1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGObjCRuntime.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cstdio> 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 namespace { 45 46 // FIXME: We should find a nicer way to make the labels for metadata, string 47 // concatenation is lame. 48 49 class ObjCCommonTypesHelper { 50 protected: 51 llvm::LLVMContext &VMContext; 52 53 private: 54 // The types of these functions don't really matter because we 55 // should always bitcast before calling them. 56 57 /// id objc_msgSend (id, SEL, ...) 58 /// 59 /// The default messenger, used for sends whose ABI is unchanged from 60 /// the all-integer/pointer case. 61 llvm::Constant *getMessageSendFn() const { 62 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 63 // be called a lot. 64 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 65 return 66 CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 67 params, true), 68 "objc_msgSend", 69 llvm::AttributeSet::get(CGM.getLLVMContext(), 70 llvm::AttributeSet::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType, nullptr); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy; 176 llvm::Type *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::Type *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::Type *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::Type *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::Type *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::Type *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::Type *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 SmallVector<CanQualType,4> Params; 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 Params.push_back(IdType); 243 Params.push_back(SelType); 244 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 245 Params.push_back(Ctx.BoolTy); 246 llvm::FunctionType *FTy = 247 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 248 IdType, false, false, Params, FunctionType::ExtInfo(), 249 RequiredArgs::All)); 250 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 251 } 252 253 llvm::Constant *getSetPropertyFn() { 254 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 255 ASTContext &Ctx = CGM.getContext(); 256 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 257 SmallVector<CanQualType,6> Params; 258 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 259 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 260 Params.push_back(IdType); 261 Params.push_back(SelType); 262 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 263 Params.push_back(IdType); 264 Params.push_back(Ctx.BoolTy); 265 Params.push_back(Ctx.BoolTy); 266 llvm::FunctionType *FTy = 267 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 268 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 269 RequiredArgs::All)); 270 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 271 } 272 273 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 274 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 275 ASTContext &Ctx = CGM.getContext(); 276 // void objc_setProperty_atomic(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 281 // id newValue, ptrdiff_t offset); 282 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 283 // id newValue, ptrdiff_t offset); 284 285 SmallVector<CanQualType,4> Params; 286 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 287 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 288 Params.push_back(IdType); 289 Params.push_back(SelType); 290 Params.push_back(IdType); 291 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 292 llvm::FunctionType *FTy = 293 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 294 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 295 RequiredArgs::All)); 296 const char *name; 297 if (atomic && copy) 298 name = "objc_setProperty_atomic_copy"; 299 else if (atomic && !copy) 300 name = "objc_setProperty_atomic"; 301 else if (!atomic && copy) 302 name = "objc_setProperty_nonatomic_copy"; 303 else 304 name = "objc_setProperty_nonatomic"; 305 306 return CGM.CreateRuntimeFunction(FTy, name); 307 } 308 309 llvm::Constant *getCopyStructFn() { 310 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 311 ASTContext &Ctx = CGM.getContext(); 312 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 313 SmallVector<CanQualType,5> Params; 314 Params.push_back(Ctx.VoidPtrTy); 315 Params.push_back(Ctx.VoidPtrTy); 316 Params.push_back(Ctx.LongTy); 317 Params.push_back(Ctx.BoolTy); 318 Params.push_back(Ctx.BoolTy); 319 llvm::FunctionType *FTy = 320 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 321 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 322 RequiredArgs::All)); 323 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 324 } 325 326 /// This routine declares and returns address of: 327 /// void objc_copyCppObjectAtomic( 328 /// void *dest, const void *src, 329 /// void (*copyHelper) (void *dest, const void *source)); 330 llvm::Constant *getCppAtomicObjectFunction() { 331 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 332 ASTContext &Ctx = CGM.getContext(); 333 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 334 SmallVector<CanQualType,3> Params; 335 Params.push_back(Ctx.VoidPtrTy); 336 Params.push_back(Ctx.VoidPtrTy); 337 Params.push_back(Ctx.VoidPtrTy); 338 llvm::FunctionType *FTy = 339 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, false, false, 340 Params, 341 FunctionType::ExtInfo(), 342 RequiredArgs::All)); 343 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 344 } 345 346 llvm::Constant *getEnumerationMutationFn() { 347 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 348 ASTContext &Ctx = CGM.getContext(); 349 // void objc_enumerationMutation (id) 350 SmallVector<CanQualType,1> Params; 351 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 352 llvm::FunctionType *FTy = 353 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 354 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 355 RequiredArgs::All)); 356 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 357 } 358 359 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 360 llvm::Constant *getGcReadWeakFn() { 361 // id objc_read_weak (id *) 362 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 363 llvm::FunctionType *FTy = 364 llvm::FunctionType::get(ObjectPtrTy, args, false); 365 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 366 } 367 368 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 369 llvm::Constant *getGcAssignWeakFn() { 370 // id objc_assign_weak (id, id *) 371 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 372 llvm::FunctionType *FTy = 373 llvm::FunctionType::get(ObjectPtrTy, args, false); 374 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 375 } 376 377 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 378 llvm::Constant *getGcAssignGlobalFn() { 379 // id objc_assign_global(id, id *) 380 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 381 llvm::FunctionType *FTy = 382 llvm::FunctionType::get(ObjectPtrTy, args, false); 383 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 384 } 385 386 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 387 llvm::Constant *getGcAssignThreadLocalFn() { 388 // id objc_assign_threadlocal(id src, id * dest) 389 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 390 llvm::FunctionType *FTy = 391 llvm::FunctionType::get(ObjectPtrTy, args, false); 392 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 393 } 394 395 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 396 llvm::Constant *getGcAssignIvarFn() { 397 // id objc_assign_ivar(id, id *, ptrdiff_t) 398 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 399 CGM.PtrDiffTy }; 400 llvm::FunctionType *FTy = 401 llvm::FunctionType::get(ObjectPtrTy, args, false); 402 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 403 } 404 405 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 406 llvm::Constant *GcMemmoveCollectableFn() { 407 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 408 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 409 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 410 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 411 } 412 413 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 414 llvm::Constant *getGcAssignStrongCastFn() { 415 // id objc_assign_strongCast(id, id *) 416 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 417 llvm::FunctionType *FTy = 418 llvm::FunctionType::get(ObjectPtrTy, args, false); 419 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 420 } 421 422 /// ExceptionThrowFn - LLVM objc_exception_throw function. 423 llvm::Constant *getExceptionThrowFn() { 424 // void objc_exception_throw(id) 425 llvm::Type *args[] = { ObjectPtrTy }; 426 llvm::FunctionType *FTy = 427 llvm::FunctionType::get(CGM.VoidTy, args, false); 428 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 429 } 430 431 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 432 llvm::Constant *getExceptionRethrowFn() { 433 // void objc_exception_rethrow(void) 434 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 435 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 436 } 437 438 /// SyncEnterFn - LLVM object_sync_enter function. 439 llvm::Constant *getSyncEnterFn() { 440 // int objc_sync_enter (id) 441 llvm::Type *args[] = { ObjectPtrTy }; 442 llvm::FunctionType *FTy = 443 llvm::FunctionType::get(CGM.IntTy, args, false); 444 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 445 } 446 447 /// SyncExitFn - LLVM object_sync_exit function. 448 llvm::Constant *getSyncExitFn() { 449 // int objc_sync_exit (id) 450 llvm::Type *args[] = { ObjectPtrTy }; 451 llvm::FunctionType *FTy = 452 llvm::FunctionType::get(CGM.IntTy, args, false); 453 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 454 } 455 456 llvm::Constant *getSendFn(bool IsSuper) const { 457 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 458 } 459 460 llvm::Constant *getSendFn2(bool IsSuper) const { 461 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 462 } 463 464 llvm::Constant *getSendStretFn(bool IsSuper) const { 465 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 466 } 467 468 llvm::Constant *getSendStretFn2(bool IsSuper) const { 469 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 470 } 471 472 llvm::Constant *getSendFpretFn(bool IsSuper) const { 473 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 474 } 475 476 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 477 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 478 } 479 480 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 481 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 482 } 483 484 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 485 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 486 } 487 488 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 489 }; 490 491 /// ObjCTypesHelper - Helper class that encapsulates lazy 492 /// construction of varies types used during ObjC generation. 493 class ObjCTypesHelper : public ObjCCommonTypesHelper { 494 public: 495 /// SymtabTy - LLVM type for struct objc_symtab. 496 llvm::StructType *SymtabTy; 497 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 498 llvm::Type *SymtabPtrTy; 499 /// ModuleTy - LLVM type for struct objc_module. 500 llvm::StructType *ModuleTy; 501 502 /// ProtocolTy - LLVM type for struct objc_protocol. 503 llvm::StructType *ProtocolTy; 504 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 505 llvm::Type *ProtocolPtrTy; 506 /// ProtocolExtensionTy - LLVM type for struct 507 /// objc_protocol_extension. 508 llvm::StructType *ProtocolExtensionTy; 509 /// ProtocolExtensionTy - LLVM type for struct 510 /// objc_protocol_extension *. 511 llvm::Type *ProtocolExtensionPtrTy; 512 /// MethodDescriptionTy - LLVM type for struct 513 /// objc_method_description. 514 llvm::StructType *MethodDescriptionTy; 515 /// MethodDescriptionListTy - LLVM type for struct 516 /// objc_method_description_list. 517 llvm::StructType *MethodDescriptionListTy; 518 /// MethodDescriptionListPtrTy - LLVM type for struct 519 /// objc_method_description_list *. 520 llvm::Type *MethodDescriptionListPtrTy; 521 /// ProtocolListTy - LLVM type for struct objc_property_list. 522 llvm::StructType *ProtocolListTy; 523 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 524 llvm::Type *ProtocolListPtrTy; 525 /// CategoryTy - LLVM type for struct objc_category. 526 llvm::StructType *CategoryTy; 527 /// ClassTy - LLVM type for struct objc_class. 528 llvm::StructType *ClassTy; 529 /// ClassPtrTy - LLVM type for struct objc_class *. 530 llvm::Type *ClassPtrTy; 531 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 532 llvm::StructType *ClassExtensionTy; 533 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 534 llvm::Type *ClassExtensionPtrTy; 535 // IvarTy - LLVM type for struct objc_ivar. 536 llvm::StructType *IvarTy; 537 /// IvarListTy - LLVM type for struct objc_ivar_list. 538 llvm::Type *IvarListTy; 539 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 540 llvm::Type *IvarListPtrTy; 541 /// MethodListTy - LLVM type for struct objc_method_list. 542 llvm::Type *MethodListTy; 543 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 544 llvm::Type *MethodListPtrTy; 545 546 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 547 llvm::Type *ExceptionDataTy; 548 549 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 550 llvm::Constant *getExceptionTryEnterFn() { 551 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 552 return CGM.CreateRuntimeFunction( 553 llvm::FunctionType::get(CGM.VoidTy, params, false), 554 "objc_exception_try_enter"); 555 } 556 557 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 558 llvm::Constant *getExceptionTryExitFn() { 559 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 560 return CGM.CreateRuntimeFunction( 561 llvm::FunctionType::get(CGM.VoidTy, params, false), 562 "objc_exception_try_exit"); 563 } 564 565 /// ExceptionExtractFn - LLVM objc_exception_extract function. 566 llvm::Constant *getExceptionExtractFn() { 567 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 568 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 569 params, false), 570 "objc_exception_extract"); 571 } 572 573 /// ExceptionMatchFn - LLVM objc_exception_match function. 574 llvm::Constant *getExceptionMatchFn() { 575 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 576 return CGM.CreateRuntimeFunction( 577 llvm::FunctionType::get(CGM.Int32Ty, params, false), 578 "objc_exception_match"); 579 580 } 581 582 /// SetJmpFn - LLVM _setjmp function. 583 llvm::Constant *getSetJmpFn() { 584 // This is specifically the prototype for x86. 585 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 586 return 587 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, 588 params, false), 589 "_setjmp", 590 llvm::AttributeSet::get(CGM.getLLVMContext(), 591 llvm::AttributeSet::FunctionIndex, 592 llvm::Attribute::NonLazyBind)); 593 } 594 595 public: 596 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 597 }; 598 599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600 /// modern abi 601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602 public: 603 604 // MethodListnfABITy - LLVM for struct _method_list_t 605 llvm::StructType *MethodListnfABITy; 606 607 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 608 llvm::Type *MethodListnfABIPtrTy; 609 610 // ProtocolnfABITy = LLVM for struct _protocol_t 611 llvm::StructType *ProtocolnfABITy; 612 613 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 614 llvm::Type *ProtocolnfABIPtrTy; 615 616 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 617 llvm::StructType *ProtocolListnfABITy; 618 619 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 620 llvm::Type *ProtocolListnfABIPtrTy; 621 622 // ClassnfABITy - LLVM for struct _class_t 623 llvm::StructType *ClassnfABITy; 624 625 // ClassnfABIPtrTy - LLVM for struct _class_t* 626 llvm::Type *ClassnfABIPtrTy; 627 628 // IvarnfABITy - LLVM for struct _ivar_t 629 llvm::StructType *IvarnfABITy; 630 631 // IvarListnfABITy - LLVM for struct _ivar_list_t 632 llvm::StructType *IvarListnfABITy; 633 634 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 635 llvm::Type *IvarListnfABIPtrTy; 636 637 // ClassRonfABITy - LLVM for struct _class_ro_t 638 llvm::StructType *ClassRonfABITy; 639 640 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 641 llvm::Type *ImpnfABITy; 642 643 // CategorynfABITy - LLVM for struct _category_t 644 llvm::StructType *CategorynfABITy; 645 646 // New types for nonfragile abi messaging. 647 648 // MessageRefTy - LLVM for: 649 // struct _message_ref_t { 650 // IMP messenger; 651 // SEL name; 652 // }; 653 llvm::StructType *MessageRefTy; 654 // MessageRefCTy - clang type for struct _message_ref_t 655 QualType MessageRefCTy; 656 657 // MessageRefPtrTy - LLVM for struct _message_ref_t* 658 llvm::Type *MessageRefPtrTy; 659 // MessageRefCPtrTy - clang type for struct _message_ref_t* 660 QualType MessageRefCPtrTy; 661 662 // SuperMessageRefTy - LLVM for: 663 // struct _super_message_ref_t { 664 // SUPER_IMP messenger; 665 // SEL name; 666 // }; 667 llvm::StructType *SuperMessageRefTy; 668 669 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 670 llvm::Type *SuperMessageRefPtrTy; 671 672 llvm::Constant *getMessageSendFixupFn() { 673 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 674 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 675 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 676 params, true), 677 "objc_msgSend_fixup"); 678 } 679 680 llvm::Constant *getMessageSendFpretFixupFn() { 681 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 682 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 683 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 684 params, true), 685 "objc_msgSend_fpret_fixup"); 686 } 687 688 llvm::Constant *getMessageSendStretFixupFn() { 689 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 690 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 691 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 692 params, true), 693 "objc_msgSend_stret_fixup"); 694 } 695 696 llvm::Constant *getMessageSendSuper2FixupFn() { 697 // id objc_msgSendSuper2_fixup (struct objc_super *, 698 // struct _super_message_ref_t*, ...) 699 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 700 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 701 params, true), 702 "objc_msgSendSuper2_fixup"); 703 } 704 705 llvm::Constant *getMessageSendSuper2StretFixupFn() { 706 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 707 // struct _super_message_ref_t*, ...) 708 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 709 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 710 params, true), 711 "objc_msgSendSuper2_stret_fixup"); 712 } 713 714 llvm::Constant *getObjCEndCatchFn() { 715 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 716 "objc_end_catch"); 717 718 } 719 720 llvm::Constant *getObjCBeginCatchFn() { 721 llvm::Type *params[] = { Int8PtrTy }; 722 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 723 params, false), 724 "objc_begin_catch"); 725 } 726 727 llvm::StructType *EHTypeTy; 728 llvm::Type *EHTypePtrTy; 729 730 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 731 }; 732 733 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 734 public: 735 class SKIP_SCAN { 736 public: 737 unsigned skip; 738 unsigned scan; 739 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 740 : skip(_skip), scan(_scan) {} 741 }; 742 743 /// opcode for captured block variables layout 'instructions'. 744 /// In the following descriptions, 'I' is the value of the immediate field. 745 /// (field following the opcode). 746 /// 747 enum BLOCK_LAYOUT_OPCODE { 748 /// An operator which affects how the following layout should be 749 /// interpreted. 750 /// I == 0: Halt interpretation and treat everything else as 751 /// a non-pointer. Note that this instruction is equal 752 /// to '\0'. 753 /// I != 0: Currently unused. 754 BLOCK_LAYOUT_OPERATOR = 0, 755 756 /// The next I+1 bytes do not contain a value of object pointer type. 757 /// Note that this can leave the stream unaligned, meaning that 758 /// subsequent word-size instructions do not begin at a multiple of 759 /// the pointer size. 760 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 761 762 /// The next I+1 words do not contain a value of object pointer type. 763 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 764 /// when the required skip quantity is a multiple of the pointer size. 765 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 766 767 /// The next I+1 words are __strong pointers to Objective-C 768 /// objects or blocks. 769 BLOCK_LAYOUT_STRONG = 3, 770 771 /// The next I+1 words are pointers to __block variables. 772 BLOCK_LAYOUT_BYREF = 4, 773 774 /// The next I+1 words are __weak pointers to Objective-C 775 /// objects or blocks. 776 BLOCK_LAYOUT_WEAK = 5, 777 778 /// The next I+1 words are __unsafe_unretained pointers to 779 /// Objective-C objects or blocks. 780 BLOCK_LAYOUT_UNRETAINED = 6 781 782 /// The next I+1 words are block or object pointers with some 783 /// as-yet-unspecified ownership semantics. If we add more 784 /// flavors of ownership semantics, values will be taken from 785 /// this range. 786 /// 787 /// This is included so that older tools can at least continue 788 /// processing the layout past such things. 789 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 790 791 /// All other opcodes are reserved. Halt interpretation and 792 /// treat everything else as opaque. 793 }; 794 795 class RUN_SKIP { 796 public: 797 enum BLOCK_LAYOUT_OPCODE opcode; 798 CharUnits block_var_bytepos; 799 CharUnits block_var_size; 800 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 801 CharUnits BytePos = CharUnits::Zero(), 802 CharUnits Size = CharUnits::Zero()) 803 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 804 805 // Allow sorting based on byte pos. 806 bool operator<(const RUN_SKIP &b) const { 807 return block_var_bytepos < b.block_var_bytepos; 808 } 809 }; 810 811 protected: 812 llvm::LLVMContext &VMContext; 813 // FIXME! May not be needing this after all. 814 unsigned ObjCABI; 815 816 // arc/mrr layout of captured block literal variables. 817 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 818 819 /// LazySymbols - Symbols to generate a lazy reference for. See 820 /// DefinedSymbols and FinishModule(). 821 llvm::SetVector<IdentifierInfo*> LazySymbols; 822 823 /// DefinedSymbols - External symbols which are defined by this 824 /// module. The symbols in this list and LazySymbols are used to add 825 /// special linker symbols which ensure that Objective-C modules are 826 /// linked properly. 827 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 828 829 /// ClassNames - uniqued class names. 830 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 831 832 /// MethodVarNames - uniqued method variable names. 833 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 834 835 /// DefinedCategoryNames - list of category names in form Class_Category. 836 llvm::SetVector<std::string> DefinedCategoryNames; 837 838 /// MethodVarTypes - uniqued method type signatures. We have to use 839 /// a StringMap here because have no other unique reference. 840 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 841 842 /// MethodDefinitions - map of methods which have been defined in 843 /// this translation unit. 844 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 845 846 /// PropertyNames - uniqued method variable names. 847 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 848 849 /// ClassReferences - uniqued class references. 850 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 851 852 /// SelectorReferences - uniqued selector references. 853 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 854 855 /// Protocols - Protocols for which an objc_protocol structure has 856 /// been emitted. Forward declarations are handled by creating an 857 /// empty structure whose initializer is filled in when/if defined. 858 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 859 860 /// DefinedProtocols - Protocols which have actually been 861 /// defined. We should not need this, see FIXME in GenerateProtocol. 862 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 863 864 /// DefinedClasses - List of defined classes. 865 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 866 867 /// ImplementedClasses - List of @implemented classes. 868 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 869 870 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 871 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 872 873 /// DefinedCategories - List of defined categories. 874 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 875 876 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 877 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 878 879 /// GetNameForMethod - Return a name for the given method. 880 /// \param[out] NameOut - The return value. 881 void GetNameForMethod(const ObjCMethodDecl *OMD, 882 const ObjCContainerDecl *CD, 883 SmallVectorImpl<char> &NameOut); 884 885 /// GetMethodVarName - Return a unique constant for the given 886 /// selector's name. The return value has type char *. 887 llvm::Constant *GetMethodVarName(Selector Sel); 888 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 889 890 /// GetMethodVarType - Return a unique constant for the given 891 /// method's type encoding string. The return value has type char *. 892 893 // FIXME: This is a horrible name. 894 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 895 bool Extended = false); 896 llvm::Constant *GetMethodVarType(const FieldDecl *D); 897 898 /// GetPropertyName - Return a unique constant for the given 899 /// name. The return value has type char *. 900 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 901 902 // FIXME: This can be dropped once string functions are unified. 903 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 904 const Decl *Container); 905 906 /// GetClassName - Return a unique constant for the given selector's 907 /// runtime name (which may change via use of objc_runtime_name attribute on 908 /// class or protocol definition. The return value has type char *. 909 llvm::Constant *GetClassName(StringRef RuntimeName); 910 911 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 912 913 /// BuildIvarLayout - Builds ivar layout bitmap for the class 914 /// implementation for the __strong or __weak case. 915 /// 916 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 917 /// are any weak ivars defined directly in the class. Meaningless unless 918 /// building a weak layout. Does not guarantee that the layout will 919 /// actually have any entries, because the ivar might be under-aligned. 920 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 921 CharUnits beginOffset, 922 CharUnits endOffset, 923 bool forStrongLayout, 924 bool hasMRCWeakIvars); 925 926 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 927 CharUnits beginOffset, 928 CharUnits endOffset) { 929 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 930 } 931 932 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 933 CharUnits beginOffset, 934 CharUnits endOffset, 935 bool hasMRCWeakIvars) { 936 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 937 } 938 939 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 940 941 void UpdateRunSkipBlockVars(bool IsByref, 942 Qualifiers::ObjCLifetime LifeTime, 943 CharUnits FieldOffset, 944 CharUnits FieldSize); 945 946 void BuildRCBlockVarRecordLayout(const RecordType *RT, 947 CharUnits BytePos, bool &HasUnion, 948 bool ByrefLayout=false); 949 950 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 951 const RecordDecl *RD, 952 ArrayRef<const FieldDecl*> RecFields, 953 CharUnits BytePos, bool &HasUnion, 954 bool ByrefLayout); 955 956 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 957 958 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 959 960 /// GetIvarLayoutName - Returns a unique constant for the given 961 /// ivar layout bitmap. 962 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 963 const ObjCCommonTypesHelper &ObjCTypes); 964 965 /// EmitPropertyList - Emit the given property list. The return 966 /// value has type PropertyListPtrTy. 967 llvm::Constant *EmitPropertyList(Twine Name, 968 const Decl *Container, 969 const ObjCContainerDecl *OCD, 970 const ObjCCommonTypesHelper &ObjCTypes); 971 972 /// EmitProtocolMethodTypes - Generate the array of extended method type 973 /// strings. The return value has type Int8PtrPtrTy. 974 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 975 ArrayRef<llvm::Constant*> MethodTypes, 976 const ObjCCommonTypesHelper &ObjCTypes); 977 978 /// PushProtocolProperties - Push protocol's property on the input stack. 979 void PushProtocolProperties( 980 llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 981 SmallVectorImpl<llvm::Constant*> &Properties, 982 const Decl *Container, 983 const ObjCProtocolDecl *Proto, 984 const ObjCCommonTypesHelper &ObjCTypes); 985 986 /// GetProtocolRef - Return a reference to the internal protocol 987 /// description, creating an empty one if it has not been 988 /// defined. The return value has type ProtocolPtrTy. 989 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 990 991 public: 992 /// CreateMetadataVar - Create a global variable with internal 993 /// linkage for use by the Objective-C runtime. 994 /// 995 /// This is a convenience wrapper which not only creates the 996 /// variable, but also sets the section and alignment and adds the 997 /// global to the "llvm.used" list. 998 /// 999 /// \param Name - The variable name. 1000 /// \param Init - The variable initializer; this is also used to 1001 /// define the type of the variable. 1002 /// \param Section - The section the variable should go into, or empty. 1003 /// \param Align - The alignment for the variable, or 0. 1004 /// \param AddToUsed - Whether the variable should be added to 1005 /// "llvm.used". 1006 llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init, 1007 StringRef Section, CharUnits Align, 1008 bool AddToUsed); 1009 1010 protected: 1011 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1012 ReturnValueSlot Return, 1013 QualType ResultType, 1014 llvm::Value *Sel, 1015 llvm::Value *Arg0, 1016 QualType Arg0Ty, 1017 bool IsSuper, 1018 const CallArgList &CallArgs, 1019 const ObjCMethodDecl *OMD, 1020 const ObjCInterfaceDecl *ClassReceiver, 1021 const ObjCCommonTypesHelper &ObjCTypes); 1022 1023 /// EmitImageInfo - Emit the image info marker used to encode some module 1024 /// level information. 1025 void EmitImageInfo(); 1026 1027 public: 1028 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1029 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1030 1031 bool isNonFragileABI() const { 1032 return ObjCABI == 2; 1033 } 1034 1035 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1036 1037 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1038 const ObjCContainerDecl *CD=nullptr) override; 1039 1040 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1041 1042 /// GetOrEmitProtocol - Get the protocol object for the given 1043 /// declaration, emitting it if necessary. The return value has type 1044 /// ProtocolPtrTy. 1045 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1046 1047 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1048 /// object for the given declaration, emitting it if needed. These 1049 /// forward references will be filled in with empty bodies if no 1050 /// definition is seen. The return value has type ProtocolPtrTy. 1051 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1052 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1053 const CGBlockInfo &blockInfo) override; 1054 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1055 const CGBlockInfo &blockInfo) override; 1056 1057 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1058 QualType T) override; 1059 }; 1060 1061 class CGObjCMac : public CGObjCCommonMac { 1062 private: 1063 ObjCTypesHelper ObjCTypes; 1064 1065 /// EmitModuleInfo - Another marker encoding module level 1066 /// information. 