true); 5222 } 5223 5224 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, 5225 CGF.getPointerAlign()); 5226 } 5227 5228 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5229 const ObjCInterfaceDecl *ID) { 5230 // If the class has the objc_runtime_visible attribute, we need to 5231 // use the Objective-C runtime to get the class. 5232 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5233 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5234 5235 IdentifierInfo *RuntimeName = 5236 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5237 return EmitClassRefFromId(CGF, RuntimeName); 5238 } 5239 5240 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5241 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5242 return EmitClassRefFromId(CGF, II); 5243 } 5244 5245 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5246 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5247 } 5248 5249 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5250 CharUnits Align = CGM.getPointerAlign(); 5251 5252 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5253 if (!Entry) { 5254 llvm::Constant *Casted = 5255 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5256 ObjCTypes.SelectorPtrTy); 5257 Entry = CreateMetadataVar( 5258 "OBJC_SELECTOR_REFERENCES_", Casted, 5259 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5260 Entry->setExternallyInitialized(true); 5261 } 5262 5263 return Address(Entry, Align); 5264 } 5265 5266 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5267 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5268 if (!Entry) 5269 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5270 return getConstantGEP(VMContext, Entry, 0, 0); 5271 } 5272 5273 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5274 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5275 I = MethodDefinitions.find(MD); 5276 if (I != MethodDefinitions.end()) 5277 return I->second; 5278 5279 return nullptr; 5280 } 5281 5282 /// GetIvarLayoutName - Returns a unique constant for the given 5283 /// ivar layout bitmap. 5284 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5285 const ObjCCommonTypesHelper &ObjCTypes) { 5286 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5287 } 5288 5289 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5290 CharUnits offset) { 5291 const RecordDecl *RD = RT->getDecl(); 5292 5293 // If this is a union, remember that we had one, because it might mess 5294 // up the ordering of layout entries. 5295 if (RD->isUnion()) 5296 IsDisordered = true; 5297 5298 const ASTRecordLayout *recLayout = nullptr; 5299 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5300 [&](const FieldDecl *field) -> CharUnits { 5301 if (!recLayout) 5302 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5303 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5304 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5305 }); 5306 } 5307 5308 template <class Iterator, class GetOffsetFn> 5309 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5310 CharUnits aggregateOffset, 5311 const GetOffsetFn &getOffset) { 5312 for (; begin != end; ++begin) { 5313 auto field = *begin; 5314 5315 // Skip over bitfields. 5316 if (field->isBitField()) { 5317 continue; 5318 } 5319 5320 // Compute the offset of the field within the aggregate. 5321 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5322 5323 visitField(field, fieldOffset); 5324 } 5325 } 5326 5327 /// Collect layout information for the given fields into IvarsInfo. 5328 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5329 CharUnits fieldOffset) { 5330 QualType fieldType = field->getType(); 5331 5332 // Drill down into arrays. 5333 uint64_t numElts = 1; 5334 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5335 numElts = 0; 5336 fieldType = arrayType->getElementType(); 5337 } 5338 // Unlike incomplete arrays, constant arrays can be nested. 5339 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5340 numElts *= arrayType->getSize().getZExtValue(); 5341 fieldType = arrayType->getElementType(); 5342 } 5343 5344 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5345 5346 // If we ended up with a zero-sized array, we've done what we can do within 5347 // the limits of this layout encoding. 5348 if (numElts == 0) return; 5349 5350 // Recurse if the base element type is a record type. 5351 if (auto recType = fieldType->getAs<RecordType>()) { 5352 size_t oldEnd = IvarsInfo.size(); 5353 5354 visitRecord(recType, fieldOffset); 5355 5356 // If we have an array, replicate the first entry's layout information. 5357 auto numEltEntries = IvarsInfo.size() - oldEnd; 5358 if (numElts != 1 && numEltEntries != 0) { 5359 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5360 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5361 // Copy the last numEltEntries onto the end of the array, adjusting 5362 // each for the element size. 5363 for (size_t i = 0; i != numEltEntries; ++i) { 5364 auto firstEntry = IvarsInfo[oldEnd + i]; 5365 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5366 firstEntry.SizeInWords)); 5367 } 5368 } 5369 } 5370 5371 return; 5372 } 5373 5374 // Classify the element type. 5375 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5376 5377 // If it matches what we're looking for, add an entry. 5378 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5379 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5380 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5381 == CGM.getPointerSize()); 5382 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5383 } 5384 } 5385 5386 /// buildBitmap - This routine does the horsework of taking the offsets of 5387 /// strong/weak references and creating a bitmap. The bitmap is also 5388 /// returned in the given buffer, suitable for being passed to \c dump(). 5389 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5390 llvm::SmallVectorImpl<unsigned char> &buffer) { 5391 // The bitmap is a series of skip/scan instructions, aligned to word 5392 // boundaries. The skip is performed first. 5393 const unsigned char MaxNibble = 0xF; 5394 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5395 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5396 5397 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5398 5399 // Sort the ivar info on byte position in case we encounterred a 5400 // union nested in the ivar list. 5401 if (IsDisordered) { 5402 // This isn't a stable sort, but our algorithm should handle it fine. 5403 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5404 } else { 5405 assert(llvm::is_sorted(IvarsInfo)); 5406 } 5407 assert(IvarsInfo.back().Offset < InstanceEnd); 5408 5409 assert(buffer.empty()); 5410 5411 // Skip the next N words. 5412 auto skip = [&](unsigned numWords) { 5413 assert(numWords > 0); 5414 5415 // Try to merge into the previous byte. Since scans happen second, we 5416 // can't do this if it includes a scan. 5417 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5418 unsigned lastSkip = buffer.back() >> SkipShift; 5419 if (lastSkip < MaxNibble) { 5420 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5421 numWords -= claimed; 5422 lastSkip += claimed; 5423 buffer.back() = (lastSkip << SkipShift); 5424 } 5425 } 5426 5427 while (numWords >= MaxNibble) { 5428 buffer.push_back(MaxNibble << SkipShift); 5429 numWords -= MaxNibble; 5430 } 5431 if (numWords) { 5432 buffer.push_back(numWords << SkipShift); 5433 } 5434 }; 5435 5436 // Scan the next N words. 5437 auto scan = [&](unsigned numWords) { 5438 assert(numWords > 0); 5439 5440 // Try to merge into the previous byte. Since scans happen second, we can 5441 // do this even if it includes a skip. 5442 if (!buffer.empty()) { 5443 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5444 if (lastScan < MaxNibble) { 5445 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5446 numWords -= claimed; 5447 lastScan += claimed; 5448 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5449 } 5450 } 5451 5452 while (numWords >= MaxNibble) { 5453 buffer.push_back(MaxNibble << ScanShift); 5454 numWords -= MaxNibble; 5455 } 5456 if (numWords) { 5457 buffer.push_back(numWords << ScanShift); 5458 } 5459 }; 5460 5461 // One past the end of the last scan. 5462 unsigned endOfLastScanInWords = 0; 5463 const CharUnits WordSize = CGM.getPointerSize(); 5464 5465 // Consider all the scan requests. 5466 for (auto &request : IvarsInfo) { 5467 CharUnits beginOfScan = request.Offset - InstanceBegin; 5468 5469 // Ignore scan requests that don't start at an even multiple of the 5470 // word size. We can't encode them. 5471 if ((beginOfScan % WordSize) != 0) continue; 5472 5473 // Ignore scan requests that start before the instance start. 5474 // This assumes that scans never span that boundary. The boundary 5475 // isn't the true start of the ivars, because in the fragile-ARC case 5476 // it's rounded up to word alignment, but the test above should leave 5477 // us ignoring that possibility. 5478 if (beginOfScan.isNegative()) { 5479 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5480 continue; 5481 } 5482 5483 unsigned beginOfScanInWords = beginOfScan / WordSize; 5484 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5485 5486 // If the scan starts some number of words after the last one ended, 5487 // skip forward. 5488 if (beginOfScanInWords > endOfLastScanInWords) { 5489 skip(beginOfScanInWords - endOfLastScanInWords); 5490 5491 // Otherwise, start scanning where the last left off. 5492 } else { 5493 beginOfScanInWords = endOfLastScanInWords; 5494 5495 // If that leaves us with nothing to scan, ignore this request. 5496 if (beginOfScanInWords >= endOfScanInWords) continue; 5497 } 5498 5499 // Scan to the end of the request. 5500 assert(beginOfScanInWords < endOfScanInWords); 5501 scan(endOfScanInWords - beginOfScanInWords); 5502 endOfLastScanInWords = endOfScanInWords; 5503 } 5504 5505 if (buffer.empty()) 5506 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5507 5508 // For GC layouts, emit a skip to the end of the allocation so that we 5509 // have precise information about the entire thing. This isn't useful 5510 // or necessary for the ARC-style layout strings. 5511 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5512 unsigned lastOffsetInWords = 5513 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5514 if (lastOffsetInWords > endOfLastScanInWords) { 5515 skip(lastOffsetInWords - endOfLastScanInWords); 5516 } 5517 } 5518 5519 // Null terminate the string. 5520 buffer.push_back(0); 5521 5522 auto *Entry = CGObjC.CreateCStringLiteral( 5523 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5524 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5525 } 5526 5527 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5528 /// implementation for the __strong or __weak case. 5529 /// The layout map displays which words in ivar list must be skipped 5530 /// and which must be scanned by GC (see below). String is built of bytes. 5531 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5532 /// of words to skip and right nibble is count of words to scan. So, each 5533 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5534 /// represented by a 0x00 byte which also ends the string. 5535 /// 1. when ForStrongLayout is true, following ivars are scanned: 5536 /// - id, Class 5537 /// - object * 5538 /// - __strong anything 5539 /// 5540 /// 2. When ForStrongLayout is false, following ivars are scanned: 5541 /// - __weak anything 5542 /// 5543 llvm::Constant * 5544 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5545 CharUnits beginOffset, CharUnits endOffset, 5546 bool ForStrongLayout, bool HasMRCWeakIvars) { 5547 // If this is MRC, and we're either building a strong layout or there 5548 // are no weak ivars, bail out early. 5549 llvm::Type *PtrTy = CGM.Int8PtrTy; 5550 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5551 !CGM.getLangOpts().ObjCAutoRefCount && 5552 (ForStrongLayout || !HasMRCWeakIvars)) 5553 return llvm::Constant::getNullValue(PtrTy); 5554 5555 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5556 SmallVector<const ObjCIvarDecl*, 32> ivars; 5557 5558 // GC layout strings include the complete object layout, possibly 5559 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5560 // up. 5561 // 5562 // ARC layout strings only include the class's ivars. In non-fragile 5563 // runtimes, that means starting at InstanceStart, rounded up to word 5564 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5565 // starting at the offset of the first ivar, rounded up to word alignment. 