1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::Constant *getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::Constant *getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::Constant *getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::Constant *getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::Constant *getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::Constant *getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::Constant *getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::Constant *getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::Constant *getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::Constant *getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::Constant *getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::Constant *GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::Constant *getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::Constant *getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::Constant *getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::Constant *getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::Constant *getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::Constant *getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::Constant *getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::Constant *getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::Constant *getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::Constant *getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::Constant *getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::Constant *getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::Constant *getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::Constant *getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::Constant *getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::Constant *getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::Constant *getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::Constant *getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::Constant *getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::Constant *getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::Constant *getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 719 } 720 721 llvm::Constant *getObjCBeginCatchFn() { 722 llvm::Type *params[] = { Int8PtrTy }; 723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 724 params, false), 725 "objc_begin_catch"); 726 } 727 728 llvm::StructType *EHTypeTy; 729 llvm::Type *EHTypePtrTy; 730 731 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 732 }; 733 734 enum class ObjCLabelType { 735 ClassName, 736 MethodVarName, 737 MethodVarType, 738 PropertyName, 739 }; 740 741 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 742 public: 743 class SKIP_SCAN { 744 public: 745 unsigned skip; 746 unsigned scan; 747 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 748 : skip(_skip), scan(_scan) {} 749 }; 750 751 /// opcode for captured block variables layout 'instructions'. 752 /// In the following descriptions, 'I' is the value of the immediate field. 753 /// (field following the opcode). 754 /// 755 enum BLOCK_LAYOUT_OPCODE { 756 /// An operator which affects how the following layout should be 757 /// interpreted. 758 /// I == 0: Halt interpretation and treat everything else as 759 /// a non-pointer. Note that this instruction is equal 760 /// to '\0'. 761 /// I != 0: Currently unused. 762 BLOCK_LAYOUT_OPERATOR = 0, 763 764 /// The next I+1 bytes do not contain a value of object pointer type. 765 /// Note that this can leave the stream unaligned, meaning that 766 /// subsequent word-size instructions do not begin at a multiple of 767 /// the pointer size. 768 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 769 770 /// The next I+1 words do not contain a value of object pointer type. 771 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 772 /// when the required skip quantity is a multiple of the pointer size. 773 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 774 775 /// The next I+1 words are __strong pointers to Objective-C 776 /// objects or blocks. 777 BLOCK_LAYOUT_STRONG = 3, 778 779 /// The next I+1 words are pointers to __block variables. 780 BLOCK_LAYOUT_BYREF = 4, 781 782 /// The next I+1 words are __weak pointers to Objective-C 783 /// objects or blocks. 784 BLOCK_LAYOUT_WEAK = 5, 785 786 /// The next I+1 words are __unsafe_unretained pointers to 787 /// Objective-C objects or blocks. 788 BLOCK_LAYOUT_UNRETAINED = 6 789 790 /// The next I+1 words are block or object pointers with some 791 /// as-yet-unspecified ownership semantics. If we add more 792 /// flavors of ownership semantics, values will be taken from 793 /// this range. 794 /// 795 /// This is included so that older tools can at least continue 796 /// processing the layout past such things. 797 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 798 799 /// All other opcodes are reserved. Halt interpretation and 800 /// treat everything else as opaque. 801 }; 802 803 class RUN_SKIP { 804 public: 805 enum BLOCK_LAYOUT_OPCODE opcode; 806 CharUnits block_var_bytepos; 807 CharUnits block_var_size; 808 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 809 CharUnits BytePos = CharUnits::Zero(), 810 CharUnits Size = CharUnits::Zero()) 811 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 812 813 // Allow sorting based on byte pos. 814 bool operator<(const RUN_SKIP &b) const { 815 return block_var_bytepos < b.block_var_bytepos; 816 } 817 }; 818 819 protected: 820 llvm::LLVMContext &VMContext; 821 // FIXME! May not be needing this after all. 822 unsigned ObjCABI; 823 824 // arc/mrr layout of captured block literal variables. 825 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 826 827 /// LazySymbols - Symbols to generate a lazy reference for. See 828 /// DefinedSymbols and FinishModule(). 829 llvm::SetVector<IdentifierInfo*> LazySymbols; 830 831 /// DefinedSymbols - External symbols which are defined by this 832 /// module. The symbols in this list and LazySymbols are used to add 833 /// special linker symbols which ensure that Objective-C modules are 834 /// linked properly. 835 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 836 837 /// ClassNames - uniqued class names. 838 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 839 840 /// MethodVarNames - uniqued method variable names. 841 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 842 843 /// DefinedCategoryNames - list of category names in form Class_Category. 844 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 845 846 /// MethodVarTypes - uniqued method type signatures. We have to use 847 /// a StringMap here because have no other unique reference. 848 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 849 850 /// MethodDefinitions - map of methods which have been defined in 851 /// this translation unit. 852 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 853 854 /// PropertyNames - uniqued method variable names. 855 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 856 857 /// ClassReferences - uniqued class references. 858 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 859 860 /// SelectorReferences - uniqued selector references. 861 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 862 863 /// Protocols - Protocols for which an objc_protocol structure has 864 /// been emitted. Forward declarations are handled by creating an 865 /// empty structure whose initializer is filled in when/if defined. 866 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 867 868 /// DefinedProtocols - Protocols which have actually been 869 /// defined. We should not need this, see FIXME in GenerateProtocol. 870 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 871 872 /// DefinedClasses - List of defined classes. 873 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 874 875 /// ImplementedClasses - List of @implemented classes. 876 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 877 878 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 879 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 880 881 /// DefinedCategories - List of defined categories. 882 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 883 884 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 885 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 886 887 /// Cached reference to the class for constant strings. This value has type 888 /// int * but is actually an Obj-C class pointer. 889 llvm::WeakTrackingVH ConstantStringClassRef; 890 891 /// The LLVM type corresponding to NSConstantString. 892 llvm::StructType *NSConstantStringType = nullptr; 893 894 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 895 896 /// GetNameForMethod - Return a name for the given method. 897 /// \param[out] NameOut - The return value. 898 void GetNameForMethod(const ObjCMethodDecl *OMD, 899 const ObjCContainerDecl *CD, 900 SmallVectorImpl<char> &NameOut); 901 902 /// GetMethodVarName - Return a unique constant for the given 903 /// selector's name. The return value has type char *. 904 llvm::Constant *GetMethodVarName(Selector Sel); 905 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 906 907 /// GetMethodVarType - Return a unique constant for the given 908 /// method's type encoding string. The return value has type char *. 909 910 // FIXME: This is a horrible name. 911 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 912 bool Extended = false); 913 llvm::Constant *GetMethodVarType(const FieldDecl *D); 914 915 /// GetPropertyName - Return a unique constant for the given 916 /// name. The return value has type char *. 917 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 918 919 // FIXME: This can be dropped once string functions are unified. 920 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 921 const Decl *Container); 922 923 /// GetClassName - Return a unique constant for the given selector's 924 /// runtime name (which may change via use of objc_runtime_name attribute on 925 /// class or protocol definition. The return value has type char *. 926 llvm::Constant *GetClassName(StringRef RuntimeName); 927 928 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 929 930 /// BuildIvarLayout - Builds ivar layout bitmap for the class 931 /// implementation for the __strong or __weak case. 932 /// 933 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 934 /// are any weak ivars defined directly in the class. Meaningless unless 935 /// building a weak layout. Does not guarantee that the layout will 936 /// actually have any entries, because the ivar might be under-aligned. 937 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 938 CharUnits beginOffset, 939 CharUnits endOffset, 940 bool forStrongLayout, 941 bool hasMRCWeakIvars); 942 943 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 944 CharUnits beginOffset, 945 CharUnits endOffset) { 946 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 947 } 948 949 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 950 CharUnits beginOffset, 951 CharUnits endOffset, 952 bool hasMRCWeakIvars) { 953 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 954 } 955 956 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 957 958 void UpdateRunSkipBlockVars(bool IsByref, 959 Qualifiers::ObjCLifetime LifeTime, 960 CharUnits FieldOffset, 961 CharUnits FieldSize); 962 963 void BuildRCBlockVarRecordLayout(const RecordType *RT, 964 CharUnits BytePos, bool &HasUnion, 965 bool ByrefLayout=false); 966 967 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 968 const RecordDecl *RD, 969 ArrayRef<const FieldDecl*> RecFields, 970 CharUnits BytePos, bool &HasUnion, 971 bool ByrefLayout); 972 973 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 974 975 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 976 977 /// GetIvarLayoutName - Returns a unique constant for the given 978 /// ivar layout bitmap. 979 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 980 const ObjCCommonTypesHelper &ObjCTypes); 981 982 /// EmitPropertyList - Emit the given property list. The return 983 /// value has type PropertyListPtrTy. 984 llvm::Constant *EmitPropertyList(Twine Name, 985 const Decl *Container, 986 const ObjCContainerDecl *OCD, 987 const ObjCCommonTypesHelper &ObjCTypes, 988 bool IsClassProperty); 989 990 /// EmitProtocolMethodTypes - Generate the array of extended method type 991 /// strings. The return value has type Int8PtrPtrTy. 992 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 993 ArrayRef<llvm::Constant*> MethodTypes, 994 const ObjCCommonTypesHelper &ObjCTypes); 995 996 /// GetProtocolRef - Return a reference to the internal protocol 997 /// description, creating an empty one if it has not been 998 /// defined. The return value has type ProtocolPtrTy. 999 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1000 1001 /// Return a reference to the given Class using runtime calls rather than 1002 /// by a symbol reference. 1003 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1004 const ObjCInterfaceDecl *ID, 1005 ObjCCommonTypesHelper &ObjCTypes); 1006 1007 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1008 1009 public: 1010 /// CreateMetadataVar - Create a global variable with internal 1011 /// linkage for use by the Objective-C runtime. 1012 /// 1013 /// This is a convenience wrapper which not only creates the 1014 /// variable, but also sets the section and alignment and adds the 1015 /// global to the "llvm.used" list. 1016 /// 1017 /// \param Name - The variable name. 1018 /// \param Init - The variable initializer; this is also used to 1019 /// define the type of the variable. 1020 /// \param Section - The section the variable should go into, or empty. 1021 /// \param Align - The alignment for the variable, or 0. 1022 /// \param AddToUsed - Whether the variable should be added to 1023 /// "llvm.used". 1024 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1025 ConstantStructBuilder &Init, 1026 StringRef Section, CharUnits Align, 1027 bool AddToUsed); 1028 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1029 llvm::Constant *Init, 1030 StringRef Section, CharUnits Align, 1031 bool AddToUsed); 1032 1033 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1034 ObjCLabelType LabelType, 1035 bool ForceNonFragileABI = false, 1036 bool NullTerminate = true); 1037 1038 protected: 1039 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1040 ReturnValueSlot Return, 1041 QualType ResultType, 1042 llvm::Value *Sel, 1043 llvm::Value *Arg0, 1044 QualType Arg0Ty, 1045 bool IsSuper, 1046 const CallArgList &CallArgs, 1047 const ObjCMethodDecl *OMD, 1048 const ObjCInterfaceDecl *ClassReceiver, 1049 const ObjCCommonTypesHelper &ObjCTypes); 1050 1051 /// EmitImageInfo - Emit the image info marker used to encode some module 1052 /// level information. 1053 void EmitImageInfo(); 1054 1055 public: 1056 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1057 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1058 1059 bool isNonFragileABI() const { 1060 return ObjCABI == 2; 1061 } 1062 1063 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1064 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1065 1066 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1067 const ObjCContainerDecl *CD=nullptr) override; 1068 1069 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1070 1071 /// GetOrEmitProtocol - Get the protocol object for the given 1072 /// declaration, emitting it if necessary. The return value has type 1073 /// ProtocolPtrTy. 1074 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1075 1076 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1077 /// object for the given declaration, emitting it if needed. These 1078 /// forward references will be filled in with empty bodies if no 1079 /// definition is seen. The return value has type ProtocolPtrTy. 1080 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1081 1082 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1083 1084 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1085 const CGBlockInfo &blockInfo) override; 1086 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1087 const CGBlockInfo &blockInfo) override; 1088 1089 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1090 QualType T) override; 1091 }; 1092 1093 namespace { 1094 1095 enum class MethodListType { 1096 CategoryInstanceMethods, 1097 CategoryClassMethods, 1098 InstanceMethods, 1099 ClassMethods, 1100 ProtocolInstanceMethods, 1101 ProtocolClassMethods, 1102 OptionalProtocolInstanceMethods, 1103 OptionalProtocolClassMethods, 1104 }; 1105 1106 /// A convenience class for splitting the methods of a protocol into 1107 /// the four interesting groups. 1108 class ProtocolMethodLists { 1109 public: 1110 enum Kind { 1111 RequiredInstanceMethods, 1112 RequiredClassMethods, 1113 OptionalInstanceMethods, 1114 OptionalClassMethods 1115 }; 1116 enum { 1117 NumProtocolMethodLists = 4 1118 }; 1119 1120 static MethodListType getMethodListKind(Kind kind) { 1121 switch (kind) { 1122 case RequiredInstanceMethods: 1123 return MethodListType::ProtocolInstanceMethods; 1124 case RequiredClassMethods: 1125 return MethodListType::ProtocolClassMethods; 1126 case OptionalInstanceMethods: 1127 return MethodListType::OptionalProtocolInstanceMethods; 1128 case OptionalClassMethods: 1129 return MethodListType::OptionalProtocolClassMethods; 1130 } 1131 llvm_unreachable("bad kind"); 1132 } 1133 1134 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1135 1136 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1137 ProtocolMethodLists result; 1138 1139 for (auto MD : PD->methods()) { 1140 size_t index = (2 * size_t(MD->isOptional())) 1141 + (size_t(MD->isClassMethod())); 1142 result.Methods[index].push_back(MD); 1143 } 1144 1145 return result; 1146 } 1147 1148 template <class Self> 1149 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1150 // In both ABIs, the method types list is parallel with the 1151 // concatenation of the methods arrays in the following order: 1152 // instance methods 1153 // class methods 1154 // optional instance methods 1155 // optional class methods 1156 SmallVector<llvm::Constant*, 8> result; 1157 1158 // Methods is already in the correct order for both ABIs. 1159 for (auto &list : Methods) { 1160 for (auto MD : list) { 1161 result.push_back(self->GetMethodVarType(MD, true)); 1162 } 1163 } 1164 1165 return result; 1166 } 1167 1168 template <class Self> 1169 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1170 Kind kind) const { 1171 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1172 getMethodListKind(kind), Methods[kind]); 1173 } 1174 }; 1175 1176 } // end anonymous namespace 1177 1178 class CGObjCMac : public CGObjCCommonMac { 1179 private: 1180 friend ProtocolMethodLists; 1181 1182 ObjCTypesHelper ObjCTypes; 1183 1184 /// EmitModuleInfo - Another marker encoding module level 1185 /// information. 1186 void EmitModuleInfo(); 1187 1188 /// EmitModuleSymols - Emit module symbols, the list of defined 1189 /// classes and categories. The result has type SymtabPtrTy. 1190 llvm::Constant *EmitModuleSymbols(); 1191 1192 /// FinishModule - Write out global data structures at the end of 1193 /// processing a translation unit. 1194 void FinishModule(); 1195 1196 /// EmitClassExtension - Generate the class extension structure used 1197 /// to store the weak ivar layout and properties. The return value 1198 /// has type ClassExtensionPtrTy. 1199 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1200 CharUnits instanceSize, 1201 bool hasMRCWeakIvars, 1202 bool isMetaclass); 1203 1204 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1205 /// for the given class. 1206 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1207 const ObjCInterfaceDecl *ID); 1208 1209 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1210 IdentifierInfo *II); 1211 1212 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1213 1214 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1215 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1216 1217 /// EmitIvarList - Emit the ivar list for the given 1218 /// implementation. If ForClass is true the list of class ivars 1219 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1220 /// interface ivars will be emitted. The return value has type 1221 /// IvarListPtrTy. 1222 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1223 bool ForClass); 1224 1225 /// EmitMetaClass - Emit a forward reference to the class structure 1226 /// for the metaclass of the given interface. The return value has 1227 /// type ClassPtrTy. 1228 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1229 1230 /// EmitMetaClass - Emit a class structure for the metaclass of the 1231 /// given implementation. The return value has type ClassPtrTy. 1232 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1233 llvm::Constant *Protocols, 1234 ArrayRef<const ObjCMethodDecl *> Methods); 1235 1236 void emitMethodConstant(ConstantArrayBuilder &builder, 1237 const ObjCMethodDecl *MD); 1238 1239 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1240 const ObjCMethodDecl *MD); 1241 1242 /// EmitMethodList - Emit the method list for the given 1243 /// implementation. The return value has type MethodListPtrTy. 1244 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1245 ArrayRef<const ObjCMethodDecl *> Methods); 1246 1247 /// GetOrEmitProtocol - Get the protocol object for the given 1248 /// declaration, emitting it if necessary. The return value has type 1249 /// ProtocolPtrTy. 1250 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1251 1252 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1253 /// object for the given declaration, emitting it if needed. These 1254 /// forward references will be filled in with empty bodies if no 1255 /// definition is seen. The return value has type ProtocolPtrTy. 1256 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1257 1258 /// EmitProtocolExtension - Generate the protocol extension 1259 /// structure used to store optional instance and class methods, and 1260 /// protocol properties. The return value has type 1261 /// ProtocolExtensionPtrTy. 1262 llvm::Constant * 1263 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1264 const ProtocolMethodLists &methodLists); 1265 1266 /// EmitProtocolList - Generate the list of referenced 1267 /// protocols. The return value has type ProtocolListPtrTy. 1268 llvm::Constant *EmitProtocolList(Twine Name, 1269 ObjCProtocolDecl::protocol_iterator begin, 1270 ObjCProtocolDecl::protocol_iterator end); 1271 1272 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1273 /// for the given selector. 1274 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1275 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1276 1277 public: 1278 CGObjCMac(CodeGen::CodeGenModule &cgm); 1279 1280 llvm::Constant *getNSConstantStringClassRef() override; 1281 1282 llvm::Function *ModuleInitFunction() override; 1283 1284 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1285 ReturnValueSlot Return, 1286 QualType ResultType, 1287 Selector Sel, llvm::Value *Receiver, 1288 const CallArgList &CallArgs, 1289 const ObjCInterfaceDecl *Class, 1290 const ObjCMethodDecl *Method) override; 1291 1292 CodeGen::RValue 1293 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1294 ReturnValueSlot Return, QualType ResultType, 1295 Selector Sel, const ObjCInterfaceDecl *Class, 1296 bool isCategoryImpl, llvm::Value *Receiver, 1297 bool IsClassMessage, const CallArgList &CallArgs, 1298 const ObjCMethodDecl *Method) override; 1299 1300 llvm::Value *GetClass(CodeGenFunction &CGF, 1301 const ObjCInterfaceDecl *ID) override; 1302 1303 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1304 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1305 1306 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1307 /// untyped one. 1308 llvm::Value *GetSelector(CodeGenFunction &CGF, 1309 const ObjCMethodDecl *Method) override; 1310 1311 llvm::Constant *GetEHType(QualType T) override; 1312 1313 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1314 1315 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1316 1317 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1318 1319 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1320 const ObjCProtocolDecl *PD) override; 1321 1322 llvm::Constant *GetPropertyGetFunction() override; 1323 llvm::Constant *GetPropertySetFunction() override; 1324 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1325 bool copy) override; 1326 llvm::Constant *GetGetStructFunction() override; 1327 llvm::Constant *GetSetStructFunction() override; 1328 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1329 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1330 llvm::Constant *EnumerationMutationFunction() override; 1331 1332 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1333 const ObjCAtTryStmt &S) override; 1334 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1335 const ObjCAtSynchronizedStmt &S) override; 1336 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1337 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1338 bool ClearInsertionPoint=true) override; 1339 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1340 Address AddrWeakObj) override; 1341 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1342 llvm::Value *src, Address dst) override; 1343 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1344 llvm::Value *src, Address dest, 1345 bool threadlocal = false) override; 1346 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1347 llvm::Value *src, Address dest, 1348 llvm::Value *ivarOffset) override; 1349 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1350 llvm::Value *src, Address dest) override; 1351 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1352 Address dest, Address src, 1353 llvm::Value *size) override; 1354 1355 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1356 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1357 unsigned CVRQualifiers) override; 1358 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1359 const ObjCInterfaceDecl *Interface, 1360 const ObjCIvarDecl *Ivar) override; 1361 }; 1362 1363 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1364 private: 1365 friend ProtocolMethodLists; 1366 ObjCNonFragileABITypesHelper ObjCTypes; 1367 llvm::GlobalVariable* ObjCEmptyCacheVar; 1368 llvm::Constant* ObjCEmptyVtableVar; 1369 1370 /// SuperClassReferences - uniqued super class references. 1371 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1372 1373 /// MetaClassReferences - uniqued meta class references. 1374 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1375 1376 /// EHTypeReferences - uniqued class ehtype references. 1377 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1378 1379 /// VTableDispatchMethods - List of methods for which we generate 1380 /// vtable-based message dispatch. 1381 llvm::DenseSet<Selector> VTableDispatchMethods; 1382 1383 /// DefinedMetaClasses - List of defined meta-classes. 1384 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1385 1386 /// isVTableDispatchedSelector - Returns true if SEL is a 1387 /// vtable-based selector. 1388 bool isVTableDispatchedSelector(Selector Sel); 1389 1390 /// FinishNonFragileABIModule - Write out global data structures at the end of 1391 /// processing a translation unit. 1392 void FinishNonFragileABIModule(); 1393 1394 /// AddModuleClassList - Add the given list of class pointers to the 1395 /// module with the provided symbol and section names. 1396 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1397 StringRef SymbolName, StringRef SectionName); 1398 1399 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1400 unsigned InstanceStart, 1401 unsigned InstanceSize, 1402 const ObjCImplementationDecl *ID); 1403 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1404 bool isMetaclass, 1405 llvm::Constant *IsAGV, 1406 llvm::Constant *SuperClassGV, 1407 llvm::Constant *ClassRoGV, 1408 bool HiddenVisibility); 1409 1410 void emitMethodConstant(ConstantArrayBuilder &builder, 1411 const ObjCMethodDecl *MD, 1412 bool forProtocol); 1413 1414 /// Emit the method list for the given implementation. The return value 1415 /// has type MethodListnfABITy. 1416 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1417 ArrayRef<const ObjCMethodDecl *> Methods); 1418 1419 /// EmitIvarList - Emit the ivar list for the given 1420 /// implementation. If ForClass is true the list of class ivars 1421 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1422 /// interface ivars will be emitted. The return value has type 1423 /// IvarListnfABIPtrTy. 1424 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1425 1426 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1427 const ObjCIvarDecl *Ivar, 1428 unsigned long int offset); 1429 1430 /// GetOrEmitProtocol - Get the protocol object for the given 1431 /// declaration, emitting it if necessary. The return value has type 1432 /// ProtocolPtrTy. 1433 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1434 1435 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1436 /// object for the given declaration, emitting it if needed. These 1437 /// forward references will be filled in with empty bodies if no 1438 /// definition is seen. The return value has type ProtocolPtrTy. 1439 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1440 1441 /// EmitProtocolList - Generate the list of referenced 1442 /// protocols. The return value has type ProtocolListPtrTy. 1443 llvm::Constant *EmitProtocolList(Twine Name, 1444 ObjCProtocolDecl::protocol_iterator begin, 1445 ObjCProtocolDecl::protocol_iterator end); 1446 1447 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1448 ReturnValueSlot Return, 1449 QualType ResultType, 1450 Selector Sel, 1451 llvm::Value *Receiver, 1452 QualType Arg0Ty, 1453 bool IsSuper, 1454 const CallArgList &CallArgs, 1455 const ObjCMethodDecl *Method); 1456 1457 /// GetClassGlobal - Return the global variable for the Objective-C 1458 /// class of the given name. 1459 llvm::Constant *GetClassGlobal(StringRef Name, 1460 ForDefinition_t IsForDefinition, 1461 bool Weak = false, bool DLLImport = false); 1462 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1463 bool isMetaclass, 1464 ForDefinition_t isForDefinition); 1465 1466 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1467 /// for the given class reference. 1468 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1469 const ObjCInterfaceDecl *ID); 1470 1471 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1472 IdentifierInfo *II, 1473 const ObjCInterfaceDecl *ID); 1474 1475 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1476 1477 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1478 /// for the given super class reference. 1479 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1480 const ObjCInterfaceDecl *ID); 1481 1482 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1483 /// meta-data 1484 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1485 const ObjCInterfaceDecl *ID, bool Weak); 1486 1487 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1488 /// the given ivar. 1489 /// 1490 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1491 const ObjCInterfaceDecl *ID, 1492 const ObjCIvarDecl *Ivar); 1493 1494 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1495 /// for the given selector. 