1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGObjCRuntime.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cstdio> 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 namespace { 45 46 // FIXME: We should find a nicer way to make the labels for metadata, string 47 // concatenation is lame. 48 49 class ObjCCommonTypesHelper { 50 protected: 51 llvm::LLVMContext &VMContext; 52 53 private: 54 // The types of these functions don't really matter because we 55 // should always bitcast before calling them. 56 57 /// id objc_msgSend (id, SEL, ...) 58 /// 59 /// The default messenger, used for sends whose ABI is unchanged from 60 /// the all-integer/pointer case. 61 llvm::Constant *getMessageSendFn() const { 62 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 63 // be called a lot. 64 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 65 return 66 CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 67 params, true), 68 "objc_msgSend", 69 llvm::AttributeSet::get(CGM.getLLVMContext(), 70 llvm::AttributeSet::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType, nullptr); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy; 176 llvm::Type *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::Type *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::Type *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::Type *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::Type *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::Type *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::Type *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 SmallVector<CanQualType,4> Params; 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 Params.push_back(IdType); 243 Params.push_back(SelType); 244 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 245 Params.push_back(Ctx.BoolTy); 246 llvm::FunctionType *FTy = 247 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 248 IdType, false, false, Params, FunctionType::ExtInfo(), 249 RequiredArgs::All)); 250 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 251 } 252 253 llvm::Constant *getSetPropertyFn() { 254 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 255 ASTContext &Ctx = CGM.getContext(); 256 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 257 SmallVector<CanQualType,6> Params; 258 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 259 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 260 Params.push_back(IdType); 261 Params.push_back(SelType); 262 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 263 Params.push_back(IdType); 264 Params.push_back(Ctx.BoolTy); 265 Params.push_back(Ctx.BoolTy); 266 llvm::FunctionType *FTy = 267 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 268 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 269 RequiredArgs::All)); 270 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 271 } 272 273 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 274 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 275 ASTContext &Ctx = CGM.getContext(); 276 // void objc_setProperty_atomic(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 281 // id newValue, ptrdiff_t offset); 282 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 283 // id newValue, ptrdiff_t offset); 284 285 SmallVector<CanQualType,4> Params; 286 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 287 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 288 Params.push_back(IdType); 289 Params.push_back(SelType); 290 Params.push_back(IdType); 291 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 292 llvm::FunctionType *FTy = 293 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 294 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 295 RequiredArgs::All)); 296 const char *name; 297 if (atomic && copy) 298 name = "objc_setProperty_atomic_copy"; 299 else if (atomic && !copy) 300 name = "objc_setProperty_atomic"; 301 else if (!atomic && copy) 302 name = "objc_setProperty_nonatomic_copy"; 303 else 304 name = "objc_setProperty_nonatomic"; 305 306 return CGM.CreateRuntimeFunction(FTy, name); 307 } 308 309 llvm::Constant *getCopyStructFn() { 310 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 311 ASTContext &Ctx = CGM.getContext(); 312 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 313 SmallVector<CanQualType,5> Params; 314 Params.push_back(Ctx.VoidPtrTy); 315 Params.push_back(Ctx.VoidPtrTy); 316 Params.push_back(Ctx.LongTy); 317 Params.push_back(Ctx.BoolTy); 318 Params.push_back(Ctx.BoolTy); 319 llvm::FunctionType *FTy = 320 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 321 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 322 RequiredArgs::All)); 323 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 324 } 325 326 /// This routine declares and returns address of: 327 /// void objc_copyCppObjectAtomic( 328 /// void *dest, const void *src, 329 /// void (*copyHelper) (void *dest, const void *source)); 330 llvm::Constant *getCppAtomicObjectFunction() { 331 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 332 ASTContext &Ctx = CGM.getContext(); 333 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 334 SmallVector<CanQualType,3> Params; 335 Params.push_back(Ctx.VoidPtrTy); 336 Params.push_back(Ctx.VoidPtrTy); 337 Params.push_back(Ctx.VoidPtrTy); 338 llvm::FunctionType *FTy = 339 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, false, false, 340 Params, 341 FunctionType::ExtInfo(), 342 RequiredArgs::All)); 343 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 344 } 345 346 llvm::Constant *getEnumerationMutationFn() { 347 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 348 ASTContext &Ctx = CGM.getContext(); 349 // void objc_enumerationMutation (id) 350 SmallVector<CanQualType,1> Params; 351 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 352 llvm::FunctionType *FTy = 353 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo( 354 Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(), 355 RequiredArgs::All)); 356 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 357 } 358 359 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 360 llvm::Constant *getGcReadWeakFn() { 361 // id objc_read_weak (id *) 362 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 363 llvm::FunctionType *FTy = 364 llvm::FunctionType::get(ObjectPtrTy, args, false); 365 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 366 } 367 368 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 369 llvm::Constant *getGcAssignWeakFn() { 370 // id objc_assign_weak (id, id *) 371 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 372 llvm::FunctionType *FTy = 373 llvm::FunctionType::get(ObjectPtrTy, args, false); 374 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 375 } 376 377 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 378 llvm::Constant *getGcAssignGlobalFn() { 379 // id objc_assign_global(id, id *) 380 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 381 llvm::FunctionType *FTy = 382 llvm::FunctionType::get(ObjectPtrTy, args, false); 383 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 384 } 385 386 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 387 llvm::Constant *getGcAssignThreadLocalFn() { 388 // id objc_assign_threadlocal(id src, id * dest) 389 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 390 llvm::FunctionType *FTy = 391 llvm::FunctionType::get(ObjectPtrTy, args, false); 392 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 393 } 394 395 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 396 llvm::Constant *getGcAssignIvarFn() { 397 // id objc_assign_ivar(id, id *, ptrdiff_t) 398 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 399 CGM.PtrDiffTy }; 400 llvm::FunctionType *FTy = 401 llvm::FunctionType::get(ObjectPtrTy, args, false); 402 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 403 } 404 405 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 406 llvm::Constant *GcMemmoveCollectableFn() { 407 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 408 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 409 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 410 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 411 } 412 413 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 414 llvm::Constant *getGcAssignStrongCastFn() { 415 // id objc_assign_strongCast(id, id *) 416 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 417 llvm::FunctionType *FTy = 418 llvm::FunctionType::get(ObjectPtrTy, args, false); 419 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 420 } 421 422 /// ExceptionThrowFn - LLVM objc_exception_throw function. 423 llvm::Constant *getExceptionThrowFn() { 424 // void objc_exception_throw(id) 425 llvm::Type *args[] = { ObjectPtrTy }; 426 llvm::FunctionType *FTy = 427 llvm::FunctionType::get(CGM.VoidTy, args, false); 428 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 429 } 430 431 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 432 llvm::Constant *getExceptionRethrowFn() { 433 // void objc_exception_rethrow(void) 434 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 435 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 436 } 437 438 /// SyncEnterFn - LLVM object_sync_enter function. 439 llvm::Constant *getSyncEnterFn() { 440 // int objc_sync_enter (id) 441 llvm::Type *args[] = { ObjectPtrTy }; 442 llvm::FunctionType *FTy = 443 llvm::FunctionType::get(CGM.IntTy, args, false); 444 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 445 } 446 447 /// SyncExitFn - LLVM object_sync_exit function. 448 llvm::Constant *getSyncExitFn() { 449 // int objc_sync_exit (id) 450 llvm::Type *args[] = { ObjectPtrTy }; 451 llvm::FunctionType *FTy = 452 llvm::FunctionType::get(CGM.IntTy, args, false); 453 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 454 } 455 456 llvm::Constant *getSendFn(bool IsSuper) const { 457 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 458 } 459 460 llvm::Constant *getSendFn2(bool IsSuper) const { 461 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 462 } 463 464 llvm::Constant *getSendStretFn(bool IsSuper) const { 465 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 466 } 467 468 llvm::Constant *getSendStretFn2(bool IsSuper) const { 469 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 470 } 471 472 llvm::Constant *getSendFpretFn(bool IsSuper) const { 473 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 474 } 475 476 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 477 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 478 } 479 480 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 481 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 482 } 483 484 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 485 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 486 } 487 488 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 489 }; 490 491 /// ObjCTypesHelper - Helper class that encapsulates lazy 492 /// construction of varies types used during ObjC generation. 493 class ObjCTypesHelper : public ObjCCommonTypesHelper { 494 public: 495 /// SymtabTy - LLVM type for struct objc_symtab. 496 llvm::StructType *SymtabTy; 497 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 498 llvm::Type *SymtabPtrTy; 499 /// ModuleTy - LLVM type for struct objc_module. 500 llvm::StructType *ModuleTy; 501 502 /// ProtocolTy - LLVM type for struct objc_protocol. 503 llvm::StructType *ProtocolTy; 504 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 505 llvm::Type *ProtocolPtrTy; 506 /// ProtocolExtensionTy - LLVM type for struct 507 /// objc_protocol_extension. 508 llvm::StructType *ProtocolExtensionTy; 509 /// ProtocolExtensionTy - LLVM type for struct 510 /// objc_protocol_extension *. 511 llvm::Type *ProtocolExtensionPtrTy; 512 /// MethodDescriptionTy - LLVM type for struct 513 /// objc_method_description. 514 llvm::StructType *MethodDescriptionTy; 515 /// MethodDescriptionListTy - LLVM type for struct 516 /// objc_method_description_list. 517 llvm::StructType *MethodDescriptionListTy; 518 /// MethodDescriptionListPtrTy - LLVM type for struct 519 /// objc_method_description_list *. 520 llvm::Type *MethodDescriptionListPtrTy; 521 /// ProtocolListTy - LLVM type for struct objc_property_list. 522 llvm::StructType *ProtocolListTy; 523 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 524 llvm::Type *ProtocolListPtrTy; 525 /// CategoryTy - LLVM type for struct objc_category. 526 llvm::StructType *CategoryTy; 527 /// ClassTy - LLVM type for struct objc_class. 528 llvm::StructType *ClassTy; 529 /// ClassPtrTy - LLVM type for struct objc_class *. 530 llvm::Type *ClassPtrTy; 531 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 532 llvm::StructType *ClassExtensionTy; 533 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 534 llvm::Type *ClassExtensionPtrTy; 535 // IvarTy - LLVM type for struct objc_ivar. 536 llvm::StructType *IvarTy; 537 /// IvarListTy - LLVM type for struct objc_ivar_list. 538 llvm::Type *IvarListTy; 539 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 540 llvm::Type *IvarListPtrTy; 541 /// MethodListTy - LLVM type for struct objc_method_list. 542 llvm::Type *MethodListTy; 543 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 544 llvm::Type *MethodListPtrTy; 545 546 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 547 llvm::Type *ExceptionDataTy; 548 549 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 550 llvm::Constant *getExceptionTryEnterFn() { 551 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 552 return CGM.CreateRuntimeFunction( 553 llvm::FunctionType::get(CGM.VoidTy, params, false), 554 "objc_exception_try_enter"); 555 } 556 557 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 558 llvm::Constant *getExceptionTryExitFn() { 559 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 560 return CGM.CreateRuntimeFunction( 561 llvm::FunctionType::get(CGM.VoidTy, params, false), 562 "objc_exception_try_exit"); 563 } 564 565 /// ExceptionExtractFn - LLVM objc_exception_extract function. 566 llvm::Constant *getExceptionExtractFn() { 567 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 568 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 569 params, false), 570 "objc_exception_extract"); 571 } 572 573 /// ExceptionMatchFn - LLVM objc_exception_match function. 574 llvm::Constant *getExceptionMatchFn() { 575 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 576 return CGM.CreateRuntimeFunction( 577 llvm::FunctionType::get(CGM.Int32Ty, params, false), 578 "objc_exception_match"); 579 580 } 581 582 /// SetJmpFn - LLVM _setjmp function. 583 llvm::Constant *getSetJmpFn() { 584 // This is specifically the prototype for x86. 585 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 586 return 587 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, 588 params, false), 589 "_setjmp", 590 llvm::AttributeSet::get(CGM.getLLVMContext(), 591 llvm::AttributeSet::FunctionIndex, 592 llvm::Attribute::NonLazyBind)); 593 } 594 595 public: 596 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 597 }; 598 599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600 /// modern abi 601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602 public: 603 604 // MethodListnfABITy - LLVM for struct _method_list_t 605 llvm::StructType *MethodListnfABITy; 606 607 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 608 llvm::Type *MethodListnfABIPtrTy; 609 610 // ProtocolnfABITy = LLVM for struct _protocol_t 611 llvm::StructType *ProtocolnfABITy; 612 613 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 614 llvm::Type *ProtocolnfABIPtrTy; 615 616 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 617 llvm::StructType *ProtocolListnfABITy; 618 619 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 620 llvm::Type *ProtocolListnfABIPtrTy; 621 622 // ClassnfABITy - LLVM for struct _class_t 623 llvm::StructType *ClassnfABITy; 624 625 // ClassnfABIPtrTy - LLVM for struct _class_t* 626 llvm::Type *ClassnfABIPtrTy; 627 628 // IvarnfABITy - LLVM for struct _ivar_t 629 llvm::StructType *IvarnfABITy; 630 631 // IvarListnfABITy - LLVM for struct _ivar_list_t 632 llvm::StructType *IvarListnfABITy; 633 634 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 635 llvm::Type *IvarListnfABIPtrTy; 636 637 // ClassRonfABITy - LLVM for struct _class_ro_t 638 llvm::StructType *ClassRonfABITy; 639 640 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 641 llvm::Type *ImpnfABITy; 642 643 // CategorynfABITy - LLVM for struct _category_t 644 llvm::StructType *CategorynfABITy; 645 646 // New types for nonfragile abi messaging. 647 648 // MessageRefTy - LLVM for: 649 // struct _message_ref_t { 650 // IMP messenger; 651 // SEL name; 652 // }; 653 llvm::StructType *MessageRefTy; 654 // MessageRefCTy - clang type for struct _message_ref_t 655 QualType MessageRefCTy; 656 657 // MessageRefPtrTy - LLVM for struct _message_ref_t* 658 llvm::Type *MessageRefPtrTy; 659 // MessageRefCPtrTy - clang type for struct _message_ref_t* 660 QualType MessageRefCPtrTy; 661 662 // SuperMessageRefTy - LLVM for: 663 // struct _super_message_ref_t { 664 // SUPER_IMP messenger; 665 // SEL name; 666 // }; 667 llvm::StructType *SuperMessageRefTy; 668 669 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 670 llvm::Type *SuperMessageRefPtrTy; 671 672 llvm::Constant *getMessageSendFixupFn() { 673 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 674 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 675 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 676 params, true), 677 "objc_msgSend_fixup"); 678 } 679 680 llvm::Constant *getMessageSendFpretFixupFn() { 681 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 682 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 683 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 684 params, true), 685 "objc_msgSend_fpret_fixup"); 686 } 687 688 llvm::Constant *getMessageSendStretFixupFn() { 689 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 690 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 691 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 692 params, true), 693 "objc_msgSend_stret_fixup"); 694 } 695 696 llvm::Constant *getMessageSendSuper2FixupFn() { 697 // id objc_msgSendSuper2_fixup (struct objc_super *, 698 // struct _super_message_ref_t*, ...) 699 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 700 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 701 params, true), 702 "objc_msgSendSuper2_fixup"); 703 } 704 705 llvm::Constant *getMessageSendSuper2StretFixupFn() { 706 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 707 // struct _super_message_ref_t*, ...) 708 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 709 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 710 params, true), 711 "objc_msgSendSuper2_stret_fixup"); 712 } 713 714 llvm::Constant *getObjCEndCatchFn() { 715 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 716 "objc_end_catch"); 717 718 } 719 720 llvm::Constant *getObjCBeginCatchFn() { 721 llvm::Type *params[] = { Int8PtrTy }; 722 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 723 params, false), 724 "objc_begin_catch"); 725 } 726 727 llvm::StructType *EHTypeTy; 728 llvm::Type *EHTypePtrTy; 729 730 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 731 }; 732 733 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 734 public: 735 class SKIP_SCAN { 736 public: 737 unsigned skip; 738 unsigned scan; 739 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 740 : skip(_skip), scan(_scan) {} 741 }; 742 743 /// opcode for captured block variables layout 'instructions'. 744 /// In the following descriptions, 'I' is the value of the immediate field. 745 /// (field following the opcode). 746 /// 747 enum BLOCK_LAYOUT_OPCODE { 748 /// An operator which affects how the following layout should be 749 /// interpreted. 750 /// I == 0: Halt interpretation and treat everything else as 751 /// a non-pointer. Note that this instruction is equal 752 /// to '\0'. 753 /// I != 0: Currently unused. 754 BLOCK_LAYOUT_OPERATOR = 0, 755 756 /// The next I+1 bytes do not contain a value of object pointer type. 757 /// Note that this can leave the stream unaligned, meaning that 758 /// subsequent word-size instructions do not begin at a multiple of 759 /// the pointer size. 760 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 761 762 /// The next I+1 words do not contain a value of object pointer type. 763 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 764 /// when the required skip quantity is a multiple of the pointer size. 765 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 766 767 /// The next I+1 words are __strong pointers to Objective-C 768 /// objects or blocks. 769 BLOCK_LAYOUT_STRONG = 3, 770 771 /// The next I+1 words are pointers to __block variables. 772 BLOCK_LAYOUT_BYREF = 4, 773 774 /// The next I+1 words are __weak pointers to Objective-C 775 /// objects or blocks. 776 BLOCK_LAYOUT_WEAK = 5, 777 778 /// The next I+1 words are __unsafe_unretained pointers to 779 /// Objective-C objects or blocks. 780 BLOCK_LAYOUT_UNRETAINED = 6 781 782 /// The next I+1 words are block or object pointers with some 783 /// as-yet-unspecified ownership semantics. If we add more 784 /// flavors of ownership semantics, values will be taken from 785 /// this range. 786 /// 787 /// This is included so that older tools can at least continue 788 /// processing the layout past such things. 789 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 790 791 /// All other opcodes are reserved. Halt interpretation and 792 /// treat everything else as opaque. 793 }; 794 795 class RUN_SKIP { 796 public: 797 enum BLOCK_LAYOUT_OPCODE opcode; 798 CharUnits block_var_bytepos; 799 CharUnits block_var_size; 800 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 801 CharUnits BytePos = CharUnits::Zero(), 802 CharUnits Size = CharUnits::Zero()) 803 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 804 805 // Allow sorting based on byte pos. 806 bool operator<(const RUN_SKIP &b) const { 807 return block_var_bytepos < b.block_var_bytepos; 808 } 809 }; 810 811 protected: 812 llvm::LLVMContext &VMContext; 813 // FIXME! May not be needing this after all. 814 unsigned ObjCABI; 815 816 // arc/mrr layout of captured block literal variables. 817 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 818 819 /// LazySymbols - Symbols to generate a lazy reference for. See 820 /// DefinedSymbols and FinishModule(). 821 llvm::SetVector<IdentifierInfo*> LazySymbols; 822 823 /// DefinedSymbols - External symbols which are defined by this 824 /// module. The symbols in this list and LazySymbols are used to add 825 /// special linker symbols which ensure that Objective-C modules are 826 /// linked properly. 827 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 828 829 /// ClassNames - uniqued class names. 830 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 831 832 /// MethodVarNames - uniqued method variable names. 833 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 834 835 /// DefinedCategoryNames - list of category names in form Class_Category. 836 llvm::SetVector<std::string> DefinedCategoryNames; 837 838 /// MethodVarTypes - uniqued method type signatures. We have to use 839 /// a StringMap here because have no other unique reference. 840 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 841 842 /// MethodDefinitions - map of methods which have been defined in 843 /// this translation unit. 844 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 845 846 /// PropertyNames - uniqued method variable names. 847 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 848 849 /// ClassReferences - uniqued class references. 850 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 851 852 /// SelectorReferences - uniqued selector references. 853 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 854 855 /// Protocols - Protocols for which an objc_protocol structure has 856 /// been emitted. Forward declarations are handled by creating an 857 /// empty structure whose initializer is filled in when/if defined. 858 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 859 860 /// DefinedProtocols - Protocols which have actually been 861 /// defined. We should not need this, see FIXME in GenerateProtocol. 862 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 863 864 /// DefinedClasses - List of defined classes. 865 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 866 867 /// ImplementedClasses - List of @implemented classes. 868 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 869 870 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 871 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 872 873 /// DefinedCategories - List of defined categories. 874 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 875 876 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 877 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 878 879 /// GetNameForMethod - Return a name for the given method. 880 /// \param[out] NameOut - The return value. 881 void GetNameForMethod(const ObjCMethodDecl *OMD, 882 const ObjCContainerDecl *CD, 883 SmallVectorImpl<char> &NameOut); 884 885 /// GetMethodVarName - Return a unique constant for the given 886 /// selector's name. The return value has type char *. 887 llvm::Constant *GetMethodVarName(Selector Sel); 888 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 889 890 /// GetMethodVarType - Return a unique constant for the given 891 /// method's type encoding string. The return value has type char *. 892 893 // FIXME: This is a horrible name. 894 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 895 bool Extended = false); 896 llvm::Constant *GetMethodVarType(const FieldDecl *D); 897 898 /// GetPropertyName - Return a unique constant for the given 899 /// name. The return value has type char *. 900 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 901 902 // FIXME: This can be dropped once string functions are unified. 903 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 904 const Decl *Container); 905 906 /// GetClassName - Return a unique constant for the given selector's 907 /// runtime name (which may change via use of objc_runtime_name attribute on 908 /// class or protocol definition. The return value has type char *. 909 llvm::Constant *GetClassName(StringRef RuntimeName); 910 911 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 912 913 /// BuildIvarLayout - Builds ivar layout bitmap for the class 914 /// implementation for the __strong or __weak case. 915 /// 916 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 917 /// are any weak ivars defined directly in the class. Meaningless unless 918 /// building a weak layout. Does not guarantee that the layout will 919 /// actually have any entries, because the ivar might be under-aligned. 920 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 921 CharUnits beginOffset, 922 CharUnits endOffset, 923 bool forStrongLayout, 924 bool hasMRCWeakIvars); 925 926 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 927 CharUnits beginOffset, 928 CharUnits endOffset) { 929 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 930 } 931 932 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 933 CharUnits beginOffset, 934 CharUnits endOffset, 935 bool hasMRCWeakIvars) { 936 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 937 } 938 939 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 940 941 void UpdateRunSkipBlockVars(bool IsByref, 942 Qualifiers::ObjCLifetime LifeTime, 943 CharUnits FieldOffset, 944 CharUnits FieldSize); 945 946 void BuildRCBlockVarRecordLayout(const RecordType *RT, 947 CharUnits BytePos, bool &HasUnion, 948 bool ByrefLayout=false); 949 950 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 951 const RecordDecl *RD, 952 ArrayRef<const FieldDecl*> RecFields, 953 CharUnits BytePos, bool &HasUnion, 954 bool ByrefLayout); 955 956 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 957 958 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 959 960 /// GetIvarLayoutName - Returns a unique constant for the given 961 /// ivar layout bitmap. 962 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 963 const ObjCCommonTypesHelper &ObjCTypes); 964 965 /// EmitPropertyList - Emit the given property list. The return 966 /// value has type PropertyListPtrTy. 967 llvm::Constant *EmitPropertyList(Twine Name, 968 const Decl *Container, 969 const ObjCContainerDecl *OCD, 970 const ObjCCommonTypesHelper &ObjCTypes); 971 972 /// EmitProtocolMethodTypes - Generate the array of extended method type 973 /// strings. The return value has type Int8PtrPtrTy. 974 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 975 ArrayRef<llvm::Constant*> MethodTypes, 976 const ObjCCommonTypesHelper &ObjCTypes); 977 978 /// PushProtocolProperties - Push protocol's property on the input stack. 979 void PushProtocolProperties( 980 llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 981 SmallVectorImpl<llvm::Constant*> &Properties, 982 const Decl *Container, 983 const ObjCProtocolDecl *Proto, 984 const ObjCCommonTypesHelper &ObjCTypes); 985 986 /// GetProtocolRef - Return a reference to the internal protocol 987 /// description, creating an empty one if it has not been 988 /// defined. The return value has type ProtocolPtrTy. 989 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 990 991 public: 992 /// CreateMetadataVar - Create a global variable with internal 993 /// linkage for use by the Objective-C runtime. 994 /// 995 /// This is a convenience wrapper which not only creates the 996 /// variable, but also sets the section and alignment and adds the 997 /// global to the "llvm.used" list. 998 /// 999 /// \param Name - The variable name. 1000 /// \param Init - The variable initializer; this is also used to 1001 /// define the type of the variable. 1002 /// \param Section - The section the variable should go into, or empty. 1003 /// \param Align - The alignment for the variable, or 0. 1004 /// \param AddToUsed - Whether the variable should be added to 1005 /// "llvm.used". 1006 llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init, 1007 StringRef Section, CharUnits Align, 1008 bool AddToUsed); 1009 1010 protected: 1011 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1012 ReturnValueSlot Return, 1013 QualType ResultType, 1014 llvm::Value *Sel, 1015 llvm::Value *Arg0, 1016 QualType Arg0Ty, 1017 bool IsSuper, 1018 const CallArgList &CallArgs, 1019 const ObjCMethodDecl *OMD, 1020 const ObjCInterfaceDecl *ClassReceiver, 1021 const ObjCCommonTypesHelper &ObjCTypes); 1022 1023 /// EmitImageInfo - Emit the image info marker used to encode some module 1024 /// level information. 1025 void EmitImageInfo(); 1026 1027 public: 1028 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1029 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1030 1031 bool isNonFragileABI() const { 1032 return ObjCABI == 2; 1033 } 1034 1035 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1036 1037 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1038 const ObjCContainerDecl *CD=nullptr) override; 1039 1040 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1041 1042 /// GetOrEmitProtocol - Get the protocol object for the given 1043 /// declaration, emitting it if necessary. The return value has type 1044 /// ProtocolPtrTy. 1045 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1046 1047 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1048 /// object for the given declaration, emitting it if needed. These 1049 /// forward references will be filled in with empty bodies if no 1050 /// definition is seen. The return value has type ProtocolPtrTy. 1051 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1052 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1053 const CGBlockInfo &blockInfo) override; 1054 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1055 const CGBlockInfo &blockInfo) override; 1056 1057 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1058 QualType T) override; 1059 }; 1060 1061 class CGObjCMac : public CGObjCCommonMac { 1062 private: 1063 ObjCTypesHelper ObjCTypes; 1064 1065 /// EmitModuleInfo - Another marker encoding module level 1066 /// information. 