5566 // 5567 // MRC weak layout strings follow the ARC style. 5568 CharUnits baseOffset; 5569 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5570 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5571 IVD; IVD = IVD->getNextIvar()) 5572 ivars.push_back(IVD); 5573 5574 if (isNonFragileABI()) { 5575 baseOffset = beginOffset; // InstanceStart 5576 } else if (!ivars.empty()) { 5577 baseOffset = 5578 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5579 } else { 5580 baseOffset = CharUnits::Zero(); 5581 } 5582 5583 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5584 } 5585 else { 5586 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5587 5588 baseOffset = CharUnits::Zero(); 5589 } 5590 5591 if (ivars.empty()) 5592 return llvm::Constant::getNullValue(PtrTy); 5593 5594 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5595 5596 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5597 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5598 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5599 }); 5600 5601 if (!builder.hasBitmapData()) 5602 return llvm::Constant::getNullValue(PtrTy); 5603 5604 llvm::SmallVector<unsigned char, 4> buffer; 5605 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5606 5607 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5608 printf("\n%s ivar layout for class '%s': ", 5609 ForStrongLayout ? "strong" : "weak", 5610 OMD->getClassInterface()->getName().str().c_str()); 5611 builder.dump(buffer); 5612 } 5613 return C; 5614 } 5615 5616 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5617 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5618 // FIXME: Avoid std::string in "Sel.getAsString()" 5619 if (!Entry) 5620 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5621 return getConstantGEP(VMContext, Entry, 0, 0); 5622 } 5623 5624 // FIXME: Merge into a single cstring creation function. 5625 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5626 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5627 } 5628 5629 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5630 std::string TypeStr; 5631 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5632 5633 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5634 if (!Entry) 5635 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5636 return getConstantGEP(VMContext, Entry, 0, 0); 5637 } 5638 5639 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5640 bool Extended) { 5641 std::string TypeStr = 5642 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5643 5644 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5645 if (!Entry) 5646 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5647 return getConstantGEP(VMContext, Entry, 0, 0); 5648 } 5649 5650 // FIXME: Merge into a single cstring creation function. 5651 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5652 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5653 if (!Entry) 5654 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5655 return getConstantGEP(VMContext, Entry, 0, 0); 5656 } 5657 5658 // FIXME: Merge into a single cstring creation function. 5659 // FIXME: This Decl should be more precise. 5660 llvm::Constant * 5661 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5662 const Decl *Container) { 5663 std::string TypeStr = 5664 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5665 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5666 } 5667 5668 void CGObjCMac::FinishModule() { 5669 EmitModuleInfo(); 5670 5671 // Emit the dummy bodies for any protocols which were referenced but 5672 // never defined. 5673 for (auto &entry : Protocols) { 5674 llvm::GlobalVariable *global = entry.second; 5675 if (global->hasInitializer()) 5676 continue; 5677 5678 ConstantInitBuilder builder(CGM); 5679 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5680 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5681 values.add(GetClassName(entry.first->getName())); 5682 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5683 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5684 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5685 values.finishAndSetAsInitializer(global); 5686 CGM.addCompilerUsedGlobal(global); 5687 } 5688 5689 // Add assembler directives to add lazy undefined symbol references 5690 // for classes which are referenced but not defined. This is 5691 // important for correct linker interaction. 5692 // 5693 // FIXME: It would be nice if we had an LLVM construct for this. 5694 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5695 CGM.getTriple().isOSBinFormatMachO()) { 5696 SmallString<256> Asm; 5697 Asm += CGM.getModule().getModuleInlineAsm(); 5698 if (!Asm.empty() && Asm.back() != '\n') 5699 Asm += '\n'; 5700 5701 llvm::raw_svector_ostream OS(Asm); 5702 for (const auto *Sym : DefinedSymbols) 5703 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5704 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5705 for (const auto *Sym : LazySymbols) 5706 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5707 for (const auto &Category : DefinedCategoryNames) 5708 OS << "\t.objc_category_name_" << Category << "=0\n" 5709 << "\t.globl .objc_category_name_" << Category << "\n"; 5710 5711 CGM.getModule().setModuleInlineAsm(OS.str()); 5712 } 5713 } 5714 5715 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5716 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5717 ObjCEmptyVtableVar(nullptr) { 5718 ObjCABI = 2; 5719 } 5720 5721 /* *** */ 5722 5723 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5724 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5725 { 5726 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5727 ASTContext &Ctx = CGM.getContext(); 5728 5729 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5730 IntTy = CGM.IntTy; 5731 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5732 Int8PtrTy = CGM.Int8PtrTy; 5733 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5734 5735 // arm64 targets use "int" ivar offset variables. All others, 5736 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5737 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5738 IvarOffsetVarTy = IntTy; 5739 else 5740 IvarOffsetVarTy = LongTy; 5741 5742 ObjectPtrTy = 5743 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5744 PtrObjectPtrTy = 5745 llvm::PointerType::getUnqual(ObjectPtrTy); 5746 SelectorPtrTy = 5747 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5748 5749 // I'm not sure I like this. The implicit coordination is a bit 5750 // gross. We should solve this in a reasonable fashion because this 5751 // is a pretty common task (match some runtime data structure with 5752 // an LLVM data structure). 5753 5754 // FIXME: This is leaked. 5755 // FIXME: Merge with rewriter code? 5756 5757 // struct _objc_super { 5758 // id self; 5759 // Class cls; 5760 // } 5761 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5762 Ctx.getTranslationUnitDecl(), 5763 SourceLocation(), SourceLocation(), 5764 &Ctx.Idents.get("_objc_super")); 5765 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5766 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5767 false, ICIS_NoInit)); 5768 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5769 nullptr, Ctx.getObjCClassType(), nullptr, 5770 nullptr, false, ICIS_NoInit)); 5771 RD->completeDefinition(); 5772 5773 SuperCTy = Ctx.getTagDeclType(RD); 5774 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5775 5776 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5777 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5778 5779 // struct _prop_t { 5780 // char *name; 5781 // char *attributes; 5782 // } 5783 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5784 5785 // struct _prop_list_t { 5786 // uint32_t entsize; // sizeof(struct _prop_t) 5787 // uint32_t count_of_properties; 5788 // struct _prop_t prop_list[count_of_properties]; 5789 // } 5790 PropertyListTy = llvm::StructType::create( 5791 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5792 // struct _prop_list_t * 5793 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5794 5795 // struct _objc_method { 5796 // SEL _cmd; 5797 // char *method_type; 5798 // char *_imp; 5799 // } 5800 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5801 Int8PtrTy, Int8PtrTy); 5802 5803 // struct _objc_cache * 5804 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5805 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5806 } 5807 5808 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5809 : ObjCCommonTypesHelper(cgm) { 5810 // struct _objc_method_description { 5811 // SEL name; 5812 // char *types; 5813 // } 5814 MethodDescriptionTy = llvm::StructType::create( 5815 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5816 5817 // struct _objc_method_description_list { 5818 // int count; 5819 // struct _objc_method_description[1]; 5820 // } 5821 MethodDescriptionListTy = 5822 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5823 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5824 5825 // struct _objc_method_description_list * 5826 MethodDescriptionListPtrTy = 5827 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5828 5829 // Protocol description structures 5830 5831 // struct _objc_protocol_extension { 5832 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5833 // struct _objc_method_description_list *optional_instance_methods; 5834 // struct _objc_method_description_list *optional_class_methods; 5835 // struct _objc_property_list *instance_properties; 5836 // const char ** extendedMethodTypes; 5837 // struct _objc_property_list *class_properties; 5838 // } 5839 ProtocolExtensionTy = llvm::StructType::create( 5840 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5841 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5842 PropertyListPtrTy); 5843 5844 // struct _objc_protocol_extension * 5845 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5846 5847 // Handle recursive construction of Protocol and ProtocolList types 5848 5849 ProtocolTy = 5850 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5851 5852 ProtocolListTy = 5853 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5854 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5855 llvm::ArrayType::get(ProtocolTy, 0)); 5856 5857 // struct _objc_protocol { 5858 // struct _objc_protocol_extension *isa; 5859 // char *protocol_name; 5860 // struct _objc_protocol **_objc_protocol_list; 5861 // struct _objc_method_description_list *instance_methods; 5862 // struct _objc_method_description_list *class_methods; 5863 // } 5864 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5865 llvm::PointerType::getUnqual(ProtocolListTy), 5866 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5867 5868 // struct _objc_protocol_list * 5869 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5870 5871 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5872 5873 // Class description structures 5874 5875 // struct _objc_ivar { 5876 // char *ivar_name; 5877 // char *ivar_type; 5878 // int ivar_offset; 5879 // } 5880 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5881 IntTy); 5882 5883 // struct _objc_ivar_list * 5884 IvarListTy = 5885 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5886 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5887 5888 // struct _objc_method_list * 5889 MethodListTy = 5890 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5891 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5892 5893 // struct _objc_class_extension * 5894 ClassExtensionTy = llvm::StructType::create( 5895 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5896 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5897 5898 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5899 5900 // struct _objc_class { 5901 // Class isa; 5902 // Class super_class; 5903 // char *name; 5904 // long version; 5905 // long info; 5906 // long instance_size; 5907 // struct _objc_ivar_list *ivars; 5908 // struct _objc_method_list *methods; 5909 // struct _objc_cache *cache; 5910 // struct _objc_protocol_list *protocols; 5911 // char *ivar_layout; 5912 // struct _objc_class_ext *ext; 5913 // }; 5914 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5915 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5916 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5917 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5918 5919 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5920 5921 // struct _objc_category { 5922 // char *category_name; 5923 // char *class_name; 5924 // struct _objc_method_list *instance_method; 5925 // struct _objc_method_list *class_method; 5926 // struct _objc_protocol_list *protocols; 5927 // uint32_t size; // sizeof(struct _objc_category) 5928 // struct _objc_property_list *instance_properties;// category's @property 5929 // struct _objc_property_list *class_properties; 5930 // } 5931 CategoryTy = llvm::StructType::create( 5932 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5933 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5934 PropertyListPtrTy); 5935 5936 // Global metadata structures 5937 5938 // struct _objc_symtab { 5939 // long sel_ref_cnt; 5940 // SEL *refs; 5941 // short cls_def_cnt; 5942 // short cat_def_cnt; 5943 // char *defs[cls_def_cnt + cat_def_cnt]; 5944 // } 5945 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5946 SelectorPtrTy, ShortTy, ShortTy, 5947 llvm::ArrayType::get(Int8PtrTy, 0)); 5948 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5949 5950 // struct _objc_module { 5951 // long version; 5952 // long size; // sizeof(struct _objc_module) 5953 // char *name; 5954 // struct _objc_symtab* symtab; 5955 // } 5956 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5957 Int8PtrTy, SymtabPtrTy); 5958 5959 // FIXME: This is the size of the setjmp buffer and should be target 5960 // specific. 18 is what's used on 32-bit X86. 5961 uint64_t SetJmpBufferSize = 18; 5962 5963 // Exceptions 5964 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5965 5966 ExceptionDataTy = llvm::StructType::create( 5967 "struct._objc_exception_data", 5968 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5969 } 5970 5971 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5972 : ObjCCommonTypesHelper(cgm) { 5973 // struct _method_list_t { 5974 // uint32_t entsize; // sizeof(struct _objc_method) 5975 // uint32_t method_count; 5976 // struct _objc_method method_list[method_count]; 5977 // } 5978 MethodListnfABITy = 5979 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5980 llvm::ArrayType::get(MethodTy, 0)); 5981 // struct method_list_t * 5982 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5983 5984 // struct _protocol_t { 5985 // id isa; // NULL 5986 // const char * const protocol_name; 5987 // const struct _protocol_list_t * protocol_list; // super protocols 5988 // const struct method_list_t * const instance_methods; 5989 // const struct method_list_t * const class_methods; 5990 // const struct method_list_t *optionalInstanceMethods; 5991 // const struct method_list_t *optionalClassMethods; 5992 // const struct _prop_list_t * properties; 5993 // const uint32_t size; // sizeof(struct _protocol_t) 5994 // const uint32_t flags; // = 0 5995 // const char ** extendedMethodTypes; 5996 // const char *demangledName; 5997 // const struct _prop_list_t * class_properties; 5998 // } 5999 6000 // Holder for struct _protocol_list_t * 6001 ProtocolListnfABITy = 6002 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6003 6004 ProtocolnfABITy = llvm::StructType::create( 6005 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6006 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6007 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6008 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6009 PropertyListPtrTy); 6010 6011 // struct _protocol_t* 6012 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6013 6014 // struct _protocol_list_t { 6015 // long protocol_count; // Note, this is 32/64 bit 6016 // struct _protocol_t *[protocol_count]; 6017 // } 6018 ProtocolListnfABITy->setBody(LongTy, 6019 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6020 6021 // struct _objc_protocol_list* 6022 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6023 6024 // struct _ivar_t { 6025 // unsigned [long] int *offset; // pointer to ivar offset location 6026 // char *name; 6027 // char *type; 6028 // uint32_t alignment; 6029 // uint32_t size; 6030 // } 6031 IvarnfABITy = llvm::StructType::create( 6032 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6033 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6034 6035 // struct _ivar_list_t { 6036 // uint32 entsize; // sizeof(struct _ivar_t) 6037 // uint32 count; 6038 // struct _iver_t list[count]; 6039 // } 6040 IvarListnfABITy = 6041 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6042 llvm::ArrayType::get(IvarnfABITy, 0)); 6043 6044 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6045 6046 // struct _class_ro_t { 6047 // uint32_t const flags; 6048 // uint32_t const instanceStart; 6049 // uint32_t const instanceSize; 6050 // uint32_t const reserved; // only when building for 64bit targets 6051 // const uint8_t * const ivarLayout; 6052 // const char *const name; 6053 // const struct _method_list_t * const baseMethods; 6054 // const struct _objc_protocol_list *const baseProtocols; 6055 // const struct _ivar_list_t *const ivars; 6056 // const uint8_t * const weakIvarLayout; 6057 // const struct _prop_list_t * const properties; 6058 // } 6059 6060 // FIXME. Add 'reserved' field in 64bit abi mode! 6061 ClassRonfABITy = llvm::StructType::create( 6062 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6063 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6064 Int8PtrTy, PropertyListPtrTy); 6065 6066 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6067 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6068 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6069 ->getPointerTo(); 6070 6071 // struct _class_t { 6072 // struct _class_t *isa; 6073 // struct _class_t * const superclass; 6074 // void *cache; 6075 // IMP *vtable; 6076 // struct class_ro_t *ro; 6077 // } 6078 6079 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6080 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6081 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6082 llvm::PointerType::getUnqual(ImpnfABITy), 6083 llvm::PointerType::getUnqual(ClassRonfABITy)); 6084 6085 // LLVM for struct _class_t * 6086 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6087 6088 // struct _category_t { 6089 // const char * const name; 6090 // struct _class_t *const cls; 6091 // const struct _method_list_t * const instance_methods; 6092 // const struct _method_list_t * const class_methods; 6093 // const struct _protocol_list_t * const protocols; 6094 // const struct _prop_list_t * const properties; 6095 // const struct _prop_list_t * const class_properties; 6096 // const uint32_t size; 6097 // } 6098 CategorynfABITy = llvm::StructType::create( 6099 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6100 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6101 PropertyListPtrTy, IntTy); 6102 6103 // New types for nonfragile abi messaging. 6104 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6105 ASTContext &Ctx = CGM.getContext(); 6106 6107 // MessageRefTy - LLVM for: 6108 // struct _message_ref_t { 6109 // IMP messenger; 6110 // SEL name; 6111 // }; 6112 6113 // First the clang type for struct _message_ref_t 6114 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6115 Ctx.getTranslationUnitDecl(), 6116 SourceLocation(), SourceLocation(), 6117 &Ctx.Idents.get("_message_ref_t")); 6118 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6119 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6120 ICIS_NoInit)); 6121 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6122 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6123 false, ICIS_NoInit)); 6124 RD->completeDefinition(); 6125 6126 MessageRefCTy = Ctx.getTagDeclType(RD); 6127 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6128 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6129 6130 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6131 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6132 6133 // SuperMessageRefTy - LLVM for: 6134 // struct _super_message_ref_t { 6135 // SUPER_IMP messenger; 6136 // SEL name; 6137 // }; 6138 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6139 ImpnfABITy, SelectorPtrTy); 6140 6141 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6142 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6143 6144 6145 // struct objc_typeinfo { 6146 // const void** vtable; // objc_ehtype_vtable + 2 6147 // const char* name; // c++ typeinfo string 6148 // Class cls; 6149 // }; 6150 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6151 llvm::PointerType::getUnqual(Int8PtrTy), 6152 Int8PtrTy, ClassnfABIPtrTy); 6153 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6154 } 6155 6156 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6157 FinishNonFragileABIModule(); 6158 6159 return nullptr; 6160 } 6161 6162 void CGObjCNonFragileABIMac::AddModuleClassList( 6163 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6164 StringRef SectionName) { 6165 unsigned NumClasses = Container.size(); 6166 6167 if (!NumClasses) 6168 return; 6169 6170 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6171 for (unsigned i=0; i<NumClasses; i++) 6172 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6173 ObjCTypes.Int8PtrTy); 6174 llvm::Constant *Init = 6175 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6176 Symbols.size()), 6177 Symbols); 6178 6179 // Section name is obtained by calling GetSectionName, which returns 6180 // sections in the __DATA segment on MachO. 6181 assert((!CGM.getTriple().isOSBinFormatMachO() || 6182 SectionName.startswith("__DATA")) && 6183 "SectionName expected to start with __DATA on MachO"); 6184 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6185 CGM.getModule(), Init->getType(), false, 6186 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6187 GV->setAlignment( 6188 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6189 GV->setSection(SectionName); 6190 CGM.addCompilerUsedGlobal(GV); 6191 } 6192 6193 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6194 // nonfragile abi has no module definition. 6195 6196 // Build list of all implemented class addresses in array 6197 // L_OBJC_LABEL_CLASS_$. 6198 6199 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6200 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6201 assert(ID); 6202 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6203 // We are implementing a weak imported interface. Give it external linkage 6204 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6205 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6206 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6207 } 6208 } 6209 6210 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6211 GetSectionName("__objc_classlist", 6212 "regular,no_dead_strip")); 6213 6214 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6215 GetSectionName("__objc_nlclslist", 6216 "regular,no_dead_strip")); 6217 6218 // Build list of all implemented category addresses in array 6219 // L_OBJC_LABEL_CATEGORY_$. 6220 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6221 GetSectionName("__objc_catlist", 6222 "regular,no_dead_strip")); 6223 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6224 GetSectionName("__objc_catlist2", 6225 "regular,no_dead_strip")); 6226 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6227 GetSectionName("__objc_nlcatlist", 6228 "regular,no_dead_strip")); 6229 6230 EmitImageInfo(); 6231 } 6232 6233 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6234 /// VTableDispatchMethods; false otherwise. What this means is that 6235 /// except for the 19 selectors in the list, we generate 32bit-style 6236 /// message dispatch call for all the rest. 6237 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6238 // At various points we've experimented with using vtable-based 6239 // dispatch for all methods. 