1496 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1497 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1498 1499 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1500 /// interface. The return value has type EHTypePtrTy. 1501 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1502 ForDefinition_t IsForDefinition); 1503 1504 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1505 1506 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1507 1508 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1509 uint32_t &InstanceStart, 1510 uint32_t &InstanceSize); 1511 1512 // Shamelessly stolen from Analysis/CFRefCount.cpp 1513 Selector GetNullarySelector(const char* name) const { 1514 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1515 return CGM.getContext().Selectors.getSelector(0, &II); 1516 } 1517 1518 Selector GetUnarySelector(const char* name) const { 1519 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1520 return CGM.getContext().Selectors.getSelector(1, &II); 1521 } 1522 1523 /// ImplementationIsNonLazy - Check whether the given category or 1524 /// class implementation is "non-lazy". 1525 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1526 1527 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1528 const ObjCIvarDecl *IV) { 1529 // Annotate the load as an invariant load iff inside an instance method 1530 // and ivar belongs to instance method's class and one of its super class. 1531 // This check is needed because the ivar offset is a lazily 1532 // initialised value that may depend on objc_msgSend to perform a fixup on 1533 // the first message dispatch. 1534 // 1535 // An additional opportunity to mark the load as invariant arises when the 1536 // base of the ivar access is a parameter to an Objective C method. 1537 // However, because the parameters are not available in the current 1538 // interface, we cannot perform this check. 1539 if (const ObjCMethodDecl *MD = 1540 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1541 if (MD->isInstanceMethod()) 1542 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1543 return IV->getContainingInterface()->isSuperClassOf(ID); 1544 return false; 1545 } 1546 1547 public: 1548 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1549 1550 llvm::Constant *getNSConstantStringClassRef() override; 1551 1552 llvm::Function *ModuleInitFunction() override; 1553 1554 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1555 ReturnValueSlot Return, 1556 QualType ResultType, Selector Sel, 1557 llvm::Value *Receiver, 1558 const CallArgList &CallArgs, 1559 const ObjCInterfaceDecl *Class, 1560 const ObjCMethodDecl *Method) override; 1561 1562 CodeGen::RValue 1563 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1564 ReturnValueSlot Return, QualType ResultType, 1565 Selector Sel, const ObjCInterfaceDecl *Class, 1566 bool isCategoryImpl, llvm::Value *Receiver, 1567 bool IsClassMessage, const CallArgList &CallArgs, 1568 const ObjCMethodDecl *Method) override; 1569 1570 llvm::Value *GetClass(CodeGenFunction &CGF, 1571 const ObjCInterfaceDecl *ID) override; 1572 1573 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1574 { return EmitSelector(CGF, Sel); } 1575 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1576 { return EmitSelectorAddr(CGF, Sel); } 1577 1578 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1579 /// untyped one. 1580 llvm::Value *GetSelector(CodeGenFunction &CGF, 1581 const ObjCMethodDecl *Method) override 1582 { return EmitSelector(CGF, Method->getSelector()); } 1583 1584 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1585 1586 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1587 1588 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1589 1590 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1591 const ObjCProtocolDecl *PD) override; 1592 1593 llvm::Constant *GetEHType(QualType T) override; 1594 1595 llvm::Constant *GetPropertyGetFunction() override { 1596 return ObjCTypes.getGetPropertyFn(); 1597 } 1598 llvm::Constant *GetPropertySetFunction() override { 1599 return ObjCTypes.getSetPropertyFn(); 1600 } 1601 1602 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1603 bool copy) override { 1604 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1605 } 1606 1607 llvm::Constant *GetSetStructFunction() override { 1608 return ObjCTypes.getCopyStructFn(); 1609 } 1610 1611 llvm::Constant *GetGetStructFunction() override { 1612 return ObjCTypes.getCopyStructFn(); 1613 } 1614 1615 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1616 return ObjCTypes.getCppAtomicObjectFunction(); 1617 } 1618 1619 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1620 return ObjCTypes.getCppAtomicObjectFunction(); 1621 } 1622 1623 llvm::Constant *EnumerationMutationFunction() override { 1624 return ObjCTypes.getEnumerationMutationFn(); 1625 } 1626 1627 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1628 const ObjCAtTryStmt &S) override; 1629 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1630 const ObjCAtSynchronizedStmt &S) override; 1631 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1632 bool ClearInsertionPoint=true) override; 1633 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1634 Address AddrWeakObj) override; 1635 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1636 llvm::Value *src, Address edst) override; 1637 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1638 llvm::Value *src, Address dest, 1639 bool threadlocal = false) override; 1640 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1641 llvm::Value *src, Address dest, 1642 llvm::Value *ivarOffset) override; 1643 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1644 llvm::Value *src, Address dest) override; 1645 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1646 Address dest, Address src, 1647 llvm::Value *size) override; 1648 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1649 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1650 unsigned CVRQualifiers) override; 1651 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1652 const ObjCInterfaceDecl *Interface, 1653 const ObjCIvarDecl *Ivar) override; 1654 }; 1655 1656 /// A helper class for performing the null-initialization of a return 1657 /// value. 1658 struct NullReturnState { 1659 llvm::BasicBlock *NullBB; 1660 NullReturnState() : NullBB(nullptr) {} 1661 1662 /// Perform a null-check of the given receiver. 1663 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1664 // Make blocks for the null-receiver and call edges. 1665 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1666 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1667 1668 // Check for a null receiver and, if there is one, jump to the 1669 // null-receiver block. There's no point in trying to avoid it: 1670 // we're always going to put *something* there, because otherwise 1671 // we shouldn't have done this null-check in the first place. 1672 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1673 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1674 1675 // Otherwise, start performing the call. 1676 CGF.EmitBlock(callBB); 1677 } 1678 1679 /// Complete the null-return operation. It is valid to call this 1680 /// regardless of whether 'init' has been called. 1681 RValue complete(CodeGenFunction &CGF, 1682 ReturnValueSlot returnSlot, 1683 RValue result, 1684 QualType resultType, 1685 const CallArgList &CallArgs, 1686 const ObjCMethodDecl *Method) { 1687 // If we never had to do a null-check, just use the raw result. 1688 if (!NullBB) return result; 1689 1690 // The continuation block. This will be left null if we don't have an 1691 // IP, which can happen if the method we're calling is marked noreturn. 1692 llvm::BasicBlock *contBB = nullptr; 1693 1694 // Finish the call path. 1695 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1696 if (callBB) { 1697 contBB = CGF.createBasicBlock("msgSend.cont"); 1698 CGF.Builder.CreateBr(contBB); 1699 } 1700 1701 // Okay, start emitting the null-receiver block. 1702 CGF.EmitBlock(NullBB); 1703 1704 // Release any consumed arguments we've got. 1705 if (Method) { 1706 CallArgList::const_iterator I = CallArgs.begin(); 1707 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1708 e = Method->param_end(); i != e; ++i, ++I) { 1709 const ParmVarDecl *ParamDecl = (*i); 1710 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1711 RValue RV = I->getRValue(CGF); 1712 assert(RV.isScalar() && 1713 "NullReturnState::complete - arg not on object"); 1714 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1715 } 1716 } 1717 } 1718 1719 // The phi code below assumes that we haven't needed any control flow yet. 1720 assert(CGF.Builder.GetInsertBlock() == NullBB); 1721 1722 // If we've got a void return, just jump to the continuation block. 1723 if (result.isScalar() && resultType->isVoidType()) { 1724 // No jumps required if the message-send was noreturn. 1725 if (contBB) CGF.EmitBlock(contBB); 1726 return result; 1727 } 1728 1729 // If we've got a scalar return, build a phi. 1730 if (result.isScalar()) { 1731 // Derive the null-initialization value. 1732 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1733 1734 // If no join is necessary, just flow out. 1735 if (!contBB) return RValue::get(null); 1736 1737 // Otherwise, build a phi. 1738 CGF.EmitBlock(contBB); 1739 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1740 phi->addIncoming(result.getScalarVal(), callBB); 1741 phi->addIncoming(null, NullBB); 1742 return RValue::get(phi); 1743 } 1744 1745 // If we've got an aggregate return, null the buffer out. 1746 // FIXME: maybe we should be doing things differently for all the 1747 // cases where the ABI has us returning (1) non-agg values in 1748 // memory or (2) agg values in registers. 1749 if (result.isAggregate()) { 1750 assert(result.isAggregate() && "null init of non-aggregate result?"); 1751 if (!returnSlot.isUnused()) 1752 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1753 if (contBB) CGF.EmitBlock(contBB); 1754 return result; 1755 } 1756 1757 // Complex types. 1758 CGF.EmitBlock(contBB); 1759 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1760 1761 // Find the scalar type and its zero value. 1762 llvm::Type *scalarTy = callResult.first->getType(); 1763 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1764 1765 // Build phis for both coordinates. 1766 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1767 real->addIncoming(callResult.first, callBB); 1768 real->addIncoming(scalarZero, NullBB); 1769 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1770 imag->addIncoming(callResult.second, callBB); 1771 imag->addIncoming(scalarZero, NullBB); 1772 return RValue::getComplex(real, imag); 1773 } 1774 }; 1775 1776 } // end anonymous namespace 1777 1778 /* *** Helper Functions *** */ 1779 1780 /// getConstantGEP() - Help routine to construct simple GEPs. 1781 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1782 llvm::GlobalVariable *C, unsigned idx0, 1783 unsigned idx1) { 1784 llvm::Value *Idxs[] = { 1785 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1786 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1787 }; 1788 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1789 } 1790 1791 /// hasObjCExceptionAttribute - Return true if this class or any super 1792 /// class has the __objc_exception__ attribute. 1793 static bool hasObjCExceptionAttribute(ASTContext &Context, 1794 const ObjCInterfaceDecl *OID) { 1795 if (OID->hasAttr<ObjCExceptionAttr>()) 1796 return true; 1797 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1798 return hasObjCExceptionAttribute(Context, Super); 1799 return false; 1800 } 1801 1802 /* *** CGObjCMac Public Interface *** */ 1803 1804 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1805 ObjCTypes(cgm) { 1806 ObjCABI = 1; 1807 EmitImageInfo(); 1808 } 1809 1810 /// GetClass - Return a reference to the class for the given interface 1811 /// decl. 1812 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1813 const ObjCInterfaceDecl *ID) { 1814 return EmitClassRef(CGF, ID); 1815 } 1816 1817 /// GetSelector - Return the pointer to the unique'd string for this selector. 1818 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1819 return EmitSelector(CGF, Sel); 1820 } 1821 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1822 return EmitSelectorAddr(CGF, Sel); 1823 } 1824 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1825 *Method) { 1826 return EmitSelector(CGF, Method->getSelector()); 1827 } 1828 1829 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1830 if (T->isObjCIdType() || 1831 T->isObjCQualifiedIdType()) { 1832 return CGM.GetAddrOfRTTIDescriptor( 1833 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1834 } 1835 if (T->isObjCClassType() || 1836 T->isObjCQualifiedClassType()) { 1837 return CGM.GetAddrOfRTTIDescriptor( 1838 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1839 } 1840 if (T->isObjCObjectPointerType()) 1841 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1842 1843 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1844 } 1845 1846 /// Generate a constant CFString object. 1847 /* 1848 struct __builtin_CFString { 1849 const int *isa; // point to __CFConstantStringClassReference 1850 int flags; 1851 const char *str; 1852 long length; 1853 }; 1854 */ 1855 1856 /// or Generate a constant NSString object. 1857 /* 1858 struct __builtin_NSString { 1859 const int *isa; // point to __NSConstantStringClassReference 1860 const char *str; 1861 unsigned int length; 1862 }; 1863 */ 1864 1865 ConstantAddress 1866 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1867 return (!CGM.getLangOpts().NoConstantCFStrings 1868 ? CGM.GetAddrOfConstantCFString(SL) 1869 : GenerateConstantNSString(SL)); 1870 } 1871 1872 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1873 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1874 const StringLiteral *Literal, unsigned &StringLength) { 1875 StringRef String = Literal->getString(); 1876 StringLength = String.size(); 1877 return *Map.insert(std::make_pair(String, nullptr)).first; 1878 } 1879 1880 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1881 if (llvm::Value *V = ConstantStringClassRef) 1882 return cast<llvm::Constant>(V); 1883 1884 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1885 std::string str = 1886 StringClass.empty() ? "_NSConstantStringClassReference" 1887 : "_" + StringClass + "ClassReference"; 1888 1889 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1890 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1891 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1892 ConstantStringClassRef = V; 1893 return V; 1894 } 1895 1896 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1897 if (llvm::Value *V = ConstantStringClassRef) 1898 return cast<llvm::Constant>(V); 1899 1900 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1901 std::string str = 1902 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1903 : "OBJC_CLASS_$_" + StringClass; 1904 auto GV = GetClassGlobal(str, NotForDefinition); 1905 1906 // Make sure the result is of the correct type. 1907 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1908 1909 ConstantStringClassRef = V; 1910 return V; 1911 } 1912 1913 ConstantAddress 1914 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1915 unsigned StringLength = 0; 1916 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1917 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1918 1919 if (auto *C = Entry.second) 1920 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 1921 1922 // If we don't already have it, get _NSConstantStringClassReference. 1923 llvm::Constant *Class = getNSConstantStringClassRef(); 1924 1925 // If we don't already have it, construct the type for a constant NSString. 1926 if (!NSConstantStringType) { 1927 NSConstantStringType = 1928 llvm::StructType::create({ 1929 CGM.Int32Ty->getPointerTo(), 1930 CGM.Int8PtrTy, 1931 CGM.IntTy 1932 }, "struct.__builtin_NSString"); 1933 } 1934 1935 ConstantInitBuilder Builder(CGM); 1936 auto Fields = Builder.beginStruct(NSConstantStringType); 1937 1938 // Class pointer. 1939 Fields.add(Class); 1940 1941 // String pointer. 1942 llvm::Constant *C = 1943 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 1944 1945 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 1946 bool isConstant = !CGM.getLangOpts().WritableStrings; 1947 1948 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 1949 Linkage, C, ".str"); 1950 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1951 // Don't enforce the target's minimum global alignment, since the only use 1952 // of the string is via this class initializer. 1953 GV->setAlignment(1); 1954 Fields.addBitCast(GV, CGM.Int8PtrTy); 1955 1956 // String length. 1957 Fields.addInt(CGM.IntTy, StringLength); 1958 1959 // The struct. 1960 CharUnits Alignment = CGM.getPointerAlign(); 1961 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 1962 /*constant*/ true, 1963 llvm::GlobalVariable::PrivateLinkage); 1964 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 1965 const char *NSStringNonFragileABISection = 1966 "__DATA,__objc_stringobj,regular,no_dead_strip"; 1967 // FIXME. Fix section. 1968 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 1969 ? NSStringNonFragileABISection 1970 : NSStringSection); 1971 Entry.second = GV; 1972 1973 return ConstantAddress(GV, Alignment); 1974 } 1975 1976 enum { 1977 kCFTaggedObjectID_Integer = (1 << 1) + 1 1978 }; 1979 1980 /// Generates a message send where the super is the receiver. This is 1981 /// a message send to self with special delivery semantics indicating 1982 /// which class's method should be called. 1983 CodeGen::RValue 1984 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1985 ReturnValueSlot Return, 1986 QualType ResultType, 1987 Selector Sel, 1988 const ObjCInterfaceDecl *Class, 1989 bool isCategoryImpl, 1990 llvm::Value *Receiver, 1991 bool IsClassMessage, 1992 const CodeGen::CallArgList &CallArgs, 1993 const ObjCMethodDecl *Method) { 1994 // Create and init a super structure; this is a (receiver, class) 1995 // pair we will pass to objc_msgSendSuper. 1996 Address ObjCSuper = 1997 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1998 "objc_super"); 1999 llvm::Value *ReceiverAsObject = 2000 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2001 CGF.Builder.CreateStore( 2002 ReceiverAsObject, 2003 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 2004 2005 // If this is a class message the metaclass is passed as the target. 2006 llvm::Value *Target; 2007 if (IsClassMessage) { 2008 if (isCategoryImpl) { 2009 // Message sent to 'super' in a class method defined in a category 2010 // implementation requires an odd treatment. 2011 // If we are in a class method, we must retrieve the 2012 // _metaclass_ for the current class, pointed at by 2013 // the class's "isa" pointer. The following assumes that 2014 // isa" is the first ivar in a class (which it must be). 2015 Target = EmitClassRef(CGF, Class->getSuperClass()); 2016 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2017 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2018 } else { 2019 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2020 llvm::Value *SuperPtr = 2021 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2022 llvm::Value *Super = 2023 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2024 Target = Super; 2025 } 2026 } else if (isCategoryImpl) 2027 Target = EmitClassRef(CGF, Class->getSuperClass()); 2028 else { 2029 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2030 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2031 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2032 } 2033 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2034 // ObjCTypes types. 2035 llvm::Type *ClassTy = 2036 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2037 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2038 CGF.Builder.CreateStore(Target, 2039 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 2040 return EmitMessageSend(CGF, Return, ResultType, 2041 EmitSelector(CGF, Sel), 2042 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 2043 true, CallArgs, Method, Class, ObjCTypes); 2044 } 2045 2046 /// Generate code for a message send expression. 2047 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2048 ReturnValueSlot Return, 2049 QualType ResultType, 2050 Selector Sel, 2051 llvm::Value *Receiver, 2052 const CallArgList &CallArgs, 2053 const ObjCInterfaceDecl *Class, 2054 const ObjCMethodDecl *Method) { 2055 return EmitMessageSend(CGF, Return, ResultType, 2056 EmitSelector(CGF, Sel), 2057 Receiver, CGF.getContext().getObjCIdType(), 2058 false, CallArgs, Method, Class, ObjCTypes); 2059 } 2060 2061 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2062 do { 2063 if (ID->isWeakImported()) 2064 return true; 2065 } while ((ID = ID->getSuperClass())); 2066 2067 return false; 2068 } 2069 2070 CodeGen::RValue 2071 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2072 ReturnValueSlot Return, 2073 QualType ResultType, 2074 llvm::Value *Sel, 2075 llvm::Value *Arg0, 2076 QualType Arg0Ty, 2077 bool IsSuper, 2078 const CallArgList &CallArgs, 2079 const ObjCMethodDecl *Method, 2080 const ObjCInterfaceDecl *ClassReceiver, 2081 const ObjCCommonTypesHelper &ObjCTypes) { 2082 CallArgList ActualArgs; 2083 if (!IsSuper) 2084 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2085 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2086 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 2087 ActualArgs.addFrom(CallArgs); 2088 2089 // If we're calling a method, use the formal signature. 2090 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2091 2092 if (Method) 2093 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2094 CGM.getContext().getCanonicalType(ResultType) && 2095 "Result type mismatch!"); 2096 2097 bool ReceiverCanBeNull = true; 2098 2099 // Super dispatch assumes that self is non-null; even the messenger 2100 // doesn't have a null check internally. 2101 if (IsSuper) { 2102 ReceiverCanBeNull = false; 2103 2104 // If this is a direct dispatch of a class method, check whether the class, 2105 // or anything in its hierarchy, was weak-linked. 2106 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2107 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2108 2109 // If we're emitting a method, and self is const (meaning just ARC, for now), 2110 // and the receiver is a load of self, then self is a valid object. 2111 } else if (auto CurMethod = 2112 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2113 auto Self = CurMethod->getSelfDecl(); 2114 if (Self->getType().isConstQualified()) { 2115 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2116 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2117 if (SelfAddr == LI->getPointerOperand()) { 2118 ReceiverCanBeNull = false; 2119 } 2120 } 2121 } 2122 } 2123 2124 bool RequiresNullCheck = false; 2125 2126 llvm::Constant *Fn = nullptr; 2127 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2128 if (ReceiverCanBeNull) RequiresNullCheck = true; 2129 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2130 : ObjCTypes.getSendStretFn(IsSuper); 2131 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2132 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2133 : ObjCTypes.getSendFpretFn(IsSuper); 2134 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2135 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2136 : ObjCTypes.getSendFp2retFn(IsSuper); 2137 } else { 2138 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2139 // must be made for it. 2140 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2141 RequiresNullCheck = true; 2142 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2143 : ObjCTypes.getSendFn(IsSuper); 2144 } 2145 2146 // We don't need to emit a null check to zero out an indirect result if the 2147 // result is ignored. 2148 if (Return.isUnused()) 2149 RequiresNullCheck = false; 2150 2151 // Emit a null-check if there's a consumed argument other than the receiver. 2152 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2153 for (const auto *ParamDecl : Method->parameters()) { 2154 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2155 RequiresNullCheck = true; 2156 break; 2157 } 2158 } 2159 } 2160 2161 NullReturnState nullReturn; 2162 if (RequiresNullCheck) { 2163 nullReturn.init(CGF, Arg0); 2164 } 2165 2166 llvm::Instruction *CallSite; 2167 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 2168 CGCallee Callee = CGCallee::forDirect(Fn); 2169 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2170 &CallSite); 2171 2172 // Mark the call as noreturn if the method is marked noreturn and the 2173 // receiver cannot be null. 2174 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2175 llvm::CallSite(CallSite).setDoesNotReturn(); 2176 } 2177 2178 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2179 RequiresNullCheck ? Method : nullptr); 2180 } 2181 2182 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2183 bool pointee = false) { 2184 // Note that GC qualification applies recursively to C pointer types 2185 // that aren't otherwise decorated. This is weird, but it's probably 2186 // an intentional workaround to the unreliable placement of GC qualifiers. 2187 if (FQT.isObjCGCStrong()) 2188 return Qualifiers::Strong; 2189 2190 if (FQT.isObjCGCWeak()) 2191 return Qualifiers::Weak; 2192 2193 if (auto ownership = FQT.getObjCLifetime()) { 2194 // Ownership does not apply recursively to C pointer types. 2195 if (pointee) return Qualifiers::GCNone; 2196 switch (ownership) { 2197 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2198 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2199 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2200 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2201 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2202 } 2203 llvm_unreachable("bad objc ownership"); 2204 } 2205 2206 // Treat unqualified retainable pointers as strong. 2207 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2208 return Qualifiers::Strong; 2209 2210 // Walk into C pointer types, but only in GC. 2211 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2212 if (const PointerType *PT = FQT->getAs<PointerType>()) 2213 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2214 } 2215 2216 return Qualifiers::GCNone; 2217 } 2218 2219 namespace { 2220 struct IvarInfo { 2221 CharUnits Offset; 2222 uint64_t SizeInWords; 2223 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2224 : Offset(offset), SizeInWords(sizeInWords) {} 2225 2226 // Allow sorting based on byte pos. 2227 bool operator<(const IvarInfo &other) const { 2228 return Offset < other.Offset; 2229 } 2230 }; 2231 2232 /// A helper class for building GC layout strings. 2233 class IvarLayoutBuilder { 2234 CodeGenModule &CGM; 2235 2236 /// The start of the layout. Offsets will be relative to this value, 2237 /// and entries less than this value will be silently discarded. 2238 CharUnits InstanceBegin; 2239 2240 /// The end of the layout. Offsets will never exceed this value. 2241 CharUnits InstanceEnd; 2242 2243 /// Whether we're generating the strong layout or the weak layout. 2244 bool ForStrongLayout; 2245 2246 /// Whether the offsets in IvarsInfo might be out-of-order. 2247 bool IsDisordered = false; 2248 2249 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2250 2251 public: 2252 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2253 CharUnits instanceEnd, bool forStrongLayout) 2254 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2255 ForStrongLayout(forStrongLayout) { 2256 } 2257 2258 void visitRecord(const RecordType *RT, CharUnits offset); 2259 2260 template <class Iterator, class GetOffsetFn> 2261 void visitAggregate(Iterator begin, Iterator end, 2262 CharUnits aggrOffset, 2263 const GetOffsetFn &getOffset); 2264 2265 void visitField(const FieldDecl *field, CharUnits offset); 2266 2267 /// Add the layout of a block implementation. 2268 void visitBlock(const CGBlockInfo &blockInfo); 2269 2270 /// Is there any information for an interesting bitmap? 2271 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2272 2273 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2274 llvm::SmallVectorImpl<unsigned char> &buffer); 2275 2276 static void dump(ArrayRef<unsigned char> buffer) { 2277 const unsigned char *s = buffer.data(); 2278 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2279 if (!(s[i] & 0xf0)) 2280 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2281 else 2282 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2283 printf("\n"); 2284 } 2285 }; 2286 } // end anonymous namespace 2287 2288 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2289 const CGBlockInfo &blockInfo) { 2290 2291 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2292 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2293 return nullPtr; 2294 2295 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2296 /*for strong layout*/ true); 2297 2298 builder.visitBlock(blockInfo); 2299 2300 if (!builder.hasBitmapData()) 2301 return nullPtr; 2302 2303 llvm::SmallVector<unsigned char, 32> buffer; 2304 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2305 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2306 printf("\n block variable layout for block: "); 2307 builder.dump(buffer); 2308 } 2309 2310 return C; 2311 } 2312 2313 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2314 // __isa is the first field in block descriptor and must assume by runtime's 2315 // convention that it is GC'able. 2316 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2317 2318 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2319 2320 // Ignore the optional 'this' capture: C++ objects are not assumed 2321 // to be GC'ed. 2322 2323 CharUnits lastFieldOffset; 2324 2325 // Walk the captured variables. 2326 for (const auto &CI : blockDecl->captures()) { 2327 const VarDecl *variable = CI.getVariable(); 2328 QualType type = variable->getType(); 2329 2330 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2331 2332 // Ignore constant captures. 2333 if (capture.isConstant()) continue; 2334 2335 CharUnits fieldOffset = capture.getOffset(); 2336 2337 // Block fields are not necessarily ordered; if we detect that we're 2338 // adding them out-of-order, make sure we sort later. 2339 if (fieldOffset < lastFieldOffset) 2340 IsDisordered = true; 2341 lastFieldOffset = fieldOffset; 2342 2343 // __block variables are passed by their descriptor address. 2344 if (CI.isByRef()) { 2345 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2346 continue; 2347 } 2348 2349 assert(!type->isArrayType() && "array variable should not be caught"); 2350 if (const RecordType *record = type->getAs<RecordType>()) { 2351 visitRecord(record, fieldOffset); 2352 continue; 2353 } 2354 2355 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2356 2357 if (GCAttr == Qualifiers::Strong) { 2358 assert(CGM.getContext().getTypeSize(type) 2359 == CGM.getTarget().getPointerWidth(0)); 2360 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2361 } 2362 } 2363 } 2364 2365 /// getBlockCaptureLifetime - This routine returns life time of the captured 2366 /// block variable for the purpose of block layout meta-data generation. FQT is 2367 /// the type of the variable captured in the block. 