1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the Apple runtime.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGObjCRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/CodeGen/ConstantInitBuilder.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/LangOptions.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/CachedHashString.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cstdio>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 namespace {
47 
48 // FIXME: We should find a nicer way to make the labels for metadata, string
49 // concatenation is lame.
50 
51 class ObjCCommonTypesHelper {
52 protected:
53   llvm::LLVMContext &VMContext;
54 
55 private:
56   // The types of these functions don't really matter because we
57   // should always bitcast before calling them.
58 
59   /// id objc_msgSend (id, SEL, ...)
60   ///
61   /// The default messenger, used for sends whose ABI is unchanged from
62   /// the all-integer/pointer case.
63   llvm::Constant *getMessageSendFn() const {
64     // Add the non-lazy-bind attribute, since objc_msgSend is likely to
65     // be called a lot.
66     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
67     return CGM.CreateRuntimeFunction(
68         llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend",
69         llvm::AttributeList::get(CGM.getLLVMContext(),
70                                  llvm::AttributeList::FunctionIndex,
71                                  llvm::Attribute::NonLazyBind));
72   }
73 
74   /// void objc_msgSend_stret (id, SEL, ...)
75   ///
76   /// The messenger used when the return value is an aggregate returned
77   /// by indirect reference in the first argument, and therefore the
78   /// self and selector parameters are shifted over by one.
79   llvm::Constant *getMessageSendStretFn() const {
80     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
81     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
82                                                              params, true),
83                                      "objc_msgSend_stret");
84 
85   }
86 
87   /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
88   ///
89   /// The messenger used when the return value is returned on the x87
90   /// floating-point stack; without a special entrypoint, the nil case
91   /// would be unbalanced.
92   llvm::Constant *getMessageSendFpretFn() const {
93     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
94     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
95                                                              params, true),
96                                      "objc_msgSend_fpret");
97 
98   }
99 
100   /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
101   ///
102   /// The messenger used when the return value is returned in two values on the
103   /// x87 floating point stack; without a special entrypoint, the nil case
104   /// would be unbalanced. Only used on 64-bit X86.
105   llvm::Constant *getMessageSendFp2retFn() const {
106     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107     llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
108     llvm::Type *resultType =
109         llvm::StructType::get(longDoubleType, longDoubleType);
110 
111     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
112                                                              params, true),
113                                      "objc_msgSend_fp2ret");
114   }
115 
116   /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
117   ///
118   /// The messenger used for super calls, which have different dispatch
119   /// semantics.  The class passed is the superclass of the current
120   /// class.
121   llvm::Constant *getMessageSendSuperFn() const {
122     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
124                                                              params, true),
125                                      "objc_msgSendSuper");
126   }
127 
128   /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
129   ///
130   /// A slightly different messenger used for super calls.  The class
131   /// passed is the current class.
132   llvm::Constant *getMessageSendSuperFn2() const {
133     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
135                                                              params, true),
136                                      "objc_msgSendSuper2");
137   }
138 
139   /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140   ///                              SEL op, ...)
141   ///
142   /// The messenger used for super calls which return an aggregate indirectly.
143   llvm::Constant *getMessageSendSuperStretFn() const {
144     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145     return CGM.CreateRuntimeFunction(
146       llvm::FunctionType::get(CGM.VoidTy, params, true),
147       "objc_msgSendSuper_stret");
148   }
149 
150   /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151   ///                               SEL op, ...)
152   ///
153   /// objc_msgSendSuper_stret with the super2 semantics.
154   llvm::Constant *getMessageSendSuperStretFn2() const {
155     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156     return CGM.CreateRuntimeFunction(
157       llvm::FunctionType::get(CGM.VoidTy, params, true),
158       "objc_msgSendSuper2_stret");
159   }
160 
161   llvm::Constant *getMessageSendSuperFpretFn() const {
162     // There is no objc_msgSendSuper_fpret? How can that work?
163     return getMessageSendSuperFn();
164   }
165 
166   llvm::Constant *getMessageSendSuperFpretFn2() const {
167     // There is no objc_msgSendSuper_fpret? How can that work?
168     return getMessageSendSuperFn2();
169   }
170 
171 protected:
172   CodeGen::CodeGenModule &CGM;
173 
174 public:
175   llvm::IntegerType *ShortTy, *IntTy, *LongTy;
176   llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy;
177   llvm::Type *IvarOffsetVarTy;
178 
179   /// ObjectPtrTy - LLVM type for object handles (typeof(id))
180   llvm::PointerType *ObjectPtrTy;
181 
182   /// PtrObjectPtrTy - LLVM type for id *
183   llvm::PointerType *PtrObjectPtrTy;
184 
185   /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
186   llvm::PointerType *SelectorPtrTy;
187 
188 private:
189   /// ProtocolPtrTy - LLVM type for external protocol handles
190   /// (typeof(Protocol))
191   llvm::Type *ExternalProtocolPtrTy;
192 
193 public:
194   llvm::Type *getExternalProtocolPtrTy() {
195     if (!ExternalProtocolPtrTy) {
196       // FIXME: It would be nice to unify this with the opaque type, so that the
197       // IR comes out a bit cleaner.
198       CodeGen::CodeGenTypes &Types = CGM.getTypes();
199       ASTContext &Ctx = CGM.getContext();
200       llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
201       ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
202     }
203 
204     return ExternalProtocolPtrTy;
205   }
206 
207   // SuperCTy - clang type for struct objc_super.
208   QualType SuperCTy;
209   // SuperPtrCTy - clang type for struct objc_super *.
210   QualType SuperPtrCTy;
211 
212   /// SuperTy - LLVM type for struct objc_super.
213   llvm::StructType *SuperTy;
214   /// SuperPtrTy - LLVM type for struct objc_super *.
215   llvm::PointerType *SuperPtrTy;
216 
217   /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
218   /// in GCC parlance).
219   llvm::StructType *PropertyTy;
220 
221   /// PropertyListTy - LLVM type for struct objc_property_list
222   /// (_prop_list_t in GCC parlance).
223   llvm::StructType *PropertyListTy;
224   /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
225   llvm::PointerType *PropertyListPtrTy;
226 
227   // MethodTy - LLVM type for struct objc_method.
228   llvm::StructType *MethodTy;
229 
230   /// CacheTy - LLVM type for struct objc_cache.
231   llvm::Type *CacheTy;
232   /// CachePtrTy - LLVM type for struct objc_cache *.
233   llvm::PointerType *CachePtrTy;
234 
235   llvm::Constant *getGetPropertyFn() {
236     CodeGen::CodeGenTypes &Types = CGM.getTypes();
237     ASTContext &Ctx = CGM.getContext();
238     // id objc_getProperty (id, SEL, ptrdiff_t, bool)
239     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
240     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
241     CanQualType Params[] = {
242         IdType, SelType,
243         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy};
244     llvm::FunctionType *FTy =
245         Types.GetFunctionType(
246           Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
247     return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
248   }
249 
250   llvm::Constant *getSetPropertyFn() {
251     CodeGen::CodeGenTypes &Types = CGM.getTypes();
252     ASTContext &Ctx = CGM.getContext();
253     // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
254     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
255     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
256     CanQualType Params[] = {
257         IdType,
258         SelType,
259         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(),
260         IdType,
261         Ctx.BoolTy,
262         Ctx.BoolTy};
263     llvm::FunctionType *FTy =
264         Types.GetFunctionType(
265           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
266     return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
267   }
268 
269   llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) {
270     CodeGen::CodeGenTypes &Types = CGM.getTypes();
271     ASTContext &Ctx = CGM.getContext();
272     // void objc_setProperty_atomic(id self, SEL _cmd,
273     //                              id newValue, ptrdiff_t offset);
274     // void objc_setProperty_nonatomic(id self, SEL _cmd,
275     //                                 id newValue, ptrdiff_t offset);
276     // void objc_setProperty_atomic_copy(id self, SEL _cmd,
277     //                                   id newValue, ptrdiff_t offset);
278     // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
279     //                                      id newValue, ptrdiff_t offset);
280 
281     SmallVector<CanQualType,4> Params;
282     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
283     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
284     Params.push_back(IdType);
285     Params.push_back(SelType);
286     Params.push_back(IdType);
287     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
288     llvm::FunctionType *FTy =
289         Types.GetFunctionType(
290           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
291     const char *name;
292     if (atomic && copy)
293       name = "objc_setProperty_atomic_copy";
294     else if (atomic && !copy)
295       name = "objc_setProperty_atomic";
296     else if (!atomic && copy)
297       name = "objc_setProperty_nonatomic_copy";
298     else
299       name = "objc_setProperty_nonatomic";
300 
301     return CGM.CreateRuntimeFunction(FTy, name);
302   }
303 
304   llvm::Constant *getCopyStructFn() {
305     CodeGen::CodeGenTypes &Types = CGM.getTypes();
306     ASTContext &Ctx = CGM.getContext();
307     // void objc_copyStruct (void *, const void *, size_t, bool, bool)
308     SmallVector<CanQualType,5> Params;
309     Params.push_back(Ctx.VoidPtrTy);
310     Params.push_back(Ctx.VoidPtrTy);
311     Params.push_back(Ctx.getSizeType());
312     Params.push_back(Ctx.BoolTy);
313     Params.push_back(Ctx.BoolTy);
314     llvm::FunctionType *FTy =
315         Types.GetFunctionType(
316           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
317     return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
318   }
319 
320   /// This routine declares and returns address of:
321   /// void objc_copyCppObjectAtomic(
322   ///         void *dest, const void *src,
323   ///         void (*copyHelper) (void *dest, const void *source));
324   llvm::Constant *getCppAtomicObjectFunction() {
325     CodeGen::CodeGenTypes &Types = CGM.getTypes();
326     ASTContext &Ctx = CGM.getContext();
327     /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
328     SmallVector<CanQualType,3> Params;
329     Params.push_back(Ctx.VoidPtrTy);
330     Params.push_back(Ctx.VoidPtrTy);
331     Params.push_back(Ctx.VoidPtrTy);
332     llvm::FunctionType *FTy =
333         Types.GetFunctionType(
334           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
335     return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
336   }
337 
338   llvm::Constant *getEnumerationMutationFn() {
339     CodeGen::CodeGenTypes &Types = CGM.getTypes();
340     ASTContext &Ctx = CGM.getContext();
341     // void objc_enumerationMutation (id)
342     SmallVector<CanQualType,1> Params;
343     Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
344     llvm::FunctionType *FTy =
345         Types.GetFunctionType(
346           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
347     return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
348   }
349 
350   llvm::Constant *getLookUpClassFn() {
351     CodeGen::CodeGenTypes &Types = CGM.getTypes();
352     ASTContext &Ctx = CGM.getContext();
353     // Class objc_lookUpClass (const char *)
354     SmallVector<CanQualType,1> Params;
355     Params.push_back(
356       Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
357     llvm::FunctionType *FTy =
358         Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration(
359                                 Ctx.getCanonicalType(Ctx.getObjCClassType()),
360                                 Params));
361     return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass");
362   }
363 
364   /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
365   llvm::Constant *getGcReadWeakFn() {
366     // id objc_read_weak (id *)
367     llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
368     llvm::FunctionType *FTy =
369       llvm::FunctionType::get(ObjectPtrTy, args, false);
370     return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
371   }
372 
373   /// GcAssignWeakFn -- LLVM objc_assign_weak function.
374   llvm::Constant *getGcAssignWeakFn() {
375     // id objc_assign_weak (id, id *)
376     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
377     llvm::FunctionType *FTy =
378       llvm::FunctionType::get(ObjectPtrTy, args, false);
379     return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
380   }
381 
382   /// GcAssignGlobalFn -- LLVM objc_assign_global function.
383   llvm::Constant *getGcAssignGlobalFn() {
384     // id objc_assign_global(id, id *)
385     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
386     llvm::FunctionType *FTy =
387       llvm::FunctionType::get(ObjectPtrTy, args, false);
388     return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
389   }
390 
391   /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
392   llvm::Constant *getGcAssignThreadLocalFn() {
393     // id objc_assign_threadlocal(id src, id * dest)
394     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
395     llvm::FunctionType *FTy =
396       llvm::FunctionType::get(ObjectPtrTy, args, false);
397     return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
398   }
399 
400   /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
401   llvm::Constant *getGcAssignIvarFn() {
402     // id objc_assign_ivar(id, id *, ptrdiff_t)
403     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
404                            CGM.PtrDiffTy };
405     llvm::FunctionType *FTy =
406       llvm::FunctionType::get(ObjectPtrTy, args, false);
407     return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
408   }
409 
410   /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
411   llvm::Constant *GcMemmoveCollectableFn() {
412     // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
413     llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
414     llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
415     return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
416   }
417 
418   /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
419   llvm::Constant *getGcAssignStrongCastFn() {
420     // id objc_assign_strongCast(id, id *)
421     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
422     llvm::FunctionType *FTy =
423       llvm::FunctionType::get(ObjectPtrTy, args, false);
424     return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
425   }
426 
427   /// ExceptionThrowFn - LLVM objc_exception_throw function.
428   llvm::Constant *getExceptionThrowFn() {
429     // void objc_exception_throw(id)
430     llvm::Type *args[] = { ObjectPtrTy };
431     llvm::FunctionType *FTy =
432       llvm::FunctionType::get(CGM.VoidTy, args, false);
433     return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
434   }
435 
436   /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
437   llvm::Constant *getExceptionRethrowFn() {
438     // void objc_exception_rethrow(void)
439     llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
440     return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
441   }
442 
443   /// SyncEnterFn - LLVM object_sync_enter function.
444   llvm::Constant *getSyncEnterFn() {
445     // int objc_sync_enter (id)
446     llvm::Type *args[] = { ObjectPtrTy };
447     llvm::FunctionType *FTy =
448       llvm::FunctionType::get(CGM.IntTy, args, false);
449     return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
450   }
451 
452   /// SyncExitFn - LLVM object_sync_exit function.
453   llvm::Constant *getSyncExitFn() {
454     // int objc_sync_exit (id)
455     llvm::Type *args[] = { ObjectPtrTy };
456     llvm::FunctionType *FTy =
457       llvm::FunctionType::get(CGM.IntTy, args, false);
458     return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
459   }
460 
461   llvm::Constant *getSendFn(bool IsSuper) const {
462     return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
463   }
464 
465   llvm::Constant *getSendFn2(bool IsSuper) const {
466     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
467   }
468 
469   llvm::Constant *getSendStretFn(bool IsSuper) const {
470     return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
471   }
472 
473   llvm::Constant *getSendStretFn2(bool IsSuper) const {
474     return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
475   }
476 
477   llvm::Constant *getSendFpretFn(bool IsSuper) const {
478     return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
479   }
480 
481   llvm::Constant *getSendFpretFn2(bool IsSuper) const {
482     return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
483   }
484 
485   llvm::Constant *getSendFp2retFn(bool IsSuper) const {
486     return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
487   }
488 
489   llvm::Constant *getSendFp2RetFn2(bool IsSuper) const {
490     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
491   }
492 
493   ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
494 };
495 
496 /// ObjCTypesHelper - Helper class that encapsulates lazy
497 /// construction of varies types used during ObjC generation.
498 class ObjCTypesHelper : public ObjCCommonTypesHelper {
499 public:
500   /// SymtabTy - LLVM type for struct objc_symtab.
501   llvm::StructType *SymtabTy;
502   /// SymtabPtrTy - LLVM type for struct objc_symtab *.
503   llvm::PointerType *SymtabPtrTy;
504   /// ModuleTy - LLVM type for struct objc_module.
505   llvm::StructType *ModuleTy;
506 
507   /// ProtocolTy - LLVM type for struct objc_protocol.
508   llvm::StructType *ProtocolTy;
509   /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
510   llvm::PointerType *ProtocolPtrTy;
511   /// ProtocolExtensionTy - LLVM type for struct
512   /// objc_protocol_extension.
513   llvm::StructType *ProtocolExtensionTy;
514   /// ProtocolExtensionTy - LLVM type for struct
515   /// objc_protocol_extension *.
516   llvm::PointerType *ProtocolExtensionPtrTy;
517   /// MethodDescriptionTy - LLVM type for struct
518   /// objc_method_description.
519   llvm::StructType *MethodDescriptionTy;
520   /// MethodDescriptionListTy - LLVM type for struct
521   /// objc_method_description_list.
522   llvm::StructType *MethodDescriptionListTy;
523   /// MethodDescriptionListPtrTy - LLVM type for struct
524   /// objc_method_description_list *.
525   llvm::PointerType *MethodDescriptionListPtrTy;
526   /// ProtocolListTy - LLVM type for struct objc_property_list.
527   llvm::StructType *ProtocolListTy;
528   /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
529   llvm::PointerType *ProtocolListPtrTy;
530   /// CategoryTy - LLVM type for struct objc_category.
531   llvm::StructType *CategoryTy;
532   /// ClassTy - LLVM type for struct objc_class.
533   llvm::StructType *ClassTy;
534   /// ClassPtrTy - LLVM type for struct objc_class *.
535   llvm::PointerType *ClassPtrTy;
536   /// ClassExtensionTy - LLVM type for struct objc_class_ext.
537   llvm::StructType *ClassExtensionTy;
538   /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
539   llvm::PointerType *ClassExtensionPtrTy;
540   // IvarTy - LLVM type for struct objc_ivar.
541   llvm::StructType *IvarTy;
542   /// IvarListTy - LLVM type for struct objc_ivar_list.
543   llvm::StructType *IvarListTy;
544   /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
545   llvm::PointerType *IvarListPtrTy;
546   /// MethodListTy - LLVM type for struct objc_method_list.
547   llvm::StructType *MethodListTy;
548   /// MethodListPtrTy - LLVM type for struct objc_method_list *.
549   llvm::PointerType *MethodListPtrTy;
550 
551   /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
552   llvm::StructType *ExceptionDataTy;
553 
554   /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
555   llvm::Constant *getExceptionTryEnterFn() {
556     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
557     return CGM.CreateRuntimeFunction(
558       llvm::FunctionType::get(CGM.VoidTy, params, false),
559       "objc_exception_try_enter");
560   }
561 
562   /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
563   llvm::Constant *getExceptionTryExitFn() {
564     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
565     return CGM.CreateRuntimeFunction(
566       llvm::FunctionType::get(CGM.VoidTy, params, false),
567       "objc_exception_try_exit");
568   }
569 
570   /// ExceptionExtractFn - LLVM objc_exception_extract function.
571   llvm::Constant *getExceptionExtractFn() {
572     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
573     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
574                                                              params, false),
575                                      "objc_exception_extract");
576   }
577 
578   /// ExceptionMatchFn - LLVM objc_exception_match function.
579   llvm::Constant *getExceptionMatchFn() {
580     llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
581     return CGM.CreateRuntimeFunction(
582       llvm::FunctionType::get(CGM.Int32Ty, params, false),
583       "objc_exception_match");
584   }
585 
586   /// SetJmpFn - LLVM _setjmp function.
587   llvm::Constant *getSetJmpFn() {
588     // This is specifically the prototype for x86.