6240 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6241 case CodeGenOptions::Legacy: 6242 return false; 6243 case CodeGenOptions::NonLegacy: 6244 return true; 6245 case CodeGenOptions::Mixed: 6246 break; 6247 } 6248 6249 // If so, see whether this selector is in the white-list of things which must 6250 // use the new dispatch convention. We lazily build a dense set for this. 6251 if (VTableDispatchMethods.empty()) { 6252 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6253 VTableDispatchMethods.insert(GetNullarySelector("class")); 6254 VTableDispatchMethods.insert(GetNullarySelector("self")); 6255 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6256 VTableDispatchMethods.insert(GetNullarySelector("length")); 6257 VTableDispatchMethods.insert(GetNullarySelector("count")); 6258 6259 // These are vtable-based if GC is disabled. 6260 // Optimistically use vtable dispatch for hybrid compiles. 6261 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6262 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6263 VTableDispatchMethods.insert(GetNullarySelector("release")); 6264 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6265 } 6266 6267 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6268 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6269 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6270 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6271 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6272 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6273 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6274 6275 // These are vtable-based if GC is enabled. 6276 // Optimistically use vtable dispatch for hybrid compiles. 6277 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6278 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6279 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6280 6281 // "countByEnumeratingWithState:objects:count" 6282 IdentifierInfo *KeyIdents[] = { 6283 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6284 &CGM.getContext().Idents.get("objects"), 6285 &CGM.getContext().Idents.get("count") 6286 }; 6287 VTableDispatchMethods.insert( 6288 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6289 } 6290 } 6291 6292 return VTableDispatchMethods.count(Sel); 6293 } 6294 6295 /// BuildClassRoTInitializer - generate meta-data for: 6296 /// struct _class_ro_t { 6297 /// uint32_t const flags; 6298 /// uint32_t const instanceStart; 6299 /// uint32_t const instanceSize; 6300 /// uint32_t const reserved; // only when building for 64bit targets 6301 /// const uint8_t * const ivarLayout; 6302 /// const char *const name; 6303 /// const struct _method_list_t * const baseMethods; 6304 /// const struct _protocol_list_t *const baseProtocols; 6305 /// const struct _ivar_list_t *const ivars; 6306 /// const uint8_t * const weakIvarLayout; 6307 /// const struct _prop_list_t * const properties; 6308 /// } 6309 /// 6310 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6311 unsigned flags, 6312 unsigned InstanceStart, 6313 unsigned InstanceSize, 6314 const ObjCImplementationDecl *ID) { 6315 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6316 6317 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6318 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6319 6320 bool hasMRCWeak = false; 6321 if (CGM.getLangOpts().ObjCAutoRefCount) 6322 flags |= NonFragileABI_Class_CompiledByARC; 6323 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6324 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6325 6326 ConstantInitBuilder builder(CGM); 6327 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6328 6329 values.addInt(ObjCTypes.IntTy, flags); 6330 values.addInt(ObjCTypes.IntTy, InstanceStart); 6331 values.addInt(ObjCTypes.IntTy, InstanceSize); 6332 values.add((flags & NonFragileABI_Class_Meta) 6333 ? GetIvarLayoutName(nullptr, ObjCTypes) 6334 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6335 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6336 6337 // const struct _method_list_t * const baseMethods; 6338 SmallVector<const ObjCMethodDecl*, 16> methods; 6339 if (flags & NonFragileABI_Class_Meta) { 6340 for (const auto *MD : ID->class_methods()) 6341 if (!MD->isDirectMethod()) 6342 methods.push_back(MD); 6343 } else { 6344 for (const auto *MD : ID->instance_methods()) 6345 if (!MD->isDirectMethod()) 6346 methods.push_back(MD); 6347 } 6348 6349 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6350 (flags & NonFragileABI_Class_Meta) 6351 ? MethodListType::ClassMethods 6352 : MethodListType::InstanceMethods, 6353 methods)); 6354 6355 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6356 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6357 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6358 + OID->getObjCRuntimeNameAsString(), 6359 OID->all_referenced_protocol_begin(), 6360 OID->all_referenced_protocol_end())); 6361 6362 if (flags & NonFragileABI_Class_Meta) { 6363 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6364 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6365 values.add(EmitPropertyList( 6366 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6367 ID, ID->getClassInterface(), ObjCTypes, true)); 6368 } else { 6369 values.add(EmitIvarList(ID)); 6370 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6371 values.add(EmitPropertyList( 6372 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6373 ID, ID->getClassInterface(), ObjCTypes, false)); 6374 } 6375 6376 llvm::SmallString<64> roLabel; 6377 llvm::raw_svector_ostream(roLabel) 6378 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6379 : "_OBJC_CLASS_RO_$_") 6380 << ClassName; 6381 6382 return finishAndCreateGlobal(values, roLabel, CGM); 6383 } 6384 6385 /// Build the metaclass object for a class. 6386 /// 6387 /// struct _class_t { 6388 /// struct _class_t *isa; 6389 /// struct _class_t * const superclass; 6390 /// void *cache; 6391 /// IMP *vtable; 6392 /// struct class_ro_t *ro; 6393 /// } 6394 /// 6395 llvm::GlobalVariable * 6396 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6397 bool isMetaclass, 6398 llvm::Constant *IsAGV, 6399 llvm::Constant *SuperClassGV, 6400 llvm::Constant *ClassRoGV, 6401 bool HiddenVisibility) { 6402 ConstantInitBuilder builder(CGM); 6403 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6404 values.add(IsAGV); 6405 if (SuperClassGV) { 6406 values.add(SuperClassGV); 6407 } else { 6408 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6409 } 6410 values.add(ObjCEmptyCacheVar); 6411 values.add(ObjCEmptyVtableVar); 6412 values.add(ClassRoGV); 6413 6414 llvm::GlobalVariable *GV = 6415 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6416 values.finishAndSetAsInitializer(GV); 6417 6418 if (CGM.getTriple().isOSBinFormatMachO()) 6419 GV->setSection("__DATA, __objc_data"); 6420 GV->setAlignment(llvm::Align( 6421 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6422 if (!CGM.getTriple().isOSBinFormatCOFF()) 6423 if (HiddenVisibility) 6424 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6425 return GV; 6426 } 6427 6428 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6429 const ObjCImplDecl *OD) const { 6430 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6431 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6432 OD->hasAttr<ObjCNonLazyClassAttr>(); 6433 } 6434 6435 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6436 uint32_t &InstanceStart, 6437 uint32_t &InstanceSize) { 6438 const ASTRecordLayout &RL = 6439 CGM.getContext().getASTObjCImplementationLayout(OID); 6440 6441 // InstanceSize is really instance end. 6442 InstanceSize = RL.getDataSize().getQuantity(); 6443 6444 // If there are no fields, the start is the same as the end. 6445 if (!RL.getFieldCount()) 6446 InstanceStart = InstanceSize; 6447 else 6448 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6449 } 6450 6451 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6452 StringRef Name) { 6453 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6454 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6455 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6456 6457 const VarDecl *VD = nullptr; 6458 for (const auto *Result : DC->lookup(&II)) 6459 if ((VD = dyn_cast<VarDecl>(Result))) 6460 break; 6461 6462 if (!VD) 6463 return llvm::GlobalValue::DLLImportStorageClass; 6464 if (VD->hasAttr<DLLExportAttr>()) 6465 return llvm::GlobalValue::DLLExportStorageClass; 6466 if (VD->hasAttr<DLLImportAttr>()) 6467 return llvm::GlobalValue::DLLImportStorageClass; 6468 return llvm::GlobalValue::DefaultStorageClass; 6469 } 6470 6471 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6472 if (!ObjCEmptyCacheVar) { 6473 ObjCEmptyCacheVar = 6474 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6475 llvm::GlobalValue::ExternalLinkage, nullptr, 6476 "_objc_empty_cache"); 6477 if (CGM.getTriple().isOSBinFormatCOFF()) 6478 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6479 6480 // Only OS X with deployment version <10.9 use the empty vtable symbol 6481 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6482 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6483 ObjCEmptyVtableVar = 6484 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6485 llvm::GlobalValue::ExternalLinkage, nullptr, 6486 "_objc_empty_vtable"); 6487 else 6488 ObjCEmptyVtableVar = 6489 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6490 } 6491 6492 // FIXME: Is this correct (that meta class size is never computed)? 6493 uint32_t InstanceStart = 6494 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6495 uint32_t InstanceSize = InstanceStart; 6496 uint32_t flags = NonFragileABI_Class_Meta; 6497 6498 llvm::Constant *SuperClassGV, *IsAGV; 6499 6500 const auto *CI = ID->getClassInterface(); 6501 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6502 6503 // Build the flags for the metaclass. 6504 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6505 ? !CI->hasAttr<DLLExportAttr>() 6506 : CI->getVisibility() == HiddenVisibility; 6507 if (classIsHidden) 6508 flags |= NonFragileABI_Class_Hidden; 6509 6510 // FIXME: why is this flag set on the metaclass? 6511 // ObjC metaclasses have no fields and don't really get constructed. 6512 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6513 flags |= NonFragileABI_Class_HasCXXStructors; 6514 if (!ID->hasNonZeroConstructors()) 6515 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6516 } 6517 6518 if (!CI->getSuperClass()) { 6519 // class is root 6520 flags |= NonFragileABI_Class_Root; 6521 6522 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6523 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6524 } else { 6525 // Has a root. Current class is not a root. 6526 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6527 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6528 Root = Super; 6529 6530 const auto *Super = CI->getSuperClass(); 6531 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6532 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6533 } 6534 6535 llvm::GlobalVariable *CLASS_RO_GV = 6536 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6537 6538 llvm::GlobalVariable *MetaTClass = 6539 BuildClassObject(CI, /*metaclass*/ true, 6540 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6541 CGM.setGVProperties(MetaTClass, CI); 6542 DefinedMetaClasses.push_back(MetaTClass); 6543 6544 // Metadata for the class 6545 flags = 0; 6546 if (classIsHidden) 6547 flags |= NonFragileABI_Class_Hidden; 6548 6549 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6550 flags |= NonFragileABI_Class_HasCXXStructors; 6551 6552 // Set a flag to enable a runtime optimization when a class has 6553 // fields that require destruction but which don't require 6554 // anything except zero-initialization during construction. This 6555 // is most notably true of __strong and __weak types, but you can 6556 // also imagine there being C++ types with non-trivial default 6557 // constructors that merely set all fields to null. 6558 if (!ID->hasNonZeroConstructors()) 6559 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6560 } 6561 6562 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6563 flags |= NonFragileABI_Class_Exception; 6564 6565 if (!CI->getSuperClass()) { 6566 flags |= NonFragileABI_Class_Root; 6567 SuperClassGV = nullptr; 6568 } else { 6569 // Has a root. Current class is not a root. 6570 const auto *Super = CI->getSuperClass(); 6571 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6572 } 6573 6574 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6575 CLASS_RO_GV = 6576 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6577 6578 llvm::GlobalVariable *ClassMD = 6579 BuildClassObject(CI, /*metaclass*/ false, 6580 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6581 CGM.setGVProperties(ClassMD, CI); 6582 DefinedClasses.push_back(ClassMD); 6583 ImplementedClasses.push_back(CI); 6584 6585 // Determine if this class is also "non-lazy". 