1067 void EmitModuleInfo(); 1068 1069 /// EmitModuleSymols - Emit module symbols, the list of defined 1070 /// classes and categories. The result has type SymtabPtrTy. 1071 llvm::Constant *EmitModuleSymbols(); 1072 1073 /// FinishModule - Write out global data structures at the end of 1074 /// processing a translation unit. 1075 void FinishModule(); 1076 1077 /// EmitClassExtension - Generate the class extension structure used 1078 /// to store the weak ivar layout and properties. The return value 1079 /// has type ClassExtensionPtrTy. 1080 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1081 CharUnits instanceSize, 1082 bool hasMRCWeakIvars); 1083 1084 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1085 /// for the given class. 1086 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1087 const ObjCInterfaceDecl *ID); 1088 1089 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1090 IdentifierInfo *II); 1091 1092 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1093 1094 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1095 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1096 1097 /// EmitIvarList - Emit the ivar list for the given 1098 /// implementation. If ForClass is true the list of class ivars 1099 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1100 /// interface ivars will be emitted. The return value has type 1101 /// IvarListPtrTy. 1102 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1103 bool ForClass); 1104 1105 /// EmitMetaClass - Emit a forward reference to the class structure 1106 /// for the metaclass of the given interface. The return value has 1107 /// type ClassPtrTy. 1108 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1109 1110 /// EmitMetaClass - Emit a class structure for the metaclass of the 1111 /// given implementation. The return value has type ClassPtrTy. 1112 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1113 llvm::Constant *Protocols, 1114 ArrayRef<llvm::Constant*> Methods); 1115 1116 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1117 1118 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1119 1120 /// EmitMethodList - Emit the method list for the given 1121 /// implementation. The return value has type MethodListPtrTy. 1122 llvm::Constant *EmitMethodList(Twine Name, 1123 const char *Section, 1124 ArrayRef<llvm::Constant*> Methods); 1125 1126 /// EmitMethodDescList - Emit a method description list for a list of 1127 /// method declarations. 1128 /// - TypeName: The name for the type containing the methods. 1129 /// - IsProtocol: True iff these methods are for a protocol. 1130 /// - ClassMethds: True iff these are class methods. 1131 /// - Required: When true, only "required" methods are 1132 /// listed. Similarly, when false only "optional" methods are 1133 /// listed. For classes this should always be true. 1134 /// - begin, end: The method list to output. 1135 /// 1136 /// The return value has type MethodDescriptionListPtrTy. 1137 llvm::Constant *EmitMethodDescList(Twine Name, 1138 const char *Section, 1139 ArrayRef<llvm::Constant*> Methods); 1140 1141 /// GetOrEmitProtocol - Get the protocol object for the given 1142 /// declaration, emitting it if necessary. The return value has type 1143 /// ProtocolPtrTy. 1144 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1145 1146 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1147 /// object for the given declaration, emitting it if needed. These 1148 /// forward references will be filled in with empty bodies if no 1149 /// definition is seen. The return value has type ProtocolPtrTy. 1150 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1151 1152 /// EmitProtocolExtension - Generate the protocol extension 1153 /// structure used to store optional instance and class methods, and 1154 /// protocol properties. The return value has type 1155 /// ProtocolExtensionPtrTy. 1156 llvm::Constant * 1157 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1158 ArrayRef<llvm::Constant*> OptInstanceMethods, 1159 ArrayRef<llvm::Constant*> OptClassMethods, 1160 ArrayRef<llvm::Constant*> MethodTypesExt); 1161 1162 /// EmitProtocolList - Generate the list of referenced 1163 /// protocols. The return value has type ProtocolListPtrTy. 1164 llvm::Constant *EmitProtocolList(Twine Name, 1165 ObjCProtocolDecl::protocol_iterator begin, 1166 ObjCProtocolDecl::protocol_iterator end); 1167 1168 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1169 /// for the given selector. 1170 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1171 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1172 1173 public: 1174 CGObjCMac(CodeGen::CodeGenModule &cgm); 1175 1176 llvm::Function *ModuleInitFunction() override; 1177 1178 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1179 ReturnValueSlot Return, 1180 QualType ResultType, 1181 Selector Sel, llvm::Value *Receiver, 1182 const CallArgList &CallArgs, 1183 const ObjCInterfaceDecl *Class, 1184 const ObjCMethodDecl *Method) override; 1185 1186 CodeGen::RValue 1187 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1188 ReturnValueSlot Return, QualType ResultType, 1189 Selector Sel, const ObjCInterfaceDecl *Class, 1190 bool isCategoryImpl, llvm::Value *Receiver, 1191 bool IsClassMessage, const CallArgList &CallArgs, 1192 const ObjCMethodDecl *Method) override; 1193 1194 llvm::Value *GetClass(CodeGenFunction &CGF, 1195 const ObjCInterfaceDecl *ID) override; 1196 1197 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1198 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1199 1200 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1201 /// untyped one. 1202 llvm::Value *GetSelector(CodeGenFunction &CGF, 1203 const ObjCMethodDecl *Method) override; 1204 1205 llvm::Constant *GetEHType(QualType T) override; 1206 1207 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1208 1209 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1210 1211 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1212 1213 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1214 const ObjCProtocolDecl *PD) override; 1215 1216 llvm::Constant *GetPropertyGetFunction() override; 1217 llvm::Constant *GetPropertySetFunction() override; 1218 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1219 bool copy) override; 1220 llvm::Constant *GetGetStructFunction() override; 1221 llvm::Constant *GetSetStructFunction() override; 1222 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1223 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1224 llvm::Constant *EnumerationMutationFunction() override; 1225 1226 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1227 const ObjCAtTryStmt &S) override; 1228 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1229 const ObjCAtSynchronizedStmt &S) override; 1230 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1231 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1232 bool ClearInsertionPoint=true) override; 1233 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1234 Address AddrWeakObj) override; 1235 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1236 llvm::Value *src, Address dst) override; 1237 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1238 llvm::Value *src, Address dest, 1239 bool threadlocal = false) override; 1240 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1241 llvm::Value *src, Address dest, 1242 llvm::Value *ivarOffset) override; 1243 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *src, Address dest) override; 1245 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1246 Address dest, Address src, 1247 llvm::Value *size) override; 1248 1249 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1250 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1251 unsigned CVRQualifiers) override; 1252 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1253 const ObjCInterfaceDecl *Interface, 1254 const ObjCIvarDecl *Ivar) override; 1255 1256 /// GetClassGlobal - Return the global variable for the Objective-C 1257 /// class of the given name. 1258 llvm::GlobalVariable *GetClassGlobal(const std::string &Name, 1259 bool Weak = false) override { 1260 llvm_unreachable("CGObjCMac::GetClassGlobal"); 1261 } 1262 }; 1263 1264 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1265 private: 1266 ObjCNonFragileABITypesHelper ObjCTypes; 1267 llvm::GlobalVariable* ObjCEmptyCacheVar; 1268 llvm::GlobalVariable* ObjCEmptyVtableVar; 1269 1270 /// SuperClassReferences - uniqued super class references. 1271 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1272 1273 /// MetaClassReferences - uniqued meta class references. 1274 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1275 1276 /// EHTypeReferences - uniqued class ehtype references. 1277 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1278 1279 /// VTableDispatchMethods - List of methods for which we generate 1280 /// vtable-based message dispatch. 1281 llvm::DenseSet<Selector> VTableDispatchMethods; 1282 1283 /// DefinedMetaClasses - List of defined meta-classes. 1284 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1285 1286 /// isVTableDispatchedSelector - Returns true if SEL is a 1287 /// vtable-based selector. 1288 bool isVTableDispatchedSelector(Selector Sel); 1289 1290 /// FinishNonFragileABIModule - Write out global data structures at the end of 1291 /// processing a translation unit. 1292 void FinishNonFragileABIModule(); 1293 1294 /// AddModuleClassList - Add the given list of class pointers to the 1295 /// module with the provided symbol and section names. 1296 void AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 1297 const char *SymbolName, 1298 const char *SectionName); 1299 1300 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1301 unsigned InstanceStart, 1302 unsigned InstanceSize, 1303 const ObjCImplementationDecl *ID); 1304 llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName, 1305 llvm::Constant *IsAGV, 1306 llvm::Constant *SuperClassGV, 1307 llvm::Constant *ClassRoGV, 1308 bool HiddenVisibility, 1309 bool Weak); 1310 1311 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1312 1313 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1314 1315 /// EmitMethodList - Emit the method list for the given 1316 /// implementation. The return value has type MethodListnfABITy. 1317 llvm::Constant *EmitMethodList(Twine Name, 1318 const char *Section, 1319 ArrayRef<llvm::Constant*> Methods); 1320 /// EmitIvarList - Emit the ivar list for the given 1321 /// implementation. If ForClass is true the list of class ivars 1322 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1323 /// interface ivars will be emitted. The return value has type 1324 /// IvarListnfABIPtrTy. 1325 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1326 1327 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1328 const ObjCIvarDecl *Ivar, 1329 unsigned long int offset); 1330 1331 /// GetOrEmitProtocol - Get the protocol object for the given 1332 /// declaration, emitting it if necessary. The return value has type 1333 /// ProtocolPtrTy. 1334 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1335 1336 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1337 /// object for the given declaration, emitting it if needed. These 1338 /// forward references will be filled in with empty bodies if no 1339 /// definition is seen. The return value has type ProtocolPtrTy. 1340 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1341 1342 /// EmitProtocolList - Generate the list of referenced 1343 /// protocols. The return value has type ProtocolListPtrTy. 1344 llvm::Constant *EmitProtocolList(Twine Name, 1345 ObjCProtocolDecl::protocol_iterator begin, 1346 ObjCProtocolDecl::protocol_iterator end); 1347 1348 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1349 ReturnValueSlot Return, 1350 QualType ResultType, 1351 Selector Sel, 1352 llvm::Value *Receiver, 1353 QualType Arg0Ty, 1354 bool IsSuper, 1355 const CallArgList &CallArgs, 1356 const ObjCMethodDecl *Method); 1357 1358 /// GetClassGlobal - Return the global variable for the Objective-C 1359 /// class of the given name. 1360 llvm::GlobalVariable *GetClassGlobal(const std::string &Name, 1361 bool Weak = false) override; 1362 1363 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1364 /// for the given class reference. 1365 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1366 const ObjCInterfaceDecl *ID); 1367 1368 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1369 IdentifierInfo *II, bool Weak, 1370 const ObjCInterfaceDecl *ID); 1371 1372 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1373 1374 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1375 /// for the given super class reference. 1376 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1377 const ObjCInterfaceDecl *ID); 1378 1379 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1380 /// meta-data 1381 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1382 const ObjCInterfaceDecl *ID, bool Weak); 1383 1384 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1385 /// the given ivar. 1386 /// 1387 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1388 const ObjCInterfaceDecl *ID, 1389 const ObjCIvarDecl *Ivar); 1390 1391 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1392 /// for the given selector. 1393 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1394 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1395 1396 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1397 /// interface. The return value has type EHTypePtrTy. 1398 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1399 bool ForDefinition); 1400 1401 const char *getMetaclassSymbolPrefix() const { 1402 return "OBJC_METACLASS_$_"; 1403 } 1404 1405 const char *getClassSymbolPrefix() const { 1406 return "OBJC_CLASS_$_"; 1407 } 1408 1409 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1410 uint32_t &InstanceStart, 1411 uint32_t &InstanceSize); 1412 1413 // Shamelessly stolen from Analysis/CFRefCount.cpp 1414 Selector GetNullarySelector(const char* name) const { 1415 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1416 return CGM.getContext().Selectors.getSelector(0, &II); 1417 } 1418 1419 Selector GetUnarySelector(const char* name) const { 1420 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1421 return CGM.getContext().Selectors.getSelector(1, &II); 1422 } 1423 1424 /// ImplementationIsNonLazy - Check whether the given category or 1425 /// class implementation is "non-lazy". 1426 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1427 1428 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1429 const ObjCIvarDecl *IV) { 1430 // Annotate the load as an invariant load iff inside an instance method 1431 // and ivar belongs to instance method's class and one of its super class. 1432 // This check is needed because the ivar offset is a lazily 1433 // initialised value that may depend on objc_msgSend to perform a fixup on 1434 // the first message dispatch. 1435 // 1436 // An additional opportunity to mark the load as invariant arises when the 1437 // base of the ivar access is a parameter to an Objective C method. 1438 // However, because the parameters are not available in the current 1439 // interface, we cannot perform this check. 1440 if (const ObjCMethodDecl *MD = 1441 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1442 if (MD->isInstanceMethod()) 1443 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1444 return IV->getContainingInterface()->isSuperClassOf(ID); 1445 return false; 1446 } 1447 1448 public: 1449 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1450 // FIXME. All stubs for now! 1451 llvm::Function *ModuleInitFunction() override; 1452 1453 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1454 ReturnValueSlot Return, 1455 QualType ResultType, Selector Sel, 1456 llvm::Value *Receiver, 1457 const CallArgList &CallArgs, 1458 const ObjCInterfaceDecl *Class, 1459 const ObjCMethodDecl *Method) override; 1460 1461 CodeGen::RValue 1462 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1463 ReturnValueSlot Return, QualType ResultType, 1464 Selector Sel, const ObjCInterfaceDecl *Class, 1465 bool isCategoryImpl, llvm::Value *Receiver, 1466 bool IsClassMessage, const CallArgList &CallArgs, 1467 const ObjCMethodDecl *Method) override; 1468 1469 llvm::Value *GetClass(CodeGenFunction &CGF, 1470 const ObjCInterfaceDecl *ID) override; 1471 1472 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1473 { return EmitSelector(CGF, Sel); } 1474 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1475 { return EmitSelectorAddr(CGF, Sel); } 1476 1477 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1478 /// untyped one. 1479 llvm::Value *GetSelector(CodeGenFunction &CGF, 1480 const ObjCMethodDecl *Method) override 1481 { return EmitSelector(CGF, Method->getSelector()); } 1482 1483 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1484 1485 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1486 1487 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1488 1489 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1490 const ObjCProtocolDecl *PD) override; 1491 1492 llvm::Constant *GetEHType(QualType T) override; 1493 1494 llvm::Constant *GetPropertyGetFunction() override { 1495 return ObjCTypes.getGetPropertyFn(); 1496 } 1497 llvm::Constant *GetPropertySetFunction() override { 1498 return ObjCTypes.getSetPropertyFn(); 1499 } 1500 1501 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1502 bool copy) override { 1503 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1504 } 1505 1506 llvm::Constant *GetSetStructFunction() override { 1507 return ObjCTypes.getCopyStructFn(); 1508 } 1509 llvm::Constant *GetGetStructFunction() override { 1510 return ObjCTypes.getCopyStructFn(); 1511 } 1512 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1513 return ObjCTypes.getCppAtomicObjectFunction(); 1514 } 1515 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1516 return ObjCTypes.getCppAtomicObjectFunction(); 1517 } 1518 1519 llvm::Constant *EnumerationMutationFunction() override { 1520 return ObjCTypes.getEnumerationMutationFn(); 1521 } 1522 1523 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1524 const ObjCAtTryStmt &S) override; 1525 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1526 const ObjCAtSynchronizedStmt &S) override; 1527 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1528 bool ClearInsertionPoint=true) override; 1529 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1530 Address AddrWeakObj) override; 1531 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1532 llvm::Value *src, Address edst) override; 1533 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1534 llvm::Value *src, Address dest, 1535 bool threadlocal = false) override; 1536 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1537 llvm::Value *src, Address dest, 1538 llvm::Value *ivarOffset) override; 1539 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1540 llvm::Value *src, Address dest) override; 1541 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1542 Address dest, Address src, 1543 llvm::Value *size) override; 1544 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1545 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1546 unsigned CVRQualifiers) override; 1547 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1548 const ObjCInterfaceDecl *Interface, 1549 const ObjCIvarDecl *Ivar) override; 1550 }; 1551 1552 /// A helper class for performing the null-initialization of a return 1553 /// value. 1554 struct NullReturnState { 1555 llvm::BasicBlock *NullBB; 1556 NullReturnState() : NullBB(nullptr) {} 1557 1558 /// Perform a null-check of the given receiver. 1559 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1560 // Make blocks for the null-receiver and call edges. 1561 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1562 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1563 1564 // Check for a null receiver and, if there is one, jump to the 1565 // null-receiver block. There's no point in trying to avoid it: 1566 // we're always going to put *something* there, because otherwise 1567 // we shouldn't have done this null-check in the first place. 1568 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1569 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1570 1571 // Otherwise, start performing the call. 1572 CGF.EmitBlock(callBB); 1573 } 1574 1575 /// Complete the null-return operation. It is valid to call this 1576 /// regardless of whether 'init' has been called. 1577 RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType, 1578 const CallArgList &CallArgs, 1579 const ObjCMethodDecl *Method) { 1580 // If we never had to do a null-check, just use the raw result. 1581 if (!NullBB) return result; 1582 1583 // The continuation block. This will be left null if we don't have an 1584 // IP, which can happen if the method we're calling is marked noreturn. 1585 llvm::BasicBlock *contBB = nullptr; 1586 1587 // Finish the call path. 1588 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1589 if (callBB) { 1590 contBB = CGF.createBasicBlock("msgSend.cont"); 1591 CGF.Builder.CreateBr(contBB); 1592 } 1593 1594 // Okay, start emitting the null-receiver block. 1595 CGF.EmitBlock(NullBB); 1596 1597 // Release any consumed arguments we've got. 1598 if (Method) { 1599 CallArgList::const_iterator I = CallArgs.begin(); 1600 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1601 e = Method->param_end(); i != e; ++i, ++I) { 1602 const ParmVarDecl *ParamDecl = (*i); 1603 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1604 RValue RV = I->RV; 1605 assert(RV.isScalar() && 1606 "NullReturnState::complete - arg not on object"); 1607 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1608 } 1609 } 1610 } 1611 1612 // The phi code below assumes that we haven't needed any control flow yet. 1613 assert(CGF.Builder.GetInsertBlock() == NullBB); 1614 1615 // If we've got a void return, just jump to the continuation block. 1616 if (result.isScalar() && resultType->isVoidType()) { 1617 // No jumps required if the message-send was noreturn. 1618 if (contBB) CGF.EmitBlock(contBB); 1619 return result; 1620 } 1621 1622 // If we've got a scalar return, build a phi. 1623 if (result.isScalar()) { 1624 // Derive the null-initialization value. 1625 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1626 1627 // If no join is necessary, just flow out. 1628 if (!contBB) return RValue::get(null); 1629 1630 // Otherwise, build a phi. 1631 CGF.EmitBlock(contBB); 1632 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1633 phi->addIncoming(result.getScalarVal(), callBB); 1634 phi->addIncoming(null, NullBB); 1635 return RValue::get(phi); 1636 } 1637 1638 // If we've got an aggregate return, null the buffer out. 1639 // FIXME: maybe we should be doing things differently for all the 1640 // cases where the ABI has us returning (1) non-agg values in 1641 // memory or (2) agg values in registers. 1642 if (result.isAggregate()) { 1643 assert(result.isAggregate() && "null init of non-aggregate result?"); 1644 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1645 if (contBB) CGF.EmitBlock(contBB); 1646 return result; 1647 } 1648 1649 // Complex types. 1650 CGF.EmitBlock(contBB); 1651 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1652 1653 // Find the scalar type and its zero value. 1654 llvm::Type *scalarTy = callResult.first->getType(); 1655 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1656 1657 // Build phis for both coordinates. 1658 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1659 real->addIncoming(callResult.first, callBB); 1660 real->addIncoming(scalarZero, NullBB); 1661 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1662 imag->addIncoming(callResult.second, callBB); 1663 imag->addIncoming(scalarZero, NullBB); 1664 return RValue::getComplex(real, imag); 1665 } 1666 }; 1667 1668 } // end anonymous namespace 1669 1670 /* *** Helper Functions *** */ 1671 1672 /// getConstantGEP() - Help routine to construct simple GEPs. 1673 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1674 llvm::GlobalVariable *C, unsigned idx0, 1675 unsigned idx1) { 1676 llvm::Value *Idxs[] = { 1677 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1678 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1679 }; 1680 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1681 } 1682 1683 /// hasObjCExceptionAttribute - Return true if this class or any super 1684 /// class has the __objc_exception__ attribute. 1685 static bool hasObjCExceptionAttribute(ASTContext &Context, 1686 const ObjCInterfaceDecl *OID) { 1687 if (OID->hasAttr<ObjCExceptionAttr>()) 1688 return true; 1689 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1690 return hasObjCExceptionAttribute(Context, Super); 1691 return false; 1692 } 1693 1694 /* *** CGObjCMac Public Interface *** */ 1695 1696 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1697 ObjCTypes(cgm) { 1698 ObjCABI = 1; 1699 EmitImageInfo(); 1700 } 1701 1702 /// GetClass - Return a reference to the class for the given interface 1703 /// decl. 1704 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1705 const ObjCInterfaceDecl *ID) { 1706 return EmitClassRef(CGF, ID); 1707 } 1708 1709 /// GetSelector - Return the pointer to the unique'd string for this selector. 1710 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1711 return EmitSelector(CGF, Sel); 1712 } 1713 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1714 return EmitSelectorAddr(CGF, Sel); 1715 } 1716 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1717 *Method) { 1718 return EmitSelector(CGF, Method->getSelector()); 1719 } 1720 1721 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1722 if (T->isObjCIdType() || 1723 T->isObjCQualifiedIdType()) { 1724 return CGM.GetAddrOfRTTIDescriptor( 1725 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1726 } 1727 if (T->isObjCClassType() || 1728 T->isObjCQualifiedClassType()) { 1729 return CGM.GetAddrOfRTTIDescriptor( 1730 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1731 } 1732 if (T->isObjCObjectPointerType()) 1733 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1734 1735 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1736 } 1737 1738 /// Generate a constant CFString object. 1739 /* 1740 struct __builtin_CFString { 1741 const int *isa; // point to __CFConstantStringClassReference 1742 int flags; 1743 const char *str; 1744 long length; 1745 }; 1746 */ 1747 1748 /// or Generate a constant NSString object. 1749 /* 1750 struct __builtin_NSString { 1751 const int *isa; // point to __NSConstantStringClassReference 1752 const char *str; 1753 unsigned int length; 1754 }; 1755 */ 1756 1757 ConstantAddress CGObjCCommonMac::GenerateConstantString( 1758 const StringLiteral *SL) { 1759 return (CGM.getLangOpts().NoConstantCFStrings == 0 ? 1760 CGM.GetAddrOfConstantCFString(SL) : 1761 CGM.GetAddrOfConstantString(SL)); 1762 } 1763 1764 enum { 1765 kCFTaggedObjectID_Integer = (1 << 1) + 1 1766 }; 1767 1768 /// Generates a message send where the super is the receiver. This is 1769 /// a message send to self with special delivery semantics indicating 1770 /// which class's method should be called. 1771 CodeGen::RValue 1772 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1773 ReturnValueSlot Return, 1774 QualType ResultType, 1775 Selector Sel, 1776 const ObjCInterfaceDecl *Class, 1777 bool isCategoryImpl, 1778 llvm::Value *Receiver, 1779 bool IsClassMessage, 1780 const CodeGen::CallArgList &CallArgs, 1781 const ObjCMethodDecl *Method) { 1782 // Create and init a super structure; this is a (receiver, class) 1783 // pair we will pass to objc_msgSendSuper. 1784 Address ObjCSuper = 1785 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1786 "objc_super"); 1787 llvm::Value *ReceiverAsObject = 1788 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 1789 CGF.Builder.CreateStore( 1790 ReceiverAsObject, 1791 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 1792 1793 // If this is a class message the metaclass is passed as the target. 1794 llvm::Value *Target; 1795 if (IsClassMessage) { 1796 if (isCategoryImpl) { 1797 // Message sent to 'super' in a class method defined in a category 1798 // implementation requires an odd treatment. 1799 // If we are in a class method, we must retrieve the 1800 // _metaclass_ for the current class, pointed at by 1801 // the class's "isa" pointer. The following assumes that 1802 // isa" is the first ivar in a class (which it must be). 1803 Target = EmitClassRef(CGF, Class->getSuperClass()); 1804 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 1805 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 1806 } else { 1807 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 1808 llvm::Value *SuperPtr = 1809 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 1810 llvm::Value *Super = 1811 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 1812 Target = Super; 1813 } 1814 } else if (isCategoryImpl) 1815 Target = EmitClassRef(CGF, Class->getSuperClass()); 1816 else { 1817 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 1818 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 1819 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 1820 } 1821 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 1822 // ObjCTypes types. 1823 llvm::Type *ClassTy = 1824 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 1825 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 1826 CGF.Builder.CreateStore(Target, 1827 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 1828 return EmitMessageSend(CGF, Return, ResultType, 1829 EmitSelector(CGF, Sel), 1830 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 1831 true, CallArgs, Method, Class, ObjCTypes); 1832 } 1833 1834 /// Generate code for a message send expression. 1835 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1836 ReturnValueSlot Return, 1837 QualType ResultType, 1838 Selector Sel, 1839 llvm::Value *Receiver, 1840 const CallArgList &CallArgs, 1841 const ObjCInterfaceDecl *Class, 1842 const ObjCMethodDecl *Method) { 1843 return EmitMessageSend(CGF, Return, ResultType, 1844 EmitSelector(CGF, Sel), 1845 Receiver, CGF.getContext().getObjCIdType(), 1846 false, CallArgs, Method, Class, ObjCTypes); 1847 } 1848 1849 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 1850 do { 1851 if (ID->isWeakImported()) 1852 return true; 1853 } while ((ID = ID->getSuperClass())); 1854 1855 return false; 1856 } 1857 1858 CodeGen::RValue 1859 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1860 ReturnValueSlot Return, 1861 QualType ResultType, 1862 llvm::Value *Sel, 1863 llvm::Value *Arg0, 1864 QualType Arg0Ty, 1865 bool IsSuper, 1866 const CallArgList &CallArgs, 1867 const ObjCMethodDecl *Method, 1868 const ObjCInterfaceDecl *ClassReceiver, 1869 const ObjCCommonTypesHelper &ObjCTypes) { 1870 CallArgList ActualArgs; 1871 if (!IsSuper) 1872 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 1873 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 1874 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 1875 ActualArgs.addFrom(CallArgs); 1876 1877 // If we're calling a method, use the formal signature. 1878 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1879 1880 if (Method) 1881 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 1882 CGM.getContext().getCanonicalType(ResultType) && 1883 "Result type mismatch!"); 1884 1885 bool ReceiverCanBeNull = true; 1886 1887 // Super dispatch assumes that self is non-null; even the messenger 1888 // doesn't have a null check internally. 1889 if (IsSuper) { 1890 ReceiverCanBeNull = false; 1891 1892 // If this is a direct dispatch of a class method, check whether the class, 1893 // or anything in its hierarchy, was weak-linked. 1894 } else if (ClassReceiver && Method && Method->isClassMethod()) { 1895 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 1896 1897 // If we're emitting a method, and self is const (meaning just ARC, for now), 1898 // and the receiver is a load of self, then self is a valid object. 