2368 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2369 bool ByrefLayout) { 2370 // If it has an ownership qualifier, we're done. 2371 if (auto lifetime = FQT.getObjCLifetime()) 2372 return lifetime; 2373 2374 // If it doesn't, and this is ARC, it has no ownership. 2375 if (CGM.getLangOpts().ObjCAutoRefCount) 2376 return Qualifiers::OCL_None; 2377 2378 // In MRC, retainable pointers are owned by non-__block variables. 2379 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2380 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2381 2382 return Qualifiers::OCL_None; 2383 } 2384 2385 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2386 Qualifiers::ObjCLifetime LifeTime, 2387 CharUnits FieldOffset, 2388 CharUnits FieldSize) { 2389 // __block variables are passed by their descriptor address. 2390 if (IsByref) 2391 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2392 FieldSize)); 2393 else if (LifeTime == Qualifiers::OCL_Strong) 2394 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2395 FieldSize)); 2396 else if (LifeTime == Qualifiers::OCL_Weak) 2397 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2398 FieldSize)); 2399 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2400 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2401 FieldSize)); 2402 else 2403 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2404 FieldOffset, 2405 FieldSize)); 2406 } 2407 2408 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2409 const RecordDecl *RD, 2410 ArrayRef<const FieldDecl*> RecFields, 2411 CharUnits BytePos, bool &HasUnion, 2412 bool ByrefLayout) { 2413 bool IsUnion = (RD && RD->isUnion()); 2414 CharUnits MaxUnionSize = CharUnits::Zero(); 2415 const FieldDecl *MaxField = nullptr; 2416 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2417 CharUnits MaxFieldOffset = CharUnits::Zero(); 2418 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2419 2420 if (RecFields.empty()) 2421 return; 2422 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2423 2424 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2425 const FieldDecl *Field = RecFields[i]; 2426 // Note that 'i' here is actually the field index inside RD of Field, 2427 // although this dependency is hidden. 2428 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2429 CharUnits FieldOffset = 2430 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2431 2432 // Skip over unnamed or bitfields 2433 if (!Field->getIdentifier() || Field->isBitField()) { 2434 LastFieldBitfieldOrUnnamed = Field; 2435 LastBitfieldOrUnnamedOffset = FieldOffset; 2436 continue; 2437 } 2438 2439 LastFieldBitfieldOrUnnamed = nullptr; 2440 QualType FQT = Field->getType(); 2441 if (FQT->isRecordType() || FQT->isUnionType()) { 2442 if (FQT->isUnionType()) 2443 HasUnion = true; 2444 2445 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2446 BytePos + FieldOffset, HasUnion); 2447 continue; 2448 } 2449 2450 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2451 const ConstantArrayType *CArray = 2452 dyn_cast_or_null<ConstantArrayType>(Array); 2453 uint64_t ElCount = CArray->getSize().getZExtValue(); 2454 assert(CArray && "only array with known element size is supported"); 2455 FQT = CArray->getElementType(); 2456 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2457 const ConstantArrayType *CArray = 2458 dyn_cast_or_null<ConstantArrayType>(Array); 2459 ElCount *= CArray->getSize().getZExtValue(); 2460 FQT = CArray->getElementType(); 2461 } 2462 if (FQT->isRecordType() && ElCount) { 2463 int OldIndex = RunSkipBlockVars.size() - 1; 2464 const RecordType *RT = FQT->getAs<RecordType>(); 2465 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2466 HasUnion); 2467 2468 // Replicate layout information for each array element. Note that 2469 // one element is already done. 2470 uint64_t ElIx = 1; 2471 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2472 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2473 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2474 RunSkipBlockVars.push_back( 2475 RUN_SKIP(RunSkipBlockVars[i].opcode, 2476 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2477 RunSkipBlockVars[i].block_var_size)); 2478 } 2479 continue; 2480 } 2481 } 2482 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2483 if (IsUnion) { 2484 CharUnits UnionIvarSize = FieldSize; 2485 if (UnionIvarSize > MaxUnionSize) { 2486 MaxUnionSize = UnionIvarSize; 2487 MaxField = Field; 2488 MaxFieldOffset = FieldOffset; 2489 } 2490 } else { 2491 UpdateRunSkipBlockVars(false, 2492 getBlockCaptureLifetime(FQT, ByrefLayout), 2493 BytePos + FieldOffset, 2494 FieldSize); 2495 } 2496 } 2497 2498 if (LastFieldBitfieldOrUnnamed) { 2499 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2500 // Last field was a bitfield. Must update the info. 2501 uint64_t BitFieldSize 2502 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2503 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2504 ((BitFieldSize % ByteSizeInBits) != 0); 2505 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2506 Size += LastBitfieldOrUnnamedOffset; 2507 UpdateRunSkipBlockVars(false, 2508 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2509 ByrefLayout), 2510 BytePos + LastBitfieldOrUnnamedOffset, 2511 Size); 2512 } else { 2513 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2514 // Last field was unnamed. Must update skip info. 2515 CharUnits FieldSize 2516 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2517 UpdateRunSkipBlockVars(false, 2518 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2519 ByrefLayout), 2520 BytePos + LastBitfieldOrUnnamedOffset, 2521 FieldSize); 2522 } 2523 } 2524 2525 if (MaxField) 2526 UpdateRunSkipBlockVars(false, 2527 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2528 BytePos + MaxFieldOffset, 2529 MaxUnionSize); 2530 } 2531 2532 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2533 CharUnits BytePos, 2534 bool &HasUnion, 2535 bool ByrefLayout) { 2536 const RecordDecl *RD = RT->getDecl(); 2537 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2538 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2539 const llvm::StructLayout *RecLayout = 2540 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2541 2542 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2543 } 2544 2545 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2546 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2547 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2548 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2549 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2550 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2551 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2552 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2553 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2554 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2555 SmallVectorImpl<unsigned char> &Layout) { 2556 uint64_t Result = 0; 2557 if (Layout.size() <= 3) { 2558 unsigned size = Layout.size(); 2559 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2560 unsigned char inst; 2561 enum BLOCK_LAYOUT_OPCODE opcode ; 2562 switch (size) { 2563 case 3: 2564 inst = Layout[0]; 2565 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2566 if (opcode == BLOCK_LAYOUT_STRONG) 2567 strong_word_count = (inst & 0xF)+1; 2568 else 2569 return 0; 2570 inst = Layout[1]; 2571 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2572 if (opcode == BLOCK_LAYOUT_BYREF) 2573 byref_word_count = (inst & 0xF)+1; 2574 else 2575 return 0; 2576 inst = Layout[2]; 2577 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2578 if (opcode == BLOCK_LAYOUT_WEAK) 2579 weak_word_count = (inst & 0xF)+1; 2580 else 2581 return 0; 2582 break; 2583 2584 case 2: 2585 inst = Layout[0]; 2586 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2587 if (opcode == BLOCK_LAYOUT_STRONG) { 2588 strong_word_count = (inst & 0xF)+1; 2589 inst = Layout[1]; 2590 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2591 if (opcode == BLOCK_LAYOUT_BYREF) 2592 byref_word_count = (inst & 0xF)+1; 2593 else if (opcode == BLOCK_LAYOUT_WEAK) 2594 weak_word_count = (inst & 0xF)+1; 2595 else 2596 return 0; 2597 } 2598 else if (opcode == BLOCK_LAYOUT_BYREF) { 2599 byref_word_count = (inst & 0xF)+1; 2600 inst = Layout[1]; 2601 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2602 if (opcode == BLOCK_LAYOUT_WEAK) 2603 weak_word_count = (inst & 0xF)+1; 2604 else 2605 return 0; 2606 } 2607 else 2608 return 0; 2609 break; 2610 2611 case 1: 2612 inst = Layout[0]; 2613 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2614 if (opcode == BLOCK_LAYOUT_STRONG) 2615 strong_word_count = (inst & 0xF)+1; 2616 else if (opcode == BLOCK_LAYOUT_BYREF) 2617 byref_word_count = (inst & 0xF)+1; 2618 else if (opcode == BLOCK_LAYOUT_WEAK) 2619 weak_word_count = (inst & 0xF)+1; 2620 else 2621 return 0; 2622 break; 2623 2624 default: 2625 return 0; 2626 } 2627 2628 // Cannot inline when any of the word counts is 15. Because this is one less 2629 // than the actual work count (so 15 means 16 actual word counts), 2630 // and we can only display 0 thru 15 word counts. 2631 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2632 return 0; 2633 2634 unsigned count = 2635 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2636 2637 if (size == count) { 2638 if (strong_word_count) 2639 Result = strong_word_count; 2640 Result <<= 4; 2641 if (byref_word_count) 2642 Result += byref_word_count; 2643 Result <<= 4; 2644 if (weak_word_count) 2645 Result += weak_word_count; 2646 } 2647 } 2648 return Result; 2649 } 2650 2651 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2652 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2653 if (RunSkipBlockVars.empty()) 2654 return nullPtr; 2655 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2656 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2657 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2658 2659 // Sort on byte position; captures might not be allocated in order, 2660 // and unions can do funny things. 2661 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2662 SmallVector<unsigned char, 16> Layout; 2663 2664 unsigned size = RunSkipBlockVars.size(); 2665 for (unsigned i = 0; i < size; i++) { 2666 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2667 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2668 CharUnits end_byte_pos = start_byte_pos; 2669 unsigned j = i+1; 2670 while (j < size) { 2671 if (opcode == RunSkipBlockVars[j].opcode) { 2672 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2673 i++; 2674 } 2675 else 2676 break; 2677 } 2678 CharUnits size_in_bytes = 2679 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2680 if (j < size) { 2681 CharUnits gap = 2682 RunSkipBlockVars[j].block_var_bytepos - 2683 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2684 size_in_bytes += gap; 2685 } 2686 CharUnits residue_in_bytes = CharUnits::Zero(); 2687 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2688 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2689 size_in_bytes -= residue_in_bytes; 2690 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2691 } 2692 2693 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2694 while (size_in_words >= 16) { 2695 // Note that value in imm. is one less that the actual 2696 // value. So, 0xf means 16 words follow! 2697 unsigned char inst = (opcode << 4) | 0xf; 2698 Layout.push_back(inst); 2699 size_in_words -= 16; 2700 } 2701 if (size_in_words > 0) { 2702 // Note that value in imm. is one less that the actual 2703 // value. So, we subtract 1 away! 2704 unsigned char inst = (opcode << 4) | (size_in_words-1); 2705 Layout.push_back(inst); 2706 } 2707 if (residue_in_bytes > CharUnits::Zero()) { 2708 unsigned char inst = 2709 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2710 Layout.push_back(inst); 2711 } 2712 } 2713 2714 while (!Layout.empty()) { 2715 unsigned char inst = Layout.back(); 2716 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2717 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2718 Layout.pop_back(); 2719 else 2720 break; 2721 } 2722 2723 uint64_t Result = InlineLayoutInstruction(Layout); 2724 if (Result != 0) { 2725 // Block variable layout instruction has been inlined. 2726 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2727 if (ComputeByrefLayout) 2728 printf("\n Inline BYREF variable layout: "); 2729 else 2730 printf("\n Inline block variable layout: "); 2731 printf("0x0%" PRIx64 "", Result); 2732 if (auto numStrong = (Result & 0xF00) >> 8) 2733 printf(", BL_STRONG:%d", (int) numStrong); 2734 if (auto numByref = (Result & 0x0F0) >> 4) 2735 printf(", BL_BYREF:%d", (int) numByref); 2736 if (auto numWeak = (Result & 0x00F) >> 0) 2737 printf(", BL_WEAK:%d", (int) numWeak); 2738 printf(", BL_OPERATOR:0\n"); 2739 } 2740 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2741 } 2742 2743 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2744 Layout.push_back(inst); 2745 std::string BitMap; 2746 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2747 BitMap += Layout[i]; 2748 2749 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2750 if (ComputeByrefLayout) 2751 printf("\n Byref variable layout: "); 2752 else 2753 printf("\n Block variable layout: "); 2754 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2755 unsigned char inst = BitMap[i]; 2756 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2757 unsigned delta = 1; 2758 switch (opcode) { 2759 case BLOCK_LAYOUT_OPERATOR: 2760 printf("BL_OPERATOR:"); 2761 delta = 0; 2762 break; 2763 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2764 printf("BL_NON_OBJECT_BYTES:"); 2765 break; 2766 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2767 printf("BL_NON_OBJECT_WORD:"); 2768 break; 2769 case BLOCK_LAYOUT_STRONG: 2770 printf("BL_STRONG:"); 2771 break; 2772 case BLOCK_LAYOUT_BYREF: 2773 printf("BL_BYREF:"); 2774 break; 2775 case BLOCK_LAYOUT_WEAK: 2776 printf("BL_WEAK:"); 2777 break; 2778 case BLOCK_LAYOUT_UNRETAINED: 2779 printf("BL_UNRETAINED:"); 2780 break; 2781 } 2782 // Actual value of word count is one more that what is in the imm. 2783 // field of the instruction 2784 printf("%d", (inst & 0xf) + delta); 2785 if (i < e-1) 2786 printf(", "); 2787 else 2788 printf("\n"); 2789 } 2790 } 2791 2792 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2793 /*ForceNonFragileABI=*/true, 2794 /*NullTerminate=*/false); 2795 return getConstantGEP(VMContext, Entry, 0, 0); 2796 } 2797 2798 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2799 const CGBlockInfo &blockInfo) { 2800 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2801 2802 RunSkipBlockVars.clear(); 2803 bool hasUnion = false; 2804 2805 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2806 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2807 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2808 2809 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2810 2811 // Calculate the basic layout of the block structure. 2812 const llvm::StructLayout *layout = 2813 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2814 2815 // Ignore the optional 'this' capture: C++ objects are not assumed 2816 // to be GC'ed. 2817 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2818 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2819 blockInfo.BlockHeaderForcedGapOffset, 2820 blockInfo.BlockHeaderForcedGapSize); 2821 // Walk the captured variables. 2822 for (const auto &CI : blockDecl->captures()) { 2823 const VarDecl *variable = CI.getVariable(); 2824 QualType type = variable->getType(); 2825 2826 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2827 2828 // Ignore constant captures. 2829 if (capture.isConstant()) continue; 2830 2831 CharUnits fieldOffset = 2832 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2833 2834 assert(!type->isArrayType() && "array variable should not be caught"); 2835 if (!CI.isByRef()) 2836 if (const RecordType *record = type->getAs<RecordType>()) { 2837 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2838 continue; 2839 } 2840 CharUnits fieldSize; 2841 if (CI.isByRef()) 2842 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2843 else 2844 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2845 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2846 fieldOffset, fieldSize); 2847 } 2848 return getBitmapBlockLayout(false); 2849 } 2850 2851 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2852 QualType T) { 2853 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2854 assert(!T->isArrayType() && "__block array variable should not be caught"); 2855 CharUnits fieldOffset; 2856 RunSkipBlockVars.clear(); 2857 bool hasUnion = false; 2858 if (const RecordType *record = T->getAs<RecordType>()) { 2859 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2860 llvm::Constant *Result = getBitmapBlockLayout(true); 2861 if (isa<llvm::ConstantInt>(Result)) 2862 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2863 return Result; 2864 } 2865 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2866 return nullPtr; 2867 } 2868 2869 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2870 const ObjCProtocolDecl *PD) { 2871 // FIXME: I don't understand why gcc generates this, or where it is 2872 // resolved. Investigate. Its also wasteful to look this up over and over. 2873 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2874 2875 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2876 ObjCTypes.getExternalProtocolPtrTy()); 2877 } 2878 2879 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2880 // FIXME: We shouldn't need this, the protocol decl should contain enough 2881 // information to tell us whether this was a declaration or a definition. 2882 DefinedProtocols.insert(PD->getIdentifier()); 2883 2884 // If we have generated a forward reference to this protocol, emit 2885 // it now. Otherwise do nothing, the protocol objects are lazily 2886 // emitted. 2887 if (Protocols.count(PD->getIdentifier())) 2888 GetOrEmitProtocol(PD); 2889 } 2890 2891 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2892 if (DefinedProtocols.count(PD->getIdentifier())) 2893 return GetOrEmitProtocol(PD); 2894 2895 return GetOrEmitProtocolRef(PD); 2896 } 2897 2898 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2899 CodeGenFunction &CGF, 2900 const ObjCInterfaceDecl *ID, 2901 ObjCCommonTypesHelper &ObjCTypes) { 2902 llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2903 2904 llvm::Value *className = 2905 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 2906 .getPointer(); 2907 ASTContext &ctx = CGF.CGM.getContext(); 2908 className = 2909 CGF.Builder.CreateBitCast(className, 2910 CGF.ConvertType( 2911 ctx.getPointerType(ctx.CharTy.withConst()))); 2912 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 2913 call->setDoesNotThrow(); 2914 return call; 2915 } 2916 2917 /* 2918 // Objective-C 1.0 extensions 2919 struct _objc_protocol { 2920 struct _objc_protocol_extension *isa; 2921 char *protocol_name; 2922 struct _objc_protocol_list *protocol_list; 2923 struct _objc__method_prototype_list *instance_methods; 2924 struct _objc__method_prototype_list *class_methods 2925 }; 2926 2927 See EmitProtocolExtension(). 2928 */ 2929 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2930 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2931 2932 // Early exit if a defining object has already been generated. 2933 if (Entry && Entry->hasInitializer()) 2934 return Entry; 2935 2936 // Use the protocol definition, if there is one. 2937 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2938 PD = Def; 2939 2940 // FIXME: I don't understand why gcc generates this, or where it is 2941 // resolved. Investigate. Its also wasteful to look this up over and over. 2942 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2943 2944 // Construct method lists. 2945 auto methodLists = ProtocolMethodLists::get(PD); 2946 2947 ConstantInitBuilder builder(CGM); 2948 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 2949 values.add(EmitProtocolExtension(PD, methodLists)); 2950 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 2951 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2952 PD->protocol_begin(), PD->protocol_end())); 2953 values.add(methodLists.emitMethodList(this, PD, 2954 ProtocolMethodLists::RequiredInstanceMethods)); 2955 values.add(methodLists.emitMethodList(this, PD, 2956 ProtocolMethodLists::RequiredClassMethods)); 2957 2958 if (Entry) { 2959 // Already created, update the initializer. 2960 assert(Entry->hasPrivateLinkage()); 2961 values.finishAndSetAsInitializer(Entry); 2962 } else { 2963 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 2964 CGM.getPointerAlign(), 2965 /*constant*/ false, 2966 llvm::GlobalValue::PrivateLinkage); 2967 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2968 2969 Protocols[PD->getIdentifier()] = Entry; 2970 } 2971 CGM.addCompilerUsedGlobal(Entry); 2972 2973 return Entry; 2974 } 2975 2976 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2977 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2978 2979 if (!Entry) { 2980 // We use the initializer as a marker of whether this is a forward 2981 // reference or not. At module finalization we add the empty 2982 // contents for protocols which were referenced but never defined. 2983 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2984 false, llvm::GlobalValue::PrivateLinkage, 2985 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2986 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2987 // FIXME: Is this necessary? Why only for protocol? 2988 Entry->setAlignment(4); 2989 } 2990 2991 return Entry; 2992 } 2993 2994 /* 2995 struct _objc_protocol_extension { 2996 uint32_t size; 2997 struct objc_method_description_list *optional_instance_methods; 2998 struct objc_method_description_list *optional_class_methods; 2999 struct objc_property_list *instance_properties; 3000 const char ** extendedMethodTypes; 3001 struct objc_property_list *class_properties; 3002 }; 3003 */ 3004 llvm::Constant * 3005 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3006 const ProtocolMethodLists &methodLists) { 3007 auto optInstanceMethods = 3008 methodLists.emitMethodList(this, PD, 3009 ProtocolMethodLists::OptionalInstanceMethods); 3010 auto optClassMethods = 3011 methodLists.emitMethodList(this, PD, 3012 ProtocolMethodLists::OptionalClassMethods); 3013 3014 auto extendedMethodTypes = 3015 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3016 methodLists.emitExtendedTypesArray(this), 3017 ObjCTypes); 3018 3019 auto instanceProperties = 3020 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3021 ObjCTypes, false); 3022 auto classProperties = 3023 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3024 PD, ObjCTypes, true); 3025 3026 // Return null if no extension bits are used. 3027 if (optInstanceMethods->isNullValue() && 3028 optClassMethods->isNullValue() && 3029 extendedMethodTypes->isNullValue() && 3030 instanceProperties->isNullValue() && 3031 classProperties->isNullValue()) { 3032 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3033 } 3034 3035 uint64_t size = 3036 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3037 3038 ConstantInitBuilder builder(CGM); 3039 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3040 values.addInt(ObjCTypes.IntTy, size); 3041 values.add(optInstanceMethods); 3042 values.add(optClassMethods); 3043 values.add(instanceProperties); 3044 values.add(extendedMethodTypes); 3045 values.add(classProperties); 3046 3047 // No special section, but goes in llvm.used 3048 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3049 StringRef(), CGM.getPointerAlign(), true); 3050 } 3051 3052 /* 3053 struct objc_protocol_list { 3054 struct objc_protocol_list *next; 3055 long count; 3056 Protocol *list[]; 3057 }; 3058 */ 3059 llvm::Constant * 3060 CGObjCMac::EmitProtocolList(Twine name, 3061 ObjCProtocolDecl::protocol_iterator begin, 3062 ObjCProtocolDecl::protocol_iterator end) { 3063 // Just return null for empty protocol lists 3064 if (begin == end) 3065 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3066 3067 ConstantInitBuilder builder(CGM); 3068 auto values = builder.beginStruct(); 3069 3070 // This field is only used by the runtime. 3071 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3072 3073 // Reserve a slot for the count. 3074 auto countSlot = values.addPlaceholder(); 3075 3076 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3077 for (; begin != end; ++begin) { 3078 refsArray.add(GetProtocolRef(*begin)); 3079 } 3080 auto count = refsArray.size(); 3081 3082 // This list is null terminated. 3083 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3084 3085 refsArray.finishAndAddTo(values); 3086 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3087 3088 StringRef section; 3089 if (CGM.getTriple().isOSBinFormatMachO()) 3090 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3091 3092 llvm::GlobalVariable *GV = 3093 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3094 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3095 } 3096 3097 static void 3098 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3099 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3100 const ObjCProtocolDecl *Proto, 3101 bool IsClassProperty) { 3102 for (const auto *P : Proto->protocols()) 3103 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3104 3105 for (const auto *PD : Proto->properties()) { 3106 if (IsClassProperty != PD->isClassProperty()) 3107 continue; 3108 if (!PropertySet.insert(PD->getIdentifier()).second) 3109 continue; 3110 Properties.push_back(PD); 3111 } 3112 } 3113 3114 /* 3115 struct _objc_property { 3116 const char * const name; 3117 const char * const attributes; 3118 }; 3119 3120 struct _objc_property_list { 3121 uint32_t entsize; // sizeof (struct _objc_property) 3122 uint32_t prop_count; 3123 struct _objc_property[prop_count]; 3124 }; 3125 */ 3126 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3127 const Decl *Container, 3128 const ObjCContainerDecl *OCD, 3129 const ObjCCommonTypesHelper &ObjCTypes, 3130 bool IsClassProperty) { 3131 if (IsClassProperty) { 3132 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3133 // with deployment target < 9.0. 3134 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3135 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3136 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3137 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3138 } 3139 3140 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3141 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3142 3143 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3144 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3145 for (auto *PD : ClassExt->properties()) { 3146 if (IsClassProperty != PD->isClassProperty()) 3147 continue; 3148 PropertySet.insert(PD->getIdentifier()); 3149 Properties.push_back(PD); 3150 } 3151 3152 for (const auto *PD : OCD->properties()) { 3153 if (IsClassProperty != PD->isClassProperty()) 3154 continue; 3155 // Don't emit duplicate metadata for properties that were already in a 3156 // class extension. 3157 if (!PropertySet.insert(PD->getIdentifier()).second) 3158 continue; 3159 Properties.push_back(PD); 3160 } 3161 3162 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3163 for (const auto *P : OID->all_referenced_protocols()) 3164 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3165 } 3166 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3167 for (const auto *P : CD->protocols()) 3168 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3169 } 3170 3171 // Return null for empty list. 3172 if (Properties.empty()) 3173 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3174 3175 unsigned propertySize = 3176 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3177 3178 ConstantInitBuilder builder(CGM); 3179 auto values = builder.beginStruct(); 3180 values.addInt(ObjCTypes.IntTy, propertySize); 3181 values.addInt(ObjCTypes.IntTy, Properties.size()); 3182 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3183 for (auto PD : Properties) { 3184 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3185 property.add(GetPropertyName(PD->getIdentifier())); 3186 property.add(GetPropertyTypeString(PD, Container)); 3187 property.finishAndAddTo(propertiesArray); 3188 } 3189 propertiesArray.finishAndAddTo(values); 3190 3191 StringRef Section; 3192 if (CGM.getTriple().isOSBinFormatMachO()) 3193 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3194 : "__OBJC,__property,regular,no_dead_strip"; 3195 3196 llvm::GlobalVariable *GV = 3197 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3198 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3199 } 3200 3201 llvm::Constant * 3202 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3203 ArrayRef<llvm::Constant*> MethodTypes, 3204 const ObjCCommonTypesHelper &ObjCTypes) { 3205 // Return null for empty list. 3206 if (MethodTypes.empty()) 3207 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3208 3209 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3210 MethodTypes.size()); 3211 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3212 3213 StringRef Section; 3214 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3215 Section = "__DATA, __objc_const"; 3216 3217 llvm::GlobalVariable *GV = 3218 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3219 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3220 } 3221 3222 /* 3223 struct _objc_category { 3224 char *category_name; 3225 char *class_name; 3226 struct _objc_method_list *instance_methods; 3227 struct _objc_method_list *class_methods; 3228 struct _objc_protocol_list *protocols; 3229 uint32_t size; // <rdar://4585769> 3230 struct _objc_property_list *instance_properties; 3231 struct _objc_property_list *class_properties; 3232 }; 3233 */ 3234 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3235 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3236 3237 // FIXME: This is poor design, the OCD should have a pointer to the category 3238 // decl. Additionally, note that Category can be null for the @implementation 3239 // w/o an @interface case. Sema should just create one for us as it does for 3240 // @implementation so everyone else can live life under a clear blue sky. 3241 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3242 const ObjCCategoryDecl *Category = 3243 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3244 3245 SmallString<256> ExtName; 3246 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3247 << OCD->getName(); 3248 3249 ConstantInitBuilder Builder(CGM); 3250 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3251 3252 enum { 3253 InstanceMethods, 3254 ClassMethods, 3255 NumMethodLists 3256 }; 3257 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3258 for (const auto *MD : OCD->methods()) { 3259 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3260 } 3261 3262 Values.add(GetClassName(OCD->getName())); 3263 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3264 LazySymbols.insert(Interface->getIdentifier()); 3265 3266 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3267 Methods[InstanceMethods])); 3268 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3269 Methods[ClassMethods])); 3270 if (Category) { 3271 Values.add( 3272 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3273 Category->protocol_begin(), Category->protocol_end())); 3274 } else { 3275 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3276 } 3277 Values.addInt(ObjCTypes.IntTy, Size); 3278 3279 // If there is no category @interface then there can be no properties. 