1067 void EmitModuleInfo(); 1068 1069 /// EmitModuleSymols - Emit module symbols, the list of defined 1070 /// classes and categories. The result has type SymtabPtrTy. 1071 llvm::Constant *EmitModuleSymbols(); 1072 1073 /// FinishModule - Write out global data structures at the end of 1074 /// processing a translation unit. 1075 void FinishModule(); 1076 1077 /// EmitClassExtension - Generate the class extension structure used 1078 /// to store the weak ivar layout and properties. The return value 1079 /// has type ClassExtensionPtrTy. 1080 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1081 CharUnits instanceSize, 1082 bool hasMRCWeakIvars); 1083 1084 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1085 /// for the given class. 1086 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1087 const ObjCInterfaceDecl *ID); 1088 1089 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1090 IdentifierInfo *II); 1091 1092 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1093 1094 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1095 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1096 1097 /// EmitIvarList - Emit the ivar list for the given 1098 /// implementation. If ForClass is true the list of class ivars 1099 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1100 /// interface ivars will be emitted. The return value has type 1101 /// IvarListPtrTy. 1102 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1103 bool ForClass); 1104 1105 /// EmitMetaClass - Emit a forward reference to the class structure 1106 /// for the metaclass of the given interface. The return value has 1107 /// type ClassPtrTy. 1108 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1109 1110 /// EmitMetaClass - Emit a class structure for the metaclass of the 1111 /// given implementation. The return value has type ClassPtrTy. 1112 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1113 llvm::Constant *Protocols, 1114 ArrayRef<llvm::Constant*> Methods); 1115 1116 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1117 1118 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1119 1120 /// EmitMethodList - Emit the method list for the given 1121 /// implementation. The return value has type MethodListPtrTy. 1122 llvm::Constant *EmitMethodList(Twine Name, 1123 const char *Section, 1124 ArrayRef<llvm::Constant*> Methods); 1125 1126 /// EmitMethodDescList - Emit a method description list for a list of 1127 /// method declarations. 1128 /// - TypeName: The name for the type containing the methods. 1129 /// - IsProtocol: True iff these methods are for a protocol. 1130 /// - ClassMethds: True iff these are class methods. 1131 /// - Required: When true, only "required" methods are 1132 /// listed. Similarly, when false only "optional" methods are 1133 /// listed. For classes this should always be true. 1134 /// - begin, end: The method list to output. 1135 /// 1136 /// The return value has type MethodDescriptionListPtrTy. 1137 llvm::Constant *EmitMethodDescList(Twine Name, 1138 const char *Section, 1139 ArrayRef<llvm::Constant*> Methods); 1140 1141 /// GetOrEmitProtocol - Get the protocol object for the given 1142 /// declaration, emitting it if necessary. The return value has type 1143 /// ProtocolPtrTy. 1144 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1145 1146 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1147 /// object for the given declaration, emitting it if needed. These 1148 /// forward references will be filled in with empty bodies if no 1149 /// definition is seen. The return value has type ProtocolPtrTy. 1150 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1151 1152 /// EmitProtocolExtension - Generate the protocol extension 1153 /// structure used to store optional instance and class methods, and 1154 /// protocol properties. The return value has type 1155 /// ProtocolExtensionPtrTy. 1156 llvm::Constant * 1157 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1158 ArrayRef<llvm::Constant*> OptInstanceMethods, 1159 ArrayRef<llvm::Constant*> OptClassMethods, 1160 ArrayRef<llvm::Constant*> MethodTypesExt); 1161 1162 /// EmitProtocolList - Generate the list of referenced 1163 /// protocols. The return value has type ProtocolListPtrTy. 1164 llvm::Constant *EmitProtocolList(Twine Name, 1165 ObjCProtocolDecl::protocol_iterator begin, 1166 ObjCProtocolDecl::protocol_iterator end); 1167 1168 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1169 /// for the given selector. 1170 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1171 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1172 1173 public: 1174 CGObjCMac(CodeGen::CodeGenModule &cgm); 1175 1176 llvm::Function *ModuleInitFunction() override; 1177 1178 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1179 ReturnValueSlot Return, 1180 QualType ResultType, 1181 Selector Sel, llvm::Value *Receiver, 1182 const CallArgList &CallArgs, 1183 const ObjCInterfaceDecl *Class, 1184 const ObjCMethodDecl *Method) override; 1185 1186 CodeGen::RValue 1187 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1188 ReturnValueSlot Return, QualType ResultType, 1189 Selector Sel, const ObjCInterfaceDecl *Class, 1190 bool isCategoryImpl, llvm::Value *Receiver, 1191 bool IsClassMessage, const CallArgList &CallArgs, 1192 const ObjCMethodDecl *Method) override; 1193 1194 llvm::Value *GetClass(CodeGenFunction &CGF, 1195 const ObjCInterfaceDecl *ID) override; 1196 1197 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1198 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1199 1200 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1201 /// untyped one. 1202 llvm::Value *GetSelector(CodeGenFunction &CGF, 1203 const ObjCMethodDecl *Method) override; 1204 1205 llvm::Constant *GetEHType(QualType T) override; 1206 1207 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1208 1209 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1210 1211 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1212 1213 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1214 const ObjCProtocolDecl *PD) override; 1215 1216 llvm::Constant *GetPropertyGetFunction() override; 1217 llvm::Constant *GetPropertySetFunction() override; 1218 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1219 bool copy) override; 1220 llvm::Constant *GetGetStructFunction() override; 1221 llvm::Constant *GetSetStructFunction() override; 1222 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1223 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1224 llvm::Constant *EnumerationMutationFunction() override; 1225 1226 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1227 const ObjCAtTryStmt &S) override; 1228 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1229 const ObjCAtSynchronizedStmt &S) override; 1230 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1231 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1232 bool ClearInsertionPoint=true) override; 1233 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1234 Address AddrWeakObj) override; 1235 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1236 llvm::Value *src, Address dst) override; 1237 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1238 llvm::Value *src, Address dest, 1239 bool threadlocal = false) override; 1240 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1241 llvm::Value *src, Address dest, 1242 llvm::Value *ivarOffset) override; 1243 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *src, Address dest) override; 1245 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1246 Address dest, Address src, 1247 llvm::Value *size) override; 1248 1249 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1250 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1251 unsigned CVRQualifiers) override; 1252 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1253 const ObjCInterfaceDecl *Interface, 1254 const ObjCIvarDecl *Ivar) override; 1255 1256 /// GetClassGlobal - Return the global variable for the Objective-C 1257 /// class of the given name. 1258 llvm::GlobalVariable *GetClassGlobal(const std::string &Name, 1259 bool Weak = false) override { 1260 llvm_unreachable("CGObjCMac::GetClassGlobal"); 1261 } 1262 }; 1263 1264 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1265 private: 1266 ObjCNonFragileABITypesHelper ObjCTypes; 1267 llvm::GlobalVariable* ObjCEmptyCacheVar; 1268 llvm::GlobalVariable* ObjCEmptyVtableVar; 1269 1270 /// SuperClassReferences - uniqued super class references. 1271 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1272 1273 /// MetaClassReferences - uniqued meta class references. 1274 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1275 1276 /// EHTypeReferences - uniqued class ehtype references. 1277 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1278 1279 /// VTableDispatchMethods - List of methods for which we generate 1280 /// vtable-based message dispatch. 1281 llvm::DenseSet<Selector> VTableDispatchMethods; 1282 1283 /// DefinedMetaClasses - List of defined meta-classes. 1284 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1285 1286 /// isVTableDispatchedSelector - Returns true if SEL is a 1287 /// vtable-based selector. 1288 bool isVTableDispatchedSelector(Selector Sel); 1289 1290 /// FinishNonFragileABIModule - Write out global data structures at the end of 1291 /// processing a translation unit. 1292 void FinishNonFragileABIModule(); 1293 1294 /// AddModuleClassList - Add the given list of class pointers to the 1295 /// module with the provided symbol and section names. 1296 void AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 1297 const char *SymbolName, 1298 const char *SectionName); 1299 1300 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1301 unsigned InstanceStart, 1302 unsigned InstanceSize, 1303 const ObjCImplementationDecl *ID); 1304 llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName, 1305 llvm::Constant *IsAGV, 1306 llvm::Constant *SuperClassGV, 1307 llvm::Constant *ClassRoGV, 1308 bool HiddenVisibility, 1309 bool Weak); 1310 1311 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1312 1313 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1314 1315 /// EmitMethodList - Emit the method list for the given 1316 /// implementation. The return value has type MethodListnfABITy. 1317 llvm::Constant *EmitMethodList(Twine Name, 1318 const char *Section, 1319 ArrayRef<llvm::Constant*> Methods); 1320 /// EmitIvarList - Emit the ivar list for the given 1321 /// implementation. If ForClass is true the list of class ivars 1322 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1323 /// interface ivars will be emitted. The return value has type 1324 /// IvarListnfABIPtrTy. 1325 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1326 1327 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1328 const ObjCIvarDecl *Ivar, 1329 unsigned long int offset); 1330 1331 /// GetOrEmitProtocol - Get the protocol object for the given 1332 /// declaration, emitting it if necessary. The return value has type 1333 /// ProtocolPtrTy. 1334 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1335 1336 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1337 /// object for the given declaration, emitting it if needed. These 1338 /// forward references will be filled in with empty bodies if no 1339 /// definition is seen. The return value has type ProtocolPtrTy. 1340 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1341 1342 /// EmitProtocolList - Generate the list of referenced 1343 /// protocols. The return value has type ProtocolListPtrTy. 1344 llvm::Constant *EmitProtocolList(Twine Name, 1345 ObjCProtocolDecl::protocol_iterator begin, 1346 ObjCProtocolDecl::protocol_iterator end); 1347 1348 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1349 ReturnValueSlot Return, 1350 QualType ResultType, 1351 Selector Sel, 1352 llvm::Value *Receiver, 1353 QualType Arg0Ty, 1354 bool IsSuper, 1355 const CallArgList &CallArgs, 1356 const ObjCMethodDecl *Method); 1357 1358 /// GetClassGlobal - Return the global variable for the Objective-C 1359 /// class of the given name. 1360 llvm::GlobalVariable *GetClassGlobal(const std::string &Name, 1361 bool Weak = false) override; 1362 1363 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1364 /// for the given class reference. 1365 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1366 const ObjCInterfaceDecl *ID); 1367 1368 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1369 IdentifierInfo *II, bool Weak, 1370 const ObjCInterfaceDecl *ID); 1371 1372 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1373 1374 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1375 /// for the given super class reference. 1376 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1377 const ObjCInterfaceDecl *ID); 1378 1379 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1380 /// meta-data 1381 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1382 const ObjCInterfaceDecl *ID, bool Weak); 1383 1384 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1385 /// the given ivar. 1386 /// 1387 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1388 const ObjCInterfaceDecl *ID, 1389 const ObjCIvarDecl *Ivar); 1390 1391 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1392 /// for the given selector. 1393 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1394 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1395 1396 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1397 /// interface. The return value has type EHTypePtrTy. 1398 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1399 bool ForDefinition); 1400 1401 const char *getMetaclassSymbolPrefix() const { 1402 return "OBJC_METACLASS_$_"; 1403 } 1404 1405 const char *getClassSymbolPrefix() const { 1406 return "OBJC_CLASS_$_"; 1407 } 1408 1409 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1410 uint32_t &InstanceStart, 1411 uint32_t &InstanceSize); 1412 1413 // Shamelessly stolen from Analysis/CFRefCount.cpp 1414 Selector GetNullarySelector(const char* name) const { 1415 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1416 return CGM.getContext().Selectors.getSelector(0, &II); 1417 } 1418 1419 Selector GetUnarySelector(const char* name) const { 1420 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1421 return CGM.getContext().Selectors.getSelector(1, &II); 1422 } 1423 1424 /// ImplementationIsNonLazy - Check whether the given category or 1425 /// class implementation is "non-lazy". 1426 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1427 1428 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1429 const ObjCIvarDecl *IV) { 1430 // Annotate the load as an invariant load iff inside an instance method 1431 // and ivar belongs to instance method's class and one of its super class. 1432 // This check is needed because the ivar offset is a lazily 1433 // initialised value that may depend on objc_msgSend to perform a fixup on 1434 // the first message dispatch. 1435 // 1436 // An additional opportunity to mark the load as invariant arises when the 1437 // base of the ivar access is a parameter to an Objective C method. 1438 // However, because the parameters are not available in the current 1439 // interface, we cannot perform this check. 1440 if (const ObjCMethodDecl *MD = 1441 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1442 if (MD->isInstanceMethod()) 1443 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1444 return IV->getContainingInterface()->isSuperClassOf(ID); 1445 return false; 1446 } 1447 1448 public: 1449 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1450 // FIXME. All stubs for now! 1451 llvm::Function *ModuleInitFunction() override; 1452 1453 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1454 ReturnValueSlot Return, 1455 QualType ResultType, Selector Sel, 1456 llvm::Value *Receiver, 1457 const CallArgList &CallArgs, 1458 const ObjCInterfaceDecl *Class, 1459 const ObjCMethodDecl *Method) override; 1460 1461 CodeGen::RValue 1462 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1463 ReturnValueSlot Return, QualType ResultType, 1464 Selector Sel, const ObjCInterfaceDecl *Class, 1465 bool isCategoryImpl, llvm::Value *Receiver, 1466 bool IsClassMessage, const CallArgList &CallArgs, 1467 const ObjCMethodDecl *Method) override; 1468 1469 llvm::Value *GetClass(CodeGenFunction &CGF, 1470 const ObjCInterfaceDecl *ID) override; 1471 1472 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1473 { return EmitSelector(CGF, Sel); } 1474 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1475 { return EmitSelectorAddr(CGF, Sel); } 1476 1477 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1478 /// untyped one. 1479 llvm::Value *GetSelector(CodeGenFunction &CGF, 1480 const ObjCMethodDecl *Method) override 1481 { return EmitSelector(CGF, Method->getSelector()); } 1482 1483 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1484 1485 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1486 1487 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1488 1489 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1490 const ObjCProtocolDecl *PD) override; 1491 1492 llvm::Constant *GetEHType(QualType T) override; 1493 1494 llvm::Constant *GetPropertyGetFunction() override { 1495 return ObjCTypes.getGetPropertyFn(); 1496 } 1497 llvm::Constant *GetPropertySetFunction() override { 1498 return ObjCTypes.getSetPropertyFn(); 1499 } 1500 1501 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1502 bool copy) override { 1503 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1504 } 1505 1506 llvm::Constant *GetSetStructFunction() override { 1507 return ObjCTypes.getCopyStructFn(); 1508 } 1509 llvm::Constant *GetGetStructFunction() override { 1510 return ObjCTypes.getCopyStructFn(); 1511 } 1512 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1513 return ObjCTypes.getCppAtomicObjectFunction(); 1514 } 1515 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1516 return ObjCTypes.getCppAtomicObjectFunction(); 1517 } 1518 1519 llvm::Constant *EnumerationMutationFunction() override { 1520 return ObjCTypes.getEnumerationMutationFn(); 1521 } 1522 1523 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1524 const ObjCAtTryStmt &S) override; 1525 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1526 const ObjCAtSynchronizedStmt &S) override; 1527 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1528 bool ClearInsertionPoint=true) override; 1529 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1530 Address AddrWeakObj) override; 1531 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1532 llvm::Value *src, Address edst) override; 1533 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1534 llvm::Value *src, Address dest, 1535 bool threadlocal = false) override; 1536 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1537 llvm::Value *src, Address dest, 1538 llvm::Value *ivarOffset) override; 1539 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1540 llvm::Value *src, Address dest) override; 1541 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1542 Address dest, Address src, 1543 llvm::Value *size) override; 1544 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1545 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1546 unsigned CVRQualifiers) override; 1547 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1548 const ObjCInterfaceDecl *Interface, 1549 const ObjCIvarDecl *Ivar) override; 1550 }; 1551 1552 /// A helper class for performing the null-initialization of a return 1553 /// value. 1554 struct NullReturnState { 1555 llvm::BasicBlock *NullBB; 1556 NullReturnState() : NullBB(nullptr) {} 1557 1558 /// Perform a null-check of the given receiver. 1559 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1560 // Make blocks for the null-receiver and call edges. 1561 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1562 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1563 1564 // Check for a null receiver and, if there is one, jump to the 1565 // null-receiver block. There's no point in trying to avoid it: 1566 // we're always going to put *something* there, because otherwise 1567 // we shouldn't have done this null-check in the first place. 1568 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1569 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1570 1571 // Otherwise, start performing the call. 1572 CGF.EmitBlock(callBB); 1573 } 1574 1575 /// Complete the null-return operation. It is valid to call this 1576 /// regardless of whether 'init' has been called. 1577 RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType, 1578 const CallArgList &CallArgs, 1579 const ObjCMethodDecl *Method) { 1580 // If we never had to do a null-check, just use the raw result. 1581 if (!NullBB) return result; 1582 1583 // The continuation block. This will be left null if we don't have an 1584 // IP, which can happen if the method we're calling is marked noreturn. 1585 llvm::BasicBlock *contBB = nullptr; 1586 1587 // Finish the call path. 1588 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1589 if (callBB) { 1590 contBB = CGF.createBasicBlock("msgSend.cont"); 1591 CGF.Builder.CreateBr(contBB); 1592 } 1593 1594 // Okay, start emitting the null-receiver block. 1595 CGF.EmitBlock(NullBB); 1596 1597 // Release any consumed arguments we've got. 1598 if (Method) { 1599 CallArgList::const_iterator I = CallArgs.begin(); 1600 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1601 e = Method->param_end(); i != e; ++i, ++I) { 1602 const ParmVarDecl *ParamDecl = (*i); 1603 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1604 RValue RV = I->RV; 1605 assert(RV.isScalar() && 1606 "NullReturnState::complete - arg not on object"); 1607 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1608 } 1609 } 1610 } 1611 1612 // The phi code below assumes that we haven't needed any control flow yet. 1613 assert(CGF.Builder.GetInsertBlock() == NullBB); 1614 1615 // If we've got a void return, just jump to the continuation block. 1616 if (result.isScalar() && resultType->isVoidType()) { 1617 // No jumps required if the message-send was noreturn. 1618 if (contBB) CGF.EmitBlock(contBB); 1619 return result; 1620 } 1621 1622 // If we've got a scalar return, build a phi. 1623 if (result.isScalar()) { 1624 // Derive the null-initialization value. 1625 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1626 1627 // If no join is necessary, just flow out. 1628 if (!contBB) return RValue::get(null); 1629 1630 // Otherwise, build a phi. 1631 CGF.EmitBlock(contBB); 1632 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1633 phi->addIncoming(result.getScalarVal(), callBB); 1634 phi->addIncoming(null, NullBB); 1635 return RValue::get(phi); 1636 } 1637 1638 // If we've got an aggregate return, null the buffer out. 1639 // FIXME: maybe we should be doing things differently for all the 1640 // cases where the ABI has us returning (1) non-agg values in 1641 // memory or (2) agg values in registers. 1642 if (result.isAggregate()) { 1643 assert(result.isAggregate() && "null init of non-aggregate result?"); 1644 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1645 if (contBB) CGF.EmitBlock(contBB); 1646 return result; 1647 } 1648 1649 // Complex types. 1650 CGF.EmitBlock(contBB); 1651 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1652 1653 // Find the scalar type and its zero value. 1654 llvm::Type *scalarTy = callResult.first->getType(); 1655 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1656 1657 // Build phis for both coordinates. 1658 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1659 real->addIncoming(callResult.first, callBB); 1660 real->addIncoming(scalarZero, NullBB); 1661 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1662 imag->addIncoming(callResult.second, callBB); 1663 imag->addIncoming(scalarZero, NullBB); 1664 return RValue::getComplex(real, imag); 1665 } 1666 }; 1667 1668 } // end anonymous namespace 1669 1670 /* *** Helper Functions *** */ 1671 1672 /// getConstantGEP() - Help routine to construct simple GEPs. 1673 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1674 llvm::GlobalVariable *C, unsigned idx0, 1675 unsigned idx1) { 1676 llvm::Value *Idxs[] = { 1677 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1678 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1679 }; 1680 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1681 } 1682 1683 /// hasObjCExceptionAttribute - Return true if this class or any super 1684 /// class has the __objc_exception__ attribute. 1685 static bool hasObjCExceptionAttribute(ASTContext &Context, 1686 const ObjCInterfaceDecl *OID) { 1687 if (OID->hasAttr<ObjCExceptionAttr>()) 1688 return true; 1689 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1690 return hasObjCExceptionAttribute(Context, Super); 1691 return false; 1692 } 1693 1694 /* *** CGObjCMac Public Interface *** */ 1695 1696 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1697 ObjCTypes(cgm) { 1698 ObjCABI = 1; 1699 EmitImageInfo(); 1700 } 1701 1702 /// GetClass - Return a reference to the class for the given interface 1703 /// decl. 1704 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1705 const ObjCInterfaceDecl *ID) { 1706 return EmitClassRef(CGF, ID); 1707 } 1708 1709 /// GetSelector - Return the pointer to the unique'd string for this selector. 1710 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1711 return EmitSelector(CGF, Sel); 1712 } 1713 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1714 return EmitSelectorAddr(CGF, Sel); 1715 } 1716 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1717 *Method) { 1718 return EmitSelector(CGF, Method->getSelector()); 1719 } 1720 1721 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1722 if (T->isObjCIdType() || 1723 T->isObjCQualifiedIdType()) { 1724 return CGM.GetAddrOfRTTIDescriptor( 1725 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1726 } 1727 if (T->isObjCClassType() || 1728 T->isObjCQualifiedClassType()) { 1729 return CGM.GetAddrOfRTTIDescriptor( 1730 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1731 } 1732 if (T->isObjCObjectPointerType()) 1733 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1734 1735 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1736 } 1737 1738 /// Generate a constant CFString object. 1739 /* 1740 struct __builtin_CFString { 1741 const int *isa; // point to __CFConstantStringClassReference 1742 int flags; 1743 const char *str; 1744 long length; 1745 }; 1746 */ 1747 1748 /// or Generate a constant NSString object. 1749 /* 1750 struct __builtin_NSString { 1751 const int *isa; // point to __NSConstantStringClassReference 1752 const char *str; 1753 unsigned int length; 1754 }; 1755 */ 1756 1757 ConstantAddress CGObjCCommonMac::GenerateConstantString( 1758 const StringLiteral *SL) { 1759 return (CGM.getLangOpts().NoConstantCFStrings == 0 ? 1760 CGM.GetAddrOfConstantCFString(SL) : 1761 CGM.GetAddrOfConstantString(SL)); 1762 } 1763 1764 enum { 1765 kCFTaggedObjectID_Integer = (1 << 1) + 1 1766 }; 1767 1768 /// Generates a message send where the super is the receiver. This is 1769 /// a message send to self with special delivery semantics indicating 1770 /// which class's method should be called. 1771 CodeGen::RValue 1772 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1773 ReturnValueSlot Return, 1774 QualType ResultType, 1775 Selector Sel, 1776 const ObjCInterfaceDecl *Class, 1777 bool isCategoryImpl, 1778 llvm::Value *Receiver, 1779 bool IsClassMessage, 1780 const CodeGen::CallArgList &CallArgs, 1781 const ObjCMethodDecl *Method) { 1782 // Create and init a super structure; this is a (receiver, class) 1783 // pair we will pass to objc_msgSendSuper. 1784 Address ObjCSuper = 1785 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1786 "objc_super"); 1787 llvm::Value *ReceiverAsObject = 1788 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 1789 CGF.Builder.CreateStore( 1790 ReceiverAsObject, 1791 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 1792 1793 // If this is a class message the metaclass is passed as the target. 1794 llvm::Value *Target; 1795 if (IsClassMessage) { 1796 if (isCategoryImpl) { 1797 // Message sent to 'super' in a class method defined in a category 1798 // implementation requires an odd treatment. 1799 // If we are in a class method, we must retrieve the 1800 // _metaclass_ for the current class, pointed at by 1801 // the class's "isa" pointer. The following assumes that 1802 // isa" is the first ivar in a class (which it must be). 1803 Target = EmitClassRef(CGF, Class->getSuperClass()); 1804 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 1805 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 1806 } else { 1807 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 1808 llvm::Value *SuperPtr = 1809 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 1810 llvm::Value *Super = 1811 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 1812 Target = Super; 1813 } 1814 } else if (isCategoryImpl) 1815 Target = EmitClassRef(CGF, Class->getSuperClass()); 1816 else { 1817 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 1818 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 1819 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 1820 } 1821 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 1822 // ObjCTypes types. 1823 llvm::Type *ClassTy = 1824 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 1825 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 1826 CGF.Builder.CreateStore(Target, 1827 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 1828 return EmitMessageSend(CGF, Return, ResultType, 1829 EmitSelector(CGF, Sel), 1830 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 1831 true, CallArgs, Method, Class, ObjCTypes); 1832 } 1833 1834 /// Generate code for a message send expression. 1835 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1836 ReturnValueSlot Return, 1837 QualType ResultType, 1838 Selector Sel, 1839 llvm::Value *Receiver, 1840 const CallArgList &CallArgs, 1841 const ObjCInterfaceDecl *Class, 1842 const ObjCMethodDecl *Method) { 1843 return EmitMessageSend(CGF, Return, ResultType, 1844 EmitSelector(CGF, Sel), 1845 Receiver, CGF.getContext().getObjCIdType(), 1846 false, CallArgs, Method, Class, ObjCTypes); 1847 } 1848 1849 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 1850 do { 1851 if (ID->isWeakImported()) 1852 return true; 1853 } while ((ID = ID->getSuperClass())); 1854 1855 return false; 1856 } 1857 1858 CodeGen::RValue 1859 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1860 ReturnValueSlot Return, 1861 QualType ResultType, 1862 llvm::Value *Sel, 1863 llvm::Value *Arg0, 1864 QualType Arg0Ty, 1865 bool IsSuper, 1866 const CallArgList &CallArgs, 1867 const ObjCMethodDecl *Method, 1868 const ObjCInterfaceDecl *ClassReceiver, 1869 const ObjCCommonTypesHelper &ObjCTypes) { 1870 CallArgList ActualArgs; 1871 if (!IsSuper) 1872 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 1873 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 1874 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 1875 ActualArgs.addFrom(CallArgs); 1876 1877 // If we're calling a method, use the formal signature. 1878 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1879 1880 if (Method) 1881 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 1882 CGM.getContext().getCanonicalType(ResultType) && 1883 "Result type mismatch!"); 1884 1885 bool ReceiverCanBeNull = true; 1886 1887 // Super dispatch assumes that self is non-null; even the messenger 1888 // doesn't have a null check internally. 1889 if (IsSuper) { 1890 ReceiverCanBeNull = false; 1891 1892 // If this is a direct dispatch of a class method, check whether the class, 1893 // or anything in its hierarchy, was weak-linked. 1894 } else if (ClassReceiver && Method && Method->isClassMethod()) { 1895 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 1896 1897 // If we're emitting a method, and self is const (meaning just ARC, for now), 1898 // and the receiver is a load of self, then self is a valid object. 