1899 } else if (auto CurMethod = 1900 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 1901 auto Self = CurMethod->getSelfDecl(); 1902 if (Self->getType().isConstQualified()) { 1903 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 1904 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 1905 if (SelfAddr == LI->getPointerOperand()) { 1906 ReceiverCanBeNull = false; 1907 } 1908 } 1909 } 1910 } 1911 1912 NullReturnState nullReturn; 1913 1914 llvm::Constant *Fn = nullptr; 1915 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 1916 if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0); 1917 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 1918 : ObjCTypes.getSendStretFn(IsSuper); 1919 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1920 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 1921 : ObjCTypes.getSendFpretFn(IsSuper); 1922 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 1923 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 1924 : ObjCTypes.getSendFp2retFn(IsSuper); 1925 } else { 1926 // arm64 uses objc_msgSend for stret methods and yet null receiver check 1927 // must be made for it. 1928 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 1929 nullReturn.init(CGF, Arg0); 1930 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 1931 : ObjCTypes.getSendFn(IsSuper); 1932 } 1933 1934 // Emit a null-check if there's a consumed argument other than the receiver. 1935 bool RequiresNullCheck = false; 1936 if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) { 1937 for (const auto *ParamDecl : Method->params()) { 1938 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1939 if (!nullReturn.NullBB) 1940 nullReturn.init(CGF, Arg0); 1941 RequiresNullCheck = true; 1942 break; 1943 } 1944 } 1945 } 1946 1947 llvm::Instruction *CallSite; 1948 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 1949 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs, 1950 nullptr, &CallSite); 1951 1952 // Mark the call as noreturn if the method is marked noreturn and the 1953 // receiver cannot be null. 1954 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 1955 llvm::CallSite(CallSite).setDoesNotReturn(); 1956 } 1957 1958 return nullReturn.complete(CGF, rvalue, ResultType, CallArgs, 1959 RequiresNullCheck ? Method : nullptr); 1960 } 1961 1962 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 1963 bool pointee = false) { 1964 // Note that GC qualification applies recursively to C pointer types 1965 // that aren't otherwise decorated. This is weird, but it's probably 1966 // an intentional workaround to the unreliable placement of GC qualifiers. 1967 if (FQT.isObjCGCStrong()) 1968 return Qualifiers::Strong; 1969 1970 if (FQT.isObjCGCWeak()) 1971 return Qualifiers::Weak; 1972 1973 if (auto ownership = FQT.getObjCLifetime()) { 1974 // Ownership does not apply recursively to C pointer types. 1975 if (pointee) return Qualifiers::GCNone; 1976 switch (ownership) { 1977 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 1978 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 1979 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 1980 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 1981 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 1982 } 1983 llvm_unreachable("bad objc ownership"); 1984 } 1985 1986 // Treat unqualified retainable pointers as strong. 1987 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 1988 return Qualifiers::Strong; 1989 1990 // Walk into C pointer types, but only in GC. 1991 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 1992 if (const PointerType *PT = FQT->getAs<PointerType>()) 1993 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 1994 } 1995 1996 return Qualifiers::GCNone; 1997 } 1998 1999 namespace { 2000 struct IvarInfo { 2001 CharUnits Offset; 2002 uint64_t SizeInWords; 2003 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2004 : Offset(offset), SizeInWords(sizeInWords) {} 2005 2006 // Allow sorting based on byte pos. 2007 bool operator<(const IvarInfo &other) const { 2008 return Offset < other.Offset; 2009 } 2010 }; 2011 2012 /// A helper class for building GC layout strings. 2013 class IvarLayoutBuilder { 2014 CodeGenModule &CGM; 2015 2016 /// The start of the layout. Offsets will be relative to this value, 2017 /// and entries less than this value will be silently discarded. 2018 CharUnits InstanceBegin; 2019 2020 /// The end of the layout. Offsets will never exceed this value. 2021 CharUnits InstanceEnd; 2022 2023 /// Whether we're generating the strong layout or the weak layout. 2024 bool ForStrongLayout; 2025 2026 /// Whether the offsets in IvarsInfo might be out-of-order. 2027 bool IsDisordered = false; 2028 2029 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2030 public: 2031 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2032 CharUnits instanceEnd, bool forStrongLayout) 2033 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2034 ForStrongLayout(forStrongLayout) { 2035 } 2036 2037 void visitRecord(const RecordType *RT, CharUnits offset); 2038 2039 template <class Iterator, class GetOffsetFn> 2040 void visitAggregate(Iterator begin, Iterator end, 2041 CharUnits aggrOffset, 2042 const GetOffsetFn &getOffset); 2043 2044 void visitField(const FieldDecl *field, CharUnits offset); 2045 2046 /// Add the layout of a block implementation. 2047 void visitBlock(const CGBlockInfo &blockInfo); 2048 2049 /// Is there any information for an interesting bitmap? 2050 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2051 2052 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2053 llvm::SmallVectorImpl<unsigned char> &buffer); 2054 2055 static void dump(ArrayRef<unsigned char> buffer) { 2056 const unsigned char *s = buffer.data(); 2057 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2058 if (!(s[i] & 0xf0)) 2059 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2060 else 2061 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2062 printf("\n"); 2063 } 2064 }; 2065 } 2066 2067 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2068 const CGBlockInfo &blockInfo) { 2069 2070 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2071 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2072 return nullPtr; 2073 2074 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2075 /*for strong layout*/ true); 2076 2077 builder.visitBlock(blockInfo); 2078 2079 if (!builder.hasBitmapData()) 2080 return nullPtr; 2081 2082 llvm::SmallVector<unsigned char, 32> buffer; 2083 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2084 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2085 printf("\n block variable layout for block: "); 2086 builder.dump(buffer); 2087 } 2088 2089 return C; 2090 } 2091 2092 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2093 // __isa is the first field in block descriptor and must assume by runtime's 2094 // convention that it is GC'able. 2095 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2096 2097 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2098 2099 // Ignore the optional 'this' capture: C++ objects are not assumed 2100 // to be GC'ed. 2101 2102 CharUnits lastFieldOffset; 2103 2104 // Walk the captured variables. 2105 for (const auto &CI : blockDecl->captures()) { 2106 const VarDecl *variable = CI.getVariable(); 2107 QualType type = variable->getType(); 2108 2109 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2110 2111 // Ignore constant captures. 2112 if (capture.isConstant()) continue; 2113 2114 CharUnits fieldOffset = capture.getOffset(); 2115 2116 // Block fields are not necessarily ordered; if we detect that we're 2117 // adding them out-of-order, make sure we sort later. 2118 if (fieldOffset < lastFieldOffset) 2119 IsDisordered = true; 2120 lastFieldOffset = fieldOffset; 2121 2122 // __block variables are passed by their descriptor address. 2123 if (CI.isByRef()) { 2124 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2125 continue; 2126 } 2127 2128 assert(!type->isArrayType() && "array variable should not be caught"); 2129 if (const RecordType *record = type->getAs<RecordType>()) { 2130 visitRecord(record, fieldOffset); 2131 continue; 2132 } 2133 2134 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2135 2136 if (GCAttr == Qualifiers::Strong) { 2137 assert(CGM.getContext().getTypeSize(type) 2138 == CGM.getTarget().getPointerWidth(0)); 2139 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2140 } 2141 } 2142 } 2143 2144 2145 /// getBlockCaptureLifetime - This routine returns life time of the captured 2146 /// block variable for the purpose of block layout meta-data generation. FQT is 2147 /// the type of the variable captured in the block. 2148 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2149 bool ByrefLayout) { 2150 // If it has an ownership qualifier, we're done. 2151 if (auto lifetime = FQT.getObjCLifetime()) 2152 return lifetime; 2153 2154 // If it doesn't, and this is ARC, it has no ownership. 2155 if (CGM.getLangOpts().ObjCAutoRefCount) 2156 return Qualifiers::OCL_None; 2157 2158 // In MRC, retainable pointers are owned by non-__block variables. 2159 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2160 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2161 2162 return Qualifiers::OCL_None; 2163 } 2164 2165 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2166 Qualifiers::ObjCLifetime LifeTime, 2167 CharUnits FieldOffset, 2168 CharUnits FieldSize) { 2169 // __block variables are passed by their descriptor address. 2170 if (IsByref) 2171 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2172 FieldSize)); 2173 else if (LifeTime == Qualifiers::OCL_Strong) 2174 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2175 FieldSize)); 2176 else if (LifeTime == Qualifiers::OCL_Weak) 2177 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2178 FieldSize)); 2179 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2180 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2181 FieldSize)); 2182 else 2183 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2184 FieldOffset, 2185 FieldSize)); 2186 } 2187 2188 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2189 const RecordDecl *RD, 2190 ArrayRef<const FieldDecl*> RecFields, 2191 CharUnits BytePos, bool &HasUnion, 2192 bool ByrefLayout) { 2193 bool IsUnion = (RD && RD->isUnion()); 2194 CharUnits MaxUnionSize = CharUnits::Zero(); 2195 const FieldDecl *MaxField = nullptr; 2196 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2197 CharUnits MaxFieldOffset = CharUnits::Zero(); 2198 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2199 2200 if (RecFields.empty()) 2201 return; 2202 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2203 2204 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2205 const FieldDecl *Field = RecFields[i]; 2206 // Note that 'i' here is actually the field index inside RD of Field, 2207 // although this dependency is hidden. 2208 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2209 CharUnits FieldOffset = 2210 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2211 2212 // Skip over unnamed or bitfields 2213 if (!Field->getIdentifier() || Field->isBitField()) { 2214 LastFieldBitfieldOrUnnamed = Field; 2215 LastBitfieldOrUnnamedOffset = FieldOffset; 2216 continue; 2217 } 2218 2219 LastFieldBitfieldOrUnnamed = nullptr; 2220 QualType FQT = Field->getType(); 2221 if (FQT->isRecordType() || FQT->isUnionType()) { 2222 if (FQT->isUnionType()) 2223 HasUnion = true; 2224 2225 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2226 BytePos + FieldOffset, HasUnion); 2227 continue; 2228 } 2229 2230 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2231 const ConstantArrayType *CArray = 2232 dyn_cast_or_null<ConstantArrayType>(Array); 2233 uint64_t ElCount = CArray->getSize().getZExtValue(); 2234 assert(CArray && "only array with known element size is supported"); 2235 FQT = CArray->getElementType(); 2236 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2237 const ConstantArrayType *CArray = 2238 dyn_cast_or_null<ConstantArrayType>(Array); 2239 ElCount *= CArray->getSize().getZExtValue(); 2240 FQT = CArray->getElementType(); 2241 } 2242 if (FQT->isRecordType() && ElCount) { 2243 int OldIndex = RunSkipBlockVars.size() - 1; 2244 const RecordType *RT = FQT->getAs<RecordType>(); 2245 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2246 HasUnion); 2247 2248 // Replicate layout information for each array element. Note that 2249 // one element is already done. 2250 uint64_t ElIx = 1; 2251 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2252 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2253 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2254 RunSkipBlockVars.push_back( 2255 RUN_SKIP(RunSkipBlockVars[i].opcode, 2256 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2257 RunSkipBlockVars[i].block_var_size)); 2258 } 2259 continue; 2260 } 2261 } 2262 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2263 if (IsUnion) { 2264 CharUnits UnionIvarSize = FieldSize; 2265 if (UnionIvarSize > MaxUnionSize) { 2266 MaxUnionSize = UnionIvarSize; 2267 MaxField = Field; 2268 MaxFieldOffset = FieldOffset; 2269 } 2270 } else { 2271 UpdateRunSkipBlockVars(false, 2272 getBlockCaptureLifetime(FQT, ByrefLayout), 2273 BytePos + FieldOffset, 2274 FieldSize); 2275 } 2276 } 2277 2278 if (LastFieldBitfieldOrUnnamed) { 2279 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2280 // Last field was a bitfield. Must update the info. 2281 uint64_t BitFieldSize 2282 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2283 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2284 ((BitFieldSize % ByteSizeInBits) != 0); 2285 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2286 Size += LastBitfieldOrUnnamedOffset; 2287 UpdateRunSkipBlockVars(false, 2288 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2289 ByrefLayout), 2290 BytePos + LastBitfieldOrUnnamedOffset, 2291 Size); 2292 } else { 2293 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2294 // Last field was unnamed. Must update skip info. 2295 CharUnits FieldSize 2296 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2297 UpdateRunSkipBlockVars(false, 2298 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2299 ByrefLayout), 2300 BytePos + LastBitfieldOrUnnamedOffset, 2301 FieldSize); 2302 } 2303 } 2304 2305 if (MaxField) 2306 UpdateRunSkipBlockVars(false, 2307 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2308 BytePos + MaxFieldOffset, 2309 MaxUnionSize); 2310 } 2311 2312 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2313 CharUnits BytePos, 2314 bool &HasUnion, 2315 bool ByrefLayout) { 2316 const RecordDecl *RD = RT->getDecl(); 2317 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2318 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2319 const llvm::StructLayout *RecLayout = 2320 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2321 2322 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2323 } 2324 2325 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2326 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2327 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2328 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2329 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2330 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2331 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2332 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2333 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2334 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2335 SmallVectorImpl<unsigned char> &Layout) { 2336 uint64_t Result = 0; 2337 if (Layout.size() <= 3) { 2338 unsigned size = Layout.size(); 2339 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2340 unsigned char inst; 2341 enum BLOCK_LAYOUT_OPCODE opcode ; 2342 switch (size) { 2343 case 3: 2344 inst = Layout[0]; 2345 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2346 if (opcode == BLOCK_LAYOUT_STRONG) 2347 strong_word_count = (inst & 0xF)+1; 2348 else 2349 return 0; 2350 inst = Layout[1]; 2351 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2352 if (opcode == BLOCK_LAYOUT_BYREF) 2353 byref_word_count = (inst & 0xF)+1; 2354 else 2355 return 0; 2356 inst = Layout[2]; 2357 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2358 if (opcode == BLOCK_LAYOUT_WEAK) 2359 weak_word_count = (inst & 0xF)+1; 2360 else 2361 return 0; 2362 break; 2363 2364 case 2: 2365 inst = Layout[0]; 2366 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2367 if (opcode == BLOCK_LAYOUT_STRONG) { 2368 strong_word_count = (inst & 0xF)+1; 2369 inst = Layout[1]; 2370 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2371 if (opcode == BLOCK_LAYOUT_BYREF) 2372 byref_word_count = (inst & 0xF)+1; 2373 else if (opcode == BLOCK_LAYOUT_WEAK) 2374 weak_word_count = (inst & 0xF)+1; 2375 else 2376 return 0; 2377 } 2378 else if (opcode == BLOCK_LAYOUT_BYREF) { 2379 byref_word_count = (inst & 0xF)+1; 2380 inst = Layout[1]; 2381 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2382 if (opcode == BLOCK_LAYOUT_WEAK) 2383 weak_word_count = (inst & 0xF)+1; 2384 else 2385 return 0; 2386 } 2387 else 2388 return 0; 2389 break; 2390 2391 case 1: 2392 inst = Layout[0]; 2393 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2394 if (opcode == BLOCK_LAYOUT_STRONG) 2395 strong_word_count = (inst & 0xF)+1; 2396 else if (opcode == BLOCK_LAYOUT_BYREF) 2397 byref_word_count = (inst & 0xF)+1; 2398 else if (opcode == BLOCK_LAYOUT_WEAK) 2399 weak_word_count = (inst & 0xF)+1; 2400 else 2401 return 0; 2402 break; 2403 2404 default: 2405 return 0; 2406 } 2407 2408 // Cannot inline when any of the word counts is 15. Because this is one less 2409 // than the actual work count (so 15 means 16 actual word counts), 2410 // and we can only display 0 thru 15 word counts. 2411 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2412 return 0; 2413 2414 unsigned count = 2415 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2416 2417 if (size == count) { 2418 if (strong_word_count) 2419 Result = strong_word_count; 2420 Result <<= 4; 2421 if (byref_word_count) 2422 Result += byref_word_count; 2423 Result <<= 4; 2424 if (weak_word_count) 2425 Result += weak_word_count; 2426 } 2427 } 2428 return Result; 2429 } 2430 2431 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2432 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2433 if (RunSkipBlockVars.empty()) 2434 return nullPtr; 2435 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2436 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2437 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2438 2439 // Sort on byte position; captures might not be allocated in order, 2440 // and unions can do funny things. 2441 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2442 SmallVector<unsigned char, 16> Layout; 2443 2444 unsigned size = RunSkipBlockVars.size(); 2445 for (unsigned i = 0; i < size; i++) { 2446 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2447 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2448 CharUnits end_byte_pos = start_byte_pos; 2449 unsigned j = i+1; 2450 while (j < size) { 2451 if (opcode == RunSkipBlockVars[j].opcode) { 2452 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2453 i++; 2454 } 2455 else 2456 break; 2457 } 2458 CharUnits size_in_bytes = 2459 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2460 if (j < size) { 2461 CharUnits gap = 2462 RunSkipBlockVars[j].block_var_bytepos - 2463 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2464 size_in_bytes += gap; 2465 } 2466 CharUnits residue_in_bytes = CharUnits::Zero(); 2467 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2468 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2469 size_in_bytes -= residue_in_bytes; 2470 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2471 } 2472 2473 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2474 while (size_in_words >= 16) { 2475 // Note that value in imm. is one less that the actual 2476 // value. So, 0xf means 16 words follow! 2477 unsigned char inst = (opcode << 4) | 0xf; 2478 Layout.push_back(inst); 2479 size_in_words -= 16; 2480 } 2481 if (size_in_words > 0) { 2482 // Note that value in imm. is one less that the actual 2483 // value. So, we subtract 1 away! 2484 unsigned char inst = (opcode << 4) | (size_in_words-1); 2485 Layout.push_back(inst); 2486 } 2487 if (residue_in_bytes > CharUnits::Zero()) { 2488 unsigned char inst = 2489 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2490 Layout.push_back(inst); 2491 } 2492 } 2493 2494 while (!Layout.empty()) { 2495 unsigned char inst = Layout.back(); 2496 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2497 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2498 Layout.pop_back(); 2499 else 2500 break; 2501 } 2502 2503 uint64_t Result = InlineLayoutInstruction(Layout); 2504 if (Result != 0) { 2505 // Block variable layout instruction has been inlined. 2506 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2507 if (ComputeByrefLayout) 2508 printf("\n Inline BYREF variable layout: "); 2509 else 2510 printf("\n Inline block variable layout: "); 2511 printf("0x0%" PRIx64 "", Result); 2512 if (auto numStrong = (Result & 0xF00) >> 8) 2513 printf(", BL_STRONG:%d", (int) numStrong); 2514 if (auto numByref = (Result & 0x0F0) >> 4) 2515 printf(", BL_BYREF:%d", (int) numByref); 2516 if (auto numWeak = (Result & 0x00F) >> 0) 2517 printf(", BL_WEAK:%d", (int) numWeak); 2518 printf(", BL_OPERATOR:0\n"); 2519 } 2520 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2521 } 2522 2523 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2524 Layout.push_back(inst); 2525 std::string BitMap; 2526 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2527 BitMap += Layout[i]; 2528 2529 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2530 if (ComputeByrefLayout) 2531 printf("\n Byref variable layout: "); 2532 else 2533 printf("\n Block variable layout: "); 2534 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2535 unsigned char inst = BitMap[i]; 2536 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2537 unsigned delta = 1; 2538 switch (opcode) { 2539 case BLOCK_LAYOUT_OPERATOR: 2540 printf("BL_OPERATOR:"); 2541 delta = 0; 2542 break; 2543 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2544 printf("BL_NON_OBJECT_BYTES:"); 2545 break; 2546 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2547 printf("BL_NON_OBJECT_WORD:"); 2548 break; 2549 case BLOCK_LAYOUT_STRONG: 2550 printf("BL_STRONG:"); 2551 break; 2552 case BLOCK_LAYOUT_BYREF: 2553 printf("BL_BYREF:"); 2554 break; 2555 case BLOCK_LAYOUT_WEAK: 2556 printf("BL_WEAK:"); 2557 break; 2558 case BLOCK_LAYOUT_UNRETAINED: 2559 printf("BL_UNRETAINED:"); 2560 break; 2561 } 2562 // Actual value of word count is one more that what is in the imm. 2563 // field of the instruction 2564 printf("%d", (inst & 0xf) + delta); 2565 if (i < e-1) 2566 printf(", "); 2567 else 2568 printf("\n"); 2569 } 2570 } 2571 2572 llvm::GlobalVariable *Entry = CreateMetadataVar( 2573 "OBJC_CLASS_NAME_", 2574 llvm::ConstantDataArray::getString(VMContext, BitMap, false), 2575 "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true); 2576 return getConstantGEP(VMContext, Entry, 0, 0); 2577 } 2578 2579 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2580 const CGBlockInfo &blockInfo) { 2581 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2582 2583 RunSkipBlockVars.clear(); 2584 bool hasUnion = false; 2585 2586 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2587 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2588 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2589 2590 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2591 2592 // Calculate the basic layout of the block structure. 2593 const llvm::StructLayout *layout = 2594 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2595 2596 // Ignore the optional 'this' capture: C++ objects are not assumed 2597 // to be GC'ed. 2598 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2599 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2600 blockInfo.BlockHeaderForcedGapOffset, 2601 blockInfo.BlockHeaderForcedGapSize); 2602 // Walk the captured variables. 2603 for (const auto &CI : blockDecl->captures()) { 2604 const VarDecl *variable = CI.getVariable(); 2605 QualType type = variable->getType(); 2606 2607 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2608 2609 // Ignore constant captures. 2610 if (capture.isConstant()) continue; 2611 2612 CharUnits fieldOffset = 2613 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2614 2615 assert(!type->isArrayType() && "array variable should not be caught"); 2616 if (!CI.isByRef()) 2617 if (const RecordType *record = type->getAs<RecordType>()) { 2618 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2619 continue; 2620 } 2621 CharUnits fieldSize; 2622 if (CI.isByRef()) 2623 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2624 else 2625 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2626 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2627 fieldOffset, fieldSize); 2628 } 2629 return getBitmapBlockLayout(false); 2630 } 2631 2632 2633 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2634 QualType T) { 2635 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2636 assert(!T->isArrayType() && "__block array variable should not be caught"); 2637 CharUnits fieldOffset; 2638 RunSkipBlockVars.clear(); 2639 bool hasUnion = false; 2640 if (const RecordType *record = T->getAs<RecordType>()) { 2641 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2642 llvm::Constant *Result = getBitmapBlockLayout(true); 2643 return Result; 2644 } 2645 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2646 return nullPtr; 2647 } 2648 2649 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2650 const ObjCProtocolDecl *PD) { 2651 // FIXME: I don't understand why gcc generates this, or where it is 2652 // resolved. Investigate. Its also wasteful to look this up over and over. 2653 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2654 2655 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2656 ObjCTypes.getExternalProtocolPtrTy()); 2657 } 2658 2659 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2660 // FIXME: We shouldn't need this, the protocol decl should contain enough 2661 // information to tell us whether this was a declaration or a definition. 2662 DefinedProtocols.insert(PD->getIdentifier()); 2663 2664 // If we have generated a forward reference to this protocol, emit 2665 // it now. Otherwise do nothing, the protocol objects are lazily 2666 // emitted. 2667 if (Protocols.count(PD->getIdentifier())) 2668 GetOrEmitProtocol(PD); 2669 } 2670 2671 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2672 if (DefinedProtocols.count(PD->getIdentifier())) 2673 return GetOrEmitProtocol(PD); 2674 2675 return GetOrEmitProtocolRef(PD); 2676 } 2677 2678 /* 2679 // Objective-C 1.0 extensions 2680 struct _objc_protocol { 2681 struct _objc_protocol_extension *isa; 2682 char *protocol_name; 2683 struct _objc_protocol_list *protocol_list; 2684 struct _objc__method_prototype_list *instance_methods; 2685 struct _objc__method_prototype_list *class_methods 2686 }; 2687 2688 See EmitProtocolExtension(). 2689 */ 2690 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2691 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2692 2693 // Early exit if a defining object has already been generated. 2694 if (Entry && Entry->hasInitializer()) 2695 return Entry; 2696 2697 // Use the protocol definition, if there is one. 2698 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2699 PD = Def; 2700 2701 // FIXME: I don't understand why gcc generates this, or where it is 2702 // resolved. Investigate. Its also wasteful to look this up over and over. 2703 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2704 2705 // Construct method lists. 2706 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2707 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 2708 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 2709 for (const auto *MD : PD->instance_methods()) { 2710 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2711 if (!C) 2712 return GetOrEmitProtocolRef(PD); 2713 2714 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2715 OptInstanceMethods.push_back(C); 2716 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2717 } else { 2718 InstanceMethods.push_back(C); 2719 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2720 } 2721 } 2722 2723 for (const auto *MD : PD->class_methods()) { 2724 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2725 if (!C) 2726 return GetOrEmitProtocolRef(PD); 2727 2728 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2729 OptClassMethods.push_back(C); 2730 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2731 } else { 2732 ClassMethods.push_back(C); 2733 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2734 } 2735 } 2736 2737 MethodTypesExt.insert(MethodTypesExt.end(), 2738 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 2739 2740 llvm::Constant *Values[] = { 2741 EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods, 2742 MethodTypesExt), 2743 GetClassName(PD->getObjCRuntimeNameAsString()), 2744 EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2745 PD->protocol_begin(), PD->protocol_end()), 2746 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(), 2747 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2748 InstanceMethods), 2749 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(), 2750 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2751 ClassMethods)}; 2752 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 2753 Values); 2754 2755 if (Entry) { 2756 // Already created, update the initializer. 2757 assert(Entry->hasPrivateLinkage()); 2758 Entry->setInitializer(Init); 2759 } else { 2760 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2761 false, llvm::GlobalValue::PrivateLinkage, 2762 Init, "OBJC_PROTOCOL_" + PD->getName()); 2763 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2764 // FIXME: Is this necessary? Why only for protocol? 2765 Entry->setAlignment(4); 2766 2767 Protocols[PD->getIdentifier()] = Entry; 2768 } 2769 CGM.addCompilerUsedGlobal(Entry); 2770 2771 return Entry; 2772 } 2773 2774 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2775 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2776 2777 if (!Entry) { 2778 // We use the initializer as a marker of whether this is a forward 2779 // reference or not. At module finalization we add the empty 2780 // contents for protocols which were referenced but never defined. 2781 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2782 false, llvm::GlobalValue::PrivateLinkage, 2783 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2784 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2785 // FIXME: Is this necessary? Why only for protocol? 2786 Entry->setAlignment(4); 2787 } 2788 2789 return Entry; 2790 } 2791 2792 /* 2793 struct _objc_protocol_extension { 2794 uint32_t size; 2795 struct objc_method_description_list *optional_instance_methods; 2796 struct objc_method_description_list *optional_class_methods; 2797 struct objc_property_list *instance_properties; 2798 const char ** extendedMethodTypes; 2799 }; 2800 */ 2801 llvm::Constant * 2802 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 2803 ArrayRef<llvm::Constant*> OptInstanceMethods, 2804 ArrayRef<llvm::Constant*> OptClassMethods, 2805 ArrayRef<llvm::Constant*> MethodTypesExt) { 2806 uint64_t Size = 2807 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 2808 llvm::Constant *Values[] = { 2809 llvm::ConstantInt::get(ObjCTypes.IntTy, Size), 2810 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(), 2811 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2812 OptInstanceMethods), 2813 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(), 2814 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2815 OptClassMethods), 2816 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 2817 ObjCTypes), 2818 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 2819 MethodTypesExt, ObjCTypes)}; 2820 2821 // Return null if no extension bits are used. 2822 if (Values[1]->isNullValue() && Values[2]->isNullValue() && 2823 Values[3]->isNullValue() && Values[4]->isNullValue()) 2824 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 2825 2826 llvm::Constant *Init = 2827 llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); 2828 2829 // No special section, but goes in llvm.used 2830 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init, 2831 StringRef(), CGM.getPointerAlign(), true); 2832 } 2833 2834 /* 2835 struct objc_protocol_list { 2836 struct objc_protocol_list *next; 2837 long count; 2838 Protocol *list[]; 2839 }; 2840 */ 2841 llvm::Constant * 2842 CGObjCMac::EmitProtocolList(Twine Name, 2843 ObjCProtocolDecl::protocol_iterator begin, 2844 ObjCProtocolDecl::protocol_iterator end) { 2845 SmallVector<llvm::Constant *, 16> ProtocolRefs; 2846 2847 for (; begin != end; ++begin) 2848 ProtocolRefs.push_back(GetProtocolRef(*begin)); 2849 2850 // Just return null for empty protocol lists 2851 if (ProtocolRefs.empty()) 2852 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2853 2854 // This list is null terminated. 