1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::Constant *getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::Constant *getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::Constant *getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::Constant *getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::Constant *getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::Constant *getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::Constant *getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::Constant *getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::Constant *getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::Constant *getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::Constant *getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::Constant *GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::Constant *getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::Constant *getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::Constant *getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::Constant *getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::Constant *getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::Constant *getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::Constant *getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::Constant *getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::Constant *getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::Constant *getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::Constant *getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::Constant *getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::Constant *getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::Constant *getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::Constant *getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::Constant *getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::Constant *getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::Constant *getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::Constant *getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::Constant *getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::Constant *getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 719 } 720 721 llvm::Constant *getObjCBeginCatchFn() { 722 llvm::Type *params[] = { Int8PtrTy }; 723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 724 params, false), 725 "objc_begin_catch"); 726 } 727 728 llvm::StructType *EHTypeTy; 729 llvm::Type *EHTypePtrTy; 730 731 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 732 }; 733 734 enum class ObjCLabelType { 735 ClassName, 736 MethodVarName, 737 MethodVarType, 738 PropertyName, 739 }; 740 741 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 742 public: 743 class SKIP_SCAN { 744 public: 745 unsigned skip; 746 unsigned scan; 747 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 748 : skip(_skip), scan(_scan) {} 749 }; 750 751 /// opcode for captured block variables layout 'instructions'. 752 /// In the following descriptions, 'I' is the value of the immediate field. 753 /// (field following the opcode). 754 /// 755 enum BLOCK_LAYOUT_OPCODE { 756 /// An operator which affects how the following layout should be 757 /// interpreted. 758 /// I == 0: Halt interpretation and treat everything else as 759 /// a non-pointer. Note that this instruction is equal 760 /// to '\0'. 761 /// I != 0: Currently unused. 762 BLOCK_LAYOUT_OPERATOR = 0, 763 764 /// The next I+1 bytes do not contain a value of object pointer type. 765 /// Note that this can leave the stream unaligned, meaning that 766 /// subsequent word-size instructions do not begin at a multiple of 767 /// the pointer size. 768 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 769 770 /// The next I+1 words do not contain a value of object pointer type. 771 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 772 /// when the required skip quantity is a multiple of the pointer size. 773 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 774 775 /// The next I+1 words are __strong pointers to Objective-C 776 /// objects or blocks. 777 BLOCK_LAYOUT_STRONG = 3, 778 779 /// The next I+1 words are pointers to __block variables. 780 BLOCK_LAYOUT_BYREF = 4, 781 782 /// The next I+1 words are __weak pointers to Objective-C 783 /// objects or blocks. 784 BLOCK_LAYOUT_WEAK = 5, 785 786 /// The next I+1 words are __unsafe_unretained pointers to 787 /// Objective-C objects or blocks. 788 BLOCK_LAYOUT_UNRETAINED = 6 789 790 /// The next I+1 words are block or object pointers with some 791 /// as-yet-unspecified ownership semantics. If we add more 792 /// flavors of ownership semantics, values will be taken from 793 /// this range. 794 /// 795 /// This is included so that older tools can at least continue 796 /// processing the layout past such things. 797 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 798 799 /// All other opcodes are reserved. Halt interpretation and 800 /// treat everything else as opaque. 801 }; 802 803 class RUN_SKIP { 804 public: 805 enum BLOCK_LAYOUT_OPCODE opcode; 806 CharUnits block_var_bytepos; 807 CharUnits block_var_size; 808 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 809 CharUnits BytePos = CharUnits::Zero(), 810 CharUnits Size = CharUnits::Zero()) 811 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 812 813 // Allow sorting based on byte pos. 814 bool operator<(const RUN_SKIP &b) const { 815 return block_var_bytepos < b.block_var_bytepos; 816 } 817 }; 818 819 protected: 820 llvm::LLVMContext &VMContext; 821 // FIXME! May not be needing this after all. 822 unsigned ObjCABI; 823 824 // arc/mrr layout of captured block literal variables. 825 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 826 827 /// LazySymbols - Symbols to generate a lazy reference for. See 828 /// DefinedSymbols and FinishModule(). 829 llvm::SetVector<IdentifierInfo*> LazySymbols; 830 831 /// DefinedSymbols - External symbols which are defined by this 832 /// module. The symbols in this list and LazySymbols are used to add 833 /// special linker symbols which ensure that Objective-C modules are 834 /// linked properly. 835 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 836 837 /// ClassNames - uniqued class names. 838 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 839 840 /// MethodVarNames - uniqued method variable names. 841 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 842 843 /// DefinedCategoryNames - list of category names in form Class_Category. 844 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 845 846 /// MethodVarTypes - uniqued method type signatures. We have to use 847 /// a StringMap here because have no other unique reference. 848 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 849 850 /// MethodDefinitions - map of methods which have been defined in 851 /// this translation unit. 852 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 853 854 /// PropertyNames - uniqued method variable names. 855 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 856 857 /// ClassReferences - uniqued class references. 858 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 859 860 /// SelectorReferences - uniqued selector references. 861 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 862 863 /// Protocols - Protocols for which an objc_protocol structure has 864 /// been emitted. Forward declarations are handled by creating an 865 /// empty structure whose initializer is filled in when/if defined. 866 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 867 868 /// DefinedProtocols - Protocols which have actually been 869 /// defined. We should not need this, see FIXME in GenerateProtocol. 870 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 871 872 /// DefinedClasses - List of defined classes. 873 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 874 875 /// ImplementedClasses - List of @implemented classes. 876 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 877 878 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 879 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 880 881 /// DefinedCategories - List of defined categories. 882 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 883 884 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 885 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 886 887 /// Cached reference to the class for constant strings. This value has type 888 /// int * but is actually an Obj-C class pointer. 889 llvm::WeakTrackingVH ConstantStringClassRef; 890 891 /// \brief The LLVM type corresponding to NSConstantString. 892 llvm::StructType *NSConstantStringType = nullptr; 893 894 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 895 896 /// GetNameForMethod - Return a name for the given method. 897 /// \param[out] NameOut - The return value. 898 void GetNameForMethod(const ObjCMethodDecl *OMD, 899 const ObjCContainerDecl *CD, 900 SmallVectorImpl<char> &NameOut); 901 902 /// GetMethodVarName - Return a unique constant for the given 903 /// selector's name. The return value has type char *. 904 llvm::Constant *GetMethodVarName(Selector Sel); 905 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 906 907 /// GetMethodVarType - Return a unique constant for the given 908 /// method's type encoding string. The return value has type char *. 909 910 // FIXME: This is a horrible name. 911 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 912 bool Extended = false); 913 llvm::Constant *GetMethodVarType(const FieldDecl *D); 914 915 /// GetPropertyName - Return a unique constant for the given 916 /// name. The return value has type char *. 917 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 918 919 // FIXME: This can be dropped once string functions are unified. 920 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 921 const Decl *Container); 922 923 /// GetClassName - Return a unique constant for the given selector's 924 /// runtime name (which may change via use of objc_runtime_name attribute on 925 /// class or protocol definition. The return value has type char *. 926 llvm::Constant *GetClassName(StringRef RuntimeName); 927 928 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 929 930 /// BuildIvarLayout - Builds ivar layout bitmap for the class 931 /// implementation for the __strong or __weak case. 932 /// 933 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 934 /// are any weak ivars defined directly in the class. Meaningless unless 935 /// building a weak layout. Does not guarantee that the layout will 936 /// actually have any entries, because the ivar might be under-aligned. 937 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 938 CharUnits beginOffset, 939 CharUnits endOffset, 940 bool forStrongLayout, 941 bool hasMRCWeakIvars); 942 943 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 944 CharUnits beginOffset, 945 CharUnits endOffset) { 946 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 947 } 948 949 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 950 CharUnits beginOffset, 951 CharUnits endOffset, 952 bool hasMRCWeakIvars) { 953 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 954 } 955 956 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 957 958 void UpdateRunSkipBlockVars(bool IsByref, 959 Qualifiers::ObjCLifetime LifeTime, 960 CharUnits FieldOffset, 961 CharUnits FieldSize); 962 963 void BuildRCBlockVarRecordLayout(const RecordType *RT, 964 CharUnits BytePos, bool &HasUnion, 965 bool ByrefLayout=false); 966 967 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 968 const RecordDecl *RD, 969 ArrayRef<const FieldDecl*> RecFields, 970 CharUnits BytePos, bool &HasUnion, 971 bool ByrefLayout); 972 973 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 974 975 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 976 977 /// GetIvarLayoutName - Returns a unique constant for the given 978 /// ivar layout bitmap. 979 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 980 const ObjCCommonTypesHelper &ObjCTypes); 981 982 /// EmitPropertyList - Emit the given property list. The return 983 /// value has type PropertyListPtrTy. 984 llvm::Constant *EmitPropertyList(Twine Name, 985 const Decl *Container, 986 const ObjCContainerDecl *OCD, 987 const ObjCCommonTypesHelper &ObjCTypes, 988 bool IsClassProperty); 989 990 /// EmitProtocolMethodTypes - Generate the array of extended method type 991 /// strings. The return value has type Int8PtrPtrTy. 992 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 993 ArrayRef<llvm::Constant*> MethodTypes, 994 const ObjCCommonTypesHelper &ObjCTypes); 995 996 /// GetProtocolRef - Return a reference to the internal protocol 997 /// description, creating an empty one if it has not been 998 /// defined. The return value has type ProtocolPtrTy. 999 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1000 1001 /// Return a reference to the given Class using runtime calls rather than 1002 /// by a symbol reference. 1003 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1004 const ObjCInterfaceDecl *ID, 1005 ObjCCommonTypesHelper &ObjCTypes); 1006 1007 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1008 1009 public: 1010 /// CreateMetadataVar - Create a global variable with internal 1011 /// linkage for use by the Objective-C runtime. 1012 /// 1013 /// This is a convenience wrapper which not only creates the 1014 /// variable, but also sets the section and alignment and adds the 1015 /// global to the "llvm.used" list. 1016 /// 1017 /// \param Name - The variable name. 1018 /// \param Init - The variable initializer; this is also used to 1019 /// define the type of the variable. 1020 /// \param Section - The section the variable should go into, or empty. 1021 /// \param Align - The alignment for the variable, or 0. 1022 /// \param AddToUsed - Whether the variable should be added to 1023 /// "llvm.used". 1024 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1025 ConstantStructBuilder &Init, 1026 StringRef Section, CharUnits Align, 1027 bool AddToUsed); 1028 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1029 llvm::Constant *Init, 1030 StringRef Section, CharUnits Align, 1031 bool AddToUsed); 1032 1033 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1034 ObjCLabelType LabelType, 1035 bool ForceNonFragileABI = false, 1036 bool NullTerminate = true); 1037 1038 protected: 1039 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1040 ReturnValueSlot Return, 1041 QualType ResultType, 1042 llvm::Value *Sel, 1043 llvm::Value *Arg0, 1044 QualType Arg0Ty, 1045 bool IsSuper, 1046 const CallArgList &CallArgs, 1047 const ObjCMethodDecl *OMD, 1048 const ObjCInterfaceDecl *ClassReceiver, 1049 const ObjCCommonTypesHelper &ObjCTypes); 1050 1051 /// EmitImageInfo - Emit the image info marker used to encode some module 1052 /// level information. 1053 void EmitImageInfo(); 1054 1055 public: 1056 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1057 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1058 1059 bool isNonFragileABI() const { 1060 return ObjCABI == 2; 1061 } 1062 1063 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1064 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1065 1066 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1067 const ObjCContainerDecl *CD=nullptr) override; 1068 1069 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1070 1071 /// GetOrEmitProtocol - Get the protocol object for the given 1072 /// declaration, emitting it if necessary. The return value has type 1073 /// ProtocolPtrTy. 1074 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1075 1076 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1077 /// object for the given declaration, emitting it if needed. These 1078 /// forward references will be filled in with empty bodies if no 1079 /// definition is seen. The return value has type ProtocolPtrTy. 1080 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1081 1082 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1083 1084 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1085 const CGBlockInfo &blockInfo) override; 1086 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1087 const CGBlockInfo &blockInfo) override; 1088 1089 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1090 QualType T) override; 1091 }; 1092 1093 namespace { 1094 1095 enum class MethodListType { 1096 CategoryInstanceMethods, 1097 CategoryClassMethods, 1098 InstanceMethods, 1099 ClassMethods, 1100 ProtocolInstanceMethods, 1101 ProtocolClassMethods, 1102 OptionalProtocolInstanceMethods, 1103 OptionalProtocolClassMethods, 1104 }; 1105 1106 /// A convenience class for splitting the methods of a protocol into 1107 /// the four interesting groups. 1108 class ProtocolMethodLists { 1109 public: 1110 enum Kind { 1111 RequiredInstanceMethods, 1112 RequiredClassMethods, 1113 OptionalInstanceMethods, 1114 OptionalClassMethods 1115 }; 1116 enum { 1117 NumProtocolMethodLists = 4 1118 }; 1119 1120 static MethodListType getMethodListKind(Kind kind) { 1121 switch (kind) { 1122 case RequiredInstanceMethods: 1123 return MethodListType::ProtocolInstanceMethods; 1124 case RequiredClassMethods: 1125 return MethodListType::ProtocolClassMethods; 1126 case OptionalInstanceMethods: 1127 return MethodListType::OptionalProtocolInstanceMethods; 1128 case OptionalClassMethods: 1129 return MethodListType::OptionalProtocolClassMethods; 1130 } 1131 llvm_unreachable("bad kind"); 1132 } 1133 1134 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1135 1136 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1137 ProtocolMethodLists result; 1138 1139 for (auto MD : PD->methods()) { 1140 size_t index = (2 * size_t(MD->isOptional())) 1141 + (size_t(MD->isClassMethod())); 1142 result.Methods[index].push_back(MD); 1143 } 1144 1145 return result; 1146 } 1147 1148 template <class Self> 1149 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1150 // In both ABIs, the method types list is parallel with the 1151 // concatenation of the methods arrays in the following order: 1152 // instance methods 1153 // class methods 1154 // optional instance methods 1155 // optional class methods 1156 SmallVector<llvm::Constant*, 8> result; 1157 1158 // Methods is already in the correct order for both ABIs. 1159 for (auto &list : Methods) { 1160 for (auto MD : list) { 1161 result.push_back(self->GetMethodVarType(MD, true)); 1162 } 1163 } 1164 1165 return result; 1166 } 1167 1168 template <class Self> 1169 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1170 Kind kind) const { 1171 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1172 getMethodListKind(kind), Methods[kind]); 1173 } 1174 }; 1175 1176 } // end anonymous namespace 1177 1178 class CGObjCMac : public CGObjCCommonMac { 1179 private: 1180 friend ProtocolMethodLists; 1181 1182 ObjCTypesHelper ObjCTypes; 1183 1184 /// EmitModuleInfo - Another marker encoding module level 1185 /// information. 1186 void EmitModuleInfo(); 1187 1188 /// EmitModuleSymols - Emit module symbols, the list of defined 1189 /// classes and categories. The result has type SymtabPtrTy. 1190 llvm::Constant *EmitModuleSymbols(); 1191 1192 /// FinishModule - Write out global data structures at the end of 1193 /// processing a translation unit. 1194 void FinishModule(); 1195 1196 /// EmitClassExtension - Generate the class extension structure used 1197 /// to store the weak ivar layout and properties. The return value 1198 /// has type ClassExtensionPtrTy. 1199 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1200 CharUnits instanceSize, 1201 bool hasMRCWeakIvars, 1202 bool isMetaclass); 1203 1204 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1205 /// for the given class. 1206 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1207 const ObjCInterfaceDecl *ID); 1208 1209 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1210 IdentifierInfo *II); 1211 1212 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1213 1214 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1215 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1216 1217 /// EmitIvarList - Emit the ivar list for the given 1218 /// implementation. If ForClass is true the list of class ivars 1219 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1220 /// interface ivars will be emitted. The return value has type 1221 /// IvarListPtrTy. 1222 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1223 bool ForClass); 1224 1225 /// EmitMetaClass - Emit a forward reference to the class structure 1226 /// for the metaclass of the given interface. The return value has 1227 /// type ClassPtrTy. 1228 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1229 1230 /// EmitMetaClass - Emit a class structure for the metaclass of the 1231 /// given implementation. The return value has type ClassPtrTy. 1232 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1233 llvm::Constant *Protocols, 1234 ArrayRef<const ObjCMethodDecl *> Methods); 1235 1236 void emitMethodConstant(ConstantArrayBuilder &builder, 1237 const ObjCMethodDecl *MD); 1238 1239 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1240 const ObjCMethodDecl *MD); 1241 1242 /// EmitMethodList - Emit the method list for the given 1243 /// implementation. The return value has type MethodListPtrTy. 1244 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1245 ArrayRef<const ObjCMethodDecl *> Methods); 1246 1247 /// GetOrEmitProtocol - Get the protocol object for the given 1248 /// declaration, emitting it if necessary. The return value has type 1249 /// ProtocolPtrTy. 1250 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1251 1252 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1253 /// object for the given declaration, emitting it if needed. These 1254 /// forward references will be filled in with empty bodies if no 1255 /// definition is seen. The return value has type ProtocolPtrTy. 1256 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1257 1258 /// EmitProtocolExtension - Generate the protocol extension 1259 /// structure used to store optional instance and class methods, and 1260 /// protocol properties. The return value has type 1261 /// ProtocolExtensionPtrTy. 1262 llvm::Constant * 1263 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1264 const ProtocolMethodLists &methodLists); 1265 1266 /// EmitProtocolList - Generate the list of referenced 1267 /// protocols. The return value has type ProtocolListPtrTy. 1268 llvm::Constant *EmitProtocolList(Twine Name, 1269 ObjCProtocolDecl::protocol_iterator begin, 1270 ObjCProtocolDecl::protocol_iterator end); 1271 1272 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1273 /// for the given selector. 1274 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1275 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1276 1277 public: 1278 CGObjCMac(CodeGen::CodeGenModule &cgm); 1279 1280 llvm::Constant *getNSConstantStringClassRef() override; 1281 1282 llvm::Function *ModuleInitFunction() override; 1283 1284 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1285 ReturnValueSlot Return, 1286 QualType ResultType, 1287 Selector Sel, llvm::Value *Receiver, 1288 const CallArgList &CallArgs, 1289 const ObjCInterfaceDecl *Class, 1290 const ObjCMethodDecl *Method) override; 1291 1292 CodeGen::RValue 1293 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1294 ReturnValueSlot Return, QualType ResultType, 1295 Selector Sel, const ObjCInterfaceDecl *Class, 1296 bool isCategoryImpl, llvm::Value *Receiver, 1297 bool IsClassMessage, const CallArgList &CallArgs, 1298 const ObjCMethodDecl *Method) override; 1299 1300 llvm::Value *GetClass(CodeGenFunction &CGF, 1301 const ObjCInterfaceDecl *ID) override; 1302 1303 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1304 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1305 1306 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1307 /// untyped one. 1308 llvm::Value *GetSelector(CodeGenFunction &CGF, 1309 const ObjCMethodDecl *Method) override; 1310 1311 llvm::Constant *GetEHType(QualType T) override; 1312 1313 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1314 1315 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1316 1317 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1318 1319 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1320 const ObjCProtocolDecl *PD) override; 1321 1322 llvm::Constant *GetPropertyGetFunction() override; 1323 llvm::Constant *GetPropertySetFunction() override; 1324 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1325 bool copy) override; 1326 llvm::Constant *GetGetStructFunction() override; 1327 llvm::Constant *GetSetStructFunction() override; 1328 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1329 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1330 llvm::Constant *EnumerationMutationFunction() override; 1331 1332 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1333 const ObjCAtTryStmt &S) override; 1334 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1335 const ObjCAtSynchronizedStmt &S) override; 1336 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1337 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1338 bool ClearInsertionPoint=true) override; 1339 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1340 Address AddrWeakObj) override; 1341 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1342 llvm::Value *src, Address dst) override; 1343 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1344 llvm::Value *src, Address dest, 1345 bool threadlocal = false) override; 1346 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1347 llvm::Value *src, Address dest, 1348 llvm::Value *ivarOffset) override; 1349 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1350 llvm::Value *src, Address dest) override; 1351 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1352 Address dest, Address src, 1353 llvm::Value *size) override; 1354 1355 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1356 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1357 unsigned CVRQualifiers) override; 1358 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1359 const ObjCInterfaceDecl *Interface, 1360 const ObjCIvarDecl *Ivar) override; 1361 }; 1362 1363 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1364 private: 1365 friend ProtocolMethodLists; 1366 ObjCNonFragileABITypesHelper ObjCTypes; 1367 llvm::GlobalVariable* ObjCEmptyCacheVar; 1368 llvm::Constant* ObjCEmptyVtableVar; 1369 1370 /// SuperClassReferences - uniqued super class references. 1371 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1372 1373 /// MetaClassReferences - uniqued meta class references. 1374 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1375 1376 /// EHTypeReferences - uniqued class ehtype references. 1377 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1378 1379 /// VTableDispatchMethods - List of methods for which we generate 1380 /// vtable-based message dispatch. 1381 llvm::DenseSet<Selector> VTableDispatchMethods; 1382 1383 /// DefinedMetaClasses - List of defined meta-classes. 1384 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1385 1386 /// isVTableDispatchedSelector - Returns true if SEL is a 1387 /// vtable-based selector. 1388 bool isVTableDispatchedSelector(Selector Sel); 1389 1390 /// FinishNonFragileABIModule - Write out global data structures at the end of 1391 /// processing a translation unit. 1392 void FinishNonFragileABIModule(); 1393 1394 /// AddModuleClassList - Add the given list of class pointers to the 1395 /// module with the provided symbol and section names. 1396 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1397 StringRef SymbolName, StringRef SectionName); 1398 1399 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1400 unsigned InstanceStart, 1401 unsigned InstanceSize, 1402 const ObjCImplementationDecl *ID); 1403 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1404 bool isMetaclass, 1405 llvm::Constant *IsAGV, 1406 llvm::Constant *SuperClassGV, 1407 llvm::Constant *ClassRoGV, 1408 bool HiddenVisibility); 1409 1410 void emitMethodConstant(ConstantArrayBuilder &builder, 1411 const ObjCMethodDecl *MD, 1412 bool forProtocol); 1413 1414 /// Emit the method list for the given implementation. The return value 1415 /// has type MethodListnfABITy. 1416 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1417 ArrayRef<const ObjCMethodDecl *> Methods); 1418 1419 /// EmitIvarList - Emit the ivar list for the given 1420 /// implementation. If ForClass is true the list of class ivars 1421 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1422 /// interface ivars will be emitted. The return value has type 1423 /// IvarListnfABIPtrTy. 1424 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1425 1426 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1427 const ObjCIvarDecl *Ivar, 1428 unsigned long int offset); 1429 1430 /// GetOrEmitProtocol - Get the protocol object for the given 1431 /// declaration, emitting it if necessary. The return value has type 1432 /// ProtocolPtrTy. 1433 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1434 1435 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1436 /// object for the given declaration, emitting it if needed. These 1437 /// forward references will be filled in with empty bodies if no 1438 /// definition is seen. The return value has type ProtocolPtrTy. 1439 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1440 1441 /// EmitProtocolList - Generate the list of referenced 1442 /// protocols. The return value has type ProtocolListPtrTy. 1443 llvm::Constant *EmitProtocolList(Twine Name, 1444 ObjCProtocolDecl::protocol_iterator begin, 1445 ObjCProtocolDecl::protocol_iterator end); 1446 1447 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1448 ReturnValueSlot Return, 1449 QualType ResultType, 1450 Selector Sel, 1451 llvm::Value *Receiver, 1452 QualType Arg0Ty, 1453 bool IsSuper, 1454 const CallArgList &CallArgs, 1455 const ObjCMethodDecl *Method); 1456 1457 /// GetClassGlobal - Return the global variable for the Objective-C 1458 /// class of the given name. 1459 llvm::Constant *GetClassGlobal(StringRef Name, 1460 ForDefinition_t IsForDefinition, 1461 bool Weak = false, bool DLLImport = false); 1462 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1463 bool isMetaclass, 1464 ForDefinition_t isForDefinition); 1465 1466 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1467 /// for the given class reference. 1468 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1469 const ObjCInterfaceDecl *ID); 1470 1471 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1472 IdentifierInfo *II, 1473 const ObjCInterfaceDecl *ID); 1474 1475 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1476 1477 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1478 /// for the given super class reference. 1479 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1480 const ObjCInterfaceDecl *ID); 1481 1482 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1483 /// meta-data 1484 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1485 const ObjCInterfaceDecl *ID, bool Weak); 1486 1487 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1488 /// the given ivar. 1489 /// 1490 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1491 const ObjCInterfaceDecl *ID, 1492 const ObjCIvarDecl *Ivar); 1493 1494 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1495 /// for the given selector. 