1899 } else if (auto CurMethod = 1900 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 1901 auto Self = CurMethod->getSelfDecl(); 1902 if (Self->getType().isConstQualified()) { 1903 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 1904 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 1905 if (SelfAddr == LI->getPointerOperand()) { 1906 ReceiverCanBeNull = false; 1907 } 1908 } 1909 } 1910 } 1911 1912 NullReturnState nullReturn; 1913 1914 llvm::Constant *Fn = nullptr; 1915 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 1916 if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0); 1917 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 1918 : ObjCTypes.getSendStretFn(IsSuper); 1919 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1920 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 1921 : ObjCTypes.getSendFpretFn(IsSuper); 1922 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 1923 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 1924 : ObjCTypes.getSendFp2retFn(IsSuper); 1925 } else { 1926 // arm64 uses objc_msgSend for stret methods and yet null receiver check 1927 // must be made for it. 1928 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 1929 nullReturn.init(CGF, Arg0); 1930 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 1931 : ObjCTypes.getSendFn(IsSuper); 1932 } 1933 1934 // Emit a null-check if there's a consumed argument other than the receiver. 1935 bool RequiresNullCheck = false; 1936 if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) { 1937 for (const auto *ParamDecl : Method->params()) { 1938 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1939 if (!nullReturn.NullBB) 1940 nullReturn.init(CGF, Arg0); 1941 RequiresNullCheck = true; 1942 break; 1943 } 1944 } 1945 } 1946 1947 llvm::Instruction *CallSite; 1948 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 1949 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs, 1950 nullptr, &CallSite); 1951 1952 // Mark the call as noreturn if the method is marked noreturn and the 1953 // receiver cannot be null. 1954 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 1955 llvm::CallSite(CallSite).setDoesNotReturn(); 1956 } 1957 1958 return nullReturn.complete(CGF, rvalue, ResultType, CallArgs, 1959 RequiresNullCheck ? Method : nullptr); 1960 } 1961 1962 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 1963 bool pointee = false) { 1964 // Note that GC qualification applies recursively to C pointer types 1965 // that aren't otherwise decorated. This is weird, but it's probably 1966 // an intentional workaround to the unreliable placement of GC qualifiers. 1967 if (FQT.isObjCGCStrong()) 1968 return Qualifiers::Strong; 1969 1970 if (FQT.isObjCGCWeak()) 1971 return Qualifiers::Weak; 1972 1973 if (auto ownership = FQT.getObjCLifetime()) { 1974 // Ownership does not apply recursively to C pointer types. 1975 if (pointee) return Qualifiers::GCNone; 1976 switch (ownership) { 1977 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 1978 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 1979 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 1980 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 1981 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 1982 } 1983 llvm_unreachable("bad objc ownership"); 1984 } 1985 1986 // Treat unqualified retainable pointers as strong. 1987 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 1988 return Qualifiers::Strong; 1989 1990 // Walk into C pointer types, but only in GC. 1991 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 1992 if (const PointerType *PT = FQT->getAs<PointerType>()) 1993 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 1994 } 1995 1996 return Qualifiers::GCNone; 1997 } 1998 1999 namespace { 2000 struct IvarInfo { 2001 CharUnits Offset; 2002 uint64_t SizeInWords; 2003 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2004 : Offset(offset), SizeInWords(sizeInWords) {} 2005 2006 // Allow sorting based on byte pos. 2007 bool operator<(const IvarInfo &other) const { 2008 return Offset < other.Offset; 2009 } 2010 }; 2011 2012 /// A helper class for building GC layout strings. 2013 class IvarLayoutBuilder { 2014 CodeGenModule &CGM; 2015 2016 /// The start of the layout. Offsets will be relative to this value, 2017 /// and entries less than this value will be silently discarded. 2018 CharUnits InstanceBegin; 2019 2020 /// The end of the layout. Offsets will never exceed this value. 2021 CharUnits InstanceEnd; 2022 2023 /// Whether we're generating the strong layout or the weak layout. 2024 bool ForStrongLayout; 2025 2026 /// Whether the offsets in IvarsInfo might be out-of-order. 2027 bool IsDisordered = false; 2028 2029 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2030 public: 2031 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2032 CharUnits instanceEnd, bool forStrongLayout) 2033 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2034 ForStrongLayout(forStrongLayout) { 2035 } 2036 2037 void visitRecord(const RecordType *RT, CharUnits offset); 2038 2039 template <class Iterator, class GetOffsetFn> 2040 void visitAggregate(Iterator begin, Iterator end, 2041 CharUnits aggrOffset, 2042 const GetOffsetFn &getOffset); 2043 2044 void visitField(const FieldDecl *field, CharUnits offset); 2045 2046 /// Add the layout of a block implementation. 2047 void visitBlock(const CGBlockInfo &blockInfo); 2048 2049 /// Is there any information for an interesting bitmap? 2050 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2051 2052 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2053 llvm::SmallVectorImpl<unsigned char> &buffer); 2054 2055 static void dump(ArrayRef<unsigned char> buffer) { 2056 const unsigned char *s = buffer.data(); 2057 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2058 if (!(s[i] & 0xf0)) 2059 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2060 else 2061 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2062 printf("\n"); 2063 } 2064 }; 2065 } 2066 2067 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2068 const CGBlockInfo &blockInfo) { 2069 2070 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2071 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2072 return nullPtr; 2073 2074 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2075 /*for strong layout*/ true); 2076 2077 builder.visitBlock(blockInfo); 2078 2079 if (!builder.hasBitmapData()) 2080 return nullPtr; 2081 2082 llvm::SmallVector<unsigned char, 32> buffer; 2083 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2084 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2085 printf("\n block variable layout for block: "); 2086 builder.dump(buffer); 2087 } 2088 2089 return C; 2090 } 2091 2092 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2093 // __isa is the first field in block descriptor and must assume by runtime's 2094 // convention that it is GC'able. 2095 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2096 2097 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2098 2099 // Ignore the optional 'this' capture: C++ objects are not assumed 2100 // to be GC'ed. 2101 2102 CharUnits lastFieldOffset; 2103 2104 // Walk the captured variables. 2105 for (const auto &CI : blockDecl->captures()) { 2106 const VarDecl *variable = CI.getVariable(); 2107 QualType type = variable->getType(); 2108 2109 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2110 2111 // Ignore constant captures. 2112 if (capture.isConstant()) continue; 2113 2114 CharUnits fieldOffset = capture.getOffset(); 2115 2116 // Block fields are not necessarily ordered; if we detect that we're 2117 // adding them out-of-order, make sure we sort later. 2118 if (fieldOffset < lastFieldOffset) 2119 IsDisordered = true; 2120 lastFieldOffset = fieldOffset; 2121 2122 // __block variables are passed by their descriptor address. 2123 if (CI.isByRef()) { 2124 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2125 continue; 2126 } 2127 2128 assert(!type->isArrayType() && "array variable should not be caught"); 2129 if (const RecordType *record = type->getAs<RecordType>()) { 2130 visitRecord(record, fieldOffset); 2131 continue; 2132 } 2133 2134 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2135 2136 if (GCAttr == Qualifiers::Strong) { 2137 assert(CGM.getContext().getTypeSize(type) 2138 == CGM.getTarget().getPointerWidth(0)); 2139 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2140 } 2141 } 2142 } 2143 2144 2145 /// getBlockCaptureLifetime - This routine returns life time of the captured 2146 /// block variable for the purpose of block layout meta-data generation. FQT is 2147 /// the type of the variable captured in the block. 2148 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2149 bool ByrefLayout) { 2150 // If it has an ownership qualifier, we're done. 2151 if (auto lifetime = FQT.getObjCLifetime()) 2152 return lifetime; 2153 2154 // If it doesn't, and this is ARC, it has no ownership. 2155 if (CGM.getLangOpts().ObjCAutoRefCount) 2156 return Qualifiers::OCL_None; 2157 2158 // In MRC, retainable pointers are owned by non-__block variables. 2159 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2160 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2161 2162 return Qualifiers::OCL_None; 2163 } 2164 2165 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2166 Qualifiers::ObjCLifetime LifeTime, 2167 CharUnits FieldOffset, 2168 CharUnits FieldSize) { 2169 // __block variables are passed by their descriptor address. 2170 if (IsByref) 2171 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2172 FieldSize)); 2173 else if (LifeTime == Qualifiers::OCL_Strong) 2174 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2175 FieldSize)); 2176 else if (LifeTime == Qualifiers::OCL_Weak) 2177 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2178 FieldSize)); 2179 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2180 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2181 FieldSize)); 2182 else 2183 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2184 FieldOffset, 2185 FieldSize)); 2186 } 2187 2188 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2189 const RecordDecl *RD, 2190 ArrayRef<const FieldDecl*> RecFields, 2191 CharUnits BytePos, bool &HasUnion, 2192 bool ByrefLayout) { 2193 bool IsUnion = (RD && RD->isUnion()); 2194 CharUnits MaxUnionSize = CharUnits::Zero(); 2195 const FieldDecl *MaxField = nullptr; 2196 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2197 CharUnits MaxFieldOffset = CharUnits::Zero(); 2198 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2199 2200 if (RecFields.empty()) 2201 return; 2202 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2203 2204 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2205 const FieldDecl *Field = RecFields[i]; 2206 // Note that 'i' here is actually the field index inside RD of Field, 2207 // although this dependency is hidden. 2208 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2209 CharUnits FieldOffset = 2210 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2211 2212 // Skip over unnamed or bitfields 2213 if (!Field->getIdentifier() || Field->isBitField()) { 2214 LastFieldBitfieldOrUnnamed = Field; 2215 LastBitfieldOrUnnamedOffset = FieldOffset; 2216 continue; 2217 } 2218 2219 LastFieldBitfieldOrUnnamed = nullptr; 2220 QualType FQT = Field->getType(); 2221 if (FQT->isRecordType() || FQT->isUnionType()) { 2222 if (FQT->isUnionType()) 2223 HasUnion = true; 2224 2225 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2226 BytePos + FieldOffset, HasUnion); 2227 continue; 2228 } 2229 2230 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2231 const ConstantArrayType *CArray = 2232 dyn_cast_or_null<ConstantArrayType>(Array); 2233 uint64_t ElCount = CArray->getSize().getZExtValue(); 2234 assert(CArray && "only array with known element size is supported"); 2235 FQT = CArray->getElementType(); 2236 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2237 const ConstantArrayType *CArray = 2238 dyn_cast_or_null<ConstantArrayType>(Array); 2239 ElCount *= CArray->getSize().getZExtValue(); 2240 FQT = CArray->getElementType(); 2241 } 2242 if (FQT->isRecordType() && ElCount) { 2243 int OldIndex = RunSkipBlockVars.size() - 1; 2244 const RecordType *RT = FQT->getAs<RecordType>(); 2245 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2246 HasUnion); 2247 2248 // Replicate layout information for each array element. Note that 2249 // one element is already done. 2250 uint64_t ElIx = 1; 2251 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2252 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2253 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2254 RunSkipBlockVars.push_back( 2255 RUN_SKIP(RunSkipBlockVars[i].opcode, 2256 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2257 RunSkipBlockVars[i].block_var_size)); 2258 } 2259 continue; 2260 } 2261 } 2262 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2263 if (IsUnion) { 2264 CharUnits UnionIvarSize = FieldSize; 2265 if (UnionIvarSize > MaxUnionSize) { 2266 MaxUnionSize = UnionIvarSize; 2267 MaxField = Field; 2268 MaxFieldOffset = FieldOffset; 2269 } 2270 } else { 2271 UpdateRunSkipBlockVars(false, 2272 getBlockCaptureLifetime(FQT, ByrefLayout), 2273 BytePos + FieldOffset, 2274 FieldSize); 2275 } 2276 } 2277 2278 if (LastFieldBitfieldOrUnnamed) { 2279 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2280 // Last field was a bitfield. Must update the info. 2281 uint64_t BitFieldSize 2282 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2283 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2284 ((BitFieldSize % ByteSizeInBits) != 0); 2285 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2286 Size += LastBitfieldOrUnnamedOffset; 2287 UpdateRunSkipBlockVars(false, 2288 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2289 ByrefLayout), 2290 BytePos + LastBitfieldOrUnnamedOffset, 2291 Size); 2292 } else { 2293 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2294 // Last field was unnamed. Must update skip info. 2295 CharUnits FieldSize 2296 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2297 UpdateRunSkipBlockVars(false, 2298 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2299 ByrefLayout), 2300 BytePos + LastBitfieldOrUnnamedOffset, 2301 FieldSize); 2302 } 2303 } 2304 2305 if (MaxField) 2306 UpdateRunSkipBlockVars(false, 2307 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2308 BytePos + MaxFieldOffset, 2309 MaxUnionSize); 2310 } 2311 2312 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2313 CharUnits BytePos, 2314 bool &HasUnion, 2315 bool ByrefLayout) { 2316 const RecordDecl *RD = RT->getDecl(); 2317 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2318 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2319 const llvm::StructLayout *RecLayout = 2320 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2321 2322 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2323 } 2324 2325 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2326 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2327 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2328 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2329 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2330 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2331 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2332 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2333 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2334 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2335 SmallVectorImpl<unsigned char> &Layout) { 2336 uint64_t Result = 0; 2337 if (Layout.size() <= 3) { 2338 unsigned size = Layout.size(); 2339 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2340 unsigned char inst; 2341 enum BLOCK_LAYOUT_OPCODE opcode ; 2342 switch (size) { 2343 case 3: 2344 inst = Layout[0]; 2345 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2346 if (opcode == BLOCK_LAYOUT_STRONG) 2347 strong_word_count = (inst & 0xF)+1; 2348 else 2349 return 0; 2350 inst = Layout[1]; 2351 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2352 if (opcode == BLOCK_LAYOUT_BYREF) 2353 byref_word_count = (inst & 0xF)+1; 2354 else 2355 return 0; 2356 inst = Layout[2]; 2357 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2358 if (opcode == BLOCK_LAYOUT_WEAK) 2359 weak_word_count = (inst & 0xF)+1; 2360 else 2361 return 0; 2362 break; 2363 2364 case 2: 2365 inst = Layout[0]; 2366 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2367 if (opcode == BLOCK_LAYOUT_STRONG) { 2368 strong_word_count = (inst & 0xF)+1; 2369 inst = Layout[1]; 2370 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2371 if (opcode == BLOCK_LAYOUT_BYREF) 2372 byref_word_count = (inst & 0xF)+1; 2373 else if (opcode == BLOCK_LAYOUT_WEAK) 2374 weak_word_count = (inst & 0xF)+1; 2375 else 2376 return 0; 2377 } 2378 else if (opcode == BLOCK_LAYOUT_BYREF) { 2379 byref_word_count = (inst & 0xF)+1; 2380 inst = Layout[1]; 2381 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2382 if (opcode == BLOCK_LAYOUT_WEAK) 2383 weak_word_count = (inst & 0xF)+1; 2384 else 2385 return 0; 2386 } 2387 else 2388 return 0; 2389 break; 2390 2391 case 1: 2392 inst = Layout[0]; 2393 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2394 if (opcode == BLOCK_LAYOUT_STRONG) 2395 strong_word_count = (inst & 0xF)+1; 2396 else if (opcode == BLOCK_LAYOUT_BYREF) 2397 byref_word_count = (inst & 0xF)+1; 2398 else if (opcode == BLOCK_LAYOUT_WEAK) 2399 weak_word_count = (inst & 0xF)+1; 2400 else 2401 return 0; 2402 break; 2403 2404 default: 2405 return 0; 2406 } 2407 2408 // Cannot inline when any of the word counts is 15. Because this is one less 2409 // than the actual work count (so 15 means 16 actual word counts), 2410 // and we can only display 0 thru 15 word counts. 2411 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2412 return 0; 2413 2414 unsigned count = 2415 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2416 2417 if (size == count) { 2418 if (strong_word_count) 2419 Result = strong_word_count; 2420 Result <<= 4; 2421 if (byref_word_count) 2422 Result += byref_word_count; 2423 Result <<= 4; 2424 if (weak_word_count) 2425 Result += weak_word_count; 2426 } 2427 } 2428 return Result; 2429 } 2430 2431 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2432 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2433 if (RunSkipBlockVars.empty()) 2434 return nullPtr; 2435 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2436 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2437 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2438 2439 // Sort on byte position; captures might not be allocated in order, 2440 // and unions can do funny things. 2441 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2442 SmallVector<unsigned char, 16> Layout; 2443 2444 unsigned size = RunSkipBlockVars.size(); 2445 for (unsigned i = 0; i < size; i++) { 2446 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2447 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2448 CharUnits end_byte_pos = start_byte_pos; 2449 unsigned j = i+1; 2450 while (j < size) { 2451 if (opcode == RunSkipBlockVars[j].opcode) { 2452 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2453 i++; 2454 } 2455 else 2456 break; 2457 } 2458 CharUnits size_in_bytes = 2459 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2460 if (j < size) { 2461 CharUnits gap = 2462 RunSkipBlockVars[j].block_var_bytepos - 2463 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2464 size_in_bytes += gap; 2465 } 2466 CharUnits residue_in_bytes = CharUnits::Zero(); 2467 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2468 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2469 size_in_bytes -= residue_in_bytes; 2470 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2471 } 2472 2473 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2474 while (size_in_words >= 16) { 2475 // Note that value in imm. is one less that the actual 2476 // value. So, 0xf means 16 words follow! 2477 unsigned char inst = (opcode << 4) | 0xf; 2478 Layout.push_back(inst); 2479 size_in_words -= 16; 2480 } 2481 if (size_in_words > 0) { 2482 // Note that value in imm. is one less that the actual 2483 // value. So, we subtract 1 away! 2484 unsigned char inst = (opcode << 4) | (size_in_words-1); 2485 Layout.push_back(inst); 2486 } 2487 if (residue_in_bytes > CharUnits::Zero()) { 2488 unsigned char inst = 2489 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2490 Layout.push_back(inst); 2491 } 2492 } 2493 2494 while (!Layout.empty()) { 2495 unsigned char inst = Layout.back(); 2496 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2497 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2498 Layout.pop_back(); 2499 else 2500 break; 2501 } 2502 2503 uint64_t Result = InlineLayoutInstruction(Layout); 2504 if (Result != 0) { 2505 // Block variable layout instruction has been inlined. 2506 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2507 if (ComputeByrefLayout) 2508 printf("\n Inline BYREF variable layout: "); 2509 else 2510 printf("\n Inline block variable layout: "); 2511 printf("0x0%" PRIx64 "", Result); 2512 if (auto numStrong = (Result & 0xF00) >> 8) 2513 printf(", BL_STRONG:%d", (int) numStrong); 2514 if (auto numByref = (Result & 0x0F0) >> 4) 2515 printf(", BL_BYREF:%d", (int) numByref); 2516 if (auto numWeak = (Result & 0x00F) >> 0) 2517 printf(", BL_WEAK:%d", (int) numWeak); 2518 printf(", BL_OPERATOR:0\n"); 2519 } 2520 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2521 } 2522 2523 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2524 Layout.push_back(inst); 2525 std::string BitMap; 2526 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2527 BitMap += Layout[i]; 2528 2529 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2530 if (ComputeByrefLayout) 2531 printf("\n Byref variable layout: "); 2532 else 2533 printf("\n Block variable layout: "); 2534 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2535 unsigned char inst = BitMap[i]; 2536 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2537 unsigned delta = 1; 2538 switch (opcode) { 2539 case BLOCK_LAYOUT_OPERATOR: 2540 printf("BL_OPERATOR:"); 2541 delta = 0; 2542 break; 2543 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2544 printf("BL_NON_OBJECT_BYTES:"); 2545 break; 2546 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2547 printf("BL_NON_OBJECT_WORD:"); 2548 break; 2549 case BLOCK_LAYOUT_STRONG: 2550 printf("BL_STRONG:"); 2551 break; 2552 case BLOCK_LAYOUT_BYREF: 2553 printf("BL_BYREF:"); 2554 break; 2555 case BLOCK_LAYOUT_WEAK: 2556 printf("BL_WEAK:"); 2557 break; 2558 case BLOCK_LAYOUT_UNRETAINED: 2559 printf("BL_UNRETAINED:"); 2560 break; 2561 } 2562 // Actual value of word count is one more that what is in the imm. 2563 // field of the instruction 2564 printf("%d", (inst & 0xf) + delta); 2565 if (i < e-1) 2566 printf(", "); 2567 else 2568 printf("\n"); 2569 } 2570 } 2571 2572 llvm::GlobalVariable *Entry = CreateMetadataVar( 2573 "OBJC_CLASS_NAME_", 2574 llvm::ConstantDataArray::getString(VMContext, BitMap, false), 2575 "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true); 2576 return getConstantGEP(VMContext, Entry, 0, 0); 2577 } 2578 2579 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2580 const CGBlockInfo &blockInfo) { 2581 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2582 2583 RunSkipBlockVars.clear(); 2584 bool hasUnion = false; 2585 2586 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2587 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2588 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2589 2590 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2591 2592 // Calculate the basic layout of the block structure. 2593 const llvm::StructLayout *layout = 2594 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2595 2596 // Ignore the optional 'this' capture: C++ objects are not assumed 2597 // to be GC'ed. 2598 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2599 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2600 blockInfo.BlockHeaderForcedGapOffset, 2601 blockInfo.BlockHeaderForcedGapSize); 2602 // Walk the captured variables. 2603 for (const auto &CI : blockDecl->captures()) { 2604 const VarDecl *variable = CI.getVariable(); 2605 QualType type = variable->getType(); 2606 2607 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2608 2609 // Ignore constant captures. 2610 if (capture.isConstant()) continue; 2611 2612 CharUnits fieldOffset = 2613 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2614 2615 assert(!type->isArrayType() && "array variable should not be caught"); 2616 if (!CI.isByRef()) 2617 if (const RecordType *record = type->getAs<RecordType>()) { 2618 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2619 continue; 2620 } 2621 CharUnits fieldSize; 2622 if (CI.isByRef()) 2623 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2624 else 2625 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2626 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2627 fieldOffset, fieldSize); 2628 } 2629 return getBitmapBlockLayout(false); 2630 } 2631 2632 2633 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2634 QualType T) { 2635 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2636 assert(!T->isArrayType() && "__block array variable should not be caught"); 2637 CharUnits fieldOffset; 2638 RunSkipBlockVars.clear(); 2639 bool hasUnion = false; 2640 if (const RecordType *record = T->getAs<RecordType>()) { 2641 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2642 llvm::Constant *Result = getBitmapBlockLayout(true); 2643 return Result; 2644 } 2645 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2646 return nullPtr; 2647 } 2648 2649 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2650 const ObjCProtocolDecl *PD) { 2651 // FIXME: I don't understand why gcc generates this, or where it is 2652 // resolved. Investigate. Its also wasteful to look this up over and over. 2653 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2654 2655 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2656 ObjCTypes.getExternalProtocolPtrTy()); 2657 } 2658 2659 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2660 // FIXME: We shouldn't need this, the protocol decl should contain enough 2661 // information to tell us whether this was a declaration or a definition. 2662 DefinedProtocols.insert(PD->getIdentifier()); 2663 2664 // If we have generated a forward reference to this protocol, emit 2665 // it now. Otherwise do nothing, the protocol objects are lazily 2666 // emitted. 2667 if (Protocols.count(PD->getIdentifier())) 2668 GetOrEmitProtocol(PD); 2669 } 2670 2671 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2672 if (DefinedProtocols.count(PD->getIdentifier())) 2673 return GetOrEmitProtocol(PD); 2674 2675 return GetOrEmitProtocolRef(PD); 2676 } 2677 2678 /* 2679 // Objective-C 1.0 extensions 2680 struct _objc_protocol { 2681 struct _objc_protocol_extension *isa; 2682 char *protocol_name; 2683 struct _objc_protocol_list *protocol_list; 2684 struct _objc__method_prototype_list *instance_methods; 2685 struct _objc__method_prototype_list *class_methods 2686 }; 2687 2688 See EmitProtocolExtension(). 2689 */ 2690 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2691 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2692 2693 // Early exit if a defining object has already been generated. 2694 if (Entry && Entry->hasInitializer()) 2695 return Entry; 2696 2697 // Use the protocol definition, if there is one. 2698 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2699 PD = Def; 2700 2701 // FIXME: I don't understand why gcc generates this, or where it is 2702 // resolved. Investigate. Its also wasteful to look this up over and over. 2703 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2704 2705 // Construct method lists. 2706 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2707 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 2708 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 2709 for (const auto *MD : PD->instance_methods()) { 2710 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2711 if (!C) 2712 return GetOrEmitProtocolRef(PD); 2713 2714 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2715 OptInstanceMethods.push_back(C); 2716 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2717 } else { 2718 InstanceMethods.push_back(C); 2719 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2720 } 2721 } 2722 2723 for (const auto *MD : PD->class_methods()) { 2724 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2725 if (!C) 2726 return GetOrEmitProtocolRef(PD); 2727 2728 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2729 OptClassMethods.push_back(C); 2730 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2731 } else { 2732 ClassMethods.push_back(C); 2733 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2734 } 2735 } 2736 2737 MethodTypesExt.insert(MethodTypesExt.end(), 2738 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 2739 2740 llvm::Constant *Values[] = { 2741 EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods, 2742 MethodTypesExt), 2743 GetClassName(PD->getObjCRuntimeNameAsString()), 2744 EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2745 PD->protocol_begin(), PD->protocol_end()), 2746 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(), 2747 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2748 InstanceMethods), 2749 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(), 2750 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2751 ClassMethods)}; 2752 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 2753 Values); 2754 2755 if (Entry) { 2756 // Already created, update the initializer. 2757 assert(Entry->hasPrivateLinkage()); 2758 Entry->setInitializer(Init); 2759 } else { 2760 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2761 false, llvm::GlobalValue::PrivateLinkage, 2762 Init, "OBJC_PROTOCOL_" + PD->getName()); 2763 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2764 // FIXME: Is this necessary? Why only for protocol? 2765 Entry->setAlignment(4); 2766 2767 Protocols[PD->getIdentifier()] = Entry; 2768 } 2769 CGM.addCompilerUsedGlobal(Entry); 2770 2771 return Entry; 2772 } 2773 2774 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2775 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2776 2777 if (!Entry) { 2778 // We use the initializer as a marker of whether this is a forward 2779 // reference or not. At module finalization we add the empty 2780 // contents for protocols which were referenced but never defined. 2781 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2782 false, llvm::GlobalValue::PrivateLinkage, 2783 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2784 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2785 // FIXME: Is this necessary? Why only for protocol? 2786 Entry->setAlignment(4); 2787 } 2788 2789 return Entry; 2790 } 2791 2792 /* 2793 struct _objc_protocol_extension { 2794 uint32_t size; 2795 struct objc_method_description_list *optional_instance_methods; 2796 struct objc_method_description_list *optional_class_methods; 2797 struct objc_property_list *instance_properties; 2798 const char ** extendedMethodTypes; 2799 }; 2800 */ 2801 llvm::Constant * 2802 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 2803 ArrayRef<llvm::Constant*> OptInstanceMethods, 2804 ArrayRef<llvm::Constant*> OptClassMethods, 2805 ArrayRef<llvm::Constant*> MethodTypesExt) { 2806 uint64_t Size = 2807 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 2808 llvm::Constant *Values[] = { 2809 llvm::ConstantInt::get(ObjCTypes.IntTy, Size), 2810 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(), 2811 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2812 OptInstanceMethods), 2813 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(), 2814 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2815 OptClassMethods), 2816 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 2817 ObjCTypes), 2818 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 2819 MethodTypesExt, ObjCTypes)}; 2820 2821 // Return null if no extension bits are used. 2822 if (Values[1]->isNullValue() && Values[2]->isNullValue() && 2823 Values[3]->isNullValue() && Values[4]->isNullValue()) 2824 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 2825 2826 llvm::Constant *Init = 2827 llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); 2828 2829 // No special section, but goes in llvm.used 2830 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init, 2831 StringRef(), CGM.getPointerAlign(), true); 2832 } 2833 2834 /* 2835 struct objc_protocol_list { 2836 struct objc_protocol_list *next; 2837 long count; 2838 Protocol *list[]; 2839 }; 2840 */ 2841 llvm::Constant * 2842 CGObjCMac::EmitProtocolList(Twine Name, 2843 ObjCProtocolDecl::protocol_iterator begin, 2844 ObjCProtocolDecl::protocol_iterator end) { 2845 SmallVector<llvm::Constant *, 16> ProtocolRefs; 2846 2847 for (; begin != end; ++begin) 2848 ProtocolRefs.push_back(GetProtocolRef(*begin)); 2849 2850 // Just return null for empty protocol lists 2851 if (ProtocolRefs.empty()) 2852 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2853 2854 // This list is null terminated. 