6586 if (ImplementationIsNonLazy(ID)) 6587 DefinedNonLazyClasses.push_back(ClassMD); 6588 6589 // Force the definition of the EHType if necessary. 6590 if (flags & NonFragileABI_Class_Exception) 6591 (void) GetInterfaceEHType(CI, ForDefinition); 6592 // Make sure method definition entries are all clear for next implementation. 6593 MethodDefinitions.clear(); 6594 } 6595 6596 /// GenerateProtocolRef - This routine is called to generate code for 6597 /// a protocol reference expression; as in: 6598 /// @code 6599 /// @protocol(Proto1); 6600 /// @endcode 6601 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6602 /// which will hold address of the protocol meta-data. 6603 /// 6604 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6605 const ObjCProtocolDecl *PD) { 6606 6607 // This routine is called for @protocol only. So, we must build definition 6608 // of protocol's meta-data (not a reference to it!) 6609 assert(!PD->isNonRuntimeProtocol() && 6610 "attempting to get a protocol ref to a static protocol."); 6611 llvm::Constant *Init = 6612 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6613 ObjCTypes.getExternalProtocolPtrTy()); 6614 6615 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6616 ProtocolName += PD->getObjCRuntimeNameAsString(); 6617 6618 CharUnits Align = CGF.getPointerAlign(); 6619 6620 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6621 if (PTGV) 6622 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6623 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6624 llvm::GlobalValue::WeakAnyLinkage, Init, 6625 ProtocolName); 6626 PTGV->setSection(GetSectionName("__objc_protorefs", 6627 "coalesced,no_dead_strip")); 6628 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6629 PTGV->setAlignment(Align.getAsAlign()); 6630 if (!CGM.getTriple().isOSBinFormatMachO()) 6631 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6632 CGM.addUsedGlobal(PTGV); 6633 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6634 } 6635 6636 /// GenerateCategory - Build metadata for a category implementation. 6637 /// struct _category_t { 6638 /// const char * const name; 6639 /// struct _class_t *const cls; 6640 /// const struct _method_list_t * const instance_methods; 6641 /// const struct _method_list_t * const class_methods; 6642 /// const struct _protocol_list_t * const protocols; 6643 /// const struct _prop_list_t * const properties; 6644 /// const struct _prop_list_t * const class_properties; 6645 /// const uint32_t size; 6646 /// } 6647 /// 6648 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6649 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6650 const char *Prefix = "_OBJC_$_CATEGORY_"; 6651 6652 llvm::SmallString<64> ExtCatName(Prefix); 6653 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6654 ExtCatName += "_$_"; 6655 ExtCatName += OCD->getNameAsString(); 6656 6657 ConstantInitBuilder builder(CGM); 6658 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6659 values.add(GetClassName(OCD->getIdentifier()->getName())); 6660 // meta-class entry symbol 6661 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6662 std::string listName = 6663 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6664 6665 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6666 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6667 for (const auto *MD : OCD->methods()) { 6668 if (MD->isDirectMethod()) 6669 continue; 6670 if (MD->isInstanceMethod()) { 6671 instanceMethods.push_back(MD); 6672 } else { 6673 classMethods.push_back(MD); 6674 } 6675 } 6676 6677 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6678 instanceMethods)); 6679 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6680 classMethods)); 6681 6682 const ObjCCategoryDecl *Category = 6683 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6684 if (Category) { 6685 SmallString<256> ExtName; 6686 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6687 << OCD->getName(); 6688 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6689 + Interface->getObjCRuntimeNameAsString() + "_$_" 6690 + Category->getName(), 6691 Category->protocol_begin(), 6692 Category->protocol_end())); 6693 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6694 OCD, Category, ObjCTypes, false)); 6695 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6696 OCD, Category, ObjCTypes, true)); 6697 } else { 6698 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6699 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6700 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6701 } 6702 6703 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6704 values.addInt(ObjCTypes.IntTy, Size); 6705 6706 llvm::GlobalVariable *GCATV = 6707 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6708 CGM.addCompilerUsedGlobal(GCATV); 6709 if (Interface->hasAttr<ObjCClassStubAttr>()) 6710 DefinedStubCategories.push_back(GCATV); 6711 else 6712 DefinedCategories.push_back(GCATV); 6713 6714 // Determine if this category is also "non-lazy". 6715 if (ImplementationIsNonLazy(OCD)) 6716 DefinedNonLazyCategories.push_back(GCATV); 6717 // method definition entries must be clear for next implementation. 6718 MethodDefinitions.clear(); 6719 } 6720 6721 /// emitMethodConstant - Return a struct objc_method constant. If 6722 /// forProtocol is true, the implementation will be null; otherwise, 6723 /// the method must have a definition registered with the runtime. 6724 /// 6725 /// struct _objc_method { 6726 /// SEL _cmd; 6727 /// char *method_type; 6728 /// char *_imp; 6729 /// } 6730 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6731 const ObjCMethodDecl *MD, 6732 bool forProtocol) { 6733 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6734 method.addBitCast(GetMethodVarName(MD->getSelector()), 6735 ObjCTypes.SelectorPtrTy); 6736 method.add(GetMethodVarType(MD)); 6737 6738 if (forProtocol) { 6739 // Protocol methods have no implementation. So, this entry is always NULL. 6740 method.addNullPointer(ObjCTypes.Int8PtrTy); 6741 } else { 6742 llvm::Function *fn = GetMethodDefinition(MD); 6743 assert(fn && "no definition for method?"); 6744 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6745 } 6746 6747 method.finishAndAddTo(builder); 6748 } 6749 6750 /// Build meta-data for method declarations. 6751 /// 6752 /// struct _method_list_t { 6753 /// uint32_t entsize; // sizeof(struct _objc_method) 6754 /// uint32_t method_count; 6755 /// struct _objc_method method_list[method_count]; 6756 /// } 6757 /// 6758 llvm::Constant * 6759 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6760 ArrayRef<const ObjCMethodDecl *> methods) { 6761 // Return null for empty list. 6762 if (methods.empty()) 6763 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6764 6765 StringRef prefix; 6766 bool forProtocol; 6767 switch (kind) { 6768 case MethodListType::CategoryInstanceMethods: 6769 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6770 forProtocol = false; 6771 break; 6772 case MethodListType::CategoryClassMethods: 6773 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6774 forProtocol = false; 6775 break; 6776 case MethodListType::InstanceMethods: 6777 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6778 forProtocol = false; 6779 break; 6780 case MethodListType::ClassMethods: 6781 prefix = "_OBJC_$_CLASS_METHODS_"; 6782 forProtocol = false; 6783 break; 6784 6785 case MethodListType::ProtocolInstanceMethods: 6786 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6787 forProtocol = true; 6788 break; 6789 case MethodListType::ProtocolClassMethods: 6790 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6791 forProtocol = true; 6792 break; 6793 case MethodListType::OptionalProtocolInstanceMethods: 6794 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6795 forProtocol = true; 6796 break; 6797 case MethodListType::OptionalProtocolClassMethods: 6798 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6799 forProtocol = true; 6800 break; 6801 } 6802 6803 ConstantInitBuilder builder(CGM); 6804 auto values = builder.beginStruct(); 6805 6806 // sizeof(struct _objc_method) 6807 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6808 values.addInt(ObjCTypes.IntTy, Size); 6809 // method_count 6810 values.addInt(ObjCTypes.IntTy, methods.size()); 6811 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6812 for (auto MD : methods) 6813 emitMethodConstant(methodArray, MD, forProtocol); 6814 methodArray.finishAndAddTo(values); 6815 6816 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6817 CGM.addCompilerUsedGlobal(GV); 6818 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6819 } 6820 6821 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6822 /// the given ivar. 6823 llvm::GlobalVariable * 6824 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6825 const ObjCIvarDecl *Ivar) { 6826 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6827 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6828 Name += Container->getObjCRuntimeNameAsString(); 6829 Name += "."; 6830 Name += Ivar->getName(); 6831 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6832 if (!IvarOffsetGV) { 6833 IvarOffsetGV = 6834 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6835 false, llvm::GlobalValue::ExternalLinkage, 6836 nullptr, Name.str()); 6837 if (CGM.getTriple().isOSBinFormatCOFF()) { 6838 bool IsPrivateOrPackage = 6839 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6840 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6841 6842 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6843 6844 if (ContainingID->hasAttr<DLLImportAttr>()) 6845 IvarOffsetGV 6846 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6847 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6848 IvarOffsetGV 6849 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6850 } 6851 } 6852 return IvarOffsetGV; 6853 } 6854 6855 llvm::Constant * 6856 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6857 const ObjCIvarDecl *Ivar, 6858 unsigned long int Offset) { 6859 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6860 IvarOffsetGV->setInitializer( 6861 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6862 IvarOffsetGV->setAlignment(llvm::Align( 6863 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6864 6865 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6866 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6867 // as well (i.e., in ObjCIvarOffsetVariable). 6868 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6869 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6870 ID->getVisibility() == HiddenVisibility) 6871 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6872 else 6873 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6874 } 6875 6876 // If ID's layout is known, then make the global constant. This serves as a 6877 // useful assertion: we'll never use this variable to calculate ivar offsets, 6878 // so if the runtime tries to patch it then we should crash. 6879 if (isClassLayoutKnownStatically(ID)) 6880 IvarOffsetGV->setConstant(true); 6881 6882 if (CGM.getTriple().isOSBinFormatMachO()) 6883 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6884 return IvarOffsetGV; 6885 } 6886 6887 /// EmitIvarList - Emit the ivar list for the given 6888 /// implementation. The return value has type 6889 /// IvarListnfABIPtrTy. 