1496 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1497 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1498 1499 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1500 /// interface. The return value has type EHTypePtrTy. 1501 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1502 ForDefinition_t IsForDefinition); 1503 1504 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1505 1506 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1507 1508 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1509 uint32_t &InstanceStart, 1510 uint32_t &InstanceSize); 1511 1512 // Shamelessly stolen from Analysis/CFRefCount.cpp 1513 Selector GetNullarySelector(const char* name) const { 1514 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1515 return CGM.getContext().Selectors.getSelector(0, &II); 1516 } 1517 1518 Selector GetUnarySelector(const char* name) const { 1519 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1520 return CGM.getContext().Selectors.getSelector(1, &II); 1521 } 1522 1523 /// ImplementationIsNonLazy - Check whether the given category or 1524 /// class implementation is "non-lazy". 1525 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1526 1527 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1528 const ObjCIvarDecl *IV) { 1529 // Annotate the load as an invariant load iff inside an instance method 1530 // and ivar belongs to instance method's class and one of its super class. 1531 // This check is needed because the ivar offset is a lazily 1532 // initialised value that may depend on objc_msgSend to perform a fixup on 1533 // the first message dispatch. 1534 // 1535 // An additional opportunity to mark the load as invariant arises when the 1536 // base of the ivar access is a parameter to an Objective C method. 1537 // However, because the parameters are not available in the current 1538 // interface, we cannot perform this check. 1539 if (const ObjCMethodDecl *MD = 1540 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1541 if (MD->isInstanceMethod()) 1542 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1543 return IV->getContainingInterface()->isSuperClassOf(ID); 1544 return false; 1545 } 1546 1547 public: 1548 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1549 1550 llvm::Constant *getNSConstantStringClassRef() override; 1551 1552 llvm::Function *ModuleInitFunction() override; 1553 1554 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1555 ReturnValueSlot Return, 1556 QualType ResultType, Selector Sel, 1557 llvm::Value *Receiver, 1558 const CallArgList &CallArgs, 1559 const ObjCInterfaceDecl *Class, 1560 const ObjCMethodDecl *Method) override; 1561 1562 CodeGen::RValue 1563 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1564 ReturnValueSlot Return, QualType ResultType, 1565 Selector Sel, const ObjCInterfaceDecl *Class, 1566 bool isCategoryImpl, llvm::Value *Receiver, 1567 bool IsClassMessage, const CallArgList &CallArgs, 1568 const ObjCMethodDecl *Method) override; 1569 1570 llvm::Value *GetClass(CodeGenFunction &CGF, 1571 const ObjCInterfaceDecl *ID) override; 1572 1573 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1574 { return EmitSelector(CGF, Sel); } 1575 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1576 { return EmitSelectorAddr(CGF, Sel); } 1577 1578 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1579 /// untyped one. 1580 llvm::Value *GetSelector(CodeGenFunction &CGF, 1581 const ObjCMethodDecl *Method) override 1582 { return EmitSelector(CGF, Method->getSelector()); } 1583 1584 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1585 1586 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1587 1588 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1589 1590 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1591 const ObjCProtocolDecl *PD) override; 1592 1593 llvm::Constant *GetEHType(QualType T) override; 1594 1595 llvm::Constant *GetPropertyGetFunction() override { 1596 return ObjCTypes.getGetPropertyFn(); 1597 } 1598 llvm::Constant *GetPropertySetFunction() override { 1599 return ObjCTypes.getSetPropertyFn(); 1600 } 1601 1602 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1603 bool copy) override { 1604 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1605 } 1606 1607 llvm::Constant *GetSetStructFunction() override { 1608 return ObjCTypes.getCopyStructFn(); 1609 } 1610 1611 llvm::Constant *GetGetStructFunction() override { 1612 return ObjCTypes.getCopyStructFn(); 1613 } 1614 1615 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1616 return ObjCTypes.getCppAtomicObjectFunction(); 1617 } 1618 1619 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1620 return ObjCTypes.getCppAtomicObjectFunction(); 1621 } 1622 1623 llvm::Constant *EnumerationMutationFunction() override { 1624 return ObjCTypes.getEnumerationMutationFn(); 1625 } 1626 1627 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1628 const ObjCAtTryStmt &S) override; 1629 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1630 const ObjCAtSynchronizedStmt &S) override; 1631 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1632 bool ClearInsertionPoint=true) override; 1633 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1634 Address AddrWeakObj) override; 1635 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1636 llvm::Value *src, Address edst) override; 1637 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1638 llvm::Value *src, Address dest, 1639 bool threadlocal = false) override; 1640 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1641 llvm::Value *src, Address dest, 1642 llvm::Value *ivarOffset) override; 1643 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1644 llvm::Value *src, Address dest) override; 1645 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1646 Address dest, Address src, 1647 llvm::Value *size) override; 1648 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1649 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1650 unsigned CVRQualifiers) override; 1651 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1652 const ObjCInterfaceDecl *Interface, 1653 const ObjCIvarDecl *Ivar) override; 1654 }; 1655 1656 /// A helper class for performing the null-initialization of a return 1657 /// value. 1658 struct NullReturnState { 1659 llvm::BasicBlock *NullBB; 1660 NullReturnState() : NullBB(nullptr) {} 1661 1662 /// Perform a null-check of the given receiver. 1663 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1664 // Make blocks for the null-receiver and call edges. 1665 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1666 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1667 1668 // Check for a null receiver and, if there is one, jump to the 1669 // null-receiver block. There's no point in trying to avoid it: 1670 // we're always going to put *something* there, because otherwise 1671 // we shouldn't have done this null-check in the first place. 1672 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1673 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1674 1675 // Otherwise, start performing the call. 1676 CGF.EmitBlock(callBB); 1677 } 1678 1679 /// Complete the null-return operation. It is valid to call this 1680 /// regardless of whether 'init' has been called. 1681 RValue complete(CodeGenFunction &CGF, 1682 ReturnValueSlot returnSlot, 1683 RValue result, 1684 QualType resultType, 1685 const CallArgList &CallArgs, 1686 const ObjCMethodDecl *Method) { 1687 // If we never had to do a null-check, just use the raw result. 1688 if (!NullBB) return result; 1689 1690 // The continuation block. This will be left null if we don't have an 1691 // IP, which can happen if the method we're calling is marked noreturn. 1692 llvm::BasicBlock *contBB = nullptr; 1693 1694 // Finish the call path. 1695 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1696 if (callBB) { 1697 contBB = CGF.createBasicBlock("msgSend.cont"); 1698 CGF.Builder.CreateBr(contBB); 1699 } 1700 1701 // Okay, start emitting the null-receiver block. 1702 CGF.EmitBlock(NullBB); 1703 1704 // Release any consumed arguments we've got. 1705 if (Method) { 1706 CallArgList::const_iterator I = CallArgs.begin(); 1707 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1708 e = Method->param_end(); i != e; ++i, ++I) { 1709 const ParmVarDecl *ParamDecl = (*i); 1710 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1711 RValue RV = I->RV; 1712 assert(RV.isScalar() && 1713 "NullReturnState::complete - arg not on object"); 1714 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1715 } 1716 } 1717 } 1718 1719 // The phi code below assumes that we haven't needed any control flow yet. 1720 assert(CGF.Builder.GetInsertBlock() == NullBB); 1721 1722 // If we've got a void return, just jump to the continuation block. 1723 if (result.isScalar() && resultType->isVoidType()) { 1724 // No jumps required if the message-send was noreturn. 1725 if (contBB) CGF.EmitBlock(contBB); 1726 return result; 1727 } 1728 1729 // If we've got a scalar return, build a phi. 1730 if (result.isScalar()) { 1731 // Derive the null-initialization value. 1732 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1733 1734 // If no join is necessary, just flow out. 1735 if (!contBB) return RValue::get(null); 1736 1737 // Otherwise, build a phi. 1738 CGF.EmitBlock(contBB); 1739 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1740 phi->addIncoming(result.getScalarVal(), callBB); 1741 phi->addIncoming(null, NullBB); 1742 return RValue::get(phi); 1743 } 1744 1745 // If we've got an aggregate return, null the buffer out. 1746 // FIXME: maybe we should be doing things differently for all the 1747 // cases where the ABI has us returning (1) non-agg values in 1748 // memory or (2) agg values in registers. 1749 if (result.isAggregate()) { 1750 assert(result.isAggregate() && "null init of non-aggregate result?"); 1751 if (!returnSlot.isUnused()) 1752 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1753 if (contBB) CGF.EmitBlock(contBB); 1754 return result; 1755 } 1756 1757 // Complex types. 1758 CGF.EmitBlock(contBB); 1759 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1760 1761 // Find the scalar type and its zero value. 1762 llvm::Type *scalarTy = callResult.first->getType(); 1763 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1764 1765 // Build phis for both coordinates. 1766 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1767 real->addIncoming(callResult.first, callBB); 1768 real->addIncoming(scalarZero, NullBB); 1769 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1770 imag->addIncoming(callResult.second, callBB); 1771 imag->addIncoming(scalarZero, NullBB); 1772 return RValue::getComplex(real, imag); 1773 } 1774 }; 1775 1776 } // end anonymous namespace 1777 1778 /* *** Helper Functions *** */ 1779 1780 /// getConstantGEP() - Help routine to construct simple GEPs. 1781 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1782 llvm::GlobalVariable *C, unsigned idx0, 1783 unsigned idx1) { 1784 llvm::Value *Idxs[] = { 1785 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1786 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1787 }; 1788 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1789 } 1790 1791 /// hasObjCExceptionAttribute - Return true if this class or any super 1792 /// class has the __objc_exception__ attribute. 1793 static bool hasObjCExceptionAttribute(ASTContext &Context, 1794 const ObjCInterfaceDecl *OID) { 1795 if (OID->hasAttr<ObjCExceptionAttr>()) 1796 return true; 1797 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1798 return hasObjCExceptionAttribute(Context, Super); 1799 return false; 1800 } 1801 1802 /* *** CGObjCMac Public Interface *** */ 1803 1804 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1805 ObjCTypes(cgm) { 1806 ObjCABI = 1; 1807 EmitImageInfo(); 1808 } 1809 1810 /// GetClass - Return a reference to the class for the given interface 1811 /// decl. 1812 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1813 const ObjCInterfaceDecl *ID) { 1814 return EmitClassRef(CGF, ID); 1815 } 1816 1817 /// GetSelector - Return the pointer to the unique'd string for this selector. 1818 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1819 return EmitSelector(CGF, Sel); 1820 } 1821 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1822 return EmitSelectorAddr(CGF, Sel); 1823 } 1824 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1825 *Method) { 1826 return EmitSelector(CGF, Method->getSelector()); 1827 } 1828 1829 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1830 if (T->isObjCIdType() || 1831 T->isObjCQualifiedIdType()) { 1832 return CGM.GetAddrOfRTTIDescriptor( 1833 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1834 } 1835 if (T->isObjCClassType() || 1836 T->isObjCQualifiedClassType()) { 1837 return CGM.GetAddrOfRTTIDescriptor( 1838 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1839 } 1840 if (T->isObjCObjectPointerType()) 1841 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1842 1843 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1844 } 1845 1846 /// Generate a constant CFString object. 1847 /* 1848 struct __builtin_CFString { 1849 const int *isa; // point to __CFConstantStringClassReference 1850 int flags; 1851 const char *str; 1852 long length; 1853 }; 1854 */ 1855 1856 /// or Generate a constant NSString object. 1857 /* 1858 struct __builtin_NSString { 1859 const int *isa; // point to __NSConstantStringClassReference 1860 const char *str; 1861 unsigned int length; 1862 }; 1863 */ 1864 1865 ConstantAddress 1866 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1867 return (!CGM.getLangOpts().NoConstantCFStrings 1868 ? CGM.GetAddrOfConstantCFString(SL) 1869 : GenerateConstantNSString(SL)); 1870 } 1871 1872 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1873 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1874 const StringLiteral *Literal, unsigned &StringLength) { 1875 StringRef String = Literal->getString(); 1876 StringLength = String.size(); 1877 return *Map.insert(std::make_pair(String, nullptr)).first; 1878 } 1879 1880 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1881 if (llvm::Value *V = ConstantStringClassRef) 1882 return cast<llvm::Constant>(V); 1883 1884 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1885 std::string str = 1886 StringClass.empty() ? "_NSConstantStringClassReference" 1887 : "_" + StringClass + "ClassReference"; 1888 1889 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1890 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1891 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1892 ConstantStringClassRef = V; 1893 return V; 1894 } 1895 1896 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1897 if (llvm::Value *V = ConstantStringClassRef) 1898 return cast<llvm::Constant>(V); 1899 1900 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1901 std::string str = 1902 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1903 : "OBJC_CLASS_$_" + StringClass; 1904 auto GV = GetClassGlobal(str, NotForDefinition); 1905 1906 // Make sure the result is of the correct type. 1907 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1908 1909 ConstantStringClassRef = V; 1910 return V; 1911 } 1912 1913 ConstantAddress 1914 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1915 unsigned StringLength = 0; 1916 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1917 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1918 1919 if (auto *C = Entry.second) 1920 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 1921 1922 // If we don't already have it, get _NSConstantStringClassReference. 1923 llvm::Constant *Class = getNSConstantStringClassRef(); 1924 1925 // If we don't already have it, construct the type for a constant NSString. 1926 if (!NSConstantStringType) { 1927 NSConstantStringType = 1928 llvm::StructType::create({ 1929 CGM.Int32Ty->getPointerTo(), 1930 CGM.Int8PtrTy, 1931 CGM.IntTy 1932 }, "struct.__builtin_NSString"); 1933 } 1934 1935 ConstantInitBuilder Builder(CGM); 1936 auto Fields = Builder.beginStruct(NSConstantStringType); 1937 1938 // Class pointer. 1939 Fields.add(Class); 1940 1941 // String pointer. 1942 llvm::Constant *C = 1943 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 1944 1945 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 1946 bool isConstant = !CGM.getLangOpts().WritableStrings; 1947 1948 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 1949 Linkage, C, ".str"); 1950 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1951 // Don't enforce the target's minimum global alignment, since the only use 1952 // of the string is via this class initializer. 1953 GV->setAlignment(1); 1954 Fields.addBitCast(GV, CGM.Int8PtrTy); 1955 1956 // String length. 1957 Fields.addInt(CGM.IntTy, StringLength); 1958 1959 // The struct. 1960 CharUnits Alignment = CGM.getPointerAlign(); 1961 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 1962 /*constant*/ true, 1963 llvm::GlobalVariable::PrivateLinkage); 1964 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 1965 const char *NSStringNonFragileABISection = 1966 "__DATA,__objc_stringobj,regular,no_dead_strip"; 1967 // FIXME. Fix section. 1968 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 1969 ? NSStringNonFragileABISection 1970 : NSStringSection); 1971 Entry.second = GV; 1972 1973 return ConstantAddress(GV, Alignment); 1974 } 1975 1976 enum { 1977 kCFTaggedObjectID_Integer = (1 << 1) + 1 1978 }; 1979 1980 /// Generates a message send where the super is the receiver. This is 1981 /// a message send to self with special delivery semantics indicating 1982 /// which class's method should be called. 1983 CodeGen::RValue 1984 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1985 ReturnValueSlot Return, 1986 QualType ResultType, 1987 Selector Sel, 1988 const ObjCInterfaceDecl *Class, 1989 bool isCategoryImpl, 1990 llvm::Value *Receiver, 1991 bool IsClassMessage, 1992 const CodeGen::CallArgList &CallArgs, 1993 const ObjCMethodDecl *Method) { 1994 // Create and init a super structure; this is a (receiver, class) 1995 // pair we will pass to objc_msgSendSuper. 1996 Address ObjCSuper = 1997 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1998 "objc_super"); 1999 llvm::Value *ReceiverAsObject = 2000 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2001 CGF.Builder.CreateStore( 2002 ReceiverAsObject, 2003 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 2004 2005 // If this is a class message the metaclass is passed as the target. 2006 llvm::Value *Target; 2007 if (IsClassMessage) { 2008 if (isCategoryImpl) { 2009 // Message sent to 'super' in a class method defined in a category 2010 // implementation requires an odd treatment. 2011 // If we are in a class method, we must retrieve the 2012 // _metaclass_ for the current class, pointed at by 2013 // the class's "isa" pointer. The following assumes that 2014 // isa" is the first ivar in a class (which it must be). 2015 Target = EmitClassRef(CGF, Class->getSuperClass()); 2016 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2017 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2018 } else { 2019 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2020 llvm::Value *SuperPtr = 2021 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2022 llvm::Value *Super = 2023 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2024 Target = Super; 2025 } 2026 } else if (isCategoryImpl) 2027 Target = EmitClassRef(CGF, Class->getSuperClass()); 2028 else { 2029 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2030 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2031 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2032 } 2033 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2034 // ObjCTypes types. 2035 llvm::Type *ClassTy = 2036 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2037 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2038 CGF.Builder.CreateStore(Target, 2039 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 2040 return EmitMessageSend(CGF, Return, ResultType, 2041 EmitSelector(CGF, Sel), 2042 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 2043 true, CallArgs, Method, Class, ObjCTypes); 2044 } 2045 2046 /// Generate code for a message send expression. 2047 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2048 ReturnValueSlot Return, 2049 QualType ResultType, 2050 Selector Sel, 2051 llvm::Value *Receiver, 2052 const CallArgList &CallArgs, 2053 const ObjCInterfaceDecl *Class, 2054 const ObjCMethodDecl *Method) { 2055 return EmitMessageSend(CGF, Return, ResultType, 2056 EmitSelector(CGF, Sel), 2057 Receiver, CGF.getContext().getObjCIdType(), 2058 false, CallArgs, Method, Class, ObjCTypes); 2059 } 2060 2061 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2062 do { 2063 if (ID->isWeakImported()) 2064 return true; 2065 } while ((ID = ID->getSuperClass())); 2066 2067 return false; 2068 } 2069 2070 CodeGen::RValue 2071 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2072 ReturnValueSlot Return, 2073 QualType ResultType, 2074 llvm::Value *Sel, 2075 llvm::Value *Arg0, 2076 QualType Arg0Ty, 2077 bool IsSuper, 2078 const CallArgList &CallArgs, 2079 const ObjCMethodDecl *Method, 2080 const ObjCInterfaceDecl *ClassReceiver, 2081 const ObjCCommonTypesHelper &ObjCTypes) { 2082 CallArgList ActualArgs; 2083 if (!IsSuper) 2084 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2085 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2086 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 2087 ActualArgs.addFrom(CallArgs); 2088 2089 // If we're calling a method, use the formal signature. 2090 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2091 2092 if (Method) 2093 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2094 CGM.getContext().getCanonicalType(ResultType) && 2095 "Result type mismatch!"); 2096 2097 bool ReceiverCanBeNull = true; 2098 2099 // Super dispatch assumes that self is non-null; even the messenger 2100 // doesn't have a null check internally. 2101 if (IsSuper) { 2102 ReceiverCanBeNull = false; 2103 2104 // If this is a direct dispatch of a class method, check whether the class, 2105 // or anything in its hierarchy, was weak-linked. 2106 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2107 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2108 2109 // If we're emitting a method, and self is const (meaning just ARC, for now), 2110 // and the receiver is a load of self, then self is a valid object. 2111 } else if (auto CurMethod = 2112 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2113 auto Self = CurMethod->getSelfDecl(); 2114 if (Self->getType().isConstQualified()) { 2115 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2116 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2117 if (SelfAddr == LI->getPointerOperand()) { 2118 ReceiverCanBeNull = false; 2119 } 2120 } 2121 } 2122 } 2123 2124 bool RequiresNullCheck = false; 2125 2126 llvm::Constant *Fn = nullptr; 2127 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2128 if (ReceiverCanBeNull) RequiresNullCheck = true; 2129 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2130 : ObjCTypes.getSendStretFn(IsSuper); 2131 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2132 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2133 : ObjCTypes.getSendFpretFn(IsSuper); 2134 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2135 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2136 : ObjCTypes.getSendFp2retFn(IsSuper); 2137 } else { 2138 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2139 // must be made for it. 2140 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2141 RequiresNullCheck = true; 2142 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2143 : ObjCTypes.getSendFn(IsSuper); 2144 } 2145 2146 // We don't need to emit a null check to zero out an indirect result if the 2147 // result is ignored. 2148 if (Return.isUnused()) 2149 RequiresNullCheck = false; 2150 2151 // Emit a null-check if there's a consumed argument other than the receiver. 2152 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2153 for (const auto *ParamDecl : Method->parameters()) { 2154 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2155 RequiresNullCheck = true; 2156 break; 2157 } 2158 } 2159 } 2160 2161 NullReturnState nullReturn; 2162 if (RequiresNullCheck) { 2163 nullReturn.init(CGF, Arg0); 2164 } 2165 2166 llvm::Instruction *CallSite; 2167 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 2168 CGCallee Callee = CGCallee::forDirect(Fn); 2169 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2170 &CallSite); 2171 2172 // Mark the call as noreturn if the method is marked noreturn and the 2173 // receiver cannot be null. 2174 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2175 llvm::CallSite(CallSite).setDoesNotReturn(); 2176 } 2177 2178 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2179 RequiresNullCheck ? Method : nullptr); 2180 } 2181 2182 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2183 bool pointee = false) { 2184 // Note that GC qualification applies recursively to C pointer types 2185 // that aren't otherwise decorated. This is weird, but it's probably 2186 // an intentional workaround to the unreliable placement of GC qualifiers. 2187 if (FQT.isObjCGCStrong()) 2188 return Qualifiers::Strong; 2189 2190 if (FQT.isObjCGCWeak()) 2191 return Qualifiers::Weak; 2192 2193 if (auto ownership = FQT.getObjCLifetime()) { 2194 // Ownership does not apply recursively to C pointer types. 2195 if (pointee) return Qualifiers::GCNone; 2196 switch (ownership) { 2197 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2198 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2199 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2200 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2201 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2202 } 2203 llvm_unreachable("bad objc ownership"); 2204 } 2205 2206 // Treat unqualified retainable pointers as strong. 2207 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2208 return Qualifiers::Strong; 2209 2210 // Walk into C pointer types, but only in GC. 2211 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2212 if (const PointerType *PT = FQT->getAs<PointerType>()) 2213 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2214 } 2215 2216 return Qualifiers::GCNone; 2217 } 2218 2219 namespace { 2220 struct IvarInfo { 2221 CharUnits Offset; 2222 uint64_t SizeInWords; 2223 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2224 : Offset(offset), SizeInWords(sizeInWords) {} 2225 2226 // Allow sorting based on byte pos. 2227 bool operator<(const IvarInfo &other) const { 2228 return Offset < other.Offset; 2229 } 2230 }; 2231 2232 /// A helper class for building GC layout strings. 2233 class IvarLayoutBuilder { 2234 CodeGenModule &CGM; 2235 2236 /// The start of the layout. Offsets will be relative to this value, 2237 /// and entries less than this value will be silently discarded. 2238 CharUnits InstanceBegin; 2239 2240 /// The end of the layout. Offsets will never exceed this value. 2241 CharUnits InstanceEnd; 2242 2243 /// Whether we're generating the strong layout or the weak layout. 2244 bool ForStrongLayout; 2245 2246 /// Whether the offsets in IvarsInfo might be out-of-order. 2247 bool IsDisordered = false; 2248 2249 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2250 2251 public: 2252 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2253 CharUnits instanceEnd, bool forStrongLayout) 2254 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2255 ForStrongLayout(forStrongLayout) { 2256 } 2257 2258 void visitRecord(const RecordType *RT, CharUnits offset); 2259 2260 template <class Iterator, class GetOffsetFn> 2261 void visitAggregate(Iterator begin, Iterator end, 2262 CharUnits aggrOffset, 2263 const GetOffsetFn &getOffset); 2264 2265 void visitField(const FieldDecl *field, CharUnits offset); 2266 2267 /// Add the layout of a block implementation. 2268 void visitBlock(const CGBlockInfo &blockInfo); 2269 2270 /// Is there any information for an interesting bitmap? 2271 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2272 2273 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2274 llvm::SmallVectorImpl<unsigned char> &buffer); 2275 2276 static void dump(ArrayRef<unsigned char> buffer) { 2277 const unsigned char *s = buffer.data(); 2278 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2279 if (!(s[i] & 0xf0)) 2280 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2281 else 2282 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2283 printf("\n"); 2284 } 2285 }; 2286 } // end anonymous namespace 2287 2288 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2289 const CGBlockInfo &blockInfo) { 2290 2291 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2292 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2293 return nullPtr; 2294 2295 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2296 /*for strong layout*/ true); 2297 2298 builder.visitBlock(blockInfo); 2299 2300 if (!builder.hasBitmapData()) 2301 return nullPtr; 2302 2303 llvm::SmallVector<unsigned char, 32> buffer; 2304 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2305 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2306 printf("\n block variable layout for block: "); 2307 builder.dump(buffer); 2308 } 2309 2310 return C; 2311 } 2312 2313 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2314 // __isa is the first field in block descriptor and must assume by runtime's 2315 // convention that it is GC'able. 2316 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2317 2318 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2319 2320 // Ignore the optional 'this' capture: C++ objects are not assumed 2321 // to be GC'ed. 2322 2323 CharUnits lastFieldOffset; 2324 2325 // Walk the captured variables. 2326 for (const auto &CI : blockDecl->captures()) { 2327 const VarDecl *variable = CI.getVariable(); 2328 QualType type = variable->getType(); 2329 2330 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2331 2332 // Ignore constant captures. 2333 if (capture.isConstant()) continue; 2334 2335 CharUnits fieldOffset = capture.getOffset(); 2336 2337 // Block fields are not necessarily ordered; if we detect that we're 2338 // adding them out-of-order, make sure we sort later. 2339 if (fieldOffset < lastFieldOffset) 2340 IsDisordered = true; 2341 lastFieldOffset = fieldOffset; 2342 2343 // __block variables are passed by their descriptor address. 2344 if (CI.isByRef()) { 2345 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2346 continue; 2347 } 2348 2349 assert(!type->isArrayType() && "array variable should not be caught"); 2350 if (const RecordType *record = type->getAs<RecordType>()) { 2351 visitRecord(record, fieldOffset); 2352 continue; 2353 } 2354 2355 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2356 2357 if (GCAttr == Qualifiers::Strong) { 2358 assert(CGM.getContext().getTypeSize(type) 2359 == CGM.getTarget().getPointerWidth(0)); 2360 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2361 } 2362 } 2363 } 2364 2365 /// getBlockCaptureLifetime - This routine returns life time of the captured 2366 /// block variable for the purpose of block layout meta-data generation. FQT is 2367 /// the type of the variable captured in the block. 2368 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2369 bool ByrefLayout) { 2370 // If it has an ownership qualifier, we're done. 2371 if (auto lifetime = FQT.getObjCLifetime()) 2372 return lifetime; 2373 2374 // If it doesn't, and this is ARC, it has no ownership. 