2855 ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); 2856 2857 llvm::Constant *Values[3]; 2858 // This field is only used by the runtime. 2859 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2860 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, 2861 ProtocolRefs.size() - 1); 2862 Values[2] = 2863 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, 2864 ProtocolRefs.size()), 2865 ProtocolRefs); 2866 2867 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2868 llvm::GlobalVariable *GV = 2869 CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2870 CGM.getPointerAlign(), false); 2871 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 2872 } 2873 2874 void CGObjCCommonMac:: 2875 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 2876 SmallVectorImpl<llvm::Constant *> &Properties, 2877 const Decl *Container, 2878 const ObjCProtocolDecl *Proto, 2879 const ObjCCommonTypesHelper &ObjCTypes) { 2880 for (const auto *P : Proto->protocols()) 2881 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes); 2882 for (const auto *PD : Proto->properties()) { 2883 if (!PropertySet.insert(PD->getIdentifier()).second) 2884 continue; 2885 llvm::Constant *Prop[] = { 2886 GetPropertyName(PD->getIdentifier()), 2887 GetPropertyTypeString(PD, Container) 2888 }; 2889 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2890 } 2891 } 2892 2893 /* 2894 struct _objc_property { 2895 const char * const name; 2896 const char * const attributes; 2897 }; 2898 2899 struct _objc_property_list { 2900 uint32_t entsize; // sizeof (struct _objc_property) 2901 uint32_t prop_count; 2902 struct _objc_property[prop_count]; 2903 }; 2904 */ 2905 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 2906 const Decl *Container, 2907 const ObjCContainerDecl *OCD, 2908 const ObjCCommonTypesHelper &ObjCTypes) { 2909 SmallVector<llvm::Constant *, 16> Properties; 2910 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 2911 for (const auto *PD : OCD->properties()) { 2912 PropertySet.insert(PD->getIdentifier()); 2913 llvm::Constant *Prop[] = { 2914 GetPropertyName(PD->getIdentifier()), 2915 GetPropertyTypeString(PD, Container) 2916 }; 2917 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, 2918 Prop)); 2919 } 2920 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 2921 for (const auto *P : OID->all_referenced_protocols()) 2922 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes); 2923 } 2924 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 2925 for (const auto *P : CD->protocols()) 2926 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes); 2927 } 2928 2929 // Return null for empty list. 2930 if (Properties.empty()) 2931 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2932 2933 unsigned PropertySize = 2934 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 2935 llvm::Constant *Values[3]; 2936 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); 2937 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); 2938 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, 2939 Properties.size()); 2940 Values[2] = llvm::ConstantArray::get(AT, Properties); 2941 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2942 2943 llvm::GlobalVariable *GV = 2944 CreateMetadataVar(Name, Init, 2945 (ObjCABI == 2) ? "__DATA, __objc_const" : 2946 "__OBJC,__property,regular,no_dead_strip", 2947 CGM.getPointerAlign(), 2948 true); 2949 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 2950 } 2951 2952 llvm::Constant * 2953 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 2954 ArrayRef<llvm::Constant*> MethodTypes, 2955 const ObjCCommonTypesHelper &ObjCTypes) { 2956 // Return null for empty list. 2957 if (MethodTypes.empty()) 2958 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 2959 2960 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 2961 MethodTypes.size()); 2962 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 2963 2964 llvm::GlobalVariable *GV = CreateMetadataVar( 2965 Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(), 2966 CGM.getPointerAlign(), true); 2967 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 2968 } 2969 2970 /* 2971 struct objc_method_description_list { 2972 int count; 2973 struct objc_method_description list[]; 2974 }; 2975 */ 2976 llvm::Constant * 2977 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 2978 llvm::Constant *Desc[] = { 2979 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 2980 ObjCTypes.SelectorPtrTy), 2981 GetMethodVarType(MD) 2982 }; 2983 if (!Desc[1]) 2984 return nullptr; 2985 2986 return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, 2987 Desc); 2988 } 2989 2990 llvm::Constant * 2991 CGObjCMac::EmitMethodDescList(Twine Name, const char *Section, 2992 ArrayRef<llvm::Constant*> Methods) { 2993 // Return null for empty list. 2994 if (Methods.empty()) 2995 return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 2996 2997 llvm::Constant *Values[2]; 2998 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 2999 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, 3000 Methods.size()); 3001 Values[1] = llvm::ConstantArray::get(AT, Methods); 3002 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3003 3004 llvm::GlobalVariable *GV = 3005 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3006 return llvm::ConstantExpr::getBitCast(GV, 3007 ObjCTypes.MethodDescriptionListPtrTy); 3008 } 3009 3010 /* 3011 struct _objc_category { 3012 char *category_name; 3013 char *class_name; 3014 struct _objc_method_list *instance_methods; 3015 struct _objc_method_list *class_methods; 3016 struct _objc_protocol_list *protocols; 3017 uint32_t size; // <rdar://4585769> 3018 struct _objc_property_list *instance_properties; 3019 }; 3020 */ 3021 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3022 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3023 3024 // FIXME: This is poor design, the OCD should have a pointer to the category 3025 // decl. Additionally, note that Category can be null for the @implementation 3026 // w/o an @interface case. Sema should just create one for us as it does for 3027 // @implementation so everyone else can live life under a clear blue sky. 3028 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3029 const ObjCCategoryDecl *Category = 3030 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3031 3032 SmallString<256> ExtName; 3033 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3034 << OCD->getName(); 3035 3036 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3037 for (const auto *I : OCD->instance_methods()) 3038 // Instance methods should always be defined. 3039 InstanceMethods.push_back(GetMethodConstant(I)); 3040 3041 for (const auto *I : OCD->class_methods()) 3042 // Class methods should always be defined. 3043 ClassMethods.push_back(GetMethodConstant(I)); 3044 3045 llvm::Constant *Values[7]; 3046 Values[0] = GetClassName(OCD->getName()); 3047 Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString()); 3048 LazySymbols.insert(Interface->getIdentifier()); 3049 Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(), 3050 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 3051 InstanceMethods); 3052 Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(), 3053 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 3054 ClassMethods); 3055 if (Category) { 3056 Values[4] = 3057 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3058 Category->protocol_begin(), Category->protocol_end()); 3059 } else { 3060 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3061 } 3062 Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3063 3064 // If there is no category @interface then there can be no properties. 3065 if (Category) { 3066 Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3067 OCD, Category, ObjCTypes); 3068 } else { 3069 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3070 } 3071 3072 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, 3073 Values); 3074 3075 llvm::GlobalVariable *GV = 3076 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init, 3077 "__OBJC,__category,regular,no_dead_strip", 3078 CGM.getPointerAlign(), true); 3079 DefinedCategories.push_back(GV); 3080 DefinedCategoryNames.insert(ExtName.str()); 3081 // method definition entries must be clear for next implementation. 3082 MethodDefinitions.clear(); 3083 } 3084 3085 enum FragileClassFlags { 3086 /// Apparently: is not a meta-class. 3087 FragileABI_Class_Factory = 0x00001, 3088 3089 /// Is a meta-class. 3090 FragileABI_Class_Meta = 0x00002, 3091 3092 /// Has a non-trivial constructor or destructor. 3093 FragileABI_Class_HasCXXStructors = 0x02000, 3094 3095 /// Has hidden visibility. 3096 FragileABI_Class_Hidden = 0x20000, 3097 3098 /// Class implementation was compiled under ARC. 3099 FragileABI_Class_CompiledByARC = 0x04000000, 3100 3101 /// Class implementation was compiled under MRC and has MRC weak ivars. 3102 /// Exclusive with CompiledByARC. 3103 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3104 }; 3105 3106 enum NonFragileClassFlags { 3107 /// Is a meta-class. 3108 NonFragileABI_Class_Meta = 0x00001, 3109 3110 /// Is a root class. 3111 NonFragileABI_Class_Root = 0x00002, 3112 3113 /// Has a non-trivial constructor or destructor. 3114 NonFragileABI_Class_HasCXXStructors = 0x00004, 3115 3116 /// Has hidden visibility. 3117 NonFragileABI_Class_Hidden = 0x00010, 3118 3119 /// Has the exception attribute. 3120 NonFragileABI_Class_Exception = 0x00020, 3121 3122 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3123 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3124 3125 /// Class implementation was compiled under ARC. 3126 NonFragileABI_Class_CompiledByARC = 0x00080, 3127 3128 /// Class has non-trivial destructors, but zero-initialization is okay. 3129 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3130 3131 /// Class implementation was compiled under MRC and has MRC weak ivars. 3132 /// Exclusive with CompiledByARC. 3133 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3134 }; 3135 3136 static bool hasWeakMember(QualType type) { 3137 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3138 return true; 3139 } 3140 3141 if (auto recType = type->getAs<RecordType>()) { 3142 for (auto field : recType->getDecl()->fields()) { 3143 if (hasWeakMember(field->getType())) 3144 return true; 3145 } 3146 } 3147 3148 return false; 3149 } 3150 3151 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3152 /// (and actually fill in a layout string) if we really do have any 3153 /// __weak ivars. 3154 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3155 const ObjCImplementationDecl *ID) { 3156 if (!CGM.getLangOpts().ObjCWeak) return false; 3157 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3158 3159 for (const ObjCIvarDecl *ivar = 3160 ID->getClassInterface()->all_declared_ivar_begin(); 3161 ivar; ivar = ivar->getNextIvar()) { 3162 if (hasWeakMember(ivar->getType())) 3163 return true; 3164 } 3165 3166 return false; 3167 } 3168 3169 /* 3170 struct _objc_class { 3171 Class isa; 3172 Class super_class; 3173 const char *name; 3174 long version; 3175 long info; 3176 long instance_size; 3177 struct _objc_ivar_list *ivars; 3178 struct _objc_method_list *methods; 3179 struct _objc_cache *cache; 3180 struct _objc_protocol_list *protocols; 3181 // Objective-C 1.0 extensions (<rdr://4585769>) 3182 const char *ivar_layout; 3183 struct _objc_class_ext *ext; 3184 }; 3185 3186 See EmitClassExtension(); 3187 */ 3188 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3189 DefinedSymbols.insert(ID->getIdentifier()); 3190 3191 std::string ClassName = ID->getNameAsString(); 3192 // FIXME: Gross 3193 ObjCInterfaceDecl *Interface = 3194 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3195 llvm::Constant *Protocols = 3196 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3197 Interface->all_referenced_protocol_begin(), 3198 Interface->all_referenced_protocol_end()); 3199 unsigned Flags = FragileABI_Class_Factory; 3200 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3201 Flags |= FragileABI_Class_HasCXXStructors; 3202 3203 bool hasMRCWeak = false; 3204 3205 if (CGM.getLangOpts().ObjCAutoRefCount) 3206 Flags |= FragileABI_Class_CompiledByARC; 3207 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3208 Flags |= FragileABI_Class_HasMRCWeakIvars; 3209 3210 CharUnits Size = 3211 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3212 3213 // FIXME: Set CXX-structors flag. 3214 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3215 Flags |= FragileABI_Class_Hidden; 3216 3217 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3218 for (const auto *I : ID->instance_methods()) 3219 // Instance methods should always be defined. 3220 InstanceMethods.push_back(GetMethodConstant(I)); 3221 3222 for (const auto *I : ID->class_methods()) 3223 // Class methods should always be defined. 3224 ClassMethods.push_back(GetMethodConstant(I)); 3225 3226 for (const auto *PID : ID->property_impls()) { 3227 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3228 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3229 3230 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3231 if (llvm::Constant *C = GetMethodConstant(MD)) 3232 InstanceMethods.push_back(C); 3233 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3234 if (llvm::Constant *C = GetMethodConstant(MD)) 3235 InstanceMethods.push_back(C); 3236 } 3237 } 3238 3239 llvm::Constant *Values[12]; 3240 Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods); 3241 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3242 // Record a reference to the super class. 3243 LazySymbols.insert(Super->getIdentifier()); 3244 3245 Values[ 1] = 3246 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3247 ObjCTypes.ClassPtrTy); 3248 } else { 3249 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3250 } 3251 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3252 // Version is always 0. 3253 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3254 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3255 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity()); 3256 Values[ 6] = EmitIvarList(ID, false); 3257 Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(), 3258 "__OBJC,__inst_meth,regular,no_dead_strip", 3259 InstanceMethods); 3260 // cache is always NULL. 3261 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3262 Values[ 9] = Protocols; 3263 Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size); 3264 Values[11] = EmitClassExtension(ID, Size, hasMRCWeak); 3265 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3266 Values); 3267 std::string Name("OBJC_CLASS_"); 3268 Name += ClassName; 3269 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3270 // Check for a forward reference. 3271 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3272 if (GV) { 3273 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3274 "Forward metaclass reference has incorrect type."); 3275 GV->setInitializer(Init); 3276 GV->setSection(Section); 3277 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3278 CGM.addCompilerUsedGlobal(GV); 3279 } else 3280 GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3281 DefinedClasses.push_back(GV); 3282 ImplementedClasses.push_back(Interface); 3283 // method definition entries must be clear for next implementation. 3284 MethodDefinitions.clear(); 3285 } 3286 3287 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3288 llvm::Constant *Protocols, 3289 ArrayRef<llvm::Constant*> Methods) { 3290 unsigned Flags = FragileABI_Class_Meta; 3291 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3292 3293 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3294 Flags |= FragileABI_Class_Hidden; 3295 3296 llvm::Constant *Values[12]; 3297 // The isa for the metaclass is the root of the hierarchy. 3298 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3299 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3300 Root = Super; 3301 Values[ 0] = 3302 llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3303 ObjCTypes.ClassPtrTy); 3304 // The super class for the metaclass is emitted as the name of the 3305 // super class. The runtime fixes this up to point to the 3306 // *metaclass* for the super class. 3307 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3308 Values[ 1] = 3309 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3310 ObjCTypes.ClassPtrTy); 3311 } else { 3312 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3313 } 3314 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3315 // Version is always 0. 3316 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3317 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3318 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3319 Values[ 6] = EmitIvarList(ID, true); 3320 Values[7] = 3321 EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(), 3322 "__OBJC,__cls_meth,regular,no_dead_strip", Methods); 3323 // cache is always NULL. 3324 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3325 Values[ 9] = Protocols; 3326 // ivar_layout for metaclass is always NULL. 3327 Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3328 // The class extension is always unused for metaclasses. 3329 Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3330 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3331 Values); 3332 3333 std::string Name("OBJC_METACLASS_"); 3334 Name += ID->getName(); 3335 3336 // Check for a forward reference. 3337 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3338 if (GV) { 3339 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3340 "Forward metaclass reference has incorrect type."); 3341 GV->setInitializer(Init); 3342 } else { 3343 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3344 llvm::GlobalValue::PrivateLinkage, 3345 Init, Name); 3346 } 3347 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3348 GV->setAlignment(4); 3349 CGM.addCompilerUsedGlobal(GV); 3350 3351 return GV; 3352 } 3353 3354 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3355 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3356 3357 // FIXME: Should we look these up somewhere other than the module. Its a bit 3358 // silly since we only generate these while processing an implementation, so 3359 // exactly one pointer would work if know when we entered/exitted an 3360 // implementation block. 3361 3362 // Check for an existing forward reference. 3363 // Previously, metaclass with internal linkage may have been defined. 3364 // pass 'true' as 2nd argument so it is returned. 3365 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3366 if (!GV) 3367 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3368 llvm::GlobalValue::PrivateLinkage, nullptr, 3369 Name); 3370 3371 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3372 "Forward metaclass reference has incorrect type."); 3373 return GV; 3374 } 3375 3376 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3377 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3378 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3379 3380 if (!GV) 3381 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3382 llvm::GlobalValue::PrivateLinkage, nullptr, 3383 Name); 3384 3385 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3386 "Forward class metadata reference has incorrect type."); 3387 return GV; 3388 } 3389 3390 /* 3391 Emit a "class extension", which in this specific context means extra 3392 data that doesn't fit in the normal fragile-ABI class structure, and 3393 has nothing to do with the language concept of a class extension. 3394 3395 struct objc_class_ext { 3396 uint32_t size; 3397 const char *weak_ivar_layout; 3398 struct _objc_property_list *properties; 3399 }; 3400 */ 3401 llvm::Constant * 3402 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3403 CharUnits InstanceSize, bool hasMRCWeakIvars) { 3404 uint64_t Size = 3405 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3406 3407 llvm::Constant *Values[3]; 3408 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3409 Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3410 hasMRCWeakIvars); 3411 Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 3412 ID, ID->getClassInterface(), ObjCTypes); 3413 3414 // Return null if no extension bits are used. 3415 if (Values[1]->isNullValue() && Values[2]->isNullValue()) 3416 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3417 3418 llvm::Constant *Init = 3419 llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); 3420 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init, 3421 "__OBJC,__class_ext,regular,no_dead_strip", 3422 CGM.getPointerAlign(), true); 3423 } 3424 3425 /* 3426 struct objc_ivar { 3427 char *ivar_name; 3428 char *ivar_type; 3429 int ivar_offset; 3430 }; 3431 3432 struct objc_ivar_list { 3433 int ivar_count; 3434 struct objc_ivar list[count]; 3435 }; 3436 */ 3437 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3438 bool ForClass) { 3439 std::vector<llvm::Constant*> Ivars; 3440 3441 // When emitting the root class GCC emits ivar entries for the 3442 // actual class structure. It is not clear if we need to follow this 3443 // behavior; for now lets try and get away with not doing it. If so, 3444 // the cleanest solution would be to make up an ObjCInterfaceDecl 3445 // for the class. 3446 if (ForClass) 3447 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3448 3449 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3450 3451 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3452 IVD; IVD = IVD->getNextIvar()) { 3453 // Ignore unnamed bit-fields. 3454 if (!IVD->getDeclName()) 3455 continue; 3456 llvm::Constant *Ivar[] = { 3457 GetMethodVarName(IVD->getIdentifier()), 3458 GetMethodVarType(IVD), 3459 llvm::ConstantInt::get(ObjCTypes.IntTy, 3460 ComputeIvarBaseOffset(CGM, OID, IVD)) 3461 }; 3462 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); 3463 } 3464 3465 // Return null for empty list. 3466 if (Ivars.empty()) 3467 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3468 3469 llvm::Constant *Values[2]; 3470 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 3471 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, 3472 Ivars.size()); 3473 Values[1] = llvm::ConstantArray::get(AT, Ivars); 3474 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3475 3476 llvm::GlobalVariable *GV; 3477 if (ForClass) 3478 GV = 3479 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init, 3480 "__OBJC,__class_vars,regular,no_dead_strip", 3481 CGM.getPointerAlign(), true); 3482 else 3483 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init, 3484 "__OBJC,__instance_vars,regular,no_dead_strip", 3485 CGM.getPointerAlign(), true); 3486 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3487 } 3488 3489 /* 3490 struct objc_method { 3491 SEL method_name; 3492 char *method_types; 3493 void *method; 3494 }; 3495 3496 struct objc_method_list { 3497 struct objc_method_list *obsolete; 3498 int count; 3499 struct objc_method methods_list[count]; 3500 }; 3501 */ 3502 3503 /// GetMethodConstant - Return a struct objc_method constant for the 3504 /// given method if it has been defined. The result is null if the 3505 /// method has not been defined. The return value has type MethodPtrTy. 3506 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { 3507 llvm::Function *Fn = GetMethodDefinition(MD); 3508 if (!Fn) 3509 return nullptr; 3510 3511 llvm::Constant *Method[] = { 3512 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3513 ObjCTypes.SelectorPtrTy), 3514 GetMethodVarType(MD), 3515 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 3516 }; 3517 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 3518 } 3519 3520 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, 3521 const char *Section, 3522 ArrayRef<llvm::Constant*> Methods) { 3523 // Return null for empty list. 3524 if (Methods.empty()) 3525 return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); 3526 3527 llvm::Constant *Values[3]; 3528 Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3529 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3530 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 3531 Methods.size()); 3532 Values[2] = llvm::ConstantArray::get(AT, Methods); 3533 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3534 3535 llvm::GlobalVariable *GV = 3536 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3537 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3538 } 3539 3540 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3541 const ObjCContainerDecl *CD) { 3542 SmallString<256> Name; 3543 GetNameForMethod(OMD, CD, Name); 3544 3545 CodeGenTypes &Types = CGM.getTypes(); 3546 llvm::FunctionType *MethodTy = 3547 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3548 llvm::Function *Method = 3549 llvm::Function::Create(MethodTy, 3550 llvm::GlobalValue::InternalLinkage, 3551 Name.str(), 3552 &CGM.getModule()); 3553 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3554 3555 return Method; 3556 } 3557 3558 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3559 llvm::Constant *Init, 3560 StringRef Section, 3561 CharUnits Align, 3562 bool AddToUsed) { 3563 llvm::Type *Ty = Init->getType(); 3564 llvm::GlobalVariable *GV = 3565 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3566 llvm::GlobalValue::PrivateLinkage, Init, Name); 3567 if (!Section.empty()) 3568 GV->setSection(Section); 3569 GV->setAlignment(Align.getQuantity()); 3570 if (AddToUsed) 3571 CGM.addCompilerUsedGlobal(GV); 3572 return GV; 3573 } 3574 3575 llvm::Function *CGObjCMac::ModuleInitFunction() { 3576 // Abuse this interface function as a place to finalize. 3577 FinishModule(); 3578 return nullptr; 3579 } 3580 3581 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3582 return ObjCTypes.getGetPropertyFn(); 3583 } 3584 3585 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3586 return ObjCTypes.getSetPropertyFn(); 3587 } 3588 3589 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3590 bool copy) { 3591 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3592 } 3593 3594 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3595 return ObjCTypes.getCopyStructFn(); 3596 } 3597 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3598 return ObjCTypes.getCopyStructFn(); 3599 } 3600 3601 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3602 return ObjCTypes.getCppAtomicObjectFunction(); 3603 } 3604 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3605 return ObjCTypes.getCppAtomicObjectFunction(); 3606 } 3607 3608 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3609 return ObjCTypes.getEnumerationMutationFn(); 3610 } 3611 3612 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3613 return EmitTryOrSynchronizedStmt(CGF, S); 3614 } 3615 3616 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3617 const ObjCAtSynchronizedStmt &S) { 3618 return EmitTryOrSynchronizedStmt(CGF, S); 3619 } 3620 3621 namespace { 3622 struct PerformFragileFinally final : EHScopeStack::Cleanup { 3623 const Stmt &S; 3624 Address SyncArgSlot; 3625 Address CallTryExitVar; 3626 Address ExceptionData; 3627 ObjCTypesHelper &ObjCTypes; 3628 PerformFragileFinally(const Stmt *S, 3629 Address SyncArgSlot, 3630 Address CallTryExitVar, 3631 Address ExceptionData, 3632 ObjCTypesHelper *ObjCTypes) 3633 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 3634 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 3635 3636 void Emit(CodeGenFunction &CGF, Flags flags) override { 3637 // Check whether we need to call objc_exception_try_exit. 3638 // In optimized code, this branch will always be folded. 3639 llvm::BasicBlock *FinallyCallExit = 3640 CGF.createBasicBlock("finally.call_exit"); 3641 llvm::BasicBlock *FinallyNoCallExit = 3642 CGF.createBasicBlock("finally.no_call_exit"); 3643 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 3644 FinallyCallExit, FinallyNoCallExit); 3645 3646 CGF.EmitBlock(FinallyCallExit); 3647 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 3648 ExceptionData.getPointer()); 3649 3650 CGF.EmitBlock(FinallyNoCallExit); 3651 3652 if (isa<ObjCAtTryStmt>(S)) { 3653 if (const ObjCAtFinallyStmt* FinallyStmt = 3654 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 3655 // Don't try to do the @finally if this is an EH cleanup. 3656 if (flags.isForEHCleanup()) return; 3657 3658 // Save the current cleanup destination in case there's 3659 // control flow inside the finally statement. 3660 llvm::Value *CurCleanupDest = 3661 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 3662 3663 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 3664 3665 if (CGF.HaveInsertPoint()) { 3666 CGF.Builder.CreateStore(CurCleanupDest, 3667 CGF.getNormalCleanupDestSlot()); 3668 } else { 3669 // Currently, the end of the cleanup must always exist. 3670 CGF.EnsureInsertPoint(); 3671 } 3672 } 3673 } else { 3674 // Emit objc_sync_exit(expr); as finally's sole statement for 3675 // @synchronized. 3676 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 3677 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 3678 } 3679 } 3680 }; 3681 3682 class FragileHazards { 3683 CodeGenFunction &CGF; 3684 SmallVector<llvm::Value*, 20> Locals; 3685 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 3686 3687 llvm::InlineAsm *ReadHazard; 3688 llvm::InlineAsm *WriteHazard; 3689 3690 llvm::FunctionType *GetAsmFnType(); 3691 3692 void collectLocals(); 3693 void emitReadHazard(CGBuilderTy &Builder); 3694 3695 public: 3696 FragileHazards(CodeGenFunction &CGF); 3697 3698 void emitWriteHazard(); 3699 void emitHazardsInNewBlocks(); 3700 }; 3701 } 3702 3703 /// Create the fragile-ABI read and write hazards based on the current 3704 /// state of the function, which is presumed to be immediately prior 3705 /// to a @try block. These hazards are used to maintain correct 3706 /// semantics in the face of optimization and the fragile ABI's 3707 /// cavalier use of setjmp/longjmp. 3708 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 3709 collectLocals(); 3710 3711 if (Locals.empty()) return; 3712 3713 // Collect all the blocks in the function. 3714 for (llvm::Function::iterator 3715 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 3716 BlocksBeforeTry.insert(&*I); 3717 3718 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 3719 3720 // Create a read hazard for the allocas. This inhibits dead-store 3721 // optimizations and forces the values to memory. This hazard is 3722 // inserted before any 'throwing' calls in the protected scope to 3723 // reflect the possibility that the variables might be read from the 3724 // catch block if the call throws. 3725 { 3726 std::string Constraint; 3727 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3728 if (I) Constraint += ','; 3729 Constraint += "*m"; 3730 } 3731 3732 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3733 } 3734 3735 // Create a write hazard for the allocas. This inhibits folding 3736 // loads across the hazard. This hazard is inserted at the 3737 // beginning of the catch path to reflect the possibility that the 3738 // variables might have been written within the protected scope. 