3280 if (Category) { 3281 Values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3282 OCD, Category, ObjCTypes, false)); 3283 Values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3284 OCD, Category, ObjCTypes, true)); 3285 } else { 3286 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3287 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3288 } 3289 3290 llvm::GlobalVariable *GV = 3291 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3292 "__OBJC,__category,regular,no_dead_strip", 3293 CGM.getPointerAlign(), true); 3294 DefinedCategories.push_back(GV); 3295 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3296 // method definition entries must be clear for next implementation. 3297 MethodDefinitions.clear(); 3298 } 3299 3300 enum FragileClassFlags { 3301 /// Apparently: is not a meta-class. 3302 FragileABI_Class_Factory = 0x00001, 3303 3304 /// Is a meta-class. 3305 FragileABI_Class_Meta = 0x00002, 3306 3307 /// Has a non-trivial constructor or destructor. 3308 FragileABI_Class_HasCXXStructors = 0x02000, 3309 3310 /// Has hidden visibility. 3311 FragileABI_Class_Hidden = 0x20000, 3312 3313 /// Class implementation was compiled under ARC. 3314 FragileABI_Class_CompiledByARC = 0x04000000, 3315 3316 /// Class implementation was compiled under MRC and has MRC weak ivars. 3317 /// Exclusive with CompiledByARC. 3318 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3319 }; 3320 3321 enum NonFragileClassFlags { 3322 /// Is a meta-class. 3323 NonFragileABI_Class_Meta = 0x00001, 3324 3325 /// Is a root class. 3326 NonFragileABI_Class_Root = 0x00002, 3327 3328 /// Has a non-trivial constructor or destructor. 3329 NonFragileABI_Class_HasCXXStructors = 0x00004, 3330 3331 /// Has hidden visibility. 3332 NonFragileABI_Class_Hidden = 0x00010, 3333 3334 /// Has the exception attribute. 3335 NonFragileABI_Class_Exception = 0x00020, 3336 3337 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3338 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3339 3340 /// Class implementation was compiled under ARC. 3341 NonFragileABI_Class_CompiledByARC = 0x00080, 3342 3343 /// Class has non-trivial destructors, but zero-initialization is okay. 3344 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3345 3346 /// Class implementation was compiled under MRC and has MRC weak ivars. 3347 /// Exclusive with CompiledByARC. 3348 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3349 }; 3350 3351 static bool hasWeakMember(QualType type) { 3352 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3353 return true; 3354 } 3355 3356 if (auto recType = type->getAs<RecordType>()) { 3357 for (auto field : recType->getDecl()->fields()) { 3358 if (hasWeakMember(field->getType())) 3359 return true; 3360 } 3361 } 3362 3363 return false; 3364 } 3365 3366 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3367 /// (and actually fill in a layout string) if we really do have any 3368 /// __weak ivars. 3369 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3370 const ObjCImplementationDecl *ID) { 3371 if (!CGM.getLangOpts().ObjCWeak) return false; 3372 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3373 3374 for (const ObjCIvarDecl *ivar = 3375 ID->getClassInterface()->all_declared_ivar_begin(); 3376 ivar; ivar = ivar->getNextIvar()) { 3377 if (hasWeakMember(ivar->getType())) 3378 return true; 3379 } 3380 3381 return false; 3382 } 3383 3384 /* 3385 struct _objc_class { 3386 Class isa; 3387 Class super_class; 3388 const char *name; 3389 long version; 3390 long info; 3391 long instance_size; 3392 struct _objc_ivar_list *ivars; 3393 struct _objc_method_list *methods; 3394 struct _objc_cache *cache; 3395 struct _objc_protocol_list *protocols; 3396 // Objective-C 1.0 extensions (<rdr://4585769>) 3397 const char *ivar_layout; 3398 struct _objc_class_ext *ext; 3399 }; 3400 3401 See EmitClassExtension(); 3402 */ 3403 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3404 IdentifierInfo *RuntimeName = 3405 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3406 DefinedSymbols.insert(RuntimeName); 3407 3408 std::string ClassName = ID->getNameAsString(); 3409 // FIXME: Gross 3410 ObjCInterfaceDecl *Interface = 3411 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3412 llvm::Constant *Protocols = 3413 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3414 Interface->all_referenced_protocol_begin(), 3415 Interface->all_referenced_protocol_end()); 3416 unsigned Flags = FragileABI_Class_Factory; 3417 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3418 Flags |= FragileABI_Class_HasCXXStructors; 3419 3420 bool hasMRCWeak = false; 3421 3422 if (CGM.getLangOpts().ObjCAutoRefCount) 3423 Flags |= FragileABI_Class_CompiledByARC; 3424 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3425 Flags |= FragileABI_Class_HasMRCWeakIvars; 3426 3427 CharUnits Size = 3428 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3429 3430 // FIXME: Set CXX-structors flag. 3431 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3432 Flags |= FragileABI_Class_Hidden; 3433 3434 enum { 3435 InstanceMethods, 3436 ClassMethods, 3437 NumMethodLists 3438 }; 3439 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3440 for (const auto *MD : ID->methods()) { 3441 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3442 } 3443 3444 for (const auto *PID : ID->property_impls()) { 3445 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3446 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3447 3448 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3449 if (GetMethodDefinition(MD)) 3450 Methods[InstanceMethods].push_back(MD); 3451 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3452 if (GetMethodDefinition(MD)) 3453 Methods[InstanceMethods].push_back(MD); 3454 } 3455 } 3456 3457 ConstantInitBuilder builder(CGM); 3458 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3459 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3460 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3461 // Record a reference to the super class. 3462 LazySymbols.insert(Super->getIdentifier()); 3463 3464 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3465 ObjCTypes.ClassPtrTy); 3466 } else { 3467 values.addNullPointer(ObjCTypes.ClassPtrTy); 3468 } 3469 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3470 // Version is always 0. 3471 values.addInt(ObjCTypes.LongTy, 0); 3472 values.addInt(ObjCTypes.LongTy, Flags); 3473 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3474 values.add(EmitIvarList(ID, false)); 3475 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3476 Methods[InstanceMethods])); 3477 // cache is always NULL. 3478 values.addNullPointer(ObjCTypes.CachePtrTy); 3479 values.add(Protocols); 3480 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3481 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3482 /*isMetaclass*/ false)); 3483 3484 std::string Name("OBJC_CLASS_"); 3485 Name += ClassName; 3486 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3487 // Check for a forward reference. 3488 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3489 if (GV) { 3490 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3491 "Forward metaclass reference has incorrect type."); 3492 values.finishAndSetAsInitializer(GV); 3493 GV->setSection(Section); 3494 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3495 CGM.addCompilerUsedGlobal(GV); 3496 } else 3497 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3498 DefinedClasses.push_back(GV); 3499 ImplementedClasses.push_back(Interface); 3500 // method definition entries must be clear for next implementation. 3501 MethodDefinitions.clear(); 3502 } 3503 3504 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3505 llvm::Constant *Protocols, 3506 ArrayRef<const ObjCMethodDecl*> Methods) { 3507 unsigned Flags = FragileABI_Class_Meta; 3508 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3509 3510 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3511 Flags |= FragileABI_Class_Hidden; 3512 3513 ConstantInitBuilder builder(CGM); 3514 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3515 // The isa for the metaclass is the root of the hierarchy. 3516 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3517 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3518 Root = Super; 3519 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3520 ObjCTypes.ClassPtrTy); 3521 // The super class for the metaclass is emitted as the name of the 3522 // super class. The runtime fixes this up to point to the 3523 // *metaclass* for the super class. 3524 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3525 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3526 ObjCTypes.ClassPtrTy); 3527 } else { 3528 values.addNullPointer(ObjCTypes.ClassPtrTy); 3529 } 3530 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3531 // Version is always 0. 3532 values.addInt(ObjCTypes.LongTy, 0); 3533 values.addInt(ObjCTypes.LongTy, Flags); 3534 values.addInt(ObjCTypes.LongTy, Size); 3535 values.add(EmitIvarList(ID, true)); 3536 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3537 Methods)); 3538 // cache is always NULL. 3539 values.addNullPointer(ObjCTypes.CachePtrTy); 3540 values.add(Protocols); 3541 // ivar_layout for metaclass is always NULL. 3542 values.addNullPointer(ObjCTypes.Int8PtrTy); 3543 // The class extension is used to store class properties for metaclasses. 3544 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3545 /*isMetaclass*/true)); 3546 3547 std::string Name("OBJC_METACLASS_"); 3548 Name += ID->getName(); 3549 3550 // Check for a forward reference. 3551 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3552 if (GV) { 3553 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3554 "Forward metaclass reference has incorrect type."); 3555 values.finishAndSetAsInitializer(GV); 3556 } else { 3557 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3558 /*constant*/ false, 3559 llvm::GlobalValue::PrivateLinkage); 3560 } 3561 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3562 CGM.addCompilerUsedGlobal(GV); 3563 3564 return GV; 3565 } 3566 3567 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3568 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3569 3570 // FIXME: Should we look these up somewhere other than the module. Its a bit 3571 // silly since we only generate these while processing an implementation, so 3572 // exactly one pointer would work if know when we entered/exitted an 3573 // implementation block. 3574 3575 // Check for an existing forward reference. 3576 // Previously, metaclass with internal linkage may have been defined. 3577 // pass 'true' as 2nd argument so it is returned. 3578 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3579 if (!GV) 3580 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3581 llvm::GlobalValue::PrivateLinkage, nullptr, 3582 Name); 3583 3584 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3585 "Forward metaclass reference has incorrect type."); 3586 return GV; 3587 } 3588 3589 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3590 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3591 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3592 3593 if (!GV) 3594 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3595 llvm::GlobalValue::PrivateLinkage, nullptr, 3596 Name); 3597 3598 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3599 "Forward class metadata reference has incorrect type."); 3600 return GV; 3601 } 3602 3603 /* 3604 Emit a "class extension", which in this specific context means extra 3605 data that doesn't fit in the normal fragile-ABI class structure, and 3606 has nothing to do with the language concept of a class extension. 3607 3608 struct objc_class_ext { 3609 uint32_t size; 3610 const char *weak_ivar_layout; 3611 struct _objc_property_list *properties; 3612 }; 3613 */ 3614 llvm::Constant * 3615 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3616 CharUnits InstanceSize, bool hasMRCWeakIvars, 3617 bool isMetaclass) { 3618 // Weak ivar layout. 3619 llvm::Constant *layout; 3620 if (isMetaclass) { 3621 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3622 } else { 3623 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3624 hasMRCWeakIvars); 3625 } 3626 3627 // Properties. 3628 llvm::Constant *propertyList = 3629 EmitPropertyList((isMetaclass ? Twine("\01l_OBJC_$_CLASS_PROP_LIST_") 3630 : Twine("\01l_OBJC_$_PROP_LIST_")) 3631 + ID->getName(), 3632 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3633 3634 // Return null if no extension bits are used. 3635 if (layout->isNullValue() && propertyList->isNullValue()) { 3636 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3637 } 3638 3639 uint64_t size = 3640 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3641 3642 ConstantInitBuilder builder(CGM); 3643 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3644 values.addInt(ObjCTypes.IntTy, size); 3645 values.add(layout); 3646 values.add(propertyList); 3647 3648 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3649 "__OBJC,__class_ext,regular,no_dead_strip", 3650 CGM.getPointerAlign(), true); 3651 } 3652 3653 /* 3654 struct objc_ivar { 3655 char *ivar_name; 3656 char *ivar_type; 3657 int ivar_offset; 3658 }; 3659 3660 struct objc_ivar_list { 3661 int ivar_count; 3662 struct objc_ivar list[count]; 3663 }; 3664 */ 3665 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3666 bool ForClass) { 3667 // When emitting the root class GCC emits ivar entries for the 3668 // actual class structure. It is not clear if we need to follow this 3669 // behavior; for now lets try and get away with not doing it. If so, 3670 // the cleanest solution would be to make up an ObjCInterfaceDecl 3671 // for the class. 3672 if (ForClass) 3673 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3674 3675 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3676 3677 ConstantInitBuilder builder(CGM); 3678 auto ivarList = builder.beginStruct(); 3679 auto countSlot = ivarList.addPlaceholder(); 3680 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3681 3682 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3683 IVD; IVD = IVD->getNextIvar()) { 3684 // Ignore unnamed bit-fields. 3685 if (!IVD->getDeclName()) 3686 continue; 3687 3688 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3689 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3690 ivar.add(GetMethodVarType(IVD)); 3691 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3692 ivar.finishAndAddTo(ivars); 3693 } 3694 3695 // Return null for empty list. 3696 auto count = ivars.size(); 3697 if (count == 0) { 3698 ivars.abandon(); 3699 ivarList.abandon(); 3700 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3701 } 3702 3703 ivars.finishAndAddTo(ivarList); 3704 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3705 3706 llvm::GlobalVariable *GV; 3707 if (ForClass) 3708 GV = 3709 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3710 "__OBJC,__class_vars,regular,no_dead_strip", 3711 CGM.getPointerAlign(), true); 3712 else 3713 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3714 "__OBJC,__instance_vars,regular,no_dead_strip", 3715 CGM.getPointerAlign(), true); 3716 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3717 } 3718 3719 /// Build a struct objc_method_description constant for the given method. 3720 /// 3721 /// struct objc_method_description { 3722 /// SEL method_name; 3723 /// char *method_types; 3724 /// }; 3725 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3726 const ObjCMethodDecl *MD) { 3727 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3728 description.addBitCast(GetMethodVarName(MD->getSelector()), 3729 ObjCTypes.SelectorPtrTy); 3730 description.add(GetMethodVarType(MD)); 3731 description.finishAndAddTo(builder); 3732 } 3733 3734 /// Build a struct objc_method constant for the given method. 3735 /// 3736 /// struct objc_method { 3737 /// SEL method_name; 3738 /// char *method_types; 3739 /// void *method; 3740 /// }; 3741 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3742 const ObjCMethodDecl *MD) { 3743 llvm::Function *fn = GetMethodDefinition(MD); 3744 assert(fn && "no definition registered for method"); 3745 3746 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3747 method.addBitCast(GetMethodVarName(MD->getSelector()), 3748 ObjCTypes.SelectorPtrTy); 3749 method.add(GetMethodVarType(MD)); 3750 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3751 method.finishAndAddTo(builder); 3752 } 3753 3754 /// Build a struct objc_method_list or struct objc_method_description_list, 3755 /// as appropriate. 3756 /// 3757 /// struct objc_method_list { 3758 /// struct objc_method_list *obsolete; 3759 /// int count; 3760 /// struct objc_method methods_list[count]; 3761 /// }; 3762 /// 3763 /// struct objc_method_description_list { 3764 /// int count; 3765 /// struct objc_method_description list[count]; 3766 /// }; 3767 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3768 ArrayRef<const ObjCMethodDecl *> methods) { 3769 StringRef prefix; 3770 StringRef section; 3771 bool forProtocol = false; 3772 switch (MLT) { 3773 case MethodListType::CategoryInstanceMethods: 3774 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3775 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3776 forProtocol = false; 3777 break; 3778 case MethodListType::CategoryClassMethods: 3779 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3780 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3781 forProtocol = false; 3782 break; 3783 case MethodListType::InstanceMethods: 3784 prefix = "OBJC_INSTANCE_METHODS_"; 3785 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3786 forProtocol = false; 3787 break; 3788 case MethodListType::ClassMethods: 3789 prefix = "OBJC_CLASS_METHODS_"; 3790 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3791 forProtocol = false; 3792 break; 3793 case MethodListType::ProtocolInstanceMethods: 3794 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3795 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3796 forProtocol = true; 3797 break; 3798 case MethodListType::ProtocolClassMethods: 3799 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3800 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3801 forProtocol = true; 3802 break; 3803 case MethodListType::OptionalProtocolInstanceMethods: 3804 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3805 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3806 forProtocol = true; 3807 break; 3808 case MethodListType::OptionalProtocolClassMethods: 3809 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3810 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3811 forProtocol = true; 3812 break; 3813 } 3814 3815 // Return null for empty list. 3816 if (methods.empty()) 3817 return llvm::Constant::getNullValue(forProtocol 3818 ? ObjCTypes.MethodDescriptionListPtrTy 3819 : ObjCTypes.MethodListPtrTy); 3820 3821 // For protocols, this is an objc_method_description_list, which has 3822 // a slightly different structure. 3823 if (forProtocol) { 3824 ConstantInitBuilder builder(CGM); 3825 auto values = builder.beginStruct(); 3826 values.addInt(ObjCTypes.IntTy, methods.size()); 3827 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3828 for (auto MD : methods) { 3829 emitMethodDescriptionConstant(methodArray, MD); 3830 } 3831 methodArray.finishAndAddTo(values); 3832 3833 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3834 CGM.getPointerAlign(), true); 3835 return llvm::ConstantExpr::getBitCast(GV, 3836 ObjCTypes.MethodDescriptionListPtrTy); 3837 } 3838 3839 // Otherwise, it's an objc_method_list. 3840 ConstantInitBuilder builder(CGM); 3841 auto values = builder.beginStruct(); 3842 values.addNullPointer(ObjCTypes.Int8PtrTy); 3843 values.addInt(ObjCTypes.IntTy, methods.size()); 3844 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3845 for (auto MD : methods) { 3846 emitMethodConstant(methodArray, MD); 3847 } 3848 methodArray.finishAndAddTo(values); 3849 3850 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3851 CGM.getPointerAlign(), true); 3852 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3853 } 3854 3855 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3856 const ObjCContainerDecl *CD) { 3857 SmallString<256> Name; 3858 GetNameForMethod(OMD, CD, Name); 3859 3860 CodeGenTypes &Types = CGM.getTypes(); 3861 llvm::FunctionType *MethodTy = 3862 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3863 llvm::Function *Method = 3864 llvm::Function::Create(MethodTy, 3865 llvm::GlobalValue::InternalLinkage, 3866 Name.str(), 3867 &CGM.getModule()); 3868 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3869 3870 return Method; 3871 } 3872 3873 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3874 ConstantStructBuilder &Init, 3875 StringRef Section, 3876 CharUnits Align, 3877 bool AddToUsed) { 3878 llvm::GlobalVariable *GV = 3879 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, 3880 llvm::GlobalValue::PrivateLinkage); 3881 if (!Section.empty()) 3882 GV->setSection(Section); 3883 if (AddToUsed) 3884 CGM.addCompilerUsedGlobal(GV); 3885 return GV; 3886 } 3887 3888 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3889 llvm::Constant *Init, 3890 StringRef Section, 3891 CharUnits Align, 3892 bool AddToUsed) { 3893 llvm::Type *Ty = Init->getType(); 3894 llvm::GlobalVariable *GV = 3895 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3896 llvm::GlobalValue::PrivateLinkage, Init, Name); 3897 if (!Section.empty()) 3898 GV->setSection(Section); 3899 GV->setAlignment(Align.getQuantity()); 3900 if (AddToUsed) 3901 CGM.addCompilerUsedGlobal(GV); 3902 return GV; 3903 } 3904 3905 llvm::GlobalVariable * 3906 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 3907 bool ForceNonFragileABI, 3908 bool NullTerminate) { 3909 StringRef Label; 3910 switch (Type) { 3911 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 3912 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 3913 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 3914 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 3915 } 3916 3917 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 3918 3919 StringRef Section; 3920 switch (Type) { 3921 case ObjCLabelType::ClassName: 3922 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 3923 : "__TEXT,__cstring,cstring_literals"; 3924 break; 3925 case ObjCLabelType::MethodVarName: 3926 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 3927 : "__TEXT,__cstring,cstring_literals"; 3928 break; 3929 case ObjCLabelType::MethodVarType: 3930 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 3931 : "__TEXT,__cstring,cstring_literals"; 3932 break; 3933 case ObjCLabelType::PropertyName: 3934 Section = "__TEXT,__cstring,cstring_literals"; 3935 break; 3936 } 3937 3938 llvm::Constant *Value = 3939 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 3940 llvm::GlobalVariable *GV = 3941 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 3942 /*isConstant=*/true, 3943 llvm::GlobalValue::PrivateLinkage, Value, Label); 3944 if (CGM.getTriple().isOSBinFormatMachO()) 3945 GV->setSection(Section); 3946 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3947 GV->setAlignment(CharUnits::One().getQuantity()); 3948 CGM.addCompilerUsedGlobal(GV); 3949 3950 return GV; 3951 } 3952 3953 llvm::Function *CGObjCMac::ModuleInitFunction() { 3954 // Abuse this interface function as a place to finalize. 3955 FinishModule(); 3956 return nullptr; 3957 } 3958 3959 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3960 return ObjCTypes.getGetPropertyFn(); 3961 } 3962 3963 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3964 return ObjCTypes.getSetPropertyFn(); 3965 } 3966 3967 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3968 bool copy) { 3969 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3970 } 3971 3972 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3973 return ObjCTypes.getCopyStructFn(); 3974 } 3975 3976 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3977 return ObjCTypes.getCopyStructFn(); 3978 } 3979 3980 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3981 return ObjCTypes.getCppAtomicObjectFunction(); 3982 } 3983 3984 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3985 return ObjCTypes.getCppAtomicObjectFunction(); 3986 } 3987 3988 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3989 return ObjCTypes.getEnumerationMutationFn(); 3990 } 3991 3992 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3993 return EmitTryOrSynchronizedStmt(CGF, S); 3994 } 3995 3996 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3997 const ObjCAtSynchronizedStmt &S) { 3998 return EmitTryOrSynchronizedStmt(CGF, S); 3999 } 4000 4001 namespace { 4002 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4003 const Stmt &S; 4004 Address SyncArgSlot; 4005 Address CallTryExitVar; 4006 Address ExceptionData; 4007 ObjCTypesHelper &ObjCTypes; 4008 PerformFragileFinally(const Stmt *S, 4009 Address SyncArgSlot, 4010 Address CallTryExitVar, 4011 Address ExceptionData, 4012 ObjCTypesHelper *ObjCTypes) 4013 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4014 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4015 4016 void Emit(CodeGenFunction &CGF, Flags flags) override { 4017 // Check whether we need to call objc_exception_try_exit. 4018 // In optimized code, this branch will always be folded. 4019 llvm::BasicBlock *FinallyCallExit = 4020 CGF.createBasicBlock("finally.call_exit"); 4021 llvm::BasicBlock *FinallyNoCallExit = 4022 CGF.createBasicBlock("finally.no_call_exit"); 4023 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4024 FinallyCallExit, FinallyNoCallExit); 4025 4026 CGF.EmitBlock(FinallyCallExit); 4027 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4028 ExceptionData.getPointer()); 4029 4030 CGF.EmitBlock(FinallyNoCallExit); 4031 4032 if (isa<ObjCAtTryStmt>(S)) { 4033 if (const ObjCAtFinallyStmt* FinallyStmt = 4034 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4035 // Don't try to do the @finally if this is an EH cleanup. 4036 if (flags.isForEHCleanup()) return; 4037 4038 // Save the current cleanup destination in case there's 4039 // control flow inside the finally statement. 4040 llvm::Value *CurCleanupDest = 4041 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4042 4043 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4044 4045 if (CGF.HaveInsertPoint()) { 4046 CGF.Builder.CreateStore(CurCleanupDest, 4047 CGF.getNormalCleanupDestSlot()); 4048 } else { 4049 // Currently, the end of the cleanup must always exist. 4050 CGF.EnsureInsertPoint(); 4051 } 4052 } 4053 } else { 4054 // Emit objc_sync_exit(expr); as finally's sole statement for 4055 // @synchronized. 4056 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4057 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4058 } 4059 } 4060 }; 4061 4062 class FragileHazards { 4063 CodeGenFunction &CGF; 4064 SmallVector<llvm::Value*, 20> Locals; 4065 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4066 4067 llvm::InlineAsm *ReadHazard; 4068 llvm::InlineAsm *WriteHazard; 4069 4070 llvm::FunctionType *GetAsmFnType(); 4071 4072 void collectLocals(); 4073 void emitReadHazard(CGBuilderTy &Builder); 4074 4075 public: 4076 FragileHazards(CodeGenFunction &CGF); 4077 4078 void emitWriteHazard(); 4079 void emitHazardsInNewBlocks(); 4080 }; 4081 } // end anonymous namespace 4082 4083 /// Create the fragile-ABI read and write hazards based on the current 4084 /// state of the function, which is presumed to be immediately prior 4085 /// to a @try block. These hazards are used to maintain correct 4086 /// semantics in the face of optimization and the fragile ABI's 4087 /// cavalier use of setjmp/longjmp. 4088 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4089 collectLocals(); 4090 4091 if (Locals.empty()) return; 4092 4093 // Collect all the blocks in the function. 4094 for (llvm::Function::iterator 4095 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4096 BlocksBeforeTry.insert(&*I); 4097 4098 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4099 4100 // Create a read hazard for the allocas. This inhibits dead-store 4101 // optimizations and forces the values to memory. This hazard is 4102 // inserted before any 'throwing' calls in the protected scope to 4103 // reflect the possibility that the variables might be read from the 4104 // catch block if the call throws. 4105 { 4106 std::string Constraint; 4107 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4108 if (I) Constraint += ','; 4109 Constraint += "*m"; 4110 } 4111 4112 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4113 } 4114 4115 // Create a write hazard for the allocas. This inhibits folding 4116 // loads across the hazard. This hazard is inserted at the 4117 // beginning of the catch path to reflect the possibility that the 4118 // variables might have been written within the protected scope. 4119 { 4120 std::string Constraint; 4121 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4122 if (I) Constraint += ','; 4123 Constraint += "=*m"; 4124 } 4125 4126 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4127 } 4128 } 4129 4130 /// Emit a write hazard at the current location. 4131 void FragileHazards::emitWriteHazard() { 4132 if (Locals.empty()) return; 4133 4134 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4135 } 4136 4137 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4138 assert(!Locals.empty()); 4139 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4140 call->setDoesNotThrow(); 4141 call->setCallingConv(CGF.getRuntimeCC()); 4142 } 4143 4144 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4145 /// which have been inserted since the beginning of the try. 4146 void FragileHazards::emitHazardsInNewBlocks() { 4147 if (Locals.empty()) return; 4148 4149 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4150 4151 // Iterate through all blocks, skipping those prior to the try. 4152 for (llvm::Function::iterator 4153 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4154 llvm::BasicBlock &BB = *FI; 4155 if (BlocksBeforeTry.count(&BB)) continue; 4156 4157 // Walk through all the calls in the block. 4158 for (llvm::BasicBlock::iterator 4159 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4160 llvm::Instruction &I = *BI; 4161 4162 // Ignore instructions that aren't non-intrinsic calls. 4163 // These are the only calls that can possibly call longjmp. 4164 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 4165 if (isa<llvm::IntrinsicInst>(I)) 4166 continue; 4167 4168 // Ignore call sites marked nounwind. This may be questionable, 4169 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4170 llvm::CallSite CS(&I); 4171 if (CS.doesNotThrow()) continue; 4172 4173 // Insert a read hazard before the call. This will ensure that 4174 // any writes to the locals are performed before making the 4175 // call. If the call throws, then this is sufficient to 4176 // guarantee correctness as long as it doesn't also write to any 4177 // locals. 4178 Builder.SetInsertPoint(&BB, BI); 4179 emitReadHazard(Builder); 4180 } 4181 } 4182 } 4183 4184 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4185 if (V.isValid()) S.insert(V.getPointer()); 4186 } 4187 4188 void FragileHazards::collectLocals() { 4189 // Compute a set of allocas to ignore. 