2855 ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); 2856 2857 llvm::Constant *Values[3]; 2858 // This field is only used by the runtime. 2859 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2860 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, 2861 ProtocolRefs.size() - 1); 2862 Values[2] = 2863 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, 2864 ProtocolRefs.size()), 2865 ProtocolRefs); 2866 2867 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2868 llvm::GlobalVariable *GV = 2869 CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2870 CGM.getPointerAlign(), false); 2871 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 2872 } 2873 2874 void CGObjCCommonMac:: 2875 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 2876 SmallVectorImpl<llvm::Constant *> &Properties, 2877 const Decl *Container, 2878 const ObjCProtocolDecl *Proto, 2879 const ObjCCommonTypesHelper &ObjCTypes) { 2880 for (const auto *P : Proto->protocols()) 2881 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes); 2882 for (const auto *PD : Proto->properties()) { 2883 if (!PropertySet.insert(PD->getIdentifier()).second) 2884 continue; 2885 llvm::Constant *Prop[] = { 2886 GetPropertyName(PD->getIdentifier()), 2887 GetPropertyTypeString(PD, Container) 2888 }; 2889 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2890 } 2891 } 2892 2893 /* 2894 struct _objc_property { 2895 const char * const name; 2896 const char * const attributes; 2897 }; 2898 2899 struct _objc_property_list { 2900 uint32_t entsize; // sizeof (struct _objc_property) 2901 uint32_t prop_count; 2902 struct _objc_property[prop_count]; 2903 }; 2904 */ 2905 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 2906 const Decl *Container, 2907 const ObjCContainerDecl *OCD, 2908 const ObjCCommonTypesHelper &ObjCTypes) { 2909 SmallVector<llvm::Constant *, 16> Properties; 2910 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 2911 for (const auto *PD : OCD->properties()) { 2912 PropertySet.insert(PD->getIdentifier()); 2913 llvm::Constant *Prop[] = { 2914 GetPropertyName(PD->getIdentifier()), 2915 GetPropertyTypeString(PD, Container) 2916 }; 2917 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, 2918 Prop)); 2919 } 2920 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 2921 for (const auto *P : OID->all_referenced_protocols()) 2922 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes); 2923 } 2924 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 2925 for (const auto *P : CD->protocols()) 2926 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes); 2927 } 2928 2929 // Return null for empty list. 2930 if (Properties.empty()) 2931 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2932 2933 unsigned PropertySize = 2934 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 2935 llvm::Constant *Values[3]; 2936 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); 2937 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); 2938 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, 2939 Properties.size()); 2940 Values[2] = llvm::ConstantArray::get(AT, Properties); 2941 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2942 2943 llvm::GlobalVariable *GV = 2944 CreateMetadataVar(Name, Init, 2945 (ObjCABI == 2) ? "__DATA, __objc_const" : 2946 "__OBJC,__property,regular,no_dead_strip", 2947 CGM.getPointerAlign(), 2948 true); 2949 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 2950 } 2951 2952 llvm::Constant * 2953 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 2954 ArrayRef<llvm::Constant*> MethodTypes, 2955 const ObjCCommonTypesHelper &ObjCTypes) { 2956 // Return null for empty list. 2957 if (MethodTypes.empty()) 2958 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 2959 2960 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 2961 MethodTypes.size()); 2962 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 2963 2964 llvm::GlobalVariable *GV = CreateMetadataVar( 2965 Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(), 2966 CGM.getPointerAlign(), true); 2967 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 2968 } 2969 2970 /* 2971 struct objc_method_description_list { 2972 int count; 2973 struct objc_method_description list[]; 2974 }; 2975 */ 2976 llvm::Constant * 2977 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 2978 llvm::Constant *Desc[] = { 2979 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 2980 ObjCTypes.SelectorPtrTy), 2981 GetMethodVarType(MD) 2982 }; 2983 if (!Desc[1]) 2984 return nullptr; 2985 2986 return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, 2987 Desc); 2988 } 2989 2990 llvm::Constant * 2991 CGObjCMac::EmitMethodDescList(Twine Name, const char *Section, 2992 ArrayRef<llvm::Constant*> Methods) { 2993 // Return null for empty list. 2994 if (Methods.empty()) 2995 return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 2996 2997 llvm::Constant *Values[2]; 2998 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 2999 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, 3000 Methods.size()); 3001 Values[1] = llvm::ConstantArray::get(AT, Methods); 3002 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3003 3004 llvm::GlobalVariable *GV = 3005 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3006 return llvm::ConstantExpr::getBitCast(GV, 3007 ObjCTypes.MethodDescriptionListPtrTy); 3008 } 3009 3010 /* 3011 struct _objc_category { 3012 char *category_name; 3013 char *class_name; 3014 struct _objc_method_list *instance_methods; 3015 struct _objc_method_list *class_methods; 3016 struct _objc_protocol_list *protocols; 3017 uint32_t size; // <rdar://4585769> 3018 struct _objc_property_list *instance_properties; 3019 }; 3020 */ 3021 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3022 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3023 3024 // FIXME: This is poor design, the OCD should have a pointer to the category 3025 // decl. Additionally, note that Category can be null for the @implementation 3026 // w/o an @interface case. Sema should just create one for us as it does for 3027 // @implementation so everyone else can live life under a clear blue sky. 3028 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3029 const ObjCCategoryDecl *Category = 3030 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3031 3032 SmallString<256> ExtName; 3033 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3034 << OCD->getName(); 3035 3036 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3037 for (const auto *I : OCD->instance_methods()) 3038 // Instance methods should always be defined. 3039 InstanceMethods.push_back(GetMethodConstant(I)); 3040 3041 for (const auto *I : OCD->class_methods()) 3042 // Class methods should always be defined. 3043 ClassMethods.push_back(GetMethodConstant(I)); 3044 3045 llvm::Constant *Values[7]; 3046 Values[0] = GetClassName(OCD->getName()); 3047 Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString()); 3048 LazySymbols.insert(Interface->getIdentifier()); 3049 Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(), 3050 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 3051 InstanceMethods); 3052 Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(), 3053 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 3054 ClassMethods); 3055 if (Category) { 3056 Values[4] = 3057 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3058 Category->protocol_begin(), Category->protocol_end()); 3059 } else { 3060 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3061 } 3062 Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3063 3064 // If there is no category @interface then there can be no properties. 3065 if (Category) { 3066 Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3067 OCD, Category, ObjCTypes); 3068 } else { 3069 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3070 } 3071 3072 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, 3073 Values); 3074 3075 llvm::GlobalVariable *GV = 3076 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init, 3077 "__OBJC,__category,regular,no_dead_strip", 3078 CGM.getPointerAlign(), true); 3079 DefinedCategories.push_back(GV); 3080 DefinedCategoryNames.insert(ExtName.str()); 3081 // method definition entries must be clear for next implementation. 3082 MethodDefinitions.clear(); 3083 } 3084 3085 enum FragileClassFlags { 3086 /// Apparently: is not a meta-class. 3087 FragileABI_Class_Factory = 0x00001, 3088 3089 /// Is a meta-class. 3090 FragileABI_Class_Meta = 0x00002, 3091 3092 /// Has a non-trivial constructor or destructor. 3093 FragileABI_Class_HasCXXStructors = 0x02000, 3094 3095 /// Has hidden visibility. 3096 FragileABI_Class_Hidden = 0x20000, 3097 3098 /// Class implementation was compiled under ARC. 3099 FragileABI_Class_CompiledByARC = 0x04000000, 3100 3101 /// Class implementation was compiled under MRC and has MRC weak ivars. 3102 /// Exclusive with CompiledByARC. 3103 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3104 }; 3105 3106 enum NonFragileClassFlags { 3107 /// Is a meta-class. 3108 NonFragileABI_Class_Meta = 0x00001, 3109 3110 /// Is a root class. 3111 NonFragileABI_Class_Root = 0x00002, 3112 3113 /// Has a non-trivial constructor or destructor. 3114 NonFragileABI_Class_HasCXXStructors = 0x00004, 3115 3116 /// Has hidden visibility. 3117 NonFragileABI_Class_Hidden = 0x00010, 3118 3119 /// Has the exception attribute. 3120 NonFragileABI_Class_Exception = 0x00020, 3121 3122 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3123 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3124 3125 /// Class implementation was compiled under ARC. 3126 NonFragileABI_Class_CompiledByARC = 0x00080, 3127 3128 /// Class has non-trivial destructors, but zero-initialization is okay. 3129 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3130 3131 /// Class implementation was compiled under MRC and has MRC weak ivars. 3132 /// Exclusive with CompiledByARC. 3133 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3134 }; 3135 3136 static bool hasWeakMember(QualType type) { 3137 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3138 return true; 3139 } 3140 3141 if (auto recType = type->getAs<RecordType>()) { 3142 for (auto field : recType->getDecl()->fields()) { 3143 if (hasWeakMember(field->getType())) 3144 return true; 3145 } 3146 } 3147 3148 return false; 3149 } 3150 3151 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3152 /// (and actually fill in a layout string) if we really do have any 3153 /// __weak ivars. 3154 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3155 const ObjCImplementationDecl *ID) { 3156 if (!CGM.getLangOpts().ObjCWeak) return false; 3157 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3158 3159 for (const ObjCIvarDecl *ivar = 3160 ID->getClassInterface()->all_declared_ivar_begin(); 3161 ivar; ivar = ivar->getNextIvar()) { 3162 if (hasWeakMember(ivar->getType())) 3163 return true; 3164 } 3165 3166 return false; 3167 } 3168 3169 /* 3170 struct _objc_class { 3171 Class isa; 3172 Class super_class; 3173 const char *name; 3174 long version; 3175 long info; 3176 long instance_size; 3177 struct _objc_ivar_list *ivars; 3178 struct _objc_method_list *methods; 3179 struct _objc_cache *cache; 3180 struct _objc_protocol_list *protocols; 3181 // Objective-C 1.0 extensions (<rdr://4585769>) 3182 const char *ivar_layout; 3183 struct _objc_class_ext *ext; 3184 }; 3185 3186 See EmitClassExtension(); 3187 */ 3188 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3189 DefinedSymbols.insert(ID->getIdentifier()); 3190 3191 std::string ClassName = ID->getNameAsString(); 3192 // FIXME: Gross 3193 ObjCInterfaceDecl *Interface = 3194 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3195 llvm::Constant *Protocols = 3196 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3197 Interface->all_referenced_protocol_begin(), 3198 Interface->all_referenced_protocol_end()); 3199 unsigned Flags = FragileABI_Class_Factory; 3200 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3201 Flags |= FragileABI_Class_HasCXXStructors; 3202 3203 bool hasMRCWeak = false; 3204 3205 if (CGM.getLangOpts().ObjCAutoRefCount) 3206 Flags |= FragileABI_Class_CompiledByARC; 3207 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3208 Flags |= FragileABI_Class_HasMRCWeakIvars; 3209 3210 CharUnits Size = 3211 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3212 3213 // FIXME: Set CXX-structors flag. 3214 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3215 Flags |= FragileABI_Class_Hidden; 3216 3217 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3218 for (const auto *I : ID->instance_methods()) 3219 // Instance methods should always be defined. 3220 InstanceMethods.push_back(GetMethodConstant(I)); 3221 3222 for (const auto *I : ID->class_methods()) 3223 // Class methods should always be defined. 3224 ClassMethods.push_back(GetMethodConstant(I)); 3225 3226 for (const auto *PID : ID->property_impls()) { 3227 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3228 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3229 3230 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3231 if (llvm::Constant *C = GetMethodConstant(MD)) 3232 InstanceMethods.push_back(C); 3233 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3234 if (llvm::Constant *C = GetMethodConstant(MD)) 3235 InstanceMethods.push_back(C); 3236 } 3237 } 3238 3239 llvm::Constant *Values[12]; 3240 Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods); 3241 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3242 // Record a reference to the super class. 3243 LazySymbols.insert(Super->getIdentifier()); 3244 3245 Values[ 1] = 3246 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3247 ObjCTypes.ClassPtrTy); 3248 } else { 3249 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3250 } 3251 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3252 // Version is always 0. 3253 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3254 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3255 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity()); 3256 Values[ 6] = EmitIvarList(ID, false); 3257 Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(), 3258 "__OBJC,__inst_meth,regular,no_dead_strip", 3259 InstanceMethods); 3260 // cache is always NULL. 3261 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3262 Values[ 9] = Protocols; 3263 Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size); 3264 Values[11] = EmitClassExtension(ID, Size, hasMRCWeak); 3265 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3266 Values); 3267 std::string Name("OBJC_CLASS_"); 3268 Name += ClassName; 3269 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3270 // Check for a forward reference. 3271 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3272 if (GV) { 3273 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3274 "Forward metaclass reference has incorrect type."); 3275 GV->setInitializer(Init); 3276 GV->setSection(Section); 3277 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3278 CGM.addCompilerUsedGlobal(GV); 3279 } else 3280 GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3281 DefinedClasses.push_back(GV); 3282 ImplementedClasses.push_back(Interface); 3283 // method definition entries must be clear for next implementation. 3284 MethodDefinitions.clear(); 3285 } 3286 3287 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3288 llvm::Constant *Protocols, 3289 ArrayRef<llvm::Constant*> Methods) { 3290 unsigned Flags = FragileABI_Class_Meta; 3291 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3292 3293 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3294 Flags |= FragileABI_Class_Hidden; 3295 3296 llvm::Constant *Values[12]; 3297 // The isa for the metaclass is the root of the hierarchy. 3298 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3299 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3300 Root = Super; 3301 Values[ 0] = 3302 llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3303 ObjCTypes.ClassPtrTy); 3304 // The super class for the metaclass is emitted as the name of the 3305 // super class. The runtime fixes this up to point to the 3306 // *metaclass* for the super class. 3307 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3308 Values[ 1] = 3309 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3310 ObjCTypes.ClassPtrTy); 3311 } else { 3312 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3313 } 3314 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3315 // Version is always 0. 3316 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3317 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3318 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3319 Values[ 6] = EmitIvarList(ID, true); 3320 Values[7] = 3321 EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(), 3322 "__OBJC,__cls_meth,regular,no_dead_strip", Methods); 3323 // cache is always NULL. 3324 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3325 Values[ 9] = Protocols; 3326 // ivar_layout for metaclass is always NULL. 3327 Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3328 // The class extension is always unused for metaclasses. 3329 Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3330 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3331 Values); 3332 3333 std::string Name("OBJC_METACLASS_"); 3334 Name += ID->getName(); 3335 3336 // Check for a forward reference. 3337 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3338 if (GV) { 3339 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3340 "Forward metaclass reference has incorrect type."); 3341 GV->setInitializer(Init); 3342 } else { 3343 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3344 llvm::GlobalValue::PrivateLinkage, 3345 Init, Name); 3346 } 3347 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3348 GV->setAlignment(4); 3349 CGM.addCompilerUsedGlobal(GV); 3350 3351 return GV; 3352 } 3353 3354 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3355 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3356 3357 // FIXME: Should we look these up somewhere other than the module. Its a bit 3358 // silly since we only generate these while processing an implementation, so 3359 // exactly one pointer would work if know when we entered/exitted an 3360 // implementation block. 3361 3362 // Check for an existing forward reference. 3363 // Previously, metaclass with internal linkage may have been defined. 3364 // pass 'true' as 2nd argument so it is returned. 3365 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3366 if (!GV) 3367 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3368 llvm::GlobalValue::PrivateLinkage, nullptr, 3369 Name); 3370 3371 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3372 "Forward metaclass reference has incorrect type."); 3373 return GV; 3374 } 3375 3376 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3377 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3378 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3379 3380 if (!GV) 3381 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3382 llvm::GlobalValue::PrivateLinkage, nullptr, 3383 Name); 3384 3385 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3386 "Forward class metadata reference has incorrect type."); 3387 return GV; 3388 } 3389 3390 /* 3391 Emit a "class extension", which in this specific context means extra 3392 data that doesn't fit in the normal fragile-ABI class structure, and 3393 has nothing to do with the language concept of a class extension. 3394 3395 struct objc_class_ext { 3396 uint32_t size; 3397 const char *weak_ivar_layout; 3398 struct _objc_property_list *properties; 3399 }; 3400 */ 3401 llvm::Constant * 3402 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3403 CharUnits InstanceSize, bool hasMRCWeakIvars) { 3404 uint64_t Size = 3405 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3406 3407 llvm::Constant *Values[3]; 3408 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3409 Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3410 hasMRCWeakIvars); 3411 Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 3412 ID, ID->getClassInterface(), ObjCTypes); 3413 3414 // Return null if no extension bits are used. 3415 if (Values[1]->isNullValue() && Values[2]->isNullValue()) 3416 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3417 3418 llvm::Constant *Init = 3419 llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); 3420 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init, 3421 "__OBJC,__class_ext,regular,no_dead_strip", 3422 CGM.getPointerAlign(), true); 3423 } 3424 3425 /* 3426 struct objc_ivar { 3427 char *ivar_name; 3428 char *ivar_type; 3429 int ivar_offset; 3430 }; 3431 3432 struct objc_ivar_list { 3433 int ivar_count; 3434 struct objc_ivar list[count]; 3435 }; 3436 */ 3437 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3438 bool ForClass) { 3439 std::vector<llvm::Constant*> Ivars; 3440 3441 // When emitting the root class GCC emits ivar entries for the 3442 // actual class structure. It is not clear if we need to follow this 3443 // behavior; for now lets try and get away with not doing it. If so, 3444 // the cleanest solution would be to make up an ObjCInterfaceDecl 3445 // for the class. 3446 if (ForClass) 3447 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3448 3449 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3450 3451 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3452 IVD; IVD = IVD->getNextIvar()) { 3453 // Ignore unnamed bit-fields. 3454 if (!IVD->getDeclName()) 3455 continue; 3456 llvm::Constant *Ivar[] = { 3457 GetMethodVarName(IVD->getIdentifier()), 3458 GetMethodVarType(IVD), 3459 llvm::ConstantInt::get(ObjCTypes.IntTy, 3460 ComputeIvarBaseOffset(CGM, OID, IVD)) 3461 }; 3462 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); 3463 } 3464 3465 // Return null for empty list. 3466 if (Ivars.empty()) 3467 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3468 3469 llvm::Constant *Values[2]; 3470 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 3471 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, 3472 Ivars.size()); 3473 Values[1] = llvm::ConstantArray::get(AT, Ivars); 3474 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3475 3476 llvm::GlobalVariable *GV; 3477 if (ForClass) 3478 GV = 3479 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init, 3480 "__OBJC,__class_vars,regular,no_dead_strip", 3481 CGM.getPointerAlign(), true); 3482 else 3483 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init, 3484 "__OBJC,__instance_vars,regular,no_dead_strip", 3485 CGM.getPointerAlign(), true); 3486 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3487 } 3488 3489 /* 3490 struct objc_method { 3491 SEL method_name; 3492 char *method_types; 3493 void *method; 3494 }; 3495 3496 struct objc_method_list { 3497 struct objc_method_list *obsolete; 3498 int count; 3499 struct objc_method methods_list[count]; 3500 }; 3501 */ 3502 3503 /// GetMethodConstant - Return a struct objc_method constant for the 3504 /// given method if it has been defined. The result is null if the 3505 /// method has not been defined. The return value has type MethodPtrTy. 3506 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { 3507 llvm::Function *Fn = GetMethodDefinition(MD); 3508 if (!Fn) 3509 return nullptr; 3510 3511 llvm::Constant *Method[] = { 3512 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3513 ObjCTypes.SelectorPtrTy), 3514 GetMethodVarType(MD), 3515 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 3516 }; 3517 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 3518 } 3519 3520 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, 3521 const char *Section, 3522 ArrayRef<llvm::Constant*> Methods) { 3523 // Return null for empty list. 3524 if (Methods.empty()) 3525 return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); 3526 3527 llvm::Constant *Values[3]; 3528 Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3529 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3530 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 3531 Methods.size()); 3532 Values[2] = llvm::ConstantArray::get(AT, Methods); 3533 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3534 3535 llvm::GlobalVariable *GV = 3536 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3537 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3538 } 3539 3540 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3541 const ObjCContainerDecl *CD) { 3542 SmallString<256> Name; 3543 GetNameForMethod(OMD, CD, Name); 3544 3545 CodeGenTypes &Types = CGM.getTypes(); 3546 llvm::FunctionType *MethodTy = 3547 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3548 llvm::Function *Method = 3549 llvm::Function::Create(MethodTy, 3550 llvm::GlobalValue::InternalLinkage, 3551 Name.str(), 3552 &CGM.getModule()); 3553 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3554 3555 return Method; 3556 } 3557 3558 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3559 llvm::Constant *Init, 3560 StringRef Section, 3561 CharUnits Align, 3562 bool AddToUsed) { 3563 llvm::Type *Ty = Init->getType(); 3564 llvm::GlobalVariable *GV = 3565 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3566 llvm::GlobalValue::PrivateLinkage, Init, Name); 3567 if (!Section.empty()) 3568 GV->setSection(Section); 3569 GV->setAlignment(Align.getQuantity()); 3570 if (AddToUsed) 3571 CGM.addCompilerUsedGlobal(GV); 3572 return GV; 3573 } 3574 3575 llvm::Function *CGObjCMac::ModuleInitFunction() { 3576 // Abuse this interface function as a place to finalize. 3577 FinishModule(); 3578 return nullptr; 3579 } 3580 3581 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3582 return ObjCTypes.getGetPropertyFn(); 3583 } 3584 3585 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3586 return ObjCTypes.getSetPropertyFn(); 3587 } 3588 3589 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3590 bool copy) { 3591 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3592 } 3593 3594 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3595 return ObjCTypes.getCopyStructFn(); 3596 } 3597 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3598 return ObjCTypes.getCopyStructFn(); 3599 } 3600 3601 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3602 return ObjCTypes.getCppAtomicObjectFunction(); 3603 } 3604 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3605 return ObjCTypes.getCppAtomicObjectFunction(); 3606 } 3607 3608 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3609 return ObjCTypes.getEnumerationMutationFn(); 3610 } 3611 3612 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3613 return EmitTryOrSynchronizedStmt(CGF, S); 3614 } 3615 3616 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3617 const ObjCAtSynchronizedStmt &S) { 3618 return EmitTryOrSynchronizedStmt(CGF, S); 3619 } 3620 3621 namespace { 3622 struct PerformFragileFinally final : EHScopeStack::Cleanup { 3623 const Stmt &S; 3624 Address SyncArgSlot; 3625 Address CallTryExitVar; 3626 Address ExceptionData; 3627 ObjCTypesHelper &ObjCTypes; 3628 PerformFragileFinally(const Stmt *S, 3629 Address SyncArgSlot, 3630 Address CallTryExitVar, 3631 Address ExceptionData, 3632 ObjCTypesHelper *ObjCTypes) 3633 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 3634 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 3635 3636 void Emit(CodeGenFunction &CGF, Flags flags) override { 3637 // Check whether we need to call objc_exception_try_exit. 3638 // In optimized code, this branch will always be folded. 3639 llvm::BasicBlock *FinallyCallExit = 3640 CGF.createBasicBlock("finally.call_exit"); 3641 llvm::BasicBlock *FinallyNoCallExit = 3642 CGF.createBasicBlock("finally.no_call_exit"); 3643 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 3644 FinallyCallExit, FinallyNoCallExit); 3645 3646 CGF.EmitBlock(FinallyCallExit); 3647 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 3648 ExceptionData.getPointer()); 3649 3650 CGF.EmitBlock(FinallyNoCallExit); 3651 3652 if (isa<ObjCAtTryStmt>(S)) { 3653 if (const ObjCAtFinallyStmt* FinallyStmt = 3654 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 3655 // Don't try to do the @finally if this is an EH cleanup. 3656 if (flags.isForEHCleanup()) return; 3657 3658 // Save the current cleanup destination in case there's 3659 // control flow inside the finally statement. 3660 llvm::Value *CurCleanupDest = 3661 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 3662 3663 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 3664 3665 if (CGF.HaveInsertPoint()) { 3666 CGF.Builder.CreateStore(CurCleanupDest, 3667 CGF.getNormalCleanupDestSlot()); 3668 } else { 3669 // Currently, the end of the cleanup must always exist. 3670 CGF.EnsureInsertPoint(); 3671 } 3672 } 3673 } else { 3674 // Emit objc_sync_exit(expr); as finally's sole statement for 3675 // @synchronized. 3676 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 3677 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 3678 } 3679 } 3680 }; 3681 3682 class FragileHazards { 3683 CodeGenFunction &CGF; 3684 SmallVector<llvm::Value*, 20> Locals; 3685 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 3686 3687 llvm::InlineAsm *ReadHazard; 3688 llvm::InlineAsm *WriteHazard; 3689 3690 llvm::FunctionType *GetAsmFnType(); 3691 3692 void collectLocals(); 3693 void emitReadHazard(CGBuilderTy &Builder); 3694 3695 public: 3696 FragileHazards(CodeGenFunction &CGF); 3697 3698 void emitWriteHazard(); 3699 void emitHazardsInNewBlocks(); 3700 }; 3701 } 3702 3703 /// Create the fragile-ABI read and write hazards based on the current 3704 /// state of the function, which is presumed to be immediately prior 3705 /// to a @try block. These hazards are used to maintain correct 3706 /// semantics in the face of optimization and the fragile ABI's 3707 /// cavalier use of setjmp/longjmp. 3708 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 3709 collectLocals(); 3710 3711 if (Locals.empty()) return; 3712 3713 // Collect all the blocks in the function. 3714 for (llvm::Function::iterator 3715 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 3716 BlocksBeforeTry.insert(&*I); 3717 3718 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 3719 3720 // Create a read hazard for the allocas. This inhibits dead-store 3721 // optimizations and forces the values to memory. This hazard is 3722 // inserted before any 'throwing' calls in the protected scope to 3723 // reflect the possibility that the variables might be read from the 3724 // catch block if the call throws. 3725 { 3726 std::string Constraint; 3727 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3728 if (I) Constraint += ','; 3729 Constraint += "*m"; 3730 } 3731 3732 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3733 } 3734 3735 // Create a write hazard for the allocas. This inhibits folding 3736 // loads across the hazard. This hazard is inserted at the 3737 // beginning of the catch path to reflect the possibility that the 3738 // variables might have been written within the protected scope. 