3739 { 3740 std::string Constraint; 3741 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3742 if (I) Constraint += ','; 3743 Constraint += "=*m"; 3744 } 3745 3746 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3747 } 3748 } 3749 3750 /// Emit a write hazard at the current location. 3751 void FragileHazards::emitWriteHazard() { 3752 if (Locals.empty()) return; 3753 3754 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 3755 } 3756 3757 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 3758 assert(!Locals.empty()); 3759 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 3760 call->setDoesNotThrow(); 3761 call->setCallingConv(CGF.getRuntimeCC()); 3762 } 3763 3764 /// Emit read hazards in all the protected blocks, i.e. all the blocks 3765 /// which have been inserted since the beginning of the try. 3766 void FragileHazards::emitHazardsInNewBlocks() { 3767 if (Locals.empty()) return; 3768 3769 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 3770 3771 // Iterate through all blocks, skipping those prior to the try. 3772 for (llvm::Function::iterator 3773 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 3774 llvm::BasicBlock &BB = *FI; 3775 if (BlocksBeforeTry.count(&BB)) continue; 3776 3777 // Walk through all the calls in the block. 3778 for (llvm::BasicBlock::iterator 3779 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 3780 llvm::Instruction &I = *BI; 3781 3782 // Ignore instructions that aren't non-intrinsic calls. 3783 // These are the only calls that can possibly call longjmp. 3784 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 3785 if (isa<llvm::IntrinsicInst>(I)) 3786 continue; 3787 3788 // Ignore call sites marked nounwind. This may be questionable, 3789 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 3790 llvm::CallSite CS(&I); 3791 if (CS.doesNotThrow()) continue; 3792 3793 // Insert a read hazard before the call. This will ensure that 3794 // any writes to the locals are performed before making the 3795 // call. If the call throws, then this is sufficient to 3796 // guarantee correctness as long as it doesn't also write to any 3797 // locals. 3798 Builder.SetInsertPoint(&BB, BI); 3799 emitReadHazard(Builder); 3800 } 3801 } 3802 } 3803 3804 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 3805 if (V) S.insert(V); 3806 } 3807 3808 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 3809 if (V.isValid()) S.insert(V.getPointer()); 3810 } 3811 3812 void FragileHazards::collectLocals() { 3813 // Compute a set of allocas to ignore. 3814 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 3815 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 3816 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 3817 3818 // Collect all the allocas currently in the function. This is 3819 // probably way too aggressive. 3820 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 3821 for (llvm::BasicBlock::iterator 3822 I = Entry.begin(), E = Entry.end(); I != E; ++I) 3823 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 3824 Locals.push_back(&*I); 3825 } 3826 3827 llvm::FunctionType *FragileHazards::GetAsmFnType() { 3828 SmallVector<llvm::Type *, 16> tys(Locals.size()); 3829 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 3830 tys[i] = Locals[i]->getType(); 3831 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 3832 } 3833 3834 /* 3835 3836 Objective-C setjmp-longjmp (sjlj) Exception Handling 3837 -- 3838 3839 A catch buffer is a setjmp buffer plus: 3840 - a pointer to the exception that was caught 3841 - a pointer to the previous exception data buffer 3842 - two pointers of reserved storage 3843 Therefore catch buffers form a stack, with a pointer to the top 3844 of the stack kept in thread-local storage. 3845 3846 objc_exception_try_enter pushes a catch buffer onto the EH stack. 3847 objc_exception_try_exit pops the given catch buffer, which is 3848 required to be the top of the EH stack. 3849 objc_exception_throw pops the top of the EH stack, writes the 3850 thrown exception into the appropriate field, and longjmps 3851 to the setjmp buffer. It crashes the process (with a printf 3852 and an abort()) if there are no catch buffers on the stack. 3853 objc_exception_extract just reads the exception pointer out of the 3854 catch buffer. 3855 3856 There's no reason an implementation couldn't use a light-weight 3857 setjmp here --- something like __builtin_setjmp, but API-compatible 3858 with the heavyweight setjmp. This will be more important if we ever 3859 want to implement correct ObjC/C++ exception interactions for the 3860 fragile ABI. 3861 3862 Note that for this use of setjmp/longjmp to be correct, we may need 3863 to mark some local variables volatile: if a non-volatile local 3864 variable is modified between the setjmp and the longjmp, it has 3865 indeterminate value. For the purposes of LLVM IR, it may be 3866 sufficient to make loads and stores within the @try (to variables 3867 declared outside the @try) volatile. This is necessary for 3868 optimized correctness, but is not currently being done; this is 3869 being tracked as rdar://problem/8160285 3870 3871 The basic framework for a @try-catch-finally is as follows: 3872 { 3873 objc_exception_data d; 3874 id _rethrow = null; 3875 bool _call_try_exit = true; 3876 3877 objc_exception_try_enter(&d); 3878 if (!setjmp(d.jmp_buf)) { 3879 ... try body ... 3880 } else { 3881 // exception path 3882 id _caught = objc_exception_extract(&d); 3883 3884 // enter new try scope for handlers 3885 if (!setjmp(d.jmp_buf)) { 3886 ... match exception and execute catch blocks ... 3887 3888 // fell off end, rethrow. 3889 _rethrow = _caught; 3890 ... jump-through-finally to finally_rethrow ... 3891 } else { 3892 // exception in catch block 3893 _rethrow = objc_exception_extract(&d); 3894 _call_try_exit = false; 3895 ... jump-through-finally to finally_rethrow ... 3896 } 3897 } 3898 ... jump-through-finally to finally_end ... 3899 3900 finally: 3901 if (_call_try_exit) 3902 objc_exception_try_exit(&d); 3903 3904 ... finally block .... 3905 ... dispatch to finally destination ... 3906 3907 finally_rethrow: 3908 objc_exception_throw(_rethrow); 3909 3910 finally_end: 3911 } 3912 3913 This framework differs slightly from the one gcc uses, in that gcc 3914 uses _rethrow to determine if objc_exception_try_exit should be called 3915 and if the object should be rethrown. This breaks in the face of 3916 throwing nil and introduces unnecessary branches. 3917 3918 We specialize this framework for a few particular circumstances: 3919 3920 - If there are no catch blocks, then we avoid emitting the second 3921 exception handling context. 3922 3923 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 3924 e)) we avoid emitting the code to rethrow an uncaught exception. 3925 3926 - FIXME: If there is no @finally block we can do a few more 3927 simplifications. 3928 3929 Rethrows and Jumps-Through-Finally 3930 -- 3931 3932 '@throw;' is supported by pushing the currently-caught exception 3933 onto ObjCEHStack while the @catch blocks are emitted. 3934 3935 Branches through the @finally block are handled with an ordinary 3936 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 3937 exceptions are not compatible with C++ exceptions, and this is 3938 hardly the only place where this will go wrong. 3939 3940 @synchronized(expr) { stmt; } is emitted as if it were: 3941 id synch_value = expr; 3942 objc_sync_enter(synch_value); 3943 @try { stmt; } @finally { objc_sync_exit(synch_value); } 3944 */ 3945 3946 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 3947 const Stmt &S) { 3948 bool isTry = isa<ObjCAtTryStmt>(S); 3949 3950 // A destination for the fall-through edges of the catch handlers to 3951 // jump to. 3952 CodeGenFunction::JumpDest FinallyEnd = 3953 CGF.getJumpDestInCurrentScope("finally.end"); 3954 3955 // A destination for the rethrow edge of the catch handlers to jump 3956 // to. 3957 CodeGenFunction::JumpDest FinallyRethrow = 3958 CGF.getJumpDestInCurrentScope("finally.rethrow"); 3959 3960 // For @synchronized, call objc_sync_enter(sync.expr). The 3961 // evaluation of the expression must occur before we enter the 3962 // @synchronized. We can't avoid a temp here because we need the 3963 // value to be preserved. If the backend ever does liveness 3964 // correctly after setjmp, this will be unnecessary. 3965 Address SyncArgSlot = Address::invalid(); 3966 if (!isTry) { 3967 llvm::Value *SyncArg = 3968 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 3969 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 3970 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 3971 3972 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 3973 CGF.getPointerAlign(), "sync.arg"); 3974 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 3975 } 3976 3977 // Allocate memory for the setjmp buffer. This needs to be kept 3978 // live throughout the try and catch blocks. 3979 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 3980 CGF.getPointerAlign(), 3981 "exceptiondata.ptr"); 3982 3983 // Create the fragile hazards. Note that this will not capture any 3984 // of the allocas required for exception processing, but will 3985 // capture the current basic block (which extends all the way to the 3986 // setjmp call) as "before the @try". 3987 FragileHazards Hazards(CGF); 3988 3989 // Create a flag indicating whether the cleanup needs to call 3990 // objc_exception_try_exit. This is true except when 3991 // - no catches match and we're branching through the cleanup 3992 // just to rethrow the exception, or 3993 // - a catch matched and we're falling out of the catch handler. 3994 // The setjmp-safety rule here is that we should always store to this 3995 // variable in a place that dominates the branch through the cleanup 3996 // without passing through any setjmps. 3997 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 3998 CharUnits::One(), 3999 "_call_try_exit"); 4000 4001 // A slot containing the exception to rethrow. Only needed when we 4002 // have both a @catch and a @finally. 4003 Address PropagatingExnVar = Address::invalid(); 4004 4005 // Push a normal cleanup to leave the try scope. 4006 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4007 SyncArgSlot, 4008 CallTryExitVar, 4009 ExceptionData, 4010 &ObjCTypes); 4011 4012 // Enter a try block: 4013 // - Call objc_exception_try_enter to push ExceptionData on top of 4014 // the EH stack. 4015 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4016 ExceptionData.getPointer()); 4017 4018 // - Call setjmp on the exception data buffer. 4019 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4020 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4021 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4022 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4023 "setjmp_buffer"); 4024 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4025 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4026 SetJmpResult->setCanReturnTwice(); 4027 4028 // If setjmp returned 0, enter the protected block; otherwise, 4029 // branch to the handler. 4030 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4031 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4032 llvm::Value *DidCatch = 4033 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4034 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4035 4036 // Emit the protected block. 4037 CGF.EmitBlock(TryBlock); 4038 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4039 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4040 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4041 4042 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4043 4044 // Emit the exception handler block. 4045 CGF.EmitBlock(TryHandler); 4046 4047 // Don't optimize loads of the in-scope locals across this point. 4048 Hazards.emitWriteHazard(); 4049 4050 // For a @synchronized (or a @try with no catches), just branch 4051 // through the cleanup to the rethrow block. 4052 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4053 // Tell the cleanup not to re-pop the exit. 4054 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4055 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4056 4057 // Otherwise, we have to match against the caught exceptions. 4058 } else { 4059 // Retrieve the exception object. We may emit multiple blocks but 4060 // nothing can cross this so the value is already in SSA form. 4061 llvm::CallInst *Caught = 4062 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4063 ExceptionData.getPointer(), "caught"); 4064 4065 // Push the exception to rethrow onto the EH value stack for the 4066 // benefit of any @throws in the handlers. 4067 CGF.ObjCEHValueStack.push_back(Caught); 4068 4069 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4070 4071 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4072 4073 llvm::BasicBlock *CatchBlock = nullptr; 4074 llvm::BasicBlock *CatchHandler = nullptr; 4075 if (HasFinally) { 4076 // Save the currently-propagating exception before 4077 // objc_exception_try_enter clears the exception slot. 4078 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4079 CGF.getPointerAlign(), 4080 "propagating_exception"); 4081 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4082 4083 // Enter a new exception try block (in case a @catch block 4084 // throws an exception). 4085 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4086 ExceptionData.getPointer()); 4087 4088 llvm::CallInst *SetJmpResult = 4089 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4090 SetJmpBuffer, "setjmp.result"); 4091 SetJmpResult->setCanReturnTwice(); 4092 4093 llvm::Value *Threw = 4094 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4095 4096 CatchBlock = CGF.createBasicBlock("catch"); 4097 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4098 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4099 4100 CGF.EmitBlock(CatchBlock); 4101 } 4102 4103 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4104 4105 // Handle catch list. As a special case we check if everything is 4106 // matched and avoid generating code for falling off the end if 4107 // so. 4108 bool AllMatched = false; 4109 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4110 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4111 4112 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4113 const ObjCObjectPointerType *OPT = nullptr; 4114 4115 // catch(...) always matches. 4116 if (!CatchParam) { 4117 AllMatched = true; 4118 } else { 4119 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4120 4121 // catch(id e) always matches under this ABI, since only 4122 // ObjC exceptions end up here in the first place. 4123 // FIXME: For the time being we also match id<X>; this should 4124 // be rejected by Sema instead. 4125 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4126 AllMatched = true; 4127 } 4128 4129 // If this is a catch-all, we don't need to test anything. 4130 if (AllMatched) { 4131 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4132 4133 if (CatchParam) { 4134 CGF.EmitAutoVarDecl(*CatchParam); 4135 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4136 4137 // These types work out because ConvertType(id) == i8*. 4138 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4139 } 4140 4141 CGF.EmitStmt(CatchStmt->getCatchBody()); 4142 4143 // The scope of the catch variable ends right here. 4144 CatchVarCleanups.ForceCleanup(); 4145 4146 CGF.EmitBranchThroughCleanup(FinallyEnd); 4147 break; 4148 } 4149 4150 assert(OPT && "Unexpected non-object pointer type in @catch"); 4151 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4152 4153 // FIXME: @catch (Class c) ? 4154 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4155 assert(IDecl && "Catch parameter must have Objective-C type!"); 4156 4157 // Check if the @catch block matches the exception object. 4158 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4159 4160 llvm::Value *matchArgs[] = { Class, Caught }; 4161 llvm::CallInst *Match = 4162 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4163 matchArgs, "match"); 4164 4165 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4166 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4167 4168 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4169 MatchedBlock, NextCatchBlock); 4170 4171 // Emit the @catch block. 4172 CGF.EmitBlock(MatchedBlock); 4173 4174 // Collect any cleanups for the catch variable. The scope lasts until 4175 // the end of the catch body. 4176 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4177 4178 CGF.EmitAutoVarDecl(*CatchParam); 4179 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4180 4181 // Initialize the catch variable. 4182 llvm::Value *Tmp = 4183 CGF.Builder.CreateBitCast(Caught, 4184 CGF.ConvertType(CatchParam->getType())); 4185 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4186 4187 CGF.EmitStmt(CatchStmt->getCatchBody()); 4188 4189 // We're done with the catch variable. 4190 CatchVarCleanups.ForceCleanup(); 4191 4192 CGF.EmitBranchThroughCleanup(FinallyEnd); 4193 4194 CGF.EmitBlock(NextCatchBlock); 4195 } 4196 4197 CGF.ObjCEHValueStack.pop_back(); 4198 4199 // If nothing wanted anything to do with the caught exception, 4200 // kill the extract call. 4201 if (Caught->use_empty()) 4202 Caught->eraseFromParent(); 4203 4204 if (!AllMatched) 4205 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4206 4207 if (HasFinally) { 4208 // Emit the exception handler for the @catch blocks. 4209 CGF.EmitBlock(CatchHandler); 4210 4211 // In theory we might now need a write hazard, but actually it's 4212 // unnecessary because there's no local-accessing code between 4213 // the try's write hazard and here. 4214 //Hazards.emitWriteHazard(); 4215 4216 // Extract the new exception and save it to the 4217 // propagating-exception slot. 4218 assert(PropagatingExnVar.isValid()); 4219 llvm::CallInst *NewCaught = 4220 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4221 ExceptionData.getPointer(), "caught"); 4222 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4223 4224 // Don't pop the catch handler; the throw already did. 4225 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4226 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4227 } 4228 } 4229 4230 // Insert read hazards as required in the new blocks. 4231 Hazards.emitHazardsInNewBlocks(); 4232 4233 // Pop the cleanup. 4234 CGF.Builder.restoreIP(TryFallthroughIP); 4235 if (CGF.HaveInsertPoint()) 4236 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4237 CGF.PopCleanupBlock(); 4238 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4239 4240 // Emit the rethrow block. 4241 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4242 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4243 if (CGF.HaveInsertPoint()) { 4244 // If we have a propagating-exception variable, check it. 4245 llvm::Value *PropagatingExn; 4246 if (PropagatingExnVar.isValid()) { 4247 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4248 4249 // Otherwise, just look in the buffer for the exception to throw. 4250 } else { 4251 llvm::CallInst *Caught = 4252 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4253 ExceptionData.getPointer()); 4254 PropagatingExn = Caught; 4255 } 4256 4257 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4258 PropagatingExn); 4259 CGF.Builder.CreateUnreachable(); 4260 } 4261 4262 CGF.Builder.restoreIP(SavedIP); 4263 } 4264 4265 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4266 const ObjCAtThrowStmt &S, 4267 bool ClearInsertionPoint) { 4268 llvm::Value *ExceptionAsObject; 4269 4270 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4271 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4272 ExceptionAsObject = 4273 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4274 } else { 4275 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4276 "Unexpected rethrow outside @catch block."); 4277 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4278 } 4279 4280 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4281 ->setDoesNotReturn(); 4282 CGF.Builder.CreateUnreachable(); 4283 4284 // Clear the insertion point to indicate we are in unreachable code. 4285 if (ClearInsertionPoint) 4286 CGF.Builder.ClearInsertionPoint(); 4287 } 4288 4289 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4290 /// object: objc_read_weak (id *src) 4291 /// 4292 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4293 Address AddrWeakObj) { 4294 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4295 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4296 ObjCTypes.PtrObjectPtrTy); 4297 llvm::Value *read_weak = 4298 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4299 AddrWeakObj.getPointer(), "weakread"); 4300 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4301 return read_weak; 4302 } 4303 4304 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4305 /// objc_assign_weak (id src, id *dst) 4306 /// 4307 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4308 llvm::Value *src, Address dst) { 4309 llvm::Type * SrcTy = src->getType(); 4310 if (!isa<llvm::PointerType>(SrcTy)) { 4311 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4312 assert(Size <= 8 && "does not support size > 8"); 4313 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4314 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4315 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4316 } 4317 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4318 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4319 llvm::Value *args[] = { src, dst.getPointer() }; 4320 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4321 args, "weakassign"); 4322 return; 4323 } 4324 4325 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4326 /// objc_assign_global (id src, id *dst) 4327 /// 4328 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4329 llvm::Value *src, Address dst, 4330 bool threadlocal) { 4331 llvm::Type * SrcTy = src->getType(); 4332 if (!isa<llvm::PointerType>(SrcTy)) { 4333 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4334 assert(Size <= 8 && "does not support size > 8"); 4335 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4336 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4337 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4338 } 4339 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4340 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4341 llvm::Value *args[] = { src, dst.getPointer() }; 4342 if (!threadlocal) 4343 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4344 args, "globalassign"); 4345 else 4346 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4347 args, "threadlocalassign"); 4348 return; 4349 } 4350 4351 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4352 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4353 /// 4354 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4355 llvm::Value *src, Address dst, 4356 llvm::Value *ivarOffset) { 4357 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4358 llvm::Type * SrcTy = src->getType(); 4359 if (!isa<llvm::PointerType>(SrcTy)) { 4360 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4361 assert(Size <= 8 && "does not support size > 8"); 4362 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4363 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4364 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4365 } 4366 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4367 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4368 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4369 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4370 return; 4371 } 4372 4373 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4374 /// objc_assign_strongCast (id src, id *dst) 4375 /// 4376 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4377 llvm::Value *src, Address dst) { 4378 llvm::Type * SrcTy = src->getType(); 4379 if (!isa<llvm::PointerType>(SrcTy)) { 4380 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4381 assert(Size <= 8 && "does not support size > 8"); 4382 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4383 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4384 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4385 } 4386 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4387 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4388 llvm::Value *args[] = { src, dst.getPointer() }; 4389 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4390 args, "strongassign"); 4391 return; 4392 } 4393 4394 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4395 Address DestPtr, 4396 Address SrcPtr, 4397 llvm::Value *size) { 4398 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4399 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4400 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4401 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4402 } 4403 4404 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4405 /// 4406 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4407 QualType ObjectTy, 4408 llvm::Value *BaseValue, 4409 const ObjCIvarDecl *Ivar, 4410 unsigned CVRQualifiers) { 4411 const ObjCInterfaceDecl *ID = 4412 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4413 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4414 EmitIvarOffset(CGF, ID, Ivar)); 4415 } 4416 4417 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4418 const ObjCInterfaceDecl *Interface, 4419 const ObjCIvarDecl *Ivar) { 4420 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4421 return llvm::ConstantInt::get( 4422 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4423 Offset); 4424 } 4425 4426 /* *** Private Interface *** */ 4427 4428 /// EmitImageInfo - Emit the image info marker used to encode some module 4429 /// level information. 4430 /// 4431 /// See: <rdr://4810609&4810587&4810587> 4432 /// struct IMAGE_INFO { 4433 /// unsigned version; 4434 /// unsigned flags; 4435 /// }; 4436 enum ImageInfoFlags { 4437 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4438 eImageInfo_GarbageCollected = (1 << 1), 4439 eImageInfo_GCOnly = (1 << 2), 4440 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4441 4442 // A flag indicating that the module has no instances of a @synthesize of a 4443 // superclass variable. <rdar://problem/6803242> 4444 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4445 eImageInfo_ImageIsSimulated = (1 << 5) 4446 }; 4447 4448 void CGObjCCommonMac::EmitImageInfo() { 4449 unsigned version = 0; // Version is unused? 4450 const char *Section = (ObjCABI == 1) ? 4451 "__OBJC, __image_info,regular" : 4452 "__DATA, __objc_imageinfo, regular, no_dead_strip"; 4453 4454 // Generate module-level named metadata to convey this information to the 4455 // linker and code-gen. 4456 llvm::Module &Mod = CGM.getModule(); 4457 4458 // Add the ObjC ABI version to the module flags. 4459 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4460 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4461 version); 4462 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4463 llvm::MDString::get(VMContext,Section)); 4464 4465 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4466 // Non-GC overrides those files which specify GC. 4467 Mod.addModuleFlag(llvm::Module::Override, 4468 "Objective-C Garbage Collection", (uint32_t)0); 4469 } else { 4470 // Add the ObjC garbage collection value. 4471 Mod.addModuleFlag(llvm::Module::Error, 4472 "Objective-C Garbage Collection", 4473 eImageInfo_GarbageCollected); 4474 4475 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4476 // Add the ObjC GC Only value. 4477 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4478 eImageInfo_GCOnly); 4479 4480 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4481 llvm::Metadata *Ops[2] = { 4482 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4483 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4484 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4485 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4486 llvm::MDNode::get(VMContext, Ops)); 4487 } 4488 } 4489 4490 // Indicate whether we're compiling this to run on a simulator. 4491 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4492 if ((Triple.isiOS() || Triple.isWatchOS()) && 4493 (Triple.getArch() == llvm::Triple::x86 || 4494 Triple.getArch() == llvm::Triple::x86_64)) 4495 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4496 eImageInfo_ImageIsSimulated); 4497 } 4498 4499 // struct objc_module { 4500 // unsigned long version; 4501 // unsigned long size; 4502 // const char *name; 4503 // Symtab symtab; 4504 // }; 4505 4506 // FIXME: Get from somewhere 4507 static const int ModuleVersion = 7; 4508 4509 void CGObjCMac::EmitModuleInfo() { 4510 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4511 4512 llvm::Constant *Values[] = { 4513 llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion), 4514 llvm::ConstantInt::get(ObjCTypes.LongTy, Size), 4515 // This used to be the filename, now it is unused. <rdr://4327263> 4516 GetClassName(StringRef("")), 4517 EmitModuleSymbols() 4518 }; 4519 CreateMetadataVar("OBJC_MODULES", 4520 llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), 4521 "__OBJC,__module_info,regular,no_dead_strip", 4522 CGM.getPointerAlign(), true); 4523 } 4524 4525 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4526 unsigned NumClasses = DefinedClasses.size(); 4527 unsigned NumCategories = DefinedCategories.size(); 4528 4529 // Return null if no symbols were defined. 4530 if (!NumClasses && !NumCategories) 4531 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4532 4533 llvm::Constant *Values[5]; 4534 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 4535 Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); 4536 Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); 4537 Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); 4538 4539 // The runtime expects exactly the list of defined classes followed 4540 // by the list of defined categories, in a single array. 4541 SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories); 4542 for (unsigned i=0; i<NumClasses; i++) { 4543 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4544 assert(ID); 4545 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4546 // We are implementing a weak imported interface. Give it external linkage 4547 if (ID->isWeakImported() && !IMP->isWeakImported()) 4548 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4549 4550 Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i], 4551 ObjCTypes.Int8PtrTy); 4552 } 4553 for (unsigned i=0; i<NumCategories; i++) 4554 Symbols[NumClasses + i] = 4555 llvm::ConstantExpr::getBitCast(DefinedCategories[i], 4556 ObjCTypes.Int8PtrTy); 4557 4558 Values[4] = 4559 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 4560 Symbols.size()), 4561 Symbols); 4562 4563 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 4564 4565 llvm::GlobalVariable *GV = CreateMetadataVar( 4566 "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip", 4567 CGM.getPointerAlign(), true); 4568 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4569 } 4570 4571 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4572 IdentifierInfo *II) { 4573 LazySymbols.insert(II); 4574 4575 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4576 4577 if (!Entry) { 4578 llvm::Constant *Casted = 4579 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4580 ObjCTypes.ClassPtrTy); 4581 Entry = CreateMetadataVar( 4582 "OBJC_CLASS_REFERENCES_", Casted, 4583 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4584 CGM.getPointerAlign(), true); 4585 } 4586 4587 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4588 } 4589 4590 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4591 const ObjCInterfaceDecl *ID) { 4592 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4593 } 4594 4595 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4596 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4597 return EmitClassRefFromId(CGF, II); 4598 } 4599 4600 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4601 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 4602 } 4603 4604 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 4605 CharUnits Align = CGF.getPointerAlign(); 4606 4607 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 4608 if (!Entry) { 4609 llvm::Constant *Casted = 4610 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 4611 ObjCTypes.SelectorPtrTy); 4612 Entry = CreateMetadataVar( 4613 "OBJC_SELECTOR_REFERENCES_", Casted, 4614 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 4615 Entry->setExternallyInitialized(true); 4616 } 4617 4618 return Address(Entry, Align); 4619 } 4620 4621 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 4622 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 4623 if (!Entry) 4624 Entry = CreateMetadataVar( 4625 "OBJC_CLASS_NAME_", 4626 llvm::ConstantDataArray::getString(VMContext, RuntimeName), 4627 ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals" 4628 : "__TEXT,__cstring,cstring_literals"), 4629 CharUnits::One(), true); 4630 return getConstantGEP(VMContext, Entry, 0, 0); 4631 } 4632 4633 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 4634 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 4635 I = MethodDefinitions.find(MD); 4636 if (I != MethodDefinitions.end()) 4637 return I->second; 4638 4639 return nullptr; 4640 } 4641 4642 /// GetIvarLayoutName - Returns a unique constant for the given 4643 /// ivar layout bitmap. 