4190 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4191 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4192 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4193 4194 // Collect all the allocas currently in the function. This is 4195 // probably way too aggressive. 4196 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4197 for (llvm::BasicBlock::iterator 4198 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4199 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4200 Locals.push_back(&*I); 4201 } 4202 4203 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4204 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4205 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4206 tys[i] = Locals[i]->getType(); 4207 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4208 } 4209 4210 /* 4211 4212 Objective-C setjmp-longjmp (sjlj) Exception Handling 4213 -- 4214 4215 A catch buffer is a setjmp buffer plus: 4216 - a pointer to the exception that was caught 4217 - a pointer to the previous exception data buffer 4218 - two pointers of reserved storage 4219 Therefore catch buffers form a stack, with a pointer to the top 4220 of the stack kept in thread-local storage. 4221 4222 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4223 objc_exception_try_exit pops the given catch buffer, which is 4224 required to be the top of the EH stack. 4225 objc_exception_throw pops the top of the EH stack, writes the 4226 thrown exception into the appropriate field, and longjmps 4227 to the setjmp buffer. It crashes the process (with a printf 4228 and an abort()) if there are no catch buffers on the stack. 4229 objc_exception_extract just reads the exception pointer out of the 4230 catch buffer. 4231 4232 There's no reason an implementation couldn't use a light-weight 4233 setjmp here --- something like __builtin_setjmp, but API-compatible 4234 with the heavyweight setjmp. This will be more important if we ever 4235 want to implement correct ObjC/C++ exception interactions for the 4236 fragile ABI. 4237 4238 Note that for this use of setjmp/longjmp to be correct, we may need 4239 to mark some local variables volatile: if a non-volatile local 4240 variable is modified between the setjmp and the longjmp, it has 4241 indeterminate value. For the purposes of LLVM IR, it may be 4242 sufficient to make loads and stores within the @try (to variables 4243 declared outside the @try) volatile. This is necessary for 4244 optimized correctness, but is not currently being done; this is 4245 being tracked as rdar://problem/8160285 4246 4247 The basic framework for a @try-catch-finally is as follows: 4248 { 4249 objc_exception_data d; 4250 id _rethrow = null; 4251 bool _call_try_exit = true; 4252 4253 objc_exception_try_enter(&d); 4254 if (!setjmp(d.jmp_buf)) { 4255 ... try body ... 4256 } else { 4257 // exception path 4258 id _caught = objc_exception_extract(&d); 4259 4260 // enter new try scope for handlers 4261 if (!setjmp(d.jmp_buf)) { 4262 ... match exception and execute catch blocks ... 4263 4264 // fell off end, rethrow. 4265 _rethrow = _caught; 4266 ... jump-through-finally to finally_rethrow ... 4267 } else { 4268 // exception in catch block 4269 _rethrow = objc_exception_extract(&d); 4270 _call_try_exit = false; 4271 ... jump-through-finally to finally_rethrow ... 4272 } 4273 } 4274 ... jump-through-finally to finally_end ... 4275 4276 finally: 4277 if (_call_try_exit) 4278 objc_exception_try_exit(&d); 4279 4280 ... finally block .... 4281 ... dispatch to finally destination ... 4282 4283 finally_rethrow: 4284 objc_exception_throw(_rethrow); 4285 4286 finally_end: 4287 } 4288 4289 This framework differs slightly from the one gcc uses, in that gcc 4290 uses _rethrow to determine if objc_exception_try_exit should be called 4291 and if the object should be rethrown. This breaks in the face of 4292 throwing nil and introduces unnecessary branches. 4293 4294 We specialize this framework for a few particular circumstances: 4295 4296 - If there are no catch blocks, then we avoid emitting the second 4297 exception handling context. 4298 4299 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4300 e)) we avoid emitting the code to rethrow an uncaught exception. 4301 4302 - FIXME: If there is no @finally block we can do a few more 4303 simplifications. 4304 4305 Rethrows and Jumps-Through-Finally 4306 -- 4307 4308 '@throw;' is supported by pushing the currently-caught exception 4309 onto ObjCEHStack while the @catch blocks are emitted. 4310 4311 Branches through the @finally block are handled with an ordinary 4312 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4313 exceptions are not compatible with C++ exceptions, and this is 4314 hardly the only place where this will go wrong. 4315 4316 @synchronized(expr) { stmt; } is emitted as if it were: 4317 id synch_value = expr; 4318 objc_sync_enter(synch_value); 4319 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4320 */ 4321 4322 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4323 const Stmt &S) { 4324 bool isTry = isa<ObjCAtTryStmt>(S); 4325 4326 // A destination for the fall-through edges of the catch handlers to 4327 // jump to. 4328 CodeGenFunction::JumpDest FinallyEnd = 4329 CGF.getJumpDestInCurrentScope("finally.end"); 4330 4331 // A destination for the rethrow edge of the catch handlers to jump 4332 // to. 4333 CodeGenFunction::JumpDest FinallyRethrow = 4334 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4335 4336 // For @synchronized, call objc_sync_enter(sync.expr). The 4337 // evaluation of the expression must occur before we enter the 4338 // @synchronized. We can't avoid a temp here because we need the 4339 // value to be preserved. If the backend ever does liveness 4340 // correctly after setjmp, this will be unnecessary. 4341 Address SyncArgSlot = Address::invalid(); 4342 if (!isTry) { 4343 llvm::Value *SyncArg = 4344 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4345 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4346 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4347 4348 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4349 CGF.getPointerAlign(), "sync.arg"); 4350 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4351 } 4352 4353 // Allocate memory for the setjmp buffer. This needs to be kept 4354 // live throughout the try and catch blocks. 4355 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4356 CGF.getPointerAlign(), 4357 "exceptiondata.ptr"); 4358 4359 // Create the fragile hazards. Note that this will not capture any 4360 // of the allocas required for exception processing, but will 4361 // capture the current basic block (which extends all the way to the 4362 // setjmp call) as "before the @try". 4363 FragileHazards Hazards(CGF); 4364 4365 // Create a flag indicating whether the cleanup needs to call 4366 // objc_exception_try_exit. This is true except when 4367 // - no catches match and we're branching through the cleanup 4368 // just to rethrow the exception, or 4369 // - a catch matched and we're falling out of the catch handler. 4370 // The setjmp-safety rule here is that we should always store to this 4371 // variable in a place that dominates the branch through the cleanup 4372 // without passing through any setjmps. 4373 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4374 CharUnits::One(), 4375 "_call_try_exit"); 4376 4377 // A slot containing the exception to rethrow. Only needed when we 4378 // have both a @catch and a @finally. 4379 Address PropagatingExnVar = Address::invalid(); 4380 4381 // Push a normal cleanup to leave the try scope. 4382 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4383 SyncArgSlot, 4384 CallTryExitVar, 4385 ExceptionData, 4386 &ObjCTypes); 4387 4388 // Enter a try block: 4389 // - Call objc_exception_try_enter to push ExceptionData on top of 4390 // the EH stack. 4391 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4392 ExceptionData.getPointer()); 4393 4394 // - Call setjmp on the exception data buffer. 4395 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4396 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4397 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4398 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4399 "setjmp_buffer"); 4400 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4401 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4402 SetJmpResult->setCanReturnTwice(); 4403 4404 // If setjmp returned 0, enter the protected block; otherwise, 4405 // branch to the handler. 4406 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4407 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4408 llvm::Value *DidCatch = 4409 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4410 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4411 4412 // Emit the protected block. 4413 CGF.EmitBlock(TryBlock); 4414 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4415 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4416 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4417 4418 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4419 4420 // Emit the exception handler block. 4421 CGF.EmitBlock(TryHandler); 4422 4423 // Don't optimize loads of the in-scope locals across this point. 4424 Hazards.emitWriteHazard(); 4425 4426 // For a @synchronized (or a @try with no catches), just branch 4427 // through the cleanup to the rethrow block. 4428 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4429 // Tell the cleanup not to re-pop the exit. 4430 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4431 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4432 4433 // Otherwise, we have to match against the caught exceptions. 4434 } else { 4435 // Retrieve the exception object. We may emit multiple blocks but 4436 // nothing can cross this so the value is already in SSA form. 4437 llvm::CallInst *Caught = 4438 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4439 ExceptionData.getPointer(), "caught"); 4440 4441 // Push the exception to rethrow onto the EH value stack for the 4442 // benefit of any @throws in the handlers. 4443 CGF.ObjCEHValueStack.push_back(Caught); 4444 4445 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4446 4447 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4448 4449 llvm::BasicBlock *CatchBlock = nullptr; 4450 llvm::BasicBlock *CatchHandler = nullptr; 4451 if (HasFinally) { 4452 // Save the currently-propagating exception before 4453 // objc_exception_try_enter clears the exception slot. 4454 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4455 CGF.getPointerAlign(), 4456 "propagating_exception"); 4457 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4458 4459 // Enter a new exception try block (in case a @catch block 4460 // throws an exception). 4461 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4462 ExceptionData.getPointer()); 4463 4464 llvm::CallInst *SetJmpResult = 4465 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4466 SetJmpBuffer, "setjmp.result"); 4467 SetJmpResult->setCanReturnTwice(); 4468 4469 llvm::Value *Threw = 4470 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4471 4472 CatchBlock = CGF.createBasicBlock("catch"); 4473 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4474 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4475 4476 CGF.EmitBlock(CatchBlock); 4477 } 4478 4479 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4480 4481 // Handle catch list. As a special case we check if everything is 4482 // matched and avoid generating code for falling off the end if 4483 // so. 4484 bool AllMatched = false; 4485 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4486 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4487 4488 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4489 const ObjCObjectPointerType *OPT = nullptr; 4490 4491 // catch(...) always matches. 4492 if (!CatchParam) { 4493 AllMatched = true; 4494 } else { 4495 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4496 4497 // catch(id e) always matches under this ABI, since only 4498 // ObjC exceptions end up here in the first place. 4499 // FIXME: For the time being we also match id<X>; this should 4500 // be rejected by Sema instead. 4501 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4502 AllMatched = true; 4503 } 4504 4505 // If this is a catch-all, we don't need to test anything. 4506 if (AllMatched) { 4507 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4508 4509 if (CatchParam) { 4510 CGF.EmitAutoVarDecl(*CatchParam); 4511 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4512 4513 // These types work out because ConvertType(id) == i8*. 4514 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4515 } 4516 4517 CGF.EmitStmt(CatchStmt->getCatchBody()); 4518 4519 // The scope of the catch variable ends right here. 4520 CatchVarCleanups.ForceCleanup(); 4521 4522 CGF.EmitBranchThroughCleanup(FinallyEnd); 4523 break; 4524 } 4525 4526 assert(OPT && "Unexpected non-object pointer type in @catch"); 4527 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4528 4529 // FIXME: @catch (Class c) ? 4530 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4531 assert(IDecl && "Catch parameter must have Objective-C type!"); 4532 4533 // Check if the @catch block matches the exception object. 4534 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4535 4536 llvm::Value *matchArgs[] = { Class, Caught }; 4537 llvm::CallInst *Match = 4538 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4539 matchArgs, "match"); 4540 4541 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4542 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4543 4544 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4545 MatchedBlock, NextCatchBlock); 4546 4547 // Emit the @catch block. 4548 CGF.EmitBlock(MatchedBlock); 4549 4550 // Collect any cleanups for the catch variable. The scope lasts until 4551 // the end of the catch body. 4552 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4553 4554 CGF.EmitAutoVarDecl(*CatchParam); 4555 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4556 4557 // Initialize the catch variable. 4558 llvm::Value *Tmp = 4559 CGF.Builder.CreateBitCast(Caught, 4560 CGF.ConvertType(CatchParam->getType())); 4561 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4562 4563 CGF.EmitStmt(CatchStmt->getCatchBody()); 4564 4565 // We're done with the catch variable. 4566 CatchVarCleanups.ForceCleanup(); 4567 4568 CGF.EmitBranchThroughCleanup(FinallyEnd); 4569 4570 CGF.EmitBlock(NextCatchBlock); 4571 } 4572 4573 CGF.ObjCEHValueStack.pop_back(); 4574 4575 // If nothing wanted anything to do with the caught exception, 4576 // kill the extract call. 4577 if (Caught->use_empty()) 4578 Caught->eraseFromParent(); 4579 4580 if (!AllMatched) 4581 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4582 4583 if (HasFinally) { 4584 // Emit the exception handler for the @catch blocks. 4585 CGF.EmitBlock(CatchHandler); 4586 4587 // In theory we might now need a write hazard, but actually it's 4588 // unnecessary because there's no local-accessing code between 4589 // the try's write hazard and here. 4590 //Hazards.emitWriteHazard(); 4591 4592 // Extract the new exception and save it to the 4593 // propagating-exception slot. 4594 assert(PropagatingExnVar.isValid()); 4595 llvm::CallInst *NewCaught = 4596 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4597 ExceptionData.getPointer(), "caught"); 4598 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4599 4600 // Don't pop the catch handler; the throw already did. 4601 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4602 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4603 } 4604 } 4605 4606 // Insert read hazards as required in the new blocks. 4607 Hazards.emitHazardsInNewBlocks(); 4608 4609 // Pop the cleanup. 4610 CGF.Builder.restoreIP(TryFallthroughIP); 4611 if (CGF.HaveInsertPoint()) 4612 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4613 CGF.PopCleanupBlock(); 4614 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4615 4616 // Emit the rethrow block. 4617 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4618 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4619 if (CGF.HaveInsertPoint()) { 4620 // If we have a propagating-exception variable, check it. 4621 llvm::Value *PropagatingExn; 4622 if (PropagatingExnVar.isValid()) { 4623 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4624 4625 // Otherwise, just look in the buffer for the exception to throw. 4626 } else { 4627 llvm::CallInst *Caught = 4628 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4629 ExceptionData.getPointer()); 4630 PropagatingExn = Caught; 4631 } 4632 4633 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4634 PropagatingExn); 4635 CGF.Builder.CreateUnreachable(); 4636 } 4637 4638 CGF.Builder.restoreIP(SavedIP); 4639 } 4640 4641 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4642 const ObjCAtThrowStmt &S, 4643 bool ClearInsertionPoint) { 4644 llvm::Value *ExceptionAsObject; 4645 4646 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4647 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4648 ExceptionAsObject = 4649 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4650 } else { 4651 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4652 "Unexpected rethrow outside @catch block."); 4653 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4654 } 4655 4656 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4657 ->setDoesNotReturn(); 4658 CGF.Builder.CreateUnreachable(); 4659 4660 // Clear the insertion point to indicate we are in unreachable code. 4661 if (ClearInsertionPoint) 4662 CGF.Builder.ClearInsertionPoint(); 4663 } 4664 4665 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4666 /// object: objc_read_weak (id *src) 4667 /// 4668 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4669 Address AddrWeakObj) { 4670 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4671 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4672 ObjCTypes.PtrObjectPtrTy); 4673 llvm::Value *read_weak = 4674 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4675 AddrWeakObj.getPointer(), "weakread"); 4676 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4677 return read_weak; 4678 } 4679 4680 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4681 /// objc_assign_weak (id src, id *dst) 4682 /// 4683 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4684 llvm::Value *src, Address dst) { 4685 llvm::Type * SrcTy = src->getType(); 4686 if (!isa<llvm::PointerType>(SrcTy)) { 4687 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4688 assert(Size <= 8 && "does not support size > 8"); 4689 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4690 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4691 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4692 } 4693 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4694 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4695 llvm::Value *args[] = { src, dst.getPointer() }; 4696 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4697 args, "weakassign"); 4698 } 4699 4700 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4701 /// objc_assign_global (id src, id *dst) 4702 /// 4703 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4704 llvm::Value *src, Address dst, 4705 bool threadlocal) { 4706 llvm::Type * SrcTy = src->getType(); 4707 if (!isa<llvm::PointerType>(SrcTy)) { 4708 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4709 assert(Size <= 8 && "does not support size > 8"); 4710 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4711 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4712 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4713 } 4714 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4715 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4716 llvm::Value *args[] = { src, dst.getPointer() }; 4717 if (!threadlocal) 4718 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4719 args, "globalassign"); 4720 else 4721 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4722 args, "threadlocalassign"); 4723 } 4724 4725 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4726 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4727 /// 4728 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4729 llvm::Value *src, Address dst, 4730 llvm::Value *ivarOffset) { 4731 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4732 llvm::Type * SrcTy = src->getType(); 4733 if (!isa<llvm::PointerType>(SrcTy)) { 4734 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4735 assert(Size <= 8 && "does not support size > 8"); 4736 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4737 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4738 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4739 } 4740 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4741 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4742 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4743 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4744 } 4745 4746 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4747 /// objc_assign_strongCast (id src, id *dst) 4748 /// 4749 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4750 llvm::Value *src, Address dst) { 4751 llvm::Type * SrcTy = src->getType(); 4752 if (!isa<llvm::PointerType>(SrcTy)) { 4753 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4754 assert(Size <= 8 && "does not support size > 8"); 4755 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4756 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4757 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4758 } 4759 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4760 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4761 llvm::Value *args[] = { src, dst.getPointer() }; 4762 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4763 args, "strongassign"); 4764 } 4765 4766 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4767 Address DestPtr, 4768 Address SrcPtr, 4769 llvm::Value *size) { 4770 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4771 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4772 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4773 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4774 } 4775 4776 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4777 /// 4778 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4779 QualType ObjectTy, 4780 llvm::Value *BaseValue, 4781 const ObjCIvarDecl *Ivar, 4782 unsigned CVRQualifiers) { 4783 const ObjCInterfaceDecl *ID = 4784 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4785 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4786 EmitIvarOffset(CGF, ID, Ivar)); 4787 } 4788 4789 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4790 const ObjCInterfaceDecl *Interface, 4791 const ObjCIvarDecl *Ivar) { 4792 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4793 return llvm::ConstantInt::get( 4794 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4795 Offset); 4796 } 4797 4798 /* *** Private Interface *** */ 4799 4800 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 4801 StringRef MachOAttributes) { 4802 switch (CGM.getTriple().getObjectFormat()) { 4803 default: 4804 llvm_unreachable("unexpected object file format"); 4805 case llvm::Triple::MachO: { 4806 if (MachOAttributes.empty()) 4807 return ("__DATA," + Section).str(); 4808 return ("__DATA," + Section + "," + MachOAttributes).str(); 4809 } 4810 case llvm::Triple::ELF: 4811 assert(Section.substr(0, 2) == "__" && 4812 "expected the name to begin with __"); 4813 return Section.substr(2).str(); 4814 case llvm::Triple::COFF: 4815 assert(Section.substr(0, 2) == "__" && 4816 "expected the name to begin with __"); 4817 return ("." + Section.substr(2) + "$B").str(); 4818 } 4819 } 4820 4821 /// EmitImageInfo - Emit the image info marker used to encode some module 4822 /// level information. 4823 /// 4824 /// See: <rdr://4810609&4810587&4810587> 4825 /// struct IMAGE_INFO { 4826 /// unsigned version; 4827 /// unsigned flags; 4828 /// }; 4829 enum ImageInfoFlags { 4830 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4831 eImageInfo_GarbageCollected = (1 << 1), 4832 eImageInfo_GCOnly = (1 << 2), 4833 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4834 4835 // A flag indicating that the module has no instances of a @synthesize of a 4836 // superclass variable. <rdar://problem/6803242> 4837 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4838 eImageInfo_ImageIsSimulated = (1 << 5), 4839 eImageInfo_ClassProperties = (1 << 6) 4840 }; 4841 4842 void CGObjCCommonMac::EmitImageInfo() { 4843 unsigned version = 0; // Version is unused? 4844 std::string Section = 4845 (ObjCABI == 1) 4846 ? "__OBJC,__image_info,regular" 4847 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 4848 4849 // Generate module-level named metadata to convey this information to the 4850 // linker and code-gen. 4851 llvm::Module &Mod = CGM.getModule(); 4852 4853 // Add the ObjC ABI version to the module flags. 4854 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4855 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4856 version); 4857 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4858 llvm::MDString::get(VMContext, Section)); 4859 4860 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4861 // Non-GC overrides those files which specify GC. 4862 Mod.addModuleFlag(llvm::Module::Override, 4863 "Objective-C Garbage Collection", (uint32_t)0); 4864 } else { 4865 // Add the ObjC garbage collection value. 4866 Mod.addModuleFlag(llvm::Module::Error, 4867 "Objective-C Garbage Collection", 4868 eImageInfo_GarbageCollected); 4869 4870 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4871 // Add the ObjC GC Only value. 4872 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4873 eImageInfo_GCOnly); 4874 4875 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4876 llvm::Metadata *Ops[2] = { 4877 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4878 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4879 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4880 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4881 llvm::MDNode::get(VMContext, Ops)); 4882 } 4883 } 4884 4885 // Indicate whether we're compiling this to run on a simulator. 4886 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 4887 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4888 eImageInfo_ImageIsSimulated); 4889 4890 // Indicate whether we are generating class properties. 4891 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 4892 eImageInfo_ClassProperties); 4893 } 4894 4895 // struct objc_module { 4896 // unsigned long version; 4897 // unsigned long size; 4898 // const char *name; 4899 // Symtab symtab; 4900 // }; 4901 4902 // FIXME: Get from somewhere 4903 static const int ModuleVersion = 7; 4904 4905 void CGObjCMac::EmitModuleInfo() { 4906 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4907 4908 ConstantInitBuilder builder(CGM); 4909 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 4910 values.addInt(ObjCTypes.LongTy, ModuleVersion); 4911 values.addInt(ObjCTypes.LongTy, Size); 4912 // This used to be the filename, now it is unused. <rdr://4327263> 4913 values.add(GetClassName(StringRef(""))); 4914 values.add(EmitModuleSymbols()); 4915 CreateMetadataVar("OBJC_MODULES", values, 4916 "__OBJC,__module_info,regular,no_dead_strip", 4917 CGM.getPointerAlign(), true); 4918 } 4919 4920 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4921 unsigned NumClasses = DefinedClasses.size(); 4922 unsigned NumCategories = DefinedCategories.size(); 4923 4924 // Return null if no symbols were defined. 4925 if (!NumClasses && !NumCategories) 4926 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4927 4928 ConstantInitBuilder builder(CGM); 4929 auto values = builder.beginStruct(); 4930 values.addInt(ObjCTypes.LongTy, 0); 4931 values.addNullPointer(ObjCTypes.SelectorPtrTy); 4932 values.addInt(ObjCTypes.ShortTy, NumClasses); 4933 values.addInt(ObjCTypes.ShortTy, NumCategories); 4934 4935 // The runtime expects exactly the list of defined classes followed 4936 // by the list of defined categories, in a single array. 4937 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 4938 for (unsigned i=0; i<NumClasses; i++) { 4939 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4940 assert(ID); 4941 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4942 // We are implementing a weak imported interface. Give it external linkage 4943 if (ID->isWeakImported() && !IMP->isWeakImported()) 4944 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4945 4946 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 4947 } 4948 for (unsigned i=0; i<NumCategories; i++) 4949 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 4950 4951 array.finishAndAddTo(values); 4952 4953 llvm::GlobalVariable *GV = CreateMetadataVar( 4954 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 4955 CGM.getPointerAlign(), true); 4956 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4957 } 4958 4959 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4960 IdentifierInfo *II) { 4961 LazySymbols.insert(II); 4962 4963 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4964 4965 if (!Entry) { 4966 llvm::Constant *Casted = 4967 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4968 ObjCTypes.ClassPtrTy); 4969 Entry = CreateMetadataVar( 4970 "OBJC_CLASS_REFERENCES_", Casted, 4971 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4972 CGM.getPointerAlign(), true); 4973 } 4974 4975 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4976 } 4977 4978 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4979 const ObjCInterfaceDecl *ID) { 4980 // If the class has the objc_runtime_visible attribute, we need to 4981 // use the Objective-C runtime to get the class. 4982 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 4983 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 4984 4985 IdentifierInfo *RuntimeName = 4986 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 4987 return EmitClassRefFromId(CGF, RuntimeName); 4988 } 4989 4990 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4991 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4992 return EmitClassRefFromId(CGF, II); 4993 } 4994 4995 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4996 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 4997 } 4998 4999 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 5000 CharUnits Align = CGF.getPointerAlign(); 5001 5002 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5003 if (!Entry) { 5004 llvm::Constant *Casted = 5005 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5006 ObjCTypes.SelectorPtrTy); 5007 Entry = CreateMetadataVar( 5008 "OBJC_SELECTOR_REFERENCES_", Casted, 5009 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5010 Entry->setExternallyInitialized(true); 5011 } 5012 5013 return Address(Entry, Align); 5014 } 5015 5016 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5017 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5018 if (!Entry) 5019 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5020 return getConstantGEP(VMContext, Entry, 0, 0); 5021 } 5022 5023 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5024 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5025 I = MethodDefinitions.find(MD); 5026 if (I != MethodDefinitions.end()) 5027 return I->second; 5028 5029 return nullptr; 5030 } 5031 5032 /// GetIvarLayoutName - Returns a unique constant for the given 5033 /// ivar layout bitmap. 