589     llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
590     return CGM.CreateRuntimeFunction(
591         llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp",
592         llvm::AttributeList::get(CGM.getLLVMContext(),
593                                  llvm::AttributeList::FunctionIndex,
594                                  llvm::Attribute::NonLazyBind));
595   }
596 
597 public:
598   ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
599 };
600 
601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
602 /// modern abi
603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
604 public:
605   // MethodListnfABITy - LLVM for struct _method_list_t
606   llvm::StructType *MethodListnfABITy;
607 
608   // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
609   llvm::PointerType *MethodListnfABIPtrTy;
610 
611   // ProtocolnfABITy = LLVM for struct _protocol_t
612   llvm::StructType *ProtocolnfABITy;
613 
614   // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
615   llvm::PointerType *ProtocolnfABIPtrTy;
616 
617   // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
618   llvm::StructType *ProtocolListnfABITy;
619 
620   // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
621   llvm::PointerType *ProtocolListnfABIPtrTy;
622 
623   // ClassnfABITy - LLVM for struct _class_t
624   llvm::StructType *ClassnfABITy;
625 
626   // ClassnfABIPtrTy - LLVM for struct _class_t*
627   llvm::PointerType *ClassnfABIPtrTy;
628 
629   // IvarnfABITy - LLVM for struct _ivar_t
630   llvm::StructType *IvarnfABITy;
631 
632   // IvarListnfABITy - LLVM for struct _ivar_list_t
633   llvm::StructType *IvarListnfABITy;
634 
635   // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
636   llvm::PointerType *IvarListnfABIPtrTy;
637 
638   // ClassRonfABITy - LLVM for struct _class_ro_t
639   llvm::StructType *ClassRonfABITy;
640 
641   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
642   llvm::PointerType *ImpnfABITy;
643 
644   // CategorynfABITy - LLVM for struct _category_t
645   llvm::StructType *CategorynfABITy;
646 
647   // New types for nonfragile abi messaging.
648 
649   // MessageRefTy - LLVM for:
650   // struct _message_ref_t {
651   //   IMP messenger;
652   //   SEL name;
653   // };
654   llvm::StructType *MessageRefTy;
655   // MessageRefCTy - clang type for struct _message_ref_t
656   QualType MessageRefCTy;
657 
658   // MessageRefPtrTy - LLVM for struct _message_ref_t*
659   llvm::Type *MessageRefPtrTy;
660   // MessageRefCPtrTy - clang type for struct _message_ref_t*
661   QualType MessageRefCPtrTy;
662 
663   // SuperMessageRefTy - LLVM for:
664   // struct _super_message_ref_t {
665   //   SUPER_IMP messenger;
666   //   SEL name;
667   // };
668   llvm::StructType *SuperMessageRefTy;
669 
670   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
671   llvm::PointerType *SuperMessageRefPtrTy;
672 
673   llvm::Constant *getMessageSendFixupFn() {
674     // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
675     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
676     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
677                                                              params, true),
678                                      "objc_msgSend_fixup");
679   }
680 
681   llvm::Constant *getMessageSendFpretFixupFn() {
682     // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
683     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
684     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
685                                                              params, true),
686                                      "objc_msgSend_fpret_fixup");
687   }
688 
689   llvm::Constant *getMessageSendStretFixupFn() {
690     // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
691     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
692     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
693                                                              params, true),
694                                      "objc_msgSend_stret_fixup");
695   }
696 
697   llvm::Constant *getMessageSendSuper2FixupFn() {
698     // id objc_msgSendSuper2_fixup (struct objc_super *,
699     //                              struct _super_message_ref_t*, ...)
700     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
701     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
702                                                               params, true),
703                                       "objc_msgSendSuper2_fixup");
704   }
705 
706   llvm::Constant *getMessageSendSuper2StretFixupFn() {
707     // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
708     //                                   struct _super_message_ref_t*, ...)
709     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
710     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
711                                                               params, true),
712                                       "objc_msgSendSuper2_stret_fixup");
713   }
714 
715   llvm::Constant *getObjCEndCatchFn() {
716     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
717                                      "objc_end_catch");
718 
719   }
720 
721   llvm::Constant *getObjCBeginCatchFn() {
722     llvm::Type *params[] = { Int8PtrTy };
723     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
724                                                              params, false),
725                                      "objc_begin_catch");
726   }
727 
728   llvm::StructType *EHTypeTy;
729   llvm::Type *EHTypePtrTy;
730 
731   ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
732 };
733 
734 enum class ObjCLabelType {
735   ClassName,
736   MethodVarName,
737   MethodVarType,
738   PropertyName,
739 };
740 
741 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
742 public:
743   class SKIP_SCAN {
744   public:
745     unsigned skip;
746     unsigned scan;
747     SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
748       : skip(_skip), scan(_scan) {}
749   };
750 
751   /// opcode for captured block variables layout 'instructions'.
752   /// In the following descriptions, 'I' is the value of the immediate field.
753   /// (field following the opcode).
754   ///
755   enum BLOCK_LAYOUT_OPCODE {
756     /// An operator which affects how the following layout should be
757     /// interpreted.
758     ///   I == 0: Halt interpretation and treat everything else as
759     ///           a non-pointer.  Note that this instruction is equal
760     ///           to '\0'.
761     ///   I != 0: Currently unused.
762     BLOCK_LAYOUT_OPERATOR            = 0,
763 
764     /// The next I+1 bytes do not contain a value of object pointer type.
765     /// Note that this can leave the stream unaligned, meaning that
766     /// subsequent word-size instructions do not begin at a multiple of
767     /// the pointer size.
768     BLOCK_LAYOUT_NON_OBJECT_BYTES    = 1,
769 
770     /// The next I+1 words do not contain a value of object pointer type.
771     /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
772     /// when the required skip quantity is a multiple of the pointer size.
773     BLOCK_LAYOUT_NON_OBJECT_WORDS    = 2,
774 
775     /// The next I+1 words are __strong pointers to Objective-C
776     /// objects or blocks.
777     BLOCK_LAYOUT_STRONG              = 3,
778 
779     /// The next I+1 words are pointers to __block variables.
780     BLOCK_LAYOUT_BYREF               = 4,
781 
782     /// The next I+1 words are __weak pointers to Objective-C
783     /// objects or blocks.
784     BLOCK_LAYOUT_WEAK                = 5,
785 
786     /// The next I+1 words are __unsafe_unretained pointers to
787     /// Objective-C objects or blocks.
788     BLOCK_LAYOUT_UNRETAINED          = 6
789 
790     /// The next I+1 words are block or object pointers with some
791     /// as-yet-unspecified ownership semantics.  If we add more
792     /// flavors of ownership semantics, values will be taken from
793     /// this range.
794     ///
795     /// This is included so that older tools can at least continue
796     /// processing the layout past such things.
797     //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
798 
799     /// All other opcodes are reserved.  Halt interpretation and
800     /// treat everything else as opaque.
801   };
802 
803   class RUN_SKIP {
804   public:
805     enum BLOCK_LAYOUT_OPCODE opcode;
806     CharUnits block_var_bytepos;
807     CharUnits block_var_size;
808     RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
809              CharUnits BytePos = CharUnits::Zero(),
810              CharUnits Size = CharUnits::Zero())
811     : opcode(Opcode), block_var_bytepos(BytePos),  block_var_size(Size) {}
812 
813     // Allow sorting based on byte pos.
814     bool operator<(const RUN_SKIP &b) const {
815       return block_var_bytepos < b.block_var_bytepos;
816     }
817   };
818 
819 protected:
820   llvm::LLVMContext &VMContext;
821   // FIXME! May not be needing this after all.
822   unsigned ObjCABI;
823 
824   // arc/mrr layout of captured block literal variables.
825   SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
826 
827   /// LazySymbols - Symbols to generate a lazy reference for. See
828   /// DefinedSymbols and FinishModule().
829   llvm::SetVector<IdentifierInfo*> LazySymbols;
830 
831   /// DefinedSymbols - External symbols which are defined by this
832   /// module. The symbols in this list and LazySymbols are used to add
833   /// special linker symbols which ensure that Objective-C modules are
834   /// linked properly.
835   llvm::SetVector<IdentifierInfo*> DefinedSymbols;
836 
837   /// ClassNames - uniqued class names.
838   llvm::StringMap<llvm::GlobalVariable*> ClassNames;
839 
840   /// MethodVarNames - uniqued method variable names.
841   llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
842 
843   /// DefinedCategoryNames - list of category names in form Class_Category.
844   llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames;
845 
846   /// MethodVarTypes - uniqued method type signatures. We have to use
847   /// a StringMap here because have no other unique reference.
848   llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
849 
850   /// MethodDefinitions - map of methods which have been defined in
851   /// this translation unit.
852   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
853 
854   /// PropertyNames - uniqued method variable names.
855   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
856 
857   /// ClassReferences - uniqued class references.
858   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
859 
860   /// SelectorReferences - uniqued selector references.
861   llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
862 
863   /// Protocols - Protocols for which an objc_protocol structure has
864   /// been emitted. Forward declarations are handled by creating an
865   /// empty structure whose initializer is filled in when/if defined.
866   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
867 
868   /// DefinedProtocols - Protocols which have actually been
869   /// defined. We should not need this, see FIXME in GenerateProtocol.
870   llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
871 
872   /// DefinedClasses - List of defined classes.
873   SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
874 
875   /// ImplementedClasses - List of @implemented classes.
876   SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
877 
878   /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
879   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
880 
881   /// DefinedCategories - List of defined categories.
882   SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
883 
884   /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
885   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
886 
887   /// Cached reference to the class for constant strings. This value has type
888   /// int * but is actually an Obj-C class pointer.
889   llvm::WeakTrackingVH ConstantStringClassRef;
890 
891   /// \brief The LLVM type corresponding to NSConstantString.
892   llvm::StructType *NSConstantStringType = nullptr;
893 
894   llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap;
895 
896   /// GetNameForMethod - Return a name for the given method.
897   /// \param[out] NameOut - The return value.
898   void GetNameForMethod(const ObjCMethodDecl *OMD,
899                         const ObjCContainerDecl *CD,
900                         SmallVectorImpl<char> &NameOut);
901 
902   /// GetMethodVarName - Return a unique constant for the given
903   /// selector's name. The return value has type char *.
904   llvm::Constant *GetMethodVarName(Selector Sel);
905   llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
906 
907   /// GetMethodVarType - Return a unique constant for the given
908   /// method's type encoding string. The return value has type char *.
909 
910   // FIXME: This is a horrible name.
911   llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
912                                    bool Extended = false);
913   llvm::Constant *GetMethodVarType(const FieldDecl *D);
914 
915   /// GetPropertyName - Return a unique constant for the given
916   /// name. The return value has type char *.
917   llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
918 
919   // FIXME: This can be dropped once string functions are unified.
920   llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
921                                         const Decl *Container);
922 
923   /// GetClassName - Return a unique constant for the given selector's
924   /// runtime name (which may change via use of objc_runtime_name attribute on
925   /// class or protocol definition. The return value has type char *.
926   llvm::Constant *GetClassName(StringRef RuntimeName);
927 
928   llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
929 
930   /// BuildIvarLayout - Builds ivar layout bitmap for the class
931   /// implementation for the __strong or __weak case.
932   ///
933   /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
934   ///   are any weak ivars defined directly in the class.  Meaningless unless
935   ///   building a weak layout.  Does not guarantee that the layout will
936   ///   actually have any entries, because the ivar might be under-aligned.
937   llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
938                                   CharUnits beginOffset,
939                                   CharUnits endOffset,
940                                   bool forStrongLayout,
941                                   bool hasMRCWeakIvars);
942 
943   llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
944                                         CharUnits beginOffset,
945                                         CharUnits endOffset) {
946     return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
947   }
948 
949   llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
950                                       CharUnits beginOffset,
951                                       CharUnits endOffset,
952                                       bool hasMRCWeakIvars) {
953     return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
954   }
955 
956   Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
957 
958   void UpdateRunSkipBlockVars(bool IsByref,
959                               Qualifiers::ObjCLifetime LifeTime,
960                               CharUnits FieldOffset,
961                               CharUnits FieldSize);
962 
963   void BuildRCBlockVarRecordLayout(const RecordType *RT,
964                                    CharUnits BytePos, bool &HasUnion,
965                                    bool ByrefLayout=false);
966 
967   void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
968                            const RecordDecl *RD,
969                            ArrayRef<const FieldDecl*> RecFields,
970                            CharUnits BytePos, bool &HasUnion,
971                            bool ByrefLayout);
972 
973   uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
974 
975   llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
976 
977   /// GetIvarLayoutName - Returns a unique constant for the given
978   /// ivar layout bitmap.
979   llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
980                                     const ObjCCommonTypesHelper &ObjCTypes);
981 
982   /// EmitPropertyList - Emit the given property list. The return
983   /// value has type PropertyListPtrTy.
984   llvm::Constant *EmitPropertyList(Twine Name,
985                                    const Decl *Container,
986                                    const ObjCContainerDecl *OCD,
987                                    const ObjCCommonTypesHelper &ObjCTypes,
988                                    bool IsClassProperty);
989 
990   /// EmitProtocolMethodTypes - Generate the array of extended method type
991   /// strings. The return value has type Int8PtrPtrTy.
992   llvm::Constant *EmitProtocolMethodTypes(Twine Name,
993                                           ArrayRef<llvm::Constant*> MethodTypes,
994                                        const ObjCCommonTypesHelper &ObjCTypes);
995 
996   /// GetProtocolRef - Return a reference to the internal protocol
997   /// description, creating an empty one if it has not been
998   /// defined. The return value has type ProtocolPtrTy.
999   llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
1000 
1001   /// Return a reference to the given Class using runtime calls rather than
1002   /// by a symbol reference.
1003   llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
1004                                       const ObjCInterfaceDecl *ID,
1005                                       ObjCCommonTypesHelper &ObjCTypes);
1006 
1007   std::string GetSectionName(StringRef Section, StringRef MachOAttributes);
1008 
1009 public:
1010   /// CreateMetadataVar - Create a global variable with internal
1011   /// linkage for use by the Objective-C runtime.
1012   ///
1013   /// This is a convenience wrapper which not only creates the
1014   /// variable, but also sets the section and alignment and adds the
1015   /// global to the "llvm.used" list.
1016   ///
1017   /// \param Name - The variable name.
1018   /// \param Init - The variable initializer; this is also used to
1019   ///   define the type of the variable.
1020   /// \param Section - The section the variable should go into, or empty.
1021   /// \param Align - The alignment for the variable, or 0.
1022   /// \param AddToUsed - Whether the variable should be added to
1023   ///   "llvm.used".
1024   llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1025                                           ConstantStructBuilder &Init,
1026                                           StringRef Section, CharUnits Align,
1027                                           bool AddToUsed);
1028   llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1029                                           llvm::Constant *Init,
1030                                           StringRef Section, CharUnits Align,
1031                                           bool AddToUsed);
1032 
1033   llvm::GlobalVariable *CreateCStringLiteral(StringRef Name,
1034                                              ObjCLabelType LabelType,
1035                                              bool ForceNonFragileABI = false,
1036                                              bool NullTerminate = true);
1037 
1038 protected:
1039   CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1040                                   ReturnValueSlot Return,
1041                                   QualType ResultType,
1042                                   llvm::Value *Sel,
1043                                   llvm::Value *Arg0,
1044                                   QualType Arg0Ty,
1045                                   bool IsSuper,
1046                                   const CallArgList &CallArgs,
1047                                   const ObjCMethodDecl *OMD,
1048                                   const ObjCInterfaceDecl *ClassReceiver,
1049                                   const ObjCCommonTypesHelper &ObjCTypes);
1050 
1051   /// EmitImageInfo - Emit the image info marker used to encode some module
1052   /// level information.
1053   void EmitImageInfo();
1054 
1055 public:
1056   CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
1057     CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { }
1058 
1059   bool isNonFragileABI() const {
1060     return ObjCABI == 2;
1061   }
1062 
1063   ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1064   ConstantAddress GenerateConstantNSString(const StringLiteral *SL);
1065 
1066   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1067                                  const ObjCContainerDecl *CD=nullptr) override;
1068 
1069   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1070 
1071   /// GetOrEmitProtocol - Get the protocol object for the given
1072   /// declaration, emitting it if necessary. The return value has type
1073   /// ProtocolPtrTy.
1074   virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
1075 
1076   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1077   /// object for the given declaration, emitting it if needed. These
1078   /// forward references will be filled in with empty bodies if no
1079   /// definition is seen. The return value has type ProtocolPtrTy.
1080   virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1081 
1082   virtual llvm::Constant *getNSConstantStringClassRef() = 0;
1083 
1084   llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1085                                      const CGBlockInfo &blockInfo) override;
1086   llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1087                                      const CGBlockInfo &blockInfo) override;
1088 
1089   llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1090                                    QualType T) override;
1091 };
1092 
1093 namespace {
1094 
1095 enum class MethodListType {
1096   CategoryInstanceMethods,
1097   CategoryClassMethods,
1098   InstanceMethods,
1099   ClassMethods,
1100   ProtocolInstanceMethods,
1101   ProtocolClassMethods,
1102   OptionalProtocolInstanceMethods,
1103   OptionalProtocolClassMethods,
1104 };
1105 
1106 /// A convenience class for splitting the methods of a protocol into
1107 /// the four interesting groups.
1108 class ProtocolMethodLists {
1109 public:
1110   enum Kind {
1111     RequiredInstanceMethods,
1112     RequiredClassMethods,
1113     OptionalInstanceMethods,
1114     OptionalClassMethods
1115   };
1116   enum {
1117     NumProtocolMethodLists = 4
1118   };
1119 
1120   static MethodListType getMethodListKind(Kind kind) {
1121     switch (kind) {
1122     case RequiredInstanceMethods:
1123       return MethodListType::ProtocolInstanceMethods;
1124     case RequiredClassMethods:
1125       return MethodListType::ProtocolClassMethods;
1126     case OptionalInstanceMethods:
1127       return MethodListType::OptionalProtocolInstanceMethods;
1128     case OptionalClassMethods:
1129       return MethodListType::OptionalProtocolClassMethods;
1130     }
1131     llvm_unreachable("bad kind");
1132   }
1133 
1134   SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists];
1135 
1136   static ProtocolMethodLists get(const ObjCProtocolDecl *PD) {
1137     ProtocolMethodLists result;
1138 
1139     for (auto MD : PD->methods()) {
1140       size_t index = (2 * size_t(MD->isOptional()))
1141                    + (size_t(MD->isClassMethod()));
1142       result.Methods[index].push_back(MD);
1143     }
1144 
1145     return result;
1146   }
1147 
1148   template <class Self>
1149   SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const {
1150     // In both ABIs, the method types list is parallel with the
1151     // concatenation of the methods arrays in the following order:
1152     //   instance methods
1153     //   class methods
1154     //   optional instance methods
1155     //   optional class methods
1156     SmallVector<llvm::Constant*, 8> result;
1157 
1158     // Methods is already in the correct order for both ABIs.