3739 { 3740 std::string Constraint; 3741 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3742 if (I) Constraint += ','; 3743 Constraint += "=*m"; 3744 } 3745 3746 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3747 } 3748 } 3749 3750 /// Emit a write hazard at the current location. 3751 void FragileHazards::emitWriteHazard() { 3752 if (Locals.empty()) return; 3753 3754 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 3755 } 3756 3757 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 3758 assert(!Locals.empty()); 3759 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 3760 call->setDoesNotThrow(); 3761 call->setCallingConv(CGF.getRuntimeCC()); 3762 } 3763 3764 /// Emit read hazards in all the protected blocks, i.e. all the blocks 3765 /// which have been inserted since the beginning of the try. 3766 void FragileHazards::emitHazardsInNewBlocks() { 3767 if (Locals.empty()) return; 3768 3769 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 3770 3771 // Iterate through all blocks, skipping those prior to the try. 3772 for (llvm::Function::iterator 3773 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 3774 llvm::BasicBlock &BB = *FI; 3775 if (BlocksBeforeTry.count(&BB)) continue; 3776 3777 // Walk through all the calls in the block. 3778 for (llvm::BasicBlock::iterator 3779 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 3780 llvm::Instruction &I = *BI; 3781 3782 // Ignore instructions that aren't non-intrinsic calls. 3783 // These are the only calls that can possibly call longjmp. 3784 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 3785 if (isa<llvm::IntrinsicInst>(I)) 3786 continue; 3787 3788 // Ignore call sites marked nounwind. This may be questionable, 3789 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 3790 llvm::CallSite CS(&I); 3791 if (CS.doesNotThrow()) continue; 3792 3793 // Insert a read hazard before the call. This will ensure that 3794 // any writes to the locals are performed before making the 3795 // call. If the call throws, then this is sufficient to 3796 // guarantee correctness as long as it doesn't also write to any 3797 // locals. 3798 Builder.SetInsertPoint(&BB, BI); 3799 emitReadHazard(Builder); 3800 } 3801 } 3802 } 3803 3804 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 3805 if (V) S.insert(V); 3806 } 3807 3808 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 3809 if (V.isValid()) S.insert(V.getPointer()); 3810 } 3811 3812 void FragileHazards::collectLocals() { 3813 // Compute a set of allocas to ignore. 3814 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 3815 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 3816 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 3817 3818 // Collect all the allocas currently in the function. This is 3819 // probably way too aggressive. 3820 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 3821 for (llvm::BasicBlock::iterator 3822 I = Entry.begin(), E = Entry.end(); I != E; ++I) 3823 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 3824 Locals.push_back(&*I); 3825 } 3826 3827 llvm::FunctionType *FragileHazards::GetAsmFnType() { 3828 SmallVector<llvm::Type *, 16> tys(Locals.size()); 3829 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 3830 tys[i] = Locals[i]->getType(); 3831 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 3832 } 3833 3834 /* 3835 3836 Objective-C setjmp-longjmp (sjlj) Exception Handling 3837 -- 3838 3839 A catch buffer is a setjmp buffer plus: 3840 - a pointer to the exception that was caught 3841 - a pointer to the previous exception data buffer 3842 - two pointers of reserved storage 3843 Therefore catch buffers form a stack, with a pointer to the top 3844 of the stack kept in thread-local storage. 3845 3846 objc_exception_try_enter pushes a catch buffer onto the EH stack. 3847 objc_exception_try_exit pops the given catch buffer, which is 3848 required to be the top of the EH stack. 3849 objc_exception_throw pops the top of the EH stack, writes the 3850 thrown exception into the appropriate field, and longjmps 3851 to the setjmp buffer. It crashes the process (with a printf 3852 and an abort()) if there are no catch buffers on the stack. 3853 objc_exception_extract just reads the exception pointer out of the 3854 catch buffer. 3855 3856 There's no reason an implementation couldn't use a light-weight 3857 setjmp here --- something like __builtin_setjmp, but API-compatible 3858 with the heavyweight setjmp. This will be more important if we ever 3859 want to implement correct ObjC/C++ exception interactions for the 3860 fragile ABI. 3861 3862 Note that for this use of setjmp/longjmp to be correct, we may need 3863 to mark some local variables volatile: if a non-volatile local 3864 variable is modified between the setjmp and the longjmp, it has 3865 indeterminate value. For the purposes of LLVM IR, it may be 3866 sufficient to make loads and stores within the @try (to variables 3867 declared outside the @try) volatile. This is necessary for 3868 optimized correctness, but is not currently being done; this is 3869 being tracked as rdar://problem/8160285 3870 3871 The basic framework for a @try-catch-finally is as follows: 3872 { 3873 objc_exception_data d; 3874 id _rethrow = null; 3875 bool _call_try_exit = true; 3876 3877 objc_exception_try_enter(&d); 3878 if (!setjmp(d.jmp_buf)) { 3879 ... try body ... 3880 } else { 3881 // exception path 3882 id _caught = objc_exception_extract(&d); 3883 3884 // enter new try scope for handlers 3885 if (!setjmp(d.jmp_buf)) { 3886 ... match exception and execute catch blocks ... 3887 3888 // fell off end, rethrow. 3889 _rethrow = _caught; 3890 ... jump-through-finally to finally_rethrow ... 3891 } else { 3892 // exception in catch block 3893 _rethrow = objc_exception_extract(&d); 3894 _call_try_exit = false; 3895 ... jump-through-finally to finally_rethrow ... 3896 } 3897 } 3898 ... jump-through-finally to finally_end ... 3899 3900 finally: 3901 if (_call_try_exit) 3902 objc_exception_try_exit(&d); 3903 3904 ... finally block .... 3905 ... dispatch to finally destination ... 3906 3907 finally_rethrow: 3908 objc_exception_throw(_rethrow); 3909 3910 finally_end: 3911 } 3912 3913 This framework differs slightly from the one gcc uses, in that gcc 3914 uses _rethrow to determine if objc_exception_try_exit should be called 3915 and if the object should be rethrown. This breaks in the face of 3916 throwing nil and introduces unnecessary branches. 3917 3918 We specialize this framework for a few particular circumstances: 3919 3920 - If there are no catch blocks, then we avoid emitting the second 3921 exception handling context. 3922 3923 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 3924 e)) we avoid emitting the code to rethrow an uncaught exception. 3925 3926 - FIXME: If there is no @finally block we can do a few more 3927 simplifications. 3928 3929 Rethrows and Jumps-Through-Finally 3930 -- 3931 3932 '@throw;' is supported by pushing the currently-caught exception 3933 onto ObjCEHStack while the @catch blocks are emitted. 3934 3935 Branches through the @finally block are handled with an ordinary 3936 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 3937 exceptions are not compatible with C++ exceptions, and this is 3938 hardly the only place where this will go wrong. 3939 3940 @synchronized(expr) { stmt; } is emitted as if it were: 3941 id synch_value = expr; 3942 objc_sync_enter(synch_value); 3943 @try { stmt; } @finally { objc_sync_exit(synch_value); } 3944 */ 3945 3946 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 3947 const Stmt &S) { 3948 bool isTry = isa<ObjCAtTryStmt>(S); 3949 3950 // A destination for the fall-through edges of the catch handlers to 3951 // jump to. 3952 CodeGenFunction::JumpDest FinallyEnd = 3953 CGF.getJumpDestInCurrentScope("finally.end"); 3954 3955 // A destination for the rethrow edge of the catch handlers to jump 3956 // to. 3957 CodeGenFunction::JumpDest FinallyRethrow = 3958 CGF.getJumpDestInCurrentScope("finally.rethrow"); 3959 3960 // For @synchronized, call objc_sync_enter(sync.expr). The 3961 // evaluation of the expression must occur before we enter the 3962 // @synchronized. We can't avoid a temp here because we need the 3963 // value to be preserved. If the backend ever does liveness 3964 // correctly after setjmp, this will be unnecessary. 3965 Address SyncArgSlot = Address::invalid(); 3966 if (!isTry) { 3967 llvm::Value *SyncArg = 3968 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 3969 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 3970 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 3971 3972 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 3973 CGF.getPointerAlign(), "sync.arg"); 3974 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 3975 } 3976 3977 // Allocate memory for the setjmp buffer. This needs to be kept 3978 // live throughout the try and catch blocks. 3979 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 3980 CGF.getPointerAlign(), 3981 "exceptiondata.ptr"); 3982 3983 // Create the fragile hazards. Note that this will not capture any 3984 // of the allocas required for exception processing, but will 3985 // capture the current basic block (which extends all the way to the 3986 // setjmp call) as "before the @try". 3987 FragileHazards Hazards(CGF); 3988 3989 // Create a flag indicating whether the cleanup needs to call 3990 // objc_exception_try_exit. This is true except when 3991 // - no catches match and we're branching through the cleanup 3992 // just to rethrow the exception, or 3993 // - a catch matched and we're falling out of the catch handler. 3994 // The setjmp-safety rule here is that we should always store to this 3995 // variable in a place that dominates the branch through the cleanup 3996 // without passing through any setjmps. 3997 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 3998 CharUnits::One(), 3999 "_call_try_exit"); 4000 4001 // A slot containing the exception to rethrow. Only needed when we 4002 // have both a @catch and a @finally. 4003 Address PropagatingExnVar = Address::invalid(); 4004 4005 // Push a normal cleanup to leave the try scope. 4006 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4007 SyncArgSlot, 4008 CallTryExitVar, 4009 ExceptionData, 4010 &ObjCTypes); 4011 4012 // Enter a try block: 4013 // - Call objc_exception_try_enter to push ExceptionData on top of 4014 // the EH stack. 4015 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4016 ExceptionData.getPointer()); 4017 4018 // - Call setjmp on the exception data buffer. 4019 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4020 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4021 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4022 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4023 "setjmp_buffer"); 4024 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4025 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4026 SetJmpResult->setCanReturnTwice(); 4027 4028 // If setjmp returned 0, enter the protected block; otherwise, 4029 // branch to the handler. 4030 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4031 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4032 llvm::Value *DidCatch = 4033 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4034 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4035 4036 // Emit the protected block. 4037 CGF.EmitBlock(TryBlock); 4038 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4039 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4040 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4041 4042 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4043 4044 // Emit the exception handler block. 4045 CGF.EmitBlock(TryHandler); 4046 4047 // Don't optimize loads of the in-scope locals across this point. 4048 Hazards.emitWriteHazard(); 4049 4050 // For a @synchronized (or a @try with no catches), just branch 4051 // through the cleanup to the rethrow block. 4052 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4053 // Tell the cleanup not to re-pop the exit. 4054 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4055 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4056 4057 // Otherwise, we have to match against the caught exceptions. 4058 } else { 4059 // Retrieve the exception object. We may emit multiple blocks but 4060 // nothing can cross this so the value is already in SSA form. 4061 llvm::CallInst *Caught = 4062 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4063 ExceptionData.getPointer(), "caught"); 4064 4065 // Push the exception to rethrow onto the EH value stack for the 4066 // benefit of any @throws in the handlers. 4067 CGF.ObjCEHValueStack.push_back(Caught); 4068 4069 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4070 4071 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4072 4073 llvm::BasicBlock *CatchBlock = nullptr; 4074 llvm::BasicBlock *CatchHandler = nullptr; 4075 if (HasFinally) { 4076 // Save the currently-propagating exception before 4077 // objc_exception_try_enter clears the exception slot. 4078 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4079 CGF.getPointerAlign(), 4080 "propagating_exception"); 4081 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4082 4083 // Enter a new exception try block (in case a @catch block 4084 // throws an exception). 4085 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4086 ExceptionData.getPointer()); 4087 4088 llvm::CallInst *SetJmpResult = 4089 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4090 SetJmpBuffer, "setjmp.result"); 4091 SetJmpResult->setCanReturnTwice(); 4092 4093 llvm::Value *Threw = 4094 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4095 4096 CatchBlock = CGF.createBasicBlock("catch"); 4097 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4098 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4099 4100 CGF.EmitBlock(CatchBlock); 4101 } 4102 4103 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4104 4105 // Handle catch list. As a special case we check if everything is 4106 // matched and avoid generating code for falling off the end if 4107 // so. 4108 bool AllMatched = false; 4109 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4110 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4111 4112 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4113 const ObjCObjectPointerType *OPT = nullptr; 4114 4115 // catch(...) always matches. 4116 if (!CatchParam) { 4117 AllMatched = true; 4118 } else { 4119 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4120 4121 // catch(id e) always matches under this ABI, since only 4122 // ObjC exceptions end up here in the first place. 4123 // FIXME: For the time being we also match id<X>; this should 4124 // be rejected by Sema instead. 4125 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4126 AllMatched = true; 4127 } 4128 4129 // If this is a catch-all, we don't need to test anything. 4130 if (AllMatched) { 4131 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4132 4133 if (CatchParam) { 4134 CGF.EmitAutoVarDecl(*CatchParam); 4135 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4136 4137 // These types work out because ConvertType(id) == i8*. 4138 CGF.Builder.CreateStore(Caught, CGF.GetAddrOfLocalVar(CatchParam)); 4139 } 4140 4141 CGF.EmitStmt(CatchStmt->getCatchBody()); 4142 4143 // The scope of the catch variable ends right here. 4144 CatchVarCleanups.ForceCleanup(); 4145 4146 CGF.EmitBranchThroughCleanup(FinallyEnd); 4147 break; 4148 } 4149 4150 assert(OPT && "Unexpected non-object pointer type in @catch"); 4151 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4152 4153 // FIXME: @catch (Class c) ? 4154 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4155 assert(IDecl && "Catch parameter must have Objective-C type!"); 4156 4157 // Check if the @catch block matches the exception object. 4158 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4159 4160 llvm::Value *matchArgs[] = { Class, Caught }; 4161 llvm::CallInst *Match = 4162 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4163 matchArgs, "match"); 4164 4165 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4166 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4167 4168 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4169 MatchedBlock, NextCatchBlock); 4170 4171 // Emit the @catch block. 4172 CGF.EmitBlock(MatchedBlock); 4173 4174 // Collect any cleanups for the catch variable. The scope lasts until 4175 // the end of the catch body. 4176 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4177 4178 CGF.EmitAutoVarDecl(*CatchParam); 4179 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4180 4181 // Initialize the catch variable. 4182 llvm::Value *Tmp = 4183 CGF.Builder.CreateBitCast(Caught, 4184 CGF.ConvertType(CatchParam->getType())); 4185 CGF.Builder.CreateStore(Tmp, CGF.GetAddrOfLocalVar(CatchParam)); 4186 4187 CGF.EmitStmt(CatchStmt->getCatchBody()); 4188 4189 // We're done with the catch variable. 4190 CatchVarCleanups.ForceCleanup(); 4191 4192 CGF.EmitBranchThroughCleanup(FinallyEnd); 4193 4194 CGF.EmitBlock(NextCatchBlock); 4195 } 4196 4197 CGF.ObjCEHValueStack.pop_back(); 4198 4199 // If nothing wanted anything to do with the caught exception, 4200 // kill the extract call. 4201 if (Caught->use_empty()) 4202 Caught->eraseFromParent(); 4203 4204 if (!AllMatched) 4205 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4206 4207 if (HasFinally) { 4208 // Emit the exception handler for the @catch blocks. 4209 CGF.EmitBlock(CatchHandler); 4210 4211 // In theory we might now need a write hazard, but actually it's 4212 // unnecessary because there's no local-accessing code between 4213 // the try's write hazard and here. 4214 //Hazards.emitWriteHazard(); 4215 4216 // Extract the new exception and save it to the 4217 // propagating-exception slot. 4218 assert(PropagatingExnVar.isValid()); 4219 llvm::CallInst *NewCaught = 4220 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4221 ExceptionData.getPointer(), "caught"); 4222 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4223 4224 // Don't pop the catch handler; the throw already did. 4225 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4226 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4227 } 4228 } 4229 4230 // Insert read hazards as required in the new blocks. 4231 Hazards.emitHazardsInNewBlocks(); 4232 4233 // Pop the cleanup. 4234 CGF.Builder.restoreIP(TryFallthroughIP); 4235 if (CGF.HaveInsertPoint()) 4236 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4237 CGF.PopCleanupBlock(); 4238 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4239 4240 // Emit the rethrow block. 4241 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4242 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4243 if (CGF.HaveInsertPoint()) { 4244 // If we have a propagating-exception variable, check it. 4245 llvm::Value *PropagatingExn; 4246 if (PropagatingExnVar.isValid()) { 4247 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4248 4249 // Otherwise, just look in the buffer for the exception to throw. 4250 } else { 4251 llvm::CallInst *Caught = 4252 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4253 ExceptionData.getPointer()); 4254 PropagatingExn = Caught; 4255 } 4256 4257 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4258 PropagatingExn); 4259 CGF.Builder.CreateUnreachable(); 4260 } 4261 4262 CGF.Builder.restoreIP(SavedIP); 4263 } 4264 4265 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4266 const ObjCAtThrowStmt &S, 4267 bool ClearInsertionPoint) { 4268 llvm::Value *ExceptionAsObject; 4269 4270 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4271 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4272 ExceptionAsObject = 4273 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4274 } else { 4275 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4276 "Unexpected rethrow outside @catch block."); 4277 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4278 } 4279 4280 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4281 ->setDoesNotReturn(); 4282 CGF.Builder.CreateUnreachable(); 4283 4284 // Clear the insertion point to indicate we are in unreachable code. 4285 if (ClearInsertionPoint) 4286 CGF.Builder.ClearInsertionPoint(); 4287 } 4288 4289 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4290 /// object: objc_read_weak (id *src) 4291 /// 4292 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4293 Address AddrWeakObj) { 4294 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4295 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4296 ObjCTypes.PtrObjectPtrTy); 4297 llvm::Value *read_weak = 4298 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4299 AddrWeakObj.getPointer(), "weakread"); 4300 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4301 return read_weak; 4302 } 4303 4304 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4305 /// objc_assign_weak (id src, id *dst) 4306 /// 4307 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4308 llvm::Value *src, Address dst) { 4309 llvm::Type * SrcTy = src->getType(); 4310 if (!isa<llvm::PointerType>(SrcTy)) { 4311 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4312 assert(Size <= 8 && "does not support size > 8"); 4313 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4314 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4315 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4316 } 4317 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4318 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4319 llvm::Value *args[] = { src, dst.getPointer() }; 4320 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4321 args, "weakassign"); 4322 return; 4323 } 4324 4325 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4326 /// objc_assign_global (id src, id *dst) 4327 /// 4328 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4329 llvm::Value *src, Address dst, 4330 bool threadlocal) { 4331 llvm::Type * SrcTy = src->getType(); 4332 if (!isa<llvm::PointerType>(SrcTy)) { 4333 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4334 assert(Size <= 8 && "does not support size > 8"); 4335 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4336 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4337 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4338 } 4339 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4340 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4341 llvm::Value *args[] = { src, dst.getPointer() }; 4342 if (!threadlocal) 4343 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4344 args, "globalassign"); 4345 else 4346 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4347 args, "threadlocalassign"); 4348 return; 4349 } 4350 4351 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4352 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4353 /// 4354 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4355 llvm::Value *src, Address dst, 4356 llvm::Value *ivarOffset) { 4357 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4358 llvm::Type * SrcTy = src->getType(); 4359 if (!isa<llvm::PointerType>(SrcTy)) { 4360 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4361 assert(Size <= 8 && "does not support size > 8"); 4362 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4363 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4364 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4365 } 4366 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4367 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4368 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4369 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4370 return; 4371 } 4372 4373 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4374 /// objc_assign_strongCast (id src, id *dst) 4375 /// 4376 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4377 llvm::Value *src, Address dst) { 4378 llvm::Type * SrcTy = src->getType(); 4379 if (!isa<llvm::PointerType>(SrcTy)) { 4380 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4381 assert(Size <= 8 && "does not support size > 8"); 4382 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4383 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4384 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4385 } 4386 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4387 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4388 llvm::Value *args[] = { src, dst.getPointer() }; 4389 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4390 args, "strongassign"); 4391 return; 4392 } 4393 4394 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4395 Address DestPtr, 4396 Address SrcPtr, 4397 llvm::Value *size) { 4398 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4399 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4400 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4401 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4402 } 4403 4404 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4405 /// 4406 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4407 QualType ObjectTy, 4408 llvm::Value *BaseValue, 4409 const ObjCIvarDecl *Ivar, 4410 unsigned CVRQualifiers) { 4411 const ObjCInterfaceDecl *ID = 4412 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4413 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4414 EmitIvarOffset(CGF, ID, Ivar)); 4415 } 4416 4417 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4418 const ObjCInterfaceDecl *Interface, 4419 const ObjCIvarDecl *Ivar) { 4420 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4421 return llvm::ConstantInt::get( 4422 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4423 Offset); 4424 } 4425 4426 /* *** Private Interface *** */ 4427 4428 /// EmitImageInfo - Emit the image info marker used to encode some module 4429 /// level information. 4430 /// 4431 /// See: <rdr://4810609&4810587&4810587> 4432 /// struct IMAGE_INFO { 4433 /// unsigned version; 4434 /// unsigned flags; 4435 /// }; 4436 enum ImageInfoFlags { 4437 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4438 eImageInfo_GarbageCollected = (1 << 1), 4439 eImageInfo_GCOnly = (1 << 2), 4440 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4441 4442 // A flag indicating that the module has no instances of a @synthesize of a 4443 // superclass variable. <rdar://problem/6803242> 4444 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4445 eImageInfo_ImageIsSimulated = (1 << 5) 4446 }; 4447 4448 void CGObjCCommonMac::EmitImageInfo() { 4449 unsigned version = 0; // Version is unused? 4450 const char *Section = (ObjCABI == 1) ? 4451 "__OBJC, __image_info,regular" : 4452 "__DATA, __objc_imageinfo, regular, no_dead_strip"; 4453 4454 // Generate module-level named metadata to convey this information to the 4455 // linker and code-gen. 4456 llvm::Module &Mod = CGM.getModule(); 4457 4458 // Add the ObjC ABI version to the module flags. 4459 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4460 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4461 version); 4462 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4463 llvm::MDString::get(VMContext,Section)); 4464 4465 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4466 // Non-GC overrides those files which specify GC. 4467 Mod.addModuleFlag(llvm::Module::Override, 4468 "Objective-C Garbage Collection", (uint32_t)0); 4469 } else { 4470 // Add the ObjC garbage collection value. 4471 Mod.addModuleFlag(llvm::Module::Error, 4472 "Objective-C Garbage Collection", 4473 eImageInfo_GarbageCollected); 4474 4475 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4476 // Add the ObjC GC Only value. 4477 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4478 eImageInfo_GCOnly); 4479 4480 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4481 llvm::Metadata *Ops[2] = { 4482 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4483 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4484 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4485 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4486 llvm::MDNode::get(VMContext, Ops)); 4487 } 4488 } 4489 4490 // Indicate whether we're compiling this to run on a simulator. 4491 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4492 if (Triple.isiOS() && 4493 (Triple.getArch() == llvm::Triple::x86 || 4494 Triple.getArch() == llvm::Triple::x86_64)) 4495 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4496 eImageInfo_ImageIsSimulated); 4497 } 4498 4499 // struct objc_module { 4500 // unsigned long version; 4501 // unsigned long size; 4502 // const char *name; 4503 // Symtab symtab; 4504 // }; 4505 4506 // FIXME: Get from somewhere 4507 static const int ModuleVersion = 7; 4508 4509 void CGObjCMac::EmitModuleInfo() { 4510 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4511 4512 llvm::Constant *Values[] = { 4513 llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion), 4514 llvm::ConstantInt::get(ObjCTypes.LongTy, Size), 4515 // This used to be the filename, now it is unused. <rdr://4327263> 4516 GetClassName(StringRef("")), 4517 EmitModuleSymbols() 4518 }; 4519 CreateMetadataVar("OBJC_MODULES", 4520 llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), 4521 "__OBJC,__module_info,regular,no_dead_strip", 4522 CGM.getPointerAlign(), true); 4523 } 4524 4525 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4526 unsigned NumClasses = DefinedClasses.size(); 4527 unsigned NumCategories = DefinedCategories.size(); 4528 4529 // Return null if no symbols were defined. 4530 if (!NumClasses && !NumCategories) 4531 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4532 4533 llvm::Constant *Values[5]; 4534 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 4535 Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); 4536 Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); 4537 Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); 4538 4539 // The runtime expects exactly the list of defined classes followed 4540 // by the list of defined categories, in a single array. 4541 SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories); 4542 for (unsigned i=0; i<NumClasses; i++) { 4543 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4544 assert(ID); 4545 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4546 // We are implementing a weak imported interface. Give it external linkage 4547 if (ID->isWeakImported() && !IMP->isWeakImported()) 4548 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4549 4550 Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i], 4551 ObjCTypes.Int8PtrTy); 4552 } 4553 for (unsigned i=0; i<NumCategories; i++) 4554 Symbols[NumClasses + i] = 4555 llvm::ConstantExpr::getBitCast(DefinedCategories[i], 4556 ObjCTypes.Int8PtrTy); 4557 4558 Values[4] = 4559 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 4560 Symbols.size()), 4561 Symbols); 4562 4563 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 4564 4565 llvm::GlobalVariable *GV = CreateMetadataVar( 4566 "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip", 4567 CGM.getPointerAlign(), true); 4568 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4569 } 4570 4571 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4572 IdentifierInfo *II) { 4573 LazySymbols.insert(II); 4574 4575 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4576 4577 if (!Entry) { 4578 llvm::Constant *Casted = 4579 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4580 ObjCTypes.ClassPtrTy); 4581 Entry = CreateMetadataVar( 4582 "OBJC_CLASS_REFERENCES_", Casted, 4583 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4584 CGM.getPointerAlign(), true); 4585 } 4586 4587 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4588 } 4589 4590 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4591 const ObjCInterfaceDecl *ID) { 4592 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4593 } 4594 4595 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4596 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4597 return EmitClassRefFromId(CGF, II); 4598 } 4599 4600 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4601 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 4602 } 4603 4604 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 4605 CharUnits Align = CGF.getPointerAlign(); 4606 4607 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 4608 if (!Entry) { 4609 llvm::Constant *Casted = 4610 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 4611 ObjCTypes.SelectorPtrTy); 4612 Entry = CreateMetadataVar( 4613 "OBJC_SELECTOR_REFERENCES_", Casted, 4614 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 4615 Entry->setExternallyInitialized(true); 4616 } 4617 4618 return Address(Entry, Align); 4619 } 4620 4621 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 4622 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 4623 if (!Entry) 4624 Entry = CreateMetadataVar( 4625 "OBJC_CLASS_NAME_", 4626 llvm::ConstantDataArray::getString(VMContext, RuntimeName), 4627 ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals" 4628 : "__TEXT,__cstring,cstring_literals"), 4629 CharUnits::One(), true); 4630 return getConstantGEP(VMContext, Entry, 0, 0); 4631 } 4632 4633 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 4634 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 4635 I = MethodDefinitions.find(MD); 4636 if (I != MethodDefinitions.end()) 4637 return I->second; 4638 4639 return nullptr; 4640 } 4641 4642 /// GetIvarLayoutName - Returns a unique constant for the given 4643 /// ivar layout bitmap. 