2375 if (CGM.getLangOpts().ObjCAutoRefCount) 2376 return Qualifiers::OCL_None; 2377 2378 // In MRC, retainable pointers are owned by non-__block variables. 2379 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2380 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2381 2382 return Qualifiers::OCL_None; 2383 } 2384 2385 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2386 Qualifiers::ObjCLifetime LifeTime, 2387 CharUnits FieldOffset, 2388 CharUnits FieldSize) { 2389 // __block variables are passed by their descriptor address. 2390 if (IsByref) 2391 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2392 FieldSize)); 2393 else if (LifeTime == Qualifiers::OCL_Strong) 2394 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2395 FieldSize)); 2396 else if (LifeTime == Qualifiers::OCL_Weak) 2397 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2398 FieldSize)); 2399 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2400 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2401 FieldSize)); 2402 else 2403 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2404 FieldOffset, 2405 FieldSize)); 2406 } 2407 2408 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2409 const RecordDecl *RD, 2410 ArrayRef<const FieldDecl*> RecFields, 2411 CharUnits BytePos, bool &HasUnion, 2412 bool ByrefLayout) { 2413 bool IsUnion = (RD && RD->isUnion()); 2414 CharUnits MaxUnionSize = CharUnits::Zero(); 2415 const FieldDecl *MaxField = nullptr; 2416 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2417 CharUnits MaxFieldOffset = CharUnits::Zero(); 2418 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2419 2420 if (RecFields.empty()) 2421 return; 2422 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2423 2424 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2425 const FieldDecl *Field = RecFields[i]; 2426 // Note that 'i' here is actually the field index inside RD of Field, 2427 // although this dependency is hidden. 2428 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2429 CharUnits FieldOffset = 2430 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2431 2432 // Skip over unnamed or bitfields 2433 if (!Field->getIdentifier() || Field->isBitField()) { 2434 LastFieldBitfieldOrUnnamed = Field; 2435 LastBitfieldOrUnnamedOffset = FieldOffset; 2436 continue; 2437 } 2438 2439 LastFieldBitfieldOrUnnamed = nullptr; 2440 QualType FQT = Field->getType(); 2441 if (FQT->isRecordType() || FQT->isUnionType()) { 2442 if (FQT->isUnionType()) 2443 HasUnion = true; 2444 2445 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2446 BytePos + FieldOffset, HasUnion); 2447 continue; 2448 } 2449 2450 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2451 const ConstantArrayType *CArray = 2452 dyn_cast_or_null<ConstantArrayType>(Array); 2453 uint64_t ElCount = CArray->getSize().getZExtValue(); 2454 assert(CArray && "only array with known element size is supported"); 2455 FQT = CArray->getElementType(); 2456 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2457 const ConstantArrayType *CArray = 2458 dyn_cast_or_null<ConstantArrayType>(Array); 2459 ElCount *= CArray->getSize().getZExtValue(); 2460 FQT = CArray->getElementType(); 2461 } 2462 if (FQT->isRecordType() && ElCount) { 2463 int OldIndex = RunSkipBlockVars.size() - 1; 2464 const RecordType *RT = FQT->getAs<RecordType>(); 2465 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2466 HasUnion); 2467 2468 // Replicate layout information for each array element. Note that 2469 // one element is already done. 2470 uint64_t ElIx = 1; 2471 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2472 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2473 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2474 RunSkipBlockVars.push_back( 2475 RUN_SKIP(RunSkipBlockVars[i].opcode, 2476 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2477 RunSkipBlockVars[i].block_var_size)); 2478 } 2479 continue; 2480 } 2481 } 2482 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2483 if (IsUnion) { 2484 CharUnits UnionIvarSize = FieldSize; 2485 if (UnionIvarSize > MaxUnionSize) { 2486 MaxUnionSize = UnionIvarSize; 2487 MaxField = Field; 2488 MaxFieldOffset = FieldOffset; 2489 } 2490 } else { 2491 UpdateRunSkipBlockVars(false, 2492 getBlockCaptureLifetime(FQT, ByrefLayout), 2493 BytePos + FieldOffset, 2494 FieldSize); 2495 } 2496 } 2497 2498 if (LastFieldBitfieldOrUnnamed) { 2499 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2500 // Last field was a bitfield. Must update the info. 2501 uint64_t BitFieldSize 2502 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2503 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2504 ((BitFieldSize % ByteSizeInBits) != 0); 2505 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2506 Size += LastBitfieldOrUnnamedOffset; 2507 UpdateRunSkipBlockVars(false, 2508 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2509 ByrefLayout), 2510 BytePos + LastBitfieldOrUnnamedOffset, 2511 Size); 2512 } else { 2513 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2514 // Last field was unnamed. Must update skip info. 2515 CharUnits FieldSize 2516 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2517 UpdateRunSkipBlockVars(false, 2518 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2519 ByrefLayout), 2520 BytePos + LastBitfieldOrUnnamedOffset, 2521 FieldSize); 2522 } 2523 } 2524 2525 if (MaxField) 2526 UpdateRunSkipBlockVars(false, 2527 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2528 BytePos + MaxFieldOffset, 2529 MaxUnionSize); 2530 } 2531 2532 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2533 CharUnits BytePos, 2534 bool &HasUnion, 2535 bool ByrefLayout) { 2536 const RecordDecl *RD = RT->getDecl(); 2537 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2538 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2539 const llvm::StructLayout *RecLayout = 2540 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2541 2542 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2543 } 2544 2545 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2546 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2547 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2548 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2549 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2550 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2551 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2552 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2553 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2554 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2555 SmallVectorImpl<unsigned char> &Layout) { 2556 uint64_t Result = 0; 2557 if (Layout.size() <= 3) { 2558 unsigned size = Layout.size(); 2559 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2560 unsigned char inst; 2561 enum BLOCK_LAYOUT_OPCODE opcode ; 2562 switch (size) { 2563 case 3: 2564 inst = Layout[0]; 2565 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2566 if (opcode == BLOCK_LAYOUT_STRONG) 2567 strong_word_count = (inst & 0xF)+1; 2568 else 2569 return 0; 2570 inst = Layout[1]; 2571 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2572 if (opcode == BLOCK_LAYOUT_BYREF) 2573 byref_word_count = (inst & 0xF)+1; 2574 else 2575 return 0; 2576 inst = Layout[2]; 2577 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2578 if (opcode == BLOCK_LAYOUT_WEAK) 2579 weak_word_count = (inst & 0xF)+1; 2580 else 2581 return 0; 2582 break; 2583 2584 case 2: 2585 inst = Layout[0]; 2586 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2587 if (opcode == BLOCK_LAYOUT_STRONG) { 2588 strong_word_count = (inst & 0xF)+1; 2589 inst = Layout[1]; 2590 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2591 if (opcode == BLOCK_LAYOUT_BYREF) 2592 byref_word_count = (inst & 0xF)+1; 2593 else if (opcode == BLOCK_LAYOUT_WEAK) 2594 weak_word_count = (inst & 0xF)+1; 2595 else 2596 return 0; 2597 } 2598 else if (opcode == BLOCK_LAYOUT_BYREF) { 2599 byref_word_count = (inst & 0xF)+1; 2600 inst = Layout[1]; 2601 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2602 if (opcode == BLOCK_LAYOUT_WEAK) 2603 weak_word_count = (inst & 0xF)+1; 2604 else 2605 return 0; 2606 } 2607 else 2608 return 0; 2609 break; 2610 2611 case 1: 2612 inst = Layout[0]; 2613 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2614 if (opcode == BLOCK_LAYOUT_STRONG) 2615 strong_word_count = (inst & 0xF)+1; 2616 else if (opcode == BLOCK_LAYOUT_BYREF) 2617 byref_word_count = (inst & 0xF)+1; 2618 else if (opcode == BLOCK_LAYOUT_WEAK) 2619 weak_word_count = (inst & 0xF)+1; 2620 else 2621 return 0; 2622 break; 2623 2624 default: 2625 return 0; 2626 } 2627 2628 // Cannot inline when any of the word counts is 15. Because this is one less 2629 // than the actual work count (so 15 means 16 actual word counts), 2630 // and we can only display 0 thru 15 word counts. 2631 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2632 return 0; 2633 2634 unsigned count = 2635 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2636 2637 if (size == count) { 2638 if (strong_word_count) 2639 Result = strong_word_count; 2640 Result <<= 4; 2641 if (byref_word_count) 2642 Result += byref_word_count; 2643 Result <<= 4; 2644 if (weak_word_count) 2645 Result += weak_word_count; 2646 } 2647 } 2648 return Result; 2649 } 2650 2651 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2652 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2653 if (RunSkipBlockVars.empty()) 2654 return nullPtr; 2655 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2656 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2657 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2658 2659 // Sort on byte position; captures might not be allocated in order, 2660 // and unions can do funny things. 2661 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2662 SmallVector<unsigned char, 16> Layout; 2663 2664 unsigned size = RunSkipBlockVars.size(); 2665 for (unsigned i = 0; i < size; i++) { 2666 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2667 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2668 CharUnits end_byte_pos = start_byte_pos; 2669 unsigned j = i+1; 2670 while (j < size) { 2671 if (opcode == RunSkipBlockVars[j].opcode) { 2672 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2673 i++; 2674 } 2675 else 2676 break; 2677 } 2678 CharUnits size_in_bytes = 2679 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2680 if (j < size) { 2681 CharUnits gap = 2682 RunSkipBlockVars[j].block_var_bytepos - 2683 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2684 size_in_bytes += gap; 2685 } 2686 CharUnits residue_in_bytes = CharUnits::Zero(); 2687 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2688 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2689 size_in_bytes -= residue_in_bytes; 2690 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2691 } 2692 2693 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2694 while (size_in_words >= 16) { 2695 // Note that value in imm. is one less that the actual 2696 // value. So, 0xf means 16 words follow! 2697 unsigned char inst = (opcode << 4) | 0xf; 2698 Layout.push_back(inst); 2699 size_in_words -= 16; 2700 } 2701 if (size_in_words > 0) { 2702 // Note that value in imm. is one less that the actual 2703 // value. So, we subtract 1 away! 2704 unsigned char inst = (opcode << 4) | (size_in_words-1); 2705 Layout.push_back(inst); 2706 } 2707 if (residue_in_bytes > CharUnits::Zero()) { 2708 unsigned char inst = 2709 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2710 Layout.push_back(inst); 2711 } 2712 } 2713 2714 while (!Layout.empty()) { 2715 unsigned char inst = Layout.back(); 2716 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2717 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2718 Layout.pop_back(); 2719 else 2720 break; 2721 } 2722 2723 uint64_t Result = InlineLayoutInstruction(Layout); 2724 if (Result != 0) { 2725 // Block variable layout instruction has been inlined. 2726 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2727 if (ComputeByrefLayout) 2728 printf("\n Inline BYREF variable layout: "); 2729 else 2730 printf("\n Inline block variable layout: "); 2731 printf("0x0%" PRIx64 "", Result); 2732 if (auto numStrong = (Result & 0xF00) >> 8) 2733 printf(", BL_STRONG:%d", (int) numStrong); 2734 if (auto numByref = (Result & 0x0F0) >> 4) 2735 printf(", BL_BYREF:%d", (int) numByref); 2736 if (auto numWeak = (Result & 0x00F) >> 0) 2737 printf(", BL_WEAK:%d", (int) numWeak); 2738 printf(", BL_OPERATOR:0\n"); 2739 } 2740 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2741 } 2742 2743 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2744 Layout.push_back(inst); 2745 std::string BitMap; 2746 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2747 BitMap += Layout[i]; 2748 2749 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2750 if (ComputeByrefLayout) 2751 printf("\n Byref variable layout: "); 2752 else 2753 printf("\n Block variable layout: "); 2754 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2755 unsigned char inst = BitMap[i]; 2756 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2757 unsigned delta = 1; 2758 switch (opcode) { 2759 case BLOCK_LAYOUT_OPERATOR: 2760 printf("BL_OPERATOR:"); 2761 delta = 0; 2762 break; 2763 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2764 printf("BL_NON_OBJECT_BYTES:"); 2765 break; 2766 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2767 printf("BL_NON_OBJECT_WORD:"); 2768 break; 2769 case BLOCK_LAYOUT_STRONG: 2770 printf("BL_STRONG:"); 2771 break; 2772 case BLOCK_LAYOUT_BYREF: 2773 printf("BL_BYREF:"); 2774 break; 2775 case BLOCK_LAYOUT_WEAK: 2776 printf("BL_WEAK:"); 2777 break; 2778 case BLOCK_LAYOUT_UNRETAINED: 2779 printf("BL_UNRETAINED:"); 2780 break; 2781 } 2782 // Actual value of word count is one more that what is in the imm. 2783 // field of the instruction 2784 printf("%d", (inst & 0xf) + delta); 2785 if (i < e-1) 2786 printf(", "); 2787 else 2788 printf("\n"); 2789 } 2790 } 2791 2792 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2793 /*ForceNonFragileABI=*/true, 2794 /*NullTerminate=*/false); 2795 return getConstantGEP(VMContext, Entry, 0, 0); 2796 } 2797 2798 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2799 const CGBlockInfo &blockInfo) { 2800 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2801 2802 RunSkipBlockVars.clear(); 2803 bool hasUnion = false; 2804 2805 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2806 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2807 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2808 2809 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2810 2811 // Calculate the basic layout of the block structure. 2812 const llvm::StructLayout *layout = 2813 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2814 2815 // Ignore the optional 'this' capture: C++ objects are not assumed 2816 // to be GC'ed. 2817 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2818 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2819 blockInfo.BlockHeaderForcedGapOffset, 2820 blockInfo.BlockHeaderForcedGapSize); 2821 // Walk the captured variables. 2822 for (const auto &CI : blockDecl->captures()) { 2823 const VarDecl *variable = CI.getVariable(); 2824 QualType type = variable->getType(); 2825 2826 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2827 2828 // Ignore constant captures. 2829 if (capture.isConstant()) continue; 2830 2831 CharUnits fieldOffset = 2832 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2833 2834 assert(!type->isArrayType() && "array variable should not be caught"); 2835 if (!CI.isByRef()) 2836 if (const RecordType *record = type->getAs<RecordType>()) { 2837 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2838 continue; 2839 } 2840 CharUnits fieldSize; 2841 if (CI.isByRef()) 2842 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2843 else 2844 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2845 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2846 fieldOffset, fieldSize); 2847 } 2848 return getBitmapBlockLayout(false); 2849 } 2850 2851 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2852 QualType T) { 2853 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2854 assert(!T->isArrayType() && "__block array variable should not be caught"); 2855 CharUnits fieldOffset; 2856 RunSkipBlockVars.clear(); 2857 bool hasUnion = false; 2858 if (const RecordType *record = T->getAs<RecordType>()) { 2859 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2860 llvm::Constant *Result = getBitmapBlockLayout(true); 2861 if (isa<llvm::ConstantInt>(Result)) 2862 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2863 return Result; 2864 } 2865 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2866 return nullPtr; 2867 } 2868 2869 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2870 const ObjCProtocolDecl *PD) { 2871 // FIXME: I don't understand why gcc generates this, or where it is 2872 // resolved. Investigate. Its also wasteful to look this up over and over. 2873 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2874 2875 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2876 ObjCTypes.getExternalProtocolPtrTy()); 2877 } 2878 2879 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2880 // FIXME: We shouldn't need this, the protocol decl should contain enough 2881 // information to tell us whether this was a declaration or a definition. 2882 DefinedProtocols.insert(PD->getIdentifier()); 2883 2884 // If we have generated a forward reference to this protocol, emit 2885 // it now. Otherwise do nothing, the protocol objects are lazily 2886 // emitted. 2887 if (Protocols.count(PD->getIdentifier())) 2888 GetOrEmitProtocol(PD); 2889 } 2890 2891 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2892 if (DefinedProtocols.count(PD->getIdentifier())) 2893 return GetOrEmitProtocol(PD); 2894 2895 return GetOrEmitProtocolRef(PD); 2896 } 2897 2898 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2899 CodeGenFunction &CGF, 2900 const ObjCInterfaceDecl *ID, 2901 ObjCCommonTypesHelper &ObjCTypes) { 2902 llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2903 2904 llvm::Value *className = 2905 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 2906 .getPointer(); 2907 ASTContext &ctx = CGF.CGM.getContext(); 2908 className = 2909 CGF.Builder.CreateBitCast(className, 2910 CGF.ConvertType( 2911 ctx.getPointerType(ctx.CharTy.withConst()))); 2912 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 2913 call->setDoesNotThrow(); 2914 return call; 2915 } 2916 2917 /* 2918 // Objective-C 1.0 extensions 2919 struct _objc_protocol { 2920 struct _objc_protocol_extension *isa; 2921 char *protocol_name; 2922 struct _objc_protocol_list *protocol_list; 2923 struct _objc__method_prototype_list *instance_methods; 2924 struct _objc__method_prototype_list *class_methods 2925 }; 2926 2927 See EmitProtocolExtension(). 2928 */ 2929 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2930 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2931 2932 // Early exit if a defining object has already been generated. 2933 if (Entry && Entry->hasInitializer()) 2934 return Entry; 2935 2936 // Use the protocol definition, if there is one. 2937 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2938 PD = Def; 2939 2940 // FIXME: I don't understand why gcc generates this, or where it is 2941 // resolved. Investigate. Its also wasteful to look this up over and over. 2942 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2943 2944 // Construct method lists. 2945 auto methodLists = ProtocolMethodLists::get(PD); 2946 2947 ConstantInitBuilder builder(CGM); 2948 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 2949 values.add(EmitProtocolExtension(PD, methodLists)); 2950 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 2951 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2952 PD->protocol_begin(), PD->protocol_end())); 2953 values.add(methodLists.emitMethodList(this, PD, 2954 ProtocolMethodLists::RequiredInstanceMethods)); 2955 values.add(methodLists.emitMethodList(this, PD, 2956 ProtocolMethodLists::RequiredClassMethods)); 2957 2958 if (Entry) { 2959 // Already created, update the initializer. 2960 assert(Entry->hasPrivateLinkage()); 2961 values.finishAndSetAsInitializer(Entry); 2962 } else { 2963 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 2964 CGM.getPointerAlign(), 2965 /*constant*/ false, 2966 llvm::GlobalValue::PrivateLinkage); 2967 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2968 2969 Protocols[PD->getIdentifier()] = Entry; 2970 } 2971 CGM.addCompilerUsedGlobal(Entry); 2972 2973 return Entry; 2974 } 2975 2976 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2977 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2978 2979 if (!Entry) { 2980 // We use the initializer as a marker of whether this is a forward 2981 // reference or not. At module finalization we add the empty 2982 // contents for protocols which were referenced but never defined. 2983 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2984 false, llvm::GlobalValue::PrivateLinkage, 2985 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2986 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2987 // FIXME: Is this necessary? Why only for protocol? 2988 Entry->setAlignment(4); 2989 } 2990 2991 return Entry; 2992 } 2993 2994 /* 2995 struct _objc_protocol_extension { 2996 uint32_t size; 2997 struct objc_method_description_list *optional_instance_methods; 2998 struct objc_method_description_list *optional_class_methods; 2999 struct objc_property_list *instance_properties; 3000 const char ** extendedMethodTypes; 3001 struct objc_property_list *class_properties; 3002 }; 3003 */ 3004 llvm::Constant * 3005 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3006 const ProtocolMethodLists &methodLists) { 3007 auto optInstanceMethods = 3008 methodLists.emitMethodList(this, PD, 3009 ProtocolMethodLists::OptionalInstanceMethods); 3010 auto optClassMethods = 3011 methodLists.emitMethodList(this, PD, 3012 ProtocolMethodLists::OptionalClassMethods); 3013 3014 auto extendedMethodTypes = 3015 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3016 methodLists.emitExtendedTypesArray(this), 3017 ObjCTypes); 3018 3019 auto instanceProperties = 3020 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3021 ObjCTypes, false); 3022 auto classProperties = 3023 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3024 PD, ObjCTypes, true); 3025 3026 // Return null if no extension bits are used. 3027 if (optInstanceMethods->isNullValue() && 3028 optClassMethods->isNullValue() && 3029 extendedMethodTypes->isNullValue() && 3030 instanceProperties->isNullValue() && 3031 classProperties->isNullValue()) { 3032 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3033 } 3034 3035 uint64_t size = 3036 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3037 3038 ConstantInitBuilder builder(CGM); 3039 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3040 values.addInt(ObjCTypes.IntTy, size); 3041 values.add(optInstanceMethods); 3042 values.add(optClassMethods); 3043 values.add(instanceProperties); 3044 values.add(extendedMethodTypes); 3045 values.add(classProperties); 3046 3047 // No special section, but goes in llvm.used 3048 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3049 StringRef(), CGM.getPointerAlign(), true); 3050 } 3051 3052 /* 3053 struct objc_protocol_list { 3054 struct objc_protocol_list *next; 3055 long count; 3056 Protocol *list[]; 3057 }; 3058 */ 3059 llvm::Constant * 3060 CGObjCMac::EmitProtocolList(Twine name, 3061 ObjCProtocolDecl::protocol_iterator begin, 3062 ObjCProtocolDecl::protocol_iterator end) { 3063 // Just return null for empty protocol lists 3064 if (begin == end) 3065 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3066 3067 ConstantInitBuilder builder(CGM); 3068 auto values = builder.beginStruct(); 3069 3070 // This field is only used by the runtime. 3071 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3072 3073 // Reserve a slot for the count. 3074 auto countSlot = values.addPlaceholder(); 3075 3076 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3077 for (; begin != end; ++begin) { 3078 refsArray.add(GetProtocolRef(*begin)); 3079 } 3080 auto count = refsArray.size(); 3081 3082 // This list is null terminated. 3083 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3084 3085 refsArray.finishAndAddTo(values); 3086 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3087 3088 StringRef section; 3089 if (CGM.getTriple().isOSBinFormatMachO()) 3090 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3091 3092 llvm::GlobalVariable *GV = 3093 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3094 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3095 } 3096 3097 static void 3098 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3099 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3100 const ObjCProtocolDecl *Proto, 3101 bool IsClassProperty) { 3102 for (const auto *P : Proto->protocols()) 3103 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3104 3105 for (const auto *PD : Proto->properties()) { 3106 if (IsClassProperty != PD->isClassProperty()) 3107 continue; 3108 if (!PropertySet.insert(PD->getIdentifier()).second) 3109 continue; 3110 Properties.push_back(PD); 3111 } 3112 } 3113 3114 /* 3115 struct _objc_property { 3116 const char * const name; 3117 const char * const attributes; 3118 }; 3119 3120 struct _objc_property_list { 3121 uint32_t entsize; // sizeof (struct _objc_property) 3122 uint32_t prop_count; 3123 struct _objc_property[prop_count]; 3124 }; 3125 */ 3126 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3127 const Decl *Container, 3128 const ObjCContainerDecl *OCD, 3129 const ObjCCommonTypesHelper &ObjCTypes, 3130 bool IsClassProperty) { 3131 if (IsClassProperty) { 3132 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3133 // with deployment target < 9.0. 3134 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3135 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3136 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3137 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3138 } 3139 3140 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3141 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3142 3143 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3144 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3145 for (auto *PD : ClassExt->properties()) { 3146 if (IsClassProperty != PD->isClassProperty()) 3147 continue; 3148 PropertySet.insert(PD->getIdentifier()); 3149 Properties.push_back(PD); 3150 } 3151 3152 for (const auto *PD : OCD->properties()) { 3153 if (IsClassProperty != PD->isClassProperty()) 3154 continue; 3155 // Don't emit duplicate metadata for properties that were already in a 3156 // class extension. 3157 if (!PropertySet.insert(PD->getIdentifier()).second) 3158 continue; 3159 Properties.push_back(PD); 3160 } 3161 3162 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3163 for (const auto *P : OID->all_referenced_protocols()) 3164 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3165 } 3166 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3167 for (const auto *P : CD->protocols()) 3168 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3169 } 3170 3171 // Return null for empty list. 3172 if (Properties.empty()) 3173 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3174 3175 unsigned propertySize = 3176 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3177 3178 ConstantInitBuilder builder(CGM); 3179 auto values = builder.beginStruct(); 3180 values.addInt(ObjCTypes.IntTy, propertySize); 3181 values.addInt(ObjCTypes.IntTy, Properties.size()); 3182 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3183 for (auto PD : Properties) { 3184 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3185 property.add(GetPropertyName(PD->getIdentifier())); 3186 property.add(GetPropertyTypeString(PD, Container)); 3187 property.finishAndAddTo(propertiesArray); 3188 } 3189 propertiesArray.finishAndAddTo(values); 3190 3191 StringRef Section; 3192 if (CGM.getTriple().isOSBinFormatMachO()) 3193 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3194 : "__OBJC,__property,regular,no_dead_strip"; 3195 3196 llvm::GlobalVariable *GV = 3197 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3198 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3199 } 3200 3201 llvm::Constant * 3202 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3203 ArrayRef<llvm::Constant*> MethodTypes, 3204 const ObjCCommonTypesHelper &ObjCTypes) { 3205 // Return null for empty list. 3206 if (MethodTypes.empty()) 3207 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3208 3209 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3210 MethodTypes.size()); 3211 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3212 3213 StringRef Section; 3214 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3215 Section = "__DATA, __objc_const"; 3216 3217 llvm::GlobalVariable *GV = 3218 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3219 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3220 } 3221 3222 /* 3223 struct _objc_category { 3224 char *category_name; 3225 char *class_name; 3226 struct _objc_method_list *instance_methods; 3227 struct _objc_method_list *class_methods; 3228 struct _objc_protocol_list *protocols; 3229 uint32_t size; // <rdar://4585769> 3230 struct _objc_property_list *instance_properties; 3231 struct _objc_property_list *class_properties; 3232 }; 3233 */ 3234 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3235 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3236 3237 // FIXME: This is poor design, the OCD should have a pointer to the category 3238 // decl. Additionally, note that Category can be null for the @implementation 3239 // w/o an @interface case. Sema should just create one for us as it does for 3240 // @implementation so everyone else can live life under a clear blue sky. 3241 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3242 const ObjCCategoryDecl *Category = 3243 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3244 3245 SmallString<256> ExtName; 3246 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3247 << OCD->getName(); 3248 3249 ConstantInitBuilder Builder(CGM); 3250 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3251 3252 enum { 3253 InstanceMethods, 3254 ClassMethods, 3255 NumMethodLists 3256 }; 3257 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3258 for (const auto *MD : OCD->methods()) { 3259 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3260 } 3261 3262 Values.add(GetClassName(OCD->getName())); 3263 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3264 LazySymbols.insert(Interface->getIdentifier()); 3265 3266 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3267 Methods[InstanceMethods])); 3268 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3269 Methods[ClassMethods])); 3270 if (Category) { 3271 Values.add( 3272 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3273 Category->protocol_begin(), Category->protocol_end())); 3274 } else { 3275 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3276 } 3277 Values.addInt(ObjCTypes.IntTy, Size); 3278 3279 // If there is no category @interface then there can be no properties. 