1159     for (auto &list : Methods) {
1160       for (auto MD : list) {
1161         result.push_back(self->GetMethodVarType(MD, true));
1162       }
1163     }
1164 
1165     return result;
1166   }
1167 
1168   template <class Self>
1169   llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD,
1170                                  Kind kind) const {
1171     return self->emitMethodList(PD->getObjCRuntimeNameAsString(),
1172                                 getMethodListKind(kind), Methods[kind]);
1173   }
1174 };
1175 
1176 } // end anonymous namespace
1177 
1178 class CGObjCMac : public CGObjCCommonMac {
1179 private:
1180   friend ProtocolMethodLists;
1181 
1182   ObjCTypesHelper ObjCTypes;
1183 
1184   /// EmitModuleInfo - Another marker encoding module level
1185   /// information.
1186   void EmitModuleInfo();
1187 
1188   /// EmitModuleSymols - Emit module symbols, the list of defined
1189   /// classes and categories. The result has type SymtabPtrTy.
1190   llvm::Constant *EmitModuleSymbols();
1191 
1192   /// FinishModule - Write out global data structures at the end of
1193   /// processing a translation unit.
1194   void FinishModule();
1195 
1196   /// EmitClassExtension - Generate the class extension structure used
1197   /// to store the weak ivar layout and properties. The return value
1198   /// has type ClassExtensionPtrTy.
1199   llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1200                                      CharUnits instanceSize,
1201                                      bool hasMRCWeakIvars,
1202                                      bool isMetaclass);
1203 
1204   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1205   /// for the given class.
1206   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1207                             const ObjCInterfaceDecl *ID);
1208 
1209   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1210                                   IdentifierInfo *II);
1211 
1212   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1213 
1214   /// EmitSuperClassRef - Emits reference to class's main metadata class.
1215   llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1216 
1217   /// EmitIvarList - Emit the ivar list for the given
1218   /// implementation. If ForClass is true the list of class ivars
1219   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1220   /// interface ivars will be emitted. The return value has type
1221   /// IvarListPtrTy.
1222   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1223                                bool ForClass);
1224 
1225   /// EmitMetaClass - Emit a forward reference to the class structure
1226   /// for the metaclass of the given interface. The return value has
1227   /// type ClassPtrTy.
1228   llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1229 
1230   /// EmitMetaClass - Emit a class structure for the metaclass of the
1231   /// given implementation. The return value has type ClassPtrTy.
1232   llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1233                                 llvm::Constant *Protocols,
1234                                 ArrayRef<const ObjCMethodDecl *> Methods);
1235 
1236   void emitMethodConstant(ConstantArrayBuilder &builder,
1237                           const ObjCMethodDecl *MD);
1238 
1239   void emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
1240                                      const ObjCMethodDecl *MD);
1241 
1242   /// EmitMethodList - Emit the method list for the given
1243   /// implementation. The return value has type MethodListPtrTy.
1244   llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1245                                  ArrayRef<const ObjCMethodDecl *> Methods);
1246 
1247   /// GetOrEmitProtocol - Get the protocol object for the given
1248   /// declaration, emitting it if necessary. The return value has type
1249   /// ProtocolPtrTy.
1250   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1251 
1252   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1253   /// object for the given declaration, emitting it if needed. These
1254   /// forward references will be filled in with empty bodies if no
1255   /// definition is seen. The return value has type ProtocolPtrTy.
1256   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1257 
1258   /// EmitProtocolExtension - Generate the protocol extension
1259   /// structure used to store optional instance and class methods, and
1260   /// protocol properties. The return value has type
1261   /// ProtocolExtensionPtrTy.
1262   llvm::Constant *
1263   EmitProtocolExtension(const ObjCProtocolDecl *PD,
1264                         const ProtocolMethodLists &methodLists);
1265 
1266   /// EmitProtocolList - Generate the list of referenced
1267   /// protocols. The return value has type ProtocolListPtrTy.
1268   llvm::Constant *EmitProtocolList(Twine Name,
1269                                    ObjCProtocolDecl::protocol_iterator begin,
1270                                    ObjCProtocolDecl::protocol_iterator end);
1271 
1272   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1273   /// for the given selector.
1274   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1275   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1276 
1277 public:
1278   CGObjCMac(CodeGen::CodeGenModule &cgm);
1279 
1280   llvm::Constant *getNSConstantStringClassRef() override;
1281 
1282   llvm::Function *ModuleInitFunction() override;
1283 
1284   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1285                                       ReturnValueSlot Return,
1286                                       QualType ResultType,
1287                                       Selector Sel, llvm::Value *Receiver,
1288                                       const CallArgList &CallArgs,
1289                                       const ObjCInterfaceDecl *Class,
1290                                       const ObjCMethodDecl *Method) override;
1291 
1292   CodeGen::RValue
1293   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1294                            ReturnValueSlot Return, QualType ResultType,
1295                            Selector Sel, const ObjCInterfaceDecl *Class,
1296                            bool isCategoryImpl, llvm::Value *Receiver,
1297                            bool IsClassMessage, const CallArgList &CallArgs,
1298                            const ObjCMethodDecl *Method) override;
1299 
1300   llvm::Value *GetClass(CodeGenFunction &CGF,
1301                         const ObjCInterfaceDecl *ID) override;
1302 
1303   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1304   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1305 
1306   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1307   /// untyped one.
1308   llvm::Value *GetSelector(CodeGenFunction &CGF,
1309                            const ObjCMethodDecl *Method) override;
1310 
1311   llvm::Constant *GetEHType(QualType T) override;
1312 
1313   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1314 
1315   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1316 
1317   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1318 
1319   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1320                                    const ObjCProtocolDecl *PD) override;
1321 
1322   llvm::Constant *GetPropertyGetFunction() override;
1323   llvm::Constant *GetPropertySetFunction() override;
1324   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1325                                                   bool copy) override;
1326   llvm::Constant *GetGetStructFunction() override;
1327   llvm::Constant *GetSetStructFunction() override;
1328   llvm::Constant *GetCppAtomicObjectGetFunction() override;
1329   llvm::Constant *GetCppAtomicObjectSetFunction() override;
1330   llvm::Constant *EnumerationMutationFunction() override;
1331 
1332   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1333                    const ObjCAtTryStmt &S) override;
1334   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1335                             const ObjCAtSynchronizedStmt &S) override;
1336   void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1337   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1338                      bool ClearInsertionPoint=true) override;
1339   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1340                                  Address AddrWeakObj) override;
1341   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1342                           llvm::Value *src, Address dst) override;
1343   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1344                             llvm::Value *src, Address dest,
1345                             bool threadlocal = false) override;
1346   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1347                           llvm::Value *src, Address dest,
1348                           llvm::Value *ivarOffset) override;
1349   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1350                                 llvm::Value *src, Address dest) override;
1351   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1352                                 Address dest, Address src,
1353                                 llvm::Value *size) override;
1354 
1355   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1356                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1357                               unsigned CVRQualifiers) override;
1358   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1359                               const ObjCInterfaceDecl *Interface,
1360                               const ObjCIvarDecl *Ivar) override;
1361 };
1362 
1363 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1364 private:
1365   friend ProtocolMethodLists;
1366   ObjCNonFragileABITypesHelper ObjCTypes;
1367   llvm::GlobalVariable* ObjCEmptyCacheVar;
1368   llvm::Constant* ObjCEmptyVtableVar;
1369 
1370   /// SuperClassReferences - uniqued super class references.
1371   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1372 
1373   /// MetaClassReferences - uniqued meta class references.
1374   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1375 
1376   /// EHTypeReferences - uniqued class ehtype references.
1377   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1378 
1379   /// VTableDispatchMethods - List of methods for which we generate
1380   /// vtable-based message dispatch.
1381   llvm::DenseSet<Selector> VTableDispatchMethods;
1382 
1383   /// DefinedMetaClasses - List of defined meta-classes.
1384   std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1385 
1386   /// isVTableDispatchedSelector - Returns true if SEL is a
1387   /// vtable-based selector.
1388   bool isVTableDispatchedSelector(Selector Sel);
1389 
1390   /// FinishNonFragileABIModule - Write out global data structures at the end of
1391   /// processing a translation unit.
1392   void FinishNonFragileABIModule();
1393 
1394   /// AddModuleClassList - Add the given list of class pointers to the
1395   /// module with the provided symbol and section names.
1396   void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1397                           StringRef SymbolName, StringRef SectionName);
1398 
1399   llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1400                                               unsigned InstanceStart,
1401                                               unsigned InstanceSize,
1402                                               const ObjCImplementationDecl *ID);
1403   llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI,
1404                                          bool isMetaclass,
1405                                          llvm::Constant *IsAGV,
1406                                          llvm::Constant *SuperClassGV,
1407                                          llvm::Constant *ClassRoGV,
1408                                          bool HiddenVisibility);
1409 
1410   void emitMethodConstant(ConstantArrayBuilder &builder,
1411                             const ObjCMethodDecl *MD,
1412                             bool forProtocol);
1413 
1414   /// Emit the method list for the given implementation. The return value
1415   /// has type MethodListnfABITy.
1416   llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1417                                  ArrayRef<const ObjCMethodDecl *> Methods);
1418 
1419   /// EmitIvarList - Emit the ivar list for the given
1420   /// implementation. If ForClass is true the list of class ivars
1421   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1422   /// interface ivars will be emitted. The return value has type
1423   /// IvarListnfABIPtrTy.
1424   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1425 
1426   llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1427                                     const ObjCIvarDecl *Ivar,
1428                                     unsigned long int offset);
1429 
1430   /// GetOrEmitProtocol - Get the protocol object for the given
1431   /// declaration, emitting it if necessary. The return value has type
1432   /// ProtocolPtrTy.
1433   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1434 
1435   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1436   /// object for the given declaration, emitting it if needed. These
1437   /// forward references will be filled in with empty bodies if no
1438   /// definition is seen. The return value has type ProtocolPtrTy.
1439   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1440 
1441   /// EmitProtocolList - Generate the list of referenced
1442   /// protocols. The return value has type ProtocolListPtrTy.
1443   llvm::Constant *EmitProtocolList(Twine Name,
1444                                    ObjCProtocolDecl::protocol_iterator begin,
1445                                    ObjCProtocolDecl::protocol_iterator end);
1446 
1447   CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1448                                         ReturnValueSlot Return,
1449                                         QualType ResultType,
1450                                         Selector Sel,
1451                                         llvm::Value *Receiver,
1452                                         QualType Arg0Ty,
1453                                         bool IsSuper,
1454                                         const CallArgList &CallArgs,
1455                                         const ObjCMethodDecl *Method);
1456 
1457   /// GetClassGlobal - Return the global variable for the Objective-C
1458   /// class of the given name.
1459   llvm::Constant *GetClassGlobal(StringRef Name,
1460                                  ForDefinition_t IsForDefinition,
1461                                  bool Weak = false, bool DLLImport = false);
1462   llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID,
1463                                  bool isMetaclass,
1464                                  ForDefinition_t isForDefinition);
1465 
1466   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1467   /// for the given class reference.
1468   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1469                             const ObjCInterfaceDecl *ID);
1470 
1471   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1472                                   IdentifierInfo *II,
1473                                   const ObjCInterfaceDecl *ID);
1474 
1475   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1476 
1477   /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1478   /// for the given super class reference.
1479   llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1480                                  const ObjCInterfaceDecl *ID);
1481 
1482   /// EmitMetaClassRef - Return a Value * of the address of _class_t
1483   /// meta-data
1484   llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1485                                 const ObjCInterfaceDecl *ID, bool Weak);
1486 
1487   /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1488   /// the given ivar.
1489   ///
1490   llvm::GlobalVariable * ObjCIvarOffsetVariable(
1491     const ObjCInterfaceDecl *ID,
1492     const ObjCIvarDecl *Ivar);
1493 
1494   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1495   /// for the given selector.
1496   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1497   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1498 
1499   /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1500   /// interface. The return value has type EHTypePtrTy.
1501   llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1502                                      ForDefinition_t IsForDefinition);
1503 
1504   StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1505 
1506   StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1507 
1508   void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1509                         uint32_t &InstanceStart,
1510                         uint32_t &InstanceSize);
1511 
1512   // Shamelessly stolen from Analysis/CFRefCount.cpp
1513   Selector GetNullarySelector(const char* name) const {
1514     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1515     return CGM.getContext().Selectors.getSelector(0, &II);
1516   }
1517 
1518   Selector GetUnarySelector(const char* name) const {
1519     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1520     return CGM.getContext().Selectors.getSelector(1, &II);
1521   }
1522 
1523   /// ImplementationIsNonLazy - Check whether the given category or
1524   /// class implementation is "non-lazy".
1525   bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1526 
1527   bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1528                                    const ObjCIvarDecl *IV) {
1529     // Annotate the load as an invariant load iff inside an instance method
1530     // and ivar belongs to instance method's class and one of its super class.
1531     // This check is needed because the ivar offset is a lazily
1532     // initialised value that may depend on objc_msgSend to perform a fixup on
1533     // the first message dispatch.
1534     //
1535     // An additional opportunity to mark the load as invariant arises when the
1536     // base of the ivar access is a parameter to an Objective C method.
1537     // However, because the parameters are not available in the current
1538     // interface, we cannot perform this check.
1539     if (const ObjCMethodDecl *MD =
1540           dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1541       if (MD->isInstanceMethod())
1542         if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1543           return IV->getContainingInterface()->isSuperClassOf(ID);
1544     return false;
1545   }
1546 
1547 public:
1548   CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1549 
1550   llvm::Constant *getNSConstantStringClassRef() override;
1551 
1552   llvm::Function *ModuleInitFunction() override;
1553 
1554   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1555                                       ReturnValueSlot Return,
1556                                       QualType ResultType, Selector Sel,
1557                                       llvm::Value *Receiver,
1558                                       const CallArgList &CallArgs,
1559                                       const ObjCInterfaceDecl *Class,
1560                                       const ObjCMethodDecl *Method) override;
1561 
1562   CodeGen::RValue
1563   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1564                            ReturnValueSlot Return, QualType ResultType,
1565                            Selector Sel, const ObjCInterfaceDecl *Class,
1566                            bool isCategoryImpl, llvm::Value *Receiver,
1567                            bool IsClassMessage, const CallArgList &CallArgs,
1568                            const ObjCMethodDecl *Method) override;
1569 
1570   llvm::Value *GetClass(CodeGenFunction &CGF,
1571                         const ObjCInterfaceDecl *ID) override;
1572 
1573   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1574     { return EmitSelector(CGF, Sel); }
1575   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1576     { return EmitSelectorAddr(CGF, Sel); }
1577 
1578   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1579   /// untyped one.
1580   llvm::Value *GetSelector(CodeGenFunction &CGF,
1581                            const ObjCMethodDecl *Method) override
1582     { return EmitSelector(CGF, Method->getSelector()); }
1583 
1584   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1585 
1586   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1587 
1588   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1589 
1590   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1591                                    const ObjCProtocolDecl *PD) override;
1592 
1593   llvm::Constant *GetEHType(QualType T) override;
1594 
1595   llvm::Constant *GetPropertyGetFunction() override {
1596     return ObjCTypes.getGetPropertyFn();
1597   }
1598   llvm::Constant *GetPropertySetFunction() override {
1599     return ObjCTypes.getSetPropertyFn();
1600   }
1601 
1602   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1603                                                   bool copy) override {
1604     return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1605   }
1606 
1607   llvm::Constant *GetSetStructFunction() override {
1608     return ObjCTypes.getCopyStructFn();
1609   }
1610 
1611   llvm::Constant *GetGetStructFunction() override {
1612     return ObjCTypes.getCopyStructFn();
1613   }
1614 
1615   llvm::Constant *GetCppAtomicObjectSetFunction() override {
1616     return ObjCTypes.getCppAtomicObjectFunction();
1617   }
1618 
1619   llvm::Constant *GetCppAtomicObjectGetFunction() override {
1620     return ObjCTypes.getCppAtomicObjectFunction();
1621   }
1622 
1623   llvm::Constant *EnumerationMutationFunction() override {
1624     return ObjCTypes.getEnumerationMutationFn();
1625   }
1626 
1627   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1628                    const ObjCAtTryStmt &S) override;
1629   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1630                             const ObjCAtSynchronizedStmt &S) override;
1631   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1632                      bool ClearInsertionPoint=true) override;
1633   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1634                                  Address AddrWeakObj) override;
1635   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1636                           llvm::Value *src, Address edst) override;
1637   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1638                             llvm::Value *src, Address dest,
1639                             bool threadlocal = false) override;
1640   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1641                           llvm::Value *src, Address dest,
1642                           llvm::Value *ivarOffset) override;
1643   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1644                                 llvm::Value *src, Address dest) override;
1645   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1646                                 Address dest, Address src,
1647                                 llvm::Value *size) override;
1648   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1649                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1650                               unsigned CVRQualifiers) override;
1651   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1652                               const ObjCInterfaceDecl *Interface,
1653                               const ObjCIvarDecl *Ivar) override;
1654 };
1655 
1656 /// A helper class for performing the null-initialization of a return
1657 /// value.
1658 struct NullReturnState {
1659   llvm::BasicBlock *NullBB;
1660   NullReturnState() : NullBB(nullptr) {}
1661 
1662   /// Perform a null-check of the given receiver.
1663   void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1664     // Make blocks for the null-receiver and call edges.
1665     NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1666     llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1667 
1668     // Check for a null receiver and, if there is one, jump to the
1669     // null-receiver block.  There's no point in trying to avoid it:
1670     // we're always going to put *something* there, because otherwise
1671     // we shouldn't have done this null-check in the first place.
1672     llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1673     CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1674 
1675     // Otherwise, start performing the call.
1676     CGF.EmitBlock(callBB);
1677   }
1678 
1679   /// Complete the null-return operation.  It is valid to call this
1680   /// regardless of whether 'init' has been called.
1681   RValue complete(CodeGenFunction &CGF,
1682                   ReturnValueSlot returnSlot,
1683                   RValue result,
1684                   QualType resultType,
1685                   const CallArgList &CallArgs,
1686                   const ObjCMethodDecl *Method) {
1687     // If we never had to do a null-check, just use the raw result.
1688     if (!NullBB) return result;
1689 
1690     // The continuation block.  This will be left null if we don't have an
1691     // IP, which can happen if the method we're calling is marked noreturn.
1692     llvm::BasicBlock *contBB = nullptr;
1693 
1694     // Finish the call path.
1695     llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1696     if (callBB) {
1697       contBB = CGF.createBasicBlock("msgSend.cont");
1698       CGF.Builder.CreateBr(contBB);
1699     }
1700 
1701     // Okay, start emitting the null-receiver block.
1702     CGF.EmitBlock(NullBB);
1703 
1704     // Release any consumed arguments we've got.
1705     if (Method) {
1706       CallArgList::const_iterator I = CallArgs.begin();
1707       for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(),
1708            e = Method->param_end(); i != e; ++i, ++I) {
1709         const ParmVarDecl *ParamDecl = (*i);
1710         if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1711           RValue RV = I->RV;
1712           assert(RV.isScalar() &&
1713                  "NullReturnState::complete - arg not on object");
1714           CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
1715         }
1716       }
1717     }
1718 
1719     // The phi code below assumes that we haven't needed any control flow yet.
1720     assert(CGF.Builder.GetInsertBlock() == NullBB);
1721 
1722     // If we've got a void return, just jump to the continuation block.