4644 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 4645 const ObjCCommonTypesHelper &ObjCTypes) { 4646 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 4647 } 4648 4649 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 4650 CharUnits offset) { 4651 const RecordDecl *RD = RT->getDecl(); 4652 4653 // If this is a union, remember that we had one, because it might mess 4654 // up the ordering of layout entries. 4655 if (RD->isUnion()) 4656 IsDisordered = true; 4657 4658 const ASTRecordLayout *recLayout = nullptr; 4659 visitAggregate(RD->field_begin(), RD->field_end(), offset, 4660 [&](const FieldDecl *field) -> CharUnits { 4661 if (!recLayout) 4662 recLayout = &CGM.getContext().getASTRecordLayout(RD); 4663 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 4664 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 4665 }); 4666 } 4667 4668 template <class Iterator, class GetOffsetFn> 4669 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 4670 CharUnits aggregateOffset, 4671 const GetOffsetFn &getOffset) { 4672 for (; begin != end; ++begin) { 4673 auto field = *begin; 4674 4675 // Skip over bitfields. 4676 if (field->isBitField()) { 4677 continue; 4678 } 4679 4680 // Compute the offset of the field within the aggregate. 4681 CharUnits fieldOffset = aggregateOffset + getOffset(field); 4682 4683 visitField(field, fieldOffset); 4684 } 4685 } 4686 4687 /// Collect layout information for the given fields into IvarsInfo. 4688 void IvarLayoutBuilder::visitField(const FieldDecl *field, 4689 CharUnits fieldOffset) { 4690 QualType fieldType = field->getType(); 4691 4692 // Drill down into arrays. 4693 uint64_t numElts = 1; 4694 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 4695 numElts *= arrayType->getSize().getZExtValue(); 4696 fieldType = arrayType->getElementType(); 4697 } 4698 4699 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 4700 4701 // If we ended up with a zero-sized array, we've done what we can do within 4702 // the limits of this layout encoding. 4703 if (numElts == 0) return; 4704 4705 // Recurse if the base element type is a record type. 4706 if (auto recType = fieldType->getAs<RecordType>()) { 4707 size_t oldEnd = IvarsInfo.size(); 4708 4709 visitRecord(recType, fieldOffset); 4710 4711 // If we have an array, replicate the first entry's layout information. 4712 auto numEltEntries = IvarsInfo.size() - oldEnd; 4713 if (numElts != 1 && numEltEntries != 0) { 4714 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 4715 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 4716 // Copy the last numEltEntries onto the end of the array, adjusting 4717 // each for the element size. 4718 for (size_t i = 0; i != numEltEntries; ++i) { 4719 auto firstEntry = IvarsInfo[oldEnd + i]; 4720 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 4721 firstEntry.SizeInWords)); 4722 } 4723 } 4724 } 4725 4726 return; 4727 } 4728 4729 // Classify the element type. 4730 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 4731 4732 // If it matches what we're looking for, add an entry. 4733 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 4734 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 4735 assert(CGM.getContext().getTypeSizeInChars(fieldType) 4736 == CGM.getPointerSize()); 4737 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 4738 } 4739 } 4740 4741 /// buildBitmap - This routine does the horsework of taking the offsets of 4742 /// strong/weak references and creating a bitmap. The bitmap is also 4743 /// returned in the given buffer, suitable for being passed to \c dump(). 4744 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 4745 llvm::SmallVectorImpl<unsigned char> &buffer) { 4746 // The bitmap is a series of skip/scan instructions, aligned to word 4747 // boundaries. The skip is performed first. 4748 const unsigned char MaxNibble = 0xF; 4749 const unsigned char SkipMask = 0xF0, SkipShift = 4; 4750 const unsigned char ScanMask = 0x0F, ScanShift = 0; 4751 4752 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 4753 4754 // Sort the ivar info on byte position in case we encounterred a 4755 // union nested in the ivar list. 4756 if (IsDisordered) { 4757 // This isn't a stable sort, but our algorithm should handle it fine. 4758 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 4759 } else { 4760 #ifndef NDEBUG 4761 for (unsigned i = 1; i != IvarsInfo.size(); ++i) { 4762 assert(IvarsInfo[i - 1].Offset <= IvarsInfo[i].Offset); 4763 } 4764 #endif 4765 } 4766 assert(IvarsInfo.back().Offset < InstanceEnd); 4767 4768 assert(buffer.empty()); 4769 4770 // Skip the next N words. 4771 auto skip = [&](unsigned numWords) { 4772 assert(numWords > 0); 4773 4774 // Try to merge into the previous byte. Since scans happen second, we 4775 // can't do this if it includes a scan. 4776 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 4777 unsigned lastSkip = buffer.back() >> SkipShift; 4778 if (lastSkip < MaxNibble) { 4779 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 4780 numWords -= claimed; 4781 lastSkip += claimed; 4782 buffer.back() = (lastSkip << SkipShift); 4783 } 4784 } 4785 4786 while (numWords >= MaxNibble) { 4787 buffer.push_back(MaxNibble << SkipShift); 4788 numWords -= MaxNibble; 4789 } 4790 if (numWords) { 4791 buffer.push_back(numWords << SkipShift); 4792 } 4793 }; 4794 4795 // Scan the next N words. 4796 auto scan = [&](unsigned numWords) { 4797 assert(numWords > 0); 4798 4799 // Try to merge into the previous byte. Since scans happen second, we can 4800 // do this even if it includes a skip. 4801 if (!buffer.empty()) { 4802 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 4803 if (lastScan < MaxNibble) { 4804 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 4805 numWords -= claimed; 4806 lastScan += claimed; 4807 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 4808 } 4809 } 4810 4811 while (numWords >= MaxNibble) { 4812 buffer.push_back(MaxNibble << ScanShift); 4813 numWords -= MaxNibble; 4814 } 4815 if (numWords) { 4816 buffer.push_back(numWords << ScanShift); 4817 } 4818 }; 4819 4820 // One past the end of the last scan. 4821 unsigned endOfLastScanInWords = 0; 4822 const CharUnits WordSize = CGM.getPointerSize(); 4823 4824 // Consider all the scan requests. 4825 for (auto &request : IvarsInfo) { 4826 CharUnits beginOfScan = request.Offset - InstanceBegin; 4827 4828 // Ignore scan requests that don't start at an even multiple of the 4829 // word size. We can't encode them. 4830 if ((beginOfScan % WordSize) != 0) continue; 4831 4832 // Ignore scan requests that start before the instance start. 4833 // This assumes that scans never span that boundary. The boundary 4834 // isn't the true start of the ivars, because in the fragile-ARC case 4835 // it's rounded up to word alignment, but the test above should leave 4836 // us ignoring that possibility. 4837 if (beginOfScan.isNegative()) { 4838 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 4839 continue; 4840 } 4841 4842 unsigned beginOfScanInWords = beginOfScan / WordSize; 4843 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 4844 4845 // If the scan starts some number of words after the last one ended, 4846 // skip forward. 4847 if (beginOfScanInWords > endOfLastScanInWords) { 4848 skip(beginOfScanInWords - endOfLastScanInWords); 4849 4850 // Otherwise, start scanning where the last left off. 4851 } else { 4852 beginOfScanInWords = endOfLastScanInWords; 4853 4854 // If that leaves us with nothing to scan, ignore this request. 4855 if (beginOfScanInWords >= endOfScanInWords) continue; 4856 } 4857 4858 // Scan to the end of the request. 4859 assert(beginOfScanInWords < endOfScanInWords); 4860 scan(endOfScanInWords - beginOfScanInWords); 4861 endOfLastScanInWords = endOfScanInWords; 4862 } 4863 4864 // For GC layouts, emit a skip to the end of the allocation so that we 4865 // have precise information about the entire thing. This isn't useful 4866 // or necessary for the ARC-style layout strings. 4867 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 4868 unsigned lastOffsetInWords = 4869 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 4870 if (lastOffsetInWords > endOfLastScanInWords) { 4871 skip(lastOffsetInWords - endOfLastScanInWords); 4872 } 4873 } 4874 4875 // Null terminate the string. 4876 buffer.push_back(0); 4877 4878 bool isNonFragileABI = CGObjC.isNonFragileABI(); 4879 4880 llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar( 4881 "OBJC_CLASS_NAME_", 4882 llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer), 4883 (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals" 4884 : "__TEXT,__cstring,cstring_literals"), 4885 CharUnits::One(), true); 4886 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 4887 } 4888 4889 /// BuildIvarLayout - Builds ivar layout bitmap for the class 4890 /// implementation for the __strong or __weak case. 4891 /// The layout map displays which words in ivar list must be skipped 4892 /// and which must be scanned by GC (see below). String is built of bytes. 4893 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 4894 /// of words to skip and right nibble is count of words to scan. So, each 4895 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 4896 /// represented by a 0x00 byte which also ends the string. 4897 /// 1. when ForStrongLayout is true, following ivars are scanned: 4898 /// - id, Class 4899 /// - object * 4900 /// - __strong anything 4901 /// 4902 /// 2. When ForStrongLayout is false, following ivars are scanned: 4903 /// - __weak anything 4904 /// 4905 llvm::Constant * 4906 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 4907 CharUnits beginOffset, CharUnits endOffset, 4908 bool ForStrongLayout, bool HasMRCWeakIvars) { 4909 // If this is MRC, and we're either building a strong layout or there 4910 // are no weak ivars, bail out early. 4911 llvm::Type *PtrTy = CGM.Int8PtrTy; 4912 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 4913 !CGM.getLangOpts().ObjCAutoRefCount && 4914 (ForStrongLayout || !HasMRCWeakIvars)) 4915 return llvm::Constant::getNullValue(PtrTy); 4916 4917 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 4918 SmallVector<const ObjCIvarDecl*, 32> ivars; 4919 4920 // GC layout strings include the complete object layout, possibly 4921 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 4922 // up. 4923 // 4924 // ARC layout strings only include the class's ivars. In non-fragile 4925 // runtimes, that means starting at InstanceStart. In fragile runtimes, 4926 // there's no InstanceStart, so it means starting at the end of the 4927 // superclass, rounded up to word alignment. 4928 // 4929 // MRC weak layout strings follow the ARC style. 4930 CharUnits baseOffset; 4931 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4932 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 4933 IVD; IVD = IVD->getNextIvar()) 4934 ivars.push_back(IVD); 4935 4936 if (isNonFragileABI()) { 4937 baseOffset = beginOffset; // InstanceStart 4938 } else if (auto superClass = OI->getSuperClass()) { 4939 auto startOffset = 4940 CGM.getContext().getASTObjCInterfaceLayout(superClass).getSize(); 4941 baseOffset = startOffset.RoundUpToAlignment(CGM.getPointerAlign()); 4942 } else { 4943 baseOffset = CharUnits::Zero(); 4944 } 4945 } 4946 else { 4947 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 4948 4949 baseOffset = CharUnits::Zero(); 4950 } 4951 4952 if (ivars.empty()) 4953 return llvm::Constant::getNullValue(PtrTy); 4954 4955 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 4956 4957 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 4958 [&](const ObjCIvarDecl *ivar) -> CharUnits { 4959 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 4960 }); 4961 4962 if (!builder.hasBitmapData()) 4963 return llvm::Constant::getNullValue(PtrTy); 4964 4965 llvm::SmallVector<unsigned char, 4> buffer; 4966 llvm::Constant *C = builder.buildBitmap(*this, buffer); 4967 4968 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 4969 printf("\n%s ivar layout for class '%s': ", 4970 ForStrongLayout ? "strong" : "weak", 4971 OMD->getClassInterface()->getName().str().c_str()); 4972 builder.dump(buffer); 4973 } 4974 return C; 4975 } 4976 4977 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 4978 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 4979 4980 // FIXME: Avoid std::string in "Sel.getAsString()" 4981 if (!Entry) 4982 Entry = CreateMetadataVar( 4983 "OBJC_METH_VAR_NAME_", 4984 llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()), 4985 ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals" 4986 : "__TEXT,__cstring,cstring_literals"), 4987 CharUnits::One(), true); 4988 4989 return getConstantGEP(VMContext, Entry, 0, 0); 4990 } 4991 4992 // FIXME: Merge into a single cstring creation function. 4993 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 4994 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 4995 } 4996 4997 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 4998 std::string TypeStr; 4999 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5000 5001 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5002 5003 if (!Entry) 5004 Entry = CreateMetadataVar( 5005 "OBJC_METH_VAR_TYPE_", 5006 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5007 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5008 : "__TEXT,__cstring,cstring_literals"), 5009 CharUnits::One(), true); 5010 5011 return getConstantGEP(VMContext, Entry, 0, 0); 5012 } 5013 5014 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5015 bool Extended) { 5016 std::string TypeStr; 5017 if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended)) 5018 return nullptr; 5019 5020 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5021 5022 if (!Entry) 5023 Entry = CreateMetadataVar( 5024 "OBJC_METH_VAR_TYPE_", 5025 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5026 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5027 : "__TEXT,__cstring,cstring_literals"), 5028 CharUnits::One(), true); 5029 5030 return getConstantGEP(VMContext, Entry, 0, 0); 5031 } 5032 5033 // FIXME: Merge into a single cstring creation function. 5034 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5035 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5036 5037 if (!Entry) 5038 Entry = CreateMetadataVar( 5039 "OBJC_PROP_NAME_ATTR_", 5040 llvm::ConstantDataArray::getString(VMContext, Ident->getName()), 5041 "__TEXT,__cstring,cstring_literals", CharUnits::One(), true); 5042 5043 return getConstantGEP(VMContext, Entry, 0, 0); 5044 } 5045 5046 // FIXME: Merge into a single cstring creation function. 5047 // FIXME: This Decl should be more precise. 5048 llvm::Constant * 5049 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5050 const Decl *Container) { 5051 std::string TypeStr; 5052 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 5053 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5054 } 5055 5056 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5057 const ObjCContainerDecl *CD, 5058 SmallVectorImpl<char> &Name) { 5059 llvm::raw_svector_ostream OS(Name); 5060 assert (CD && "Missing container decl in GetNameForMethod"); 5061 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5062 << '[' << CD->getName(); 5063 if (const ObjCCategoryImplDecl *CID = 5064 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5065 OS << '(' << *CID << ')'; 5066 OS << ' ' << D->getSelector().getAsString() << ']'; 5067 } 5068 5069 void CGObjCMac::FinishModule() { 5070 EmitModuleInfo(); 5071 5072 // Emit the dummy bodies for any protocols which were referenced but 5073 // never defined. 5074 for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator 5075 I = Protocols.begin(), e = Protocols.end(); I != e; ++I) { 5076 if (I->second->hasInitializer()) 5077 continue; 5078 5079 llvm::Constant *Values[5]; 5080 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 5081 Values[1] = GetClassName(I->first->getName()); 5082 Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 5083 Values[3] = Values[4] = 5084 llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 5085 I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 5086 Values)); 5087 CGM.addCompilerUsedGlobal(I->second); 5088 } 5089 5090 // Add assembler directives to add lazy undefined symbol references 5091 // for classes which are referenced but not defined. This is 5092 // important for correct linker interaction. 5093 // 5094 // FIXME: It would be nice if we had an LLVM construct for this. 5095 if (!LazySymbols.empty() || !DefinedSymbols.empty()) { 5096 SmallString<256> Asm; 5097 Asm += CGM.getModule().getModuleInlineAsm(); 5098 if (!Asm.empty() && Asm.back() != '\n') 5099 Asm += '\n'; 5100 5101 llvm::raw_svector_ostream OS(Asm); 5102 for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(), 5103 e = DefinedSymbols.end(); I != e; ++I) 5104 OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n" 5105 << "\t.globl .objc_class_name_" << (*I)->getName() << "\n"; 5106 for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(), 5107 e = LazySymbols.end(); I != e; ++I) { 5108 OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n"; 5109 } 5110 5111 for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) { 5112 OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n" 5113 << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n"; 5114 } 5115 5116 CGM.getModule().setModuleInlineAsm(OS.str()); 5117 } 5118 } 5119 5120 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5121 : CGObjCCommonMac(cgm), 5122 ObjCTypes(cgm) { 5123 ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr; 5124 ObjCABI = 2; 5125 } 5126 5127 /* *** */ 5128 5129 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5130 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5131 { 5132 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5133 ASTContext &Ctx = CGM.getContext(); 5134 5135 ShortTy = Types.ConvertType(Ctx.ShortTy); 5136 IntTy = Types.ConvertType(Ctx.IntTy); 5137 LongTy = Types.ConvertType(Ctx.LongTy); 5138 LongLongTy = Types.ConvertType(Ctx.LongLongTy); 5139 Int8PtrTy = CGM.Int8PtrTy; 5140 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5141 5142 // arm64 targets use "int" ivar offset variables. All others, 5143 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5144 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5145 IvarOffsetVarTy = IntTy; 5146 else 5147 IvarOffsetVarTy = LongTy; 5148 5149 ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); 5150 PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy); 5151 SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); 5152 5153 // I'm not sure I like this. The implicit coordination is a bit 5154 // gross. We should solve this in a reasonable fashion because this 5155 // is a pretty common task (match some runtime data structure with 5156 // an LLVM data structure). 5157 5158 // FIXME: This is leaked. 5159 // FIXME: Merge with rewriter code? 5160 5161 // struct _objc_super { 5162 // id self; 5163 // Class cls; 5164 // } 5165 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5166 Ctx.getTranslationUnitDecl(), 5167 SourceLocation(), SourceLocation(), 5168 &Ctx.Idents.get("_objc_super")); 5169 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5170 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5171 false, ICIS_NoInit)); 5172 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5173 nullptr, Ctx.getObjCClassType(), nullptr, 5174 nullptr, false, ICIS_NoInit)); 5175 RD->completeDefinition(); 5176 5177 SuperCTy = Ctx.getTagDeclType(RD); 5178 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5179 5180 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5181 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5182 5183 // struct _prop_t { 5184 // char *name; 5185 // char *attributes; 5186 // } 5187 PropertyTy = llvm::StructType::create("struct._prop_t", 5188 Int8PtrTy, Int8PtrTy, nullptr); 5189 5190 // struct _prop_list_t { 5191 // uint32_t entsize; // sizeof(struct _prop_t) 5192 // uint32_t count_of_properties; 5193 // struct _prop_t prop_list[count_of_properties]; 5194 // } 5195 PropertyListTy = 5196 llvm::StructType::create("struct._prop_list_t", IntTy, IntTy, 5197 llvm::ArrayType::get(PropertyTy, 0), nullptr); 5198 // struct _prop_list_t * 5199 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5200 5201 // struct _objc_method { 5202 // SEL _cmd; 5203 // char *method_type; 5204 // char *_imp; 5205 // } 5206 MethodTy = llvm::StructType::create("struct._objc_method", 5207 SelectorPtrTy, Int8PtrTy, Int8PtrTy, 5208 nullptr); 5209 5210 // struct _objc_cache * 5211 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5212 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5213 5214 } 5215 5216 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5217 : ObjCCommonTypesHelper(cgm) { 5218 // struct _objc_method_description { 5219 // SEL name; 5220 // char *types; 5221 // } 5222 MethodDescriptionTy = 5223 llvm::StructType::create("struct._objc_method_description", 5224 SelectorPtrTy, Int8PtrTy, nullptr); 5225 5226 // struct _objc_method_description_list { 5227 // int count; 5228 // struct _objc_method_description[1]; 5229 // } 5230 MethodDescriptionListTy = llvm::StructType::create( 5231 "struct._objc_method_description_list", IntTy, 5232 llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr); 5233 5234 // struct _objc_method_description_list * 5235 MethodDescriptionListPtrTy = 5236 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5237 5238 // Protocol description structures 5239 5240 // struct _objc_protocol_extension { 5241 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5242 // struct _objc_method_description_list *optional_instance_methods; 5243 // struct _objc_method_description_list *optional_class_methods; 5244 // struct _objc_property_list *instance_properties; 5245 // const char ** extendedMethodTypes; 5246 // } 5247 ProtocolExtensionTy = 5248 llvm::StructType::create("struct._objc_protocol_extension", 5249 IntTy, MethodDescriptionListPtrTy, 5250 MethodDescriptionListPtrTy, PropertyListPtrTy, 5251 Int8PtrPtrTy, nullptr); 5252 5253 // struct _objc_protocol_extension * 5254 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5255 5256 // Handle recursive construction of Protocol and ProtocolList types 5257 5258 ProtocolTy = 5259 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5260 5261 ProtocolListTy = 5262 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5263 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), 5264 LongTy, 5265 llvm::ArrayType::get(ProtocolTy, 0), 5266 nullptr); 5267 5268 // struct _objc_protocol { 5269 // struct _objc_protocol_extension *isa; 5270 // char *protocol_name; 5271 // struct _objc_protocol **_objc_protocol_list; 5272 // struct _objc_method_description_list *instance_methods; 5273 // struct _objc_method_description_list *class_methods; 5274 // } 5275 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5276 llvm::PointerType::getUnqual(ProtocolListTy), 5277 MethodDescriptionListPtrTy, 5278 MethodDescriptionListPtrTy, 5279 nullptr); 5280 5281 // struct _objc_protocol_list * 5282 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5283 5284 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5285 5286 // Class description structures 5287 5288 // struct _objc_ivar { 5289 // char *ivar_name; 5290 // char *ivar_type; 5291 // int ivar_offset; 5292 // } 5293 IvarTy = llvm::StructType::create("struct._objc_ivar", 5294 Int8PtrTy, Int8PtrTy, IntTy, nullptr); 5295 5296 // struct _objc_ivar_list * 5297 IvarListTy = 5298 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5299 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5300 5301 // struct _objc_method_list * 5302 MethodListTy = 5303 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5304 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5305 5306 // struct _objc_class_extension * 5307 ClassExtensionTy = 5308 llvm::StructType::create("struct._objc_class_extension", 5309 IntTy, Int8PtrTy, PropertyListPtrTy, nullptr); 5310 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5311 5312 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5313 5314 // struct _objc_class { 5315 // Class isa; 5316 // Class super_class; 5317 // char *name; 5318 // long version; 5319 // long info; 5320 // long instance_size; 5321 // struct _objc_ivar_list *ivars; 5322 // struct _objc_method_list *methods; 5323 // struct _objc_cache *cache; 5324 // struct _objc_protocol_list *protocols; 5325 // char *ivar_layout; 5326 // struct _objc_class_ext *ext; 5327 // }; 5328 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5329 llvm::PointerType::getUnqual(ClassTy), 5330 Int8PtrTy, 5331 LongTy, 5332 LongTy, 5333 LongTy, 5334 IvarListPtrTy, 5335 MethodListPtrTy, 5336 CachePtrTy, 5337 ProtocolListPtrTy, 5338 Int8PtrTy, 5339 ClassExtensionPtrTy, 5340 nullptr); 5341 5342 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5343 5344 // struct _objc_category { 5345 // char *category_name; 5346 // char *class_name; 5347 // struct _objc_method_list *instance_method; 5348 // struct _objc_method_list *class_method; 5349 // uint32_t size; // sizeof(struct _objc_category) 5350 // struct _objc_property_list *instance_properties;// category's @property 5351 // } 5352 CategoryTy = 5353 llvm::StructType::create("struct._objc_category", 5354 Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5355 MethodListPtrTy, ProtocolListPtrTy, 5356 IntTy, PropertyListPtrTy, nullptr); 5357 5358 // Global metadata structures 5359 5360 // struct _objc_symtab { 5361 // long sel_ref_cnt; 5362 // SEL *refs; 5363 // short cls_def_cnt; 5364 // short cat_def_cnt; 5365 // char *defs[cls_def_cnt + cat_def_cnt]; 5366 // } 5367 SymtabTy = 5368 llvm::StructType::create("struct._objc_symtab", 5369 LongTy, SelectorPtrTy, ShortTy, ShortTy, 5370 llvm::ArrayType::get(Int8PtrTy, 0), nullptr); 5371 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5372 5373 // struct _objc_module { 5374 // long version; 5375 // long size; // sizeof(struct _objc_module) 5376 // char *name; 5377 // struct _objc_symtab* symtab; 5378 // } 5379 ModuleTy = 5380 llvm::StructType::create("struct._objc_module", 5381 LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr); 5382 5383 5384 // FIXME: This is the size of the setjmp buffer and should be target 5385 // specific. 18 is what's used on 32-bit X86. 5386 uint64_t SetJmpBufferSize = 18; 5387 5388 // Exceptions 5389 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5390 5391 ExceptionDataTy = 5392 llvm::StructType::create("struct._objc_exception_data", 5393 llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize), 5394 StackPtrTy, nullptr); 5395 5396 } 5397 5398 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5399 : ObjCCommonTypesHelper(cgm) { 5400 // struct _method_list_t { 5401 // uint32_t entsize; // sizeof(struct _objc_method) 5402 // uint32_t method_count; 5403 // struct _objc_method method_list[method_count]; 5404 // } 5405 MethodListnfABITy = 5406 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5407 llvm::ArrayType::get(MethodTy, 0), nullptr); 5408 // struct method_list_t * 5409 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5410 5411 // struct _protocol_t { 5412 // id isa; // NULL 5413 // const char * const protocol_name; 5414 // const struct _protocol_list_t * protocol_list; // super protocols 5415 // const struct method_list_t * const instance_methods; 5416 // const struct method_list_t * const class_methods; 5417 // const struct method_list_t *optionalInstanceMethods; 5418 // const struct method_list_t *optionalClassMethods; 5419 // const struct _prop_list_t * properties; 5420 // const uint32_t size; // sizeof(struct _protocol_t) 5421 // const uint32_t flags; // = 0 5422 // const char ** extendedMethodTypes; 5423 // const char *demangledName; 5424 // } 5425 5426 // Holder for struct _protocol_list_t * 5427 ProtocolListnfABITy = 5428 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5429 5430 ProtocolnfABITy = 5431 llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5432 llvm::PointerType::getUnqual(ProtocolListnfABITy), 5433 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5434 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5435 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, 5436 Int8PtrTy, 5437 nullptr); 5438 5439 // struct _protocol_t* 5440 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5441 5442 // struct _protocol_list_t { 5443 // long protocol_count; // Note, this is 32/64 bit 5444 // struct _protocol_t *[protocol_count]; 5445 // } 5446 ProtocolListnfABITy->setBody(LongTy, 5447 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0), 5448 nullptr); 5449 5450 // struct _objc_protocol_list* 5451 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5452 5453 // struct _ivar_t { 5454 // unsigned [long] int *offset; // pointer to ivar offset location 5455 // char *name; 5456 // char *type; 5457 // uint32_t alignment; 5458 // uint32_t size; 5459 // } 5460 IvarnfABITy = llvm::StructType::create( 5461 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5462 Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr); 5463 5464 // struct _ivar_list_t { 5465 // uint32 entsize; // sizeof(struct _ivar_t) 5466 // uint32 count; 5467 // struct _iver_t list[count]; 5468 // } 5469 IvarListnfABITy = 5470 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5471 llvm::ArrayType::get(IvarnfABITy, 0), nullptr); 5472 5473 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5474 5475 // struct _class_ro_t { 5476 // uint32_t const flags; 5477 // uint32_t const instanceStart; 5478 // uint32_t const instanceSize; 5479 // uint32_t const reserved; // only when building for 64bit targets 5480 // const uint8_t * const ivarLayout; 5481 // const char *const name; 5482 // const struct _method_list_t * const baseMethods; 5483 // const struct _objc_protocol_list *const baseProtocols; 5484 // const struct _ivar_list_t *const ivars; 5485 // const uint8_t * const weakIvarLayout; 5486 // const struct _prop_list_t * const properties; 5487 // } 5488 5489 // FIXME. Add 'reserved' field in 64bit abi mode! 5490 ClassRonfABITy = llvm::StructType::create("struct._class_ro_t", 5491 IntTy, IntTy, IntTy, Int8PtrTy, 5492 Int8PtrTy, MethodListnfABIPtrTy, 5493 ProtocolListnfABIPtrTy, 5494 IvarListnfABIPtrTy, 5495 Int8PtrTy, PropertyListPtrTy, 5496 nullptr); 5497 5498 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5499 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5500 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5501 ->getPointerTo(); 5502 5503 // struct _class_t { 5504 // struct _class_t *isa; 5505 // struct _class_t * const superclass; 5506 // void *cache; 5507 // IMP *vtable; 5508 // struct class_ro_t *ro; 5509 // } 5510 5511 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5512 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5513 llvm::PointerType::getUnqual(ClassnfABITy), 5514 CachePtrTy, 5515 llvm::PointerType::getUnqual(ImpnfABITy), 5516 llvm::PointerType::getUnqual(ClassRonfABITy), 5517 nullptr); 5518 5519 // LLVM for struct _class_t * 5520 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5521 5522 // struct _category_t { 5523 // const char * const name; 5524 // struct _class_t *const cls; 5525 // const struct _method_list_t * const instance_methods; 5526 // const struct _method_list_t * const class_methods; 5527 // const struct _protocol_list_t * const protocols; 5528 // const struct _prop_list_t * const properties; 5529 // } 5530 CategorynfABITy = llvm::StructType::create("struct._category_t", 5531 Int8PtrTy, ClassnfABIPtrTy, 5532 MethodListnfABIPtrTy, 5533 MethodListnfABIPtrTy, 5534 ProtocolListnfABIPtrTy, 5535 PropertyListPtrTy, 5536 nullptr); 5537 5538 // New types for nonfragile abi messaging. 