5034 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5035 const ObjCCommonTypesHelper &ObjCTypes) { 5036 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5037 } 5038 5039 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5040 CharUnits offset) { 5041 const RecordDecl *RD = RT->getDecl(); 5042 5043 // If this is a union, remember that we had one, because it might mess 5044 // up the ordering of layout entries. 5045 if (RD->isUnion()) 5046 IsDisordered = true; 5047 5048 const ASTRecordLayout *recLayout = nullptr; 5049 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5050 [&](const FieldDecl *field) -> CharUnits { 5051 if (!recLayout) 5052 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5053 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5054 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5055 }); 5056 } 5057 5058 template <class Iterator, class GetOffsetFn> 5059 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5060 CharUnits aggregateOffset, 5061 const GetOffsetFn &getOffset) { 5062 for (; begin != end; ++begin) { 5063 auto field = *begin; 5064 5065 // Skip over bitfields. 5066 if (field->isBitField()) { 5067 continue; 5068 } 5069 5070 // Compute the offset of the field within the aggregate. 5071 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5072 5073 visitField(field, fieldOffset); 5074 } 5075 } 5076 5077 /// Collect layout information for the given fields into IvarsInfo. 5078 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5079 CharUnits fieldOffset) { 5080 QualType fieldType = field->getType(); 5081 5082 // Drill down into arrays. 5083 uint64_t numElts = 1; 5084 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5085 numElts = 0; 5086 fieldType = arrayType->getElementType(); 5087 } 5088 // Unlike incomplete arrays, constant arrays can be nested. 5089 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5090 numElts *= arrayType->getSize().getZExtValue(); 5091 fieldType = arrayType->getElementType(); 5092 } 5093 5094 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5095 5096 // If we ended up with a zero-sized array, we've done what we can do within 5097 // the limits of this layout encoding. 5098 if (numElts == 0) return; 5099 5100 // Recurse if the base element type is a record type. 5101 if (auto recType = fieldType->getAs<RecordType>()) { 5102 size_t oldEnd = IvarsInfo.size(); 5103 5104 visitRecord(recType, fieldOffset); 5105 5106 // If we have an array, replicate the first entry's layout information. 5107 auto numEltEntries = IvarsInfo.size() - oldEnd; 5108 if (numElts != 1 && numEltEntries != 0) { 5109 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5110 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5111 // Copy the last numEltEntries onto the end of the array, adjusting 5112 // each for the element size. 5113 for (size_t i = 0; i != numEltEntries; ++i) { 5114 auto firstEntry = IvarsInfo[oldEnd + i]; 5115 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5116 firstEntry.SizeInWords)); 5117 } 5118 } 5119 } 5120 5121 return; 5122 } 5123 5124 // Classify the element type. 5125 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5126 5127 // If it matches what we're looking for, add an entry. 5128 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5129 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5130 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5131 == CGM.getPointerSize()); 5132 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5133 } 5134 } 5135 5136 /// buildBitmap - This routine does the horsework of taking the offsets of 5137 /// strong/weak references and creating a bitmap. The bitmap is also 5138 /// returned in the given buffer, suitable for being passed to \c dump(). 5139 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5140 llvm::SmallVectorImpl<unsigned char> &buffer) { 5141 // The bitmap is a series of skip/scan instructions, aligned to word 5142 // boundaries. The skip is performed first. 5143 const unsigned char MaxNibble = 0xF; 5144 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5145 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5146 5147 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5148 5149 // Sort the ivar info on byte position in case we encounterred a 5150 // union nested in the ivar list. 5151 if (IsDisordered) { 5152 // This isn't a stable sort, but our algorithm should handle it fine. 5153 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5154 } else { 5155 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5156 } 5157 assert(IvarsInfo.back().Offset < InstanceEnd); 5158 5159 assert(buffer.empty()); 5160 5161 // Skip the next N words. 5162 auto skip = [&](unsigned numWords) { 5163 assert(numWords > 0); 5164 5165 // Try to merge into the previous byte. Since scans happen second, we 5166 // can't do this if it includes a scan. 5167 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5168 unsigned lastSkip = buffer.back() >> SkipShift; 5169 if (lastSkip < MaxNibble) { 5170 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5171 numWords -= claimed; 5172 lastSkip += claimed; 5173 buffer.back() = (lastSkip << SkipShift); 5174 } 5175 } 5176 5177 while (numWords >= MaxNibble) { 5178 buffer.push_back(MaxNibble << SkipShift); 5179 numWords -= MaxNibble; 5180 } 5181 if (numWords) { 5182 buffer.push_back(numWords << SkipShift); 5183 } 5184 }; 5185 5186 // Scan the next N words. 5187 auto scan = [&](unsigned numWords) { 5188 assert(numWords > 0); 5189 5190 // Try to merge into the previous byte. Since scans happen second, we can 5191 // do this even if it includes a skip. 5192 if (!buffer.empty()) { 5193 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5194 if (lastScan < MaxNibble) { 5195 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5196 numWords -= claimed; 5197 lastScan += claimed; 5198 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5199 } 5200 } 5201 5202 while (numWords >= MaxNibble) { 5203 buffer.push_back(MaxNibble << ScanShift); 5204 numWords -= MaxNibble; 5205 } 5206 if (numWords) { 5207 buffer.push_back(numWords << ScanShift); 5208 } 5209 }; 5210 5211 // One past the end of the last scan. 5212 unsigned endOfLastScanInWords = 0; 5213 const CharUnits WordSize = CGM.getPointerSize(); 5214 5215 // Consider all the scan requests. 5216 for (auto &request : IvarsInfo) { 5217 CharUnits beginOfScan = request.Offset - InstanceBegin; 5218 5219 // Ignore scan requests that don't start at an even multiple of the 5220 // word size. We can't encode them. 5221 if ((beginOfScan % WordSize) != 0) continue; 5222 5223 // Ignore scan requests that start before the instance start. 5224 // This assumes that scans never span that boundary. The boundary 5225 // isn't the true start of the ivars, because in the fragile-ARC case 5226 // it's rounded up to word alignment, but the test above should leave 5227 // us ignoring that possibility. 5228 if (beginOfScan.isNegative()) { 5229 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5230 continue; 5231 } 5232 5233 unsigned beginOfScanInWords = beginOfScan / WordSize; 5234 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5235 5236 // If the scan starts some number of words after the last one ended, 5237 // skip forward. 5238 if (beginOfScanInWords > endOfLastScanInWords) { 5239 skip(beginOfScanInWords - endOfLastScanInWords); 5240 5241 // Otherwise, start scanning where the last left off. 5242 } else { 5243 beginOfScanInWords = endOfLastScanInWords; 5244 5245 // If that leaves us with nothing to scan, ignore this request. 5246 if (beginOfScanInWords >= endOfScanInWords) continue; 5247 } 5248 5249 // Scan to the end of the request. 5250 assert(beginOfScanInWords < endOfScanInWords); 5251 scan(endOfScanInWords - beginOfScanInWords); 5252 endOfLastScanInWords = endOfScanInWords; 5253 } 5254 5255 if (buffer.empty()) 5256 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5257 5258 // For GC layouts, emit a skip to the end of the allocation so that we 5259 // have precise information about the entire thing. This isn't useful 5260 // or necessary for the ARC-style layout strings. 5261 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5262 unsigned lastOffsetInWords = 5263 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5264 if (lastOffsetInWords > endOfLastScanInWords) { 5265 skip(lastOffsetInWords - endOfLastScanInWords); 5266 } 5267 } 5268 5269 // Null terminate the string. 5270 buffer.push_back(0); 5271 5272 auto *Entry = CGObjC.CreateCStringLiteral( 5273 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5274 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5275 } 5276 5277 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5278 /// implementation for the __strong or __weak case. 5279 /// The layout map displays which words in ivar list must be skipped 5280 /// and which must be scanned by GC (see below). String is built of bytes. 5281 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5282 /// of words to skip and right nibble is count of words to scan. So, each 5283 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5284 /// represented by a 0x00 byte which also ends the string. 5285 /// 1. when ForStrongLayout is true, following ivars are scanned: 5286 /// - id, Class 5287 /// - object * 5288 /// - __strong anything 5289 /// 5290 /// 2. When ForStrongLayout is false, following ivars are scanned: 5291 /// - __weak anything 5292 /// 5293 llvm::Constant * 5294 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5295 CharUnits beginOffset, CharUnits endOffset, 5296 bool ForStrongLayout, bool HasMRCWeakIvars) { 5297 // If this is MRC, and we're either building a strong layout or there 5298 // are no weak ivars, bail out early. 5299 llvm::Type *PtrTy = CGM.Int8PtrTy; 5300 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5301 !CGM.getLangOpts().ObjCAutoRefCount && 5302 (ForStrongLayout || !HasMRCWeakIvars)) 5303 return llvm::Constant::getNullValue(PtrTy); 5304 5305 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5306 SmallVector<const ObjCIvarDecl*, 32> ivars; 5307 5308 // GC layout strings include the complete object layout, possibly 5309 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5310 // up. 5311 // 5312 // ARC layout strings only include the class's ivars. In non-fragile 5313 // runtimes, that means starting at InstanceStart, rounded up to word 5314 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5315 // starting at the offset of the first ivar, rounded up to word alignment. 5316 // 5317 // MRC weak layout strings follow the ARC style. 5318 CharUnits baseOffset; 5319 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5320 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5321 IVD; IVD = IVD->getNextIvar()) 5322 ivars.push_back(IVD); 5323 5324 if (isNonFragileABI()) { 5325 baseOffset = beginOffset; // InstanceStart 5326 } else if (!ivars.empty()) { 5327 baseOffset = 5328 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5329 } else { 5330 baseOffset = CharUnits::Zero(); 5331 } 5332 5333 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5334 } 5335 else { 5336 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5337 5338 baseOffset = CharUnits::Zero(); 5339 } 5340 5341 if (ivars.empty()) 5342 return llvm::Constant::getNullValue(PtrTy); 5343 5344 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5345 5346 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5347 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5348 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5349 }); 5350 5351 if (!builder.hasBitmapData()) 5352 return llvm::Constant::getNullValue(PtrTy); 5353 5354 llvm::SmallVector<unsigned char, 4> buffer; 5355 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5356 5357 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5358 printf("\n%s ivar layout for class '%s': ", 5359 ForStrongLayout ? "strong" : "weak", 5360 OMD->getClassInterface()->getName().str().c_str()); 5361 builder.dump(buffer); 5362 } 5363 return C; 5364 } 5365 5366 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5367 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5368 // FIXME: Avoid std::string in "Sel.getAsString()" 5369 if (!Entry) 5370 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5371 return getConstantGEP(VMContext, Entry, 0, 0); 5372 } 5373 5374 // FIXME: Merge into a single cstring creation function. 5375 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5376 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5377 } 5378 5379 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5380 std::string TypeStr; 5381 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5382 5383 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5384 if (!Entry) 5385 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5386 return getConstantGEP(VMContext, Entry, 0, 0); 5387 } 5388 5389 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5390 bool Extended) { 5391 std::string TypeStr = 5392 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5393 5394 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5395 if (!Entry) 5396 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5397 return getConstantGEP(VMContext, Entry, 0, 0); 5398 } 5399 5400 // FIXME: Merge into a single cstring creation function. 5401 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5402 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5403 if (!Entry) 5404 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5405 return getConstantGEP(VMContext, Entry, 0, 0); 5406 } 5407 5408 // FIXME: Merge into a single cstring creation function. 5409 // FIXME: This Decl should be more precise. 5410 llvm::Constant * 5411 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5412 const Decl *Container) { 5413 std::string TypeStr = 5414 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5415 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5416 } 5417 5418 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5419 const ObjCContainerDecl *CD, 5420 SmallVectorImpl<char> &Name) { 5421 llvm::raw_svector_ostream OS(Name); 5422 assert (CD && "Missing container decl in GetNameForMethod"); 5423 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5424 << '[' << CD->getName(); 5425 if (const ObjCCategoryImplDecl *CID = 5426 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5427 OS << '(' << *CID << ')'; 5428 OS << ' ' << D->getSelector().getAsString() << ']'; 5429 } 5430 5431 void CGObjCMac::FinishModule() { 5432 EmitModuleInfo(); 5433 5434 // Emit the dummy bodies for any protocols which were referenced but 5435 // never defined. 5436 for (auto &entry : Protocols) { 5437 llvm::GlobalVariable *global = entry.second; 5438 if (global->hasInitializer()) 5439 continue; 5440 5441 ConstantInitBuilder builder(CGM); 5442 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5443 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5444 values.add(GetClassName(entry.first->getName())); 5445 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5446 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5447 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5448 values.finishAndSetAsInitializer(global); 5449 CGM.addCompilerUsedGlobal(global); 5450 } 5451 5452 // Add assembler directives to add lazy undefined symbol references 5453 // for classes which are referenced but not defined. This is 5454 // important for correct linker interaction. 5455 // 5456 // FIXME: It would be nice if we had an LLVM construct for this. 5457 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5458 CGM.getTriple().isOSBinFormatMachO()) { 5459 SmallString<256> Asm; 5460 Asm += CGM.getModule().getModuleInlineAsm(); 5461 if (!Asm.empty() && Asm.back() != '\n') 5462 Asm += '\n'; 5463 5464 llvm::raw_svector_ostream OS(Asm); 5465 for (const auto *Sym : DefinedSymbols) 5466 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5467 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5468 for (const auto *Sym : LazySymbols) 5469 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5470 for (const auto &Category : DefinedCategoryNames) 5471 OS << "\t.objc_category_name_" << Category << "=0\n" 5472 << "\t.globl .objc_category_name_" << Category << "\n"; 5473 5474 CGM.getModule().setModuleInlineAsm(OS.str()); 5475 } 5476 } 5477 5478 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5479 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5480 ObjCEmptyVtableVar(nullptr) { 5481 ObjCABI = 2; 5482 } 5483 5484 /* *** */ 5485 5486 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5487 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5488 { 5489 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5490 ASTContext &Ctx = CGM.getContext(); 5491 5492 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5493 IntTy = CGM.IntTy; 5494 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5495 Int8PtrTy = CGM.Int8PtrTy; 5496 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5497 5498 // arm64 targets use "int" ivar offset variables. All others, 5499 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5500 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5501 IvarOffsetVarTy = IntTy; 5502 else 5503 IvarOffsetVarTy = LongTy; 5504 5505 ObjectPtrTy = 5506 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5507 PtrObjectPtrTy = 5508 llvm::PointerType::getUnqual(ObjectPtrTy); 5509 SelectorPtrTy = 5510 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5511 5512 // I'm not sure I like this. The implicit coordination is a bit 5513 // gross. We should solve this in a reasonable fashion because this 5514 // is a pretty common task (match some runtime data structure with 5515 // an LLVM data structure). 5516 5517 // FIXME: This is leaked. 5518 // FIXME: Merge with rewriter code? 5519 5520 // struct _objc_super { 5521 // id self; 5522 // Class cls; 5523 // } 5524 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5525 Ctx.getTranslationUnitDecl(), 5526 SourceLocation(), SourceLocation(), 5527 &Ctx.Idents.get("_objc_super")); 5528 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5529 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5530 false, ICIS_NoInit)); 5531 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5532 nullptr, Ctx.getObjCClassType(), nullptr, 5533 nullptr, false, ICIS_NoInit)); 5534 RD->completeDefinition(); 5535 5536 SuperCTy = Ctx.getTagDeclType(RD); 5537 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5538 5539 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5540 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5541 5542 // struct _prop_t { 5543 // char *name; 5544 // char *attributes; 5545 // } 5546 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5547 5548 // struct _prop_list_t { 5549 // uint32_t entsize; // sizeof(struct _prop_t) 5550 // uint32_t count_of_properties; 5551 // struct _prop_t prop_list[count_of_properties]; 5552 // } 5553 PropertyListTy = llvm::StructType::create( 5554 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5555 // struct _prop_list_t * 5556 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5557 5558 // struct _objc_method { 5559 // SEL _cmd; 5560 // char *method_type; 5561 // char *_imp; 5562 // } 5563 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5564 Int8PtrTy, Int8PtrTy); 5565 5566 // struct _objc_cache * 5567 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5568 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5569 } 5570 5571 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5572 : ObjCCommonTypesHelper(cgm) { 5573 // struct _objc_method_description { 5574 // SEL name; 5575 // char *types; 5576 // } 5577 MethodDescriptionTy = llvm::StructType::create( 5578 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5579 5580 // struct _objc_method_description_list { 5581 // int count; 5582 // struct _objc_method_description[1]; 5583 // } 5584 MethodDescriptionListTy = 5585 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5586 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5587 5588 // struct _objc_method_description_list * 5589 MethodDescriptionListPtrTy = 5590 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5591 5592 // Protocol description structures 5593 5594 // struct _objc_protocol_extension { 5595 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5596 // struct _objc_method_description_list *optional_instance_methods; 5597 // struct _objc_method_description_list *optional_class_methods; 5598 // struct _objc_property_list *instance_properties; 5599 // const char ** extendedMethodTypes; 5600 // struct _objc_property_list *class_properties; 5601 // } 5602 ProtocolExtensionTy = llvm::StructType::create( 5603 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5604 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5605 PropertyListPtrTy); 5606 5607 // struct _objc_protocol_extension * 5608 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5609 5610 // Handle recursive construction of Protocol and ProtocolList types 5611 5612 ProtocolTy = 5613 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5614 5615 ProtocolListTy = 5616 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5617 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5618 llvm::ArrayType::get(ProtocolTy, 0)); 5619 5620 // struct _objc_protocol { 5621 // struct _objc_protocol_extension *isa; 5622 // char *protocol_name; 5623 // struct _objc_protocol **_objc_protocol_list; 5624 // struct _objc_method_description_list *instance_methods; 5625 // struct _objc_method_description_list *class_methods; 5626 // } 5627 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5628 llvm::PointerType::getUnqual(ProtocolListTy), 5629 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5630 5631 // struct _objc_protocol_list * 5632 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5633 5634 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5635 5636 // Class description structures 5637 5638 // struct _objc_ivar { 5639 // char *ivar_name; 5640 // char *ivar_type; 5641 // int ivar_offset; 5642 // } 5643 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5644 IntTy); 5645 5646 // struct _objc_ivar_list * 5647 IvarListTy = 5648 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5649 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5650 5651 // struct _objc_method_list * 5652 MethodListTy = 5653 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5654 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5655 5656 // struct _objc_class_extension * 5657 ClassExtensionTy = llvm::StructType::create( 5658 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5659 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5660 5661 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5662 5663 // struct _objc_class { 5664 // Class isa; 5665 // Class super_class; 5666 // char *name; 5667 // long version; 5668 // long info; 5669 // long instance_size; 5670 // struct _objc_ivar_list *ivars; 5671 // struct _objc_method_list *methods; 5672 // struct _objc_cache *cache; 5673 // struct _objc_protocol_list *protocols; 5674 // char *ivar_layout; 5675 // struct _objc_class_ext *ext; 5676 // }; 5677 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5678 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5679 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5680 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5681 5682 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5683 5684 // struct _objc_category { 5685 // char *category_name; 5686 // char *class_name; 5687 // struct _objc_method_list *instance_method; 5688 // struct _objc_method_list *class_method; 5689 // struct _objc_protocol_list *protocols; 5690 // uint32_t size; // sizeof(struct _objc_category) 5691 // struct _objc_property_list *instance_properties;// category's @property 5692 // struct _objc_property_list *class_properties; 5693 // } 5694 CategoryTy = llvm::StructType::create( 5695 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5696 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5697 PropertyListPtrTy); 5698 5699 // Global metadata structures 5700 5701 // struct _objc_symtab { 5702 // long sel_ref_cnt; 5703 // SEL *refs; 5704 // short cls_def_cnt; 5705 // short cat_def_cnt; 5706 // char *defs[cls_def_cnt + cat_def_cnt]; 5707 // } 5708 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5709 SelectorPtrTy, ShortTy, ShortTy, 5710 llvm::ArrayType::get(Int8PtrTy, 0)); 5711 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5712 5713 // struct _objc_module { 5714 // long version; 5715 // long size; // sizeof(struct _objc_module) 5716 // char *name; 5717 // struct _objc_symtab* symtab; 5718 // } 5719 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5720 Int8PtrTy, SymtabPtrTy); 5721 5722 // FIXME: This is the size of the setjmp buffer and should be target 5723 // specific. 18 is what's used on 32-bit X86. 5724 uint64_t SetJmpBufferSize = 18; 5725 5726 // Exceptions 5727 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5728 5729 ExceptionDataTy = llvm::StructType::create( 5730 "struct._objc_exception_data", 5731 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5732 } 5733 5734 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5735 : ObjCCommonTypesHelper(cgm) { 5736 // struct _method_list_t { 5737 // uint32_t entsize; // sizeof(struct _objc_method) 5738 // uint32_t method_count; 5739 // struct _objc_method method_list[method_count]; 5740 // } 5741 MethodListnfABITy = 5742 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5743 llvm::ArrayType::get(MethodTy, 0)); 5744 // struct method_list_t * 5745 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5746 5747 // struct _protocol_t { 5748 // id isa; // NULL 5749 // const char * const protocol_name; 5750 // const struct _protocol_list_t * protocol_list; // super protocols 5751 // const struct method_list_t * const instance_methods; 5752 // const struct method_list_t * const class_methods; 5753 // const struct method_list_t *optionalInstanceMethods; 5754 // const struct method_list_t *optionalClassMethods; 5755 // const struct _prop_list_t * properties; 5756 // const uint32_t size; // sizeof(struct _protocol_t) 5757 // const uint32_t flags; // = 0 5758 // const char ** extendedMethodTypes; 5759 // const char *demangledName; 5760 // const struct _prop_list_t * class_properties; 5761 // } 5762 5763 // Holder for struct _protocol_list_t * 5764 ProtocolListnfABITy = 5765 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5766 5767 ProtocolnfABITy = llvm::StructType::create( 5768 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5769 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 5770 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5771 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 5772 PropertyListPtrTy); 5773 5774 // struct _protocol_t* 5775 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5776 5777 // struct _protocol_list_t { 5778 // long protocol_count; // Note, this is 32/64 bit 5779 // struct _protocol_t *[protocol_count]; 5780 // } 5781 ProtocolListnfABITy->setBody(LongTy, 5782 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 5783 5784 // struct _objc_protocol_list* 5785 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5786 5787 // struct _ivar_t { 5788 // unsigned [long] int *offset; // pointer to ivar offset location 5789 // char *name; 5790 // char *type; 5791 // uint32_t alignment; 5792 // uint32_t size; 5793 // } 5794 IvarnfABITy = llvm::StructType::create( 5795 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5796 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 5797 5798 // struct _ivar_list_t { 5799 // uint32 entsize; // sizeof(struct _ivar_t) 5800 // uint32 count; 5801 // struct _iver_t list[count]; 5802 // } 5803 IvarListnfABITy = 5804 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5805 llvm::ArrayType::get(IvarnfABITy, 0)); 5806 5807 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5808 5809 // struct _class_ro_t { 5810 // uint32_t const flags; 5811 // uint32_t const instanceStart; 5812 // uint32_t const instanceSize; 5813 // uint32_t const reserved; // only when building for 64bit targets 5814 // const uint8_t * const ivarLayout; 5815 // const char *const name; 5816 // const struct _method_list_t * const baseMethods; 5817 // const struct _objc_protocol_list *const baseProtocols; 5818 // const struct _ivar_list_t *const ivars; 5819 // const uint8_t * const weakIvarLayout; 5820 // const struct _prop_list_t * const properties; 5821 // } 5822 5823 // FIXME. Add 'reserved' field in 64bit abi mode! 5824 ClassRonfABITy = llvm::StructType::create( 5825 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 5826 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 5827 Int8PtrTy, PropertyListPtrTy); 5828 5829 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5830 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5831 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5832 ->getPointerTo(); 5833 5834 // struct _class_t { 5835 // struct _class_t *isa; 5836 // struct _class_t * const superclass; 5837 // void *cache; 5838 // IMP *vtable; 5839 // struct class_ro_t *ro; 5840 // } 5841 5842 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5843 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5844 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 5845 llvm::PointerType::getUnqual(ImpnfABITy), 5846 llvm::PointerType::getUnqual(ClassRonfABITy)); 5847 5848 // LLVM for struct _class_t * 5849 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5850 5851 // struct _category_t { 5852 // const char * const name; 5853 // struct _class_t *const cls; 5854 // const struct _method_list_t * const instance_methods; 5855 // const struct _method_list_t * const class_methods; 5856 // const struct _protocol_list_t * const protocols; 5857 // const struct _prop_list_t * const properties; 5858 // const struct _prop_list_t * const class_properties; 5859 // const uint32_t size; 5860 // } 5861 CategorynfABITy = llvm::StructType::create( 5862 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 5863 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 5864 PropertyListPtrTy, IntTy); 5865 5866 // New types for nonfragile abi messaging. 