6890 /// struct _ivar_t { 6891 /// unsigned [long] int *offset; // pointer to ivar offset location 6892 /// char *name; 6893 /// char *type; 6894 /// uint32_t alignment; 6895 /// uint32_t size; 6896 /// } 6897 /// struct _ivar_list_t { 6898 /// uint32 entsize; // sizeof(struct _ivar_t) 6899 /// uint32 count; 6900 /// struct _iver_t list[count]; 6901 /// } 6902 /// 6903 6904 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6905 const ObjCImplementationDecl *ID) { 6906 6907 ConstantInitBuilder builder(CGM); 6908 auto ivarList = builder.beginStruct(); 6909 ivarList.addInt(ObjCTypes.IntTy, 6910 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6911 auto ivarCountSlot = ivarList.addPlaceholder(); 6912 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6913 6914 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6915 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6916 6917 // FIXME. Consolidate this with similar code in GenerateClass. 6918 6919 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6920 IVD; IVD = IVD->getNextIvar()) { 6921 // Ignore unnamed bit-fields. 6922 if (!IVD->getDeclName()) 6923 continue; 6924 6925 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6926 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6927 ComputeIvarBaseOffset(CGM, ID, IVD))); 6928 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6929 ivar.add(GetMethodVarType(IVD)); 6930 llvm::Type *FieldTy = 6931 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6932 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6933 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6934 IVD->getType().getTypePtr()) >> 3; 6935 Align = llvm::Log2_32(Align); 6936 ivar.addInt(ObjCTypes.IntTy, Align); 6937 // NOTE. Size of a bitfield does not match gcc's, because of the 6938 // way bitfields are treated special in each. But I am told that 6939 // 'size' for bitfield ivars is ignored by the runtime so it does 6940 // not matter. If it matters, there is enough info to get the 6941 // bitfield right! 6942 ivar.addInt(ObjCTypes.IntTy, Size); 6943 ivar.finishAndAddTo(ivars); 6944 } 6945 // Return null for empty list. 6946 if (ivars.empty()) { 6947 ivars.abandon(); 6948 ivarList.abandon(); 6949 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6950 } 6951 6952 auto ivarCount = ivars.size(); 6953 ivars.finishAndAddTo(ivarList); 6954 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6955 6956 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6957 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6958 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6959 CGM.addCompilerUsedGlobal(GV); 6960 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6961 } 6962 6963 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6964 const ObjCProtocolDecl *PD) { 6965 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6966 6967 assert(!PD->isNonRuntimeProtocol() && 6968 "attempting to GetOrEmit a non-runtime protocol"); 6969 if (!Entry) { 6970 // We use the initializer as a marker of whether this is a forward 6971 // reference or not. At module finalization we add the empty 6972 // contents for protocols which were referenced but never defined. 6973 llvm::SmallString<64> Protocol; 6974 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 6975 << PD->getObjCRuntimeNameAsString(); 6976 6977 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6978 false, llvm::GlobalValue::ExternalLinkage, 6979 nullptr, Protocol); 6980 if (!CGM.getTriple().isOSBinFormatMachO()) 6981 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 6982 } 6983 6984 return Entry; 6985 } 6986 6987 /// GetOrEmitProtocol - Generate the protocol meta-data: 6988 /// @code 6989 /// struct _protocol_t { 6990 /// id isa; // NULL 6991 /// const char * const protocol_name; 6992 /// const struct _protocol_list_t * protocol_list; // super protocols 6993 /// const struct method_list_t * const instance_methods; 6994 /// const struct method_list_t * const class_methods; 6995 /// const struct method_list_t *optionalInstanceMethods; 6996 /// const struct method_list_t *optionalClassMethods; 6997 /// const struct _prop_list_t * properties; 6998 /// const uint32_t size; // sizeof(struct _protocol_t) 6999 /// const uint32_t flags; // = 0 7000 /// const char ** extendedMethodTypes; 7001 /// const char *demangledName; 7002 /// const struct _prop_list_t * class_properties; 7003 /// } 7004 /// @endcode 7005 /// 7006 7007 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7008 const ObjCProtocolDecl *PD) { 7009 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7010 7011 // Early exit if a defining object has already been generated. 7012 if (Entry && Entry->hasInitializer()) 7013 return Entry; 7014 7015 // Use the protocol definition, if there is one. 7016 assert(PD->hasDefinition() && 7017 "emitting protocol metadata without definition"); 7018 PD = PD->getDefinition(); 7019 7020 auto methodLists = ProtocolMethodLists::get(PD); 7021 7022 ConstantInitBuilder builder(CGM); 7023 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7024 7025 // isa is NULL 7026 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7027 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7028 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7029 + PD->getObjCRuntimeNameAsString(), 7030 PD->protocol_begin(), 7031 PD->protocol_end())); 7032 values.add(methodLists.emitMethodList(this, PD, 7033 ProtocolMethodLists::RequiredInstanceMethods)); 7034 values.add(methodLists.emitMethodList(this, PD, 7035 ProtocolMethodLists::RequiredClassMethods)); 7036 values.add(methodLists.emitMethodList(this, PD, 7037 ProtocolMethodLists::OptionalInstanceMethods)); 7038 values.add(methodLists.emitMethodList(this, PD, 7039 ProtocolMethodLists::OptionalClassMethods)); 7040 values.add(EmitPropertyList( 7041 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7042 nullptr, PD, ObjCTypes, false)); 7043 uint32_t Size = 7044 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7045 values.addInt(ObjCTypes.IntTy, Size); 7046 values.addInt(ObjCTypes.IntTy, 0); 7047 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7048 + PD->getObjCRuntimeNameAsString(), 7049 methodLists.emitExtendedTypesArray(this), 7050 ObjCTypes)); 7051 7052 // const char *demangledName; 7053 values.addNullPointer(ObjCTypes.Int8PtrTy); 7054 7055 values.add(EmitPropertyList( 7056 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7057 nullptr, PD, ObjCTypes, true)); 7058 7059 if (Entry) { 7060 // Already created, fix the linkage and update the initializer. 7061 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7062 values.finishAndSetAsInitializer(Entry); 7063 } else { 7064 llvm::SmallString<64> symbolName; 7065 llvm::raw_svector_ostream(symbolName) 7066 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7067 7068 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7069 /*constant*/ false, 7070 llvm::GlobalValue::WeakAnyLinkage); 7071 if (!CGM.getTriple().isOSBinFormatMachO()) 7072 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7073 7074 Protocols[PD->getIdentifier()] = Entry; 7075 } 7076 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7077 CGM.addUsedGlobal(Entry); 7078 7079 // Use this protocol meta-data to build protocol list table in section 7080 // __DATA, __objc_protolist 7081 llvm::SmallString<64> ProtocolRef; 7082 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7083 << PD->getObjCRuntimeNameAsString(); 7084 7085 llvm::GlobalVariable *PTGV = 7086 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7087 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7088 ProtocolRef); 7089 if (!CGM.getTriple().isOSBinFormatMachO()) 7090 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7091 PTGV->setAlignment(llvm::Align( 7092 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7093 PTGV->setSection(GetSectionName("__objc_protolist", 7094 "coalesced,no_dead_strip")); 7095 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7096 CGM.addUsedGlobal(PTGV); 7097 return Entry; 7098 } 7099 7100 /// EmitProtocolList - Generate protocol list meta-data: 7101 /// @code 7102 /// struct _protocol_list_t { 7103 /// long protocol_count; // Note, this is 32/64 bit 7104 /// struct _protocol_t[protocol_count]; 7105 /// } 7106 /// @endcode 7107 /// 7108 llvm::Constant * 7109 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7110 ObjCProtocolDecl::protocol_iterator begin, 7111 ObjCProtocolDecl::protocol_iterator end) { 7112 // Just return null for empty protocol lists 7113 auto Protocols = GetRuntimeProtocolList(begin, end); 7114 if (Protocols.empty()) 7115 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7116 7117 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7118 ProtocolRefs.reserve(Protocols.size()); 7119 7120 for (const auto *PD : Protocols) 7121 ProtocolRefs.push_back(GetProtocolRef(PD)); 7122 7123 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7124 // just return null 7125 if (ProtocolRefs.size() == 0) 7126 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7127 7128 // FIXME: We shouldn't need to do this lookup here, should we? 7129 SmallString<256> TmpName; 7130 Name.toVector(TmpName); 7131 llvm::GlobalVariable *GV = 7132 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7133 if (GV) 7134 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7135 7136 ConstantInitBuilder builder(CGM); 7137 auto values = builder.beginStruct(); 7138 auto countSlot = values.addPlaceholder(); 7139 7140 // A null-terminated array of protocols. 7141 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7142 for (auto const &proto : ProtocolRefs) 7143 array.add(proto); 7144 auto count = array.size(); 7145 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7146 7147 array.finishAndAddTo(values); 7148 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7149 7150 GV = finishAndCreateGlobal(values, Name, CGM); 7151 CGM.addCompilerUsedGlobal(GV); 7152 return llvm::ConstantExpr::getBitCast(GV, 7153 ObjCTypes.ProtocolListnfABIPtrTy); 7154 } 7155 7156 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7157 /// This code gen. amounts to generating code for: 7158 /// @code 7159 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7160 /// @encode 7161 /// 7162 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7163 CodeGen::CodeGenFunction &CGF, 7164 QualType ObjectTy, 7165 llvm::Value *BaseValue, 7166 const ObjCIvarDecl *Ivar, 7167 unsigned CVRQualifiers) { 7168 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7169 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7170 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7171 Offset); 7172 } 7173 7174 llvm::Value * 7175 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7176 const ObjCInterfaceDecl *Interface, 7177 const ObjCIvarDecl *Ivar) { 7178 llvm::Value *IvarOffsetValue; 7179 if (isClassLayoutKnownStatically(Interface)) { 7180 IvarOffsetValue = llvm::ConstantInt::get( 7181 ObjCTypes.IvarOffsetVarTy, 7182 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7183 } else { 7184 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7185 IvarOffsetValue = 7186 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV, 7187 CGF.getSizeAlign(), "ivar"); 7188 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7189 cast<llvm::LoadInst>(IvarOffsetValue) 7190 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7191 llvm::MDNode::get(VMContext, None)); 7192 } 7193 7194 // This could be 32bit int or 64bit integer depending on the architecture. 7195 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7196 // as this is what caller always expects. 