4644 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 4645 const ObjCCommonTypesHelper &ObjCTypes) { 4646 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 4647 } 4648 4649 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 4650 CharUnits offset) { 4651 const RecordDecl *RD = RT->getDecl(); 4652 4653 // If this is a union, remember that we had one, because it might mess 4654 // up the ordering of layout entries. 4655 if (RD->isUnion()) 4656 IsDisordered = true; 4657 4658 const ASTRecordLayout *recLayout = nullptr; 4659 visitAggregate(RD->field_begin(), RD->field_end(), offset, 4660 [&](const FieldDecl *field) -> CharUnits { 4661 if (!recLayout) 4662 recLayout = &CGM.getContext().getASTRecordLayout(RD); 4663 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 4664 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 4665 }); 4666 } 4667 4668 template <class Iterator, class GetOffsetFn> 4669 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 4670 CharUnits aggregateOffset, 4671 const GetOffsetFn &getOffset) { 4672 for (; begin != end; ++begin) { 4673 auto field = *begin; 4674 4675 // Skip over bitfields. 4676 if (field->isBitField()) { 4677 continue; 4678 } 4679 4680 // Compute the offset of the field within the aggregate. 4681 CharUnits fieldOffset = aggregateOffset + getOffset(field); 4682 4683 visitField(field, fieldOffset); 4684 } 4685 } 4686 4687 /// Collect layout information for the given fields into IvarsInfo. 4688 void IvarLayoutBuilder::visitField(const FieldDecl *field, 4689 CharUnits fieldOffset) { 4690 QualType fieldType = field->getType(); 4691 4692 // Drill down into arrays. 4693 uint64_t numElts = 1; 4694 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 4695 numElts *= arrayType->getSize().getZExtValue(); 4696 fieldType = arrayType->getElementType(); 4697 } 4698 4699 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 4700 4701 // If we ended up with a zero-sized array, we've done what we can do within 4702 // the limits of this layout encoding. 4703 if (numElts == 0) return; 4704 4705 // Recurse if the base element type is a record type. 4706 if (auto recType = fieldType->getAs<RecordType>()) { 4707 size_t oldEnd = IvarsInfo.size(); 4708 4709 visitRecord(recType, fieldOffset); 4710 4711 // If we have an array, replicate the first entry's layout information. 4712 auto numEltEntries = IvarsInfo.size() - oldEnd; 4713 if (numElts != 1 && numEltEntries != 0) { 4714 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 4715 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 4716 // Copy the last numEltEntries onto the end of the array, adjusting 4717 // each for the element size. 4718 for (size_t i = 0; i != numEltEntries; ++i) { 4719 auto firstEntry = IvarsInfo[oldEnd + i]; 4720 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 4721 firstEntry.SizeInWords)); 4722 } 4723 } 4724 } 4725 4726 return; 4727 } 4728 4729 // Classify the element type. 4730 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 4731 4732 // If it matches what we're looking for, add an entry. 4733 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 4734 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 4735 assert(CGM.getContext().getTypeSizeInChars(fieldType) 4736 == CGM.getPointerSize()); 4737 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 4738 } 4739 } 4740 4741 /// buildBitmap - This routine does the horsework of taking the offsets of 4742 /// strong/weak references and creating a bitmap. The bitmap is also 4743 /// returned in the given buffer, suitable for being passed to \c dump(). 4744 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 4745 llvm::SmallVectorImpl<unsigned char> &buffer) { 4746 // The bitmap is a series of skip/scan instructions, aligned to word 4747 // boundaries. The skip is performed first. 4748 const unsigned char MaxNibble = 0xF; 4749 const unsigned char SkipMask = 0xF0, SkipShift = 4; 4750 const unsigned char ScanMask = 0x0F, ScanShift = 0; 4751 4752 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 4753 4754 // Sort the ivar info on byte position in case we encounterred a 4755 // union nested in the ivar list. 4756 if (IsDisordered) { 4757 // This isn't a stable sort, but our algorithm should handle it fine. 4758 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 4759 } else { 4760 #ifndef NDEBUG 4761 for (unsigned i = 1; i != IvarsInfo.size(); ++i) { 4762 assert(IvarsInfo[i - 1].Offset <= IvarsInfo[i].Offset); 4763 } 4764 #endif 4765 } 4766 assert(IvarsInfo.back().Offset < InstanceEnd); 4767 4768 assert(buffer.empty()); 4769 4770 // Skip the next N words. 4771 auto skip = [&](unsigned numWords) { 4772 assert(numWords > 0); 4773 4774 // Try to merge into the previous byte. Since scans happen second, we 4775 // can't do this if it includes a scan. 4776 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 4777 unsigned lastSkip = buffer.back() >> SkipShift; 4778 if (lastSkip < MaxNibble) { 4779 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 4780 numWords -= claimed; 4781 lastSkip += claimed; 4782 buffer.back() = (lastSkip << SkipShift); 4783 } 4784 } 4785 4786 while (numWords >= MaxNibble) { 4787 buffer.push_back(MaxNibble << SkipShift); 4788 numWords -= MaxNibble; 4789 } 4790 if (numWords) { 4791 buffer.push_back(numWords << SkipShift); 4792 } 4793 }; 4794 4795 // Scan the next N words. 4796 auto scan = [&](unsigned numWords) { 4797 assert(numWords > 0); 4798 4799 // Try to merge into the previous byte. Since scans happen second, we can 4800 // do this even if it includes a skip. 4801 if (!buffer.empty()) { 4802 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 4803 if (lastScan < MaxNibble) { 4804 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 4805 numWords -= claimed; 4806 lastScan += claimed; 4807 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 4808 } 4809 } 4810 4811 while (numWords >= MaxNibble) { 4812 buffer.push_back(MaxNibble << ScanShift); 4813 numWords -= MaxNibble; 4814 } 4815 if (numWords) { 4816 buffer.push_back(numWords << ScanShift); 4817 } 4818 }; 4819 4820 // One past the end of the last scan. 4821 unsigned endOfLastScanInWords = 0; 4822 const CharUnits WordSize = CGM.getPointerSize(); 4823 4824 // Consider all the scan requests. 4825 for (auto &request : IvarsInfo) { 4826 CharUnits beginOfScan = request.Offset - InstanceBegin; 4827 4828 // Ignore scan requests that don't start at an even multiple of the 4829 // word size. We can't encode them. 4830 if ((beginOfScan % WordSize) != 0) continue; 4831 4832 // Ignore scan requests that start before the instance start. 4833 // This assumes that scans never span that boundary. The boundary 4834 // isn't the true start of the ivars, because in the fragile-ARC case 4835 // it's rounded up to word alignment, but the test above should leave 4836 // us ignoring that possibility. 4837 if (beginOfScan.isNegative()) { 4838 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 4839 continue; 4840 } 4841 4842 unsigned beginOfScanInWords = beginOfScan / WordSize; 4843 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 4844 4845 // If the scan starts some number of words after the last one ended, 4846 // skip forward. 4847 if (beginOfScanInWords > endOfLastScanInWords) { 4848 skip(beginOfScanInWords - endOfLastScanInWords); 4849 4850 // Otherwise, start scanning where the last left off. 4851 } else { 4852 beginOfScanInWords = endOfLastScanInWords; 4853 4854 // If that leaves us with nothing to scan, ignore this request. 4855 if (beginOfScanInWords >= endOfScanInWords) continue; 4856 } 4857 4858 // Scan to the end of the request. 4859 assert(beginOfScanInWords < endOfScanInWords); 4860 scan(endOfScanInWords - beginOfScanInWords); 4861 endOfLastScanInWords = endOfScanInWords; 4862 } 4863 4864 if (buffer.empty()) 4865 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 4866 4867 // For GC layouts, emit a skip to the end of the allocation so that we 4868 // have precise information about the entire thing. This isn't useful 4869 // or necessary for the ARC-style layout strings. 4870 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 4871 unsigned lastOffsetInWords = 4872 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 4873 if (lastOffsetInWords > endOfLastScanInWords) { 4874 skip(lastOffsetInWords - endOfLastScanInWords); 4875 } 4876 } 4877 4878 // Null terminate the string. 4879 buffer.push_back(0); 4880 4881 bool isNonFragileABI = CGObjC.isNonFragileABI(); 4882 4883 llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar( 4884 "OBJC_CLASS_NAME_", 4885 llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer), 4886 (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals" 4887 : "__TEXT,__cstring,cstring_literals"), 4888 CharUnits::One(), true); 4889 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 4890 } 4891 4892 /// BuildIvarLayout - Builds ivar layout bitmap for the class 4893 /// implementation for the __strong or __weak case. 4894 /// The layout map displays which words in ivar list must be skipped 4895 /// and which must be scanned by GC (see below). String is built of bytes. 4896 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 4897 /// of words to skip and right nibble is count of words to scan. So, each 4898 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 4899 /// represented by a 0x00 byte which also ends the string. 4900 /// 1. when ForStrongLayout is true, following ivars are scanned: 4901 /// - id, Class 4902 /// - object * 4903 /// - __strong anything 4904 /// 4905 /// 2. When ForStrongLayout is false, following ivars are scanned: 4906 /// - __weak anything 4907 /// 4908 llvm::Constant * 4909 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 4910 CharUnits beginOffset, CharUnits endOffset, 4911 bool ForStrongLayout, bool HasMRCWeakIvars) { 4912 // If this is MRC, and we're either building a strong layout or there 4913 // are no weak ivars, bail out early. 4914 llvm::Type *PtrTy = CGM.Int8PtrTy; 4915 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 4916 !CGM.getLangOpts().ObjCAutoRefCount && 4917 (ForStrongLayout || !HasMRCWeakIvars)) 4918 return llvm::Constant::getNullValue(PtrTy); 4919 4920 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 4921 SmallVector<const ObjCIvarDecl*, 32> ivars; 4922 4923 // GC layout strings include the complete object layout, possibly 4924 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 4925 // up. 4926 // 4927 // ARC layout strings only include the class's ivars. In non-fragile 4928 // runtimes, that means starting at InstanceStart, rounded up to word 4929 // alignment. In fragile runtimes, there's no InstanceStart, so it means 4930 // starting at the end of the superclass, rounded up to word alignment. 4931 // 4932 // MRC weak layout strings follow the ARC style. 4933 CharUnits baseOffset; 4934 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4935 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 4936 IVD; IVD = IVD->getNextIvar()) 4937 ivars.push_back(IVD); 4938 4939 if (isNonFragileABI()) { 4940 baseOffset = beginOffset; // InstanceStart 4941 } else if (auto superClass = OI->getSuperClass()) { 4942 auto startOffset = 4943 CGM.getContext().getASTObjCInterfaceLayout(superClass).getSize(); 4944 baseOffset = startOffset; 4945 } else { 4946 baseOffset = CharUnits::Zero(); 4947 } 4948 4949 baseOffset = baseOffset.RoundUpToAlignment(CGM.getPointerAlign()); 4950 } 4951 else { 4952 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 4953 4954 baseOffset = CharUnits::Zero(); 4955 } 4956 4957 if (ivars.empty()) 4958 return llvm::Constant::getNullValue(PtrTy); 4959 4960 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 4961 4962 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 4963 [&](const ObjCIvarDecl *ivar) -> CharUnits { 4964 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 4965 }); 4966 4967 if (!builder.hasBitmapData()) 4968 return llvm::Constant::getNullValue(PtrTy); 4969 4970 llvm::SmallVector<unsigned char, 4> buffer; 4971 llvm::Constant *C = builder.buildBitmap(*this, buffer); 4972 4973 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 4974 printf("\n%s ivar layout for class '%s': ", 4975 ForStrongLayout ? "strong" : "weak", 4976 OMD->getClassInterface()->getName().str().c_str()); 4977 builder.dump(buffer); 4978 } 4979 return C; 4980 } 4981 4982 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 4983 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 4984 4985 // FIXME: Avoid std::string in "Sel.getAsString()" 4986 if (!Entry) 4987 Entry = CreateMetadataVar( 4988 "OBJC_METH_VAR_NAME_", 4989 llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()), 4990 ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals" 4991 : "__TEXT,__cstring,cstring_literals"), 4992 CharUnits::One(), true); 4993 4994 return getConstantGEP(VMContext, Entry, 0, 0); 4995 } 4996 4997 // FIXME: Merge into a single cstring creation function. 4998 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 4999 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5000 } 5001 5002 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5003 std::string TypeStr; 5004 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5005 5006 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5007 5008 if (!Entry) 5009 Entry = CreateMetadataVar( 5010 "OBJC_METH_VAR_TYPE_", 5011 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5012 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5013 : "__TEXT,__cstring,cstring_literals"), 5014 CharUnits::One(), true); 5015 5016 return getConstantGEP(VMContext, Entry, 0, 0); 5017 } 5018 5019 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5020 bool Extended) { 5021 std::string TypeStr; 5022 if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended)) 5023 return nullptr; 5024 5025 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5026 5027 if (!Entry) 5028 Entry = CreateMetadataVar( 5029 "OBJC_METH_VAR_TYPE_", 5030 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5031 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5032 : "__TEXT,__cstring,cstring_literals"), 5033 CharUnits::One(), true); 5034 5035 return getConstantGEP(VMContext, Entry, 0, 0); 5036 } 5037 5038 // FIXME: Merge into a single cstring creation function. 5039 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5040 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5041 5042 if (!Entry) 5043 Entry = CreateMetadataVar( 5044 "OBJC_PROP_NAME_ATTR_", 5045 llvm::ConstantDataArray::getString(VMContext, Ident->getName()), 5046 "__TEXT,__cstring,cstring_literals", CharUnits::One(), true); 5047 5048 return getConstantGEP(VMContext, Entry, 0, 0); 5049 } 5050 5051 // FIXME: Merge into a single cstring creation function. 5052 // FIXME: This Decl should be more precise. 5053 llvm::Constant * 5054 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5055 const Decl *Container) { 5056 std::string TypeStr; 5057 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 5058 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5059 } 5060 5061 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5062 const ObjCContainerDecl *CD, 5063 SmallVectorImpl<char> &Name) { 5064 llvm::raw_svector_ostream OS(Name); 5065 assert (CD && "Missing container decl in GetNameForMethod"); 5066 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5067 << '[' << CD->getName(); 5068 if (const ObjCCategoryImplDecl *CID = 5069 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5070 OS << '(' << *CID << ')'; 5071 OS << ' ' << D->getSelector().getAsString() << ']'; 5072 } 5073 5074 void CGObjCMac::FinishModule() { 5075 EmitModuleInfo(); 5076 5077 // Emit the dummy bodies for any protocols which were referenced but 5078 // never defined. 5079 for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator 5080 I = Protocols.begin(), e = Protocols.end(); I != e; ++I) { 5081 if (I->second->hasInitializer()) 5082 continue; 5083 5084 llvm::Constant *Values[5]; 5085 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 5086 Values[1] = GetClassName(I->first->getName()); 5087 Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 5088 Values[3] = Values[4] = 5089 llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 5090 I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 5091 Values)); 5092 CGM.addCompilerUsedGlobal(I->second); 5093 } 5094 5095 // Add assembler directives to add lazy undefined symbol references 5096 // for classes which are referenced but not defined. This is 5097 // important for correct linker interaction. 5098 // 5099 // FIXME: It would be nice if we had an LLVM construct for this. 5100 if (!LazySymbols.empty() || !DefinedSymbols.empty()) { 5101 SmallString<256> Asm; 5102 Asm += CGM.getModule().getModuleInlineAsm(); 5103 if (!Asm.empty() && Asm.back() != '\n') 5104 Asm += '\n'; 5105 5106 llvm::raw_svector_ostream OS(Asm); 5107 for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(), 5108 e = DefinedSymbols.end(); I != e; ++I) 5109 OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n" 5110 << "\t.globl .objc_class_name_" << (*I)->getName() << "\n"; 5111 for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(), 5112 e = LazySymbols.end(); I != e; ++I) { 5113 OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n"; 5114 } 5115 5116 for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) { 5117 OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n" 5118 << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n"; 5119 } 5120 5121 CGM.getModule().setModuleInlineAsm(OS.str()); 5122 } 5123 } 5124 5125 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5126 : CGObjCCommonMac(cgm), 5127 ObjCTypes(cgm) { 5128 ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr; 5129 ObjCABI = 2; 5130 } 5131 5132 /* *** */ 5133 5134 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5135 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5136 { 5137 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5138 ASTContext &Ctx = CGM.getContext(); 5139 5140 ShortTy = Types.ConvertType(Ctx.ShortTy); 5141 IntTy = Types.ConvertType(Ctx.IntTy); 5142 LongTy = Types.ConvertType(Ctx.LongTy); 5143 LongLongTy = Types.ConvertType(Ctx.LongLongTy); 5144 Int8PtrTy = CGM.Int8PtrTy; 5145 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5146 5147 // arm64 targets use "int" ivar offset variables. All others, 5148 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5149 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5150 IvarOffsetVarTy = IntTy; 5151 else 5152 IvarOffsetVarTy = LongTy; 5153 5154 ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); 5155 PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy); 5156 SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); 5157 5158 // I'm not sure I like this. The implicit coordination is a bit 5159 // gross. We should solve this in a reasonable fashion because this 5160 // is a pretty common task (match some runtime data structure with 5161 // an LLVM data structure). 5162 5163 // FIXME: This is leaked. 5164 // FIXME: Merge with rewriter code? 5165 5166 // struct _objc_super { 5167 // id self; 5168 // Class cls; 5169 // } 5170 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5171 Ctx.getTranslationUnitDecl(), 5172 SourceLocation(), SourceLocation(), 5173 &Ctx.Idents.get("_objc_super")); 5174 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5175 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5176 false, ICIS_NoInit)); 5177 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5178 nullptr, Ctx.getObjCClassType(), nullptr, 5179 nullptr, false, ICIS_NoInit)); 5180 RD->completeDefinition(); 5181 5182 SuperCTy = Ctx.getTagDeclType(RD); 5183 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5184 5185 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5186 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5187 5188 // struct _prop_t { 5189 // char *name; 5190 // char *attributes; 5191 // } 5192 PropertyTy = llvm::StructType::create("struct._prop_t", 5193 Int8PtrTy, Int8PtrTy, nullptr); 5194 5195 // struct _prop_list_t { 5196 // uint32_t entsize; // sizeof(struct _prop_t) 5197 // uint32_t count_of_properties; 5198 // struct _prop_t prop_list[count_of_properties]; 5199 // } 5200 PropertyListTy = 5201 llvm::StructType::create("struct._prop_list_t", IntTy, IntTy, 5202 llvm::ArrayType::get(PropertyTy, 0), nullptr); 5203 // struct _prop_list_t * 5204 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5205 5206 // struct _objc_method { 5207 // SEL _cmd; 5208 // char *method_type; 5209 // char *_imp; 5210 // } 5211 MethodTy = llvm::StructType::create("struct._objc_method", 5212 SelectorPtrTy, Int8PtrTy, Int8PtrTy, 5213 nullptr); 5214 5215 // struct _objc_cache * 5216 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5217 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5218 5219 } 5220 5221 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5222 : ObjCCommonTypesHelper(cgm) { 5223 // struct _objc_method_description { 5224 // SEL name; 5225 // char *types; 5226 // } 5227 MethodDescriptionTy = 5228 llvm::StructType::create("struct._objc_method_description", 5229 SelectorPtrTy, Int8PtrTy, nullptr); 5230 5231 // struct _objc_method_description_list { 5232 // int count; 5233 // struct _objc_method_description[1]; 5234 // } 5235 MethodDescriptionListTy = llvm::StructType::create( 5236 "struct._objc_method_description_list", IntTy, 5237 llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr); 5238 5239 // struct _objc_method_description_list * 5240 MethodDescriptionListPtrTy = 5241 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5242 5243 // Protocol description structures 5244 5245 // struct _objc_protocol_extension { 5246 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5247 // struct _objc_method_description_list *optional_instance_methods; 5248 // struct _objc_method_description_list *optional_class_methods; 5249 // struct _objc_property_list *instance_properties; 5250 // const char ** extendedMethodTypes; 5251 // } 5252 ProtocolExtensionTy = 5253 llvm::StructType::create("struct._objc_protocol_extension", 5254 IntTy, MethodDescriptionListPtrTy, 5255 MethodDescriptionListPtrTy, PropertyListPtrTy, 5256 Int8PtrPtrTy, nullptr); 5257 5258 // struct _objc_protocol_extension * 5259 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5260 5261 // Handle recursive construction of Protocol and ProtocolList types 5262 5263 ProtocolTy = 5264 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5265 5266 ProtocolListTy = 5267 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5268 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), 5269 LongTy, 5270 llvm::ArrayType::get(ProtocolTy, 0), 5271 nullptr); 5272 5273 // struct _objc_protocol { 5274 // struct _objc_protocol_extension *isa; 5275 // char *protocol_name; 5276 // struct _objc_protocol **_objc_protocol_list; 5277 // struct _objc_method_description_list *instance_methods; 5278 // struct _objc_method_description_list *class_methods; 5279 // } 5280 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5281 llvm::PointerType::getUnqual(ProtocolListTy), 5282 MethodDescriptionListPtrTy, 5283 MethodDescriptionListPtrTy, 5284 nullptr); 5285 5286 // struct _objc_protocol_list * 5287 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5288 5289 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5290 5291 // Class description structures 5292 5293 // struct _objc_ivar { 5294 // char *ivar_name; 5295 // char *ivar_type; 5296 // int ivar_offset; 5297 // } 5298 IvarTy = llvm::StructType::create("struct._objc_ivar", 5299 Int8PtrTy, Int8PtrTy, IntTy, nullptr); 5300 5301 // struct _objc_ivar_list * 5302 IvarListTy = 5303 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5304 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5305 5306 // struct _objc_method_list * 5307 MethodListTy = 5308 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5309 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5310 5311 // struct _objc_class_extension * 5312 ClassExtensionTy = 5313 llvm::StructType::create("struct._objc_class_extension", 5314 IntTy, Int8PtrTy, PropertyListPtrTy, nullptr); 5315 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5316 5317 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5318 5319 // struct _objc_class { 5320 // Class isa; 5321 // Class super_class; 5322 // char *name; 5323 // long version; 5324 // long info; 5325 // long instance_size; 5326 // struct _objc_ivar_list *ivars; 5327 // struct _objc_method_list *methods; 5328 // struct _objc_cache *cache; 5329 // struct _objc_protocol_list *protocols; 5330 // char *ivar_layout; 5331 // struct _objc_class_ext *ext; 5332 // }; 5333 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5334 llvm::PointerType::getUnqual(ClassTy), 5335 Int8PtrTy, 5336 LongTy, 5337 LongTy, 5338 LongTy, 5339 IvarListPtrTy, 5340 MethodListPtrTy, 5341 CachePtrTy, 5342 ProtocolListPtrTy, 5343 Int8PtrTy, 5344 ClassExtensionPtrTy, 5345 nullptr); 5346 5347 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5348 5349 // struct _objc_category { 5350 // char *category_name; 5351 // char *class_name; 5352 // struct _objc_method_list *instance_method; 5353 // struct _objc_method_list *class_method; 5354 // uint32_t size; // sizeof(struct _objc_category) 5355 // struct _objc_property_list *instance_properties;// category's @property 5356 // } 5357 CategoryTy = 5358 llvm::StructType::create("struct._objc_category", 5359 Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5360 MethodListPtrTy, ProtocolListPtrTy, 5361 IntTy, PropertyListPtrTy, nullptr); 5362 5363 // Global metadata structures 5364 5365 // struct _objc_symtab { 5366 // long sel_ref_cnt; 5367 // SEL *refs; 5368 // short cls_def_cnt; 5369 // short cat_def_cnt; 5370 // char *defs[cls_def_cnt + cat_def_cnt]; 5371 // } 5372 SymtabTy = 5373 llvm::StructType::create("struct._objc_symtab", 5374 LongTy, SelectorPtrTy, ShortTy, ShortTy, 5375 llvm::ArrayType::get(Int8PtrTy, 0), nullptr); 5376 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5377 5378 // struct _objc_module { 5379 // long version; 5380 // long size; // sizeof(struct _objc_module) 5381 // char *name; 5382 // struct _objc_symtab* symtab; 5383 // } 5384 ModuleTy = 5385 llvm::StructType::create("struct._objc_module", 5386 LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr); 5387 5388 5389 // FIXME: This is the size of the setjmp buffer and should be target 5390 // specific. 18 is what's used on 32-bit X86. 5391 uint64_t SetJmpBufferSize = 18; 5392 5393 // Exceptions 5394 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5395 5396 ExceptionDataTy = 5397 llvm::StructType::create("struct._objc_exception_data", 5398 llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize), 5399 StackPtrTy, nullptr); 5400 5401 } 5402 5403 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5404 : ObjCCommonTypesHelper(cgm) { 5405 // struct _method_list_t { 5406 // uint32_t entsize; // sizeof(struct _objc_method) 5407 // uint32_t method_count; 5408 // struct _objc_method method_list[method_count]; 5409 // } 5410 MethodListnfABITy = 5411 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5412 llvm::ArrayType::get(MethodTy, 0), nullptr); 5413 // struct method_list_t * 5414 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5415 5416 // struct _protocol_t { 5417 // id isa; // NULL 5418 // const char * const protocol_name; 5419 // const struct _protocol_list_t * protocol_list; // super protocols 5420 // const struct method_list_t * const instance_methods; 5421 // const struct method_list_t * const class_methods; 5422 // const struct method_list_t *optionalInstanceMethods; 5423 // const struct method_list_t *optionalClassMethods; 5424 // const struct _prop_list_t * properties; 5425 // const uint32_t size; // sizeof(struct _protocol_t) 5426 // const uint32_t flags; // = 0 5427 // const char ** extendedMethodTypes; 5428 // const char *demangledName; 5429 // } 5430 5431 // Holder for struct _protocol_list_t * 5432 ProtocolListnfABITy = 5433 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5434 5435 ProtocolnfABITy = 5436 llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5437 llvm::PointerType::getUnqual(ProtocolListnfABITy), 5438 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5439 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5440 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, 5441 Int8PtrTy, 5442 nullptr); 5443 5444 // struct _protocol_t* 5445 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5446 5447 // struct _protocol_list_t { 5448 // long protocol_count; // Note, this is 32/64 bit 5449 // struct _protocol_t *[protocol_count]; 5450 // } 5451 ProtocolListnfABITy->setBody(LongTy, 5452 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0), 5453 nullptr); 5454 5455 // struct _objc_protocol_list* 5456 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5457 5458 // struct _ivar_t { 5459 // unsigned [long] int *offset; // pointer to ivar offset location 5460 // char *name; 5461 // char *type; 5462 // uint32_t alignment; 5463 // uint32_t size; 5464 // } 5465 IvarnfABITy = llvm::StructType::create( 5466 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5467 Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr); 5468 5469 // struct _ivar_list_t { 5470 // uint32 entsize; // sizeof(struct _ivar_t) 5471 // uint32 count; 5472 // struct _iver_t list[count]; 5473 // } 5474 IvarListnfABITy = 5475 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5476 llvm::ArrayType::get(IvarnfABITy, 0), nullptr); 5477 5478 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5479 5480 // struct _class_ro_t { 5481 // uint32_t const flags; 5482 // uint32_t const instanceStart; 5483 // uint32_t const instanceSize; 5484 // uint32_t const reserved; // only when building for 64bit targets 5485 // const uint8_t * const ivarLayout; 5486 // const char *const name; 5487 // const struct _method_list_t * const baseMethods; 5488 // const struct _objc_protocol_list *const baseProtocols; 5489 // const struct _ivar_list_t *const ivars; 5490 // const uint8_t * const weakIvarLayout; 5491 // const struct _prop_list_t * const properties; 5492 // } 5493 5494 // FIXME. Add 'reserved' field in 64bit abi mode! 5495 ClassRonfABITy = llvm::StructType::create("struct._class_ro_t", 5496 IntTy, IntTy, IntTy, Int8PtrTy, 5497 Int8PtrTy, MethodListnfABIPtrTy, 5498 ProtocolListnfABIPtrTy, 5499 IvarListnfABIPtrTy, 5500 Int8PtrTy, PropertyListPtrTy, 5501 nullptr); 5502 5503 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5504 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5505 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5506 ->getPointerTo(); 5507 5508 // struct _class_t { 5509 // struct _class_t *isa; 5510 // struct _class_t * const superclass; 5511 // void *cache; 5512 // IMP *vtable; 5513 // struct class_ro_t *ro; 5514 // } 5515 5516 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5517 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5518 llvm::PointerType::getUnqual(ClassnfABITy), 5519 CachePtrTy, 5520 llvm::PointerType::getUnqual(ImpnfABITy), 5521 llvm::PointerType::getUnqual(ClassRonfABITy), 5522 nullptr); 5523 5524 // LLVM for struct _class_t * 5525 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5526 5527 // struct _category_t { 5528 // const char * const name; 5529 // struct _class_t *const cls; 5530 // const struct _method_list_t * const instance_methods; 5531 // const struct _method_list_t * const class_methods; 5532 // const struct _protocol_list_t * const protocols; 5533 // const struct _prop_list_t * const properties; 5534 // } 5535 CategorynfABITy = llvm::StructType::create("struct._category_t", 5536 Int8PtrTy, ClassnfABIPtrTy, 5537 MethodListnfABIPtrTy, 5538 MethodListnfABIPtrTy, 5539 ProtocolListnfABIPtrTy, 5540 PropertyListPtrTy, 5541 nullptr); 5542 5543 // New types for nonfragile abi messaging. 