5867 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5868 ASTContext &Ctx = CGM.getContext(); 5869 5870 // MessageRefTy - LLVM for: 5871 // struct _message_ref_t { 5872 // IMP messenger; 5873 // SEL name; 5874 // }; 5875 5876 // First the clang type for struct _message_ref_t 5877 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5878 Ctx.getTranslationUnitDecl(), 5879 SourceLocation(), SourceLocation(), 5880 &Ctx.Idents.get("_message_ref_t")); 5881 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5882 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5883 ICIS_NoInit)); 5884 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5885 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5886 false, ICIS_NoInit)); 5887 RD->completeDefinition(); 5888 5889 MessageRefCTy = Ctx.getTagDeclType(RD); 5890 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5891 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5892 5893 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5894 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5895 5896 // SuperMessageRefTy - LLVM for: 5897 // struct _super_message_ref_t { 5898 // SUPER_IMP messenger; 5899 // SEL name; 5900 // }; 5901 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 5902 ImpnfABITy, SelectorPtrTy); 5903 5904 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5905 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5906 5907 5908 // struct objc_typeinfo { 5909 // const void** vtable; // objc_ehtype_vtable + 2 5910 // const char* name; // c++ typeinfo string 5911 // Class cls; 5912 // }; 5913 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 5914 llvm::PointerType::getUnqual(Int8PtrTy), 5915 Int8PtrTy, ClassnfABIPtrTy); 5916 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5917 } 5918 5919 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5920 FinishNonFragileABIModule(); 5921 5922 return nullptr; 5923 } 5924 5925 void CGObjCNonFragileABIMac::AddModuleClassList( 5926 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 5927 StringRef SectionName) { 5928 unsigned NumClasses = Container.size(); 5929 5930 if (!NumClasses) 5931 return; 5932 5933 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5934 for (unsigned i=0; i<NumClasses; i++) 5935 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5936 ObjCTypes.Int8PtrTy); 5937 llvm::Constant *Init = 5938 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5939 Symbols.size()), 5940 Symbols); 5941 5942 llvm::GlobalVariable *GV = 5943 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5944 llvm::GlobalValue::PrivateLinkage, 5945 Init, 5946 SymbolName); 5947 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5948 GV->setSection(SectionName); 5949 CGM.addCompilerUsedGlobal(GV); 5950 } 5951 5952 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5953 // nonfragile abi has no module definition. 5954 5955 // Build list of all implemented class addresses in array 5956 // L_OBJC_LABEL_CLASS_$. 5957 5958 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5959 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5960 assert(ID); 5961 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5962 // We are implementing a weak imported interface. Give it external linkage 5963 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5964 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5965 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5966 } 5967 } 5968 5969 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5970 GetSectionName("__objc_classlist", 5971 "regular,no_dead_strip")); 5972 5973 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5974 GetSectionName("__objc_nlclslist", 5975 "regular,no_dead_strip")); 5976 5977 // Build list of all implemented category addresses in array 5978 // L_OBJC_LABEL_CATEGORY_$. 5979 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5980 GetSectionName("__objc_catlist", 5981 "regular,no_dead_strip")); 5982 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5983 GetSectionName("__objc_nlcatlist", 5984 "regular,no_dead_strip")); 5985 5986 EmitImageInfo(); 5987 } 5988 5989 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5990 /// VTableDispatchMethods; false otherwise. What this means is that 5991 /// except for the 19 selectors in the list, we generate 32bit-style 5992 /// message dispatch call for all the rest. 5993 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5994 // At various points we've experimented with using vtable-based 5995 // dispatch for all methods. 5996 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5997 case CodeGenOptions::Legacy: 5998 return false; 5999 case CodeGenOptions::NonLegacy: 6000 return true; 6001 case CodeGenOptions::Mixed: 6002 break; 6003 } 6004 6005 // If so, see whether this selector is in the white-list of things which must 6006 // use the new dispatch convention. We lazily build a dense set for this. 6007 if (VTableDispatchMethods.empty()) { 6008 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6009 VTableDispatchMethods.insert(GetNullarySelector("class")); 6010 VTableDispatchMethods.insert(GetNullarySelector("self")); 6011 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6012 VTableDispatchMethods.insert(GetNullarySelector("length")); 6013 VTableDispatchMethods.insert(GetNullarySelector("count")); 6014 6015 // These are vtable-based if GC is disabled. 6016 // Optimistically use vtable dispatch for hybrid compiles. 6017 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6018 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6019 VTableDispatchMethods.insert(GetNullarySelector("release")); 6020 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6021 } 6022 6023 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6024 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6025 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6026 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6027 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6028 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6029 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6030 6031 // These are vtable-based if GC is enabled. 6032 // Optimistically use vtable dispatch for hybrid compiles. 6033 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6034 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6035 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6036 6037 // "countByEnumeratingWithState:objects:count" 6038 IdentifierInfo *KeyIdents[] = { 6039 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6040 &CGM.getContext().Idents.get("objects"), 6041 &CGM.getContext().Idents.get("count") 6042 }; 6043 VTableDispatchMethods.insert( 6044 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6045 } 6046 } 6047 6048 return VTableDispatchMethods.count(Sel); 6049 } 6050 6051 /// BuildClassRoTInitializer - generate meta-data for: 6052 /// struct _class_ro_t { 6053 /// uint32_t const flags; 6054 /// uint32_t const instanceStart; 6055 /// uint32_t const instanceSize; 6056 /// uint32_t const reserved; // only when building for 64bit targets 6057 /// const uint8_t * const ivarLayout; 6058 /// const char *const name; 6059 /// const struct _method_list_t * const baseMethods; 6060 /// const struct _protocol_list_t *const baseProtocols; 6061 /// const struct _ivar_list_t *const ivars; 6062 /// const uint8_t * const weakIvarLayout; 6063 /// const struct _prop_list_t * const properties; 6064 /// } 6065 /// 6066 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6067 unsigned flags, 6068 unsigned InstanceStart, 6069 unsigned InstanceSize, 6070 const ObjCImplementationDecl *ID) { 6071 std::string ClassName = ID->getObjCRuntimeNameAsString(); 6072 6073 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6074 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6075 6076 bool hasMRCWeak = false; 6077 if (CGM.getLangOpts().ObjCAutoRefCount) 6078 flags |= NonFragileABI_Class_CompiledByARC; 6079 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6080 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6081 6082 ConstantInitBuilder builder(CGM); 6083 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6084 6085 values.addInt(ObjCTypes.IntTy, flags); 6086 values.addInt(ObjCTypes.IntTy, InstanceStart); 6087 values.addInt(ObjCTypes.IntTy, InstanceSize); 6088 values.add((flags & NonFragileABI_Class_Meta) 6089 ? GetIvarLayoutName(nullptr, ObjCTypes) 6090 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6091 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6092 6093 // const struct _method_list_t * const baseMethods; 6094 SmallVector<const ObjCMethodDecl*, 16> methods; 6095 if (flags & NonFragileABI_Class_Meta) { 6096 for (const auto *MD : ID->class_methods()) 6097 methods.push_back(MD); 6098 } else { 6099 for (const auto *MD : ID->instance_methods()) 6100 methods.push_back(MD); 6101 6102 for (const auto *PID : ID->property_impls()) { 6103 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 6104 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6105 6106 if (auto MD = PD->getGetterMethodDecl()) 6107 if (GetMethodDefinition(MD)) 6108 methods.push_back(MD); 6109 if (auto MD = PD->getSetterMethodDecl()) 6110 if (GetMethodDefinition(MD)) 6111 methods.push_back(MD); 6112 } 6113 } 6114 } 6115 6116 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6117 (flags & NonFragileABI_Class_Meta) 6118 ? MethodListType::ClassMethods 6119 : MethodListType::InstanceMethods, 6120 methods)); 6121 6122 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6123 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6124 values.add(EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 6125 + OID->getObjCRuntimeNameAsString(), 6126 OID->all_referenced_protocol_begin(), 6127 OID->all_referenced_protocol_end())); 6128 6129 if (flags & NonFragileABI_Class_Meta) { 6130 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6131 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6132 values.add(EmitPropertyList( 6133 "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6134 ID, ID->getClassInterface(), ObjCTypes, true)); 6135 } else { 6136 values.add(EmitIvarList(ID)); 6137 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6138 values.add(EmitPropertyList( 6139 "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6140 ID, ID->getClassInterface(), ObjCTypes, false)); 6141 } 6142 6143 llvm::SmallString<64> roLabel; 6144 llvm::raw_svector_ostream(roLabel) 6145 << ((flags & NonFragileABI_Class_Meta) ? "\01l_OBJC_METACLASS_RO_$_" 6146 : "\01l_OBJC_CLASS_RO_$_") 6147 << ClassName; 6148 6149 llvm::GlobalVariable *CLASS_RO_GV = 6150 values.finishAndCreateGlobal(roLabel, CGM.getPointerAlign(), 6151 /*constant*/ false, 6152 llvm::GlobalValue::PrivateLinkage); 6153 if (CGM.getTriple().isOSBinFormatMachO()) 6154 CLASS_RO_GV->setSection("__DATA, __objc_const"); 6155 return CLASS_RO_GV; 6156 } 6157 6158 /// Build the metaclass object for a class. 6159 /// 6160 /// struct _class_t { 6161 /// struct _class_t *isa; 6162 /// struct _class_t * const superclass; 6163 /// void *cache; 6164 /// IMP *vtable; 6165 /// struct class_ro_t *ro; 6166 /// } 6167 /// 6168 llvm::GlobalVariable * 6169 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6170 bool isMetaclass, 6171 llvm::Constant *IsAGV, 6172 llvm::Constant *SuperClassGV, 6173 llvm::Constant *ClassRoGV, 6174 bool HiddenVisibility) { 6175 ConstantInitBuilder builder(CGM); 6176 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6177 values.add(IsAGV); 6178 if (SuperClassGV) { 6179 values.add(SuperClassGV); 6180 } else { 6181 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6182 } 6183 values.add(ObjCEmptyCacheVar); 6184 values.add(ObjCEmptyVtableVar); 6185 values.add(ClassRoGV); 6186 6187 llvm::GlobalVariable *GV = 6188 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6189 values.finishAndSetAsInitializer(GV); 6190 6191 if (CGM.getTriple().isOSBinFormatMachO()) 6192 GV->setSection("__DATA, __objc_data"); 6193 GV->setAlignment( 6194 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 6195 if (!CGM.getTriple().isOSBinFormatCOFF()) 6196 if (HiddenVisibility) 6197 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6198 return GV; 6199 } 6200 6201 bool 6202 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 6203 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 6204 } 6205 6206 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6207 uint32_t &InstanceStart, 6208 uint32_t &InstanceSize) { 6209 const ASTRecordLayout &RL = 6210 CGM.getContext().getASTObjCImplementationLayout(OID); 6211 6212 // InstanceSize is really instance end. 6213 InstanceSize = RL.getDataSize().getQuantity(); 6214 6215 // If there are no fields, the start is the same as the end. 6216 if (!RL.getFieldCount()) 6217 InstanceStart = InstanceSize; 6218 else 6219 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6220 } 6221 6222 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6223 StringRef Name) { 6224 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6225 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6226 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6227 6228 const VarDecl *VD = nullptr; 6229 for (const auto &Result : DC->lookup(&II)) 6230 if ((VD = dyn_cast<VarDecl>(Result))) 6231 break; 6232 6233 if (!VD) 6234 return llvm::GlobalValue::DLLImportStorageClass; 6235 if (VD->hasAttr<DLLExportAttr>()) 6236 return llvm::GlobalValue::DLLExportStorageClass; 6237 if (VD->hasAttr<DLLImportAttr>()) 6238 return llvm::GlobalValue::DLLImportStorageClass; 6239 return llvm::GlobalValue::DefaultStorageClass; 6240 } 6241 6242 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6243 if (!ObjCEmptyCacheVar) { 6244 ObjCEmptyCacheVar = 6245 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6246 llvm::GlobalValue::ExternalLinkage, nullptr, 6247 "_objc_empty_cache"); 6248 if (CGM.getTriple().isOSBinFormatCOFF()) 6249 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6250 6251 // Only OS X with deployment version <10.9 use the empty vtable symbol 6252 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6253 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6254 ObjCEmptyVtableVar = 6255 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6256 llvm::GlobalValue::ExternalLinkage, nullptr, 6257 "_objc_empty_vtable"); 6258 else 6259 ObjCEmptyVtableVar = 6260 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6261 } 6262 6263 // FIXME: Is this correct (that meta class size is never computed)? 6264 uint32_t InstanceStart = 6265 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6266 uint32_t InstanceSize = InstanceStart; 6267 uint32_t flags = NonFragileABI_Class_Meta; 6268 6269 llvm::Constant *SuperClassGV, *IsAGV; 6270 6271 const auto *CI = ID->getClassInterface(); 6272 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6273 6274 // Build the flags for the metaclass. 6275 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6276 ? !CI->hasAttr<DLLExportAttr>() 6277 : CI->getVisibility() == HiddenVisibility; 6278 if (classIsHidden) 6279 flags |= NonFragileABI_Class_Hidden; 6280 6281 // FIXME: why is this flag set on the metaclass? 6282 // ObjC metaclasses have no fields and don't really get constructed. 6283 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6284 flags |= NonFragileABI_Class_HasCXXStructors; 6285 if (!ID->hasNonZeroConstructors()) 6286 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6287 } 6288 6289 if (!CI->getSuperClass()) { 6290 // class is root 6291 flags |= NonFragileABI_Class_Root; 6292 6293 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6294 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6295 } else { 6296 // Has a root. Current class is not a root. 6297 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6298 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6299 Root = Super; 6300 6301 const auto *Super = CI->getSuperClass(); 6302 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6303 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6304 } 6305 6306 llvm::GlobalVariable *CLASS_RO_GV = 6307 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6308 6309 llvm::GlobalVariable *MetaTClass = 6310 BuildClassObject(CI, /*metaclass*/ true, 6311 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6312 CGM.setGVProperties(MetaTClass, CI); 6313 DefinedMetaClasses.push_back(MetaTClass); 6314 6315 // Metadata for the class 6316 flags = 0; 6317 if (classIsHidden) 6318 flags |= NonFragileABI_Class_Hidden; 6319 6320 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6321 flags |= NonFragileABI_Class_HasCXXStructors; 6322 6323 // Set a flag to enable a runtime optimization when a class has 6324 // fields that require destruction but which don't require 6325 // anything except zero-initialization during construction. This 6326 // is most notably true of __strong and __weak types, but you can 6327 // also imagine there being C++ types with non-trivial default 6328 // constructors that merely set all fields to null. 6329 if (!ID->hasNonZeroConstructors()) 6330 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6331 } 6332 6333 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6334 flags |= NonFragileABI_Class_Exception; 6335 6336 if (!CI->getSuperClass()) { 6337 flags |= NonFragileABI_Class_Root; 6338 SuperClassGV = nullptr; 6339 } else { 6340 // Has a root. Current class is not a root. 6341 const auto *Super = CI->getSuperClass(); 6342 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6343 } 6344 6345 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6346 CLASS_RO_GV = 6347 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6348 6349 llvm::GlobalVariable *ClassMD = 6350 BuildClassObject(CI, /*metaclass*/ false, 6351 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6352 CGM.setGVProperties(ClassMD, CI); 6353 DefinedClasses.push_back(ClassMD); 6354 ImplementedClasses.push_back(CI); 6355 6356 // Determine if this class is also "non-lazy". 6357 if (ImplementationIsNonLazy(ID)) 6358 DefinedNonLazyClasses.push_back(ClassMD); 6359 6360 // Force the definition of the EHType if necessary. 6361 if (flags & NonFragileABI_Class_Exception) 6362 (void) GetInterfaceEHType(CI, ForDefinition); 6363 // Make sure method definition entries are all clear for next implementation. 6364 MethodDefinitions.clear(); 6365 } 6366 6367 /// GenerateProtocolRef - This routine is called to generate code for 6368 /// a protocol reference expression; as in: 6369 /// @code 6370 /// @protocol(Proto1); 6371 /// @endcode 6372 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6373 /// which will hold address of the protocol meta-data. 6374 /// 6375 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6376 const ObjCProtocolDecl *PD) { 6377 6378 // This routine is called for @protocol only. So, we must build definition 6379 // of protocol's meta-data (not a reference to it!) 6380 // 6381 llvm::Constant *Init = 6382 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6383 ObjCTypes.getExternalProtocolPtrTy()); 6384 6385 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6386 ProtocolName += PD->getObjCRuntimeNameAsString(); 6387 6388 CharUnits Align = CGF.getPointerAlign(); 6389 6390 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6391 if (PTGV) 6392 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6393 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6394 llvm::GlobalValue::WeakAnyLinkage, Init, 6395 ProtocolName); 6396 PTGV->setSection(GetSectionName("__objc_protorefs", 6397 "coalesced,no_dead_strip")); 6398 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6399 PTGV->setAlignment(Align.getQuantity()); 6400 if (!CGM.getTriple().isOSBinFormatMachO()) 6401 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6402 CGM.addUsedGlobal(PTGV); 6403 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6404 } 6405 6406 /// GenerateCategory - Build metadata for a category implementation. 6407 /// struct _category_t { 6408 /// const char * const name; 6409 /// struct _class_t *const cls; 6410 /// const struct _method_list_t * const instance_methods; 6411 /// const struct _method_list_t * const class_methods; 6412 /// const struct _protocol_list_t * const protocols; 6413 /// const struct _prop_list_t * const properties; 6414 /// const struct _prop_list_t * const class_properties; 6415 /// const uint32_t size; 6416 /// } 6417 /// 6418 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6419 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6420 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6421 6422 llvm::SmallString<64> ExtCatName(Prefix); 6423 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6424 ExtCatName += "_$_"; 6425 ExtCatName += OCD->getNameAsString(); 6426 6427 ConstantInitBuilder builder(CGM); 6428 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6429 values.add(GetClassName(OCD->getIdentifier()->getName())); 6430 // meta-class entry symbol 6431 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6432 std::string listName = 6433 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6434 6435 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6436 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6437 for (const auto *MD : OCD->methods()) { 6438 if (MD->isInstanceMethod()) { 6439 instanceMethods.push_back(MD); 6440 } else { 6441 classMethods.push_back(MD); 6442 } 6443 } 6444 6445 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6446 instanceMethods)); 6447 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6448 classMethods)); 6449 6450 const ObjCCategoryDecl *Category = 6451 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6452 if (Category) { 6453 SmallString<256> ExtName; 6454 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6455 << OCD->getName(); 6456 values.add(EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6457 + Interface->getObjCRuntimeNameAsString() + "_$_" 6458 + Category->getName(), 6459 Category->protocol_begin(), 6460 Category->protocol_end())); 6461 values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6462 OCD, Category, ObjCTypes, false)); 6463 values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6464 OCD, Category, ObjCTypes, true)); 6465 } else { 6466 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6467 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6468 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6469 } 6470 6471 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6472 values.addInt(ObjCTypes.IntTy, Size); 6473 6474 llvm::GlobalVariable *GCATV = 6475 values.finishAndCreateGlobal(ExtCatName.str(), CGM.getPointerAlign(), 6476 /*constant*/ false, 6477 llvm::GlobalValue::PrivateLinkage); 6478 if (CGM.getTriple().isOSBinFormatMachO()) 6479 GCATV->setSection("__DATA, __objc_const"); 6480 CGM.addCompilerUsedGlobal(GCATV); 6481 DefinedCategories.push_back(GCATV); 6482 6483 // Determine if this category is also "non-lazy". 6484 if (ImplementationIsNonLazy(OCD)) 6485 DefinedNonLazyCategories.push_back(GCATV); 6486 // method definition entries must be clear for next implementation. 6487 MethodDefinitions.clear(); 6488 } 6489 6490 /// emitMethodConstant - Return a struct objc_method constant. If 6491 /// forProtocol is true, the implementation will be null; otherwise, 6492 /// the method must have a definition registered with the runtime. 6493 /// 6494 /// struct _objc_method { 6495 /// SEL _cmd; 6496 /// char *method_type; 6497 /// char *_imp; 6498 /// } 6499 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6500 const ObjCMethodDecl *MD, 6501 bool forProtocol) { 6502 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6503 method.addBitCast(GetMethodVarName(MD->getSelector()), 6504 ObjCTypes.SelectorPtrTy); 6505 method.add(GetMethodVarType(MD)); 6506 6507 if (forProtocol) { 6508 // Protocol methods have no implementation. So, this entry is always NULL. 6509 method.addNullPointer(ObjCTypes.Int8PtrTy); 6510 } else { 6511 llvm::Function *fn = GetMethodDefinition(MD); 6512 assert(fn && "no definition for method?"); 6513 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6514 } 6515 6516 method.finishAndAddTo(builder); 6517 } 6518 6519 /// Build meta-data for method declarations. 6520 /// 6521 /// struct _method_list_t { 6522 /// uint32_t entsize; // sizeof(struct _objc_method) 6523 /// uint32_t method_count; 6524 /// struct _objc_method method_list[method_count]; 6525 /// } 6526 /// 6527 llvm::Constant * 6528 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6529 ArrayRef<const ObjCMethodDecl *> methods) { 6530 // Return null for empty list. 6531 if (methods.empty()) 6532 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6533 6534 StringRef prefix; 6535 bool forProtocol; 6536 switch (kind) { 6537 case MethodListType::CategoryInstanceMethods: 6538 prefix = "\01l_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6539 forProtocol = false; 6540 break; 6541 case MethodListType::CategoryClassMethods: 6542 prefix = "\01l_OBJC_$_CATEGORY_CLASS_METHODS_"; 6543 forProtocol = false; 6544 break; 6545 case MethodListType::InstanceMethods: 6546 prefix = "\01l_OBJC_$_INSTANCE_METHODS_"; 6547 forProtocol = false; 6548 break; 6549 case MethodListType::ClassMethods: 6550 prefix = "\01l_OBJC_$_CLASS_METHODS_"; 6551 forProtocol = false; 6552 break; 6553 6554 case MethodListType::ProtocolInstanceMethods: 6555 prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6556 forProtocol = true; 6557 break; 6558 case MethodListType::ProtocolClassMethods: 6559 prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6560 forProtocol = true; 6561 break; 6562 case MethodListType::OptionalProtocolInstanceMethods: 6563 prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6564 forProtocol = true; 6565 break; 6566 case MethodListType::OptionalProtocolClassMethods: 6567 prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6568 forProtocol = true; 6569 break; 6570 } 6571 6572 ConstantInitBuilder builder(CGM); 6573 auto values = builder.beginStruct(); 6574 6575 // sizeof(struct _objc_method) 6576 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6577 values.addInt(ObjCTypes.IntTy, Size); 6578 // method_count 6579 values.addInt(ObjCTypes.IntTy, methods.size()); 6580 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6581 for (auto MD : methods) { 6582 emitMethodConstant(methodArray, MD, forProtocol); 6583 } 6584 methodArray.finishAndAddTo(values); 6585 6586 auto *GV = values.finishAndCreateGlobal(prefix + name, CGM.getPointerAlign(), 6587 /*constant*/ false, 6588 llvm::GlobalValue::PrivateLinkage); 6589 if (CGM.getTriple().isOSBinFormatMachO()) 6590 GV->setSection("__DATA, __objc_const"); 6591 CGM.addCompilerUsedGlobal(GV); 6592 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6593 } 6594 6595 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6596 /// the given ivar. 6597 llvm::GlobalVariable * 6598 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6599 const ObjCIvarDecl *Ivar) { 6600 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6601 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6602 Name += Container->getObjCRuntimeNameAsString(); 6603 Name += "."; 6604 Name += Ivar->getName(); 6605 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6606 if (!IvarOffsetGV) { 6607 IvarOffsetGV = 6608 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6609 false, llvm::GlobalValue::ExternalLinkage, 6610 nullptr, Name.str()); 6611 if (CGM.getTriple().isOSBinFormatCOFF()) { 6612 bool IsPrivateOrPackage = 6613 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6614 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6615 6616 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6617 6618 if (ContainingID->hasAttr<DLLImportAttr>()) 6619 IvarOffsetGV 6620 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6621 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6622 IvarOffsetGV 6623 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6624 } 6625 } 6626 return IvarOffsetGV; 6627 } 6628 6629 llvm::Constant * 6630 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6631 const ObjCIvarDecl *Ivar, 6632 unsigned long int Offset) { 6633 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6634 IvarOffsetGV->setInitializer( 6635 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6636 IvarOffsetGV->setAlignment( 6637 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6638 6639 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6640 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6641 // as well (i.e., in ObjCIvarOffsetVariable). 6642 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6643 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6644 ID->getVisibility() == HiddenVisibility) 6645 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6646 else 6647 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6648 } 6649 6650 if (CGM.getTriple().isOSBinFormatMachO()) 6651 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6652 return IvarOffsetGV; 6653 } 6654 6655 /// EmitIvarList - Emit the ivar list for the given 6656 /// implementation. The return value has type 6657 /// IvarListnfABIPtrTy. 6658 /// struct _ivar_t { 6659 /// unsigned [long] int *offset; // pointer to ivar offset location 6660 /// char *name; 6661 /// char *type; 6662 /// uint32_t alignment; 6663 /// uint32_t size; 6664 /// } 6665 /// struct _ivar_list_t { 6666 /// uint32 entsize; // sizeof(struct _ivar_t) 6667 /// uint32 count; 6668 /// struct _iver_t list[count]; 6669 /// } 6670 /// 6671 6672 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6673 const ObjCImplementationDecl *ID) { 6674 6675 ConstantInitBuilder builder(CGM); 6676 auto ivarList = builder.beginStruct(); 6677 ivarList.addInt(ObjCTypes.IntTy, 6678 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6679 auto ivarCountSlot = ivarList.addPlaceholder(); 6680 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6681 6682 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6683 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6684 6685 // FIXME. Consolidate this with similar code in GenerateClass. 6686 6687 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6688 IVD; IVD = IVD->getNextIvar()) { 6689 // Ignore unnamed bit-fields. 6690 if (!IVD->getDeclName()) 6691 continue; 6692 6693 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6694 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6695 ComputeIvarBaseOffset(CGM, ID, IVD))); 6696 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6697 ivar.add(GetMethodVarType(IVD)); 6698 llvm::Type *FieldTy = 6699 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6700 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6701 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6702 IVD->getType().getTypePtr()) >> 3; 6703 Align = llvm::Log2_32(Align); 6704 ivar.addInt(ObjCTypes.IntTy, Align); 6705 // NOTE. Size of a bitfield does not match gcc's, because of the 6706 // way bitfields are treated special in each. But I am told that 6707 // 'size' for bitfield ivars is ignored by the runtime so it does 6708 // not matter. If it matters, there is enough info to get the 6709 // bitfield right! 6710 ivar.addInt(ObjCTypes.IntTy, Size); 6711 ivar.finishAndAddTo(ivars); 6712 } 6713 // Return null for empty list. 6714 if (ivars.empty()) { 6715 ivars.abandon(); 6716 ivarList.abandon(); 6717 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6718 } 6719 6720 auto ivarCount = ivars.size(); 6721 ivars.finishAndAddTo(ivarList); 6722 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6723 6724 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6725 llvm::GlobalVariable *GV = 6726 ivarList.finishAndCreateGlobal(Prefix + OID->getObjCRuntimeNameAsString(), 6727 CGM.getPointerAlign(), /*constant*/ false, 6728 llvm::GlobalValue::PrivateLinkage); 6729 if (CGM.getTriple().isOSBinFormatMachO()) 6730 GV->setSection("__DATA, __objc_const"); 6731 CGM.addCompilerUsedGlobal(GV); 6732 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6733 } 6734 6735 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6736 const ObjCProtocolDecl *PD) { 6737 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6738 6739 if (!Entry) { 6740 // We use the initializer as a marker of whether this is a forward 6741 // reference or not. At module finalization we add the empty 6742 // contents for protocols which were referenced but never defined. 