3280 if (Category) { 3281 Values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3282 OCD, Category, ObjCTypes, false)); 3283 Values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3284 OCD, Category, ObjCTypes, true)); 3285 } else { 3286 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3287 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3288 } 3289 3290 llvm::GlobalVariable *GV = 3291 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3292 "__OBJC,__category,regular,no_dead_strip", 3293 CGM.getPointerAlign(), true); 3294 DefinedCategories.push_back(GV); 3295 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3296 // method definition entries must be clear for next implementation. 3297 MethodDefinitions.clear(); 3298 } 3299 3300 enum FragileClassFlags { 3301 /// Apparently: is not a meta-class. 3302 FragileABI_Class_Factory = 0x00001, 3303 3304 /// Is a meta-class. 3305 FragileABI_Class_Meta = 0x00002, 3306 3307 /// Has a non-trivial constructor or destructor. 3308 FragileABI_Class_HasCXXStructors = 0x02000, 3309 3310 /// Has hidden visibility. 3311 FragileABI_Class_Hidden = 0x20000, 3312 3313 /// Class implementation was compiled under ARC. 3314 FragileABI_Class_CompiledByARC = 0x04000000, 3315 3316 /// Class implementation was compiled under MRC and has MRC weak ivars. 3317 /// Exclusive with CompiledByARC. 3318 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3319 }; 3320 3321 enum NonFragileClassFlags { 3322 /// Is a meta-class. 3323 NonFragileABI_Class_Meta = 0x00001, 3324 3325 /// Is a root class. 3326 NonFragileABI_Class_Root = 0x00002, 3327 3328 /// Has a non-trivial constructor or destructor. 3329 NonFragileABI_Class_HasCXXStructors = 0x00004, 3330 3331 /// Has hidden visibility. 3332 NonFragileABI_Class_Hidden = 0x00010, 3333 3334 /// Has the exception attribute. 3335 NonFragileABI_Class_Exception = 0x00020, 3336 3337 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3338 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3339 3340 /// Class implementation was compiled under ARC. 3341 NonFragileABI_Class_CompiledByARC = 0x00080, 3342 3343 /// Class has non-trivial destructors, but zero-initialization is okay. 3344 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3345 3346 /// Class implementation was compiled under MRC and has MRC weak ivars. 3347 /// Exclusive with CompiledByARC. 3348 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3349 }; 3350 3351 static bool hasWeakMember(QualType type) { 3352 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3353 return true; 3354 } 3355 3356 if (auto recType = type->getAs<RecordType>()) { 3357 for (auto field : recType->getDecl()->fields()) { 3358 if (hasWeakMember(field->getType())) 3359 return true; 3360 } 3361 } 3362 3363 return false; 3364 } 3365 3366 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3367 /// (and actually fill in a layout string) if we really do have any 3368 /// __weak ivars. 3369 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3370 const ObjCImplementationDecl *ID) { 3371 if (!CGM.getLangOpts().ObjCWeak) return false; 3372 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3373 3374 for (const ObjCIvarDecl *ivar = 3375 ID->getClassInterface()->all_declared_ivar_begin(); 3376 ivar; ivar = ivar->getNextIvar()) { 3377 if (hasWeakMember(ivar->getType())) 3378 return true; 3379 } 3380 3381 return false; 3382 } 3383 3384 /* 3385 struct _objc_class { 3386 Class isa; 3387 Class super_class; 3388 const char *name; 3389 long version; 3390 long info; 3391 long instance_size; 3392 struct _objc_ivar_list *ivars; 3393 struct _objc_method_list *methods; 3394 struct _objc_cache *cache; 3395 struct _objc_protocol_list *protocols; 3396 // Objective-C 1.0 extensions (<rdr://4585769>) 3397 const char *ivar_layout; 3398 struct _objc_class_ext *ext; 3399 }; 3400 3401 See EmitClassExtension(); 3402 */ 3403 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3404 DefinedSymbols.insert(ID->getIdentifier()); 3405 3406 std::string ClassName = ID->getNameAsString(); 3407 // FIXME: Gross 3408 ObjCInterfaceDecl *Interface = 3409 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3410 llvm::Constant *Protocols = 3411 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3412 Interface->all_referenced_protocol_begin(), 3413 Interface->all_referenced_protocol_end()); 3414 unsigned Flags = FragileABI_Class_Factory; 3415 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3416 Flags |= FragileABI_Class_HasCXXStructors; 3417 3418 bool hasMRCWeak = false; 3419 3420 if (CGM.getLangOpts().ObjCAutoRefCount) 3421 Flags |= FragileABI_Class_CompiledByARC; 3422 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3423 Flags |= FragileABI_Class_HasMRCWeakIvars; 3424 3425 CharUnits Size = 3426 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3427 3428 // FIXME: Set CXX-structors flag. 3429 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3430 Flags |= FragileABI_Class_Hidden; 3431 3432 enum { 3433 InstanceMethods, 3434 ClassMethods, 3435 NumMethodLists 3436 }; 3437 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3438 for (const auto *MD : ID->methods()) { 3439 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3440 } 3441 3442 for (const auto *PID : ID->property_impls()) { 3443 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3444 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3445 3446 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3447 if (GetMethodDefinition(MD)) 3448 Methods[InstanceMethods].push_back(MD); 3449 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3450 if (GetMethodDefinition(MD)) 3451 Methods[InstanceMethods].push_back(MD); 3452 } 3453 } 3454 3455 ConstantInitBuilder builder(CGM); 3456 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3457 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3458 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3459 // Record a reference to the super class. 3460 LazySymbols.insert(Super->getIdentifier()); 3461 3462 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3463 ObjCTypes.ClassPtrTy); 3464 } else { 3465 values.addNullPointer(ObjCTypes.ClassPtrTy); 3466 } 3467 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3468 // Version is always 0. 3469 values.addInt(ObjCTypes.LongTy, 0); 3470 values.addInt(ObjCTypes.LongTy, Flags); 3471 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3472 values.add(EmitIvarList(ID, false)); 3473 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3474 Methods[InstanceMethods])); 3475 // cache is always NULL. 3476 values.addNullPointer(ObjCTypes.CachePtrTy); 3477 values.add(Protocols); 3478 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3479 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3480 /*isMetaclass*/ false)); 3481 3482 std::string Name("OBJC_CLASS_"); 3483 Name += ClassName; 3484 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3485 // Check for a forward reference. 3486 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3487 if (GV) { 3488 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3489 "Forward metaclass reference has incorrect type."); 3490 values.finishAndSetAsInitializer(GV); 3491 GV->setSection(Section); 3492 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3493 CGM.addCompilerUsedGlobal(GV); 3494 } else 3495 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3496 DefinedClasses.push_back(GV); 3497 ImplementedClasses.push_back(Interface); 3498 // method definition entries must be clear for next implementation. 3499 MethodDefinitions.clear(); 3500 } 3501 3502 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3503 llvm::Constant *Protocols, 3504 ArrayRef<const ObjCMethodDecl*> Methods) { 3505 unsigned Flags = FragileABI_Class_Meta; 3506 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3507 3508 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3509 Flags |= FragileABI_Class_Hidden; 3510 3511 ConstantInitBuilder builder(CGM); 3512 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3513 // The isa for the metaclass is the root of the hierarchy. 3514 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3515 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3516 Root = Super; 3517 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3518 ObjCTypes.ClassPtrTy); 3519 // The super class for the metaclass is emitted as the name of the 3520 // super class. The runtime fixes this up to point to the 3521 // *metaclass* for the super class. 3522 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3523 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3524 ObjCTypes.ClassPtrTy); 3525 } else { 3526 values.addNullPointer(ObjCTypes.ClassPtrTy); 3527 } 3528 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3529 // Version is always 0. 3530 values.addInt(ObjCTypes.LongTy, 0); 3531 values.addInt(ObjCTypes.LongTy, Flags); 3532 values.addInt(ObjCTypes.LongTy, Size); 3533 values.add(EmitIvarList(ID, true)); 3534 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3535 Methods)); 3536 // cache is always NULL. 3537 values.addNullPointer(ObjCTypes.CachePtrTy); 3538 values.add(Protocols); 3539 // ivar_layout for metaclass is always NULL. 3540 values.addNullPointer(ObjCTypes.Int8PtrTy); 3541 // The class extension is used to store class properties for metaclasses. 3542 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3543 /*isMetaclass*/true)); 3544 3545 std::string Name("OBJC_METACLASS_"); 3546 Name += ID->getName(); 3547 3548 // Check for a forward reference. 3549 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3550 if (GV) { 3551 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3552 "Forward metaclass reference has incorrect type."); 3553 values.finishAndSetAsInitializer(GV); 3554 } else { 3555 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3556 /*constant*/ false, 3557 llvm::GlobalValue::PrivateLinkage); 3558 } 3559 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3560 CGM.addCompilerUsedGlobal(GV); 3561 3562 return GV; 3563 } 3564 3565 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3566 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3567 3568 // FIXME: Should we look these up somewhere other than the module. Its a bit 3569 // silly since we only generate these while processing an implementation, so 3570 // exactly one pointer would work if know when we entered/exitted an 3571 // implementation block. 3572 3573 // Check for an existing forward reference. 3574 // Previously, metaclass with internal linkage may have been defined. 3575 // pass 'true' as 2nd argument so it is returned. 3576 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3577 if (!GV) 3578 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3579 llvm::GlobalValue::PrivateLinkage, nullptr, 3580 Name); 3581 3582 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3583 "Forward metaclass reference has incorrect type."); 3584 return GV; 3585 } 3586 3587 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3588 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3589 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3590 3591 if (!GV) 3592 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3593 llvm::GlobalValue::PrivateLinkage, nullptr, 3594 Name); 3595 3596 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3597 "Forward class metadata reference has incorrect type."); 3598 return GV; 3599 } 3600 3601 /* 3602 Emit a "class extension", which in this specific context means extra 3603 data that doesn't fit in the normal fragile-ABI class structure, and 3604 has nothing to do with the language concept of a class extension. 3605 3606 struct objc_class_ext { 3607 uint32_t size; 3608 const char *weak_ivar_layout; 3609 struct _objc_property_list *properties; 3610 }; 3611 */ 3612 llvm::Constant * 3613 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3614 CharUnits InstanceSize, bool hasMRCWeakIvars, 3615 bool isMetaclass) { 3616 // Weak ivar layout. 3617 llvm::Constant *layout; 3618 if (isMetaclass) { 3619 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3620 } else { 3621 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3622 hasMRCWeakIvars); 3623 } 3624 3625 // Properties. 3626 llvm::Constant *propertyList = 3627 EmitPropertyList((isMetaclass ? Twine("\01l_OBJC_$_CLASS_PROP_LIST_") 3628 : Twine("\01l_OBJC_$_PROP_LIST_")) 3629 + ID->getName(), 3630 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3631 3632 // Return null if no extension bits are used. 3633 if (layout->isNullValue() && propertyList->isNullValue()) { 3634 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3635 } 3636 3637 uint64_t size = 3638 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3639 3640 ConstantInitBuilder builder(CGM); 3641 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3642 values.addInt(ObjCTypes.IntTy, size); 3643 values.add(layout); 3644 values.add(propertyList); 3645 3646 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3647 "__OBJC,__class_ext,regular,no_dead_strip", 3648 CGM.getPointerAlign(), true); 3649 } 3650 3651 /* 3652 struct objc_ivar { 3653 char *ivar_name; 3654 char *ivar_type; 3655 int ivar_offset; 3656 }; 3657 3658 struct objc_ivar_list { 3659 int ivar_count; 3660 struct objc_ivar list[count]; 3661 }; 3662 */ 3663 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3664 bool ForClass) { 3665 // When emitting the root class GCC emits ivar entries for the 3666 // actual class structure. It is not clear if we need to follow this 3667 // behavior; for now lets try and get away with not doing it. If so, 3668 // the cleanest solution would be to make up an ObjCInterfaceDecl 3669 // for the class. 3670 if (ForClass) 3671 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3672 3673 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3674 3675 ConstantInitBuilder builder(CGM); 3676 auto ivarList = builder.beginStruct(); 3677 auto countSlot = ivarList.addPlaceholder(); 3678 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3679 3680 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3681 IVD; IVD = IVD->getNextIvar()) { 3682 // Ignore unnamed bit-fields. 3683 if (!IVD->getDeclName()) 3684 continue; 3685 3686 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3687 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3688 ivar.add(GetMethodVarType(IVD)); 3689 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3690 ivar.finishAndAddTo(ivars); 3691 } 3692 3693 // Return null for empty list. 3694 auto count = ivars.size(); 3695 if (count == 0) { 3696 ivars.abandon(); 3697 ivarList.abandon(); 3698 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3699 } 3700 3701 ivars.finishAndAddTo(ivarList); 3702 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3703 3704 llvm::GlobalVariable *GV; 3705 if (ForClass) 3706 GV = 3707 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3708 "__OBJC,__class_vars,regular,no_dead_strip", 3709 CGM.getPointerAlign(), true); 3710 else 3711 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3712 "__OBJC,__instance_vars,regular,no_dead_strip", 3713 CGM.getPointerAlign(), true); 3714 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3715 } 3716 3717 /// Build a struct objc_method_description constant for the given method. 3718 /// 3719 /// struct objc_method_description { 3720 /// SEL method_name; 3721 /// char *method_types; 3722 /// }; 3723 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3724 const ObjCMethodDecl *MD) { 3725 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3726 description.addBitCast(GetMethodVarName(MD->getSelector()), 3727 ObjCTypes.SelectorPtrTy); 3728 description.add(GetMethodVarType(MD)); 3729 description.finishAndAddTo(builder); 3730 } 3731 3732 /// Build a struct objc_method constant for the given method. 3733 /// 3734 /// struct objc_method { 3735 /// SEL method_name; 3736 /// char *method_types; 3737 /// void *method; 3738 /// }; 3739 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3740 const ObjCMethodDecl *MD) { 3741 llvm::Function *fn = GetMethodDefinition(MD); 3742 assert(fn && "no definition registered for method"); 3743 3744 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3745 method.addBitCast(GetMethodVarName(MD->getSelector()), 3746 ObjCTypes.SelectorPtrTy); 3747 method.add(GetMethodVarType(MD)); 3748 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3749 method.finishAndAddTo(builder); 3750 } 3751 3752 /// Build a struct objc_method_list or struct objc_method_description_list, 3753 /// as appropriate. 3754 /// 3755 /// struct objc_method_list { 3756 /// struct objc_method_list *obsolete; 3757 /// int count; 3758 /// struct objc_method methods_list[count]; 3759 /// }; 3760 /// 3761 /// struct objc_method_description_list { 3762 /// int count; 3763 /// struct objc_method_description list[count]; 3764 /// }; 3765 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3766 ArrayRef<const ObjCMethodDecl *> methods) { 3767 StringRef prefix; 3768 StringRef section; 3769 bool forProtocol = false; 3770 switch (MLT) { 3771 case MethodListType::CategoryInstanceMethods: 3772 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3773 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3774 forProtocol = false; 3775 break; 3776 case MethodListType::CategoryClassMethods: 3777 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3778 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3779 forProtocol = false; 3780 break; 3781 case MethodListType::InstanceMethods: 3782 prefix = "OBJC_INSTANCE_METHODS_"; 3783 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3784 forProtocol = false; 3785 break; 3786 case MethodListType::ClassMethods: 3787 prefix = "OBJC_CLASS_METHODS_"; 3788 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3789 forProtocol = false; 3790 break; 3791 case MethodListType::ProtocolInstanceMethods: 3792 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3793 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3794 forProtocol = true; 3795 break; 3796 case MethodListType::ProtocolClassMethods: 3797 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3798 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3799 forProtocol = true; 3800 break; 3801 case MethodListType::OptionalProtocolInstanceMethods: 3802 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3803 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3804 forProtocol = true; 3805 break; 3806 case MethodListType::OptionalProtocolClassMethods: 3807 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3808 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3809 forProtocol = true; 3810 break; 3811 } 3812 3813 // Return null for empty list. 3814 if (methods.empty()) 3815 return llvm::Constant::getNullValue(forProtocol 3816 ? ObjCTypes.MethodDescriptionListPtrTy 3817 : ObjCTypes.MethodListPtrTy); 3818 3819 // For protocols, this is an objc_method_description_list, which has 3820 // a slightly different structure. 3821 if (forProtocol) { 3822 ConstantInitBuilder builder(CGM); 3823 auto values = builder.beginStruct(); 3824 values.addInt(ObjCTypes.IntTy, methods.size()); 3825 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3826 for (auto MD : methods) { 3827 emitMethodDescriptionConstant(methodArray, MD); 3828 } 3829 methodArray.finishAndAddTo(values); 3830 3831 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3832 CGM.getPointerAlign(), true); 3833 return llvm::ConstantExpr::getBitCast(GV, 3834 ObjCTypes.MethodDescriptionListPtrTy); 3835 } 3836 3837 // Otherwise, it's an objc_method_list. 3838 ConstantInitBuilder builder(CGM); 3839 auto values = builder.beginStruct(); 3840 values.addNullPointer(ObjCTypes.Int8PtrTy); 3841 values.addInt(ObjCTypes.IntTy, methods.size()); 3842 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3843 for (auto MD : methods) { 3844 emitMethodConstant(methodArray, MD); 3845 } 3846 methodArray.finishAndAddTo(values); 3847 3848 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3849 CGM.getPointerAlign(), true); 3850 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3851 } 3852 3853 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3854 const ObjCContainerDecl *CD) { 3855 SmallString<256> Name; 3856 GetNameForMethod(OMD, CD, Name); 3857 3858 CodeGenTypes &Types = CGM.getTypes(); 3859 llvm::FunctionType *MethodTy = 3860 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3861 llvm::Function *Method = 3862 llvm::Function::Create(MethodTy, 3863 llvm::GlobalValue::InternalLinkage, 3864 Name.str(), 3865 &CGM.getModule()); 3866 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3867 3868 return Method; 3869 } 3870 3871 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3872 ConstantStructBuilder &Init, 3873 StringRef Section, 3874 CharUnits Align, 3875 bool AddToUsed) { 3876 llvm::GlobalVariable *GV = 3877 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, 3878 llvm::GlobalValue::PrivateLinkage); 3879 if (!Section.empty()) 3880 GV->setSection(Section); 3881 if (AddToUsed) 3882 CGM.addCompilerUsedGlobal(GV); 3883 return GV; 3884 } 3885 3886 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3887 llvm::Constant *Init, 3888 StringRef Section, 3889 CharUnits Align, 3890 bool AddToUsed) { 3891 llvm::Type *Ty = Init->getType(); 3892 llvm::GlobalVariable *GV = 3893 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3894 llvm::GlobalValue::PrivateLinkage, Init, Name); 3895 if (!Section.empty()) 3896 GV->setSection(Section); 3897 GV->setAlignment(Align.getQuantity()); 3898 if (AddToUsed) 3899 CGM.addCompilerUsedGlobal(GV); 3900 return GV; 3901 } 3902 3903 llvm::GlobalVariable * 3904 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 3905 bool ForceNonFragileABI, 3906 bool NullTerminate) { 3907 StringRef Label; 3908 switch (Type) { 3909 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 3910 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 3911 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 3912 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 3913 } 3914 3915 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 3916 3917 StringRef Section; 3918 switch (Type) { 3919 case ObjCLabelType::ClassName: 3920 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 3921 : "__TEXT,__cstring,cstring_literals"; 3922 break; 3923 case ObjCLabelType::MethodVarName: 3924 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 3925 : "__TEXT,__cstring,cstring_literals"; 3926 break; 3927 case ObjCLabelType::MethodVarType: 3928 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 3929 : "__TEXT,__cstring,cstring_literals"; 3930 break; 3931 case ObjCLabelType::PropertyName: 3932 Section = "__TEXT,__cstring,cstring_literals"; 3933 break; 3934 } 3935 3936 llvm::Constant *Value = 3937 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 3938 llvm::GlobalVariable *GV = 3939 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 3940 /*isConstant=*/true, 3941 llvm::GlobalValue::PrivateLinkage, Value, Label); 3942 if (CGM.getTriple().isOSBinFormatMachO()) 3943 GV->setSection(Section); 3944 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3945 GV->setAlignment(CharUnits::One().getQuantity()); 3946 CGM.addCompilerUsedGlobal(GV); 3947 3948 return GV; 3949 } 3950 3951 llvm::Function *CGObjCMac::ModuleInitFunction() { 3952 // Abuse this interface function as a place to finalize. 3953 FinishModule(); 3954 return nullptr; 3955 } 3956 3957 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3958 return ObjCTypes.getGetPropertyFn(); 3959 } 3960 3961 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3962 return ObjCTypes.getSetPropertyFn(); 3963 } 3964 3965 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3966 bool copy) { 3967 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3968 } 3969 3970 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3971 return ObjCTypes.getCopyStructFn(); 3972 } 3973 3974 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3975 return ObjCTypes.getCopyStructFn(); 3976 } 3977 3978 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3979 return ObjCTypes.getCppAtomicObjectFunction(); 3980 } 3981 3982 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3983 return ObjCTypes.getCppAtomicObjectFunction(); 3984 } 3985 3986 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3987 return ObjCTypes.getEnumerationMutationFn(); 3988 } 3989 3990 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3991 return EmitTryOrSynchronizedStmt(CGF, S); 3992 } 3993 3994 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3995 const ObjCAtSynchronizedStmt &S) { 3996 return EmitTryOrSynchronizedStmt(CGF, S); 3997 } 3998 3999 namespace { 4000 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4001 const Stmt &S; 4002 Address SyncArgSlot; 4003 Address CallTryExitVar; 4004 Address ExceptionData; 4005 ObjCTypesHelper &ObjCTypes; 4006 PerformFragileFinally(const Stmt *S, 4007 Address SyncArgSlot, 4008 Address CallTryExitVar, 4009 Address ExceptionData, 4010 ObjCTypesHelper *ObjCTypes) 4011 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4012 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4013 4014 void Emit(CodeGenFunction &CGF, Flags flags) override { 4015 // Check whether we need to call objc_exception_try_exit. 4016 // In optimized code, this branch will always be folded. 4017 llvm::BasicBlock *FinallyCallExit = 4018 CGF.createBasicBlock("finally.call_exit"); 4019 llvm::BasicBlock *FinallyNoCallExit = 4020 CGF.createBasicBlock("finally.no_call_exit"); 4021 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4022 FinallyCallExit, FinallyNoCallExit); 4023 4024 CGF.EmitBlock(FinallyCallExit); 4025 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4026 ExceptionData.getPointer()); 4027 4028 CGF.EmitBlock(FinallyNoCallExit); 4029 4030 if (isa<ObjCAtTryStmt>(S)) { 4031 if (const ObjCAtFinallyStmt* FinallyStmt = 4032 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4033 // Don't try to do the @finally if this is an EH cleanup. 4034 if (flags.isForEHCleanup()) return; 4035 4036 // Save the current cleanup destination in case there's 4037 // control flow inside the finally statement. 4038 llvm::Value *CurCleanupDest = 4039 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4040 4041 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4042 4043 if (CGF.HaveInsertPoint()) { 4044 CGF.Builder.CreateStore(CurCleanupDest, 4045 CGF.getNormalCleanupDestSlot()); 4046 } else { 4047 // Currently, the end of the cleanup must always exist. 4048 CGF.EnsureInsertPoint(); 4049 } 4050 } 4051 } else { 4052 // Emit objc_sync_exit(expr); as finally's sole statement for 4053 // @synchronized. 4054 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4055 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4056 } 4057 } 4058 }; 4059 4060 class FragileHazards { 4061 CodeGenFunction &CGF; 4062 SmallVector<llvm::Value*, 20> Locals; 4063 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4064 4065 llvm::InlineAsm *ReadHazard; 4066 llvm::InlineAsm *WriteHazard; 4067 4068 llvm::FunctionType *GetAsmFnType(); 4069 4070 void collectLocals(); 4071 void emitReadHazard(CGBuilderTy &Builder); 4072 4073 public: 4074 FragileHazards(CodeGenFunction &CGF); 4075 4076 void emitWriteHazard(); 4077 void emitHazardsInNewBlocks(); 4078 }; 4079 } // end anonymous namespace 4080 4081 /// Create the fragile-ABI read and write hazards based on the current 4082 /// state of the function, which is presumed to be immediately prior 4083 /// to a @try block. These hazards are used to maintain correct 4084 /// semantics in the face of optimization and the fragile ABI's 4085 /// cavalier use of setjmp/longjmp. 4086 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4087 collectLocals(); 4088 4089 if (Locals.empty()) return; 4090 4091 // Collect all the blocks in the function. 4092 for (llvm::Function::iterator 4093 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4094 BlocksBeforeTry.insert(&*I); 4095 4096 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4097 4098 // Create a read hazard for the allocas. This inhibits dead-store 4099 // optimizations and forces the values to memory. This hazard is 4100 // inserted before any 'throwing' calls in the protected scope to 4101 // reflect the possibility that the variables might be read from the 4102 // catch block if the call throws. 4103 { 4104 std::string Constraint; 4105 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4106 if (I) Constraint += ','; 4107 Constraint += "*m"; 4108 } 4109 4110 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4111 } 4112 4113 // Create a write hazard for the allocas. This inhibits folding 4114 // loads across the hazard. This hazard is inserted at the 4115 // beginning of the catch path to reflect the possibility that the 4116 // variables might have been written within the protected scope. 4117 { 4118 std::string Constraint; 4119 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4120 if (I) Constraint += ','; 4121 Constraint += "=*m"; 4122 } 4123 4124 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4125 } 4126 } 4127 4128 /// Emit a write hazard at the current location. 4129 void FragileHazards::emitWriteHazard() { 4130 if (Locals.empty()) return; 4131 4132 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4133 } 4134 4135 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4136 assert(!Locals.empty()); 4137 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4138 call->setDoesNotThrow(); 4139 call->setCallingConv(CGF.getRuntimeCC()); 4140 } 4141 4142 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4143 /// which have been inserted since the beginning of the try. 4144 void FragileHazards::emitHazardsInNewBlocks() { 4145 if (Locals.empty()) return; 4146 4147 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4148 4149 // Iterate through all blocks, skipping those prior to the try. 4150 for (llvm::Function::iterator 4151 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4152 llvm::BasicBlock &BB = *FI; 4153 if (BlocksBeforeTry.count(&BB)) continue; 4154 4155 // Walk through all the calls in the block. 4156 for (llvm::BasicBlock::iterator 4157 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4158 llvm::Instruction &I = *BI; 4159 4160 // Ignore instructions that aren't non-intrinsic calls. 4161 // These are the only calls that can possibly call longjmp. 4162 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 4163 if (isa<llvm::IntrinsicInst>(I)) 4164 continue; 4165 4166 // Ignore call sites marked nounwind. This may be questionable, 4167 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4168 llvm::CallSite CS(&I); 4169 if (CS.doesNotThrow()) continue; 4170 4171 // Insert a read hazard before the call. This will ensure that 4172 // any writes to the locals are performed before making the 4173 // call. If the call throws, then this is sufficient to 4174 // guarantee correctness as long as it doesn't also write to any 4175 // locals. 4176 Builder.SetInsertPoint(&BB, BI); 4177 emitReadHazard(Builder); 4178 } 4179 } 4180 } 4181 4182 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 4183 if (V) S.insert(V); 4184 } 4185 4186 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4187 if (V.isValid()) S.insert(V.getPointer()); 4188 } 4189 4190 void FragileHazards::collectLocals() { 4191 // Compute a set of allocas to ignore. 4192 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4193 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4194 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4195 4196 // Collect all the allocas currently in the function. This is 4197 // probably way too aggressive. 