5544 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5545 ASTContext &Ctx = CGM.getContext(); 5546 5547 // MessageRefTy - LLVM for: 5548 // struct _message_ref_t { 5549 // IMP messenger; 5550 // SEL name; 5551 // }; 5552 5553 // First the clang type for struct _message_ref_t 5554 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5555 Ctx.getTranslationUnitDecl(), 5556 SourceLocation(), SourceLocation(), 5557 &Ctx.Idents.get("_message_ref_t")); 5558 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5559 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5560 ICIS_NoInit)); 5561 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5562 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5563 false, ICIS_NoInit)); 5564 RD->completeDefinition(); 5565 5566 MessageRefCTy = Ctx.getTagDeclType(RD); 5567 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5568 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5569 5570 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5571 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5572 5573 // SuperMessageRefTy - LLVM for: 5574 // struct _super_message_ref_t { 5575 // SUPER_IMP messenger; 5576 // SEL name; 5577 // }; 5578 SuperMessageRefTy = 5579 llvm::StructType::create("struct._super_message_ref_t", 5580 ImpnfABITy, SelectorPtrTy, nullptr); 5581 5582 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5583 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5584 5585 5586 // struct objc_typeinfo { 5587 // const void** vtable; // objc_ehtype_vtable + 2 5588 // const char* name; // c++ typeinfo string 5589 // Class cls; 5590 // }; 5591 EHTypeTy = 5592 llvm::StructType::create("struct._objc_typeinfo", 5593 llvm::PointerType::getUnqual(Int8PtrTy), 5594 Int8PtrTy, ClassnfABIPtrTy, nullptr); 5595 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5596 } 5597 5598 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5599 FinishNonFragileABIModule(); 5600 5601 return nullptr; 5602 } 5603 5604 void CGObjCNonFragileABIMac:: 5605 AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 5606 const char *SymbolName, 5607 const char *SectionName) { 5608 unsigned NumClasses = Container.size(); 5609 5610 if (!NumClasses) 5611 return; 5612 5613 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5614 for (unsigned i=0; i<NumClasses; i++) 5615 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5616 ObjCTypes.Int8PtrTy); 5617 llvm::Constant *Init = 5618 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5619 Symbols.size()), 5620 Symbols); 5621 5622 llvm::GlobalVariable *GV = 5623 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5624 llvm::GlobalValue::PrivateLinkage, 5625 Init, 5626 SymbolName); 5627 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5628 GV->setSection(SectionName); 5629 CGM.addCompilerUsedGlobal(GV); 5630 } 5631 5632 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5633 // nonfragile abi has no module definition. 5634 5635 // Build list of all implemented class addresses in array 5636 // L_OBJC_LABEL_CLASS_$. 5637 5638 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5639 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5640 assert(ID); 5641 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5642 // We are implementing a weak imported interface. Give it external linkage 5643 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5644 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5645 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5646 } 5647 } 5648 5649 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5650 "__DATA, __objc_classlist, regular, no_dead_strip"); 5651 5652 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5653 "__DATA, __objc_nlclslist, regular, no_dead_strip"); 5654 5655 // Build list of all implemented category addresses in array 5656 // L_OBJC_LABEL_CATEGORY_$. 5657 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5658 "__DATA, __objc_catlist, regular, no_dead_strip"); 5659 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5660 "__DATA, __objc_nlcatlist, regular, no_dead_strip"); 5661 5662 EmitImageInfo(); 5663 } 5664 5665 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5666 /// VTableDispatchMethods; false otherwise. What this means is that 5667 /// except for the 19 selectors in the list, we generate 32bit-style 5668 /// message dispatch call for all the rest. 5669 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5670 // At various points we've experimented with using vtable-based 5671 // dispatch for all methods. 5672 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5673 case CodeGenOptions::Legacy: 5674 return false; 5675 case CodeGenOptions::NonLegacy: 5676 return true; 5677 case CodeGenOptions::Mixed: 5678 break; 5679 } 5680 5681 // If so, see whether this selector is in the white-list of things which must 5682 // use the new dispatch convention. We lazily build a dense set for this. 5683 if (VTableDispatchMethods.empty()) { 5684 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 5685 VTableDispatchMethods.insert(GetNullarySelector("class")); 5686 VTableDispatchMethods.insert(GetNullarySelector("self")); 5687 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 5688 VTableDispatchMethods.insert(GetNullarySelector("length")); 5689 VTableDispatchMethods.insert(GetNullarySelector("count")); 5690 5691 // These are vtable-based if GC is disabled. 5692 // Optimistically use vtable dispatch for hybrid compiles. 5693 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 5694 VTableDispatchMethods.insert(GetNullarySelector("retain")); 5695 VTableDispatchMethods.insert(GetNullarySelector("release")); 5696 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 5697 } 5698 5699 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 5700 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 5701 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 5702 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 5703 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 5704 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 5705 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 5706 5707 // These are vtable-based if GC is enabled. 5708 // Optimistically use vtable dispatch for hybrid compiles. 5709 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5710 VTableDispatchMethods.insert(GetNullarySelector("hash")); 5711 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 5712 5713 // "countByEnumeratingWithState:objects:count" 5714 IdentifierInfo *KeyIdents[] = { 5715 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 5716 &CGM.getContext().Idents.get("objects"), 5717 &CGM.getContext().Idents.get("count") 5718 }; 5719 VTableDispatchMethods.insert( 5720 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 5721 } 5722 } 5723 5724 return VTableDispatchMethods.count(Sel); 5725 } 5726 5727 /// BuildClassRoTInitializer - generate meta-data for: 5728 /// struct _class_ro_t { 5729 /// uint32_t const flags; 5730 /// uint32_t const instanceStart; 5731 /// uint32_t const instanceSize; 5732 /// uint32_t const reserved; // only when building for 64bit targets 5733 /// const uint8_t * const ivarLayout; 5734 /// const char *const name; 5735 /// const struct _method_list_t * const baseMethods; 5736 /// const struct _protocol_list_t *const baseProtocols; 5737 /// const struct _ivar_list_t *const ivars; 5738 /// const uint8_t * const weakIvarLayout; 5739 /// const struct _prop_list_t * const properties; 5740 /// } 5741 /// 5742 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 5743 unsigned flags, 5744 unsigned InstanceStart, 5745 unsigned InstanceSize, 5746 const ObjCImplementationDecl *ID) { 5747 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5748 llvm::Constant *Values[10]; // 11 for 64bit targets! 5749 5750 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 5751 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 5752 5753 bool hasMRCWeak = false; 5754 if (CGM.getLangOpts().ObjCAutoRefCount) 5755 flags |= NonFragileABI_Class_CompiledByARC; 5756 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 5757 flags |= NonFragileABI_Class_HasMRCWeakIvars; 5758 5759 Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags); 5760 Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart); 5761 Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize); 5762 // FIXME. For 64bit targets add 0 here. 5763 Values[ 3] = (flags & NonFragileABI_Class_Meta) 5764 ? GetIvarLayoutName(nullptr, ObjCTypes) 5765 : BuildStrongIvarLayout(ID, beginInstance, endInstance); 5766 Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString()); 5767 // const struct _method_list_t * const baseMethods; 5768 std::vector<llvm::Constant*> Methods; 5769 std::string MethodListName("\01l_OBJC_$_"); 5770 if (flags & NonFragileABI_Class_Meta) { 5771 MethodListName += "CLASS_METHODS_"; 5772 MethodListName += ID->getObjCRuntimeNameAsString(); 5773 for (const auto *I : ID->class_methods()) 5774 // Class methods should always be defined. 5775 Methods.push_back(GetMethodConstant(I)); 5776 } else { 5777 MethodListName += "INSTANCE_METHODS_"; 5778 MethodListName += ID->getObjCRuntimeNameAsString(); 5779 for (const auto *I : ID->instance_methods()) 5780 // Instance methods should always be defined. 5781 Methods.push_back(GetMethodConstant(I)); 5782 5783 for (const auto *PID : ID->property_impls()) { 5784 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 5785 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5786 5787 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 5788 if (llvm::Constant *C = GetMethodConstant(MD)) 5789 Methods.push_back(C); 5790 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 5791 if (llvm::Constant *C = GetMethodConstant(MD)) 5792 Methods.push_back(C); 5793 } 5794 } 5795 } 5796 Values[ 5] = EmitMethodList(MethodListName, 5797 "__DATA, __objc_const", Methods); 5798 5799 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 5800 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 5801 Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 5802 + OID->getObjCRuntimeNameAsString(), 5803 OID->all_referenced_protocol_begin(), 5804 OID->all_referenced_protocol_end()); 5805 5806 if (flags & NonFragileABI_Class_Meta) { 5807 Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 5808 Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes); 5809 Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 5810 } else { 5811 Values[ 7] = EmitIvarList(ID); 5812 Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance, 5813 hasMRCWeak); 5814 Values[ 9] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 5815 ID, ID->getClassInterface(), ObjCTypes); 5816 } 5817 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy, 5818 Values); 5819 llvm::GlobalVariable *CLASS_RO_GV = 5820 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false, 5821 llvm::GlobalValue::PrivateLinkage, 5822 Init, 5823 (flags & NonFragileABI_Class_Meta) ? 5824 std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName : 5825 std::string("\01l_OBJC_CLASS_RO_$_")+ClassName); 5826 CLASS_RO_GV->setAlignment( 5827 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy)); 5828 CLASS_RO_GV->setSection("__DATA, __objc_const"); 5829 return CLASS_RO_GV; 5830 5831 } 5832 5833 /// BuildClassMetaData - This routine defines that to-level meta-data 5834 /// for the given ClassName for: 5835 /// struct _class_t { 5836 /// struct _class_t *isa; 5837 /// struct _class_t * const superclass; 5838 /// void *cache; 5839 /// IMP *vtable; 5840 /// struct class_ro_t *ro; 5841 /// } 5842 /// 5843 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData( 5844 const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV, 5845 llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) { 5846 llvm::Constant *Values[] = { 5847 IsAGV, 5848 SuperClassGV, 5849 ObjCEmptyCacheVar, // &ObjCEmptyCacheVar 5850 ObjCEmptyVtableVar, // &ObjCEmptyVtableVar 5851 ClassRoGV // &CLASS_RO_GV 5852 }; 5853 if (!Values[1]) 5854 Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy); 5855 if (!Values[3]) 5856 Values[3] = llvm::Constant::getNullValue( 5857 llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy)); 5858 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy, 5859 Values); 5860 llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak); 5861 GV->setInitializer(Init); 5862 GV->setSection("__DATA, __objc_data"); 5863 GV->setAlignment( 5864 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 5865 if (HiddenVisibility) 5866 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5867 return GV; 5868 } 5869 5870 bool 5871 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 5872 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 5873 } 5874 5875 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 5876 uint32_t &InstanceStart, 5877 uint32_t &InstanceSize) { 5878 const ASTRecordLayout &RL = 5879 CGM.getContext().getASTObjCImplementationLayout(OID); 5880 5881 // InstanceSize is really instance end. 5882 InstanceSize = RL.getDataSize().getQuantity(); 5883 5884 // If there are no fields, the start is the same as the end. 5885 if (!RL.getFieldCount()) 5886 InstanceStart = InstanceSize; 5887 else 5888 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 5889 } 5890 5891 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 5892 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5893 if (!ObjCEmptyCacheVar) { 5894 ObjCEmptyCacheVar = new llvm::GlobalVariable( 5895 CGM.getModule(), 5896 ObjCTypes.CacheTy, 5897 false, 5898 llvm::GlobalValue::ExternalLinkage, 5899 nullptr, 5900 "_objc_empty_cache"); 5901 5902 // Make this entry NULL for any iOS device target, any iOS simulator target, 5903 // OS X with deployment target 10.9 or later. 5904 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 5905 if (Triple.isiOS() || Triple.isWatchOS() || 5906 (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9))) 5907 // This entry will be null. 5908 ObjCEmptyVtableVar = nullptr; 5909 else 5910 ObjCEmptyVtableVar = new llvm::GlobalVariable( 5911 CGM.getModule(), 5912 ObjCTypes.ImpnfABITy, 5913 false, 5914 llvm::GlobalValue::ExternalLinkage, 5915 nullptr, 5916 "_objc_empty_vtable"); 5917 } 5918 assert(ID->getClassInterface() && 5919 "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 5920 // FIXME: Is this correct (that meta class size is never computed)? 5921 uint32_t InstanceStart = 5922 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 5923 uint32_t InstanceSize = InstanceStart; 5924 uint32_t flags = NonFragileABI_Class_Meta; 5925 llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix()); 5926 llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix()); 5927 llvm::SmallString<64> TClassName; 5928 5929 llvm::GlobalVariable *SuperClassGV, *IsAGV; 5930 5931 // Build the flags for the metaclass. 5932 bool classIsHidden = 5933 ID->getClassInterface()->getVisibility() == HiddenVisibility; 5934 if (classIsHidden) 5935 flags |= NonFragileABI_Class_Hidden; 5936 5937 // FIXME: why is this flag set on the metaclass? 5938 // ObjC metaclasses have no fields and don't really get constructed. 5939 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 5940 flags |= NonFragileABI_Class_HasCXXStructors; 5941 if (!ID->hasNonZeroConstructors()) 5942 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 5943 } 5944 5945 if (!ID->getClassInterface()->getSuperClass()) { 5946 // class is root 5947 flags |= NonFragileABI_Class_Root; 5948 TClassName = ObjCClassName; 5949 TClassName += ClassName; 5950 SuperClassGV = GetClassGlobal(TClassName.str(), 5951 ID->getClassInterface()->isWeakImported()); 5952 TClassName = ObjCMetaClassName; 5953 TClassName += ClassName; 5954 IsAGV = GetClassGlobal(TClassName.str(), 5955 ID->getClassInterface()->isWeakImported()); 5956 } else { 5957 // Has a root. Current class is not a root. 5958 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 5959 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 5960 Root = Super; 5961 TClassName = ObjCMetaClassName ; 5962 TClassName += Root->getObjCRuntimeNameAsString(); 5963 IsAGV = GetClassGlobal(TClassName.str(), 5964 Root->isWeakImported()); 5965 5966 // work on super class metadata symbol. 5967 TClassName = ObjCMetaClassName; 5968 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 5969 SuperClassGV = GetClassGlobal( 5970 TClassName.str(), 5971 ID->getClassInterface()->getSuperClass()->isWeakImported()); 5972 } 5973 llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags, 5974 InstanceStart, 5975 InstanceSize,ID); 5976 TClassName = ObjCMetaClassName; 5977 TClassName += ClassName; 5978 llvm::GlobalVariable *MetaTClass = BuildClassMetaData( 5979 TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden, 5980 ID->getClassInterface()->isWeakImported()); 5981 DefinedMetaClasses.push_back(MetaTClass); 5982 5983 // Metadata for the class 5984 flags = 0; 5985 if (classIsHidden) 5986 flags |= NonFragileABI_Class_Hidden; 5987 5988 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 5989 flags |= NonFragileABI_Class_HasCXXStructors; 5990 5991 // Set a flag to enable a runtime optimization when a class has 5992 // fields that require destruction but which don't require 5993 // anything except zero-initialization during construction. This 5994 // is most notably true of __strong and __weak types, but you can 5995 // also imagine there being C++ types with non-trivial default 5996 // constructors that merely set all fields to null. 5997 if (!ID->hasNonZeroConstructors()) 5998 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 5999 } 6000 6001 if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface())) 6002 flags |= NonFragileABI_Class_Exception; 6003 6004 if (!ID->getClassInterface()->getSuperClass()) { 6005 flags |= NonFragileABI_Class_Root; 6006 SuperClassGV = nullptr; 6007 } else { 6008 // Has a root. Current class is not a root. 6009 TClassName = ObjCClassName; 6010 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 6011 SuperClassGV = GetClassGlobal( 6012 TClassName.str(), 6013 ID->getClassInterface()->getSuperClass()->isWeakImported()); 6014 } 6015 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6016 CLASS_RO_GV = BuildClassRoTInitializer(flags, 6017 InstanceStart, 6018 InstanceSize, 6019 ID); 6020 6021 TClassName = ObjCClassName; 6022 TClassName += ClassName; 6023 llvm::GlobalVariable *ClassMD = 6024 BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV, 6025 classIsHidden, 6026 ID->getClassInterface()->isWeakImported()); 6027 DefinedClasses.push_back(ClassMD); 6028 ImplementedClasses.push_back(ID->getClassInterface()); 6029 6030 // Determine if this class is also "non-lazy". 6031 if (ImplementationIsNonLazy(ID)) 6032 DefinedNonLazyClasses.push_back(ClassMD); 6033 6034 // Force the definition of the EHType if necessary. 6035 if (flags & NonFragileABI_Class_Exception) 6036 GetInterfaceEHType(ID->getClassInterface(), true); 6037 // Make sure method definition entries are all clear for next implementation. 6038 MethodDefinitions.clear(); 6039 } 6040 6041 /// GenerateProtocolRef - This routine is called to generate code for 6042 /// a protocol reference expression; as in: 6043 /// @code 6044 /// @protocol(Proto1); 6045 /// @endcode 6046 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6047 /// which will hold address of the protocol meta-data. 6048 /// 6049 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6050 const ObjCProtocolDecl *PD) { 6051 6052 // This routine is called for @protocol only. So, we must build definition 6053 // of protocol's meta-data (not a reference to it!) 6054 // 6055 llvm::Constant *Init = 6056 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6057 ObjCTypes.getExternalProtocolPtrTy()); 6058 6059 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6060 ProtocolName += PD->getObjCRuntimeNameAsString(); 6061 6062 CharUnits Align = CGF.getPointerAlign(); 6063 6064 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6065 if (PTGV) 6066 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6067 PTGV = new llvm::GlobalVariable( 6068 CGM.getModule(), 6069 Init->getType(), false, 6070 llvm::GlobalValue::WeakAnyLinkage, 6071 Init, 6072 ProtocolName); 6073 PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip"); 6074 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6075 PTGV->setAlignment(Align.getQuantity()); 6076 CGM.addCompilerUsedGlobal(PTGV); 6077 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6078 } 6079 6080 /// GenerateCategory - Build metadata for a category implementation. 6081 /// struct _category_t { 6082 /// const char * const name; 6083 /// struct _class_t *const cls; 6084 /// const struct _method_list_t * const instance_methods; 6085 /// const struct _method_list_t * const class_methods; 6086 /// const struct _protocol_list_t * const protocols; 6087 /// const struct _prop_list_t * const properties; 6088 /// } 6089 /// 6090 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6091 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6092 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6093 6094 llvm::SmallString<64> ExtCatName(Prefix); 6095 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6096 ExtCatName += "_$_"; 6097 ExtCatName += OCD->getNameAsString(); 6098 6099 llvm::SmallString<64> ExtClassName(getClassSymbolPrefix()); 6100 ExtClassName += Interface->getObjCRuntimeNameAsString(); 6101 6102 llvm::Constant *Values[6]; 6103 Values[0] = GetClassName(OCD->getIdentifier()->getName()); 6104 // meta-class entry symbol 6105 llvm::GlobalVariable *ClassGV = 6106 GetClassGlobal(ExtClassName.str(), Interface->isWeakImported()); 6107 6108 Values[1] = ClassGV; 6109 std::vector<llvm::Constant*> Methods; 6110 llvm::SmallString<64> MethodListName(Prefix); 6111 6112 MethodListName += "INSTANCE_METHODS_"; 6113 MethodListName += Interface->getObjCRuntimeNameAsString(); 6114 MethodListName += "_$_"; 6115 MethodListName += OCD->getName(); 6116 6117 for (const auto *I : OCD->instance_methods()) 6118 // Instance methods should always be defined. 6119 Methods.push_back(GetMethodConstant(I)); 6120 6121 Values[2] = EmitMethodList(MethodListName.str(), 6122 "__DATA, __objc_const", 6123 Methods); 6124 6125 MethodListName = Prefix; 6126 MethodListName += "CLASS_METHODS_"; 6127 MethodListName += Interface->getObjCRuntimeNameAsString(); 6128 MethodListName += "_$_"; 6129 MethodListName += OCD->getNameAsString(); 6130 6131 Methods.clear(); 6132 for (const auto *I : OCD->class_methods()) 6133 // Class methods should always be defined. 6134 Methods.push_back(GetMethodConstant(I)); 6135 6136 Values[3] = EmitMethodList(MethodListName.str(), 6137 "__DATA, __objc_const", 6138 Methods); 6139 const ObjCCategoryDecl *Category = 6140 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6141 if (Category) { 6142 SmallString<256> ExtName; 6143 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6144 << OCD->getName(); 6145 Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6146 + Interface->getObjCRuntimeNameAsString() + "_$_" 6147 + Category->getName(), 6148 Category->protocol_begin(), 6149 Category->protocol_end()); 6150 Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6151 OCD, Category, ObjCTypes); 6152 } else { 6153 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6154 Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6155 } 6156 6157 llvm::Constant *Init = 6158 llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy, 6159 Values); 6160 llvm::GlobalVariable *GCATV 6161 = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy, 6162 false, 6163 llvm::GlobalValue::PrivateLinkage, 6164 Init, 6165 ExtCatName.str()); 6166 GCATV->setAlignment( 6167 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy)); 6168 GCATV->setSection("__DATA, __objc_const"); 6169 CGM.addCompilerUsedGlobal(GCATV); 6170 DefinedCategories.push_back(GCATV); 6171 6172 // Determine if this category is also "non-lazy". 6173 if (ImplementationIsNonLazy(OCD)) 6174 DefinedNonLazyCategories.push_back(GCATV); 6175 // method definition entries must be clear for next implementation. 6176 MethodDefinitions.clear(); 6177 } 6178 6179 /// GetMethodConstant - Return a struct objc_method constant for the 6180 /// given method if it has been defined. The result is null if the 6181 /// method has not been defined. The return value has type MethodPtrTy. 6182 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant( 6183 const ObjCMethodDecl *MD) { 6184 llvm::Function *Fn = GetMethodDefinition(MD); 6185 if (!Fn) 6186 return nullptr; 6187 6188 llvm::Constant *Method[] = { 6189 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6190 ObjCTypes.SelectorPtrTy), 6191 GetMethodVarType(MD), 6192 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 6193 }; 6194 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 6195 } 6196 6197 /// EmitMethodList - Build meta-data for method declarations 6198 /// struct _method_list_t { 6199 /// uint32_t entsize; // sizeof(struct _objc_method) 6200 /// uint32_t method_count; 6201 /// struct _objc_method method_list[method_count]; 6202 /// } 6203 /// 6204 llvm::Constant * 6205 CGObjCNonFragileABIMac::EmitMethodList(Twine Name, 6206 const char *Section, 6207 ArrayRef<llvm::Constant*> Methods) { 6208 // Return null for empty list. 6209 if (Methods.empty()) 6210 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6211 6212 llvm::Constant *Values[3]; 6213 // sizeof(struct _objc_method) 6214 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6215 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6216 // method_count 6217 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 6218 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 6219 Methods.size()); 6220 Values[2] = llvm::ConstantArray::get(AT, Methods); 6221 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6222 6223 llvm::GlobalVariable *GV = 6224 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6225 llvm::GlobalValue::PrivateLinkage, Init, Name); 6226 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6227 GV->setSection(Section); 6228 CGM.addCompilerUsedGlobal(GV); 6229 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6230 } 6231 6232 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6233 /// the given ivar. 6234 llvm::GlobalVariable * 6235 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6236 const ObjCIvarDecl *Ivar) { 6237 6238 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6239 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6240 Name += Container->getObjCRuntimeNameAsString(); 6241 Name += "."; 6242 Name += Ivar->getName(); 6243 llvm::GlobalVariable *IvarOffsetGV = 6244 CGM.getModule().getGlobalVariable(Name); 6245 if (!IvarOffsetGV) 6246 IvarOffsetGV = new llvm::GlobalVariable( 6247 CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false, 6248 llvm::GlobalValue::ExternalLinkage, nullptr, Name.str()); 6249 return IvarOffsetGV; 6250 } 6251 6252 llvm::Constant * 6253 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6254 const ObjCIvarDecl *Ivar, 6255 unsigned long int Offset) { 6256 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6257 IvarOffsetGV->setInitializer( 6258 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6259 IvarOffsetGV->setAlignment( 6260 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6261 6262 // FIXME: This matches gcc, but shouldn't the visibility be set on the use as 6263 // well (i.e., in ObjCIvarOffsetVariable). 6264 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6265 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6266 ID->getVisibility() == HiddenVisibility) 6267 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6268 else 6269 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6270 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6271 return IvarOffsetGV; 6272 } 6273 6274 /// EmitIvarList - Emit the ivar list for the given 6275 /// implementation. The return value has type 6276 /// IvarListnfABIPtrTy. 6277 /// struct _ivar_t { 6278 /// unsigned [long] int *offset; // pointer to ivar offset location 6279 /// char *name; 6280 /// char *type; 6281 /// uint32_t alignment; 6282 /// uint32_t size; 6283 /// } 6284 /// struct _ivar_list_t { 6285 /// uint32 entsize; // sizeof(struct _ivar_t) 6286 /// uint32 count; 6287 /// struct _iver_t list[count]; 6288 /// } 6289 /// 6290 6291 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6292 const ObjCImplementationDecl *ID) { 6293 6294 std::vector<llvm::Constant*> Ivars; 6295 6296 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6297 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6298 6299 // FIXME. Consolidate this with similar code in GenerateClass. 6300 6301 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6302 IVD; IVD = IVD->getNextIvar()) { 6303 // Ignore unnamed bit-fields. 6304 if (!IVD->getDeclName()) 6305 continue; 6306 llvm::Constant *Ivar[5]; 6307 Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6308 ComputeIvarBaseOffset(CGM, ID, IVD)); 6309 Ivar[1] = GetMethodVarName(IVD->getIdentifier()); 6310 Ivar[2] = GetMethodVarType(IVD); 6311 llvm::Type *FieldTy = 6312 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6313 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6314 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6315 IVD->getType().getTypePtr()) >> 3; 6316 Align = llvm::Log2_32(Align); 6317 Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align); 6318 // NOTE. Size of a bitfield does not match gcc's, because of the 6319 // way bitfields are treated special in each. But I am told that 6320 // 'size' for bitfield ivars is ignored by the runtime so it does 6321 // not matter. If it matters, there is enough info to get the 6322 // bitfield right! 6323 Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6324 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar)); 6325 } 6326 // Return null for empty list. 6327 if (Ivars.empty()) 6328 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6329 6330 llvm::Constant *Values[3]; 6331 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy); 6332 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6333 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 6334 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy, 6335 Ivars.size()); 6336 Values[2] = llvm::ConstantArray::get(AT, Ivars); 6337 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6338 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6339 llvm::GlobalVariable *GV = 6340 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6341 llvm::GlobalValue::PrivateLinkage, 6342 Init, 6343 Prefix + OID->getObjCRuntimeNameAsString()); 6344 GV->setAlignment( 6345 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6346 GV->setSection("__DATA, __objc_const"); 6347 6348 CGM.addCompilerUsedGlobal(GV); 6349 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6350 } 6351 6352 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6353 const ObjCProtocolDecl *PD) { 6354 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6355 6356 if (!Entry) { 6357 // We use the initializer as a marker of whether this is a forward 6358 // reference or not. At module finalization we add the empty 6359 // contents for protocols which were referenced but never defined. 