1723     if (result.isScalar() && resultType->isVoidType()) {
1724       // No jumps required if the message-send was noreturn.
1725       if (contBB) CGF.EmitBlock(contBB);
1726       return result;
1727     }
1728 
1729     // If we've got a scalar return, build a phi.
1730     if (result.isScalar()) {
1731       // Derive the null-initialization value.
1732       llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType);
1733 
1734       // If no join is necessary, just flow out.
1735       if (!contBB) return RValue::get(null);
1736 
1737       // Otherwise, build a phi.
1738       CGF.EmitBlock(contBB);
1739       llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1740       phi->addIncoming(result.getScalarVal(), callBB);
1741       phi->addIncoming(null, NullBB);
1742       return RValue::get(phi);
1743     }
1744 
1745     // If we've got an aggregate return, null the buffer out.
1746     // FIXME: maybe we should be doing things differently for all the
1747     // cases where the ABI has us returning (1) non-agg values in
1748     // memory or (2) agg values in registers.
1749     if (result.isAggregate()) {
1750       assert(result.isAggregate() && "null init of non-aggregate result?");
1751       if (!returnSlot.isUnused())
1752         CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1753       if (contBB) CGF.EmitBlock(contBB);
1754       return result;
1755     }
1756 
1757     // Complex types.
1758     CGF.EmitBlock(contBB);
1759     CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1760 
1761     // Find the scalar type and its zero value.
1762     llvm::Type *scalarTy = callResult.first->getType();
1763     llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1764 
1765     // Build phis for both coordinates.
1766     llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1767     real->addIncoming(callResult.first, callBB);
1768     real->addIncoming(scalarZero, NullBB);
1769     llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1770     imag->addIncoming(callResult.second, callBB);
1771     imag->addIncoming(scalarZero, NullBB);
1772     return RValue::getComplex(real, imag);
1773   }
1774 };
1775 
1776 } // end anonymous namespace
1777 
1778 /* *** Helper Functions *** */
1779 
1780 /// getConstantGEP() - Help routine to construct simple GEPs.
1781 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1782                                       llvm::GlobalVariable *C, unsigned idx0,
1783                                       unsigned idx1) {
1784   llvm::Value *Idxs[] = {
1785     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1786     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1787   };
1788   return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1789 }
1790 
1791 /// hasObjCExceptionAttribute - Return true if this class or any super
1792 /// class has the __objc_exception__ attribute.
1793 static bool hasObjCExceptionAttribute(ASTContext &Context,
1794                                       const ObjCInterfaceDecl *OID) {
1795   if (OID->hasAttr<ObjCExceptionAttr>())
1796     return true;
1797   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1798     return hasObjCExceptionAttribute(Context, Super);
1799   return false;
1800 }
1801 
1802 /* *** CGObjCMac Public Interface *** */
1803 
1804 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1805                                                     ObjCTypes(cgm) {
1806   ObjCABI = 1;
1807   EmitImageInfo();
1808 }
1809 
1810 /// GetClass - Return a reference to the class for the given interface
1811 /// decl.
1812 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1813                                  const ObjCInterfaceDecl *ID) {
1814   return EmitClassRef(CGF, ID);
1815 }
1816 
1817 /// GetSelector - Return the pointer to the unique'd string for this selector.
1818 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1819   return EmitSelector(CGF, Sel);
1820 }
1821 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1822   return EmitSelectorAddr(CGF, Sel);
1823 }
1824 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1825                                     *Method) {
1826   return EmitSelector(CGF, Method->getSelector());
1827 }
1828 
1829 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1830   if (T->isObjCIdType() ||
1831       T->isObjCQualifiedIdType()) {
1832     return CGM.GetAddrOfRTTIDescriptor(
1833               CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1834   }
1835   if (T->isObjCClassType() ||
1836       T->isObjCQualifiedClassType()) {
1837     return CGM.GetAddrOfRTTIDescriptor(
1838              CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1839   }
1840   if (T->isObjCObjectPointerType())
1841     return CGM.GetAddrOfRTTIDescriptor(T,  /*ForEH=*/true);
1842 
1843   llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1844 }
1845 
1846 /// Generate a constant CFString object.
1847 /*
1848   struct __builtin_CFString {
1849   const int *isa; // point to __CFConstantStringClassReference
1850   int flags;
1851   const char *str;
1852   long length;
1853   };
1854 */
1855 
1856 /// or Generate a constant NSString object.
1857 /*
1858    struct __builtin_NSString {
1859      const int *isa; // point to __NSConstantStringClassReference
1860      const char *str;
1861      unsigned int length;
1862    };
1863 */
1864 
1865 ConstantAddress
1866 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) {
1867   return (!CGM.getLangOpts().NoConstantCFStrings
1868             ? CGM.GetAddrOfConstantCFString(SL)
1869             : GenerateConstantNSString(SL));
1870 }
1871 
1872 static llvm::StringMapEntry<llvm::GlobalVariable *> &
1873 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
1874                        const StringLiteral *Literal, unsigned &StringLength) {
1875   StringRef String = Literal->getString();
1876   StringLength = String.size();
1877   return *Map.insert(std::make_pair(String, nullptr)).first;
1878 }
1879 
1880 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() {
1881   if (llvm::Value *V = ConstantStringClassRef)
1882     return cast<llvm::Constant>(V);
1883 
1884   auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1885   std::string str =
1886     StringClass.empty() ? "_NSConstantStringClassReference"
1887                         : "_" + StringClass + "ClassReference";
1888 
1889   llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0);
1890   auto GV = CGM.CreateRuntimeVariable(PTy, str);
1891   auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1892   ConstantStringClassRef = V;
1893   return V;
1894 }
1895 
1896 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() {
1897   if (llvm::Value *V = ConstantStringClassRef)
1898     return cast<llvm::Constant>(V);
1899 
1900   auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1901   std::string str =
1902     StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1903                         : "OBJC_CLASS_$_" + StringClass;
1904   auto GV = GetClassGlobal(str, NotForDefinition);
1905 
1906   // Make sure the result is of the correct type.
1907   auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1908 
1909   ConstantStringClassRef = V;
1910   return V;
1911 }
1912 
1913 ConstantAddress
1914 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) {
1915   unsigned StringLength = 0;
1916   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
1917     GetConstantStringEntry(NSConstantStringMap, Literal, StringLength);
1918 
1919   if (auto *C = Entry.second)
1920     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
1921 
1922   // If we don't already have it, get _NSConstantStringClassReference.
1923   llvm::Constant *Class = getNSConstantStringClassRef();
1924 
1925   // If we don't already have it, construct the type for a constant NSString.
1926   if (!NSConstantStringType) {
1927     NSConstantStringType =
1928       llvm::StructType::create({
1929         CGM.Int32Ty->getPointerTo(),
1930         CGM.Int8PtrTy,
1931         CGM.IntTy
1932       }, "struct.__builtin_NSString");
1933   }
1934 
1935   ConstantInitBuilder Builder(CGM);
1936   auto Fields = Builder.beginStruct(NSConstantStringType);
1937 
1938   // Class pointer.
1939   Fields.add(Class);
1940 
1941   // String pointer.
1942   llvm::Constant *C =
1943     llvm::ConstantDataArray::getString(VMContext, Entry.first());
1944 
1945   llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage;
1946   bool isConstant = !CGM.getLangOpts().WritableStrings;
1947 
1948   auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant,
1949                                       Linkage, C, ".str");
1950   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1951   // Don't enforce the target's minimum global alignment, since the only use
1952   // of the string is via this class initializer.
1953   GV->setAlignment(1);
1954   Fields.addBitCast(GV, CGM.Int8PtrTy);
1955 
1956   // String length.
1957   Fields.addInt(CGM.IntTy, StringLength);
1958 
1959   // The struct.
1960   CharUnits Alignment = CGM.getPointerAlign();
1961   GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment,
1962                                     /*constant*/ true,
1963                                     llvm::GlobalVariable::PrivateLinkage);
1964   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
1965   const char *NSStringNonFragileABISection =
1966       "__DATA,__objc_stringobj,regular,no_dead_strip";
1967   // FIXME. Fix section.
1968   GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile()
1969                      ? NSStringNonFragileABISection
1970                      : NSStringSection);
1971   Entry.second = GV;
1972 
1973   return ConstantAddress(GV, Alignment);
1974 }
1975 
1976 enum {
1977   kCFTaggedObjectID_Integer = (1 << 1) + 1
1978 };
1979 
1980 /// Generates a message send where the super is the receiver.  This is
1981 /// a message send to self with special delivery semantics indicating
1982 /// which class's method should be called.
1983 CodeGen::RValue
1984 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1985                                     ReturnValueSlot Return,
1986                                     QualType ResultType,
1987                                     Selector Sel,
1988                                     const ObjCInterfaceDecl *Class,
1989                                     bool isCategoryImpl,
1990                                     llvm::Value *Receiver,
1991                                     bool IsClassMessage,
1992                                     const CodeGen::CallArgList &CallArgs,
1993                                     const ObjCMethodDecl *Method) {
1994   // Create and init a super structure; this is a (receiver, class)
1995   // pair we will pass to objc_msgSendSuper.
1996   Address ObjCSuper =
1997     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
1998                          "objc_super");
1999   llvm::Value *ReceiverAsObject =
2000     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
2001   CGF.Builder.CreateStore(
2002       ReceiverAsObject,
2003       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
2004 
2005   // If this is a class message the metaclass is passed as the target.
2006   llvm::Value *Target;
2007   if (IsClassMessage) {
2008     if (isCategoryImpl) {
2009       // Message sent to 'super' in a class method defined in a category
2010       // implementation requires an odd treatment.
2011       // If we are in a class method, we must retrieve the
2012       // _metaclass_ for the current class, pointed at by
2013       // the class's "isa" pointer.  The following assumes that
2014       // isa" is the first ivar in a class (which it must be).
2015       Target = EmitClassRef(CGF, Class->getSuperClass());
2016       Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
2017       Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign());
2018     } else {
2019       llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
2020       llvm::Value *SuperPtr =
2021           CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
2022       llvm::Value *Super =
2023         CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign());
2024       Target = Super;
2025     }
2026   } else if (isCategoryImpl)
2027     Target = EmitClassRef(CGF, Class->getSuperClass());
2028   else {
2029     llvm::Value *ClassPtr = EmitSuperClassRef(Class);
2030     ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
2031     Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign());
2032   }
2033   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
2034   // ObjCTypes types.
2035   llvm::Type *ClassTy =
2036     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
2037   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
2038   CGF.Builder.CreateStore(Target,
2039           CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
2040   return EmitMessageSend(CGF, Return, ResultType,
2041                          EmitSelector(CGF, Sel),
2042                          ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
2043                          true, CallArgs, Method, Class, ObjCTypes);
2044 }
2045 
2046 /// Generate code for a message send expression.
2047 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
2048                                                ReturnValueSlot Return,
2049                                                QualType ResultType,
2050                                                Selector Sel,
2051                                                llvm::Value *Receiver,
2052                                                const CallArgList &CallArgs,
2053                                                const ObjCInterfaceDecl *Class,
2054                                                const ObjCMethodDecl *Method) {
2055   return EmitMessageSend(CGF, Return, ResultType,
2056                          EmitSelector(CGF, Sel),
2057                          Receiver, CGF.getContext().getObjCIdType(),
2058                          false, CallArgs, Method, Class, ObjCTypes);
2059 }
2060 
2061 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) {
2062   do {
2063     if (ID->isWeakImported())
2064       return true;
2065   } while ((ID = ID->getSuperClass()));
2066 
2067   return false;
2068 }
2069 
2070 CodeGen::RValue
2071 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
2072                                  ReturnValueSlot Return,
2073                                  QualType ResultType,
2074                                  llvm::Value *Sel,
2075                                  llvm::Value *Arg0,
2076                                  QualType Arg0Ty,
2077                                  bool IsSuper,
2078                                  const CallArgList &CallArgs,
2079                                  const ObjCMethodDecl *Method,
2080                                  const ObjCInterfaceDecl *ClassReceiver,
2081                                  const ObjCCommonTypesHelper &ObjCTypes) {
2082   CallArgList ActualArgs;
2083   if (!IsSuper)
2084     Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
2085   ActualArgs.add(RValue::get(Arg0), Arg0Ty);
2086   ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType());
2087   ActualArgs.addFrom(CallArgs);
2088 
2089   // If we're calling a method, use the formal signature.
2090   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2091 
2092   if (Method)
2093     assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
2094                CGM.getContext().getCanonicalType(ResultType) &&
2095            "Result type mismatch!");
2096 
2097   bool ReceiverCanBeNull = true;
2098 
2099   // Super dispatch assumes that self is non-null; even the messenger
2100   // doesn't have a null check internally.
2101   if (IsSuper) {
2102     ReceiverCanBeNull = false;
2103 
2104   // If this is a direct dispatch of a class method, check whether the class,
2105   // or anything in its hierarchy, was weak-linked.
2106   } else if (ClassReceiver && Method && Method->isClassMethod()) {
2107     ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver);
2108 
2109   // If we're emitting a method, and self is const (meaning just ARC, for now),
2110   // and the receiver is a load of self, then self is a valid object.
2111   } else if (auto CurMethod =
2112                dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) {
2113     auto Self = CurMethod->getSelfDecl();
2114     if (Self->getType().isConstQualified()) {
2115       if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) {
2116         llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer();
2117         if (SelfAddr == LI->getPointerOperand()) {
2118           ReceiverCanBeNull = false;
2119         }
2120       }
2121     }
2122   }
2123 
2124   bool RequiresNullCheck = false;
2125 
2126   llvm::Constant *Fn = nullptr;
2127   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
2128     if (ReceiverCanBeNull) RequiresNullCheck = true;
2129     Fn = (ObjCABI == 2) ?  ObjCTypes.getSendStretFn2(IsSuper)
2130       : ObjCTypes.getSendStretFn(IsSuper);
2131   } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2132     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
2133       : ObjCTypes.getSendFpretFn(IsSuper);
2134   } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
2135     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
2136       : ObjCTypes.getSendFp2retFn(IsSuper);
2137   } else {
2138     // arm64 uses objc_msgSend for stret methods and yet null receiver check
2139     // must be made for it.
2140     if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2141       RequiresNullCheck = true;
2142     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
2143       : ObjCTypes.getSendFn(IsSuper);
2144   }
2145 
2146   // We don't need to emit a null check to zero out an indirect result if the
2147   // result is ignored.
2148   if (Return.isUnused())
2149     RequiresNullCheck = false;
2150 
2151   // Emit a null-check if there's a consumed argument other than the receiver.
2152   if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) {
2153     for (const auto *ParamDecl : Method->parameters()) {
2154       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
2155         RequiresNullCheck = true;
2156         break;
2157       }
2158     }
2159   }
2160 
2161   NullReturnState nullReturn;
2162   if (RequiresNullCheck) {
2163     nullReturn.init(CGF, Arg0);
2164   }
2165 
2166   llvm::Instruction *CallSite;
2167   Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType);
2168   CGCallee Callee = CGCallee::forDirect(Fn);
2169   RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs,
2170                                &CallSite);
2171 
2172   // Mark the call as noreturn if the method is marked noreturn and the
2173   // receiver cannot be null.
2174   if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
2175     llvm::CallSite(CallSite).setDoesNotReturn();
2176   }
2177 
2178   return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs,
2179                              RequiresNullCheck ? Method : nullptr);
2180 }
2181 
2182 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
2183                                            bool pointee = false) {
2184   // Note that GC qualification applies recursively to C pointer types
2185   // that aren't otherwise decorated.  This is weird, but it's probably
2186   // an intentional workaround to the unreliable placement of GC qualifiers.
2187   if (FQT.isObjCGCStrong())
2188     return Qualifiers::Strong;
2189 
2190   if (FQT.isObjCGCWeak())
2191     return Qualifiers::Weak;
2192 
2193   if (auto ownership = FQT.getObjCLifetime()) {
2194     // Ownership does not apply recursively to C pointer types.
2195     if (pointee) return Qualifiers::GCNone;
2196     switch (ownership) {
2197     case Qualifiers::OCL_Weak: return Qualifiers::Weak;
2198     case Qualifiers::OCL_Strong: return Qualifiers::Strong;
2199     case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
2200     case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
2201     case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
2202     }
2203     llvm_unreachable("bad objc ownership");
2204   }
2205 
2206   // Treat unqualified retainable pointers as strong.
2207   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2208     return Qualifiers::Strong;
2209 
2210   // Walk into C pointer types, but only in GC.
2211   if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
2212     if (const PointerType *PT = FQT->getAs<PointerType>())
2213       return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
2214   }
2215 
2216   return Qualifiers::GCNone;
2217 }
2218 
2219 namespace {
2220   struct IvarInfo {
2221     CharUnits Offset;
2222     uint64_t SizeInWords;
2223     IvarInfo(CharUnits offset, uint64_t sizeInWords)
2224       : Offset(offset), SizeInWords(sizeInWords) {}
2225 
2226     // Allow sorting based on byte pos.
2227     bool operator<(const IvarInfo &other) const {
2228       return Offset < other.Offset;
2229     }
2230   };
2231 
2232   /// A helper class for building GC layout strings.
2233   class IvarLayoutBuilder {
2234     CodeGenModule &CGM;
2235 
2236     /// The start of the layout.  Offsets will be relative to this value,
2237     /// and entries less than this value will be silently discarded.
2238     CharUnits InstanceBegin;
2239 
2240     /// The end of the layout.  Offsets will never exceed this value.
2241     CharUnits InstanceEnd;
2242 
2243     /// Whether we're generating the strong layout or the weak layout.
2244     bool ForStrongLayout;
2245 
2246     /// Whether the offsets in IvarsInfo might be out-of-order.
2247     bool IsDisordered = false;
2248 
2249     llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2250 
2251   public:
2252     IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2253                       CharUnits instanceEnd, bool forStrongLayout)
2254       : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2255         ForStrongLayout(forStrongLayout) {
2256     }
2257 
2258     void visitRecord(const RecordType *RT, CharUnits offset);
2259 
2260     template <class Iterator, class GetOffsetFn>
2261     void visitAggregate(Iterator begin, Iterator end,
2262                         CharUnits aggrOffset,
2263                         const GetOffsetFn &getOffset);
2264 
2265     void visitField(const FieldDecl *field, CharUnits offset);
2266 
2267     /// Add the layout of a block implementation.
2268     void visitBlock(const CGBlockInfo &blockInfo);
2269 
2270     /// Is there any information for an interesting bitmap?