4198 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4199 for (llvm::BasicBlock::iterator 4200 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4201 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4202 Locals.push_back(&*I); 4203 } 4204 4205 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4206 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4207 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4208 tys[i] = Locals[i]->getType(); 4209 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4210 } 4211 4212 /* 4213 4214 Objective-C setjmp-longjmp (sjlj) Exception Handling 4215 -- 4216 4217 A catch buffer is a setjmp buffer plus: 4218 - a pointer to the exception that was caught 4219 - a pointer to the previous exception data buffer 4220 - two pointers of reserved storage 4221 Therefore catch buffers form a stack, with a pointer to the top 4222 of the stack kept in thread-local storage. 4223 4224 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4225 objc_exception_try_exit pops the given catch buffer, which is 4226 required to be the top of the EH stack. 4227 objc_exception_throw pops the top of the EH stack, writes the 4228 thrown exception into the appropriate field, and longjmps 4229 to the setjmp buffer. It crashes the process (with a printf 4230 and an abort()) if there are no catch buffers on the stack. 4231 objc_exception_extract just reads the exception pointer out of the 4232 catch buffer. 4233 4234 There's no reason an implementation couldn't use a light-weight 4235 setjmp here --- something like __builtin_setjmp, but API-compatible 4236 with the heavyweight setjmp. This will be more important if we ever 4237 want to implement correct ObjC/C++ exception interactions for the 4238 fragile ABI. 4239 4240 Note that for this use of setjmp/longjmp to be correct, we may need 4241 to mark some local variables volatile: if a non-volatile local 4242 variable is modified between the setjmp and the longjmp, it has 4243 indeterminate value. For the purposes of LLVM IR, it may be 4244 sufficient to make loads and stores within the @try (to variables 4245 declared outside the @try) volatile. This is necessary for 4246 optimized correctness, but is not currently being done; this is 4247 being tracked as rdar://problem/8160285 4248 4249 The basic framework for a @try-catch-finally is as follows: 4250 { 4251 objc_exception_data d; 4252 id _rethrow = null; 4253 bool _call_try_exit = true; 4254 4255 objc_exception_try_enter(&d); 4256 if (!setjmp(d.jmp_buf)) { 4257 ... try body ... 4258 } else { 4259 // exception path 4260 id _caught = objc_exception_extract(&d); 4261 4262 // enter new try scope for handlers 4263 if (!setjmp(d.jmp_buf)) { 4264 ... match exception and execute catch blocks ... 4265 4266 // fell off end, rethrow. 4267 _rethrow = _caught; 4268 ... jump-through-finally to finally_rethrow ... 4269 } else { 4270 // exception in catch block 4271 _rethrow = objc_exception_extract(&d); 4272 _call_try_exit = false; 4273 ... jump-through-finally to finally_rethrow ... 4274 } 4275 } 4276 ... jump-through-finally to finally_end ... 4277 4278 finally: 4279 if (_call_try_exit) 4280 objc_exception_try_exit(&d); 4281 4282 ... finally block .... 4283 ... dispatch to finally destination ... 4284 4285 finally_rethrow: 4286 objc_exception_throw(_rethrow); 4287 4288 finally_end: 4289 } 4290 4291 This framework differs slightly from the one gcc uses, in that gcc 4292 uses _rethrow to determine if objc_exception_try_exit should be called 4293 and if the object should be rethrown. This breaks in the face of 4294 throwing nil and introduces unnecessary branches. 4295 4296 We specialize this framework for a few particular circumstances: 4297 4298 - If there are no catch blocks, then we avoid emitting the second 4299 exception handling context. 4300 4301 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4302 e)) we avoid emitting the code to rethrow an uncaught exception. 4303 4304 - FIXME: If there is no @finally block we can do a few more 4305 simplifications. 4306 4307 Rethrows and Jumps-Through-Finally 4308 -- 4309 4310 '@throw;' is supported by pushing the currently-caught exception 4311 onto ObjCEHStack while the @catch blocks are emitted. 4312 4313 Branches through the @finally block are handled with an ordinary 4314 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4315 exceptions are not compatible with C++ exceptions, and this is 4316 hardly the only place where this will go wrong. 4317 4318 @synchronized(expr) { stmt; } is emitted as if it were: 4319 id synch_value = expr; 4320 objc_sync_enter(synch_value); 4321 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4322 */ 4323 4324 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4325 const Stmt &S) { 4326 bool isTry = isa<ObjCAtTryStmt>(S); 4327 4328 // A destination for the fall-through edges of the catch handlers to 4329 // jump to. 4330 CodeGenFunction::JumpDest FinallyEnd = 4331 CGF.getJumpDestInCurrentScope("finally.end"); 4332 4333 // A destination for the rethrow edge of the catch handlers to jump 4334 // to. 4335 CodeGenFunction::JumpDest FinallyRethrow = 4336 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4337 4338 // For @synchronized, call objc_sync_enter(sync.expr). The 4339 // evaluation of the expression must occur before we enter the 4340 // @synchronized. We can't avoid a temp here because we need the 4341 // value to be preserved. If the backend ever does liveness 4342 // correctly after setjmp, this will be unnecessary. 4343 Address SyncArgSlot = Address::invalid(); 4344 if (!isTry) { 4345 llvm::Value *SyncArg = 4346 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4347 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4348 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4349 4350 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4351 CGF.getPointerAlign(), "sync.arg"); 4352 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4353 } 4354 4355 // Allocate memory for the setjmp buffer. This needs to be kept 4356 // live throughout the try and catch blocks. 4357 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4358 CGF.getPointerAlign(), 4359 "exceptiondata.ptr"); 4360 4361 // Create the fragile hazards. Note that this will not capture any 4362 // of the allocas required for exception processing, but will 4363 // capture the current basic block (which extends all the way to the 4364 // setjmp call) as "before the @try". 4365 FragileHazards Hazards(CGF); 4366 4367 // Create a flag indicating whether the cleanup needs to call 4368 // objc_exception_try_exit. This is true except when 4369 // - no catches match and we're branching through the cleanup 4370 // just to rethrow the exception, or 4371 // - a catch matched and we're falling out of the catch handler. 4372 // The setjmp-safety rule here is that we should always store to this 4373 // variable in a place that dominates the branch through the cleanup 4374 // without passing through any setjmps. 4375 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4376 CharUnits::One(), 4377 "_call_try_exit"); 4378 4379 // A slot containing the exception to rethrow. Only needed when we 4380 // have both a @catch and a @finally. 4381 Address PropagatingExnVar = Address::invalid(); 4382 4383 // Push a normal cleanup to leave the try scope. 4384 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4385 SyncArgSlot, 4386 CallTryExitVar, 4387 ExceptionData, 4388 &ObjCTypes); 4389 4390 // Enter a try block: 4391 // - Call objc_exception_try_enter to push ExceptionData on top of 4392 // the EH stack. 4393 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4394 ExceptionData.getPointer()); 4395 4396 // - Call setjmp on the exception data buffer. 4397 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4398 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4399 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4400 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4401 "setjmp_buffer"); 4402 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4403 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4404 SetJmpResult->setCanReturnTwice(); 4405 4406 // If setjmp returned 0, enter the protected block; otherwise, 4407 // branch to the handler. 4408 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4409 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4410 llvm::Value *DidCatch = 4411 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4412 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4413 4414 // Emit the protected block. 4415 CGF.EmitBlock(TryBlock); 4416 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4417 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4418 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4419 4420 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4421 4422 // Emit the exception handler block. 4423 CGF.EmitBlock(TryHandler); 4424 4425 // Don't optimize loads of the in-scope locals across this point. 4426 Hazards.emitWriteHazard(); 4427 4428 // For a @synchronized (or a @try with no catches), just branch 4429 // through the cleanup to the rethrow block. 4430 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4431 // Tell the cleanup not to re-pop the exit. 4432 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4433 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4434 4435 // Otherwise, we have to match against the caught exceptions. 4436 } else { 4437 // Retrieve the exception object. We may emit multiple blocks but 4438 // nothing can cross this so the value is already in SSA form. 4439 llvm::CallInst *Caught = 4440 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4441 ExceptionData.getPointer(), "caught"); 4442 4443 // Push the exception to rethrow onto the EH value stack for the 4444 // benefit of any @throws in the handlers. 4445 CGF.ObjCEHValueStack.push_back(Caught); 4446 4447 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4448 4449 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4450 4451 llvm::BasicBlock *CatchBlock = nullptr; 4452 llvm::BasicBlock *CatchHandler = nullptr; 4453 if (HasFinally) { 4454 // Save the currently-propagating exception before 4455 // objc_exception_try_enter clears the exception slot. 4456 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4457 CGF.getPointerAlign(), 4458 "propagating_exception"); 4459 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4460 4461 // Enter a new exception try block (in case a @catch block 4462 // throws an exception). 4463 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4464 ExceptionData.getPointer()); 4465 4466 llvm::CallInst *SetJmpResult = 4467 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4468 SetJmpBuffer, "setjmp.result"); 4469 SetJmpResult->setCanReturnTwice(); 4470 4471 llvm::Value *Threw = 4472 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4473 4474 CatchBlock = CGF.createBasicBlock("catch"); 4475 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4476 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4477 4478 CGF.EmitBlock(CatchBlock); 4479 } 4480 4481 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4482 4483 // Handle catch list. As a special case we check if everything is 4484 // matched and avoid generating code for falling off the end if 4485 // so. 4486 bool AllMatched = false; 4487 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4488 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4489 4490 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4491 const ObjCObjectPointerType *OPT = nullptr; 4492 4493 // catch(...) always matches. 4494 if (!CatchParam) { 4495 AllMatched = true; 4496 } else { 4497 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4498 4499 // catch(id e) always matches under this ABI, since only 4500 // ObjC exceptions end up here in the first place. 4501 // FIXME: For the time being we also match id<X>; this should 4502 // be rejected by Sema instead. 4503 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4504 AllMatched = true; 4505 } 4506 4507 // If this is a catch-all, we don't need to test anything. 4508 if (AllMatched) { 4509 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4510 4511 if (CatchParam) { 4512 CGF.EmitAutoVarDecl(*CatchParam); 4513 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4514 4515 // These types work out because ConvertType(id) == i8*. 4516 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4517 } 4518 4519 CGF.EmitStmt(CatchStmt->getCatchBody()); 4520 4521 // The scope of the catch variable ends right here. 4522 CatchVarCleanups.ForceCleanup(); 4523 4524 CGF.EmitBranchThroughCleanup(FinallyEnd); 4525 break; 4526 } 4527 4528 assert(OPT && "Unexpected non-object pointer type in @catch"); 4529 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4530 4531 // FIXME: @catch (Class c) ? 4532 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4533 assert(IDecl && "Catch parameter must have Objective-C type!"); 4534 4535 // Check if the @catch block matches the exception object. 4536 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4537 4538 llvm::Value *matchArgs[] = { Class, Caught }; 4539 llvm::CallInst *Match = 4540 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4541 matchArgs, "match"); 4542 4543 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4544 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4545 4546 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4547 MatchedBlock, NextCatchBlock); 4548 4549 // Emit the @catch block. 4550 CGF.EmitBlock(MatchedBlock); 4551 4552 // Collect any cleanups for the catch variable. The scope lasts until 4553 // the end of the catch body. 4554 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4555 4556 CGF.EmitAutoVarDecl(*CatchParam); 4557 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4558 4559 // Initialize the catch variable. 4560 llvm::Value *Tmp = 4561 CGF.Builder.CreateBitCast(Caught, 4562 CGF.ConvertType(CatchParam->getType())); 4563 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4564 4565 CGF.EmitStmt(CatchStmt->getCatchBody()); 4566 4567 // We're done with the catch variable. 4568 CatchVarCleanups.ForceCleanup(); 4569 4570 CGF.EmitBranchThroughCleanup(FinallyEnd); 4571 4572 CGF.EmitBlock(NextCatchBlock); 4573 } 4574 4575 CGF.ObjCEHValueStack.pop_back(); 4576 4577 // If nothing wanted anything to do with the caught exception, 4578 // kill the extract call. 4579 if (Caught->use_empty()) 4580 Caught->eraseFromParent(); 4581 4582 if (!AllMatched) 4583 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4584 4585 if (HasFinally) { 4586 // Emit the exception handler for the @catch blocks. 4587 CGF.EmitBlock(CatchHandler); 4588 4589 // In theory we might now need a write hazard, but actually it's 4590 // unnecessary because there's no local-accessing code between 4591 // the try's write hazard and here. 4592 //Hazards.emitWriteHazard(); 4593 4594 // Extract the new exception and save it to the 4595 // propagating-exception slot. 4596 assert(PropagatingExnVar.isValid()); 4597 llvm::CallInst *NewCaught = 4598 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4599 ExceptionData.getPointer(), "caught"); 4600 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4601 4602 // Don't pop the catch handler; the throw already did. 4603 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4604 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4605 } 4606 } 4607 4608 // Insert read hazards as required in the new blocks. 4609 Hazards.emitHazardsInNewBlocks(); 4610 4611 // Pop the cleanup. 4612 CGF.Builder.restoreIP(TryFallthroughIP); 4613 if (CGF.HaveInsertPoint()) 4614 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4615 CGF.PopCleanupBlock(); 4616 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4617 4618 // Emit the rethrow block. 4619 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4620 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4621 if (CGF.HaveInsertPoint()) { 4622 // If we have a propagating-exception variable, check it. 4623 llvm::Value *PropagatingExn; 4624 if (PropagatingExnVar.isValid()) { 4625 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4626 4627 // Otherwise, just look in the buffer for the exception to throw. 4628 } else { 4629 llvm::CallInst *Caught = 4630 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4631 ExceptionData.getPointer()); 4632 PropagatingExn = Caught; 4633 } 4634 4635 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4636 PropagatingExn); 4637 CGF.Builder.CreateUnreachable(); 4638 } 4639 4640 CGF.Builder.restoreIP(SavedIP); 4641 } 4642 4643 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4644 const ObjCAtThrowStmt &S, 4645 bool ClearInsertionPoint) { 4646 llvm::Value *ExceptionAsObject; 4647 4648 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4649 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4650 ExceptionAsObject = 4651 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4652 } else { 4653 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4654 "Unexpected rethrow outside @catch block."); 4655 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4656 } 4657 4658 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4659 ->setDoesNotReturn(); 4660 CGF.Builder.CreateUnreachable(); 4661 4662 // Clear the insertion point to indicate we are in unreachable code. 4663 if (ClearInsertionPoint) 4664 CGF.Builder.ClearInsertionPoint(); 4665 } 4666 4667 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4668 /// object: objc_read_weak (id *src) 4669 /// 4670 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4671 Address AddrWeakObj) { 4672 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4673 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4674 ObjCTypes.PtrObjectPtrTy); 4675 llvm::Value *read_weak = 4676 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4677 AddrWeakObj.getPointer(), "weakread"); 4678 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4679 return read_weak; 4680 } 4681 4682 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4683 /// objc_assign_weak (id src, id *dst) 4684 /// 4685 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4686 llvm::Value *src, Address dst) { 4687 llvm::Type * SrcTy = src->getType(); 4688 if (!isa<llvm::PointerType>(SrcTy)) { 4689 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4690 assert(Size <= 8 && "does not support size > 8"); 4691 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4692 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4693 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4694 } 4695 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4696 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4697 llvm::Value *args[] = { src, dst.getPointer() }; 4698 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4699 args, "weakassign"); 4700 } 4701 4702 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4703 /// objc_assign_global (id src, id *dst) 4704 /// 4705 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4706 llvm::Value *src, Address dst, 4707 bool threadlocal) { 4708 llvm::Type * SrcTy = src->getType(); 4709 if (!isa<llvm::PointerType>(SrcTy)) { 4710 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4711 assert(Size <= 8 && "does not support size > 8"); 4712 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4713 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4714 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4715 } 4716 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4717 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4718 llvm::Value *args[] = { src, dst.getPointer() }; 4719 if (!threadlocal) 4720 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4721 args, "globalassign"); 4722 else 4723 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4724 args, "threadlocalassign"); 4725 } 4726 4727 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4728 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4729 /// 4730 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4731 llvm::Value *src, Address dst, 4732 llvm::Value *ivarOffset) { 4733 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4734 llvm::Type * SrcTy = src->getType(); 4735 if (!isa<llvm::PointerType>(SrcTy)) { 4736 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4737 assert(Size <= 8 && "does not support size > 8"); 4738 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4739 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4740 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4741 } 4742 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4743 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4744 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4745 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4746 } 4747 4748 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4749 /// objc_assign_strongCast (id src, id *dst) 4750 /// 4751 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4752 llvm::Value *src, Address dst) { 4753 llvm::Type * SrcTy = src->getType(); 4754 if (!isa<llvm::PointerType>(SrcTy)) { 4755 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4756 assert(Size <= 8 && "does not support size > 8"); 4757 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4758 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4759 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4760 } 4761 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4762 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4763 llvm::Value *args[] = { src, dst.getPointer() }; 4764 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4765 args, "strongassign"); 4766 } 4767 4768 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4769 Address DestPtr, 4770 Address SrcPtr, 4771 llvm::Value *size) { 4772 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4773 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4774 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4775 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4776 } 4777 4778 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4779 /// 4780 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4781 QualType ObjectTy, 4782 llvm::Value *BaseValue, 4783 const ObjCIvarDecl *Ivar, 4784 unsigned CVRQualifiers) { 4785 const ObjCInterfaceDecl *ID = 4786 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4787 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4788 EmitIvarOffset(CGF, ID, Ivar)); 4789 } 4790 4791 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4792 const ObjCInterfaceDecl *Interface, 4793 const ObjCIvarDecl *Ivar) { 4794 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4795 return llvm::ConstantInt::get( 4796 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4797 Offset); 4798 } 4799 4800 /* *** Private Interface *** */ 4801 4802 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 4803 StringRef MachOAttributes) { 4804 switch (CGM.getTriple().getObjectFormat()) { 4805 default: 4806 llvm_unreachable("unexpected object file format"); 4807 case llvm::Triple::MachO: { 4808 if (MachOAttributes.empty()) 4809 return ("__DATA," + Section).str(); 4810 return ("__DATA," + Section + "," + MachOAttributes).str(); 4811 } 4812 case llvm::Triple::ELF: 4813 assert(Section.substr(0, 2) == "__" && 4814 "expected the name to begin with __"); 4815 return Section.substr(2).str(); 4816 case llvm::Triple::COFF: 4817 assert(Section.substr(0, 2) == "__" && 4818 "expected the name to begin with __"); 4819 return ("." + Section.substr(2) + "$B").str(); 4820 } 4821 } 4822 4823 /// EmitImageInfo - Emit the image info marker used to encode some module 4824 /// level information. 4825 /// 4826 /// See: <rdr://4810609&4810587&4810587> 4827 /// struct IMAGE_INFO { 4828 /// unsigned version; 4829 /// unsigned flags; 4830 /// }; 4831 enum ImageInfoFlags { 4832 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4833 eImageInfo_GarbageCollected = (1 << 1), 4834 eImageInfo_GCOnly = (1 << 2), 4835 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4836 4837 // A flag indicating that the module has no instances of a @synthesize of a 4838 // superclass variable. <rdar://problem/6803242> 4839 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4840 eImageInfo_ImageIsSimulated = (1 << 5), 4841 eImageInfo_ClassProperties = (1 << 6) 4842 }; 4843 4844 void CGObjCCommonMac::EmitImageInfo() { 4845 unsigned version = 0; // Version is unused? 4846 std::string Section = 4847 (ObjCABI == 1) 4848 ? "__OBJC,__image_info,regular" 4849 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 4850 4851 // Generate module-level named metadata to convey this information to the 4852 // linker and code-gen. 4853 llvm::Module &Mod = CGM.getModule(); 4854 4855 // Add the ObjC ABI version to the module flags. 4856 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4857 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4858 version); 4859 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4860 llvm::MDString::get(VMContext, Section)); 4861 4862 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4863 // Non-GC overrides those files which specify GC. 4864 Mod.addModuleFlag(llvm::Module::Override, 4865 "Objective-C Garbage Collection", (uint32_t)0); 4866 } else { 4867 // Add the ObjC garbage collection value. 4868 Mod.addModuleFlag(llvm::Module::Error, 4869 "Objective-C Garbage Collection", 4870 eImageInfo_GarbageCollected); 4871 4872 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4873 // Add the ObjC GC Only value. 4874 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4875 eImageInfo_GCOnly); 4876 4877 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4878 llvm::Metadata *Ops[2] = { 4879 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4880 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4881 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4882 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4883 llvm::MDNode::get(VMContext, Ops)); 4884 } 4885 } 4886 4887 // Indicate whether we're compiling this to run on a simulator. 4888 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4889 if ((Triple.isiOS() || Triple.isWatchOS()) && 4890 (Triple.getArch() == llvm::Triple::x86 || 4891 Triple.getArch() == llvm::Triple::x86_64)) 4892 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4893 eImageInfo_ImageIsSimulated); 4894 4895 // Indicate whether we are generating class properties. 4896 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 4897 eImageInfo_ClassProperties); 4898 } 4899 4900 // struct objc_module { 4901 // unsigned long version; 4902 // unsigned long size; 4903 // const char *name; 4904 // Symtab symtab; 4905 // }; 4906 4907 // FIXME: Get from somewhere 4908 static const int ModuleVersion = 7; 4909 4910 void CGObjCMac::EmitModuleInfo() { 4911 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4912 4913 ConstantInitBuilder builder(CGM); 4914 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 4915 values.addInt(ObjCTypes.LongTy, ModuleVersion); 4916 values.addInt(ObjCTypes.LongTy, Size); 4917 // This used to be the filename, now it is unused. <rdr://4327263> 4918 values.add(GetClassName(StringRef(""))); 4919 values.add(EmitModuleSymbols()); 4920 CreateMetadataVar("OBJC_MODULES", values, 4921 "__OBJC,__module_info,regular,no_dead_strip", 4922 CGM.getPointerAlign(), true); 4923 } 4924 4925 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4926 unsigned NumClasses = DefinedClasses.size(); 4927 unsigned NumCategories = DefinedCategories.size(); 4928 4929 // Return null if no symbols were defined. 4930 if (!NumClasses && !NumCategories) 4931 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4932 4933 ConstantInitBuilder builder(CGM); 4934 auto values = builder.beginStruct(); 4935 values.addInt(ObjCTypes.LongTy, 0); 4936 values.addNullPointer(ObjCTypes.SelectorPtrTy); 4937 values.addInt(ObjCTypes.ShortTy, NumClasses); 4938 values.addInt(ObjCTypes.ShortTy, NumCategories); 4939 4940 // The runtime expects exactly the list of defined classes followed 4941 // by the list of defined categories, in a single array. 4942 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 4943 for (unsigned i=0; i<NumClasses; i++) { 4944 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4945 assert(ID); 4946 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4947 // We are implementing a weak imported interface. Give it external linkage 4948 if (ID->isWeakImported() && !IMP->isWeakImported()) 4949 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4950 4951 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 4952 } 4953 for (unsigned i=0; i<NumCategories; i++) 4954 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 4955 4956 array.finishAndAddTo(values); 4957 4958 llvm::GlobalVariable *GV = CreateMetadataVar( 4959 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 4960 CGM.getPointerAlign(), true); 4961 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4962 } 4963 4964 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4965 IdentifierInfo *II) { 4966 LazySymbols.insert(II); 4967 4968 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4969 4970 if (!Entry) { 4971 llvm::Constant *Casted = 4972 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4973 ObjCTypes.ClassPtrTy); 4974 Entry = CreateMetadataVar( 4975 "OBJC_CLASS_REFERENCES_", Casted, 4976 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4977 CGM.getPointerAlign(), true); 4978 } 4979 4980 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4981 } 4982 4983 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4984 const ObjCInterfaceDecl *ID) { 4985 // If the class has the objc_runtime_visible attribute, we need to 4986 // use the Objective-C runtime to get the class. 4987 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 4988 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 4989 4990 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4991 } 4992 4993 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4994 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4995 return EmitClassRefFromId(CGF, II); 4996 } 4997 4998 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4999 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 5000 } 5001 5002 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 5003 CharUnits Align = CGF.getPointerAlign(); 5004 5005 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5006 if (!Entry) { 5007 llvm::Constant *Casted = 5008 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5009 ObjCTypes.SelectorPtrTy); 5010 Entry = CreateMetadataVar( 5011 "OBJC_SELECTOR_REFERENCES_", Casted, 5012 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5013 Entry->setExternallyInitialized(true); 5014 } 5015 5016 return Address(Entry, Align); 5017 } 5018 5019 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5020 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5021 if (!Entry) 5022 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5023 return getConstantGEP(VMContext, Entry, 0, 0); 5024 } 5025 5026 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5027 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5028 I = MethodDefinitions.find(MD); 5029 if (I != MethodDefinitions.end()) 5030 return I->second; 5031 5032 return nullptr; 5033 } 5034 5035 /// GetIvarLayoutName - Returns a unique constant for the given 5036 /// ivar layout bitmap. 