6360 Entry = 6361 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6362 false, llvm::GlobalValue::ExternalLinkage, 6363 nullptr, 6364 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6365 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6366 } 6367 6368 return Entry; 6369 } 6370 6371 /// GetOrEmitProtocol - Generate the protocol meta-data: 6372 /// @code 6373 /// struct _protocol_t { 6374 /// id isa; // NULL 6375 /// const char * const protocol_name; 6376 /// const struct _protocol_list_t * protocol_list; // super protocols 6377 /// const struct method_list_t * const instance_methods; 6378 /// const struct method_list_t * const class_methods; 6379 /// const struct method_list_t *optionalInstanceMethods; 6380 /// const struct method_list_t *optionalClassMethods; 6381 /// const struct _prop_list_t * properties; 6382 /// const uint32_t size; // sizeof(struct _protocol_t) 6383 /// const uint32_t flags; // = 0 6384 /// const char ** extendedMethodTypes; 6385 /// const char *demangledName; 6386 /// } 6387 /// @endcode 6388 /// 6389 6390 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6391 const ObjCProtocolDecl *PD) { 6392 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6393 6394 // Early exit if a defining object has already been generated. 6395 if (Entry && Entry->hasInitializer()) 6396 return Entry; 6397 6398 // Use the protocol definition, if there is one. 6399 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6400 PD = Def; 6401 6402 // Construct method lists. 6403 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 6404 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 6405 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 6406 for (const auto *MD : PD->instance_methods()) { 6407 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6408 if (!C) 6409 return GetOrEmitProtocolRef(PD); 6410 6411 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6412 OptInstanceMethods.push_back(C); 6413 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6414 } else { 6415 InstanceMethods.push_back(C); 6416 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6417 } 6418 } 6419 6420 for (const auto *MD : PD->class_methods()) { 6421 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6422 if (!C) 6423 return GetOrEmitProtocolRef(PD); 6424 6425 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6426 OptClassMethods.push_back(C); 6427 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6428 } else { 6429 ClassMethods.push_back(C); 6430 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6431 } 6432 } 6433 6434 MethodTypesExt.insert(MethodTypesExt.end(), 6435 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 6436 6437 llvm::Constant *Values[12]; 6438 // isa is NULL 6439 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy); 6440 Values[1] = GetClassName(PD->getObjCRuntimeNameAsString()); 6441 Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(), 6442 PD->protocol_begin(), 6443 PD->protocol_end()); 6444 6445 Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_" 6446 + PD->getObjCRuntimeNameAsString(), 6447 "__DATA, __objc_const", 6448 InstanceMethods); 6449 Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_" 6450 + PD->getObjCRuntimeNameAsString(), 6451 "__DATA, __objc_const", 6452 ClassMethods); 6453 Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_" 6454 + PD->getObjCRuntimeNameAsString(), 6455 "__DATA, __objc_const", 6456 OptInstanceMethods); 6457 Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_" 6458 + PD->getObjCRuntimeNameAsString(), 6459 "__DATA, __objc_const", 6460 OptClassMethods); 6461 Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6462 nullptr, PD, ObjCTypes); 6463 uint32_t Size = 6464 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6465 Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6466 Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy); 6467 Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6468 + PD->getObjCRuntimeNameAsString(), 6469 MethodTypesExt, ObjCTypes); 6470 // const char *demangledName; 6471 Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6472 6473 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy, 6474 Values); 6475 6476 if (Entry) { 6477 // Already created, fix the linkage and update the initializer. 6478 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6479 Entry->setInitializer(Init); 6480 } else { 6481 Entry = 6482 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6483 false, llvm::GlobalValue::WeakAnyLinkage, Init, 6484 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6485 Entry->setAlignment( 6486 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy)); 6487 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6488 6489 Protocols[PD->getIdentifier()] = Entry; 6490 } 6491 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6492 CGM.addCompilerUsedGlobal(Entry); 6493 6494 // Use this protocol meta-data to build protocol list table in section 6495 // __DATA, __objc_protolist 6496 llvm::GlobalVariable *PTGV = 6497 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6498 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6499 "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6500 PTGV->setAlignment( 6501 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6502 PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip"); 6503 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6504 CGM.addCompilerUsedGlobal(PTGV); 6505 return Entry; 6506 } 6507 6508 /// EmitProtocolList - Generate protocol list meta-data: 6509 /// @code 6510 /// struct _protocol_list_t { 6511 /// long protocol_count; // Note, this is 32/64 bit 6512 /// struct _protocol_t[protocol_count]; 6513 /// } 6514 /// @endcode 6515 /// 6516 llvm::Constant * 6517 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6518 ObjCProtocolDecl::protocol_iterator begin, 6519 ObjCProtocolDecl::protocol_iterator end) { 6520 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6521 6522 // Just return null for empty protocol lists 6523 if (begin == end) 6524 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6525 6526 // FIXME: We shouldn't need to do this lookup here, should we? 6527 SmallString<256> TmpName; 6528 Name.toVector(TmpName); 6529 llvm::GlobalVariable *GV = 6530 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6531 if (GV) 6532 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6533 6534 for (; begin != end; ++begin) 6535 ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented??? 6536 6537 // This list is null terminated. 6538 ProtocolRefs.push_back(llvm::Constant::getNullValue( 6539 ObjCTypes.ProtocolnfABIPtrTy)); 6540 6541 llvm::Constant *Values[2]; 6542 Values[0] = 6543 llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); 6544 Values[1] = 6545 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy, 6546 ProtocolRefs.size()), 6547 ProtocolRefs); 6548 6549 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6550 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6551 llvm::GlobalValue::PrivateLinkage, 6552 Init, Name); 6553 GV->setSection("__DATA, __objc_const"); 6554 GV->setAlignment( 6555 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6556 CGM.addCompilerUsedGlobal(GV); 6557 return llvm::ConstantExpr::getBitCast(GV, 6558 ObjCTypes.ProtocolListnfABIPtrTy); 6559 } 6560 6561 /// GetMethodDescriptionConstant - This routine build following meta-data: 6562 /// struct _objc_method { 6563 /// SEL _cmd; 6564 /// char *method_type; 6565 /// char *_imp; 6566 /// } 6567 6568 llvm::Constant * 6569 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 6570 llvm::Constant *Desc[3]; 6571 Desc[0] = 6572 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6573 ObjCTypes.SelectorPtrTy); 6574 Desc[1] = GetMethodVarType(MD); 6575 if (!Desc[1]) 6576 return nullptr; 6577 6578 // Protocol methods have no implementation. So, this entry is always NULL. 6579 Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6580 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc); 6581 } 6582 6583 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6584 /// This code gen. amounts to generating code for: 6585 /// @code 6586 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6587 /// @encode 6588 /// 6589 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6590 CodeGen::CodeGenFunction &CGF, 6591 QualType ObjectTy, 6592 llvm::Value *BaseValue, 6593 const ObjCIvarDecl *Ivar, 6594 unsigned CVRQualifiers) { 6595 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6596 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6597 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6598 Offset); 6599 } 6600 6601 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6602 CodeGen::CodeGenFunction &CGF, 6603 const ObjCInterfaceDecl *Interface, 6604 const ObjCIvarDecl *Ivar) { 6605 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6606 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6607 CGF.getSizeAlign(), "ivar"); 6608 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6609 cast<llvm::LoadInst>(IvarOffsetValue) 6610 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6611 llvm::MDNode::get(VMContext, None)); 6612 6613 // This could be 32bit int or 64bit integer depending on the architecture. 6614 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6615 // as this is what caller always expectes. 6616 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6617 IvarOffsetValue = CGF.Builder.CreateIntCast( 6618 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6619 return IvarOffsetValue; 6620 } 6621 6622 static void appendSelectorForMessageRefTable(std::string &buffer, 6623 Selector selector) { 6624 if (selector.isUnarySelector()) { 6625 buffer += selector.getNameForSlot(0); 6626 return; 6627 } 6628 6629 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6630 buffer += selector.getNameForSlot(i); 6631 buffer += '_'; 6632 } 6633 } 6634 6635 /// Emit a "v-table" message send. We emit a weak hidden-visibility 6636 /// struct, initially containing the selector pointer and a pointer to 6637 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6638 /// load and call the function pointer, passing the address of the 6639 /// struct as the second parameter. The runtime determines whether 6640 /// the selector is currently emitted using vtable dispatch; if so, it 6641 /// substitutes a stub function which simply tail-calls through the 6642 /// appropriate vtable slot, and if not, it substitues a stub function 6643 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6644 /// argument to correctly point to the selector. 6645 RValue 6646 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6647 ReturnValueSlot returnSlot, 6648 QualType resultType, 6649 Selector selector, 6650 llvm::Value *arg0, 6651 QualType arg0Type, 6652 bool isSuper, 6653 const CallArgList &formalArgs, 6654 const ObjCMethodDecl *method) { 6655 // Compute the actual arguments. 6656 CallArgList args; 6657 6658 // First argument: the receiver / super-call structure. 6659 if (!isSuper) 6660 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6661 args.add(RValue::get(arg0), arg0Type); 6662 6663 // Second argument: a pointer to the message ref structure. Leave 6664 // the actual argument value blank for now. 6665 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 6666 6667 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 6668 6669 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 6670 6671 NullReturnState nullReturn; 6672 6673 // Find the function to call and the mangled name for the message 6674 // ref structure. Using a different mangled name wouldn't actually 6675 // be a problem; it would just be a waste. 6676 // 6677 // The runtime currently never uses vtable dispatch for anything 6678 // except normal, non-super message-sends. 6679 // FIXME: don't use this for that. 6680 llvm::Constant *fn = nullptr; 6681 std::string messageRefName("\01l_"); 6682 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 6683 if (isSuper) { 6684 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 6685 messageRefName += "objc_msgSendSuper2_stret_fixup"; 6686 } else { 6687 nullReturn.init(CGF, arg0); 6688 fn = ObjCTypes.getMessageSendStretFixupFn(); 6689 messageRefName += "objc_msgSend_stret_fixup"; 6690 } 6691 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 6692 fn = ObjCTypes.getMessageSendFpretFixupFn(); 6693 messageRefName += "objc_msgSend_fpret_fixup"; 6694 } else { 6695 if (isSuper) { 6696 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 6697 messageRefName += "objc_msgSendSuper2_fixup"; 6698 } else { 6699 fn = ObjCTypes.getMessageSendFixupFn(); 6700 messageRefName += "objc_msgSend_fixup"; 6701 } 6702 } 6703 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 6704 messageRefName += '_'; 6705 6706 // Append the selector name, except use underscores anywhere we 6707 // would have used colons. 6708 appendSelectorForMessageRefTable(messageRefName, selector); 6709 6710 llvm::GlobalVariable *messageRef 6711 = CGM.getModule().getGlobalVariable(messageRefName); 6712 if (!messageRef) { 6713 // Build the message ref structure. 6714 llvm::Constant *values[] = { fn, GetMethodVarName(selector) }; 6715 llvm::Constant *init = llvm::ConstantStruct::getAnon(values); 6716 messageRef = new llvm::GlobalVariable(CGM.getModule(), 6717 init->getType(), 6718 /*constant*/ false, 6719 llvm::GlobalValue::WeakAnyLinkage, 6720 init, 6721 messageRefName); 6722 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 6723 messageRef->setAlignment(16); 6724 messageRef->setSection("__DATA, __objc_msgrefs, coalesced"); 6725 } 6726 6727 bool requiresnullCheck = false; 6728 if (CGM.getLangOpts().ObjCAutoRefCount && method) 6729 for (const auto *ParamDecl : method->params()) { 6730 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 6731 if (!nullReturn.NullBB) 6732 nullReturn.init(CGF, arg0); 6733 requiresnullCheck = true; 6734 break; 6735 } 6736 } 6737 6738 Address mref = 6739 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 6740 CGF.getPointerAlign()); 6741 6742 // Update the message ref argument. 6743 args[1].RV = RValue::get(mref.getPointer()); 6744 6745 // Load the function to call from the message ref table. 6746 Address calleeAddr = 6747 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 6748 llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 6749 6750 callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType); 6751 6752 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 6753 return nullReturn.complete(CGF, result, resultType, formalArgs, 6754 requiresnullCheck ? method : nullptr); 6755 } 6756 6757 /// Generate code for a message send expression in the nonfragile abi. 6758 CodeGen::RValue 6759 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 6760 ReturnValueSlot Return, 6761 QualType ResultType, 6762 Selector Sel, 6763 llvm::Value *Receiver, 6764 const CallArgList &CallArgs, 6765 const ObjCInterfaceDecl *Class, 6766 const ObjCMethodDecl *Method) { 6767 return isVTableDispatchedSelector(Sel) 6768 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6769 Receiver, CGF.getContext().getObjCIdType(), 6770 false, CallArgs, Method) 6771 : EmitMessageSend(CGF, Return, ResultType, 6772 EmitSelector(CGF, Sel), 6773 Receiver, CGF.getContext().getObjCIdType(), 6774 false, CallArgs, Method, Class, ObjCTypes); 6775 } 6776 6777 llvm::GlobalVariable * 6778 CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name, bool Weak) { 6779 llvm::GlobalValue::LinkageTypes L = 6780 Weak ? llvm::GlobalValue::ExternalWeakLinkage 6781 : llvm::GlobalValue::ExternalLinkage; 6782 6783 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 6784 6785 if (!GV) 6786 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 6787 false, L, nullptr, Name); 6788 6789 assert(GV->getLinkage() == L); 6790 return GV; 6791 } 6792 6793 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 6794 IdentifierInfo *II, 6795 bool Weak, 6796 const ObjCInterfaceDecl *ID) { 6797 CharUnits Align = CGF.getPointerAlign(); 6798 llvm::GlobalVariable *&Entry = ClassReferences[II]; 6799 6800 if (!Entry) { 6801 std::string ClassName( 6802 getClassSymbolPrefix() + 6803 (ID ? ID->getObjCRuntimeNameAsString() : II->getName()).str()); 6804 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak); 6805 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6806 false, llvm::GlobalValue::PrivateLinkage, 6807 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 6808 Entry->setAlignment(Align.getQuantity()); 6809 Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip"); 6810 CGM.addCompilerUsedGlobal(Entry); 6811 } 6812 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6813 } 6814 6815 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 6816 const ObjCInterfaceDecl *ID) { 6817 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID); 6818 } 6819 6820 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 6821 CodeGenFunction &CGF) { 6822 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 6823 return EmitClassRefFromId(CGF, II, false, nullptr); 6824 } 6825 6826 llvm::Value * 6827 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 6828 const ObjCInterfaceDecl *ID) { 6829 CharUnits Align = CGF.getPointerAlign(); 6830 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 6831 6832 if (!Entry) { 6833 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6834 ClassName += ID->getObjCRuntimeNameAsString(); 6835 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), 6836 ID->isWeakImported()); 6837 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6838 false, llvm::GlobalValue::PrivateLinkage, 6839 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6840 Entry->setAlignment(Align.getQuantity()); 6841 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6842 CGM.addCompilerUsedGlobal(Entry); 6843 } 6844 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6845 } 6846 6847 /// EmitMetaClassRef - Return a Value * of the address of _class_t 6848 /// meta-data 6849 /// 6850 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 6851 const ObjCInterfaceDecl *ID, 6852 bool Weak) { 6853 CharUnits Align = CGF.getPointerAlign(); 6854 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 6855 if (!Entry) { 6856 llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix()); 6857 MetaClassName += ID->getObjCRuntimeNameAsString(); 6858 llvm::GlobalVariable *MetaClassGV = 6859 GetClassGlobal(MetaClassName.str(), Weak); 6860 6861 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6862 false, llvm::GlobalValue::PrivateLinkage, 6863 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6864 Entry->setAlignment(Align.getQuantity()); 6865 6866 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6867 CGM.addCompilerUsedGlobal(Entry); 6868 } 6869 6870 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6871 } 6872 6873 /// GetClass - Return a reference to the class for the given interface 6874 /// decl. 6875 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 6876 const ObjCInterfaceDecl *ID) { 6877 if (ID->isWeakImported()) { 6878 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6879 ClassName += ID->getObjCRuntimeNameAsString(); 6880 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true); 6881 (void)ClassGV; 6882 assert(ClassGV->hasExternalWeakLinkage()); 6883 } 6884 6885 return EmitClassRef(CGF, ID); 6886 } 6887 6888 /// Generates a message send where the super is the receiver. This is 6889 /// a message send to self with special delivery semantics indicating 6890 /// which class's method should be called. 6891 CodeGen::RValue 6892 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 6893 ReturnValueSlot Return, 6894 QualType ResultType, 6895 Selector Sel, 6896 const ObjCInterfaceDecl *Class, 6897 bool isCategoryImpl, 6898 llvm::Value *Receiver, 6899 bool IsClassMessage, 6900 const CodeGen::CallArgList &CallArgs, 6901 const ObjCMethodDecl *Method) { 6902 // ... 6903 // Create and init a super structure; this is a (receiver, class) 6904 // pair we will pass to objc_msgSendSuper. 6905 Address ObjCSuper = 6906 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 6907 "objc_super"); 6908 6909 llvm::Value *ReceiverAsObject = 6910 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 6911 CGF.Builder.CreateStore( 6912 ReceiverAsObject, 6913 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 6914 6915 // If this is a class message the metaclass is passed as the target. 6916 llvm::Value *Target; 6917 if (IsClassMessage) 6918 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 6919 else 6920 Target = EmitSuperClassRef(CGF, Class); 6921 6922 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 6923 // ObjCTypes types. 6924 llvm::Type *ClassTy = 6925 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 6926 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 6927 CGF.Builder.CreateStore( 6928 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 6929 6930 return (isVTableDispatchedSelector(Sel)) 6931 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6932 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 6933 true, CallArgs, Method) 6934 : EmitMessageSend(CGF, Return, ResultType, 6935 EmitSelector(CGF, Sel), 6936 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 6937 true, CallArgs, Method, Class, ObjCTypes); 6938 } 6939 6940 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 6941 Selector Sel) { 6942 Address Addr = EmitSelectorAddr(CGF, Sel); 6943 6944 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 6945 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6946 llvm::MDNode::get(VMContext, None)); 6947 return LI; 6948 } 6949 6950 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 6951 Selector Sel) { 6952 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 6953 6954 CharUnits Align = CGF.getPointerAlign(); 6955 if (!Entry) { 6956 llvm::Constant *Casted = 6957 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 6958 ObjCTypes.SelectorPtrTy); 6959 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 6960 false, llvm::GlobalValue::PrivateLinkage, 6961 Casted, "OBJC_SELECTOR_REFERENCES_"); 6962 Entry->setExternallyInitialized(true); 6963 Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip"); 6964 Entry->setAlignment(Align.getQuantity()); 6965 CGM.addCompilerUsedGlobal(Entry); 6966 } 6967 6968 return Address(Entry, Align); 6969 } 6970 6971 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 6972 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 6973 /// 6974 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 6975 llvm::Value *src, 6976 Address dst, 6977 llvm::Value *ivarOffset) { 6978 llvm::Type * SrcTy = src->getType(); 6979 if (!isa<llvm::PointerType>(SrcTy)) { 6980 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6981 assert(Size <= 8 && "does not support size > 8"); 6982 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6983 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6984 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6985 } 6986 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 6987 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 6988 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 6989 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 6990 } 6991 6992 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 6993 /// objc_assign_strongCast (id src, id *dst) 6994 /// 6995 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 6996 CodeGen::CodeGenFunction &CGF, 6997 llvm::Value *src, Address dst) { 6998 llvm::Type * SrcTy = src->getType(); 6999 if (!isa<llvm::PointerType>(SrcTy)) { 7000 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7001 assert(Size <= 8 && "does not support size > 8"); 7002 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7003 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7004 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7005 } 7006 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7007 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7008 llvm::Value *args[] = { src, dst.getPointer() }; 7009 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7010 args, "weakassign"); 7011 } 7012 7013 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7014 CodeGen::CodeGenFunction &CGF, 7015 Address DestPtr, 7016 Address SrcPtr, 7017 llvm::Value *Size) { 7018 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7019 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7020 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7021 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7022 } 7023 7024 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7025 /// object: objc_read_weak (id *src) 7026 /// 7027 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7028 CodeGen::CodeGenFunction &CGF, 7029 Address AddrWeakObj) { 7030 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7031 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7032 llvm::Value *read_weak = 7033 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7034 AddrWeakObj.getPointer(), "weakread"); 7035 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7036 return read_weak; 7037 } 7038 7039 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7040 /// objc_assign_weak (id src, id *dst) 7041 /// 7042 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7043 llvm::Value *src, Address dst) { 7044 llvm::Type * SrcTy = src->getType(); 7045 if (!isa<llvm::PointerType>(SrcTy)) { 7046 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7047 assert(Size <= 8 && "does not support size > 8"); 7048 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7049 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7050 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7051 } 7052 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7053 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7054 llvm::Value *args[] = { src, dst.getPointer() }; 7055 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7056 args, "weakassign"); 7057 } 7058 7059 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7060 /// objc_assign_global (id src, id *dst) 7061 /// 7062 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7063 llvm::Value *src, Address dst, 7064 bool threadlocal) { 7065 llvm::Type * SrcTy = src->getType(); 7066 if (!isa<llvm::PointerType>(SrcTy)) { 7067 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7068 assert(Size <= 8 && "does not support size > 8"); 7069 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7070 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7071 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7072 } 7073 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7074 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7075 llvm::Value *args[] = { src, dst.getPointer() }; 7076 if (!threadlocal) 7077 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7078 args, "globalassign"); 7079 else 7080 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7081 args, "threadlocalassign"); 7082 } 7083 7084 void 7085 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7086 const ObjCAtSynchronizedStmt &S) { 7087 EmitAtSynchronizedStmt(CGF, S, 7088 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7089 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7090 } 7091 7092 llvm::Constant * 7093 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7094 // There's a particular fixed type info for 'id'. 7095 if (T->isObjCIdType() || 7096 T->isObjCQualifiedIdType()) { 7097 llvm::Constant *IDEHType = 7098 CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7099 if (!IDEHType) 7100 IDEHType = 7101 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7102 false, 7103 llvm::GlobalValue::ExternalLinkage, 7104 nullptr, "OBJC_EHTYPE_id"); 7105 return IDEHType; 7106 } 7107 7108 // All other types should be Objective-C interface pointer types. 7109 const ObjCObjectPointerType *PT = 7110 T->getAs<ObjCObjectPointerType>(); 7111 assert(PT && "Invalid @catch type."); 7112 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7113 assert(IT && "Invalid @catch type."); 7114 return GetInterfaceEHType(IT->getDecl(), false); 7115 } 7116 7117 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7118 const ObjCAtTryStmt &S) { 7119 EmitTryCatchStmt(CGF, S, 7120 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7121 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7122 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7123 } 7124 7125 /// EmitThrowStmt - Generate code for a throw statement. 7126 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7127 const ObjCAtThrowStmt &S, 7128 bool ClearInsertionPoint) { 7129 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7130 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7131 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7132 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7133 .setDoesNotReturn(); 7134 } else { 7135 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7136 .setDoesNotReturn(); 7137 } 7138 7139 CGF.Builder.CreateUnreachable(); 7140 if (ClearInsertionPoint) 7141 CGF.Builder.ClearInsertionPoint(); 7142 } 7143 7144 llvm::Constant * 7145 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7146 bool ForDefinition) { 7147 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7148 7149 // If we don't need a definition, return the entry if found or check 7150 // if we use an external reference. 7151 if (!ForDefinition) { 7152 if (Entry) 7153 return Entry; 7154 7155 // If this type (or a super class) has the __objc_exception__ 7156 // attribute, emit an external reference. 7157 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7158 return Entry = 7159 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7160 llvm::GlobalValue::ExternalLinkage, 7161 nullptr, 7162 ("OBJC_EHTYPE_$_" + 7163 ID->getObjCRuntimeNameAsString())); 7164 } 7165 7166 // Otherwise we need to either make a new entry or fill in the 7167 // initializer. 7168 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7169 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 7170 ClassName += ID->getObjCRuntimeNameAsString(); 7171 std::string VTableName = "objc_ehtype_vtable"; 7172 llvm::GlobalVariable *VTableGV = 7173 CGM.getModule().getGlobalVariable(VTableName); 7174 if (!VTableGV) 7175 VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, 7176 false, 7177 llvm::GlobalValue::ExternalLinkage, 7178 nullptr, VTableName); 7179 7180 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7181 7182 llvm::Constant *Values[] = { 7183 llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV, 7184 VTableIdx), 7185 GetClassName(ID->getObjCRuntimeNameAsString()), 7186 GetClassGlobal(ClassName.str())}; 7187 llvm::Constant *Init = 7188 llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values); 7189 7190 llvm::GlobalValue::LinkageTypes L = ForDefinition 7191 ? llvm::GlobalValue::ExternalLinkage 7192 : llvm::GlobalValue::WeakAnyLinkage; 7193 if (Entry) { 7194 Entry->setInitializer(Init); 7195 } else { 7196 llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_"); 7197 EHTYPEName += ID->getObjCRuntimeNameAsString(); 7198 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7199 L, 7200 Init, 7201 EHTYPEName.str()); 7202 } 7203 assert(Entry->getLinkage() == L); 7204 7205 if (ID->getVisibility() == HiddenVisibility) 7206 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7207 Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment( 7208 ObjCTypes.EHTypeTy)); 7209 7210 if (ForDefinition) 7211 Entry->setSection("__DATA,__objc_const"); 7212 else 7213 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 7214 7215 return Entry; 7216 } 7217 7218 /* *** */ 7219 7220 CodeGen::CGObjCRuntime * 7221 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7222 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7223 case ObjCRuntime::FragileMacOSX: 7224 return new CGObjCMac(CGM); 7225 7226 case ObjCRuntime::MacOSX: 7227 case ObjCRuntime::iOS: 7228 case ObjCRuntime::WatchOS: 7229 return new CGObjCNonFragileABIMac(CGM); 7230 7231 case ObjCRuntime::GNUstep: 7232 case ObjCRuntime::GCC: 7233 case ObjCRuntime::ObjFW: 7234 llvm_unreachable("these runtimes are not Mac runtimes"); 7235 } 7236 llvm_unreachable("bad runtime"); 7237 } 7238