7197 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7198 IvarOffsetValue = CGF.Builder.CreateIntCast( 7199 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7200 return IvarOffsetValue; 7201 } 7202 7203 static void appendSelectorForMessageRefTable(std::string &buffer, 7204 Selector selector) { 7205 if (selector.isUnarySelector()) { 7206 buffer += selector.getNameForSlot(0); 7207 return; 7208 } 7209 7210 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7211 buffer += selector.getNameForSlot(i); 7212 buffer += '_'; 7213 } 7214 } 7215 7216 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7217 /// struct, initially containing the selector pointer and a pointer to 7218 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7219 /// load and call the function pointer, passing the address of the 7220 /// struct as the second parameter. The runtime determines whether 7221 /// the selector is currently emitted using vtable dispatch; if so, it 7222 /// substitutes a stub function which simply tail-calls through the 7223 /// appropriate vtable slot, and if not, it substitues a stub function 7224 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7225 /// argument to correctly point to the selector. 7226 RValue 7227 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7228 ReturnValueSlot returnSlot, 7229 QualType resultType, 7230 Selector selector, 7231 llvm::Value *arg0, 7232 QualType arg0Type, 7233 bool isSuper, 7234 const CallArgList &formalArgs, 7235 const ObjCMethodDecl *method) { 7236 // Compute the actual arguments. 7237 CallArgList args; 7238 7239 // First argument: the receiver / super-call structure. 7240 if (!isSuper) 7241 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7242 args.add(RValue::get(arg0), arg0Type); 7243 7244 // Second argument: a pointer to the message ref structure. Leave 7245 // the actual argument value blank for now. 7246 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7247 7248 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7249 7250 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7251 7252 NullReturnState nullReturn; 7253 7254 // Find the function to call and the mangled name for the message 7255 // ref structure. Using a different mangled name wouldn't actually 7256 // be a problem; it would just be a waste. 7257 // 7258 // The runtime currently never uses vtable dispatch for anything 7259 // except normal, non-super message-sends. 7260 // FIXME: don't use this for that. 7261 llvm::FunctionCallee fn = nullptr; 7262 std::string messageRefName("_"); 7263 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7264 if (isSuper) { 7265 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7266 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7267 } else { 7268 nullReturn.init(CGF, arg0); 7269 fn = ObjCTypes.getMessageSendStretFixupFn(); 7270 messageRefName += "objc_msgSend_stret_fixup"; 7271 } 7272 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7273 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7274 messageRefName += "objc_msgSend_fpret_fixup"; 7275 } else { 7276 if (isSuper) { 7277 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7278 messageRefName += "objc_msgSendSuper2_fixup"; 7279 } else { 7280 fn = ObjCTypes.getMessageSendFixupFn(); 7281 messageRefName += "objc_msgSend_fixup"; 7282 } 7283 } 7284 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7285 messageRefName += '_'; 7286 7287 // Append the selector name, except use underscores anywhere we 7288 // would have used colons. 7289 appendSelectorForMessageRefTable(messageRefName, selector); 7290 7291 llvm::GlobalVariable *messageRef 7292 = CGM.getModule().getGlobalVariable(messageRefName); 7293 if (!messageRef) { 7294 // Build the message ref structure. 7295 ConstantInitBuilder builder(CGM); 7296 auto values = builder.beginStruct(); 7297 values.add(cast<llvm::Constant>(fn.getCallee())); 7298 values.add(GetMethodVarName(selector)); 7299 messageRef = values.finishAndCreateGlobal(messageRefName, 7300 CharUnits::fromQuantity(16), 7301 /*constant*/ false, 7302 llvm::GlobalValue::WeakAnyLinkage); 7303 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7304 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7305 } 7306 7307 bool requiresnullCheck = false; 7308 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7309 for (const auto *ParamDecl : method->parameters()) { 7310 if (ParamDecl->isDestroyedInCallee()) { 7311 if (!nullReturn.NullBB) 7312 nullReturn.init(CGF, arg0); 7313 requiresnullCheck = true; 7314 break; 7315 } 7316 } 7317 7318 Address mref = 7319 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7320 CGF.getPointerAlign()); 7321 7322 // Update the message ref argument. 7323 args[1].setRValue(RValue::get(mref.getPointer())); 7324 7325 // Load the function to call from the message ref table. 7326 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7327 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7328 7329 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7330 CGCallee callee(CGCalleeInfo(), calleePtr); 7331 7332 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7333 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7334 requiresnullCheck ? method : nullptr); 7335 } 7336 7337 /// Generate code for a message send expression in the nonfragile abi. 7338 CodeGen::RValue 7339 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7340 ReturnValueSlot Return, 7341 QualType ResultType, 7342 Selector Sel, 7343 llvm::Value *Receiver, 7344 const CallArgList &CallArgs, 7345 const ObjCInterfaceDecl *Class, 7346 const ObjCMethodDecl *Method) { 7347 return isVTableDispatchedSelector(Sel) 7348 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7349 Receiver, CGF.getContext().getObjCIdType(), 7350 false, CallArgs, Method) 7351 : EmitMessageSend(CGF, Return, ResultType, Sel, 7352 Receiver, CGF.getContext().getObjCIdType(), 7353 false, CallArgs, Method, Class, ObjCTypes); 7354 } 7355 7356 llvm::Constant * 7357 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7358 bool metaclass, 7359 ForDefinition_t isForDefinition) { 7360 auto prefix = 7361 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7362 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7363 isForDefinition, 7364 ID->isWeakImported(), 7365 !isForDefinition 7366 && CGM.getTriple().isOSBinFormatCOFF() 7367 && ID->hasAttr<DLLImportAttr>()); 7368 } 7369 7370 llvm::Constant * 7371 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7372 ForDefinition_t IsForDefinition, 7373 bool Weak, bool DLLImport) { 7374 llvm::GlobalValue::LinkageTypes L = 7375 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7376 : llvm::GlobalValue::ExternalLinkage; 7377 7378 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7379 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7380 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7381 nullptr, Name); 7382 7383 if (DLLImport) 7384 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7385 7386 if (GV) { 7387 GV->replaceAllUsesWith( 7388 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7389 GV->eraseFromParent(); 7390 } 7391 GV = NewGV; 7392 CGM.getModule().getGlobalList().push_back(GV); 7393 } 7394 7395 assert(GV->getLinkage() == L); 7396 return GV; 7397 } 7398 7399 llvm::Constant * 7400 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7401 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7402 NotForDefinition); 7403 7404 if (!ID->hasAttr<ObjCClassStubAttr>()) 7405 return ClassGV; 7406 7407 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7408 7409 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7410 // must set the least significant bit set to 1. 7411 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7412 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7413 } 7414 7415 llvm::Value * 7416 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7417 const ObjCInterfaceDecl *ID, 7418 llvm::GlobalVariable *Entry) { 7419 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7420 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7421 // a special runtime function. 7422 return CGF.EmitRuntimeCall( 7423 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7424 } 7425 7426 CharUnits Align = CGF.getPointerAlign(); 7427 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align); 7428 } 7429 7430 llvm::Value * 7431 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7432 IdentifierInfo *II, 7433 const ObjCInterfaceDecl *ID) { 7434 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7435 7436 if (!Entry) { 7437 llvm::Constant *ClassGV; 7438 if (ID) { 7439 ClassGV = GetClassGlobalForClassRef(ID); 7440 } else { 7441 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7442 NotForDefinition); 7443 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7444 "classref was emitted with the wrong type?"); 7445 } 7446 7447 std::string SectionName = 7448 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7449 Entry = new llvm::GlobalVariable( 7450 CGM.getModule(), ClassGV->getType(), false, 7451 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7452 "OBJC_CLASSLIST_REFERENCES_$_"); 7453 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7454 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7455 Entry->setSection(SectionName); 7456 7457 CGM.addCompilerUsedGlobal(Entry); 7458 } 7459 7460 return EmitLoadOfClassRef(CGF, ID, Entry); 7461 } 7462 7463 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7464 const ObjCInterfaceDecl *ID) { 7465 // If the class has the objc_runtime_visible attribute, we need to 7466 // use the Objective-C runtime to get the class. 7467 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7468 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7469 7470 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7471 } 7472 7473 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7474 CodeGenFunction &CGF) { 7475 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7476 return EmitClassRefFromId(CGF, II, nullptr); 7477 } 7478 7479 llvm::Value * 7480 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7481 const ObjCInterfaceDecl *ID) { 7482 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7483 7484 if (!Entry) { 7485 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7486 std::string SectionName = 7487 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7488 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7489 llvm::GlobalValue::PrivateLinkage, ClassGV, 7490 "OBJC_CLASSLIST_SUP_REFS_$_"); 7491 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7492 Entry->setSection(SectionName); 7493 CGM.addCompilerUsedGlobal(Entry); 7494 } 7495 7496 return EmitLoadOfClassRef(CGF, ID, Entry); 7497 } 7498 7499 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7500 /// meta-data 7501 /// 7502 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7503 const ObjCInterfaceDecl *ID, 7504 bool Weak) { 7505 CharUnits Align = CGF.getPointerAlign(); 7506 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7507 if (!Entry) { 7508 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7509 std::string SectionName = 7510 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7511 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7512 false, llvm::GlobalValue::PrivateLinkage, 7513 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7514 Entry->setAlignment(Align.getAsAlign()); 7515 Entry->setSection(SectionName); 7516 CGM.addCompilerUsedGlobal(Entry); 7517 } 7518 7519 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align); 7520 } 7521 7522 /// GetClass - Return a reference to the class for the given interface 7523 /// decl. 7524 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7525 const ObjCInterfaceDecl *ID) { 7526 if (ID->isWeakImported()) { 7527 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7528 (void)ClassGV; 7529 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7530 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7531 } 7532 7533 return EmitClassRef(CGF, ID); 7534 } 7535 7536 /// Generates a message send where the super is the receiver. This is 7537 /// a message send to self with special delivery semantics indicating 7538 /// which class's method should be called. 7539 CodeGen::RValue 7540 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7541 ReturnValueSlot Return, 7542 QualType ResultType, 7543 Selector Sel, 7544 const ObjCInterfaceDecl *Class, 7545 bool isCategoryImpl, 7546 llvm::Value *Receiver, 7547 bool IsClassMessage, 7548 const CodeGen::CallArgList &CallArgs, 7549 const ObjCMethodDecl *Method) { 7550 // ... 7551 // Create and init a super structure; this is a (receiver, class) 7552 // pair we will pass to objc_msgSendSuper. 