5539 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5540 ASTContext &Ctx = CGM.getContext(); 5541 5542 // MessageRefTy - LLVM for: 5543 // struct _message_ref_t { 5544 // IMP messenger; 5545 // SEL name; 5546 // }; 5547 5548 // First the clang type for struct _message_ref_t 5549 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5550 Ctx.getTranslationUnitDecl(), 5551 SourceLocation(), SourceLocation(), 5552 &Ctx.Idents.get("_message_ref_t")); 5553 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5554 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5555 ICIS_NoInit)); 5556 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5557 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5558 false, ICIS_NoInit)); 5559 RD->completeDefinition(); 5560 5561 MessageRefCTy = Ctx.getTagDeclType(RD); 5562 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5563 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5564 5565 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5566 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5567 5568 // SuperMessageRefTy - LLVM for: 5569 // struct _super_message_ref_t { 5570 // SUPER_IMP messenger; 5571 // SEL name; 5572 // }; 5573 SuperMessageRefTy = 5574 llvm::StructType::create("struct._super_message_ref_t", 5575 ImpnfABITy, SelectorPtrTy, nullptr); 5576 5577 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5578 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5579 5580 5581 // struct objc_typeinfo { 5582 // const void** vtable; // objc_ehtype_vtable + 2 5583 // const char* name; // c++ typeinfo string 5584 // Class cls; 5585 // }; 5586 EHTypeTy = 5587 llvm::StructType::create("struct._objc_typeinfo", 5588 llvm::PointerType::getUnqual(Int8PtrTy), 5589 Int8PtrTy, ClassnfABIPtrTy, nullptr); 5590 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5591 } 5592 5593 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5594 FinishNonFragileABIModule(); 5595 5596 return nullptr; 5597 } 5598 5599 void CGObjCNonFragileABIMac:: 5600 AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 5601 const char *SymbolName, 5602 const char *SectionName) { 5603 unsigned NumClasses = Container.size(); 5604 5605 if (!NumClasses) 5606 return; 5607 5608 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5609 for (unsigned i=0; i<NumClasses; i++) 5610 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5611 ObjCTypes.Int8PtrTy); 5612 llvm::Constant *Init = 5613 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5614 Symbols.size()), 5615 Symbols); 5616 5617 llvm::GlobalVariable *GV = 5618 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5619 llvm::GlobalValue::PrivateLinkage, 5620 Init, 5621 SymbolName); 5622 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5623 GV->setSection(SectionName); 5624 CGM.addCompilerUsedGlobal(GV); 5625 } 5626 5627 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5628 // nonfragile abi has no module definition. 5629 5630 // Build list of all implemented class addresses in array 5631 // L_OBJC_LABEL_CLASS_$. 5632 5633 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5634 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5635 assert(ID); 5636 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5637 // We are implementing a weak imported interface. Give it external linkage 5638 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5639 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5640 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5641 } 5642 } 5643 5644 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5645 "__DATA, __objc_classlist, regular, no_dead_strip"); 5646 5647 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5648 "__DATA, __objc_nlclslist, regular, no_dead_strip"); 5649 5650 // Build list of all implemented category addresses in array 5651 // L_OBJC_LABEL_CATEGORY_$. 5652 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5653 "__DATA, __objc_catlist, regular, no_dead_strip"); 5654 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5655 "__DATA, __objc_nlcatlist, regular, no_dead_strip"); 5656 5657 EmitImageInfo(); 5658 } 5659 5660 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5661 /// VTableDispatchMethods; false otherwise. What this means is that 5662 /// except for the 19 selectors in the list, we generate 32bit-style 5663 /// message dispatch call for all the rest. 5664 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5665 // At various points we've experimented with using vtable-based 5666 // dispatch for all methods. 5667 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5668 case CodeGenOptions::Legacy: 5669 return false; 5670 case CodeGenOptions::NonLegacy: 5671 return true; 5672 case CodeGenOptions::Mixed: 5673 break; 5674 } 5675 5676 // If so, see whether this selector is in the white-list of things which must 5677 // use the new dispatch convention. We lazily build a dense set for this. 5678 if (VTableDispatchMethods.empty()) { 5679 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 5680 VTableDispatchMethods.insert(GetNullarySelector("class")); 5681 VTableDispatchMethods.insert(GetNullarySelector("self")); 5682 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 5683 VTableDispatchMethods.insert(GetNullarySelector("length")); 5684 VTableDispatchMethods.insert(GetNullarySelector("count")); 5685 5686 // These are vtable-based if GC is disabled. 5687 // Optimistically use vtable dispatch for hybrid compiles. 5688 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 5689 VTableDispatchMethods.insert(GetNullarySelector("retain")); 5690 VTableDispatchMethods.insert(GetNullarySelector("release")); 5691 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 5692 } 5693 5694 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 5695 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 5696 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 5697 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 5698 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 5699 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 5700 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 5701 5702 // These are vtable-based if GC is enabled. 5703 // Optimistically use vtable dispatch for hybrid compiles. 5704 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5705 VTableDispatchMethods.insert(GetNullarySelector("hash")); 5706 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 5707 5708 // "countByEnumeratingWithState:objects:count" 5709 IdentifierInfo *KeyIdents[] = { 5710 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 5711 &CGM.getContext().Idents.get("objects"), 5712 &CGM.getContext().Idents.get("count") 5713 }; 5714 VTableDispatchMethods.insert( 5715 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 5716 } 5717 } 5718 5719 return VTableDispatchMethods.count(Sel); 5720 } 5721 5722 /// BuildClassRoTInitializer - generate meta-data for: 5723 /// struct _class_ro_t { 5724 /// uint32_t const flags; 5725 /// uint32_t const instanceStart; 5726 /// uint32_t const instanceSize; 5727 /// uint32_t const reserved; // only when building for 64bit targets 5728 /// const uint8_t * const ivarLayout; 5729 /// const char *const name; 5730 /// const struct _method_list_t * const baseMethods; 5731 /// const struct _protocol_list_t *const baseProtocols; 5732 /// const struct _ivar_list_t *const ivars; 5733 /// const uint8_t * const weakIvarLayout; 5734 /// const struct _prop_list_t * const properties; 5735 /// } 5736 /// 5737 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 5738 unsigned flags, 5739 unsigned InstanceStart, 5740 unsigned InstanceSize, 5741 const ObjCImplementationDecl *ID) { 5742 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5743 llvm::Constant *Values[10]; // 11 for 64bit targets! 5744 5745 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 5746 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 5747 5748 bool hasMRCWeak = false; 5749 if (CGM.getLangOpts().ObjCAutoRefCount) 5750 flags |= NonFragileABI_Class_CompiledByARC; 5751 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 5752 flags |= NonFragileABI_Class_HasMRCWeakIvars; 5753 5754 Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags); 5755 Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart); 5756 Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize); 5757 // FIXME. For 64bit targets add 0 here. 5758 Values[ 3] = (flags & NonFragileABI_Class_Meta) 5759 ? GetIvarLayoutName(nullptr, ObjCTypes) 5760 : BuildStrongIvarLayout(ID, beginInstance, endInstance); 5761 Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString()); 5762 // const struct _method_list_t * const baseMethods; 5763 std::vector<llvm::Constant*> Methods; 5764 std::string MethodListName("\01l_OBJC_$_"); 5765 if (flags & NonFragileABI_Class_Meta) { 5766 MethodListName += "CLASS_METHODS_"; 5767 MethodListName += ID->getObjCRuntimeNameAsString(); 5768 for (const auto *I : ID->class_methods()) 5769 // Class methods should always be defined. 5770 Methods.push_back(GetMethodConstant(I)); 5771 } else { 5772 MethodListName += "INSTANCE_METHODS_"; 5773 MethodListName += ID->getObjCRuntimeNameAsString(); 5774 for (const auto *I : ID->instance_methods()) 5775 // Instance methods should always be defined. 5776 Methods.push_back(GetMethodConstant(I)); 5777 5778 for (const auto *PID : ID->property_impls()) { 5779 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 5780 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5781 5782 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 5783 if (llvm::Constant *C = GetMethodConstant(MD)) 5784 Methods.push_back(C); 5785 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 5786 if (llvm::Constant *C = GetMethodConstant(MD)) 5787 Methods.push_back(C); 5788 } 5789 } 5790 } 5791 Values[ 5] = EmitMethodList(MethodListName, 5792 "__DATA, __objc_const", Methods); 5793 5794 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 5795 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 5796 Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 5797 + OID->getObjCRuntimeNameAsString(), 5798 OID->all_referenced_protocol_begin(), 5799 OID->all_referenced_protocol_end()); 5800 5801 if (flags & NonFragileABI_Class_Meta) { 5802 Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 5803 Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes); 5804 Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 5805 } else { 5806 Values[ 7] = EmitIvarList(ID); 5807 Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance, 5808 hasMRCWeak); 5809 Values[ 9] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 5810 ID, ID->getClassInterface(), ObjCTypes); 5811 } 5812 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy, 5813 Values); 5814 llvm::GlobalVariable *CLASS_RO_GV = 5815 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false, 5816 llvm::GlobalValue::PrivateLinkage, 5817 Init, 5818 (flags & NonFragileABI_Class_Meta) ? 5819 std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName : 5820 std::string("\01l_OBJC_CLASS_RO_$_")+ClassName); 5821 CLASS_RO_GV->setAlignment( 5822 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy)); 5823 CLASS_RO_GV->setSection("__DATA, __objc_const"); 5824 return CLASS_RO_GV; 5825 5826 } 5827 5828 /// BuildClassMetaData - This routine defines that to-level meta-data 5829 /// for the given ClassName for: 5830 /// struct _class_t { 5831 /// struct _class_t *isa; 5832 /// struct _class_t * const superclass; 5833 /// void *cache; 5834 /// IMP *vtable; 5835 /// struct class_ro_t *ro; 5836 /// } 5837 /// 5838 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData( 5839 const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV, 5840 llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) { 5841 llvm::Constant *Values[] = { 5842 IsAGV, 5843 SuperClassGV, 5844 ObjCEmptyCacheVar, // &ObjCEmptyCacheVar 5845 ObjCEmptyVtableVar, // &ObjCEmptyVtableVar 5846 ClassRoGV // &CLASS_RO_GV 5847 }; 5848 if (!Values[1]) 5849 Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy); 5850 if (!Values[3]) 5851 Values[3] = llvm::Constant::getNullValue( 5852 llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy)); 5853 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy, 5854 Values); 5855 llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak); 5856 GV->setInitializer(Init); 5857 GV->setSection("__DATA, __objc_data"); 5858 GV->setAlignment( 5859 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 5860 if (HiddenVisibility) 5861 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5862 return GV; 5863 } 5864 5865 bool 5866 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 5867 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 5868 } 5869 5870 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 5871 uint32_t &InstanceStart, 5872 uint32_t &InstanceSize) { 5873 const ASTRecordLayout &RL = 5874 CGM.getContext().getASTObjCImplementationLayout(OID); 5875 5876 // InstanceSize is really instance end. 5877 InstanceSize = RL.getDataSize().getQuantity(); 5878 5879 // If there are no fields, the start is the same as the end. 5880 if (!RL.getFieldCount()) 5881 InstanceStart = InstanceSize; 5882 else 5883 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 5884 } 5885 5886 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 5887 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5888 if (!ObjCEmptyCacheVar) { 5889 ObjCEmptyCacheVar = new llvm::GlobalVariable( 5890 CGM.getModule(), 5891 ObjCTypes.CacheTy, 5892 false, 5893 llvm::GlobalValue::ExternalLinkage, 5894 nullptr, 5895 "_objc_empty_cache"); 5896 5897 // Make this entry NULL for any iOS device target, any iOS simulator target, 5898 // OS X with deployment target 10.9 or later. 5899 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 5900 if (Triple.isiOS() || (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9))) 5901 // This entry will be null. 5902 ObjCEmptyVtableVar = nullptr; 5903 else 5904 ObjCEmptyVtableVar = new llvm::GlobalVariable( 5905 CGM.getModule(), 5906 ObjCTypes.ImpnfABITy, 5907 false, 5908 llvm::GlobalValue::ExternalLinkage, 5909 nullptr, 5910 "_objc_empty_vtable"); 5911 } 5912 assert(ID->getClassInterface() && 5913 "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 5914 // FIXME: Is this correct (that meta class size is never computed)? 5915 uint32_t InstanceStart = 5916 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 5917 uint32_t InstanceSize = InstanceStart; 5918 uint32_t flags = NonFragileABI_Class_Meta; 5919 llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix()); 5920 llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix()); 5921 llvm::SmallString<64> TClassName; 5922 5923 llvm::GlobalVariable *SuperClassGV, *IsAGV; 5924 5925 // Build the flags for the metaclass. 5926 bool classIsHidden = 5927 ID->getClassInterface()->getVisibility() == HiddenVisibility; 5928 if (classIsHidden) 5929 flags |= NonFragileABI_Class_Hidden; 5930 5931 // FIXME: why is this flag set on the metaclass? 5932 // ObjC metaclasses have no fields and don't really get constructed. 5933 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 5934 flags |= NonFragileABI_Class_HasCXXStructors; 5935 if (!ID->hasNonZeroConstructors()) 5936 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 5937 } 5938 5939 if (!ID->getClassInterface()->getSuperClass()) { 5940 // class is root 5941 flags |= NonFragileABI_Class_Root; 5942 TClassName = ObjCClassName; 5943 TClassName += ClassName; 5944 SuperClassGV = GetClassGlobal(TClassName.str(), 5945 ID->getClassInterface()->isWeakImported()); 5946 TClassName = ObjCMetaClassName; 5947 TClassName += ClassName; 5948 IsAGV = GetClassGlobal(TClassName.str(), 5949 ID->getClassInterface()->isWeakImported()); 5950 } else { 5951 // Has a root. Current class is not a root. 5952 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 5953 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 5954 Root = Super; 5955 TClassName = ObjCMetaClassName ; 5956 TClassName += Root->getObjCRuntimeNameAsString(); 5957 IsAGV = GetClassGlobal(TClassName.str(), 5958 Root->isWeakImported()); 5959 5960 // work on super class metadata symbol. 5961 TClassName = ObjCMetaClassName; 5962 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 5963 SuperClassGV = GetClassGlobal( 5964 TClassName.str(), 5965 ID->getClassInterface()->getSuperClass()->isWeakImported()); 5966 } 5967 llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags, 5968 InstanceStart, 5969 InstanceSize,ID); 5970 TClassName = ObjCMetaClassName; 5971 TClassName += ClassName; 5972 llvm::GlobalVariable *MetaTClass = BuildClassMetaData( 5973 TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden, 5974 ID->getClassInterface()->isWeakImported()); 5975 DefinedMetaClasses.push_back(MetaTClass); 5976 5977 // Metadata for the class 5978 flags = 0; 5979 if (classIsHidden) 5980 flags |= NonFragileABI_Class_Hidden; 5981 5982 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 5983 flags |= NonFragileABI_Class_HasCXXStructors; 5984 5985 // Set a flag to enable a runtime optimization when a class has 5986 // fields that require destruction but which don't require 5987 // anything except zero-initialization during construction. This 5988 // is most notably true of __strong and __weak types, but you can 5989 // also imagine there being C++ types with non-trivial default 5990 // constructors that merely set all fields to null. 5991 if (!ID->hasNonZeroConstructors()) 5992 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 5993 } 5994 5995 if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface())) 5996 flags |= NonFragileABI_Class_Exception; 5997 5998 if (!ID->getClassInterface()->getSuperClass()) { 5999 flags |= NonFragileABI_Class_Root; 6000 SuperClassGV = nullptr; 6001 } else { 6002 // Has a root. Current class is not a root. 6003 TClassName = ObjCClassName; 6004 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 6005 SuperClassGV = GetClassGlobal( 6006 TClassName.str(), 6007 ID->getClassInterface()->getSuperClass()->isWeakImported()); 6008 } 6009 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6010 CLASS_RO_GV = BuildClassRoTInitializer(flags, 6011 InstanceStart, 6012 InstanceSize, 6013 ID); 6014 6015 TClassName = ObjCClassName; 6016 TClassName += ClassName; 6017 llvm::GlobalVariable *ClassMD = 6018 BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV, 6019 classIsHidden, 6020 ID->getClassInterface()->isWeakImported()); 6021 DefinedClasses.push_back(ClassMD); 6022 ImplementedClasses.push_back(ID->getClassInterface()); 6023 6024 // Determine if this class is also "non-lazy". 6025 if (ImplementationIsNonLazy(ID)) 6026 DefinedNonLazyClasses.push_back(ClassMD); 6027 6028 // Force the definition of the EHType if necessary. 6029 if (flags & NonFragileABI_Class_Exception) 6030 GetInterfaceEHType(ID->getClassInterface(), true); 6031 // Make sure method definition entries are all clear for next implementation. 6032 MethodDefinitions.clear(); 6033 } 6034 6035 /// GenerateProtocolRef - This routine is called to generate code for 6036 /// a protocol reference expression; as in: 6037 /// @code 6038 /// @protocol(Proto1); 6039 /// @endcode 6040 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6041 /// which will hold address of the protocol meta-data. 6042 /// 6043 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6044 const ObjCProtocolDecl *PD) { 6045 6046 // This routine is called for @protocol only. So, we must build definition 6047 // of protocol's meta-data (not a reference to it!) 6048 // 6049 llvm::Constant *Init = 6050 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6051 ObjCTypes.getExternalProtocolPtrTy()); 6052 6053 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6054 ProtocolName += PD->getObjCRuntimeNameAsString(); 6055 6056 CharUnits Align = CGF.getPointerAlign(); 6057 6058 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6059 if (PTGV) 6060 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6061 PTGV = new llvm::GlobalVariable( 6062 CGM.getModule(), 6063 Init->getType(), false, 6064 llvm::GlobalValue::WeakAnyLinkage, 6065 Init, 6066 ProtocolName); 6067 PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip"); 6068 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6069 PTGV->setAlignment(Align.getQuantity()); 6070 CGM.addCompilerUsedGlobal(PTGV); 6071 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6072 } 6073 6074 /// GenerateCategory - Build metadata for a category implementation. 6075 /// struct _category_t { 6076 /// const char * const name; 6077 /// struct _class_t *const cls; 6078 /// const struct _method_list_t * const instance_methods; 6079 /// const struct _method_list_t * const class_methods; 6080 /// const struct _protocol_list_t * const protocols; 6081 /// const struct _prop_list_t * const properties; 6082 /// } 6083 /// 6084 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6085 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6086 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6087 6088 llvm::SmallString<64> ExtCatName(Prefix); 6089 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6090 ExtCatName += "_$_"; 6091 ExtCatName += OCD->getNameAsString(); 6092 6093 llvm::SmallString<64> ExtClassName(getClassSymbolPrefix()); 6094 ExtClassName += Interface->getObjCRuntimeNameAsString(); 6095 6096 llvm::Constant *Values[6]; 6097 Values[0] = GetClassName(OCD->getIdentifier()->getName()); 6098 // meta-class entry symbol 6099 llvm::GlobalVariable *ClassGV = 6100 GetClassGlobal(ExtClassName.str(), Interface->isWeakImported()); 6101 6102 Values[1] = ClassGV; 6103 std::vector<llvm::Constant*> Methods; 6104 llvm::SmallString<64> MethodListName(Prefix); 6105 6106 MethodListName += "INSTANCE_METHODS_"; 6107 MethodListName += Interface->getObjCRuntimeNameAsString(); 6108 MethodListName += "_$_"; 6109 MethodListName += OCD->getName(); 6110 6111 for (const auto *I : OCD->instance_methods()) 6112 // Instance methods should always be defined. 6113 Methods.push_back(GetMethodConstant(I)); 6114 6115 Values[2] = EmitMethodList(MethodListName.str(), 6116 "__DATA, __objc_const", 6117 Methods); 6118 6119 MethodListName = Prefix; 6120 MethodListName += "CLASS_METHODS_"; 6121 MethodListName += Interface->getObjCRuntimeNameAsString(); 6122 MethodListName += "_$_"; 6123 MethodListName += OCD->getNameAsString(); 6124 6125 Methods.clear(); 6126 for (const auto *I : OCD->class_methods()) 6127 // Class methods should always be defined. 6128 Methods.push_back(GetMethodConstant(I)); 6129 6130 Values[3] = EmitMethodList(MethodListName.str(), 6131 "__DATA, __objc_const", 6132 Methods); 6133 const ObjCCategoryDecl *Category = 6134 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6135 if (Category) { 6136 SmallString<256> ExtName; 6137 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6138 << OCD->getName(); 6139 Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6140 + Interface->getObjCRuntimeNameAsString() + "_$_" 6141 + Category->getName(), 6142 Category->protocol_begin(), 6143 Category->protocol_end()); 6144 Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6145 OCD, Category, ObjCTypes); 6146 } else { 6147 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6148 Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6149 } 6150 6151 llvm::Constant *Init = 6152 llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy, 6153 Values); 6154 llvm::GlobalVariable *GCATV 6155 = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy, 6156 false, 6157 llvm::GlobalValue::PrivateLinkage, 6158 Init, 6159 ExtCatName.str()); 6160 GCATV->setAlignment( 6161 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy)); 6162 GCATV->setSection("__DATA, __objc_const"); 6163 CGM.addCompilerUsedGlobal(GCATV); 6164 DefinedCategories.push_back(GCATV); 6165 6166 // Determine if this category is also "non-lazy". 6167 if (ImplementationIsNonLazy(OCD)) 6168 DefinedNonLazyCategories.push_back(GCATV); 6169 // method definition entries must be clear for next implementation. 6170 MethodDefinitions.clear(); 6171 } 6172 6173 /// GetMethodConstant - Return a struct objc_method constant for the 6174 /// given method if it has been defined. The result is null if the 6175 /// method has not been defined. The return value has type MethodPtrTy. 6176 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant( 6177 const ObjCMethodDecl *MD) { 6178 llvm::Function *Fn = GetMethodDefinition(MD); 6179 if (!Fn) 6180 return nullptr; 6181 6182 llvm::Constant *Method[] = { 6183 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6184 ObjCTypes.SelectorPtrTy), 6185 GetMethodVarType(MD), 6186 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 6187 }; 6188 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 6189 } 6190 6191 /// EmitMethodList - Build meta-data for method declarations 6192 /// struct _method_list_t { 6193 /// uint32_t entsize; // sizeof(struct _objc_method) 6194 /// uint32_t method_count; 6195 /// struct _objc_method method_list[method_count]; 6196 /// } 6197 /// 6198 llvm::Constant * 6199 CGObjCNonFragileABIMac::EmitMethodList(Twine Name, 6200 const char *Section, 6201 ArrayRef<llvm::Constant*> Methods) { 6202 // Return null for empty list. 6203 if (Methods.empty()) 6204 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6205 6206 llvm::Constant *Values[3]; 6207 // sizeof(struct _objc_method) 6208 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6209 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6210 // method_count 6211 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 6212 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 6213 Methods.size()); 6214 Values[2] = llvm::ConstantArray::get(AT, Methods); 6215 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6216 6217 llvm::GlobalVariable *GV = 6218 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6219 llvm::GlobalValue::PrivateLinkage, Init, Name); 6220 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6221 GV->setSection(Section); 6222 CGM.addCompilerUsedGlobal(GV); 6223 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6224 } 6225 6226 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6227 /// the given ivar. 6228 llvm::GlobalVariable * 6229 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6230 const ObjCIvarDecl *Ivar) { 6231 6232 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6233 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6234 Name += Container->getObjCRuntimeNameAsString(); 6235 Name += "."; 6236 Name += Ivar->getName(); 6237 llvm::GlobalVariable *IvarOffsetGV = 6238 CGM.getModule().getGlobalVariable(Name); 6239 if (!IvarOffsetGV) 6240 IvarOffsetGV = new llvm::GlobalVariable( 6241 CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false, 6242 llvm::GlobalValue::ExternalLinkage, nullptr, Name.str()); 6243 return IvarOffsetGV; 6244 } 6245 6246 llvm::Constant * 6247 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6248 const ObjCIvarDecl *Ivar, 6249 unsigned long int Offset) { 6250 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6251 IvarOffsetGV->setInitializer( 6252 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6253 IvarOffsetGV->setAlignment( 6254 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6255 6256 // FIXME: This matches gcc, but shouldn't the visibility be set on the use as 6257 // well (i.e., in ObjCIvarOffsetVariable). 6258 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6259 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6260 ID->getVisibility() == HiddenVisibility) 6261 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6262 else 6263 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6264 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6265 return IvarOffsetGV; 6266 } 6267 6268 /// EmitIvarList - Emit the ivar list for the given 6269 /// implementation. The return value has type 6270 /// IvarListnfABIPtrTy. 6271 /// struct _ivar_t { 6272 /// unsigned [long] int *offset; // pointer to ivar offset location 6273 /// char *name; 6274 /// char *type; 6275 /// uint32_t alignment; 6276 /// uint32_t size; 6277 /// } 6278 /// struct _ivar_list_t { 6279 /// uint32 entsize; // sizeof(struct _ivar_t) 6280 /// uint32 count; 6281 /// struct _iver_t list[count]; 6282 /// } 6283 /// 6284 6285 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6286 const ObjCImplementationDecl *ID) { 6287 6288 std::vector<llvm::Constant*> Ivars; 6289 6290 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6291 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6292 6293 // FIXME. Consolidate this with similar code in GenerateClass. 6294 6295 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6296 IVD; IVD = IVD->getNextIvar()) { 6297 // Ignore unnamed bit-fields. 6298 if (!IVD->getDeclName()) 6299 continue; 6300 llvm::Constant *Ivar[5]; 6301 Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6302 ComputeIvarBaseOffset(CGM, ID, IVD)); 6303 Ivar[1] = GetMethodVarName(IVD->getIdentifier()); 6304 Ivar[2] = GetMethodVarType(IVD); 6305 llvm::Type *FieldTy = 6306 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6307 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6308 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6309 IVD->getType().getTypePtr()) >> 3; 6310 Align = llvm::Log2_32(Align); 6311 Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align); 6312 // NOTE. Size of a bitfield does not match gcc's, because of the 6313 // way bitfields are treated special in each. But I am told that 6314 // 'size' for bitfield ivars is ignored by the runtime so it does 6315 // not matter. If it matters, there is enough info to get the 6316 // bitfield right! 6317 Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6318 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar)); 6319 } 6320 // Return null for empty list. 6321 if (Ivars.empty()) 6322 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6323 6324 llvm::Constant *Values[3]; 6325 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy); 6326 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6327 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 6328 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy, 6329 Ivars.size()); 6330 Values[2] = llvm::ConstantArray::get(AT, Ivars); 6331 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6332 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6333 llvm::GlobalVariable *GV = 6334 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6335 llvm::GlobalValue::PrivateLinkage, 6336 Init, 6337 Prefix + OID->getObjCRuntimeNameAsString()); 6338 GV->setAlignment( 6339 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6340 GV->setSection("__DATA, __objc_const"); 6341 6342 CGM.addCompilerUsedGlobal(GV); 6343 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6344 } 6345 6346 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6347 const ObjCProtocolDecl *PD) { 6348 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6349 6350 if (!Entry) { 6351 // We use the initializer as a marker of whether this is a forward 6352 // reference or not. At module finalization we add the empty 6353 // contents for protocols which were referenced but never defined. 