2271     bool hasBitmapData() const { return !IvarsInfo.empty(); }
2272 
2273     llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2274                                 llvm::SmallVectorImpl<unsigned char> &buffer);
2275 
2276     static void dump(ArrayRef<unsigned char> buffer) {
2277       const unsigned char *s = buffer.data();
2278       for (unsigned i = 0, e = buffer.size(); i < e; i++)
2279         if (!(s[i] & 0xf0))
2280           printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2281         else
2282           printf("0x%x%s",  s[i], s[i] != 0 ? ", " : "");
2283       printf("\n");
2284     }
2285   };
2286 } // end anonymous namespace
2287 
2288 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2289                                                 const CGBlockInfo &blockInfo) {
2290 
2291   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2292   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2293     return nullPtr;
2294 
2295   IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2296                             /*for strong layout*/ true);
2297 
2298   builder.visitBlock(blockInfo);
2299 
2300   if (!builder.hasBitmapData())
2301     return nullPtr;
2302 
2303   llvm::SmallVector<unsigned char, 32> buffer;
2304   llvm::Constant *C = builder.buildBitmap(*this, buffer);
2305   if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2306     printf("\n block variable layout for block: ");
2307     builder.dump(buffer);
2308   }
2309 
2310   return C;
2311 }
2312 
2313 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2314   // __isa is the first field in block descriptor and must assume by runtime's
2315   // convention that it is GC'able.
2316   IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2317 
2318   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2319 
2320   // Ignore the optional 'this' capture: C++ objects are not assumed
2321   // to be GC'ed.
2322 
2323   CharUnits lastFieldOffset;
2324 
2325   // Walk the captured variables.
2326   for (const auto &CI : blockDecl->captures()) {
2327     const VarDecl *variable = CI.getVariable();
2328     QualType type = variable->getType();
2329 
2330     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2331 
2332     // Ignore constant captures.
2333     if (capture.isConstant()) continue;
2334 
2335     CharUnits fieldOffset = capture.getOffset();
2336 
2337     // Block fields are not necessarily ordered; if we detect that we're
2338     // adding them out-of-order, make sure we sort later.
2339     if (fieldOffset < lastFieldOffset)
2340       IsDisordered = true;
2341     lastFieldOffset = fieldOffset;
2342 
2343     // __block variables are passed by their descriptor address.
2344     if (CI.isByRef()) {
2345       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2346       continue;
2347     }
2348 
2349     assert(!type->isArrayType() && "array variable should not be caught");
2350     if (const RecordType *record = type->getAs<RecordType>()) {
2351       visitRecord(record, fieldOffset);
2352       continue;
2353     }
2354 
2355     Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2356 
2357     if (GCAttr == Qualifiers::Strong) {
2358       assert(CGM.getContext().getTypeSize(type)
2359                 == CGM.getTarget().getPointerWidth(0));
2360       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2361     }
2362   }
2363 }
2364 
2365 /// getBlockCaptureLifetime - This routine returns life time of the captured
2366 /// block variable for the purpose of block layout meta-data generation. FQT is
2367 /// the type of the variable captured in the block.
2368 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2369                                                                   bool ByrefLayout) {
2370   // If it has an ownership qualifier, we're done.
2371   if (auto lifetime = FQT.getObjCLifetime())
2372     return lifetime;
2373 
2374   // If it doesn't, and this is ARC, it has no ownership.
2375   if (CGM.getLangOpts().ObjCAutoRefCount)
2376     return Qualifiers::OCL_None;
2377 
2378   // In MRC, retainable pointers are owned by non-__block variables.
2379   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2380     return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2381 
2382   return Qualifiers::OCL_None;
2383 }
2384 
2385 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2386                                              Qualifiers::ObjCLifetime LifeTime,
2387                                              CharUnits FieldOffset,
2388                                              CharUnits FieldSize) {
2389   // __block variables are passed by their descriptor address.
2390   if (IsByref)
2391     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2392                                         FieldSize));
2393   else if (LifeTime == Qualifiers::OCL_Strong)
2394     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2395                                         FieldSize));
2396   else if (LifeTime == Qualifiers::OCL_Weak)
2397     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2398                                         FieldSize));
2399   else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2400     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2401                                         FieldSize));
2402   else
2403     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2404                                         FieldOffset,
2405                                         FieldSize));
2406 }
2407 
2408 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2409                                           const RecordDecl *RD,
2410                                           ArrayRef<const FieldDecl*> RecFields,
2411                                           CharUnits BytePos, bool &HasUnion,
2412                                           bool ByrefLayout) {
2413   bool IsUnion = (RD && RD->isUnion());
2414   CharUnits MaxUnionSize = CharUnits::Zero();
2415   const FieldDecl *MaxField = nullptr;
2416   const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2417   CharUnits MaxFieldOffset = CharUnits::Zero();
2418   CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2419 
2420   if (RecFields.empty())
2421     return;
2422   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2423 
2424   for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2425     const FieldDecl *Field = RecFields[i];
2426     // Note that 'i' here is actually the field index inside RD of Field,
2427     // although this dependency is hidden.
2428     const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2429     CharUnits FieldOffset =
2430       CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2431 
2432     // Skip over unnamed or bitfields
2433     if (!Field->getIdentifier() || Field->isBitField()) {
2434       LastFieldBitfieldOrUnnamed = Field;
2435       LastBitfieldOrUnnamedOffset = FieldOffset;
2436       continue;
2437     }
2438 
2439     LastFieldBitfieldOrUnnamed = nullptr;
2440     QualType FQT = Field->getType();
2441     if (FQT->isRecordType() || FQT->isUnionType()) {
2442       if (FQT->isUnionType())
2443         HasUnion = true;
2444 
2445       BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
2446                                   BytePos + FieldOffset, HasUnion);
2447       continue;
2448     }
2449 
2450     if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2451       const ConstantArrayType *CArray =
2452         dyn_cast_or_null<ConstantArrayType>(Array);
2453       uint64_t ElCount = CArray->getSize().getZExtValue();
2454       assert(CArray && "only array with known element size is supported");
2455       FQT = CArray->getElementType();
2456       while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2457         const ConstantArrayType *CArray =
2458           dyn_cast_or_null<ConstantArrayType>(Array);
2459         ElCount *= CArray->getSize().getZExtValue();
2460         FQT = CArray->getElementType();
2461       }
2462       if (FQT->isRecordType() && ElCount) {
2463         int OldIndex = RunSkipBlockVars.size() - 1;
2464         const RecordType *RT = FQT->getAs<RecordType>();
2465         BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset,
2466                                     HasUnion);
2467 
2468         // Replicate layout information for each array element. Note that
2469         // one element is already done.
2470         uint64_t ElIx = 1;
2471         for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2472           CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2473           for (int i = OldIndex+1; i <= FirstIndex; ++i)
2474             RunSkipBlockVars.push_back(
2475               RUN_SKIP(RunSkipBlockVars[i].opcode,
2476               RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2477               RunSkipBlockVars[i].block_var_size));
2478         }
2479         continue;
2480       }
2481     }
2482     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2483     if (IsUnion) {
2484       CharUnits UnionIvarSize = FieldSize;
2485       if (UnionIvarSize > MaxUnionSize) {
2486         MaxUnionSize = UnionIvarSize;
2487         MaxField = Field;
2488         MaxFieldOffset = FieldOffset;
2489       }
2490     } else {
2491       UpdateRunSkipBlockVars(false,
2492                              getBlockCaptureLifetime(FQT, ByrefLayout),
2493                              BytePos + FieldOffset,
2494                              FieldSize);
2495     }
2496   }
2497 
2498   if (LastFieldBitfieldOrUnnamed) {
2499     if (LastFieldBitfieldOrUnnamed->isBitField()) {
2500       // Last field was a bitfield. Must update the info.
2501       uint64_t BitFieldSize
2502         = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2503       unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2504                         ((BitFieldSize % ByteSizeInBits) != 0);
2505       CharUnits Size = CharUnits::fromQuantity(UnsSize);
2506       Size += LastBitfieldOrUnnamedOffset;
2507       UpdateRunSkipBlockVars(false,
2508                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2509                                                      ByrefLayout),
2510                              BytePos + LastBitfieldOrUnnamedOffset,
2511                              Size);
2512     } else {
2513       assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2514       // Last field was unnamed. Must update skip info.
2515       CharUnits FieldSize
2516         = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2517       UpdateRunSkipBlockVars(false,
2518                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2519                                                      ByrefLayout),
2520                              BytePos + LastBitfieldOrUnnamedOffset,
2521                              FieldSize);
2522     }
2523   }
2524 
2525   if (MaxField)
2526     UpdateRunSkipBlockVars(false,
2527                            getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2528                            BytePos + MaxFieldOffset,
2529                            MaxUnionSize);
2530 }
2531 
2532 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2533                                                   CharUnits BytePos,
2534                                                   bool &HasUnion,
2535                                                   bool ByrefLayout) {
2536   const RecordDecl *RD = RT->getDecl();
2537   SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2538   llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2539   const llvm::StructLayout *RecLayout =
2540     CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2541 
2542   BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2543 }
2544 
2545 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2546 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2547 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2548 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2549 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2550 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2551 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2552 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2553 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
2554 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2555                                     SmallVectorImpl<unsigned char> &Layout) {
2556   uint64_t Result = 0;
2557   if (Layout.size() <= 3) {
2558     unsigned size = Layout.size();
2559     unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2560     unsigned char inst;
2561     enum BLOCK_LAYOUT_OPCODE opcode ;
2562     switch (size) {
2563       case 3:
2564         inst = Layout[0];
2565         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2566         if (opcode == BLOCK_LAYOUT_STRONG)
2567           strong_word_count = (inst & 0xF)+1;
2568         else
2569           return 0;
2570         inst = Layout[1];
2571         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2572         if (opcode == BLOCK_LAYOUT_BYREF)
2573           byref_word_count = (inst & 0xF)+1;
2574         else
2575           return 0;
2576         inst = Layout[2];
2577         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2578         if (opcode == BLOCK_LAYOUT_WEAK)
2579           weak_word_count = (inst & 0xF)+1;
2580         else
2581           return 0;
2582         break;
2583 
2584       case 2:
2585         inst = Layout[0];
2586         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2587         if (opcode == BLOCK_LAYOUT_STRONG) {
2588           strong_word_count = (inst & 0xF)+1;
2589           inst = Layout[1];
2590           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2591           if (opcode == BLOCK_LAYOUT_BYREF)
2592             byref_word_count = (inst & 0xF)+1;
2593           else if (opcode == BLOCK_LAYOUT_WEAK)
2594             weak_word_count = (inst & 0xF)+1;
2595           else
2596             return 0;
2597         }
2598         else if (opcode == BLOCK_LAYOUT_BYREF) {
2599           byref_word_count = (inst & 0xF)+1;
2600           inst = Layout[1];
2601           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2602           if (opcode == BLOCK_LAYOUT_WEAK)
2603             weak_word_count = (inst & 0xF)+1;
2604           else
2605             return 0;
2606         }
2607         else
2608           return 0;
2609         break;
2610 
2611       case 1:
2612         inst = Layout[0];
2613         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2614         if (opcode == BLOCK_LAYOUT_STRONG)
2615           strong_word_count = (inst & 0xF)+1;
2616         else if (opcode == BLOCK_LAYOUT_BYREF)
2617           byref_word_count = (inst & 0xF)+1;
2618         else if (opcode == BLOCK_LAYOUT_WEAK)
2619           weak_word_count = (inst & 0xF)+1;
2620         else
2621           return 0;
2622         break;
2623 
2624       default:
2625         return 0;
2626     }
2627 
2628     // Cannot inline when any of the word counts is 15. Because this is one less
2629     // than the actual work count (so 15 means 16 actual word counts),
2630     // and we can only display 0 thru 15 word counts.
2631     if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2632       return 0;
2633 
2634     unsigned count =
2635       (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2636 
2637     if (size == count) {
2638       if (strong_word_count)
2639         Result = strong_word_count;
2640       Result <<= 4;
2641       if (byref_word_count)
2642         Result += byref_word_count;
2643       Result <<= 4;
2644       if (weak_word_count)
2645         Result += weak_word_count;
2646     }
2647   }
2648   return Result;
2649 }
2650 
2651 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2652   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2653   if (RunSkipBlockVars.empty())
2654     return nullPtr;
2655   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2656   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2657   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2658 
2659   // Sort on byte position; captures might not be allocated in order,
2660   // and unions can do funny things.
2661   llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2662   SmallVector<unsigned char, 16> Layout;
2663 
2664   unsigned size = RunSkipBlockVars.size();
2665   for (unsigned i = 0; i < size; i++) {
2666     enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2667     CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2668     CharUnits end_byte_pos = start_byte_pos;
2669     unsigned j = i+1;
2670     while (j < size) {
2671       if (opcode == RunSkipBlockVars[j].opcode) {
2672         end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2673         i++;
2674       }
2675       else
2676         break;
2677     }
2678     CharUnits size_in_bytes =
2679     end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2680     if (j < size) {
2681       CharUnits gap =
2682       RunSkipBlockVars[j].block_var_bytepos -
2683       RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2684       size_in_bytes += gap;
2685     }
2686     CharUnits residue_in_bytes = CharUnits::Zero();
2687     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2688       residue_in_bytes = size_in_bytes % WordSizeInBytes;
2689       size_in_bytes -= residue_in_bytes;
2690       opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2691     }
2692 
2693     unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2694     while (size_in_words >= 16) {
2695       // Note that value in imm. is one less that the actual
2696       // value. So, 0xf means 16 words follow!
2697       unsigned char inst = (opcode << 4) | 0xf;
2698       Layout.push_back(inst);
2699       size_in_words -= 16;
2700     }
2701     if (size_in_words > 0) {
2702       // Note that value in imm. is one less that the actual
2703       // value. So, we subtract 1 away!
2704       unsigned char inst = (opcode << 4) | (size_in_words-1);
2705       Layout.push_back(inst);
2706     }
2707     if (residue_in_bytes > CharUnits::Zero()) {
2708       unsigned char inst =
2709       (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2710       Layout.push_back(inst);
2711     }
2712   }
2713 
2714   while (!Layout.empty()) {
2715     unsigned char inst = Layout.back();
2716     enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2717     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2718       Layout.pop_back();
2719     else
2720       break;
2721   }
2722 
2723   uint64_t Result = InlineLayoutInstruction(Layout);
2724   if (Result != 0) {
2725     // Block variable layout instruction has been inlined.
2726     if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2727       if (ComputeByrefLayout)
2728         printf("\n Inline BYREF variable layout: ");
2729       else
2730         printf("\n Inline block variable layout: ");
2731       printf("0x0%" PRIx64 "", Result);
2732       if (auto numStrong = (Result & 0xF00) >> 8)
2733         printf(", BL_STRONG:%d", (int) numStrong);
2734       if (auto numByref = (Result & 0x0F0) >> 4)
2735         printf(", BL_BYREF:%d", (int) numByref);
2736       if (auto numWeak = (Result & 0x00F) >> 0)
2737         printf(", BL_WEAK:%d", (int) numWeak);
2738       printf(", BL_OPERATOR:0\n");
2739     }
2740     return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2741   }
2742 
2743   unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2744   Layout.push_back(inst);
2745   std::string BitMap;
2746   for (unsigned i = 0, e = Layout.size(); i != e; i++)
2747     BitMap += Layout[i];
2748 
2749   if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2750     if (ComputeByrefLayout)
2751       printf("\n Byref variable layout: ");
2752     else
2753       printf("\n Block variable layout: ");
2754     for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2755       unsigned char inst = BitMap[i];
2756       enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2757       unsigned delta = 1;
2758       switch (opcode) {
2759         case BLOCK_LAYOUT_OPERATOR:
2760           printf("BL_OPERATOR:");
2761           delta = 0;
2762           break;
2763         case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2764           printf("BL_NON_OBJECT_BYTES:");
2765           break;
2766         case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2767           printf("BL_NON_OBJECT_WORD:");
2768           break;
2769         case BLOCK_LAYOUT_STRONG:
2770           printf("BL_STRONG:");
2771           break;
2772         case BLOCK_LAYOUT_BYREF:
2773           printf("BL_BYREF:");
2774           break;
2775         case BLOCK_LAYOUT_WEAK:
2776           printf("BL_WEAK:");
2777           break;
2778         case BLOCK_LAYOUT_UNRETAINED:
2779           printf("BL_UNRETAINED:");
2780           break;
2781       }
2782       // Actual value of word count is one more that what is in the imm.
2783       // field of the instruction
2784       printf("%d", (inst & 0xf) + delta);
2785       if (i < e-1)
2786         printf(", ");
2787       else
2788         printf("\n");
2789     }
2790   }
2791 
2792   auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName,
2793                                      /*ForceNonFragileABI=*/true,
2794                                      /*NullTerminate=*/false);
2795   return getConstantGEP(VMContext, Entry, 0, 0);
2796 }
2797 
2798 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2799                                                     const CGBlockInfo &blockInfo) {
2800   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2801 
2802   RunSkipBlockVars.clear();
2803   bool hasUnion = false;
2804 
2805   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2806   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2807   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2808 
2809   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2810 
2811   // Calculate the basic layout of the block structure.
2812   const llvm::StructLayout *layout =
2813   CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2814 
2815   // Ignore the optional 'this' capture: C++ objects are not assumed
2816   // to be GC'ed.
2817   if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2818     UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2819                            blockInfo.BlockHeaderForcedGapOffset,
2820                            blockInfo.BlockHeaderForcedGapSize);
2821   // Walk the captured variables.
2822   for (const auto &CI : blockDecl->captures()) {
2823     const VarDecl *variable = CI.getVariable();
2824     QualType type = variable->getType();
2825 
2826     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2827 
2828     // Ignore constant captures.
2829     if (capture.isConstant()) continue;
2830 
2831     CharUnits fieldOffset =
2832        CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2833 
2834     assert(!type->isArrayType() && "array variable should not be caught");
2835     if (!CI.isByRef())
2836       if (const RecordType *record = type->getAs<RecordType>()) {
2837         BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2838         continue;
2839       }
2840     CharUnits fieldSize;
2841     if (CI.isByRef())
2842       fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2843     else
2844       fieldSize = CGM.getContext().getTypeSizeInChars(type);
2845     UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2846                            fieldOffset, fieldSize);
2847   }
2848   return getBitmapBlockLayout(false);
2849 }
2850 
2851 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2852                                                   QualType T) {
2853   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2854   assert(!T->isArrayType() && "__block array variable should not be caught");
2855   CharUnits fieldOffset;
2856   RunSkipBlockVars.clear();
2857   bool hasUnion = false;
2858   if (const RecordType *record = T->getAs<RecordType>()) {
2859     BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2860     llvm::Constant *Result = getBitmapBlockLayout(true);
2861     if (isa<llvm::ConstantInt>(Result))
2862       Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2863     return Result;
2864   }
2865   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2866   return nullPtr;
2867 }
2868 
2869 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2870                                             const ObjCProtocolDecl *PD) {
2871   // FIXME: I don't understand why gcc generates this, or where it is
2872   // resolved. Investigate. Its also wasteful to look this up over and over.
2873   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2874 
2875   return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2876                                         ObjCTypes.getExternalProtocolPtrTy());
2877 }
2878 
2879 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2880   // FIXME: We shouldn't need this, the protocol decl should contain enough
2881   // information to tell us whether this was a declaration or a definition.
2882   DefinedProtocols.insert(PD->getIdentifier());
2883 
2884   // If we have generated a forward reference to this protocol, emit
2885   // it now. Otherwise do nothing, the protocol objects are lazily
2886   // emitted.