7553 Address ObjCSuper = 7554 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7555 "objc_super"); 7556 7557 llvm::Value *ReceiverAsObject = 7558 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7559 CGF.Builder.CreateStore(ReceiverAsObject, 7560 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7561 7562 // If this is a class message the metaclass is passed as the target. 7563 llvm::Value *Target; 7564 if (IsClassMessage) 7565 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7566 else 7567 Target = EmitSuperClassRef(CGF, Class); 7568 7569 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7570 // ObjCTypes types. 7571 llvm::Type *ClassTy = 7572 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7573 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7574 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7575 7576 return (isVTableDispatchedSelector(Sel)) 7577 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7578 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7579 true, CallArgs, Method) 7580 : EmitMessageSend(CGF, Return, ResultType, Sel, 7581 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7582 true, CallArgs, Method, Class, ObjCTypes); 7583 } 7584 7585 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7586 Selector Sel) { 7587 Address Addr = EmitSelectorAddr(Sel); 7588 7589 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7590 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7591 llvm::MDNode::get(VMContext, None)); 7592 return LI; 7593 } 7594 7595 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7596 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7597 CharUnits Align = CGM.getPointerAlign(); 7598 if (!Entry) { 7599 llvm::Constant *Casted = 7600 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7601 ObjCTypes.SelectorPtrTy); 7602 std::string SectionName = 7603 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7604 Entry = new llvm::GlobalVariable( 7605 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7606 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7607 "OBJC_SELECTOR_REFERENCES_"); 7608 Entry->setExternallyInitialized(true); 7609 Entry->setSection(SectionName); 7610 Entry->setAlignment(Align.getAsAlign()); 7611 CGM.addCompilerUsedGlobal(Entry); 7612 } 7613 7614 return Address(Entry, Align); 7615 } 7616 7617 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7618 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7619 /// 7620 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7621 llvm::Value *src, 7622 Address dst, 7623 llvm::Value *ivarOffset) { 7624 llvm::Type * SrcTy = src->getType(); 7625 if (!isa<llvm::PointerType>(SrcTy)) { 7626 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7627 assert(Size <= 8 && "does not support size > 8"); 7628 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7629 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7630 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7631 } 7632 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7633 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7634 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7635 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7636 } 7637 7638 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7639 /// objc_assign_strongCast (id src, id *dst) 7640 /// 7641 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7642 CodeGen::CodeGenFunction &CGF, 7643 llvm::Value *src, Address dst) { 7644 llvm::Type * SrcTy = src->getType(); 7645 if (!isa<llvm::PointerType>(SrcTy)) { 7646 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7647 assert(Size <= 8 && "does not support size > 8"); 7648 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7649 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7650 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7651 } 7652 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7653 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7654 llvm::Value *args[] = { src, dst.getPointer() }; 7655 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7656 args, "weakassign"); 7657 } 7658 7659 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7660 CodeGen::CodeGenFunction &CGF, 7661 Address DestPtr, 7662 Address SrcPtr, 7663 llvm::Value *Size) { 7664 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7665 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7666 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7667 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7668 } 7669 7670 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7671 /// object: objc_read_weak (id *src) 7672 /// 7673 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7674 CodeGen::CodeGenFunction &CGF, 7675 Address AddrWeakObj) { 7676 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7677 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7678 llvm::Value *read_weak = 7679 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7680 AddrWeakObj.getPointer(), "weakread"); 7681 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7682 return read_weak; 7683 } 7684 7685 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7686 /// objc_assign_weak (id src, id *dst) 7687 /// 7688 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7689 llvm::Value *src, Address dst) { 7690 llvm::Type * SrcTy = src->getType(); 7691 if (!isa<llvm::PointerType>(SrcTy)) { 7692 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7693 assert(Size <= 8 && "does not support size > 8"); 7694 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7695 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7696 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7697 } 7698 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7699 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7700 llvm::Value *args[] = { src, dst.getPointer() }; 7701 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7702 args, "weakassign"); 7703 } 7704 7705 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7706 /// objc_assign_global (id src, id *dst) 7707 /// 7708 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7709 llvm::Value *src, Address dst, 7710 bool threadlocal) { 7711 llvm::Type * SrcTy = src->getType(); 7712 if (!isa<llvm::PointerType>(SrcTy)) { 7713 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7714 assert(Size <= 8 && "does not support size > 8"); 7715 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7716 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7717 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7718 } 7719 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7720 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7721 llvm::Value *args[] = { src, dst.getPointer() }; 7722 if (!threadlocal) 7723 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7724 args, "globalassign"); 7725 else 7726 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7727 args, "threadlocalassign"); 7728 } 7729 7730 void 7731 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7732 const ObjCAtSynchronizedStmt &S) { 7733 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7734 ObjCTypes.getSyncExitFn()); 7735 } 7736 7737 llvm::Constant * 7738 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7739 // There's a particular fixed type info for 'id'. 7740 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7741 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7742 if (!IDEHType) { 7743 IDEHType = 7744 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7745 llvm::GlobalValue::ExternalLinkage, nullptr, 7746 "OBJC_EHTYPE_id"); 7747 if (CGM.getTriple().isOSBinFormatCOFF()) 7748 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7749 } 7750 return IDEHType; 7751 } 7752 7753 // All other types should be Objective-C interface pointer types. 7754 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7755 assert(PT && "Invalid @catch type."); 7756 7757 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7758 assert(IT && "Invalid @catch type."); 7759 7760 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7761 } 7762 7763 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7764 const ObjCAtTryStmt &S) { 7765 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7766 ObjCTypes.getObjCEndCatchFn(), 7767 ObjCTypes.getExceptionRethrowFn()); 7768 } 7769 7770 /// EmitThrowStmt - Generate code for a throw statement. 7771 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7772 const ObjCAtThrowStmt &S, 7773 bool ClearInsertionPoint) { 7774 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7775 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7776 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7777 llvm::CallBase *Call = 7778 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7779 Call->setDoesNotReturn(); 7780 } else { 7781 llvm::CallBase *Call = 7782 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7783 Call->setDoesNotReturn(); 7784 } 7785 7786 CGF.Builder.CreateUnreachable(); 7787 if (ClearInsertionPoint) 7788 CGF.Builder.ClearInsertionPoint(); 7789 } 7790 7791 llvm::Constant * 7792 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7793 ForDefinition_t IsForDefinition) { 7794 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7795 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7796 7797 // If we don't need a definition, return the entry if found or check 7798 // if we use an external reference. 7799 if (!IsForDefinition) { 7800 if (Entry) 7801 return Entry; 7802 7803 // If this type (or a super class) has the __objc_exception__ 7804 // attribute, emit an external reference. 7805 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7806 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7807 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7808 false, llvm::GlobalValue::ExternalLinkage, 7809 nullptr, EHTypeName); 7810 CGM.setGVProperties(Entry, ID); 7811 return Entry; 7812 } 7813 } 7814 7815 // Otherwise we need to either make a new entry or fill in the initializer. 7816 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7817 7818 std::string VTableName = "objc_ehtype_vtable"; 7819 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7820 if (!VTableGV) { 7821 VTableGV = 7822 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7823 llvm::GlobalValue::ExternalLinkage, nullptr, 7824 VTableName); 7825 if (CGM.getTriple().isOSBinFormatCOFF()) 7826 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7827 } 7828 7829 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7830 ConstantInitBuilder builder(CGM); 7831 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7832 values.add( 7833 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7834 VTableGV, VTableIdx)); 7835 values.add(GetClassName(ClassName)); 7836 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7837 7838 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7839 ? llvm::GlobalValue::ExternalLinkage 7840 : llvm::GlobalValue::WeakAnyLinkage; 7841 if (Entry) { 7842 values.finishAndSetAsInitializer(Entry); 7843 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7844 } else { 7845 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7846 CGM.getPointerAlign(), 7847 /*constant*/ false, 7848 L); 7849 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7850 CGM.setGVProperties(Entry, ID); 7851 } 7852 assert(Entry->getLinkage() == L); 7853 7854 if (!CGM.getTriple().isOSBinFormatCOFF()) 7855 if (ID->getVisibility() == HiddenVisibility) 7856 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7857 7858 if (IsForDefinition) 7859 if (CGM.getTriple().isOSBinFormatMachO()) 7860 Entry->setSection("__DATA,__objc_const"); 7861 7862 return Entry; 7863 } 7864 7865 /* *** */ 7866 7867 CodeGen::CGObjCRuntime * 7868 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7869 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7870 case ObjCRuntime::FragileMacOSX: 7871 return new CGObjCMac(CGM); 7872 7873 case ObjCRuntime::MacOSX: 7874 case ObjCRuntime::iOS: 7875 case ObjCRuntime::WatchOS: 7876 return new CGObjCNonFragileABIMac(CGM); 7877 7878 case ObjCRuntime::GNUstep: 7879 case ObjCRuntime::GCC: 7880 case ObjCRuntime::ObjFW: 7881 llvm_unreachable("these runtimes are not Mac runtimes"); 7882 } 7883 llvm_unreachable("bad runtime"); 7884 } 7885