5037 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5038 const ObjCCommonTypesHelper &ObjCTypes) { 5039 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5040 } 5041 5042 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5043 CharUnits offset) { 5044 const RecordDecl *RD = RT->getDecl(); 5045 5046 // If this is a union, remember that we had one, because it might mess 5047 // up the ordering of layout entries. 5048 if (RD->isUnion()) 5049 IsDisordered = true; 5050 5051 const ASTRecordLayout *recLayout = nullptr; 5052 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5053 [&](const FieldDecl *field) -> CharUnits { 5054 if (!recLayout) 5055 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5056 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5057 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5058 }); 5059 } 5060 5061 template <class Iterator, class GetOffsetFn> 5062 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5063 CharUnits aggregateOffset, 5064 const GetOffsetFn &getOffset) { 5065 for (; begin != end; ++begin) { 5066 auto field = *begin; 5067 5068 // Skip over bitfields. 5069 if (field->isBitField()) { 5070 continue; 5071 } 5072 5073 // Compute the offset of the field within the aggregate. 5074 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5075 5076 visitField(field, fieldOffset); 5077 } 5078 } 5079 5080 /// Collect layout information for the given fields into IvarsInfo. 5081 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5082 CharUnits fieldOffset) { 5083 QualType fieldType = field->getType(); 5084 5085 // Drill down into arrays. 5086 uint64_t numElts = 1; 5087 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5088 numElts = 0; 5089 fieldType = arrayType->getElementType(); 5090 } 5091 // Unlike incomplete arrays, constant arrays can be nested. 5092 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5093 numElts *= arrayType->getSize().getZExtValue(); 5094 fieldType = arrayType->getElementType(); 5095 } 5096 5097 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5098 5099 // If we ended up with a zero-sized array, we've done what we can do within 5100 // the limits of this layout encoding. 5101 if (numElts == 0) return; 5102 5103 // Recurse if the base element type is a record type. 5104 if (auto recType = fieldType->getAs<RecordType>()) { 5105 size_t oldEnd = IvarsInfo.size(); 5106 5107 visitRecord(recType, fieldOffset); 5108 5109 // If we have an array, replicate the first entry's layout information. 5110 auto numEltEntries = IvarsInfo.size() - oldEnd; 5111 if (numElts != 1 && numEltEntries != 0) { 5112 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5113 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5114 // Copy the last numEltEntries onto the end of the array, adjusting 5115 // each for the element size. 5116 for (size_t i = 0; i != numEltEntries; ++i) { 5117 auto firstEntry = IvarsInfo[oldEnd + i]; 5118 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5119 firstEntry.SizeInWords)); 5120 } 5121 } 5122 } 5123 5124 return; 5125 } 5126 5127 // Classify the element type. 5128 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5129 5130 // If it matches what we're looking for, add an entry. 5131 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5132 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5133 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5134 == CGM.getPointerSize()); 5135 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5136 } 5137 } 5138 5139 /// buildBitmap - This routine does the horsework of taking the offsets of 5140 /// strong/weak references and creating a bitmap. The bitmap is also 5141 /// returned in the given buffer, suitable for being passed to \c dump(). 5142 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5143 llvm::SmallVectorImpl<unsigned char> &buffer) { 5144 // The bitmap is a series of skip/scan instructions, aligned to word 5145 // boundaries. The skip is performed first. 5146 const unsigned char MaxNibble = 0xF; 5147 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5148 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5149 5150 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5151 5152 // Sort the ivar info on byte position in case we encounterred a 5153 // union nested in the ivar list. 5154 if (IsDisordered) { 5155 // This isn't a stable sort, but our algorithm should handle it fine. 5156 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5157 } else { 5158 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5159 } 5160 assert(IvarsInfo.back().Offset < InstanceEnd); 5161 5162 assert(buffer.empty()); 5163 5164 // Skip the next N words. 5165 auto skip = [&](unsigned numWords) { 5166 assert(numWords > 0); 5167 5168 // Try to merge into the previous byte. Since scans happen second, we 5169 // can't do this if it includes a scan. 5170 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5171 unsigned lastSkip = buffer.back() >> SkipShift; 5172 if (lastSkip < MaxNibble) { 5173 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5174 numWords -= claimed; 5175 lastSkip += claimed; 5176 buffer.back() = (lastSkip << SkipShift); 5177 } 5178 } 5179 5180 while (numWords >= MaxNibble) { 5181 buffer.push_back(MaxNibble << SkipShift); 5182 numWords -= MaxNibble; 5183 } 5184 if (numWords) { 5185 buffer.push_back(numWords << SkipShift); 5186 } 5187 }; 5188 5189 // Scan the next N words. 5190 auto scan = [&](unsigned numWords) { 5191 assert(numWords > 0); 5192 5193 // Try to merge into the previous byte. Since scans happen second, we can 5194 // do this even if it includes a skip. 5195 if (!buffer.empty()) { 5196 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5197 if (lastScan < MaxNibble) { 5198 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5199 numWords -= claimed; 5200 lastScan += claimed; 5201 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5202 } 5203 } 5204 5205 while (numWords >= MaxNibble) { 5206 buffer.push_back(MaxNibble << ScanShift); 5207 numWords -= MaxNibble; 5208 } 5209 if (numWords) { 5210 buffer.push_back(numWords << ScanShift); 5211 } 5212 }; 5213 5214 // One past the end of the last scan. 5215 unsigned endOfLastScanInWords = 0; 5216 const CharUnits WordSize = CGM.getPointerSize(); 5217 5218 // Consider all the scan requests. 5219 for (auto &request : IvarsInfo) { 5220 CharUnits beginOfScan = request.Offset - InstanceBegin; 5221 5222 // Ignore scan requests that don't start at an even multiple of the 5223 // word size. We can't encode them. 5224 if ((beginOfScan % WordSize) != 0) continue; 5225 5226 // Ignore scan requests that start before the instance start. 5227 // This assumes that scans never span that boundary. The boundary 5228 // isn't the true start of the ivars, because in the fragile-ARC case 5229 // it's rounded up to word alignment, but the test above should leave 5230 // us ignoring that possibility. 5231 if (beginOfScan.isNegative()) { 5232 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5233 continue; 5234 } 5235 5236 unsigned beginOfScanInWords = beginOfScan / WordSize; 5237 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5238 5239 // If the scan starts some number of words after the last one ended, 5240 // skip forward. 5241 if (beginOfScanInWords > endOfLastScanInWords) { 5242 skip(beginOfScanInWords - endOfLastScanInWords); 5243 5244 // Otherwise, start scanning where the last left off. 5245 } else { 5246 beginOfScanInWords = endOfLastScanInWords; 5247 5248 // If that leaves us with nothing to scan, ignore this request. 5249 if (beginOfScanInWords >= endOfScanInWords) continue; 5250 } 5251 5252 // Scan to the end of the request. 5253 assert(beginOfScanInWords < endOfScanInWords); 5254 scan(endOfScanInWords - beginOfScanInWords); 5255 endOfLastScanInWords = endOfScanInWords; 5256 } 5257 5258 if (buffer.empty()) 5259 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5260 5261 // For GC layouts, emit a skip to the end of the allocation so that we 5262 // have precise information about the entire thing. This isn't useful 5263 // or necessary for the ARC-style layout strings. 5264 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5265 unsigned lastOffsetInWords = 5266 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5267 if (lastOffsetInWords > endOfLastScanInWords) { 5268 skip(lastOffsetInWords - endOfLastScanInWords); 5269 } 5270 } 5271 5272 // Null terminate the string. 5273 buffer.push_back(0); 5274 5275 auto *Entry = CGObjC.CreateCStringLiteral( 5276 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5277 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5278 } 5279 5280 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5281 /// implementation for the __strong or __weak case. 5282 /// The layout map displays which words in ivar list must be skipped 5283 /// and which must be scanned by GC (see below). String is built of bytes. 5284 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5285 /// of words to skip and right nibble is count of words to scan. So, each 5286 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5287 /// represented by a 0x00 byte which also ends the string. 5288 /// 1. when ForStrongLayout is true, following ivars are scanned: 5289 /// - id, Class 5290 /// - object * 5291 /// - __strong anything 5292 /// 5293 /// 2. When ForStrongLayout is false, following ivars are scanned: 5294 /// - __weak anything 5295 /// 5296 llvm::Constant * 5297 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5298 CharUnits beginOffset, CharUnits endOffset, 5299 bool ForStrongLayout, bool HasMRCWeakIvars) { 5300 // If this is MRC, and we're either building a strong layout or there 5301 // are no weak ivars, bail out early. 5302 llvm::Type *PtrTy = CGM.Int8PtrTy; 5303 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5304 !CGM.getLangOpts().ObjCAutoRefCount && 5305 (ForStrongLayout || !HasMRCWeakIvars)) 5306 return llvm::Constant::getNullValue(PtrTy); 5307 5308 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5309 SmallVector<const ObjCIvarDecl*, 32> ivars; 5310 5311 // GC layout strings include the complete object layout, possibly 5312 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5313 // up. 5314 // 5315 // ARC layout strings only include the class's ivars. In non-fragile 5316 // runtimes, that means starting at InstanceStart, rounded up to word 5317 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5318 // starting at the offset of the first ivar, rounded up to word alignment. 5319 // 5320 // MRC weak layout strings follow the ARC style. 5321 CharUnits baseOffset; 5322 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5323 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5324 IVD; IVD = IVD->getNextIvar()) 5325 ivars.push_back(IVD); 5326 5327 if (isNonFragileABI()) { 5328 baseOffset = beginOffset; // InstanceStart 5329 } else if (!ivars.empty()) { 5330 baseOffset = 5331 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5332 } else { 5333 baseOffset = CharUnits::Zero(); 5334 } 5335 5336 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5337 } 5338 else { 5339 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5340 5341 baseOffset = CharUnits::Zero(); 5342 } 5343 5344 if (ivars.empty()) 5345 return llvm::Constant::getNullValue(PtrTy); 5346 5347 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5348 5349 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5350 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5351 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5352 }); 5353 5354 if (!builder.hasBitmapData()) 5355 return llvm::Constant::getNullValue(PtrTy); 5356 5357 llvm::SmallVector<unsigned char, 4> buffer; 5358 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5359 5360 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5361 printf("\n%s ivar layout for class '%s': ", 5362 ForStrongLayout ? "strong" : "weak", 5363 OMD->getClassInterface()->getName().str().c_str()); 5364 builder.dump(buffer); 5365 } 5366 return C; 5367 } 5368 5369 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5370 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5371 // FIXME: Avoid std::string in "Sel.getAsString()" 5372 if (!Entry) 5373 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5374 return getConstantGEP(VMContext, Entry, 0, 0); 5375 } 5376 5377 // FIXME: Merge into a single cstring creation function. 5378 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5379 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5380 } 5381 5382 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5383 std::string TypeStr; 5384 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5385 5386 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5387 if (!Entry) 5388 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5389 return getConstantGEP(VMContext, Entry, 0, 0); 5390 } 5391 5392 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5393 bool Extended) { 5394 std::string TypeStr = 5395 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5396 5397 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5398 if (!Entry) 5399 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5400 return getConstantGEP(VMContext, Entry, 0, 0); 5401 } 5402 5403 // FIXME: Merge into a single cstring creation function. 5404 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5405 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5406 if (!Entry) 5407 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5408 return getConstantGEP(VMContext, Entry, 0, 0); 5409 } 5410 5411 // FIXME: Merge into a single cstring creation function. 5412 // FIXME: This Decl should be more precise. 5413 llvm::Constant * 5414 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5415 const Decl *Container) { 5416 std::string TypeStr = 5417 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5418 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5419 } 5420 5421 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5422 const ObjCContainerDecl *CD, 5423 SmallVectorImpl<char> &Name) { 5424 llvm::raw_svector_ostream OS(Name); 5425 assert (CD && "Missing container decl in GetNameForMethod"); 5426 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5427 << '[' << CD->getName(); 5428 if (const ObjCCategoryImplDecl *CID = 5429 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5430 OS << '(' << *CID << ')'; 5431 OS << ' ' << D->getSelector().getAsString() << ']'; 5432 } 5433 5434 void CGObjCMac::FinishModule() { 5435 EmitModuleInfo(); 5436 5437 // Emit the dummy bodies for any protocols which were referenced but 5438 // never defined. 5439 for (auto &entry : Protocols) { 5440 llvm::GlobalVariable *global = entry.second; 5441 if (global->hasInitializer()) 5442 continue; 5443 5444 ConstantInitBuilder builder(CGM); 5445 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5446 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5447 values.add(GetClassName(entry.first->getName())); 5448 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5449 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5450 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5451 values.finishAndSetAsInitializer(global); 5452 CGM.addCompilerUsedGlobal(global); 5453 } 5454 5455 // Add assembler directives to add lazy undefined symbol references 5456 // for classes which are referenced but not defined. This is 5457 // important for correct linker interaction. 5458 // 5459 // FIXME: It would be nice if we had an LLVM construct for this. 5460 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5461 CGM.getTriple().isOSBinFormatMachO()) { 5462 SmallString<256> Asm; 5463 Asm += CGM.getModule().getModuleInlineAsm(); 5464 if (!Asm.empty() && Asm.back() != '\n') 5465 Asm += '\n'; 5466 5467 llvm::raw_svector_ostream OS(Asm); 5468 for (const auto *Sym : DefinedSymbols) 5469 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5470 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5471 for (const auto *Sym : LazySymbols) 5472 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5473 for (const auto &Category : DefinedCategoryNames) 5474 OS << "\t.objc_category_name_" << Category << "=0\n" 5475 << "\t.globl .objc_category_name_" << Category << "\n"; 5476 5477 CGM.getModule().setModuleInlineAsm(OS.str()); 5478 } 5479 } 5480 5481 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5482 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5483 ObjCEmptyVtableVar(nullptr) { 5484 ObjCABI = 2; 5485 } 5486 5487 /* *** */ 5488 5489 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5490 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5491 { 5492 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5493 ASTContext &Ctx = CGM.getContext(); 5494 5495 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5496 IntTy = CGM.IntTy; 5497 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5498 Int8PtrTy = CGM.Int8PtrTy; 5499 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5500 5501 // arm64 targets use "int" ivar offset variables. All others, 5502 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5503 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5504 IvarOffsetVarTy = IntTy; 5505 else 5506 IvarOffsetVarTy = LongTy; 5507 5508 ObjectPtrTy = 5509 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5510 PtrObjectPtrTy = 5511 llvm::PointerType::getUnqual(ObjectPtrTy); 5512 SelectorPtrTy = 5513 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5514 5515 // I'm not sure I like this. The implicit coordination is a bit 5516 // gross. We should solve this in a reasonable fashion because this 5517 // is a pretty common task (match some runtime data structure with 5518 // an LLVM data structure). 5519 5520 // FIXME: This is leaked. 5521 // FIXME: Merge with rewriter code? 5522 5523 // struct _objc_super { 5524 // id self; 5525 // Class cls; 5526 // } 5527 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5528 Ctx.getTranslationUnitDecl(), 5529 SourceLocation(), SourceLocation(), 5530 &Ctx.Idents.get("_objc_super")); 5531 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5532 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5533 false, ICIS_NoInit)); 5534 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5535 nullptr, Ctx.getObjCClassType(), nullptr, 5536 nullptr, false, ICIS_NoInit)); 5537 RD->completeDefinition(); 5538 5539 SuperCTy = Ctx.getTagDeclType(RD); 5540 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5541 5542 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5543 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5544 5545 // struct _prop_t { 5546 // char *name; 5547 // char *attributes; 5548 // } 5549 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5550 5551 // struct _prop_list_t { 5552 // uint32_t entsize; // sizeof(struct _prop_t) 5553 // uint32_t count_of_properties; 5554 // struct _prop_t prop_list[count_of_properties]; 5555 // } 5556 PropertyListTy = llvm::StructType::create( 5557 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5558 // struct _prop_list_t * 5559 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5560 5561 // struct _objc_method { 5562 // SEL _cmd; 5563 // char *method_type; 5564 // char *_imp; 5565 // } 5566 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5567 Int8PtrTy, Int8PtrTy); 5568 5569 // struct _objc_cache * 5570 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5571 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5572 } 5573 5574 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5575 : ObjCCommonTypesHelper(cgm) { 5576 // struct _objc_method_description { 5577 // SEL name; 5578 // char *types; 5579 // } 5580 MethodDescriptionTy = llvm::StructType::create( 5581 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5582 5583 // struct _objc_method_description_list { 5584 // int count; 5585 // struct _objc_method_description[1]; 5586 // } 5587 MethodDescriptionListTy = 5588 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5589 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5590 5591 // struct _objc_method_description_list * 5592 MethodDescriptionListPtrTy = 5593 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5594 5595 // Protocol description structures 5596 5597 // struct _objc_protocol_extension { 5598 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5599 // struct _objc_method_description_list *optional_instance_methods; 5600 // struct _objc_method_description_list *optional_class_methods; 5601 // struct _objc_property_list *instance_properties; 5602 // const char ** extendedMethodTypes; 5603 // struct _objc_property_list *class_properties; 5604 // } 5605 ProtocolExtensionTy = llvm::StructType::create( 5606 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5607 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5608 PropertyListPtrTy); 5609 5610 // struct _objc_protocol_extension * 5611 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5612 5613 // Handle recursive construction of Protocol and ProtocolList types 5614 5615 ProtocolTy = 5616 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5617 5618 ProtocolListTy = 5619 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5620 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5621 llvm::ArrayType::get(ProtocolTy, 0)); 5622 5623 // struct _objc_protocol { 5624 // struct _objc_protocol_extension *isa; 5625 // char *protocol_name; 5626 // struct _objc_protocol **_objc_protocol_list; 5627 // struct _objc_method_description_list *instance_methods; 5628 // struct _objc_method_description_list *class_methods; 5629 // } 5630 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5631 llvm::PointerType::getUnqual(ProtocolListTy), 5632 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5633 5634 // struct _objc_protocol_list * 5635 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5636 5637 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5638 5639 // Class description structures 5640 5641 // struct _objc_ivar { 5642 // char *ivar_name; 5643 // char *ivar_type; 5644 // int ivar_offset; 5645 // } 5646 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5647 IntTy); 5648 5649 // struct _objc_ivar_list * 5650 IvarListTy = 5651 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5652 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5653 5654 // struct _objc_method_list * 5655 MethodListTy = 5656 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5657 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5658 5659 // struct _objc_class_extension * 5660 ClassExtensionTy = llvm::StructType::create( 5661 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5662 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5663 5664 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5665 5666 // struct _objc_class { 5667 // Class isa; 5668 // Class super_class; 5669 // char *name; 5670 // long version; 5671 // long info; 5672 // long instance_size; 5673 // struct _objc_ivar_list *ivars; 5674 // struct _objc_method_list *methods; 5675 // struct _objc_cache *cache; 5676 // struct _objc_protocol_list *protocols; 5677 // char *ivar_layout; 5678 // struct _objc_class_ext *ext; 5679 // }; 5680 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5681 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5682 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5683 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5684 5685 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5686 5687 // struct _objc_category { 5688 // char *category_name; 5689 // char *class_name; 5690 // struct _objc_method_list *instance_method; 5691 // struct _objc_method_list *class_method; 5692 // struct _objc_protocol_list *protocols; 5693 // uint32_t size; // sizeof(struct _objc_category) 5694 // struct _objc_property_list *instance_properties;// category's @property 5695 // struct _objc_property_list *class_properties; 5696 // } 5697 CategoryTy = llvm::StructType::create( 5698 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5699 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5700 PropertyListPtrTy); 5701 5702 // Global metadata structures 5703 5704 // struct _objc_symtab { 5705 // long sel_ref_cnt; 5706 // SEL *refs; 5707 // short cls_def_cnt; 5708 // short cat_def_cnt; 5709 // char *defs[cls_def_cnt + cat_def_cnt]; 5710 // } 5711 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5712 SelectorPtrTy, ShortTy, ShortTy, 5713 llvm::ArrayType::get(Int8PtrTy, 0)); 5714 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5715 5716 // struct _objc_module { 5717 // long version; 5718 // long size; // sizeof(struct _objc_module) 5719 // char *name; 5720 // struct _objc_symtab* symtab; 5721 // } 5722 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5723 Int8PtrTy, SymtabPtrTy); 5724 5725 // FIXME: This is the size of the setjmp buffer and should be target 5726 // specific. 18 is what's used on 32-bit X86. 5727 uint64_t SetJmpBufferSize = 18; 5728 5729 // Exceptions 5730 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5731 5732 ExceptionDataTy = llvm::StructType::create( 5733 "struct._objc_exception_data", 5734 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5735 } 5736 5737 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5738 : ObjCCommonTypesHelper(cgm) { 5739 // struct _method_list_t { 5740 // uint32_t entsize; // sizeof(struct _objc_method) 5741 // uint32_t method_count; 5742 // struct _objc_method method_list[method_count]; 5743 // } 5744 MethodListnfABITy = 5745 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5746 llvm::ArrayType::get(MethodTy, 0)); 5747 // struct method_list_t * 5748 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5749 5750 // struct _protocol_t { 5751 // id isa; // NULL 5752 // const char * const protocol_name; 5753 // const struct _protocol_list_t * protocol_list; // super protocols 5754 // const struct method_list_t * const instance_methods; 5755 // const struct method_list_t * const class_methods; 5756 // const struct method_list_t *optionalInstanceMethods; 5757 // const struct method_list_t *optionalClassMethods; 5758 // const struct _prop_list_t * properties; 5759 // const uint32_t size; // sizeof(struct _protocol_t) 5760 // const uint32_t flags; // = 0 5761 // const char ** extendedMethodTypes; 5762 // const char *demangledName; 5763 // const struct _prop_list_t * class_properties; 5764 // } 5765 5766 // Holder for struct _protocol_list_t * 5767 ProtocolListnfABITy = 5768 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5769 5770 ProtocolnfABITy = llvm::StructType::create( 5771 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5772 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 5773 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5774 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 5775 PropertyListPtrTy); 5776 5777 // struct _protocol_t* 5778 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5779 5780 // struct _protocol_list_t { 5781 // long protocol_count; // Note, this is 32/64 bit 5782 // struct _protocol_t *[protocol_count]; 5783 // } 5784 ProtocolListnfABITy->setBody(LongTy, 5785 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 5786 5787 // struct _objc_protocol_list* 5788 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5789 5790 // struct _ivar_t { 5791 // unsigned [long] int *offset; // pointer to ivar offset location 5792 // char *name; 5793 // char *type; 5794 // uint32_t alignment; 5795 // uint32_t size; 5796 // } 5797 IvarnfABITy = llvm::StructType::create( 5798 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5799 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 5800 5801 // struct _ivar_list_t { 5802 // uint32 entsize; // sizeof(struct _ivar_t) 5803 // uint32 count; 5804 // struct _iver_t list[count]; 5805 // } 5806 IvarListnfABITy = 5807 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5808 llvm::ArrayType::get(IvarnfABITy, 0)); 5809 5810 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5811 5812 // struct _class_ro_t { 5813 // uint32_t const flags; 5814 // uint32_t const instanceStart; 5815 // uint32_t const instanceSize; 5816 // uint32_t const reserved; // only when building for 64bit targets 5817 // const uint8_t * const ivarLayout; 5818 // const char *const name; 5819 // const struct _method_list_t * const baseMethods; 5820 // const struct _objc_protocol_list *const baseProtocols; 5821 // const struct _ivar_list_t *const ivars; 5822 // const uint8_t * const weakIvarLayout; 5823 // const struct _prop_list_t * const properties; 5824 // } 5825 5826 // FIXME. Add 'reserved' field in 64bit abi mode! 5827 ClassRonfABITy = llvm::StructType::create( 5828 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 5829 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 5830 Int8PtrTy, PropertyListPtrTy); 5831 5832 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5833 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5834 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5835 ->getPointerTo(); 5836 5837 // struct _class_t { 5838 // struct _class_t *isa; 5839 // struct _class_t * const superclass; 5840 // void *cache; 5841 // IMP *vtable; 5842 // struct class_ro_t *ro; 5843 // } 5844 5845 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5846 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5847 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 5848 llvm::PointerType::getUnqual(ImpnfABITy), 5849 llvm::PointerType::getUnqual(ClassRonfABITy)); 5850 5851 // LLVM for struct _class_t * 5852 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5853 5854 // struct _category_t { 5855 // const char * const name; 5856 // struct _class_t *const cls; 5857 // const struct _method_list_t * const instance_methods; 5858 // const struct _method_list_t * const class_methods; 5859 // const struct _protocol_list_t * const protocols; 5860 // const struct _prop_list_t * const properties; 5861 // const struct _prop_list_t * const class_properties; 5862 // const uint32_t size; 5863 // } 5864 CategorynfABITy = llvm::StructType::create( 5865 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 5866 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 5867 PropertyListPtrTy, IntTy); 5868 5869 // New types for nonfragile abi messaging. 