2887   if (Protocols.count(PD->getIdentifier()))
2888     GetOrEmitProtocol(PD);
2889 }
2890 
2891 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2892   if (DefinedProtocols.count(PD->getIdentifier()))
2893     return GetOrEmitProtocol(PD);
2894 
2895   return GetOrEmitProtocolRef(PD);
2896 }
2897 
2898 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2899                CodeGenFunction &CGF,
2900                const ObjCInterfaceDecl *ID,
2901                ObjCCommonTypesHelper &ObjCTypes) {
2902   llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn();
2903 
2904   llvm::Value *className =
2905       CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString())
2906         .getPointer();
2907   ASTContext &ctx = CGF.CGM.getContext();
2908   className =
2909       CGF.Builder.CreateBitCast(className,
2910                                 CGF.ConvertType(
2911                                   ctx.getPointerType(ctx.CharTy.withConst())));
2912   llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className);
2913   call->setDoesNotThrow();
2914   return call;
2915 }
2916 
2917 /*
2918 // Objective-C 1.0 extensions
2919 struct _objc_protocol {
2920 struct _objc_protocol_extension *isa;
2921 char *protocol_name;
2922 struct _objc_protocol_list *protocol_list;
2923 struct _objc__method_prototype_list *instance_methods;
2924 struct _objc__method_prototype_list *class_methods
2925 };
2926 
2927 See EmitProtocolExtension().
2928 */
2929 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
2930   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
2931 
2932   // Early exit if a defining object has already been generated.
2933   if (Entry && Entry->hasInitializer())
2934     return Entry;
2935 
2936   // Use the protocol definition, if there is one.
2937   if (const ObjCProtocolDecl *Def = PD->getDefinition())
2938     PD = Def;
2939 
2940   // FIXME: I don't understand why gcc generates this, or where it is
2941   // resolved. Investigate. Its also wasteful to look this up over and over.
2942   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2943 
2944   // Construct method lists.
2945   auto methodLists = ProtocolMethodLists::get(PD);
2946 
2947   ConstantInitBuilder builder(CGM);
2948   auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
2949   values.add(EmitProtocolExtension(PD, methodLists));
2950   values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
2951   values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
2952                               PD->protocol_begin(), PD->protocol_end()));
2953   values.add(methodLists.emitMethodList(this, PD,
2954                               ProtocolMethodLists::RequiredInstanceMethods));
2955   values.add(methodLists.emitMethodList(this, PD,
2956                               ProtocolMethodLists::RequiredClassMethods));
2957 
2958   if (Entry) {
2959     // Already created, update the initializer.
2960     assert(Entry->hasPrivateLinkage());
2961     values.finishAndSetAsInitializer(Entry);
2962   } else {
2963     Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(),
2964                                          CGM.getPointerAlign(),
2965                                          /*constant*/ false,
2966                                          llvm::GlobalValue::PrivateLinkage);
2967     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2968 
2969     Protocols[PD->getIdentifier()] = Entry;
2970   }
2971   CGM.addCompilerUsedGlobal(Entry);
2972 
2973   return Entry;
2974 }
2975 
2976 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
2977   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
2978 
2979   if (!Entry) {
2980     // We use the initializer as a marker of whether this is a forward
2981     // reference or not. At module finalization we add the empty
2982     // contents for protocols which were referenced but never defined.
2983     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2984                                      false, llvm::GlobalValue::PrivateLinkage,
2985                                      nullptr, "OBJC_PROTOCOL_" + PD->getName());
2986     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2987     // FIXME: Is this necessary? Why only for protocol?
2988     Entry->setAlignment(4);
2989   }
2990 
2991   return Entry;
2992 }
2993 
2994 /*
2995   struct _objc_protocol_extension {
2996   uint32_t size;
2997   struct objc_method_description_list *optional_instance_methods;
2998   struct objc_method_description_list *optional_class_methods;
2999   struct objc_property_list *instance_properties;
3000   const char ** extendedMethodTypes;
3001   struct objc_property_list *class_properties;
3002   };
3003 */
3004 llvm::Constant *
3005 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
3006                                  const ProtocolMethodLists &methodLists) {
3007   auto optInstanceMethods =
3008     methodLists.emitMethodList(this, PD,
3009                                ProtocolMethodLists::OptionalInstanceMethods);
3010   auto optClassMethods =
3011     methodLists.emitMethodList(this, PD,
3012                                ProtocolMethodLists::OptionalClassMethods);
3013 
3014   auto extendedMethodTypes =
3015     EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
3016                             methodLists.emitExtendedTypesArray(this),
3017                             ObjCTypes);
3018 
3019   auto instanceProperties =
3020     EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
3021                      ObjCTypes, false);
3022   auto classProperties =
3023     EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
3024                      PD, ObjCTypes, true);
3025 
3026   // Return null if no extension bits are used.
3027   if (optInstanceMethods->isNullValue() &&
3028       optClassMethods->isNullValue() &&
3029       extendedMethodTypes->isNullValue() &&
3030       instanceProperties->isNullValue() &&
3031       classProperties->isNullValue()) {
3032     return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
3033   }
3034 
3035   uint64_t size =
3036     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
3037 
3038   ConstantInitBuilder builder(CGM);
3039   auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy);
3040   values.addInt(ObjCTypes.IntTy, size);
3041   values.add(optInstanceMethods);
3042   values.add(optClassMethods);
3043   values.add(instanceProperties);
3044   values.add(extendedMethodTypes);
3045   values.add(classProperties);
3046 
3047   // No special section, but goes in llvm.used
3048   return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), values,
3049                            StringRef(), CGM.getPointerAlign(), true);
3050 }
3051 
3052 /*
3053   struct objc_protocol_list {
3054     struct objc_protocol_list *next;
3055     long count;
3056     Protocol *list[];
3057   };
3058 */
3059 llvm::Constant *
3060 CGObjCMac::EmitProtocolList(Twine name,
3061                             ObjCProtocolDecl::protocol_iterator begin,
3062                             ObjCProtocolDecl::protocol_iterator end) {
3063   // Just return null for empty protocol lists
3064   if (begin == end)
3065     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3066 
3067   ConstantInitBuilder builder(CGM);
3068   auto values = builder.beginStruct();
3069 
3070   // This field is only used by the runtime.
3071   values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3072 
3073   // Reserve a slot for the count.
3074   auto countSlot = values.addPlaceholder();
3075 
3076   auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy);
3077   for (; begin != end; ++begin) {
3078     refsArray.add(GetProtocolRef(*begin));
3079   }
3080   auto count = refsArray.size();
3081 
3082   // This list is null terminated.
3083   refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy);
3084 
3085   refsArray.finishAndAddTo(values);
3086   values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
3087 
3088   StringRef section;
3089   if (CGM.getTriple().isOSBinFormatMachO())
3090     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3091 
3092   llvm::GlobalVariable *GV =
3093       CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false);
3094   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
3095 }
3096 
3097 static void
3098 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
3099                        SmallVectorImpl<const ObjCPropertyDecl *> &Properties,
3100                        const ObjCProtocolDecl *Proto,
3101                        bool IsClassProperty) {
3102   for (const auto *P : Proto->protocols())
3103     PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3104 
3105   for (const auto *PD : Proto->properties()) {
3106     if (IsClassProperty != PD->isClassProperty())
3107       continue;
3108     if (!PropertySet.insert(PD->getIdentifier()).second)
3109       continue;
3110     Properties.push_back(PD);
3111   }
3112 }
3113 
3114 /*
3115   struct _objc_property {
3116     const char * const name;
3117     const char * const attributes;
3118   };
3119 
3120   struct _objc_property_list {
3121     uint32_t entsize; // sizeof (struct _objc_property)
3122     uint32_t prop_count;
3123     struct _objc_property[prop_count];
3124   };
3125 */
3126 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
3127                                        const Decl *Container,
3128                                        const ObjCContainerDecl *OCD,
3129                                        const ObjCCommonTypesHelper &ObjCTypes,
3130                                        bool IsClassProperty) {
3131   if (IsClassProperty) {
3132     // Make this entry NULL for OS X with deployment target < 10.11, for iOS
3133     // with deployment target < 9.0.
3134     const llvm::Triple &Triple = CGM.getTarget().getTriple();
3135     if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) ||
3136         (Triple.isiOS() && Triple.isOSVersionLT(9)))
3137       return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3138   }
3139 
3140   SmallVector<const ObjCPropertyDecl *, 16> Properties;
3141   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3142 
3143   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3144     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3145       for (auto *PD : ClassExt->properties()) {
3146         if (IsClassProperty != PD->isClassProperty())
3147           continue;
3148         PropertySet.insert(PD->getIdentifier());
3149         Properties.push_back(PD);
3150       }
3151 
3152   for (const auto *PD : OCD->properties()) {
3153     if (IsClassProperty != PD->isClassProperty())
3154       continue;
3155     // Don't emit duplicate metadata for properties that were already in a
3156     // class extension.
3157     if (!PropertySet.insert(PD->getIdentifier()).second)
3158       continue;
3159     Properties.push_back(PD);
3160   }
3161 
3162   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
3163     for (const auto *P : OID->all_referenced_protocols())
3164       PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3165   }
3166   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
3167     for (const auto *P : CD->protocols())
3168       PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3169   }
3170 
3171   // Return null for empty list.
3172   if (Properties.empty())
3173     return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3174 
3175   unsigned propertySize =
3176     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
3177 
3178   ConstantInitBuilder builder(CGM);
3179   auto values = builder.beginStruct();
3180   values.addInt(ObjCTypes.IntTy, propertySize);
3181   values.addInt(ObjCTypes.IntTy, Properties.size());
3182   auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy);
3183   for (auto PD : Properties) {
3184     auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy);
3185     property.add(GetPropertyName(PD->getIdentifier()));
3186     property.add(GetPropertyTypeString(PD, Container));
3187     property.finishAndAddTo(propertiesArray);
3188   }
3189   propertiesArray.finishAndAddTo(values);
3190 
3191   StringRef Section;
3192   if (CGM.getTriple().isOSBinFormatMachO())
3193     Section = (ObjCABI == 2) ? "__DATA, __objc_const"
3194                              : "__OBJC,__property,regular,no_dead_strip";
3195 
3196   llvm::GlobalVariable *GV =
3197       CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3198   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
3199 }
3200 
3201 llvm::Constant *
3202 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3203                                          ArrayRef<llvm::Constant*> MethodTypes,
3204                                          const ObjCCommonTypesHelper &ObjCTypes) {
3205   // Return null for empty list.
3206   if (MethodTypes.empty())
3207     return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
3208 
3209   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
3210                                              MethodTypes.size());
3211   llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
3212 
3213   StringRef Section;
3214   if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2)
3215     Section = "__DATA, __objc_const";
3216 
3217   llvm::GlobalVariable *GV =
3218       CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3219   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
3220 }
3221 
3222 /*
3223   struct _objc_category {
3224   char *category_name;
3225   char *class_name;
3226   struct _objc_method_list *instance_methods;
3227   struct _objc_method_list *class_methods;
3228   struct _objc_protocol_list *protocols;
3229   uint32_t size; // <rdar://4585769>
3230   struct _objc_property_list *instance_properties;
3231   struct _objc_property_list *class_properties;
3232   };
3233 */
3234 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3235   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3236 
3237   // FIXME: This is poor design, the OCD should have a pointer to the category
3238   // decl. Additionally, note that Category can be null for the @implementation
3239   // w/o an @interface case. Sema should just create one for us as it does for
3240   // @implementation so everyone else can live life under a clear blue sky.
3241   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3242   const ObjCCategoryDecl *Category =
3243     Interface->FindCategoryDeclaration(OCD->getIdentifier());
3244 
3245   SmallString<256> ExtName;
3246   llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3247                                      << OCD->getName();
3248 
3249   ConstantInitBuilder Builder(CGM);
3250   auto Values = Builder.beginStruct(ObjCTypes.CategoryTy);
3251 
3252   enum {
3253     InstanceMethods,
3254     ClassMethods,
3255     NumMethodLists
3256   };
3257   SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3258   for (const auto *MD : OCD->methods()) {
3259     Methods[unsigned(MD->isClassMethod())].push_back(MD);
3260   }
3261 
3262   Values.add(GetClassName(OCD->getName()));
3263   Values.add(GetClassName(Interface->getObjCRuntimeNameAsString()));
3264   LazySymbols.insert(Interface->getIdentifier());
3265 
3266   Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods,
3267                             Methods[InstanceMethods]));
3268   Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods,
3269                             Methods[ClassMethods]));
3270   if (Category) {
3271     Values.add(
3272         EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3273                          Category->protocol_begin(), Category->protocol_end()));
3274   } else {
3275     Values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3276   }
3277   Values.addInt(ObjCTypes.IntTy, Size);
3278 
3279   // If there is no category @interface then there can be no properties.
3280   if (Category) {
3281     Values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
3282                                 OCD, Category, ObjCTypes, false));
3283     Values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3284                                 OCD, Category, ObjCTypes, true));
3285   } else {
3286     Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3287     Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3288   }
3289 
3290   llvm::GlobalVariable *GV =
3291       CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values,
3292                         "__OBJC,__category,regular,no_dead_strip",
3293                         CGM.getPointerAlign(), true);
3294   DefinedCategories.push_back(GV);
3295   DefinedCategoryNames.insert(llvm::CachedHashString(ExtName));
3296   // method definition entries must be clear for next implementation.
3297   MethodDefinitions.clear();
3298 }
3299 
3300 enum FragileClassFlags {
3301   /// Apparently: is not a meta-class.
3302   FragileABI_Class_Factory                 = 0x00001,
3303 
3304   /// Is a meta-class.
3305   FragileABI_Class_Meta                    = 0x00002,
3306 
3307   /// Has a non-trivial constructor or destructor.
3308   FragileABI_Class_HasCXXStructors         = 0x02000,
3309 
3310   /// Has hidden visibility.
3311   FragileABI_Class_Hidden                  = 0x20000,
3312 
3313   /// Class implementation was compiled under ARC.
3314   FragileABI_Class_CompiledByARC           = 0x04000000,
3315 
3316   /// Class implementation was compiled under MRC and has MRC weak ivars.
3317   /// Exclusive with CompiledByARC.
3318   FragileABI_Class_HasMRCWeakIvars         = 0x08000000,
3319 };
3320 
3321 enum NonFragileClassFlags {
3322   /// Is a meta-class.
3323   NonFragileABI_Class_Meta                 = 0x00001,
3324 
3325   /// Is a root class.
3326   NonFragileABI_Class_Root                 = 0x00002,
3327 
3328   /// Has a non-trivial constructor or destructor.
3329   NonFragileABI_Class_HasCXXStructors      = 0x00004,
3330 
3331   /// Has hidden visibility.
3332   NonFragileABI_Class_Hidden               = 0x00010,
3333 
3334   /// Has the exception attribute.
3335   NonFragileABI_Class_Exception            = 0x00020,
3336 
3337   /// (Obsolete) ARC-specific: this class has a .release_ivars method
3338   NonFragileABI_Class_HasIvarReleaser      = 0x00040,
3339 
3340   /// Class implementation was compiled under ARC.
3341   NonFragileABI_Class_CompiledByARC        = 0x00080,
3342 
3343   /// Class has non-trivial destructors, but zero-initialization is okay.
3344   NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3345 
3346   /// Class implementation was compiled under MRC and has MRC weak ivars.
3347   /// Exclusive with CompiledByARC.
3348   NonFragileABI_Class_HasMRCWeakIvars      = 0x00200,
3349 };
3350 
3351 static bool hasWeakMember(QualType type) {
3352   if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3353     return true;
3354   }
3355 
3356   if (auto recType = type->getAs<RecordType>()) {
3357     for (auto field : recType->getDecl()->fields()) {
3358       if (hasWeakMember(field->getType()))
3359         return true;
3360     }
3361   }
3362 
3363   return false;
3364 }
3365 
3366 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3367 /// (and actually fill in a layout string) if we really do have any
3368 /// __weak ivars.
3369 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3370                             const ObjCImplementationDecl *ID) {
3371   if (!CGM.getLangOpts().ObjCWeak) return false;
3372   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3373 
3374   for (const ObjCIvarDecl *ivar =
3375          ID->getClassInterface()->all_declared_ivar_begin();
3376        ivar; ivar = ivar->getNextIvar()) {
3377     if (hasWeakMember(ivar->getType()))
3378       return true;
3379   }
3380 
3381   return false;
3382 }
3383 
3384 /*
3385   struct _objc_class {
3386   Class isa;
3387   Class super_class;
3388   const char *name;
3389   long version;
3390   long info;
3391   long instance_size;
3392   struct _objc_ivar_list *ivars;
3393   struct _objc_method_list *methods;
3394   struct _objc_cache *cache;
3395   struct _objc_protocol_list *protocols;
3396   // Objective-C 1.0 extensions (<rdr://4585769>)
3397   const char *ivar_layout;
3398   struct _objc_class_ext *ext;
3399   };
3400 
3401   See EmitClassExtension();
3402 */
3403 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3404   DefinedSymbols.insert(ID->getIdentifier());
3405 
3406   std::string ClassName = ID->getNameAsString();
3407   // FIXME: Gross
3408   ObjCInterfaceDecl *Interface =
3409     const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3410   llvm::Constant *Protocols =
3411       EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3412                        Interface->all_referenced_protocol_begin(),
3413                        Interface->all_referenced_protocol_end());
3414   unsigned Flags = FragileABI_Class_Factory;
3415   if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3416     Flags |= FragileABI_Class_HasCXXStructors;
3417 
3418   bool hasMRCWeak = false;
3419 
3420   if (CGM.getLangOpts().ObjCAutoRefCount)
3421     Flags |= FragileABI_Class_CompiledByARC;
3422   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3423     Flags |= FragileABI_Class_HasMRCWeakIvars;
3424 
3425   CharUnits Size =
3426     CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3427 
3428   // FIXME: Set CXX-structors flag.
3429   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3430     Flags |= FragileABI_Class_Hidden;
3431 
3432   enum {
3433     InstanceMethods,
3434     ClassMethods,
3435     NumMethodLists
3436   };
3437   SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3438   for (const auto *MD : ID->methods()) {
3439     Methods[unsigned(MD->isClassMethod())].push_back(MD);
3440   }
3441 
3442   for (const auto *PID : ID->property_impls()) {
3443     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3444       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3445 
3446       if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
3447         if (GetMethodDefinition(MD))
3448           Methods[InstanceMethods].push_back(MD);
3449       if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
3450         if (GetMethodDefinition(MD))
3451           Methods[InstanceMethods].push_back(MD);
3452     }
3453   }
3454 
3455   ConstantInitBuilder builder(CGM);
3456   auto values = builder.beginStruct(ObjCTypes.ClassTy);
3457   values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods]));
3458   if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3459     // Record a reference to the super class.
3460     LazySymbols.insert(Super->getIdentifier());
3461 
3462     values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3463                       ObjCTypes.ClassPtrTy);
3464   } else {
3465     values.addNullPointer(ObjCTypes.ClassPtrTy);
3466   }
3467   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3468   // Version is always 0.
3469   values.addInt(ObjCTypes.LongTy, 0);
3470   values.addInt(ObjCTypes.LongTy, Flags);
3471   values.addInt(ObjCTypes.LongTy, Size.getQuantity());
3472   values.add(EmitIvarList(ID, false));
3473   values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods,
3474                             Methods[InstanceMethods]));
3475   // cache is always NULL.