6743 llvm::SmallString<64> Protocol; 6744 llvm::raw_svector_ostream(Protocol) << "\01l_OBJC_PROTOCOL_$_" 6745 << PD->getObjCRuntimeNameAsString(); 6746 6747 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6748 false, llvm::GlobalValue::ExternalLinkage, 6749 nullptr, Protocol); 6750 if (!CGM.getTriple().isOSBinFormatMachO()) 6751 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 6752 } 6753 6754 return Entry; 6755 } 6756 6757 /// GetOrEmitProtocol - Generate the protocol meta-data: 6758 /// @code 6759 /// struct _protocol_t { 6760 /// id isa; // NULL 6761 /// const char * const protocol_name; 6762 /// const struct _protocol_list_t * protocol_list; // super protocols 6763 /// const struct method_list_t * const instance_methods; 6764 /// const struct method_list_t * const class_methods; 6765 /// const struct method_list_t *optionalInstanceMethods; 6766 /// const struct method_list_t *optionalClassMethods; 6767 /// const struct _prop_list_t * properties; 6768 /// const uint32_t size; // sizeof(struct _protocol_t) 6769 /// const uint32_t flags; // = 0 6770 /// const char ** extendedMethodTypes; 6771 /// const char *demangledName; 6772 /// const struct _prop_list_t * class_properties; 6773 /// } 6774 /// @endcode 6775 /// 6776 6777 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6778 const ObjCProtocolDecl *PD) { 6779 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6780 6781 // Early exit if a defining object has already been generated. 6782 if (Entry && Entry->hasInitializer()) 6783 return Entry; 6784 6785 // Use the protocol definition, if there is one. 6786 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6787 PD = Def; 6788 6789 auto methodLists = ProtocolMethodLists::get(PD); 6790 6791 ConstantInitBuilder builder(CGM); 6792 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 6793 6794 // isa is NULL 6795 values.addNullPointer(ObjCTypes.ObjectPtrTy); 6796 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 6797 values.add(EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" 6798 + PD->getObjCRuntimeNameAsString(), 6799 PD->protocol_begin(), 6800 PD->protocol_end())); 6801 values.add(methodLists.emitMethodList(this, PD, 6802 ProtocolMethodLists::RequiredInstanceMethods)); 6803 values.add(methodLists.emitMethodList(this, PD, 6804 ProtocolMethodLists::RequiredClassMethods)); 6805 values.add(methodLists.emitMethodList(this, PD, 6806 ProtocolMethodLists::OptionalInstanceMethods)); 6807 values.add(methodLists.emitMethodList(this, PD, 6808 ProtocolMethodLists::OptionalClassMethods)); 6809 values.add(EmitPropertyList( 6810 "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6811 nullptr, PD, ObjCTypes, false)); 6812 uint32_t Size = 6813 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6814 values.addInt(ObjCTypes.IntTy, Size); 6815 values.addInt(ObjCTypes.IntTy, 0); 6816 values.add(EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6817 + PD->getObjCRuntimeNameAsString(), 6818 methodLists.emitExtendedTypesArray(this), 6819 ObjCTypes)); 6820 6821 // const char *demangledName; 6822 values.addNullPointer(ObjCTypes.Int8PtrTy); 6823 6824 values.add(EmitPropertyList( 6825 "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6826 nullptr, PD, ObjCTypes, true)); 6827 6828 if (Entry) { 6829 // Already created, fix the linkage and update the initializer. 6830 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6831 values.finishAndSetAsInitializer(Entry); 6832 } else { 6833 llvm::SmallString<64> symbolName; 6834 llvm::raw_svector_ostream(symbolName) 6835 << "\01l_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 6836 6837 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 6838 /*constant*/ false, 6839 llvm::GlobalValue::WeakAnyLinkage); 6840 if (!CGM.getTriple().isOSBinFormatMachO()) 6841 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 6842 6843 Protocols[PD->getIdentifier()] = Entry; 6844 } 6845 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6846 CGM.addUsedGlobal(Entry); 6847 6848 // Use this protocol meta-data to build protocol list table in section 6849 // __DATA, __objc_protolist 6850 llvm::SmallString<64> ProtocolRef; 6851 llvm::raw_svector_ostream(ProtocolRef) << "\01l_OBJC_LABEL_PROTOCOL_$_" 6852 << PD->getObjCRuntimeNameAsString(); 6853 6854 llvm::GlobalVariable *PTGV = 6855 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6856 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6857 ProtocolRef); 6858 if (!CGM.getTriple().isOSBinFormatMachO()) 6859 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 6860 PTGV->setAlignment( 6861 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6862 PTGV->setSection(GetSectionName("__objc_protolist", 6863 "coalesced,no_dead_strip")); 6864 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6865 CGM.addUsedGlobal(PTGV); 6866 return Entry; 6867 } 6868 6869 /// EmitProtocolList - Generate protocol list meta-data: 6870 /// @code 6871 /// struct _protocol_list_t { 6872 /// long protocol_count; // Note, this is 32/64 bit 6873 /// struct _protocol_t[protocol_count]; 6874 /// } 6875 /// @endcode 6876 /// 6877 llvm::Constant * 6878 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6879 ObjCProtocolDecl::protocol_iterator begin, 6880 ObjCProtocolDecl::protocol_iterator end) { 6881 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6882 6883 // Just return null for empty protocol lists 6884 if (begin == end) 6885 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6886 6887 // FIXME: We shouldn't need to do this lookup here, should we? 6888 SmallString<256> TmpName; 6889 Name.toVector(TmpName); 6890 llvm::GlobalVariable *GV = 6891 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6892 if (GV) 6893 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6894 6895 ConstantInitBuilder builder(CGM); 6896 auto values = builder.beginStruct(); 6897 auto countSlot = values.addPlaceholder(); 6898 6899 // A null-terminated array of protocols. 6900 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 6901 for (; begin != end; ++begin) 6902 array.add(GetProtocolRef(*begin)); // Implemented??? 6903 auto count = array.size(); 6904 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 6905 6906 array.finishAndAddTo(values); 6907 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 6908 6909 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 6910 /*constant*/ false, 6911 llvm::GlobalValue::PrivateLinkage); 6912 if (CGM.getTriple().isOSBinFormatMachO()) 6913 GV->setSection("__DATA, __objc_const"); 6914 CGM.addCompilerUsedGlobal(GV); 6915 return llvm::ConstantExpr::getBitCast(GV, 6916 ObjCTypes.ProtocolListnfABIPtrTy); 6917 } 6918 6919 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6920 /// This code gen. amounts to generating code for: 6921 /// @code 6922 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6923 /// @encode 6924 /// 6925 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6926 CodeGen::CodeGenFunction &CGF, 6927 QualType ObjectTy, 6928 llvm::Value *BaseValue, 6929 const ObjCIvarDecl *Ivar, 6930 unsigned CVRQualifiers) { 6931 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6932 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6933 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6934 Offset); 6935 } 6936 6937 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6938 CodeGen::CodeGenFunction &CGF, 6939 const ObjCInterfaceDecl *Interface, 6940 const ObjCIvarDecl *Ivar) { 6941 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6942 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6943 CGF.getSizeAlign(), "ivar"); 6944 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6945 cast<llvm::LoadInst>(IvarOffsetValue) 6946 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6947 llvm::MDNode::get(VMContext, None)); 6948 6949 // This could be 32bit int or 64bit integer depending on the architecture. 6950 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6951 // as this is what caller always expects. 6952 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6953 IvarOffsetValue = CGF.Builder.CreateIntCast( 6954 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6955 return IvarOffsetValue; 6956 } 6957 6958 static void appendSelectorForMessageRefTable(std::string &buffer, 6959 Selector selector) { 6960 if (selector.isUnarySelector()) { 6961 buffer += selector.getNameForSlot(0); 6962 return; 6963 } 6964 6965 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6966 buffer += selector.getNameForSlot(i); 6967 buffer += '_'; 6968 } 6969 } 6970 6971 /// Emit a "vtable" message send. We emit a weak hidden-visibility 6972 /// struct, initially containing the selector pointer and a pointer to 6973 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6974 /// load and call the function pointer, passing the address of the 6975 /// struct as the second parameter. The runtime determines whether 6976 /// the selector is currently emitted using vtable dispatch; if so, it 6977 /// substitutes a stub function which simply tail-calls through the 6978 /// appropriate vtable slot, and if not, it substitues a stub function 6979 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6980 /// argument to correctly point to the selector. 6981 RValue 6982 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6983 ReturnValueSlot returnSlot, 6984 QualType resultType, 6985 Selector selector, 6986 llvm::Value *arg0, 6987 QualType arg0Type, 6988 bool isSuper, 6989 const CallArgList &formalArgs, 6990 const ObjCMethodDecl *method) { 6991 // Compute the actual arguments. 6992 CallArgList args; 6993 6994 // First argument: the receiver / super-call structure. 6995 if (!isSuper) 6996 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6997 args.add(RValue::get(arg0), arg0Type); 6998 6999 // Second argument: a pointer to the message ref structure. Leave 7000 // the actual argument value blank for now. 7001 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7002 7003 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7004 7005 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7006 7007 NullReturnState nullReturn; 7008 7009 // Find the function to call and the mangled name for the message 7010 // ref structure. Using a different mangled name wouldn't actually 7011 // be a problem; it would just be a waste. 7012 // 7013 // The runtime currently never uses vtable dispatch for anything 7014 // except normal, non-super message-sends. 7015 // FIXME: don't use this for that. 7016 llvm::Constant *fn = nullptr; 7017 std::string messageRefName("\01l_"); 7018 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7019 if (isSuper) { 7020 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7021 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7022 } else { 7023 nullReturn.init(CGF, arg0); 7024 fn = ObjCTypes.getMessageSendStretFixupFn(); 7025 messageRefName += "objc_msgSend_stret_fixup"; 7026 } 7027 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7028 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7029 messageRefName += "objc_msgSend_fpret_fixup"; 7030 } else { 7031 if (isSuper) { 7032 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7033 messageRefName += "objc_msgSendSuper2_fixup"; 7034 } else { 7035 fn = ObjCTypes.getMessageSendFixupFn(); 7036 messageRefName += "objc_msgSend_fixup"; 7037 } 7038 } 7039 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7040 messageRefName += '_'; 7041 7042 // Append the selector name, except use underscores anywhere we 7043 // would have used colons. 7044 appendSelectorForMessageRefTable(messageRefName, selector); 7045 7046 llvm::GlobalVariable *messageRef 7047 = CGM.getModule().getGlobalVariable(messageRefName); 7048 if (!messageRef) { 7049 // Build the message ref structure. 7050 ConstantInitBuilder builder(CGM); 7051 auto values = builder.beginStruct(); 7052 values.add(fn); 7053 values.add(GetMethodVarName(selector)); 7054 messageRef = values.finishAndCreateGlobal(messageRefName, 7055 CharUnits::fromQuantity(16), 7056 /*constant*/ false, 7057 llvm::GlobalValue::WeakAnyLinkage); 7058 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7059 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7060 } 7061 7062 bool requiresnullCheck = false; 7063 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7064 for (const auto *ParamDecl : method->parameters()) { 7065 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7066 if (!nullReturn.NullBB) 7067 nullReturn.init(CGF, arg0); 7068 requiresnullCheck = true; 7069 break; 7070 } 7071 } 7072 7073 Address mref = 7074 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7075 CGF.getPointerAlign()); 7076 7077 // Update the message ref argument. 7078 args[1].setRValue(RValue::get(mref.getPointer())); 7079 7080 // Load the function to call from the message ref table. 7081 Address calleeAddr = 7082 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 7083 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7084 7085 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7086 CGCallee callee(CGCalleeInfo(), calleePtr); 7087 7088 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7089 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7090 requiresnullCheck ? method : nullptr); 7091 } 7092 7093 /// Generate code for a message send expression in the nonfragile abi. 7094 CodeGen::RValue 7095 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7096 ReturnValueSlot Return, 7097 QualType ResultType, 7098 Selector Sel, 7099 llvm::Value *Receiver, 7100 const CallArgList &CallArgs, 7101 const ObjCInterfaceDecl *Class, 7102 const ObjCMethodDecl *Method) { 7103 return isVTableDispatchedSelector(Sel) 7104 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7105 Receiver, CGF.getContext().getObjCIdType(), 7106 false, CallArgs, Method) 7107 : EmitMessageSend(CGF, Return, ResultType, 7108 EmitSelector(CGF, Sel), 7109 Receiver, CGF.getContext().getObjCIdType(), 7110 false, CallArgs, Method, Class, ObjCTypes); 7111 } 7112 7113 llvm::Constant * 7114 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7115 bool metaclass, 7116 ForDefinition_t isForDefinition) { 7117 auto prefix = 7118 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7119 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7120 isForDefinition, 7121 ID->isWeakImported(), 7122 !isForDefinition 7123 && CGM.getTriple().isOSBinFormatCOFF() 7124 && ID->hasAttr<DLLImportAttr>()); 7125 } 7126 7127 llvm::Constant * 7128 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7129 ForDefinition_t IsForDefinition, 7130 bool Weak, bool DLLImport) { 7131 llvm::GlobalValue::LinkageTypes L = 7132 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7133 : llvm::GlobalValue::ExternalLinkage; 7134 7135 7136 7137 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7138 if (!GV) { 7139 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 7140 false, L, nullptr, Name); 7141 7142 if (DLLImport) 7143 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7144 } 7145 7146 assert(GV->getLinkage() == L); 7147 return GV; 7148 } 7149 7150 llvm::Value * 7151 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7152 IdentifierInfo *II, 7153 const ObjCInterfaceDecl *ID) { 7154 CharUnits Align = CGF.getPointerAlign(); 7155 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7156 7157 if (!Entry) { 7158 llvm::Constant *ClassGV; 7159 if (ID) { 7160 ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7161 } else { 7162 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7163 NotForDefinition); 7164 } 7165 7166 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7167 false, llvm::GlobalValue::PrivateLinkage, 7168 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 7169 Entry->setAlignment(Align.getQuantity()); 7170 Entry->setSection(GetSectionName("__objc_classrefs", 7171 "regular,no_dead_strip")); 7172 CGM.addCompilerUsedGlobal(Entry); 7173 } 7174 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7175 } 7176 7177 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7178 const ObjCInterfaceDecl *ID) { 7179 // If the class has the objc_runtime_visible attribute, we need to 7180 // use the Objective-C runtime to get the class. 7181 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7182 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7183 7184 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7185 } 7186 7187 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7188 CodeGenFunction &CGF) { 7189 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7190 return EmitClassRefFromId(CGF, II, nullptr); 7191 } 7192 7193 llvm::Value * 7194 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7195 const ObjCInterfaceDecl *ID) { 7196 CharUnits Align = CGF.getPointerAlign(); 7197 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7198 7199 if (!Entry) { 7200 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7201 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7202 false, llvm::GlobalValue::PrivateLinkage, 7203 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7204 Entry->setAlignment(Align.getQuantity()); 7205 Entry->setSection(GetSectionName("__objc_superrefs", 7206 "regular,no_dead_strip")); 7207 CGM.addCompilerUsedGlobal(Entry); 7208 } 7209 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7210 } 7211 7212 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7213 /// meta-data 7214 /// 7215 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7216 const ObjCInterfaceDecl *ID, 7217 bool Weak) { 7218 CharUnits Align = CGF.getPointerAlign(); 7219 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7220 if (!Entry) { 7221 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7222 7223 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7224 false, llvm::GlobalValue::PrivateLinkage, 7225 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7226 Entry->setAlignment(Align.getQuantity()); 7227 7228 Entry->setSection(GetSectionName("__objc_superrefs", 7229 "regular,no_dead_strip")); 7230 CGM.addCompilerUsedGlobal(Entry); 7231 } 7232 7233 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7234 } 7235 7236 /// GetClass - Return a reference to the class for the given interface 7237 /// decl. 7238 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7239 const ObjCInterfaceDecl *ID) { 7240 if (ID->isWeakImported()) { 7241 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7242 (void)ClassGV; 7243 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7244 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7245 } 7246 7247 return EmitClassRef(CGF, ID); 7248 } 7249 7250 /// Generates a message send where the super is the receiver. This is 7251 /// a message send to self with special delivery semantics indicating 7252 /// which class's method should be called. 7253 CodeGen::RValue 7254 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7255 ReturnValueSlot Return, 7256 QualType ResultType, 7257 Selector Sel, 7258 const ObjCInterfaceDecl *Class, 7259 bool isCategoryImpl, 7260 llvm::Value *Receiver, 7261 bool IsClassMessage, 7262 const CodeGen::CallArgList &CallArgs, 7263 const ObjCMethodDecl *Method) { 7264 // ... 7265 // Create and init a super structure; this is a (receiver, class) 7266 // pair we will pass to objc_msgSendSuper. 7267 Address ObjCSuper = 7268 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7269 "objc_super"); 7270 7271 llvm::Value *ReceiverAsObject = 7272 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7273 CGF.Builder.CreateStore( 7274 ReceiverAsObject, 7275 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 7276 7277 // If this is a class message the metaclass is passed as the target. 7278 llvm::Value *Target; 7279 if (IsClassMessage) 7280 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7281 else 7282 Target = EmitSuperClassRef(CGF, Class); 7283 7284 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7285 // ObjCTypes types. 7286 llvm::Type *ClassTy = 7287 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7288 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7289 CGF.Builder.CreateStore( 7290 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 7291 7292 return (isVTableDispatchedSelector(Sel)) 7293 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7294 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7295 true, CallArgs, Method) 7296 : EmitMessageSend(CGF, Return, ResultType, 7297 EmitSelector(CGF, Sel), 7298 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7299 true, CallArgs, Method, Class, ObjCTypes); 7300 } 7301 7302 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7303 Selector Sel) { 7304 Address Addr = EmitSelectorAddr(CGF, Sel); 7305 7306 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7307 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7308 llvm::MDNode::get(VMContext, None)); 7309 return LI; 7310 } 7311 7312 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 7313 Selector Sel) { 7314 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7315 7316 CharUnits Align = CGF.getPointerAlign(); 7317 if (!Entry) { 7318 llvm::Constant *Casted = 7319 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7320 ObjCTypes.SelectorPtrTy); 7321 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 7322 false, llvm::GlobalValue::PrivateLinkage, 7323 Casted, "OBJC_SELECTOR_REFERENCES_"); 7324 Entry->setExternallyInitialized(true); 7325 Entry->setSection(GetSectionName("__objc_selrefs", 7326 "literal_pointers,no_dead_strip")); 7327 Entry->setAlignment(Align.getQuantity()); 7328 CGM.addCompilerUsedGlobal(Entry); 7329 } 7330 7331 return Address(Entry, Align); 7332 } 7333 7334 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7335 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7336 /// 7337 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7338 llvm::Value *src, 7339 Address dst, 7340 llvm::Value *ivarOffset) { 7341 llvm::Type * SrcTy = src->getType(); 7342 if (!isa<llvm::PointerType>(SrcTy)) { 7343 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7344 assert(Size <= 8 && "does not support size > 8"); 7345 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7346 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7347 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7348 } 7349 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7350 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7351 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7352 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7353 } 7354 7355 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7356 /// objc_assign_strongCast (id src, id *dst) 7357 /// 7358 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7359 CodeGen::CodeGenFunction &CGF, 7360 llvm::Value *src, Address dst) { 7361 llvm::Type * SrcTy = src->getType(); 7362 if (!isa<llvm::PointerType>(SrcTy)) { 7363 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7364 assert(Size <= 8 && "does not support size > 8"); 7365 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7366 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7367 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7368 } 7369 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7370 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7371 llvm::Value *args[] = { src, dst.getPointer() }; 7372 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7373 args, "weakassign"); 7374 } 7375 7376 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7377 CodeGen::CodeGenFunction &CGF, 7378 Address DestPtr, 7379 Address SrcPtr, 7380 llvm::Value *Size) { 7381 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7382 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7383 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7384 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7385 } 7386 7387 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7388 /// object: objc_read_weak (id *src) 7389 /// 7390 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7391 CodeGen::CodeGenFunction &CGF, 7392 Address AddrWeakObj) { 7393 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7394 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7395 llvm::Value *read_weak = 7396 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7397 AddrWeakObj.getPointer(), "weakread"); 7398 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7399 return read_weak; 7400 } 7401 7402 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7403 /// objc_assign_weak (id src, id *dst) 7404 /// 7405 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7406 llvm::Value *src, Address dst) { 7407 llvm::Type * SrcTy = src->getType(); 7408 if (!isa<llvm::PointerType>(SrcTy)) { 7409 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7410 assert(Size <= 8 && "does not support size > 8"); 7411 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7412 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7413 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7414 } 7415 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7416 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7417 llvm::Value *args[] = { src, dst.getPointer() }; 7418 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7419 args, "weakassign"); 7420 } 7421 7422 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7423 /// objc_assign_global (id src, id *dst) 7424 /// 7425 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7426 llvm::Value *src, Address dst, 7427 bool threadlocal) { 7428 llvm::Type * SrcTy = src->getType(); 7429 if (!isa<llvm::PointerType>(SrcTy)) { 7430 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7431 assert(Size <= 8 && "does not support size > 8"); 7432 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7433 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7434 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7435 } 7436 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7437 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7438 llvm::Value *args[] = { src, dst.getPointer() }; 7439 if (!threadlocal) 7440 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7441 args, "globalassign"); 7442 else 7443 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7444 args, "threadlocalassign"); 7445 } 7446 7447 void 7448 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7449 const ObjCAtSynchronizedStmt &S) { 7450 EmitAtSynchronizedStmt(CGF, S, 7451 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7452 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7453 } 7454 7455 llvm::Constant * 7456 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7457 // There's a particular fixed type info for 'id'. 7458 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7459 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7460 if (!IDEHType) { 7461 IDEHType = 7462 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7463 llvm::GlobalValue::ExternalLinkage, nullptr, 7464 "OBJC_EHTYPE_id"); 7465 if (CGM.getTriple().isOSBinFormatCOFF()) 7466 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7467 } 7468 return IDEHType; 7469 } 7470 7471 // All other types should be Objective-C interface pointer types. 7472 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7473 assert(PT && "Invalid @catch type."); 7474 7475 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7476 assert(IT && "Invalid @catch type."); 7477 7478 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7479 } 7480 7481 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7482 const ObjCAtTryStmt &S) { 7483 EmitTryCatchStmt(CGF, S, 7484 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7485 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7486 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7487 } 7488 7489 /// EmitThrowStmt - Generate code for a throw statement. 7490 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7491 const ObjCAtThrowStmt &S, 7492 bool ClearInsertionPoint) { 7493 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7494 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7495 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7496 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7497 .setDoesNotReturn(); 7498 } else { 7499 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7500 .setDoesNotReturn(); 7501 } 7502 7503 CGF.Builder.CreateUnreachable(); 7504 if (ClearInsertionPoint) 7505 CGF.Builder.ClearInsertionPoint(); 7506 } 7507 7508 llvm::Constant * 7509 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7510 ForDefinition_t IsForDefinition) { 7511 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7512 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7513 7514 // If we don't need a definition, return the entry if found or check 7515 // if we use an external reference. 7516 if (!IsForDefinition) { 7517 if (Entry) 7518 return Entry; 7519 7520 // If this type (or a super class) has the __objc_exception__ 7521 // attribute, emit an external reference. 7522 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7523 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7524 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7525 false, llvm::GlobalValue::ExternalLinkage, 7526 nullptr, EHTypeName); 7527 CGM.setGVProperties(Entry, ID); 7528 return Entry; 7529 } 7530 } 7531 7532 // Otherwise we need to either make a new entry or fill in the initializer. 7533 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7534 7535 std::string VTableName = "objc_ehtype_vtable"; 7536 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7537 if (!VTableGV) { 7538 VTableGV = 7539 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7540 llvm::GlobalValue::ExternalLinkage, nullptr, 7541 VTableName); 7542 if (CGM.getTriple().isOSBinFormatCOFF()) 7543 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7544 } 7545 7546 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7547 ConstantInitBuilder builder(CGM); 7548 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7549 values.add( 7550 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7551 VTableGV, VTableIdx)); 7552 values.add(GetClassName(ClassName)); 7553 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7554 7555 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7556 ? llvm::GlobalValue::ExternalLinkage 7557 : llvm::GlobalValue::WeakAnyLinkage; 7558 if (Entry) { 7559 values.finishAndSetAsInitializer(Entry); 7560 Entry->setAlignment(CGM.getPointerAlign().getQuantity()); 7561 } else { 7562 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7563 CGM.getPointerAlign(), 7564 /*constant*/ false, 7565 L); 7566 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7567 CGM.setGVProperties(Entry, ID); 7568 } 7569 assert(Entry->getLinkage() == L); 7570 7571 if (!CGM.getTriple().isOSBinFormatCOFF()) 7572 if (ID->getVisibility() == HiddenVisibility) 7573 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7574 7575 if (IsForDefinition) 7576 if (CGM.getTriple().isOSBinFormatMachO()) 7577 Entry->setSection("__DATA,__objc_const"); 7578 7579 return Entry; 7580 } 7581 7582 /* *** */ 7583 7584 CodeGen::CGObjCRuntime * 7585 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7586 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7587 case ObjCRuntime::FragileMacOSX: 7588 return new CGObjCMac(CGM); 7589 7590 case ObjCRuntime::MacOSX: 7591 case ObjCRuntime::iOS: 7592 case ObjCRuntime::WatchOS: 7593 return new CGObjCNonFragileABIMac(CGM); 7594 7595 case ObjCRuntime::GNUstep: 7596 case ObjCRuntime::GCC: 7597 case ObjCRuntime::ObjFW: 7598 llvm_unreachable("these runtimes are not Mac runtimes"); 7599 } 7600 llvm_unreachable("bad runtime"); 7601 } 7602