5870 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5871 ASTContext &Ctx = CGM.getContext(); 5872 5873 // MessageRefTy - LLVM for: 5874 // struct _message_ref_t { 5875 // IMP messenger; 5876 // SEL name; 5877 // }; 5878 5879 // First the clang type for struct _message_ref_t 5880 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5881 Ctx.getTranslationUnitDecl(), 5882 SourceLocation(), SourceLocation(), 5883 &Ctx.Idents.get("_message_ref_t")); 5884 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5885 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5886 ICIS_NoInit)); 5887 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5888 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5889 false, ICIS_NoInit)); 5890 RD->completeDefinition(); 5891 5892 MessageRefCTy = Ctx.getTagDeclType(RD); 5893 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5894 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5895 5896 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5897 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5898 5899 // SuperMessageRefTy - LLVM for: 5900 // struct _super_message_ref_t { 5901 // SUPER_IMP messenger; 5902 // SEL name; 5903 // }; 5904 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 5905 ImpnfABITy, SelectorPtrTy); 5906 5907 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5908 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5909 5910 5911 // struct objc_typeinfo { 5912 // const void** vtable; // objc_ehtype_vtable + 2 5913 // const char* name; // c++ typeinfo string 5914 // Class cls; 5915 // }; 5916 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 5917 llvm::PointerType::getUnqual(Int8PtrTy), 5918 Int8PtrTy, ClassnfABIPtrTy); 5919 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5920 } 5921 5922 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5923 FinishNonFragileABIModule(); 5924 5925 return nullptr; 5926 } 5927 5928 void CGObjCNonFragileABIMac::AddModuleClassList( 5929 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 5930 StringRef SectionName) { 5931 unsigned NumClasses = Container.size(); 5932 5933 if (!NumClasses) 5934 return; 5935 5936 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5937 for (unsigned i=0; i<NumClasses; i++) 5938 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5939 ObjCTypes.Int8PtrTy); 5940 llvm::Constant *Init = 5941 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5942 Symbols.size()), 5943 Symbols); 5944 5945 llvm::GlobalVariable *GV = 5946 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5947 llvm::GlobalValue::PrivateLinkage, 5948 Init, 5949 SymbolName); 5950 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5951 GV->setSection(SectionName); 5952 CGM.addCompilerUsedGlobal(GV); 5953 } 5954 5955 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5956 // nonfragile abi has no module definition. 5957 5958 // Build list of all implemented class addresses in array 5959 // L_OBJC_LABEL_CLASS_$. 5960 5961 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5962 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5963 assert(ID); 5964 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5965 // We are implementing a weak imported interface. Give it external linkage 5966 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5967 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5968 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5969 } 5970 } 5971 5972 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5973 GetSectionName("__objc_classlist", 5974 "regular,no_dead_strip")); 5975 5976 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5977 GetSectionName("__objc_nlclslist", 5978 "regular,no_dead_strip")); 5979 5980 // Build list of all implemented category addresses in array 5981 // L_OBJC_LABEL_CATEGORY_$. 5982 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5983 GetSectionName("__objc_catlist", 5984 "regular,no_dead_strip")); 5985 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5986 GetSectionName("__objc_nlcatlist", 5987 "regular,no_dead_strip")); 5988 5989 EmitImageInfo(); 5990 } 5991 5992 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5993 /// VTableDispatchMethods; false otherwise. What this means is that 5994 /// except for the 19 selectors in the list, we generate 32bit-style 5995 /// message dispatch call for all the rest. 5996 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5997 // At various points we've experimented with using vtable-based 5998 // dispatch for all methods. 5999 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6000 case CodeGenOptions::Legacy: 6001 return false; 6002 case CodeGenOptions::NonLegacy: 6003 return true; 6004 case CodeGenOptions::Mixed: 6005 break; 6006 } 6007 6008 // If so, see whether this selector is in the white-list of things which must 6009 // use the new dispatch convention. We lazily build a dense set for this. 6010 if (VTableDispatchMethods.empty()) { 6011 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6012 VTableDispatchMethods.insert(GetNullarySelector("class")); 6013 VTableDispatchMethods.insert(GetNullarySelector("self")); 6014 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6015 VTableDispatchMethods.insert(GetNullarySelector("length")); 6016 VTableDispatchMethods.insert(GetNullarySelector("count")); 6017 6018 // These are vtable-based if GC is disabled. 6019 // Optimistically use vtable dispatch for hybrid compiles. 6020 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6021 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6022 VTableDispatchMethods.insert(GetNullarySelector("release")); 6023 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6024 } 6025 6026 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6027 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6028 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6029 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6030 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6031 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6032 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6033 6034 // These are vtable-based if GC is enabled. 6035 // Optimistically use vtable dispatch for hybrid compiles. 6036 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6037 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6038 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6039 6040 // "countByEnumeratingWithState:objects:count" 6041 IdentifierInfo *KeyIdents[] = { 6042 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6043 &CGM.getContext().Idents.get("objects"), 6044 &CGM.getContext().Idents.get("count") 6045 }; 6046 VTableDispatchMethods.insert( 6047 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6048 } 6049 } 6050 6051 return VTableDispatchMethods.count(Sel); 6052 } 6053 6054 /// BuildClassRoTInitializer - generate meta-data for: 6055 /// struct _class_ro_t { 6056 /// uint32_t const flags; 6057 /// uint32_t const instanceStart; 6058 /// uint32_t const instanceSize; 6059 /// uint32_t const reserved; // only when building for 64bit targets 6060 /// const uint8_t * const ivarLayout; 6061 /// const char *const name; 6062 /// const struct _method_list_t * const baseMethods; 6063 /// const struct _protocol_list_t *const baseProtocols; 6064 /// const struct _ivar_list_t *const ivars; 6065 /// const uint8_t * const weakIvarLayout; 6066 /// const struct _prop_list_t * const properties; 6067 /// } 6068 /// 6069 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6070 unsigned flags, 6071 unsigned InstanceStart, 6072 unsigned InstanceSize, 6073 const ObjCImplementationDecl *ID) { 6074 std::string ClassName = ID->getObjCRuntimeNameAsString(); 6075 6076 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6077 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6078 6079 bool hasMRCWeak = false; 6080 if (CGM.getLangOpts().ObjCAutoRefCount) 6081 flags |= NonFragileABI_Class_CompiledByARC; 6082 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6083 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6084 6085 ConstantInitBuilder builder(CGM); 6086 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6087 6088 values.addInt(ObjCTypes.IntTy, flags); 6089 values.addInt(ObjCTypes.IntTy, InstanceStart); 6090 values.addInt(ObjCTypes.IntTy, InstanceSize); 6091 values.add((flags & NonFragileABI_Class_Meta) 6092 ? GetIvarLayoutName(nullptr, ObjCTypes) 6093 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6094 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6095 6096 // const struct _method_list_t * const baseMethods; 6097 SmallVector<const ObjCMethodDecl*, 16> methods; 6098 if (flags & NonFragileABI_Class_Meta) { 6099 for (const auto *MD : ID->class_methods()) 6100 methods.push_back(MD); 6101 } else { 6102 for (const auto *MD : ID->instance_methods()) 6103 methods.push_back(MD); 6104 6105 for (const auto *PID : ID->property_impls()) { 6106 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 6107 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6108 6109 if (auto MD = PD->getGetterMethodDecl()) 6110 if (GetMethodDefinition(MD)) 6111 methods.push_back(MD); 6112 if (auto MD = PD->getSetterMethodDecl()) 6113 if (GetMethodDefinition(MD)) 6114 methods.push_back(MD); 6115 } 6116 } 6117 } 6118 6119 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6120 (flags & NonFragileABI_Class_Meta) 6121 ? MethodListType::ClassMethods 6122 : MethodListType::InstanceMethods, 6123 methods)); 6124 6125 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6126 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6127 values.add(EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 6128 + OID->getObjCRuntimeNameAsString(), 6129 OID->all_referenced_protocol_begin(), 6130 OID->all_referenced_protocol_end())); 6131 6132 if (flags & NonFragileABI_Class_Meta) { 6133 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6134 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6135 values.add(EmitPropertyList( 6136 "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6137 ID, ID->getClassInterface(), ObjCTypes, true)); 6138 } else { 6139 values.add(EmitIvarList(ID)); 6140 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6141 values.add(EmitPropertyList( 6142 "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6143 ID, ID->getClassInterface(), ObjCTypes, false)); 6144 } 6145 6146 llvm::SmallString<64> roLabel; 6147 llvm::raw_svector_ostream(roLabel) 6148 << ((flags & NonFragileABI_Class_Meta) ? "\01l_OBJC_METACLASS_RO_$_" 6149 : "\01l_OBJC_CLASS_RO_$_") 6150 << ClassName; 6151 6152 llvm::GlobalVariable *CLASS_RO_GV = 6153 values.finishAndCreateGlobal(roLabel, CGM.getPointerAlign(), 6154 /*constant*/ false, 6155 llvm::GlobalValue::PrivateLinkage); 6156 if (CGM.getTriple().isOSBinFormatMachO()) 6157 CLASS_RO_GV->setSection("__DATA, __objc_const"); 6158 return CLASS_RO_GV; 6159 } 6160 6161 /// Build the metaclass object for a class. 6162 /// 6163 /// struct _class_t { 6164 /// struct _class_t *isa; 6165 /// struct _class_t * const superclass; 6166 /// void *cache; 6167 /// IMP *vtable; 6168 /// struct class_ro_t *ro; 6169 /// } 6170 /// 6171 llvm::GlobalVariable * 6172 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6173 bool isMetaclass, 6174 llvm::Constant *IsAGV, 6175 llvm::Constant *SuperClassGV, 6176 llvm::Constant *ClassRoGV, 6177 bool HiddenVisibility) { 6178 ConstantInitBuilder builder(CGM); 6179 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6180 values.add(IsAGV); 6181 if (SuperClassGV) { 6182 values.add(SuperClassGV); 6183 } else { 6184 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6185 } 6186 values.add(ObjCEmptyCacheVar); 6187 values.add(ObjCEmptyVtableVar); 6188 values.add(ClassRoGV); 6189 6190 llvm::GlobalVariable *GV = 6191 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6192 values.finishAndSetAsInitializer(GV); 6193 6194 if (CGM.getTriple().isOSBinFormatMachO()) 6195 GV->setSection("__DATA, __objc_data"); 6196 GV->setAlignment( 6197 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 6198 if (!CGM.getTriple().isOSBinFormatCOFF()) 6199 if (HiddenVisibility) 6200 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6201 return GV; 6202 } 6203 6204 bool 6205 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 6206 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 6207 } 6208 6209 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6210 uint32_t &InstanceStart, 6211 uint32_t &InstanceSize) { 6212 const ASTRecordLayout &RL = 6213 CGM.getContext().getASTObjCImplementationLayout(OID); 6214 6215 // InstanceSize is really instance end. 6216 InstanceSize = RL.getDataSize().getQuantity(); 6217 6218 // If there are no fields, the start is the same as the end. 6219 if (!RL.getFieldCount()) 6220 InstanceStart = InstanceSize; 6221 else 6222 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6223 } 6224 6225 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6226 StringRef Name) { 6227 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6228 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6229 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6230 6231 const VarDecl *VD = nullptr; 6232 for (const auto &Result : DC->lookup(&II)) 6233 if ((VD = dyn_cast<VarDecl>(Result))) 6234 break; 6235 6236 if (!VD) 6237 return llvm::GlobalValue::DLLImportStorageClass; 6238 if (VD->hasAttr<DLLExportAttr>()) 6239 return llvm::GlobalValue::DLLExportStorageClass; 6240 if (VD->hasAttr<DLLImportAttr>()) 6241 return llvm::GlobalValue::DLLImportStorageClass; 6242 return llvm::GlobalValue::DefaultStorageClass; 6243 } 6244 6245 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6246 if (!ObjCEmptyCacheVar) { 6247 ObjCEmptyCacheVar = 6248 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6249 llvm::GlobalValue::ExternalLinkage, nullptr, 6250 "_objc_empty_cache"); 6251 if (CGM.getTriple().isOSBinFormatCOFF()) 6252 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6253 6254 // Only OS X with deployment version <10.9 use the empty vtable symbol 6255 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6256 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6257 ObjCEmptyVtableVar = 6258 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6259 llvm::GlobalValue::ExternalLinkage, nullptr, 6260 "_objc_empty_vtable"); 6261 else 6262 ObjCEmptyVtableVar = 6263 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6264 } 6265 6266 // FIXME: Is this correct (that meta class size is never computed)? 6267 uint32_t InstanceStart = 6268 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6269 uint32_t InstanceSize = InstanceStart; 6270 uint32_t flags = NonFragileABI_Class_Meta; 6271 6272 llvm::Constant *SuperClassGV, *IsAGV; 6273 6274 const auto *CI = ID->getClassInterface(); 6275 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6276 6277 // Build the flags for the metaclass. 6278 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6279 ? !CI->hasAttr<DLLExportAttr>() 6280 : CI->getVisibility() == HiddenVisibility; 6281 if (classIsHidden) 6282 flags |= NonFragileABI_Class_Hidden; 6283 6284 // FIXME: why is this flag set on the metaclass? 6285 // ObjC metaclasses have no fields and don't really get constructed. 6286 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6287 flags |= NonFragileABI_Class_HasCXXStructors; 6288 if (!ID->hasNonZeroConstructors()) 6289 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6290 } 6291 6292 if (!CI->getSuperClass()) { 6293 // class is root 6294 flags |= NonFragileABI_Class_Root; 6295 6296 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6297 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6298 } else { 6299 // Has a root. Current class is not a root. 6300 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6301 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6302 Root = Super; 6303 6304 const auto *Super = CI->getSuperClass(); 6305 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6306 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6307 } 6308 6309 llvm::GlobalVariable *CLASS_RO_GV = 6310 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6311 6312 llvm::GlobalVariable *MetaTClass = 6313 BuildClassObject(CI, /*metaclass*/ true, 6314 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6315 if (CGM.getTriple().isOSBinFormatCOFF()) 6316 if (CI->hasAttr<DLLExportAttr>()) 6317 MetaTClass->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6318 DefinedMetaClasses.push_back(MetaTClass); 6319 6320 // Metadata for the class 6321 flags = 0; 6322 if (classIsHidden) 6323 flags |= NonFragileABI_Class_Hidden; 6324 6325 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6326 flags |= NonFragileABI_Class_HasCXXStructors; 6327 6328 // Set a flag to enable a runtime optimization when a class has 6329 // fields that require destruction but which don't require 6330 // anything except zero-initialization during construction. This 6331 // is most notably true of __strong and __weak types, but you can 6332 // also imagine there being C++ types with non-trivial default 6333 // constructors that merely set all fields to null. 6334 if (!ID->hasNonZeroConstructors()) 6335 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6336 } 6337 6338 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6339 flags |= NonFragileABI_Class_Exception; 6340 6341 if (!CI->getSuperClass()) { 6342 flags |= NonFragileABI_Class_Root; 6343 SuperClassGV = nullptr; 6344 } else { 6345 // Has a root. Current class is not a root. 6346 const auto *Super = CI->getSuperClass(); 6347 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6348 } 6349 6350 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6351 CLASS_RO_GV = 6352 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6353 6354 llvm::GlobalVariable *ClassMD = 6355 BuildClassObject(CI, /*metaclass*/ false, 6356 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6357 if (CGM.getTriple().isOSBinFormatCOFF()) 6358 if (CI->hasAttr<DLLExportAttr>()) 6359 ClassMD->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6360 DefinedClasses.push_back(ClassMD); 6361 ImplementedClasses.push_back(CI); 6362 6363 // Determine if this class is also "non-lazy". 6364 if (ImplementationIsNonLazy(ID)) 6365 DefinedNonLazyClasses.push_back(ClassMD); 6366 6367 // Force the definition of the EHType if necessary. 6368 if (flags & NonFragileABI_Class_Exception) 6369 (void) GetInterfaceEHType(CI, ForDefinition); 6370 // Make sure method definition entries are all clear for next implementation. 6371 MethodDefinitions.clear(); 6372 } 6373 6374 /// GenerateProtocolRef - This routine is called to generate code for 6375 /// a protocol reference expression; as in: 6376 /// @code 6377 /// @protocol(Proto1); 6378 /// @endcode 6379 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6380 /// which will hold address of the protocol meta-data. 6381 /// 6382 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6383 const ObjCProtocolDecl *PD) { 6384 6385 // This routine is called for @protocol only. So, we must build definition 6386 // of protocol's meta-data (not a reference to it!) 6387 // 6388 llvm::Constant *Init = 6389 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6390 ObjCTypes.getExternalProtocolPtrTy()); 6391 6392 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6393 ProtocolName += PD->getObjCRuntimeNameAsString(); 6394 6395 CharUnits Align = CGF.getPointerAlign(); 6396 6397 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6398 if (PTGV) 6399 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6400 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6401 llvm::GlobalValue::WeakAnyLinkage, Init, 6402 ProtocolName); 6403 PTGV->setSection(GetSectionName("__objc_protorefs", 6404 "coalesced,no_dead_strip")); 6405 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6406 PTGV->setAlignment(Align.getQuantity()); 6407 if (!CGM.getTriple().isOSBinFormatMachO()) 6408 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6409 CGM.addCompilerUsedGlobal(PTGV); 6410 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6411 } 6412 6413 /// GenerateCategory - Build metadata for a category implementation. 6414 /// struct _category_t { 6415 /// const char * const name; 6416 /// struct _class_t *const cls; 6417 /// const struct _method_list_t * const instance_methods; 6418 /// const struct _method_list_t * const class_methods; 6419 /// const struct _protocol_list_t * const protocols; 6420 /// const struct _prop_list_t * const properties; 6421 /// const struct _prop_list_t * const class_properties; 6422 /// const uint32_t size; 6423 /// } 6424 /// 6425 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6426 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6427 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6428 6429 llvm::SmallString<64> ExtCatName(Prefix); 6430 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6431 ExtCatName += "_$_"; 6432 ExtCatName += OCD->getNameAsString(); 6433 6434 ConstantInitBuilder builder(CGM); 6435 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6436 values.add(GetClassName(OCD->getIdentifier()->getName())); 6437 // meta-class entry symbol 6438 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6439 std::string listName = 6440 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6441 6442 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6443 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6444 for (const auto *MD : OCD->methods()) { 6445 if (MD->isInstanceMethod()) { 6446 instanceMethods.push_back(MD); 6447 } else { 6448 classMethods.push_back(MD); 6449 } 6450 } 6451 6452 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6453 instanceMethods)); 6454 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6455 classMethods)); 6456 6457 const ObjCCategoryDecl *Category = 6458 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6459 if (Category) { 6460 SmallString<256> ExtName; 6461 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6462 << OCD->getName(); 6463 values.add(EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6464 + Interface->getObjCRuntimeNameAsString() + "_$_" 6465 + Category->getName(), 6466 Category->protocol_begin(), 6467 Category->protocol_end())); 6468 values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6469 OCD, Category, ObjCTypes, false)); 6470 values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6471 OCD, Category, ObjCTypes, true)); 6472 } else { 6473 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6474 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6475 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6476 } 6477 6478 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6479 values.addInt(ObjCTypes.IntTy, Size); 6480 6481 llvm::GlobalVariable *GCATV = 6482 values.finishAndCreateGlobal(ExtCatName.str(), CGM.getPointerAlign(), 6483 /*constant*/ false, 6484 llvm::GlobalValue::PrivateLinkage); 6485 if (CGM.getTriple().isOSBinFormatMachO()) 6486 GCATV->setSection("__DATA, __objc_const"); 6487 CGM.addCompilerUsedGlobal(GCATV); 6488 DefinedCategories.push_back(GCATV); 6489 6490 // Determine if this category is also "non-lazy". 6491 if (ImplementationIsNonLazy(OCD)) 6492 DefinedNonLazyCategories.push_back(GCATV); 6493 // method definition entries must be clear for next implementation. 6494 MethodDefinitions.clear(); 6495 } 6496 6497 /// emitMethodConstant - Return a struct objc_method constant. If 6498 /// forProtocol is true, the implementation will be null; otherwise, 6499 /// the method must have a definition registered with the runtime. 6500 /// 6501 /// struct _objc_method { 6502 /// SEL _cmd; 6503 /// char *method_type; 6504 /// char *_imp; 6505 /// } 6506 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6507 const ObjCMethodDecl *MD, 6508 bool forProtocol) { 6509 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6510 method.addBitCast(GetMethodVarName(MD->getSelector()), 6511 ObjCTypes.SelectorPtrTy); 6512 method.add(GetMethodVarType(MD)); 6513 6514 if (forProtocol) { 6515 // Protocol methods have no implementation. So, this entry is always NULL. 6516 method.addNullPointer(ObjCTypes.Int8PtrTy); 6517 } else { 6518 llvm::Function *fn = GetMethodDefinition(MD); 6519 assert(fn && "no definition for method?"); 6520 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6521 } 6522 6523 method.finishAndAddTo(builder); 6524 } 6525 6526 /// Build meta-data for method declarations. 6527 /// 6528 /// struct _method_list_t { 6529 /// uint32_t entsize; // sizeof(struct _objc_method) 6530 /// uint32_t method_count; 6531 /// struct _objc_method method_list[method_count]; 6532 /// } 6533 /// 6534 llvm::Constant * 6535 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6536 ArrayRef<const ObjCMethodDecl *> methods) { 6537 // Return null for empty list. 6538 if (methods.empty()) 6539 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6540 6541 StringRef prefix; 6542 bool forProtocol; 6543 switch (kind) { 6544 case MethodListType::CategoryInstanceMethods: 6545 prefix = "\01l_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6546 forProtocol = false; 6547 break; 6548 case MethodListType::CategoryClassMethods: 6549 prefix = "\01l_OBJC_$_CATEGORY_CLASS_METHODS_"; 6550 forProtocol = false; 6551 break; 6552 case MethodListType::InstanceMethods: 6553 prefix = "\01l_OBJC_$_INSTANCE_METHODS_"; 6554 forProtocol = false; 6555 break; 6556 case MethodListType::ClassMethods: 6557 prefix = "\01l_OBJC_$_CLASS_METHODS_"; 6558 forProtocol = false; 6559 break; 6560 6561 case MethodListType::ProtocolInstanceMethods: 6562 prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6563 forProtocol = true; 6564 break; 6565 case MethodListType::ProtocolClassMethods: 6566 prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6567 forProtocol = true; 6568 break; 6569 case MethodListType::OptionalProtocolInstanceMethods: 6570 prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6571 forProtocol = true; 6572 break; 6573 case MethodListType::OptionalProtocolClassMethods: 6574 prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6575 forProtocol = true; 6576 break; 6577 } 6578 6579 ConstantInitBuilder builder(CGM); 6580 auto values = builder.beginStruct(); 6581 6582 // sizeof(struct _objc_method) 6583 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6584 values.addInt(ObjCTypes.IntTy, Size); 6585 // method_count 6586 values.addInt(ObjCTypes.IntTy, methods.size()); 6587 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6588 for (auto MD : methods) { 6589 emitMethodConstant(methodArray, MD, forProtocol); 6590 } 6591 methodArray.finishAndAddTo(values); 6592 6593 auto *GV = values.finishAndCreateGlobal(prefix + name, CGM.getPointerAlign(), 6594 /*constant*/ false, 6595 llvm::GlobalValue::PrivateLinkage); 6596 if (CGM.getTriple().isOSBinFormatMachO()) 6597 GV->setSection("__DATA, __objc_const"); 6598 CGM.addCompilerUsedGlobal(GV); 6599 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6600 } 6601 6602 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6603 /// the given ivar. 6604 llvm::GlobalVariable * 6605 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6606 const ObjCIvarDecl *Ivar) { 6607 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6608 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6609 Name += Container->getObjCRuntimeNameAsString(); 6610 Name += "."; 6611 Name += Ivar->getName(); 6612 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6613 if (!IvarOffsetGV) { 6614 IvarOffsetGV = 6615 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6616 false, llvm::GlobalValue::ExternalLinkage, 6617 nullptr, Name.str()); 6618 if (CGM.getTriple().isOSBinFormatCOFF()) { 6619 bool IsPrivateOrPackage = 6620 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6621 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6622 6623 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6624 6625 if (ContainingID->hasAttr<DLLImportAttr>()) 6626 IvarOffsetGV 6627 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6628 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6629 IvarOffsetGV 6630 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6631 } 6632 } 6633 return IvarOffsetGV; 6634 } 6635 6636 llvm::Constant * 6637 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6638 const ObjCIvarDecl *Ivar, 6639 unsigned long int Offset) { 6640 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6641 IvarOffsetGV->setInitializer( 6642 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6643 IvarOffsetGV->setAlignment( 6644 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6645 6646 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6647 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6648 // as well (i.e., in ObjCIvarOffsetVariable). 6649 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6650 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6651 ID->getVisibility() == HiddenVisibility) 6652 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6653 else 6654 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6655 } 6656 6657 if (CGM.getTriple().isOSBinFormatMachO()) 6658 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6659 return IvarOffsetGV; 6660 } 6661 6662 /// EmitIvarList - Emit the ivar list for the given 6663 /// implementation. The return value has type 6664 /// IvarListnfABIPtrTy. 6665 /// struct _ivar_t { 6666 /// unsigned [long] int *offset; // pointer to ivar offset location 6667 /// char *name; 6668 /// char *type; 6669 /// uint32_t alignment; 6670 /// uint32_t size; 6671 /// } 6672 /// struct _ivar_list_t { 6673 /// uint32 entsize; // sizeof(struct _ivar_t) 6674 /// uint32 count; 6675 /// struct _iver_t list[count]; 6676 /// } 6677 /// 6678 6679 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6680 const ObjCImplementationDecl *ID) { 6681 6682 ConstantInitBuilder builder(CGM); 6683 auto ivarList = builder.beginStruct(); 6684 ivarList.addInt(ObjCTypes.IntTy, 6685 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6686 auto ivarCountSlot = ivarList.addPlaceholder(); 6687 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6688 6689 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6690 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6691 6692 // FIXME. Consolidate this with similar code in GenerateClass. 6693 6694 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6695 IVD; IVD = IVD->getNextIvar()) { 6696 // Ignore unnamed bit-fields. 6697 if (!IVD->getDeclName()) 6698 continue; 6699 6700 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6701 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6702 ComputeIvarBaseOffset(CGM, ID, IVD))); 6703 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6704 ivar.add(GetMethodVarType(IVD)); 6705 llvm::Type *FieldTy = 6706 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6707 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6708 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6709 IVD->getType().getTypePtr()) >> 3; 6710 Align = llvm::Log2_32(Align); 6711 ivar.addInt(ObjCTypes.IntTy, Align); 6712 // NOTE. Size of a bitfield does not match gcc's, because of the 6713 // way bitfields are treated special in each. But I am told that 6714 // 'size' for bitfield ivars is ignored by the runtime so it does 6715 // not matter. If it matters, there is enough info to get the 6716 // bitfield right! 6717 ivar.addInt(ObjCTypes.IntTy, Size); 6718 ivar.finishAndAddTo(ivars); 6719 } 6720 // Return null for empty list. 6721 if (ivars.empty()) { 6722 ivars.abandon(); 6723 ivarList.abandon(); 6724 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6725 } 6726 6727 auto ivarCount = ivars.size(); 6728 ivars.finishAndAddTo(ivarList); 6729 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6730 6731 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6732 llvm::GlobalVariable *GV = 6733 ivarList.finishAndCreateGlobal(Prefix + OID->getObjCRuntimeNameAsString(), 6734 CGM.getPointerAlign(), /*constant*/ false, 6735 llvm::GlobalValue::PrivateLinkage); 6736 if (CGM.getTriple().isOSBinFormatMachO()) 6737 GV->setSection("__DATA, __objc_const"); 6738 CGM.addCompilerUsedGlobal(GV); 6739 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6740 } 6741 6742 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6743 const ObjCProtocolDecl *PD) { 6744 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6745 6746 if (!Entry) { 6747 // We use the initializer as a marker of whether this is a forward 6748 // reference or not. At module finalization we add the empty 6749 // contents for protocols which were referenced but never defined. 