3476   values.addNullPointer(ObjCTypes.CachePtrTy);
3477   values.add(Protocols);
3478   values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size));
3479   values.add(EmitClassExtension(ID, Size, hasMRCWeak,
3480                                 /*isMetaclass*/ false));
3481 
3482   std::string Name("OBJC_CLASS_");
3483   Name += ClassName;
3484   const char *Section = "__OBJC,__class,regular,no_dead_strip";
3485   // Check for a forward reference.
3486   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3487   if (GV) {
3488     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3489            "Forward metaclass reference has incorrect type.");
3490     values.finishAndSetAsInitializer(GV);
3491     GV->setSection(Section);
3492     GV->setAlignment(CGM.getPointerAlign().getQuantity());
3493     CGM.addCompilerUsedGlobal(GV);
3494   } else
3495     GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3496   DefinedClasses.push_back(GV);
3497   ImplementedClasses.push_back(Interface);
3498   // method definition entries must be clear for next implementation.
3499   MethodDefinitions.clear();
3500 }
3501 
3502 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3503                                          llvm::Constant *Protocols,
3504                                 ArrayRef<const ObjCMethodDecl*> Methods) {
3505   unsigned Flags = FragileABI_Class_Meta;
3506   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3507 
3508   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3509     Flags |= FragileABI_Class_Hidden;
3510 
3511   ConstantInitBuilder builder(CGM);
3512   auto values = builder.beginStruct(ObjCTypes.ClassTy);
3513   // The isa for the metaclass is the root of the hierarchy.
3514   const ObjCInterfaceDecl *Root = ID->getClassInterface();
3515   while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3516     Root = Super;
3517   values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3518                     ObjCTypes.ClassPtrTy);
3519   // The super class for the metaclass is emitted as the name of the
3520   // super class. The runtime fixes this up to point to the
3521   // *metaclass* for the super class.
3522   if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3523     values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3524                       ObjCTypes.ClassPtrTy);
3525   } else {
3526     values.addNullPointer(ObjCTypes.ClassPtrTy);
3527   }
3528   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3529   // Version is always 0.
3530   values.addInt(ObjCTypes.LongTy, 0);
3531   values.addInt(ObjCTypes.LongTy, Flags);
3532   values.addInt(ObjCTypes.LongTy, Size);
3533   values.add(EmitIvarList(ID, true));
3534   values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods,
3535                             Methods));
3536   // cache is always NULL.
3537   values.addNullPointer(ObjCTypes.CachePtrTy);
3538   values.add(Protocols);
3539   // ivar_layout for metaclass is always NULL.
3540   values.addNullPointer(ObjCTypes.Int8PtrTy);
3541   // The class extension is used to store class properties for metaclasses.
3542   values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/,
3543                                 /*isMetaclass*/true));
3544 
3545   std::string Name("OBJC_METACLASS_");
3546   Name += ID->getName();
3547 
3548   // Check for a forward reference.
3549   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3550   if (GV) {
3551     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3552            "Forward metaclass reference has incorrect type.");
3553     values.finishAndSetAsInitializer(GV);
3554   } else {
3555     GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
3556                                       /*constant*/ false,
3557                                       llvm::GlobalValue::PrivateLinkage);
3558   }
3559   GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3560   CGM.addCompilerUsedGlobal(GV);
3561 
3562   return GV;
3563 }
3564 
3565 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3566   std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3567 
3568   // FIXME: Should we look these up somewhere other than the module. Its a bit
3569   // silly since we only generate these while processing an implementation, so
3570   // exactly one pointer would work if know when we entered/exitted an
3571   // implementation block.
3572 
3573   // Check for an existing forward reference.
3574   // Previously, metaclass with internal linkage may have been defined.
3575   // pass 'true' as 2nd argument so it is returned.
3576   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3577   if (!GV)
3578     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3579                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3580                                   Name);
3581 
3582   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3583          "Forward metaclass reference has incorrect type.");
3584   return GV;
3585 }
3586 
3587 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3588   std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3589   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3590 
3591   if (!GV)
3592     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3593                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3594                                   Name);
3595 
3596   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3597          "Forward class metadata reference has incorrect type.");
3598   return GV;
3599 }
3600 
3601 /*
3602   Emit a "class extension", which in this specific context means extra
3603   data that doesn't fit in the normal fragile-ABI class structure, and
3604   has nothing to do with the language concept of a class extension.
3605 
3606   struct objc_class_ext {
3607   uint32_t size;
3608   const char *weak_ivar_layout;
3609   struct _objc_property_list *properties;
3610   };
3611 */
3612 llvm::Constant *
3613 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3614                               CharUnits InstanceSize, bool hasMRCWeakIvars,
3615                               bool isMetaclass) {
3616   // Weak ivar layout.
3617   llvm::Constant *layout;
3618   if (isMetaclass) {
3619     layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
3620   } else {
3621     layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3622                                  hasMRCWeakIvars);
3623   }
3624 
3625   // Properties.
3626   llvm::Constant *propertyList =
3627     EmitPropertyList((isMetaclass ? Twine("\01l_OBJC_$_CLASS_PROP_LIST_")
3628                                   : Twine("\01l_OBJC_$_PROP_LIST_"))
3629                         + ID->getName(),
3630                      ID, ID->getClassInterface(), ObjCTypes, isMetaclass);
3631 
3632   // Return null if no extension bits are used.
3633   if (layout->isNullValue() && propertyList->isNullValue()) {
3634     return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3635   }
3636 
3637   uint64_t size =
3638     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3639 
3640   ConstantInitBuilder builder(CGM);
3641   auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy);
3642   values.addInt(ObjCTypes.IntTy, size);
3643   values.add(layout);
3644   values.add(propertyList);
3645 
3646   return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values,
3647                            "__OBJC,__class_ext,regular,no_dead_strip",
3648                            CGM.getPointerAlign(), true);
3649 }
3650 
3651 /*
3652   struct objc_ivar {
3653     char *ivar_name;
3654     char *ivar_type;
3655     int ivar_offset;
3656   };
3657 
3658   struct objc_ivar_list {
3659     int ivar_count;
3660     struct objc_ivar list[count];
3661   };
3662 */
3663 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3664                                         bool ForClass) {
3665   // When emitting the root class GCC emits ivar entries for the
3666   // actual class structure. It is not clear if we need to follow this
3667   // behavior; for now lets try and get away with not doing it. If so,
3668   // the cleanest solution would be to make up an ObjCInterfaceDecl
3669   // for the class.
3670   if (ForClass)
3671     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3672 
3673   const ObjCInterfaceDecl *OID = ID->getClassInterface();
3674 
3675   ConstantInitBuilder builder(CGM);
3676   auto ivarList = builder.beginStruct();
3677   auto countSlot = ivarList.addPlaceholder();
3678   auto ivars = ivarList.beginArray(ObjCTypes.IvarTy);
3679 
3680   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3681        IVD; IVD = IVD->getNextIvar()) {
3682     // Ignore unnamed bit-fields.
3683     if (!IVD->getDeclName())
3684       continue;
3685 
3686     auto ivar = ivars.beginStruct(ObjCTypes.IvarTy);
3687     ivar.add(GetMethodVarName(IVD->getIdentifier()));
3688     ivar.add(GetMethodVarType(IVD));
3689     ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD));
3690     ivar.finishAndAddTo(ivars);
3691   }
3692 
3693   // Return null for empty list.
3694   auto count = ivars.size();
3695   if (count == 0) {
3696     ivars.abandon();
3697     ivarList.abandon();
3698     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3699   }
3700 
3701   ivars.finishAndAddTo(ivarList);
3702   ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count);
3703 
3704   llvm::GlobalVariable *GV;
3705   if (ForClass)
3706     GV =
3707         CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList,
3708                           "__OBJC,__class_vars,regular,no_dead_strip",
3709                           CGM.getPointerAlign(), true);
3710   else
3711     GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList,
3712                            "__OBJC,__instance_vars,regular,no_dead_strip",
3713                            CGM.getPointerAlign(), true);
3714   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3715 }
3716 
3717 /// Build a struct objc_method_description constant for the given method.
3718 ///
3719 /// struct objc_method_description {
3720 ///   SEL method_name;
3721 ///   char *method_types;
3722 /// };
3723 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
3724                                               const ObjCMethodDecl *MD) {
3725   auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy);
3726   description.addBitCast(GetMethodVarName(MD->getSelector()),
3727                          ObjCTypes.SelectorPtrTy);
3728   description.add(GetMethodVarType(MD));
3729   description.finishAndAddTo(builder);
3730 }
3731 
3732 /// Build a struct objc_method constant for the given method.
3733 ///
3734 /// struct objc_method {
3735 ///   SEL method_name;
3736 ///   char *method_types;
3737 ///   void *method;
3738 /// };
3739 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder,
3740                                    const ObjCMethodDecl *MD) {
3741   llvm::Function *fn = GetMethodDefinition(MD);
3742   assert(fn && "no definition registered for method");
3743 
3744   auto method = builder.beginStruct(ObjCTypes.MethodTy);
3745   method.addBitCast(GetMethodVarName(MD->getSelector()),
3746                     ObjCTypes.SelectorPtrTy);
3747   method.add(GetMethodVarType(MD));
3748   method.addBitCast(fn, ObjCTypes.Int8PtrTy);
3749   method.finishAndAddTo(builder);
3750 }
3751 
3752 /// Build a struct objc_method_list or struct objc_method_description_list,
3753 /// as appropriate.
3754 ///
3755 /// struct objc_method_list {
3756 ///   struct objc_method_list *obsolete;
3757 ///   int count;
3758 ///   struct objc_method methods_list[count];
3759 /// };
3760 ///
3761 /// struct objc_method_description_list {
3762 ///   int count;
3763 ///   struct objc_method_description list[count];
3764 /// };
3765 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT,
3766                                  ArrayRef<const ObjCMethodDecl *> methods) {
3767   StringRef prefix;
3768   StringRef section;
3769   bool forProtocol = false;
3770   switch (MLT) {
3771   case MethodListType::CategoryInstanceMethods:
3772     prefix = "OBJC_CATEGORY_INSTANCE_METHODS_";
3773     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3774     forProtocol = false;
3775     break;
3776   case MethodListType::CategoryClassMethods:
3777     prefix = "OBJC_CATEGORY_CLASS_METHODS_";
3778     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3779     forProtocol = false;
3780     break;
3781   case MethodListType::InstanceMethods:
3782     prefix = "OBJC_INSTANCE_METHODS_";
3783     section = "__OBJC,__inst_meth,regular,no_dead_strip";
3784     forProtocol = false;
3785     break;
3786   case MethodListType::ClassMethods:
3787     prefix = "OBJC_CLASS_METHODS_";
3788     section = "__OBJC,__cls_meth,regular,no_dead_strip";
3789     forProtocol = false;
3790     break;
3791   case MethodListType::ProtocolInstanceMethods:
3792     prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_";
3793     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3794     forProtocol = true;
3795     break;
3796   case MethodListType::ProtocolClassMethods:
3797     prefix = "OBJC_PROTOCOL_CLASS_METHODS_";
3798     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3799     forProtocol = true;
3800     break;
3801   case MethodListType::OptionalProtocolInstanceMethods:
3802     prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_";
3803     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3804     forProtocol = true;
3805     break;
3806   case MethodListType::OptionalProtocolClassMethods:
3807     prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_";
3808     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3809     forProtocol = true;
3810     break;
3811   }
3812 
3813   // Return null for empty list.
3814   if (methods.empty())
3815     return llvm::Constant::getNullValue(forProtocol
3816                                         ? ObjCTypes.MethodDescriptionListPtrTy
3817                                         : ObjCTypes.MethodListPtrTy);
3818 
3819   // For protocols, this is an objc_method_description_list, which has
3820   // a slightly different structure.
3821   if (forProtocol) {
3822     ConstantInitBuilder builder(CGM);
3823     auto values = builder.beginStruct();
3824     values.addInt(ObjCTypes.IntTy, methods.size());
3825     auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy);
3826     for (auto MD : methods) {
3827       emitMethodDescriptionConstant(methodArray, MD);
3828     }
3829     methodArray.finishAndAddTo(values);
3830 
3831     llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3832                                                  CGM.getPointerAlign(), true);
3833     return llvm::ConstantExpr::getBitCast(GV,
3834                                           ObjCTypes.MethodDescriptionListPtrTy);
3835   }
3836 
3837   // Otherwise, it's an objc_method_list.
3838   ConstantInitBuilder builder(CGM);
3839   auto values = builder.beginStruct();
3840   values.addNullPointer(ObjCTypes.Int8PtrTy);
3841   values.addInt(ObjCTypes.IntTy, methods.size());
3842   auto methodArray = values.beginArray(ObjCTypes.MethodTy);
3843   for (auto MD : methods) {
3844     emitMethodConstant(methodArray, MD);
3845   }
3846   methodArray.finishAndAddTo(values);
3847 
3848   llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3849                                                CGM.getPointerAlign(), true);
3850   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3851 }
3852 
3853 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3854                                                 const ObjCContainerDecl *CD) {
3855   SmallString<256> Name;
3856   GetNameForMethod(OMD, CD, Name);
3857 
3858   CodeGenTypes &Types = CGM.getTypes();
3859   llvm::FunctionType *MethodTy =
3860     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3861   llvm::Function *Method =
3862     llvm::Function::Create(MethodTy,
3863                            llvm::GlobalValue::InternalLinkage,
3864                            Name.str(),
3865                            &CGM.getModule());
3866   MethodDefinitions.insert(std::make_pair(OMD, Method));
3867 
3868   return Method;
3869 }
3870 
3871 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3872                                                ConstantStructBuilder &Init,
3873                                                          StringRef Section,
3874                                                          CharUnits Align,
3875                                                          bool AddToUsed) {
3876   llvm::GlobalVariable *GV =
3877     Init.finishAndCreateGlobal(Name, Align, /*constant*/ false,
3878                                llvm::GlobalValue::PrivateLinkage);
3879   if (!Section.empty())
3880     GV->setSection(Section);
3881   if (AddToUsed)
3882     CGM.addCompilerUsedGlobal(GV);
3883   return GV;
3884 }
3885 
3886 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3887                                                          llvm::Constant *Init,
3888                                                          StringRef Section,
3889                                                          CharUnits Align,
3890                                                          bool AddToUsed) {
3891   llvm::Type *Ty = Init->getType();
3892   llvm::GlobalVariable *GV =
3893     new llvm::GlobalVariable(CGM.getModule(), Ty, false,
3894                              llvm::GlobalValue::PrivateLinkage, Init, Name);
3895   if (!Section.empty())
3896     GV->setSection(Section);
3897   GV->setAlignment(Align.getQuantity());
3898   if (AddToUsed)
3899     CGM.addCompilerUsedGlobal(GV);
3900   return GV;
3901 }
3902 
3903 llvm::GlobalVariable *
3904 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type,
3905                                       bool ForceNonFragileABI,
3906                                       bool NullTerminate) {
3907   StringRef Label;
3908   switch (Type) {
3909   case ObjCLabelType::ClassName:     Label = "OBJC_CLASS_NAME_"; break;
3910   case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break;
3911   case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break;
3912   case ObjCLabelType::PropertyName:  Label = "OBJC_PROP_NAME_ATTR_"; break;
3913   }
3914 
3915   bool NonFragile = ForceNonFragileABI || isNonFragileABI();
3916 
3917   StringRef Section;
3918   switch (Type) {
3919   case ObjCLabelType::ClassName:
3920     Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals"
3921                          : "__TEXT,__cstring,cstring_literals";
3922     break;
3923   case ObjCLabelType::MethodVarName:
3924     Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
3925                          : "__TEXT,__cstring,cstring_literals";
3926     break;
3927   case ObjCLabelType::MethodVarType:
3928     Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals"
3929                          : "__TEXT,__cstring,cstring_literals";
3930     break;
3931   case ObjCLabelType::PropertyName:
3932     Section = "__TEXT,__cstring,cstring_literals";
3933     break;
3934   }
3935 
3936   llvm::Constant *Value =
3937       llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate);
3938   llvm::GlobalVariable *GV =
3939       new llvm::GlobalVariable(CGM.getModule(), Value->getType(),
3940                                /*isConstant=*/true,
3941                                llvm::GlobalValue::PrivateLinkage, Value, Label);
3942   if (CGM.getTriple().isOSBinFormatMachO())
3943     GV->setSection(Section);
3944   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3945   GV->setAlignment(CharUnits::One().getQuantity());
3946   CGM.addCompilerUsedGlobal(GV);
3947 
3948   return GV;
3949 }
3950 
3951 llvm::Function *CGObjCMac::ModuleInitFunction() {
3952   // Abuse this interface function as a place to finalize.
3953   FinishModule();
3954   return nullptr;
3955 }
3956 
3957 llvm::Constant *CGObjCMac::GetPropertyGetFunction() {
3958   return ObjCTypes.getGetPropertyFn();
3959 }
3960 
3961 llvm::Constant *CGObjCMac::GetPropertySetFunction() {
3962   return ObjCTypes.getSetPropertyFn();
3963 }
3964 
3965 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
3966                                                            bool copy) {
3967   return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
3968 }
3969 
3970 llvm::Constant *CGObjCMac::GetGetStructFunction() {
3971   return ObjCTypes.getCopyStructFn();
3972 }
3973 
3974 llvm::Constant *CGObjCMac::GetSetStructFunction() {
3975   return ObjCTypes.getCopyStructFn();
3976 }
3977 
3978 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() {
3979   return ObjCTypes.getCppAtomicObjectFunction();
3980 }
3981 
3982 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() {
3983   return ObjCTypes.getCppAtomicObjectFunction();
3984 }
3985 
3986 llvm::Constant *CGObjCMac::EnumerationMutationFunction() {
3987   return ObjCTypes.getEnumerationMutationFn();
3988 }
3989 
3990 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
3991   return EmitTryOrSynchronizedStmt(CGF, S);
3992 }
3993 
3994 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
3995                                      const ObjCAtSynchronizedStmt &S) {
3996   return EmitTryOrSynchronizedStmt(CGF, S);
3997 }
3998 
3999 namespace {
4000   struct PerformFragileFinally final : EHScopeStack::Cleanup {
4001     const Stmt &S;
4002     Address SyncArgSlot;
4003     Address CallTryExitVar;
4004     Address ExceptionData;
4005     ObjCTypesHelper &ObjCTypes;
4006     PerformFragileFinally(const Stmt *S,
4007                           Address SyncArgSlot,
4008                           Address CallTryExitVar,
4009                           Address ExceptionData,
4010                           ObjCTypesHelper *ObjCTypes)
4011       : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
4012         ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
4013 
4014     void Emit(CodeGenFunction &CGF, Flags flags) override {
4015       // Check whether we need to call objc_exception_try_exit.
4016       // In optimized code, this branch will always be folded.
4017       llvm::BasicBlock *FinallyCallExit =
4018         CGF.createBasicBlock("finally.call_exit");
4019       llvm::BasicBlock *FinallyNoCallExit =
4020         CGF.createBasicBlock("finally.no_call_exit");
4021       CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
4022                                FinallyCallExit, FinallyNoCallExit);
4023 
4024       CGF.EmitBlock(FinallyCallExit);
4025       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
4026                                   ExceptionData.getPointer());
4027 
4028       CGF.EmitBlock(FinallyNoCallExit);
4029 
4030       if (isa<ObjCAtTryStmt>(S)) {
4031         if (const ObjCAtFinallyStmt* FinallyStmt =
4032               cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
4033           // Don't try to do the @finally if this is an EH cleanup.