6354 Entry = 6355 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6356 false, llvm::GlobalValue::ExternalLinkage, 6357 nullptr, 6358 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6359 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6360 } 6361 6362 return Entry; 6363 } 6364 6365 /// GetOrEmitProtocol - Generate the protocol meta-data: 6366 /// @code 6367 /// struct _protocol_t { 6368 /// id isa; // NULL 6369 /// const char * const protocol_name; 6370 /// const struct _protocol_list_t * protocol_list; // super protocols 6371 /// const struct method_list_t * const instance_methods; 6372 /// const struct method_list_t * const class_methods; 6373 /// const struct method_list_t *optionalInstanceMethods; 6374 /// const struct method_list_t *optionalClassMethods; 6375 /// const struct _prop_list_t * properties; 6376 /// const uint32_t size; // sizeof(struct _protocol_t) 6377 /// const uint32_t flags; // = 0 6378 /// const char ** extendedMethodTypes; 6379 /// const char *demangledName; 6380 /// } 6381 /// @endcode 6382 /// 6383 6384 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6385 const ObjCProtocolDecl *PD) { 6386 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6387 6388 // Early exit if a defining object has already been generated. 6389 if (Entry && Entry->hasInitializer()) 6390 return Entry; 6391 6392 // Use the protocol definition, if there is one. 6393 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6394 PD = Def; 6395 6396 // Construct method lists. 6397 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 6398 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 6399 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 6400 for (const auto *MD : PD->instance_methods()) { 6401 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6402 if (!C) 6403 return GetOrEmitProtocolRef(PD); 6404 6405 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6406 OptInstanceMethods.push_back(C); 6407 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6408 } else { 6409 InstanceMethods.push_back(C); 6410 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6411 } 6412 } 6413 6414 for (const auto *MD : PD->class_methods()) { 6415 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6416 if (!C) 6417 return GetOrEmitProtocolRef(PD); 6418 6419 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6420 OptClassMethods.push_back(C); 6421 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6422 } else { 6423 ClassMethods.push_back(C); 6424 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6425 } 6426 } 6427 6428 MethodTypesExt.insert(MethodTypesExt.end(), 6429 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 6430 6431 llvm::Constant *Values[12]; 6432 // isa is NULL 6433 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy); 6434 Values[1] = GetClassName(PD->getObjCRuntimeNameAsString()); 6435 Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(), 6436 PD->protocol_begin(), 6437 PD->protocol_end()); 6438 6439 Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_" 6440 + PD->getObjCRuntimeNameAsString(), 6441 "__DATA, __objc_const", 6442 InstanceMethods); 6443 Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_" 6444 + PD->getObjCRuntimeNameAsString(), 6445 "__DATA, __objc_const", 6446 ClassMethods); 6447 Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_" 6448 + PD->getObjCRuntimeNameAsString(), 6449 "__DATA, __objc_const", 6450 OptInstanceMethods); 6451 Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_" 6452 + PD->getObjCRuntimeNameAsString(), 6453 "__DATA, __objc_const", 6454 OptClassMethods); 6455 Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6456 nullptr, PD, ObjCTypes); 6457 uint32_t Size = 6458 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6459 Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6460 Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy); 6461 Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6462 + PD->getObjCRuntimeNameAsString(), 6463 MethodTypesExt, ObjCTypes); 6464 // const char *demangledName; 6465 Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6466 6467 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy, 6468 Values); 6469 6470 if (Entry) { 6471 // Already created, fix the linkage and update the initializer. 6472 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6473 Entry->setInitializer(Init); 6474 } else { 6475 Entry = 6476 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6477 false, llvm::GlobalValue::WeakAnyLinkage, Init, 6478 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6479 Entry->setAlignment( 6480 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy)); 6481 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6482 6483 Protocols[PD->getIdentifier()] = Entry; 6484 } 6485 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6486 CGM.addCompilerUsedGlobal(Entry); 6487 6488 // Use this protocol meta-data to build protocol list table in section 6489 // __DATA, __objc_protolist 6490 llvm::GlobalVariable *PTGV = 6491 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6492 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6493 "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6494 PTGV->setAlignment( 6495 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6496 PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip"); 6497 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6498 CGM.addCompilerUsedGlobal(PTGV); 6499 return Entry; 6500 } 6501 6502 /// EmitProtocolList - Generate protocol list meta-data: 6503 /// @code 6504 /// struct _protocol_list_t { 6505 /// long protocol_count; // Note, this is 32/64 bit 6506 /// struct _protocol_t[protocol_count]; 6507 /// } 6508 /// @endcode 6509 /// 6510 llvm::Constant * 6511 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6512 ObjCProtocolDecl::protocol_iterator begin, 6513 ObjCProtocolDecl::protocol_iterator end) { 6514 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6515 6516 // Just return null for empty protocol lists 6517 if (begin == end) 6518 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6519 6520 // FIXME: We shouldn't need to do this lookup here, should we? 6521 SmallString<256> TmpName; 6522 Name.toVector(TmpName); 6523 llvm::GlobalVariable *GV = 6524 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6525 if (GV) 6526 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6527 6528 for (; begin != end; ++begin) 6529 ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented??? 6530 6531 // This list is null terminated. 6532 ProtocolRefs.push_back(llvm::Constant::getNullValue( 6533 ObjCTypes.ProtocolnfABIPtrTy)); 6534 6535 llvm::Constant *Values[2]; 6536 Values[0] = 6537 llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); 6538 Values[1] = 6539 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy, 6540 ProtocolRefs.size()), 6541 ProtocolRefs); 6542 6543 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6544 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6545 llvm::GlobalValue::PrivateLinkage, 6546 Init, Name); 6547 GV->setSection("__DATA, __objc_const"); 6548 GV->setAlignment( 6549 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6550 CGM.addCompilerUsedGlobal(GV); 6551 return llvm::ConstantExpr::getBitCast(GV, 6552 ObjCTypes.ProtocolListnfABIPtrTy); 6553 } 6554 6555 /// GetMethodDescriptionConstant - This routine build following meta-data: 6556 /// struct _objc_method { 6557 /// SEL _cmd; 6558 /// char *method_type; 6559 /// char *_imp; 6560 /// } 6561 6562 llvm::Constant * 6563 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 6564 llvm::Constant *Desc[3]; 6565 Desc[0] = 6566 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6567 ObjCTypes.SelectorPtrTy); 6568 Desc[1] = GetMethodVarType(MD); 6569 if (!Desc[1]) 6570 return nullptr; 6571 6572 // Protocol methods have no implementation. So, this entry is always NULL. 6573 Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6574 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc); 6575 } 6576 6577 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6578 /// This code gen. amounts to generating code for: 6579 /// @code 6580 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6581 /// @encode 6582 /// 6583 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6584 CodeGen::CodeGenFunction &CGF, 6585 QualType ObjectTy, 6586 llvm::Value *BaseValue, 6587 const ObjCIvarDecl *Ivar, 6588 unsigned CVRQualifiers) { 6589 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6590 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6591 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6592 Offset); 6593 } 6594 6595 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6596 CodeGen::CodeGenFunction &CGF, 6597 const ObjCInterfaceDecl *Interface, 6598 const ObjCIvarDecl *Ivar) { 6599 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6600 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6601 CGF.getSizeAlign(), "ivar"); 6602 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6603 cast<llvm::LoadInst>(IvarOffsetValue) 6604 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6605 llvm::MDNode::get(VMContext, None)); 6606 6607 // This could be 32bit int or 64bit integer depending on the architecture. 6608 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6609 // as this is what caller always expectes. 6610 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6611 IvarOffsetValue = CGF.Builder.CreateIntCast( 6612 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6613 return IvarOffsetValue; 6614 } 6615 6616 static void appendSelectorForMessageRefTable(std::string &buffer, 6617 Selector selector) { 6618 if (selector.isUnarySelector()) { 6619 buffer += selector.getNameForSlot(0); 6620 return; 6621 } 6622 6623 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6624 buffer += selector.getNameForSlot(i); 6625 buffer += '_'; 6626 } 6627 } 6628 6629 /// Emit a "v-table" message send. We emit a weak hidden-visibility 6630 /// struct, initially containing the selector pointer and a pointer to 6631 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6632 /// load and call the function pointer, passing the address of the 6633 /// struct as the second parameter. The runtime determines whether 6634 /// the selector is currently emitted using vtable dispatch; if so, it 6635 /// substitutes a stub function which simply tail-calls through the 6636 /// appropriate vtable slot, and if not, it substitues a stub function 6637 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6638 /// argument to correctly point to the selector. 6639 RValue 6640 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6641 ReturnValueSlot returnSlot, 6642 QualType resultType, 6643 Selector selector, 6644 llvm::Value *arg0, 6645 QualType arg0Type, 6646 bool isSuper, 6647 const CallArgList &formalArgs, 6648 const ObjCMethodDecl *method) { 6649 // Compute the actual arguments. 6650 CallArgList args; 6651 6652 // First argument: the receiver / super-call structure. 6653 if (!isSuper) 6654 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6655 args.add(RValue::get(arg0), arg0Type); 6656 6657 // Second argument: a pointer to the message ref structure. Leave 6658 // the actual argument value blank for now. 6659 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 6660 6661 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 6662 6663 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 6664 6665 NullReturnState nullReturn; 6666 6667 // Find the function to call and the mangled name for the message 6668 // ref structure. Using a different mangled name wouldn't actually 6669 // be a problem; it would just be a waste. 6670 // 6671 // The runtime currently never uses vtable dispatch for anything 6672 // except normal, non-super message-sends. 6673 // FIXME: don't use this for that. 6674 llvm::Constant *fn = nullptr; 6675 std::string messageRefName("\01l_"); 6676 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 6677 if (isSuper) { 6678 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 6679 messageRefName += "objc_msgSendSuper2_stret_fixup"; 6680 } else { 6681 nullReturn.init(CGF, arg0); 6682 fn = ObjCTypes.getMessageSendStretFixupFn(); 6683 messageRefName += "objc_msgSend_stret_fixup"; 6684 } 6685 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 6686 fn = ObjCTypes.getMessageSendFpretFixupFn(); 6687 messageRefName += "objc_msgSend_fpret_fixup"; 6688 } else { 6689 if (isSuper) { 6690 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 6691 messageRefName += "objc_msgSendSuper2_fixup"; 6692 } else { 6693 fn = ObjCTypes.getMessageSendFixupFn(); 6694 messageRefName += "objc_msgSend_fixup"; 6695 } 6696 } 6697 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 6698 messageRefName += '_'; 6699 6700 // Append the selector name, except use underscores anywhere we 6701 // would have used colons. 6702 appendSelectorForMessageRefTable(messageRefName, selector); 6703 6704 llvm::GlobalVariable *messageRef 6705 = CGM.getModule().getGlobalVariable(messageRefName); 6706 if (!messageRef) { 6707 // Build the message ref structure. 6708 llvm::Constant *values[] = { fn, GetMethodVarName(selector) }; 6709 llvm::Constant *init = llvm::ConstantStruct::getAnon(values); 6710 messageRef = new llvm::GlobalVariable(CGM.getModule(), 6711 init->getType(), 6712 /*constant*/ false, 6713 llvm::GlobalValue::WeakAnyLinkage, 6714 init, 6715 messageRefName); 6716 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 6717 messageRef->setAlignment(16); 6718 messageRef->setSection("__DATA, __objc_msgrefs, coalesced"); 6719 } 6720 6721 bool requiresnullCheck = false; 6722 if (CGM.getLangOpts().ObjCAutoRefCount && method) 6723 for (const auto *ParamDecl : method->params()) { 6724 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 6725 if (!nullReturn.NullBB) 6726 nullReturn.init(CGF, arg0); 6727 requiresnullCheck = true; 6728 break; 6729 } 6730 } 6731 6732 Address mref = 6733 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 6734 CGF.getPointerAlign()); 6735 6736 // Update the message ref argument. 6737 args[1].RV = RValue::get(mref.getPointer()); 6738 6739 // Load the function to call from the message ref table. 6740 Address calleeAddr = 6741 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 6742 llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 6743 6744 callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType); 6745 6746 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 6747 return nullReturn.complete(CGF, result, resultType, formalArgs, 6748 requiresnullCheck ? method : nullptr); 6749 } 6750 6751 /// Generate code for a message send expression in the nonfragile abi. 6752 CodeGen::RValue 6753 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 6754 ReturnValueSlot Return, 6755 QualType ResultType, 6756 Selector Sel, 6757 llvm::Value *Receiver, 6758 const CallArgList &CallArgs, 6759 const ObjCInterfaceDecl *Class, 6760 const ObjCMethodDecl *Method) { 6761 return isVTableDispatchedSelector(Sel) 6762 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6763 Receiver, CGF.getContext().getObjCIdType(), 6764 false, CallArgs, Method) 6765 : EmitMessageSend(CGF, Return, ResultType, 6766 EmitSelector(CGF, Sel), 6767 Receiver, CGF.getContext().getObjCIdType(), 6768 false, CallArgs, Method, Class, ObjCTypes); 6769 } 6770 6771 llvm::GlobalVariable * 6772 CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name, bool Weak) { 6773 llvm::GlobalValue::LinkageTypes L = 6774 Weak ? llvm::GlobalValue::ExternalWeakLinkage 6775 : llvm::GlobalValue::ExternalLinkage; 6776 6777 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 6778 6779 if (!GV) 6780 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 6781 false, L, nullptr, Name); 6782 6783 assert(GV->getLinkage() == L); 6784 return GV; 6785 } 6786 6787 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 6788 IdentifierInfo *II, 6789 bool Weak, 6790 const ObjCInterfaceDecl *ID) { 6791 CharUnits Align = CGF.getPointerAlign(); 6792 llvm::GlobalVariable *&Entry = ClassReferences[II]; 6793 6794 if (!Entry) { 6795 std::string ClassName( 6796 getClassSymbolPrefix() + 6797 (ID ? ID->getObjCRuntimeNameAsString() : II->getName()).str()); 6798 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak); 6799 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6800 false, llvm::GlobalValue::PrivateLinkage, 6801 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 6802 Entry->setAlignment(Align.getQuantity()); 6803 Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip"); 6804 CGM.addCompilerUsedGlobal(Entry); 6805 } 6806 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6807 } 6808 6809 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 6810 const ObjCInterfaceDecl *ID) { 6811 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID); 6812 } 6813 6814 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 6815 CodeGenFunction &CGF) { 6816 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 6817 return EmitClassRefFromId(CGF, II, false, nullptr); 6818 } 6819 6820 llvm::Value * 6821 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 6822 const ObjCInterfaceDecl *ID) { 6823 CharUnits Align = CGF.getPointerAlign(); 6824 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 6825 6826 if (!Entry) { 6827 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6828 ClassName += ID->getObjCRuntimeNameAsString(); 6829 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), 6830 ID->isWeakImported()); 6831 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6832 false, llvm::GlobalValue::PrivateLinkage, 6833 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6834 Entry->setAlignment(Align.getQuantity()); 6835 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6836 CGM.addCompilerUsedGlobal(Entry); 6837 } 6838 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6839 } 6840 6841 /// EmitMetaClassRef - Return a Value * of the address of _class_t 6842 /// meta-data 6843 /// 6844 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 6845 const ObjCInterfaceDecl *ID, 6846 bool Weak) { 6847 CharUnits Align = CGF.getPointerAlign(); 6848 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 6849 if (!Entry) { 6850 llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix()); 6851 MetaClassName += ID->getObjCRuntimeNameAsString(); 6852 llvm::GlobalVariable *MetaClassGV = 6853 GetClassGlobal(MetaClassName.str(), Weak); 6854 6855 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6856 false, llvm::GlobalValue::PrivateLinkage, 6857 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6858 Entry->setAlignment(Align.getQuantity()); 6859 6860 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6861 CGM.addCompilerUsedGlobal(Entry); 6862 } 6863 6864 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6865 } 6866 6867 /// GetClass - Return a reference to the class for the given interface 6868 /// decl. 6869 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 6870 const ObjCInterfaceDecl *ID) { 6871 if (ID->isWeakImported()) { 6872 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6873 ClassName += ID->getObjCRuntimeNameAsString(); 6874 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true); 6875 (void)ClassGV; 6876 assert(ClassGV->hasExternalWeakLinkage()); 6877 } 6878 6879 return EmitClassRef(CGF, ID); 6880 } 6881 6882 /// Generates a message send where the super is the receiver. This is 6883 /// a message send to self with special delivery semantics indicating 6884 /// which class's method should be called. 6885 CodeGen::RValue 6886 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 6887 ReturnValueSlot Return, 6888 QualType ResultType, 6889 Selector Sel, 6890 const ObjCInterfaceDecl *Class, 6891 bool isCategoryImpl, 6892 llvm::Value *Receiver, 6893 bool IsClassMessage, 6894 const CodeGen::CallArgList &CallArgs, 6895 const ObjCMethodDecl *Method) { 6896 // ... 6897 // Create and init a super structure; this is a (receiver, class) 6898 // pair we will pass to objc_msgSendSuper. 6899 Address ObjCSuper = 6900 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 6901 "objc_super"); 6902 6903 llvm::Value *ReceiverAsObject = 6904 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 6905 CGF.Builder.CreateStore( 6906 ReceiverAsObject, 6907 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 6908 6909 // If this is a class message the metaclass is passed as the target. 6910 llvm::Value *Target; 6911 if (IsClassMessage) 6912 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 6913 else 6914 Target = EmitSuperClassRef(CGF, Class); 6915 6916 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 6917 // ObjCTypes types. 6918 llvm::Type *ClassTy = 6919 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 6920 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 6921 CGF.Builder.CreateStore( 6922 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 6923 6924 return (isVTableDispatchedSelector(Sel)) 6925 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6926 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 6927 true, CallArgs, Method) 6928 : EmitMessageSend(CGF, Return, ResultType, 6929 EmitSelector(CGF, Sel), 6930 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 6931 true, CallArgs, Method, Class, ObjCTypes); 6932 } 6933 6934 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 6935 Selector Sel) { 6936 Address Addr = EmitSelectorAddr(CGF, Sel); 6937 6938 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 6939 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6940 llvm::MDNode::get(VMContext, None)); 6941 return LI; 6942 } 6943 6944 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 6945 Selector Sel) { 6946 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 6947 6948 CharUnits Align = CGF.getPointerAlign(); 6949 if (!Entry) { 6950 llvm::Constant *Casted = 6951 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 6952 ObjCTypes.SelectorPtrTy); 6953 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 6954 false, llvm::GlobalValue::PrivateLinkage, 6955 Casted, "OBJC_SELECTOR_REFERENCES_"); 6956 Entry->setExternallyInitialized(true); 6957 Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip"); 6958 Entry->setAlignment(Align.getQuantity()); 6959 CGM.addCompilerUsedGlobal(Entry); 6960 } 6961 6962 return Address(Entry, Align); 6963 } 6964 6965 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 6966 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 6967 /// 6968 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 6969 llvm::Value *src, 6970 Address dst, 6971 llvm::Value *ivarOffset) { 6972 llvm::Type * SrcTy = src->getType(); 6973 if (!isa<llvm::PointerType>(SrcTy)) { 6974 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6975 assert(Size <= 8 && "does not support size > 8"); 6976 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6977 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6978 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6979 } 6980 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 6981 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 6982 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 6983 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 6984 } 6985 6986 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 6987 /// objc_assign_strongCast (id src, id *dst) 6988 /// 6989 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 6990 CodeGen::CodeGenFunction &CGF, 6991 llvm::Value *src, Address dst) { 6992 llvm::Type * SrcTy = src->getType(); 6993 if (!isa<llvm::PointerType>(SrcTy)) { 6994 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6995 assert(Size <= 8 && "does not support size > 8"); 6996 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6997 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6998 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6999 } 7000 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7001 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7002 llvm::Value *args[] = { src, dst.getPointer() }; 7003 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7004 args, "weakassign"); 7005 } 7006 7007 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7008 CodeGen::CodeGenFunction &CGF, 7009 Address DestPtr, 7010 Address SrcPtr, 7011 llvm::Value *Size) { 7012 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7013 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7014 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7015 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7016 } 7017 7018 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7019 /// object: objc_read_weak (id *src) 7020 /// 7021 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7022 CodeGen::CodeGenFunction &CGF, 7023 Address AddrWeakObj) { 7024 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7025 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7026 llvm::Value *read_weak = 7027 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7028 AddrWeakObj.getPointer(), "weakread"); 7029 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7030 return read_weak; 7031 } 7032 7033 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7034 /// objc_assign_weak (id src, id *dst) 7035 /// 7036 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7037 llvm::Value *src, Address dst) { 7038 llvm::Type * SrcTy = src->getType(); 7039 if (!isa<llvm::PointerType>(SrcTy)) { 7040 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7041 assert(Size <= 8 && "does not support size > 8"); 7042 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7043 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7044 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7045 } 7046 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7047 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7048 llvm::Value *args[] = { src, dst.getPointer() }; 7049 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7050 args, "weakassign"); 7051 } 7052 7053 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7054 /// objc_assign_global (id src, id *dst) 7055 /// 7056 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7057 llvm::Value *src, Address dst, 7058 bool threadlocal) { 7059 llvm::Type * SrcTy = src->getType(); 7060 if (!isa<llvm::PointerType>(SrcTy)) { 7061 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7062 assert(Size <= 8 && "does not support size > 8"); 7063 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7064 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7065 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7066 } 7067 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7068 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7069 llvm::Value *args[] = { src, dst.getPointer() }; 7070 if (!threadlocal) 7071 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7072 args, "globalassign"); 7073 else 7074 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7075 args, "threadlocalassign"); 7076 } 7077 7078 void 7079 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7080 const ObjCAtSynchronizedStmt &S) { 7081 EmitAtSynchronizedStmt(CGF, S, 7082 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7083 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7084 } 7085 7086 llvm::Constant * 7087 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7088 // There's a particular fixed type info for 'id'. 7089 if (T->isObjCIdType() || 7090 T->isObjCQualifiedIdType()) { 7091 llvm::Constant *IDEHType = 7092 CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7093 if (!IDEHType) 7094 IDEHType = 7095 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7096 false, 7097 llvm::GlobalValue::ExternalLinkage, 7098 nullptr, "OBJC_EHTYPE_id"); 7099 return IDEHType; 7100 } 7101 7102 // All other types should be Objective-C interface pointer types. 7103 const ObjCObjectPointerType *PT = 7104 T->getAs<ObjCObjectPointerType>(); 7105 assert(PT && "Invalid @catch type."); 7106 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7107 assert(IT && "Invalid @catch type."); 7108 return GetInterfaceEHType(IT->getDecl(), false); 7109 } 7110 7111 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7112 const ObjCAtTryStmt &S) { 7113 EmitTryCatchStmt(CGF, S, 7114 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7115 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7116 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7117 } 7118 7119 /// EmitThrowStmt - Generate code for a throw statement. 7120 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7121 const ObjCAtThrowStmt &S, 7122 bool ClearInsertionPoint) { 7123 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7124 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7125 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7126 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7127 .setDoesNotReturn(); 7128 } else { 7129 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7130 .setDoesNotReturn(); 7131 } 7132 7133 CGF.Builder.CreateUnreachable(); 7134 if (ClearInsertionPoint) 7135 CGF.Builder.ClearInsertionPoint(); 7136 } 7137 7138 llvm::Constant * 7139 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7140 bool ForDefinition) { 7141 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7142 7143 // If we don't need a definition, return the entry if found or check 7144 // if we use an external reference. 7145 if (!ForDefinition) { 7146 if (Entry) 7147 return Entry; 7148 7149 // If this type (or a super class) has the __objc_exception__ 7150 // attribute, emit an external reference. 7151 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7152 return Entry = 7153 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7154 llvm::GlobalValue::ExternalLinkage, 7155 nullptr, 7156 ("OBJC_EHTYPE_$_" + 7157 ID->getObjCRuntimeNameAsString())); 7158 } 7159 7160 // Otherwise we need to either make a new entry or fill in the 7161 // initializer. 7162 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7163 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 7164 ClassName += ID->getObjCRuntimeNameAsString(); 7165 std::string VTableName = "objc_ehtype_vtable"; 7166 llvm::GlobalVariable *VTableGV = 7167 CGM.getModule().getGlobalVariable(VTableName); 7168 if (!VTableGV) 7169 VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, 7170 false, 7171 llvm::GlobalValue::ExternalLinkage, 7172 nullptr, VTableName); 7173 7174 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7175 7176 llvm::Constant *Values[] = { 7177 llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV, 7178 VTableIdx), 7179 GetClassName(ID->getObjCRuntimeNameAsString()), 7180 GetClassGlobal(ClassName.str())}; 7181 llvm::Constant *Init = 7182 llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values); 7183 7184 llvm::GlobalValue::LinkageTypes L = ForDefinition 7185 ? llvm::GlobalValue::ExternalLinkage 7186 : llvm::GlobalValue::WeakAnyLinkage; 7187 if (Entry) { 7188 Entry->setInitializer(Init); 7189 } else { 7190 llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_"); 7191 EHTYPEName += ID->getObjCRuntimeNameAsString(); 7192 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7193 L, 7194 Init, 7195 EHTYPEName.str()); 7196 } 7197 assert(Entry->getLinkage() == L); 7198 7199 if (ID->getVisibility() == HiddenVisibility) 7200 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7201 Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment( 7202 ObjCTypes.EHTypeTy)); 7203 7204 if (ForDefinition) 7205 Entry->setSection("__DATA,__objc_const"); 7206 else 7207 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 7208 7209 return Entry; 7210 } 7211 7212 /* *** */ 7213 7214 CodeGen::CGObjCRuntime * 7215 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7216 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7217 case ObjCRuntime::FragileMacOSX: 7218 return new CGObjCMac(CGM); 7219 7220 case ObjCRuntime::MacOSX: 7221 case ObjCRuntime::iOS: 7222 return new CGObjCNonFragileABIMac(CGM); 7223 7224 case ObjCRuntime::GNUstep: 7225 case ObjCRuntime::GCC: 7226 case ObjCRuntime::ObjFW: 7227 llvm_unreachable("these runtimes are not Mac runtimes"); 7228 } 7229 llvm_unreachable("bad runtime"); 7230 } 7231