6750 llvm::SmallString<64> Protocol; 6751 llvm::raw_svector_ostream(Protocol) << "\01l_OBJC_PROTOCOL_$_" 6752 << PD->getObjCRuntimeNameAsString(); 6753 6754 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6755 false, llvm::GlobalValue::ExternalLinkage, 6756 nullptr, Protocol); 6757 if (!CGM.getTriple().isOSBinFormatMachO()) 6758 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 6759 } 6760 6761 return Entry; 6762 } 6763 6764 /// GetOrEmitProtocol - Generate the protocol meta-data: 6765 /// @code 6766 /// struct _protocol_t { 6767 /// id isa; // NULL 6768 /// const char * const protocol_name; 6769 /// const struct _protocol_list_t * protocol_list; // super protocols 6770 /// const struct method_list_t * const instance_methods; 6771 /// const struct method_list_t * const class_methods; 6772 /// const struct method_list_t *optionalInstanceMethods; 6773 /// const struct method_list_t *optionalClassMethods; 6774 /// const struct _prop_list_t * properties; 6775 /// const uint32_t size; // sizeof(struct _protocol_t) 6776 /// const uint32_t flags; // = 0 6777 /// const char ** extendedMethodTypes; 6778 /// const char *demangledName; 6779 /// const struct _prop_list_t * class_properties; 6780 /// } 6781 /// @endcode 6782 /// 6783 6784 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6785 const ObjCProtocolDecl *PD) { 6786 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6787 6788 // Early exit if a defining object has already been generated. 6789 if (Entry && Entry->hasInitializer()) 6790 return Entry; 6791 6792 // Use the protocol definition, if there is one. 6793 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6794 PD = Def; 6795 6796 auto methodLists = ProtocolMethodLists::get(PD); 6797 6798 ConstantInitBuilder builder(CGM); 6799 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 6800 6801 // isa is NULL 6802 values.addNullPointer(ObjCTypes.ObjectPtrTy); 6803 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 6804 values.add(EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" 6805 + PD->getObjCRuntimeNameAsString(), 6806 PD->protocol_begin(), 6807 PD->protocol_end())); 6808 values.add(methodLists.emitMethodList(this, PD, 6809 ProtocolMethodLists::RequiredInstanceMethods)); 6810 values.add(methodLists.emitMethodList(this, PD, 6811 ProtocolMethodLists::RequiredClassMethods)); 6812 values.add(methodLists.emitMethodList(this, PD, 6813 ProtocolMethodLists::OptionalInstanceMethods)); 6814 values.add(methodLists.emitMethodList(this, PD, 6815 ProtocolMethodLists::OptionalClassMethods)); 6816 values.add(EmitPropertyList( 6817 "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6818 nullptr, PD, ObjCTypes, false)); 6819 uint32_t Size = 6820 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6821 values.addInt(ObjCTypes.IntTy, Size); 6822 values.addInt(ObjCTypes.IntTy, 0); 6823 values.add(EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6824 + PD->getObjCRuntimeNameAsString(), 6825 methodLists.emitExtendedTypesArray(this), 6826 ObjCTypes)); 6827 6828 // const char *demangledName; 6829 values.addNullPointer(ObjCTypes.Int8PtrTy); 6830 6831 values.add(EmitPropertyList( 6832 "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6833 nullptr, PD, ObjCTypes, true)); 6834 6835 if (Entry) { 6836 // Already created, fix the linkage and update the initializer. 6837 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6838 values.finishAndSetAsInitializer(Entry); 6839 } else { 6840 llvm::SmallString<64> symbolName; 6841 llvm::raw_svector_ostream(symbolName) 6842 << "\01l_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 6843 6844 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 6845 /*constant*/ false, 6846 llvm::GlobalValue::WeakAnyLinkage); 6847 if (!CGM.getTriple().isOSBinFormatMachO()) 6848 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 6849 6850 Protocols[PD->getIdentifier()] = Entry; 6851 } 6852 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6853 CGM.addCompilerUsedGlobal(Entry); 6854 6855 // Use this protocol meta-data to build protocol list table in section 6856 // __DATA, __objc_protolist 6857 llvm::SmallString<64> ProtocolRef; 6858 llvm::raw_svector_ostream(ProtocolRef) << "\01l_OBJC_LABEL_PROTOCOL_$_" 6859 << PD->getObjCRuntimeNameAsString(); 6860 6861 llvm::GlobalVariable *PTGV = 6862 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6863 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6864 ProtocolRef); 6865 if (!CGM.getTriple().isOSBinFormatMachO()) 6866 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 6867 PTGV->setAlignment( 6868 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6869 PTGV->setSection(GetSectionName("__objc_protolist", 6870 "coalesced,no_dead_strip")); 6871 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6872 CGM.addCompilerUsedGlobal(PTGV); 6873 return Entry; 6874 } 6875 6876 /// EmitProtocolList - Generate protocol list meta-data: 6877 /// @code 6878 /// struct _protocol_list_t { 6879 /// long protocol_count; // Note, this is 32/64 bit 6880 /// struct _protocol_t[protocol_count]; 6881 /// } 6882 /// @endcode 6883 /// 6884 llvm::Constant * 6885 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6886 ObjCProtocolDecl::protocol_iterator begin, 6887 ObjCProtocolDecl::protocol_iterator end) { 6888 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6889 6890 // Just return null for empty protocol lists 6891 if (begin == end) 6892 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6893 6894 // FIXME: We shouldn't need to do this lookup here, should we? 6895 SmallString<256> TmpName; 6896 Name.toVector(TmpName); 6897 llvm::GlobalVariable *GV = 6898 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6899 if (GV) 6900 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6901 6902 ConstantInitBuilder builder(CGM); 6903 auto values = builder.beginStruct(); 6904 auto countSlot = values.addPlaceholder(); 6905 6906 // A null-terminated array of protocols. 6907 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 6908 for (; begin != end; ++begin) 6909 array.add(GetProtocolRef(*begin)); // Implemented??? 6910 auto count = array.size(); 6911 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 6912 6913 array.finishAndAddTo(values); 6914 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 6915 6916 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 6917 /*constant*/ false, 6918 llvm::GlobalValue::PrivateLinkage); 6919 if (CGM.getTriple().isOSBinFormatMachO()) 6920 GV->setSection("__DATA, __objc_const"); 6921 CGM.addCompilerUsedGlobal(GV); 6922 return llvm::ConstantExpr::getBitCast(GV, 6923 ObjCTypes.ProtocolListnfABIPtrTy); 6924 } 6925 6926 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6927 /// This code gen. amounts to generating code for: 6928 /// @code 6929 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6930 /// @encode 6931 /// 6932 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6933 CodeGen::CodeGenFunction &CGF, 6934 QualType ObjectTy, 6935 llvm::Value *BaseValue, 6936 const ObjCIvarDecl *Ivar, 6937 unsigned CVRQualifiers) { 6938 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6939 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6940 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6941 Offset); 6942 } 6943 6944 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6945 CodeGen::CodeGenFunction &CGF, 6946 const ObjCInterfaceDecl *Interface, 6947 const ObjCIvarDecl *Ivar) { 6948 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6949 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6950 CGF.getSizeAlign(), "ivar"); 6951 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6952 cast<llvm::LoadInst>(IvarOffsetValue) 6953 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6954 llvm::MDNode::get(VMContext, None)); 6955 6956 // This could be 32bit int or 64bit integer depending on the architecture. 6957 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6958 // as this is what caller always expectes. 6959 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6960 IvarOffsetValue = CGF.Builder.CreateIntCast( 6961 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6962 return IvarOffsetValue; 6963 } 6964 6965 static void appendSelectorForMessageRefTable(std::string &buffer, 6966 Selector selector) { 6967 if (selector.isUnarySelector()) { 6968 buffer += selector.getNameForSlot(0); 6969 return; 6970 } 6971 6972 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6973 buffer += selector.getNameForSlot(i); 6974 buffer += '_'; 6975 } 6976 } 6977 6978 /// Emit a "vtable" message send. We emit a weak hidden-visibility 6979 /// struct, initially containing the selector pointer and a pointer to 6980 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6981 /// load and call the function pointer, passing the address of the 6982 /// struct as the second parameter. The runtime determines whether 6983 /// the selector is currently emitted using vtable dispatch; if so, it 6984 /// substitutes a stub function which simply tail-calls through the 6985 /// appropriate vtable slot, and if not, it substitues a stub function 6986 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6987 /// argument to correctly point to the selector. 6988 RValue 6989 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6990 ReturnValueSlot returnSlot, 6991 QualType resultType, 6992 Selector selector, 6993 llvm::Value *arg0, 6994 QualType arg0Type, 6995 bool isSuper, 6996 const CallArgList &formalArgs, 6997 const ObjCMethodDecl *method) { 6998 // Compute the actual arguments. 6999 CallArgList args; 7000 7001 // First argument: the receiver / super-call structure. 7002 if (!isSuper) 7003 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7004 args.add(RValue::get(arg0), arg0Type); 7005 7006 // Second argument: a pointer to the message ref structure. Leave 7007 // the actual argument value blank for now. 7008 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7009 7010 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7011 7012 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7013 7014 NullReturnState nullReturn; 7015 7016 // Find the function to call and the mangled name for the message 7017 // ref structure. Using a different mangled name wouldn't actually 7018 // be a problem; it would just be a waste. 7019 // 7020 // The runtime currently never uses vtable dispatch for anything 7021 // except normal, non-super message-sends. 7022 // FIXME: don't use this for that. 7023 llvm::Constant *fn = nullptr; 7024 std::string messageRefName("\01l_"); 7025 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7026 if (isSuper) { 7027 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7028 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7029 } else { 7030 nullReturn.init(CGF, arg0); 7031 fn = ObjCTypes.getMessageSendStretFixupFn(); 7032 messageRefName += "objc_msgSend_stret_fixup"; 7033 } 7034 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7035 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7036 messageRefName += "objc_msgSend_fpret_fixup"; 7037 } else { 7038 if (isSuper) { 7039 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7040 messageRefName += "objc_msgSendSuper2_fixup"; 7041 } else { 7042 fn = ObjCTypes.getMessageSendFixupFn(); 7043 messageRefName += "objc_msgSend_fixup"; 7044 } 7045 } 7046 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7047 messageRefName += '_'; 7048 7049 // Append the selector name, except use underscores anywhere we 7050 // would have used colons. 7051 appendSelectorForMessageRefTable(messageRefName, selector); 7052 7053 llvm::GlobalVariable *messageRef 7054 = CGM.getModule().getGlobalVariable(messageRefName); 7055 if (!messageRef) { 7056 // Build the message ref structure. 7057 ConstantInitBuilder builder(CGM); 7058 auto values = builder.beginStruct(); 7059 values.add(fn); 7060 values.add(GetMethodVarName(selector)); 7061 messageRef = values.finishAndCreateGlobal(messageRefName, 7062 CharUnits::fromQuantity(16), 7063 /*constant*/ false, 7064 llvm::GlobalValue::WeakAnyLinkage); 7065 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7066 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7067 } 7068 7069 bool requiresnullCheck = false; 7070 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7071 for (const auto *ParamDecl : method->parameters()) { 7072 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7073 if (!nullReturn.NullBB) 7074 nullReturn.init(CGF, arg0); 7075 requiresnullCheck = true; 7076 break; 7077 } 7078 } 7079 7080 Address mref = 7081 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7082 CGF.getPointerAlign()); 7083 7084 // Update the message ref argument. 7085 args[1].RV = RValue::get(mref.getPointer()); 7086 7087 // Load the function to call from the message ref table. 7088 Address calleeAddr = 7089 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 7090 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7091 7092 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7093 CGCallee callee(CGCalleeInfo(), calleePtr); 7094 7095 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7096 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7097 requiresnullCheck ? method : nullptr); 7098 } 7099 7100 /// Generate code for a message send expression in the nonfragile abi. 7101 CodeGen::RValue 7102 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7103 ReturnValueSlot Return, 7104 QualType ResultType, 7105 Selector Sel, 7106 llvm::Value *Receiver, 7107 const CallArgList &CallArgs, 7108 const ObjCInterfaceDecl *Class, 7109 const ObjCMethodDecl *Method) { 7110 return isVTableDispatchedSelector(Sel) 7111 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7112 Receiver, CGF.getContext().getObjCIdType(), 7113 false, CallArgs, Method) 7114 : EmitMessageSend(CGF, Return, ResultType, 7115 EmitSelector(CGF, Sel), 7116 Receiver, CGF.getContext().getObjCIdType(), 7117 false, CallArgs, Method, Class, ObjCTypes); 7118 } 7119 7120 llvm::Constant * 7121 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7122 bool metaclass, 7123 ForDefinition_t isForDefinition) { 7124 auto prefix = 7125 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7126 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7127 isForDefinition, 7128 ID->isWeakImported(), 7129 !isForDefinition 7130 && CGM.getTriple().isOSBinFormatCOFF() 7131 && ID->hasAttr<DLLImportAttr>()); 7132 } 7133 7134 llvm::Constant * 7135 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7136 ForDefinition_t IsForDefinition, 7137 bool Weak, bool DLLImport) { 7138 llvm::GlobalValue::LinkageTypes L = 7139 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7140 : llvm::GlobalValue::ExternalLinkage; 7141 7142 7143 7144 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7145 if (!GV) { 7146 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 7147 false, L, nullptr, Name); 7148 7149 if (DLLImport) 7150 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7151 } 7152 7153 assert(GV->getLinkage() == L); 7154 return GV; 7155 } 7156 7157 llvm::Value * 7158 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7159 IdentifierInfo *II, 7160 const ObjCInterfaceDecl *ID) { 7161 CharUnits Align = CGF.getPointerAlign(); 7162 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7163 7164 if (!Entry) { 7165 llvm::Constant *ClassGV; 7166 if (ID) { 7167 ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7168 } else { 7169 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7170 NotForDefinition); 7171 } 7172 7173 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7174 false, llvm::GlobalValue::PrivateLinkage, 7175 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 7176 Entry->setAlignment(Align.getQuantity()); 7177 Entry->setSection(GetSectionName("__objc_classrefs", 7178 "regular,no_dead_strip")); 7179 CGM.addCompilerUsedGlobal(Entry); 7180 } 7181 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7182 } 7183 7184 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7185 const ObjCInterfaceDecl *ID) { 7186 // If the class has the objc_runtime_visible attribute, we need to 7187 // use the Objective-C runtime to get the class. 7188 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7189 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7190 7191 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7192 } 7193 7194 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7195 CodeGenFunction &CGF) { 7196 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7197 return EmitClassRefFromId(CGF, II, nullptr); 7198 } 7199 7200 llvm::Value * 7201 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7202 const ObjCInterfaceDecl *ID) { 7203 CharUnits Align = CGF.getPointerAlign(); 7204 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7205 7206 if (!Entry) { 7207 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7208 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7209 false, llvm::GlobalValue::PrivateLinkage, 7210 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7211 Entry->setAlignment(Align.getQuantity()); 7212 Entry->setSection(GetSectionName("__objc_superrefs", 7213 "regular,no_dead_strip")); 7214 CGM.addCompilerUsedGlobal(Entry); 7215 } 7216 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7217 } 7218 7219 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7220 /// meta-data 7221 /// 7222 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7223 const ObjCInterfaceDecl *ID, 7224 bool Weak) { 7225 CharUnits Align = CGF.getPointerAlign(); 7226 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7227 if (!Entry) { 7228 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7229 7230 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7231 false, llvm::GlobalValue::PrivateLinkage, 7232 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7233 Entry->setAlignment(Align.getQuantity()); 7234 7235 Entry->setSection(GetSectionName("__objc_superrefs", 7236 "regular,no_dead_strip")); 7237 CGM.addCompilerUsedGlobal(Entry); 7238 } 7239 7240 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7241 } 7242 7243 /// GetClass - Return a reference to the class for the given interface 7244 /// decl. 7245 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7246 const ObjCInterfaceDecl *ID) { 7247 if (ID->isWeakImported()) { 7248 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7249 (void)ClassGV; 7250 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7251 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7252 } 7253 7254 return EmitClassRef(CGF, ID); 7255 } 7256 7257 /// Generates a message send where the super is the receiver. This is 7258 /// a message send to self with special delivery semantics indicating 7259 /// which class's method should be called. 7260 CodeGen::RValue 7261 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7262 ReturnValueSlot Return, 7263 QualType ResultType, 7264 Selector Sel, 7265 const ObjCInterfaceDecl *Class, 7266 bool isCategoryImpl, 7267 llvm::Value *Receiver, 7268 bool IsClassMessage, 7269 const CodeGen::CallArgList &CallArgs, 7270 const ObjCMethodDecl *Method) { 7271 // ... 7272 // Create and init a super structure; this is a (receiver, class) 7273 // pair we will pass to objc_msgSendSuper. 7274 Address ObjCSuper = 7275 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7276 "objc_super"); 7277 7278 llvm::Value *ReceiverAsObject = 7279 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7280 CGF.Builder.CreateStore( 7281 ReceiverAsObject, 7282 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 7283 7284 // If this is a class message the metaclass is passed as the target. 7285 llvm::Value *Target; 7286 if (IsClassMessage) 7287 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7288 else 7289 Target = EmitSuperClassRef(CGF, Class); 7290 7291 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7292 // ObjCTypes types. 7293 llvm::Type *ClassTy = 7294 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7295 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7296 CGF.Builder.CreateStore( 7297 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 7298 7299 return (isVTableDispatchedSelector(Sel)) 7300 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7301 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7302 true, CallArgs, Method) 7303 : EmitMessageSend(CGF, Return, ResultType, 7304 EmitSelector(CGF, Sel), 7305 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7306 true, CallArgs, Method, Class, ObjCTypes); 7307 } 7308 7309 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7310 Selector Sel) { 7311 Address Addr = EmitSelectorAddr(CGF, Sel); 7312 7313 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7314 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7315 llvm::MDNode::get(VMContext, None)); 7316 return LI; 7317 } 7318 7319 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 7320 Selector Sel) { 7321 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7322 7323 CharUnits Align = CGF.getPointerAlign(); 7324 if (!Entry) { 7325 llvm::Constant *Casted = 7326 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7327 ObjCTypes.SelectorPtrTy); 7328 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 7329 false, llvm::GlobalValue::PrivateLinkage, 7330 Casted, "OBJC_SELECTOR_REFERENCES_"); 7331 Entry->setExternallyInitialized(true); 7332 Entry->setSection(GetSectionName("__objc_selrefs", 7333 "literal_pointers,no_dead_strip")); 7334 Entry->setAlignment(Align.getQuantity()); 7335 CGM.addCompilerUsedGlobal(Entry); 7336 } 7337 7338 return Address(Entry, Align); 7339 } 7340 7341 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7342 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7343 /// 7344 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7345 llvm::Value *src, 7346 Address dst, 7347 llvm::Value *ivarOffset) { 7348 llvm::Type * SrcTy = src->getType(); 7349 if (!isa<llvm::PointerType>(SrcTy)) { 7350 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7351 assert(Size <= 8 && "does not support size > 8"); 7352 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7353 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7354 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7355 } 7356 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7357 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7358 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7359 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7360 } 7361 7362 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7363 /// objc_assign_strongCast (id src, id *dst) 7364 /// 7365 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7366 CodeGen::CodeGenFunction &CGF, 7367 llvm::Value *src, Address dst) { 7368 llvm::Type * SrcTy = src->getType(); 7369 if (!isa<llvm::PointerType>(SrcTy)) { 7370 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7371 assert(Size <= 8 && "does not support size > 8"); 7372 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7373 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7374 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7375 } 7376 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7377 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7378 llvm::Value *args[] = { src, dst.getPointer() }; 7379 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7380 args, "weakassign"); 7381 } 7382 7383 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7384 CodeGen::CodeGenFunction &CGF, 7385 Address DestPtr, 7386 Address SrcPtr, 7387 llvm::Value *Size) { 7388 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7389 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7390 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7391 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7392 } 7393 7394 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7395 /// object: objc_read_weak (id *src) 7396 /// 7397 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7398 CodeGen::CodeGenFunction &CGF, 7399 Address AddrWeakObj) { 7400 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7401 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7402 llvm::Value *read_weak = 7403 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7404 AddrWeakObj.getPointer(), "weakread"); 7405 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7406 return read_weak; 7407 } 7408 7409 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7410 /// objc_assign_weak (id src, id *dst) 7411 /// 7412 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7413 llvm::Value *src, Address dst) { 7414 llvm::Type * SrcTy = src->getType(); 7415 if (!isa<llvm::PointerType>(SrcTy)) { 7416 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7417 assert(Size <= 8 && "does not support size > 8"); 7418 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7419 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7420 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7421 } 7422 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7423 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7424 llvm::Value *args[] = { src, dst.getPointer() }; 7425 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7426 args, "weakassign"); 7427 } 7428 7429 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7430 /// objc_assign_global (id src, id *dst) 7431 /// 7432 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7433 llvm::Value *src, Address dst, 7434 bool threadlocal) { 7435 llvm::Type * SrcTy = src->getType(); 7436 if (!isa<llvm::PointerType>(SrcTy)) { 7437 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7438 assert(Size <= 8 && "does not support size > 8"); 7439 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7440 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7441 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7442 } 7443 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7444 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7445 llvm::Value *args[] = { src, dst.getPointer() }; 7446 if (!threadlocal) 7447 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7448 args, "globalassign"); 7449 else 7450 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7451 args, "threadlocalassign"); 7452 } 7453 7454 void 7455 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7456 const ObjCAtSynchronizedStmt &S) { 7457 EmitAtSynchronizedStmt(CGF, S, 7458 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7459 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7460 } 7461 7462 llvm::Constant * 7463 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7464 // There's a particular fixed type info for 'id'. 7465 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7466 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7467 if (!IDEHType) { 7468 IDEHType = 7469 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7470 llvm::GlobalValue::ExternalLinkage, nullptr, 7471 "OBJC_EHTYPE_id"); 7472 if (CGM.getTriple().isOSBinFormatCOFF()) 7473 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7474 } 7475 return IDEHType; 7476 } 7477 7478 // All other types should be Objective-C interface pointer types. 7479 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7480 assert(PT && "Invalid @catch type."); 7481 7482 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7483 assert(IT && "Invalid @catch type."); 7484 7485 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7486 } 7487 7488 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7489 const ObjCAtTryStmt &S) { 7490 EmitTryCatchStmt(CGF, S, 7491 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7492 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7493 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7494 } 7495 7496 /// EmitThrowStmt - Generate code for a throw statement. 7497 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7498 const ObjCAtThrowStmt &S, 7499 bool ClearInsertionPoint) { 7500 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7501 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7502 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7503 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7504 .setDoesNotReturn(); 7505 } else { 7506 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7507 .setDoesNotReturn(); 7508 } 7509 7510 CGF.Builder.CreateUnreachable(); 7511 if (ClearInsertionPoint) 7512 CGF.Builder.ClearInsertionPoint(); 7513 } 7514 7515 llvm::Constant * 7516 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7517 ForDefinition_t IsForDefinition) { 7518 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7519 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7520 7521 // If we don't need a definition, return the entry if found or check 7522 // if we use an external reference. 7523 if (!IsForDefinition) { 7524 if (Entry) 7525 return Entry; 7526 7527 // If this type (or a super class) has the __objc_exception__ 7528 // attribute, emit an external reference. 7529 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7530 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7531 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7532 false, llvm::GlobalValue::ExternalLinkage, 7533 nullptr, EHTypeName); 7534 if (CGM.getTriple().isOSBinFormatCOFF()) { 7535 if (ID->hasAttr<DLLExportAttr>()) 7536 Entry->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 7537 else if (ID->hasAttr<DLLImportAttr>()) 7538 Entry->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7539 } 7540 return Entry; 7541 } 7542 } 7543 7544 // Otherwise we need to either make a new entry or fill in the initializer. 7545 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7546 7547 std::string VTableName = "objc_ehtype_vtable"; 7548 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7549 if (!VTableGV) { 7550 VTableGV = 7551 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7552 llvm::GlobalValue::ExternalLinkage, nullptr, 7553 VTableName); 7554 if (CGM.getTriple().isOSBinFormatCOFF()) 7555 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7556 } 7557 7558 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7559 ConstantInitBuilder builder(CGM); 7560 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7561 values.add(llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), 7562 VTableGV, VTableIdx)); 7563 values.add(GetClassName(ClassName)); 7564 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7565 7566 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7567 ? llvm::GlobalValue::ExternalLinkage 7568 : llvm::GlobalValue::WeakAnyLinkage; 7569 if (Entry) { 7570 values.finishAndSetAsInitializer(Entry); 7571 Entry->setAlignment(CGM.getPointerAlign().getQuantity()); 7572 } else { 7573 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7574 CGM.getPointerAlign(), 7575 /*constant*/ false, 7576 L); 7577 if (CGM.getTriple().isOSBinFormatCOFF()) 7578 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7579 if (ID->hasAttr<DLLExportAttr>()) 7580 Entry->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 7581 } 7582 assert(Entry->getLinkage() == L); 7583 7584 if (!CGM.getTriple().isOSBinFormatCOFF()) 7585 if (ID->getVisibility() == HiddenVisibility) 7586 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7587 7588 if (IsForDefinition) 7589 if (CGM.getTriple().isOSBinFormatMachO()) 7590 Entry->setSection("__DATA,__objc_const"); 7591 7592 return Entry; 7593 } 7594 7595 /* *** */ 7596 7597 CodeGen::CGObjCRuntime * 7598 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7599 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7600 case ObjCRuntime::FragileMacOSX: 7601 return new CGObjCMac(CGM); 7602 7603 case ObjCRuntime::MacOSX: 7604 case ObjCRuntime::iOS: 7605 case ObjCRuntime::WatchOS: 7606 return new CGObjCNonFragileABIMac(CGM); 7607 7608 case ObjCRuntime::GNUstep: 7609 case ObjCRuntime::GCC: 7610 case ObjCRuntime::ObjFW: 7611 llvm_unreachable("these runtimes are not Mac runtimes"); 7612 } 7613 llvm_unreachable("bad runtime"); 7614 } 7615