4034           if (flags.isForEHCleanup()) return;
4035 
4036           // Save the current cleanup destination in case there's
4037           // control flow inside the finally statement.
4038           llvm::Value *CurCleanupDest =
4039             CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
4040 
4041           CGF.EmitStmt(FinallyStmt->getFinallyBody());
4042 
4043           if (CGF.HaveInsertPoint()) {
4044             CGF.Builder.CreateStore(CurCleanupDest,
4045                                     CGF.getNormalCleanupDestSlot());
4046           } else {
4047             // Currently, the end of the cleanup must always exist.
4048             CGF.EnsureInsertPoint();
4049           }
4050         }
4051       } else {
4052         // Emit objc_sync_exit(expr); as finally's sole statement for
4053         // @synchronized.
4054         llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
4055         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
4056       }
4057     }
4058   };
4059 
4060   class FragileHazards {
4061     CodeGenFunction &CGF;
4062     SmallVector<llvm::Value*, 20> Locals;
4063     llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
4064 
4065     llvm::InlineAsm *ReadHazard;
4066     llvm::InlineAsm *WriteHazard;
4067 
4068     llvm::FunctionType *GetAsmFnType();
4069 
4070     void collectLocals();
4071     void emitReadHazard(CGBuilderTy &Builder);
4072 
4073   public:
4074     FragileHazards(CodeGenFunction &CGF);
4075 
4076     void emitWriteHazard();
4077     void emitHazardsInNewBlocks();
4078   };
4079 } // end anonymous namespace
4080 
4081 /// Create the fragile-ABI read and write hazards based on the current
4082 /// state of the function, which is presumed to be immediately prior
4083 /// to a @try block.  These hazards are used to maintain correct
4084 /// semantics in the face of optimization and the fragile ABI's
4085 /// cavalier use of setjmp/longjmp.
4086 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
4087   collectLocals();
4088 
4089   if (Locals.empty()) return;
4090 
4091   // Collect all the blocks in the function.
4092   for (llvm::Function::iterator
4093          I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
4094     BlocksBeforeTry.insert(&*I);
4095 
4096   llvm::FunctionType *AsmFnTy = GetAsmFnType();
4097 
4098   // Create a read hazard for the allocas.  This inhibits dead-store
4099   // optimizations and forces the values to memory.  This hazard is
4100   // inserted before any 'throwing' calls in the protected scope to
4101   // reflect the possibility that the variables might be read from the
4102   // catch block if the call throws.
4103   {
4104     std::string Constraint;
4105     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4106       if (I) Constraint += ',';
4107       Constraint += "*m";
4108     }
4109 
4110     ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4111   }
4112 
4113   // Create a write hazard for the allocas.  This inhibits folding
4114   // loads across the hazard.  This hazard is inserted at the
4115   // beginning of the catch path to reflect the possibility that the
4116   // variables might have been written within the protected scope.
4117   {
4118     std::string Constraint;
4119     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4120       if (I) Constraint += ',';
4121       Constraint += "=*m";
4122     }
4123 
4124     WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4125   }
4126 }
4127 
4128 /// Emit a write hazard at the current location.
4129 void FragileHazards::emitWriteHazard() {
4130   if (Locals.empty()) return;
4131 
4132   CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
4133 }
4134 
4135 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
4136   assert(!Locals.empty());
4137   llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
4138   call->setDoesNotThrow();
4139   call->setCallingConv(CGF.getRuntimeCC());
4140 }
4141 
4142 /// Emit read hazards in all the protected blocks, i.e. all the blocks
4143 /// which have been inserted since the beginning of the try.
4144 void FragileHazards::emitHazardsInNewBlocks() {
4145   if (Locals.empty()) return;
4146 
4147   CGBuilderTy Builder(CGF, CGF.getLLVMContext());
4148 
4149   // Iterate through all blocks, skipping those prior to the try.
4150   for (llvm::Function::iterator
4151          FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
4152     llvm::BasicBlock &BB = *FI;
4153     if (BlocksBeforeTry.count(&BB)) continue;
4154 
4155     // Walk through all the calls in the block.
4156     for (llvm::BasicBlock::iterator
4157            BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
4158       llvm::Instruction &I = *BI;
4159 
4160       // Ignore instructions that aren't non-intrinsic calls.
4161       // These are the only calls that can possibly call longjmp.
4162       if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue;
4163       if (isa<llvm::IntrinsicInst>(I))
4164         continue;
4165 
4166       // Ignore call sites marked nounwind.  This may be questionable,
4167       // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
4168       llvm::CallSite CS(&I);
4169       if (CS.doesNotThrow()) continue;
4170 
4171       // Insert a read hazard before the call.  This will ensure that
4172       // any writes to the locals are performed before making the
4173       // call.  If the call throws, then this is sufficient to
4174       // guarantee correctness as long as it doesn't also write to any
4175       // locals.
4176       Builder.SetInsertPoint(&BB, BI);
4177       emitReadHazard(Builder);
4178     }
4179   }
4180 }
4181 
4182 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) {
4183   if (V) S.insert(V);
4184 }
4185 
4186 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
4187   if (V.isValid()) S.insert(V.getPointer());
4188 }
4189 
4190 void FragileHazards::collectLocals() {
4191   // Compute a set of allocas to ignore.
4192   llvm::DenseSet<llvm::Value*> AllocasToIgnore;
4193   addIfPresent(AllocasToIgnore, CGF.ReturnValue);
4194   addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
4195 
4196   // Collect all the allocas currently in the function.  This is
4197   // probably way too aggressive.
4198   llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
4199   for (llvm::BasicBlock::iterator
4200          I = Entry.begin(), E = Entry.end(); I != E; ++I)
4201     if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
4202       Locals.push_back(&*I);
4203 }
4204 
4205 llvm::FunctionType *FragileHazards::GetAsmFnType() {
4206   SmallVector<llvm::Type *, 16> tys(Locals.size());
4207   for (unsigned i = 0, e = Locals.size(); i != e; ++i)
4208     tys[i] = Locals[i]->getType();
4209   return llvm::FunctionType::get(CGF.VoidTy, tys, false);
4210 }
4211 
4212 /*
4213 
4214   Objective-C setjmp-longjmp (sjlj) Exception Handling
4215   --
4216 
4217   A catch buffer is a setjmp buffer plus:
4218     - a pointer to the exception that was caught
4219     - a pointer to the previous exception data buffer
4220     - two pointers of reserved storage
4221   Therefore catch buffers form a stack, with a pointer to the top
4222   of the stack kept in thread-local storage.
4223 
4224   objc_exception_try_enter pushes a catch buffer onto the EH stack.
4225   objc_exception_try_exit pops the given catch buffer, which is
4226     required to be the top of the EH stack.
4227   objc_exception_throw pops the top of the EH stack, writes the
4228     thrown exception into the appropriate field, and longjmps
4229     to the setjmp buffer.  It crashes the process (with a printf
4230     and an abort()) if there are no catch buffers on the stack.
4231   objc_exception_extract just reads the exception pointer out of the
4232     catch buffer.
4233 
4234   There's no reason an implementation couldn't use a light-weight
4235   setjmp here --- something like __builtin_setjmp, but API-compatible
4236   with the heavyweight setjmp.  This will be more important if we ever
4237   want to implement correct ObjC/C++ exception interactions for the
4238   fragile ABI.
4239 
4240   Note that for this use of setjmp/longjmp to be correct, we may need
4241   to mark some local variables volatile: if a non-volatile local
4242   variable is modified between the setjmp and the longjmp, it has
4243   indeterminate value.  For the purposes of LLVM IR, it may be
4244   sufficient to make loads and stores within the @try (to variables
4245   declared outside the @try) volatile.  This is necessary for
4246   optimized correctness, but is not currently being done; this is
4247   being tracked as rdar://problem/8160285
4248 
4249   The basic framework for a @try-catch-finally is as follows:
4250   {
4251   objc_exception_data d;
4252   id _rethrow = null;
4253   bool _call_try_exit = true;
4254 
4255   objc_exception_try_enter(&d);
4256   if (!setjmp(d.jmp_buf)) {
4257   ... try body ...
4258   } else {
4259   // exception path
4260   id _caught = objc_exception_extract(&d);
4261 
4262   // enter new try scope for handlers
4263   if (!setjmp(d.jmp_buf)) {
4264   ... match exception and execute catch blocks ...
4265 
4266   // fell off end, rethrow.
4267   _rethrow = _caught;
4268   ... jump-through-finally to finally_rethrow ...
4269   } else {
4270   // exception in catch block
4271   _rethrow = objc_exception_extract(&d);
4272   _call_try_exit = false;
4273   ... jump-through-finally to finally_rethrow ...
4274   }
4275   }
4276   ... jump-through-finally to finally_end ...
4277 
4278   finally:
4279   if (_call_try_exit)
4280   objc_exception_try_exit(&d);
4281 
4282   ... finally block ....
4283   ... dispatch to finally destination ...
4284 
4285   finally_rethrow:
4286   objc_exception_throw(_rethrow);
4287 
4288   finally_end:
4289   }
4290 
4291   This framework differs slightly from the one gcc uses, in that gcc
4292   uses _rethrow to determine if objc_exception_try_exit should be called
4293   and if the object should be rethrown. This breaks in the face of
4294   throwing nil and introduces unnecessary branches.
4295 
4296   We specialize this framework for a few particular circumstances:
4297 
4298   - If there are no catch blocks, then we avoid emitting the second
4299   exception handling context.
4300 
4301   - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4302   e)) we avoid emitting the code to rethrow an uncaught exception.
4303 
4304   - FIXME: If there is no @finally block we can do a few more
4305   simplifications.
4306 
4307   Rethrows and Jumps-Through-Finally
4308   --
4309 
4310   '@throw;' is supported by pushing the currently-caught exception
4311   onto ObjCEHStack while the @catch blocks are emitted.
4312 
4313   Branches through the @finally block are handled with an ordinary
4314   normal cleanup.  We do not register an EH cleanup; fragile-ABI ObjC
4315   exceptions are not compatible with C++ exceptions, and this is
4316   hardly the only place where this will go wrong.
4317 
4318   @synchronized(expr) { stmt; } is emitted as if it were:
4319     id synch_value = expr;
4320     objc_sync_enter(synch_value);
4321     @try { stmt; } @finally { objc_sync_exit(synch_value); }
4322 */
4323 
4324 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4325                                           const Stmt &S) {
4326   bool isTry = isa<ObjCAtTryStmt>(S);
4327 
4328   // A destination for the fall-through edges of the catch handlers to
4329   // jump to.
4330   CodeGenFunction::JumpDest FinallyEnd =
4331     CGF.getJumpDestInCurrentScope("finally.end");
4332 
4333   // A destination for the rethrow edge of the catch handlers to jump
4334   // to.
4335   CodeGenFunction::JumpDest FinallyRethrow =
4336     CGF.getJumpDestInCurrentScope("finally.rethrow");
4337 
4338   // For @synchronized, call objc_sync_enter(sync.expr). The
4339   // evaluation of the expression must occur before we enter the
4340   // @synchronized.  We can't avoid a temp here because we need the
4341   // value to be preserved.  If the backend ever does liveness
4342   // correctly after setjmp, this will be unnecessary.
4343   Address SyncArgSlot = Address::invalid();
4344   if (!isTry) {
4345     llvm::Value *SyncArg =
4346       CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
4347     SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4348     CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4349 
4350     SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4351                                        CGF.getPointerAlign(), "sync.arg");
4352     CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
4353   }
4354 
4355   // Allocate memory for the setjmp buffer.  This needs to be kept
4356   // live throughout the try and catch blocks.
4357   Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4358                                                CGF.getPointerAlign(),
4359                                                "exceptiondata.ptr");
4360 
4361   // Create the fragile hazards.  Note that this will not capture any
4362   // of the allocas required for exception processing, but will
4363   // capture the current basic block (which extends all the way to the
4364   // setjmp call) as "before the @try".
4365   FragileHazards Hazards(CGF);
4366 
4367   // Create a flag indicating whether the cleanup needs to call
4368   // objc_exception_try_exit.  This is true except when
4369   //   - no catches match and we're branching through the cleanup
4370   //     just to rethrow the exception, or
4371   //   - a catch matched and we're falling out of the catch handler.
4372   // The setjmp-safety rule here is that we should always store to this
4373   // variable in a place that dominates the branch through the cleanup
4374   // without passing through any setjmps.
4375   Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4376                                                 CharUnits::One(),
4377                                                 "_call_try_exit");
4378 
4379   // A slot containing the exception to rethrow.  Only needed when we
4380   // have both a @catch and a @finally.
4381   Address PropagatingExnVar = Address::invalid();
4382 
4383   // Push a normal cleanup to leave the try scope.
4384   CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4385                                                  SyncArgSlot,
4386                                                  CallTryExitVar,
4387                                                  ExceptionData,
4388                                                  &ObjCTypes);
4389 
4390   // Enter a try block:
4391   //  - Call objc_exception_try_enter to push ExceptionData on top of
4392   //    the EH stack.
4393   CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4394                               ExceptionData.getPointer());
4395 
4396   //  - Call setjmp on the exception data buffer.
4397   llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4398   llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4399   llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4400       ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4401       "setjmp_buffer");
4402   llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4403       ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4404   SetJmpResult->setCanReturnTwice();
4405 
4406   // If setjmp returned 0, enter the protected block; otherwise,
4407   // branch to the handler.
4408   llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4409   llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4410   llvm::Value *DidCatch =
4411     CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4412   CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4413 
4414   // Emit the protected block.
4415   CGF.EmitBlock(TryBlock);
4416   CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4417   CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4418                      : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4419 
4420   CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4421 
4422   // Emit the exception handler block.
4423   CGF.EmitBlock(TryHandler);
4424 
4425   // Don't optimize loads of the in-scope locals across this point.
4426   Hazards.emitWriteHazard();
4427 
4428   // For a @synchronized (or a @try with no catches), just branch
4429   // through the cleanup to the rethrow block.
4430   if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4431     // Tell the cleanup not to re-pop the exit.
4432     CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4433     CGF.EmitBranchThroughCleanup(FinallyRethrow);
4434 
4435   // Otherwise, we have to match against the caught exceptions.
4436   } else {
4437     // Retrieve the exception object.  We may emit multiple blocks but
4438     // nothing can cross this so the value is already in SSA form.
4439     llvm::CallInst *Caught =
4440       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4441                                   ExceptionData.getPointer(), "caught");
4442 
4443     // Push the exception to rethrow onto the EH value stack for the
4444     // benefit of any @throws in the handlers.
4445     CGF.ObjCEHValueStack.push_back(Caught);
4446 
4447     const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4448 
4449     bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4450 
4451     llvm::BasicBlock *CatchBlock = nullptr;
4452     llvm::BasicBlock *CatchHandler = nullptr;
4453     if (HasFinally) {
4454       // Save the currently-propagating exception before
4455       // objc_exception_try_enter clears the exception slot.
4456       PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4457                                                CGF.getPointerAlign(),
4458                                                "propagating_exception");
4459       CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4460 
4461       // Enter a new exception try block (in case a @catch block
4462       // throws an exception).
4463       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4464                                   ExceptionData.getPointer());
4465 
4466       llvm::CallInst *SetJmpResult =
4467         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4468                                     SetJmpBuffer, "setjmp.result");
4469       SetJmpResult->setCanReturnTwice();
4470 
4471       llvm::Value *Threw =
4472         CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4473 
4474       CatchBlock = CGF.createBasicBlock("catch");
4475       CatchHandler = CGF.createBasicBlock("catch_for_catch");
4476       CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4477 
4478       CGF.EmitBlock(CatchBlock);
4479     }
4480 
4481     CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4482 
4483     // Handle catch list. As a special case we check if everything is
4484     // matched and avoid generating code for falling off the end if
4485     // so.
4486     bool AllMatched = false;
4487     for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) {
4488       const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I);
4489 
4490       const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4491       const ObjCObjectPointerType *OPT = nullptr;
4492 
4493       // catch(...) always matches.
4494       if (!CatchParam) {
4495         AllMatched = true;
4496       } else {
4497         OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4498 
4499         // catch(id e) always matches under this ABI, since only
4500         // ObjC exceptions end up here in the first place.
4501         // FIXME: For the time being we also match id<X>; this should
4502         // be rejected by Sema instead.
4503         if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4504           AllMatched = true;
4505       }
4506 
4507       // If this is a catch-all, we don't need to test anything.
4508       if (AllMatched) {
4509         CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4510 
4511         if (CatchParam) {
4512           CGF.EmitAutoVarDecl(*CatchParam);
4513           assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4514 
4515           // These types work out because ConvertType(id) == i8*.
4516           EmitInitOfCatchParam(CGF, Caught, CatchParam);
4517         }
4518 
4519         CGF.EmitStmt(CatchStmt->getCatchBody());
4520 
4521         // The scope of the catch variable ends right here.
4522         CatchVarCleanups.ForceCleanup();
4523 
4524         CGF.EmitBranchThroughCleanup(FinallyEnd);
4525         break;
4526       }
4527 
4528       assert(OPT && "Unexpected non-object pointer type in @catch");
4529       const ObjCObjectType *ObjTy = OPT->getObjectType();
4530 
4531       // FIXME: @catch (Class c) ?
4532       ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4533       assert(IDecl && "Catch parameter must have Objective-C type!");
4534 
4535       // Check if the @catch block matches the exception object.
4536       llvm::Value *Class = EmitClassRef(CGF, IDecl);
4537 
4538       llvm::Value *matchArgs[] = { Class, Caught };
4539       llvm::CallInst *Match =
4540         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4541                                     matchArgs, "match");
4542 
4543       llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4544       llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4545 
4546       CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4547                                MatchedBlock, NextCatchBlock);
4548 
4549       // Emit the @catch block.
4550       CGF.EmitBlock(MatchedBlock);
4551 
4552       // Collect any cleanups for the catch variable.  The scope lasts until
4553       // the end of the catch body.
4554       CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4555 
4556       CGF.EmitAutoVarDecl(*CatchParam);
4557       assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4558 
4559       // Initialize the catch variable.
4560       llvm::Value *Tmp =
4561         CGF.Builder.CreateBitCast(Caught,
4562                                   CGF.ConvertType(CatchParam->getType()));
4563       EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4564 
4565       CGF.EmitStmt(CatchStmt->getCatchBody());
4566 
4567       // We're done with the catch variable.
4568       CatchVarCleanups.ForceCleanup();
4569 
4570       CGF.EmitBranchThroughCleanup(FinallyEnd);
4571 
4572       CGF.EmitBlock(NextCatchBlock);
4573     }
4574 
4575     CGF.ObjCEHValueStack.pop_back();
4576 
4577     // If nothing wanted anything to do with the caught exception,
4578     // kill the extract call.
4579     if (Caught->use_empty())
4580       Caught->eraseFromParent();
4581 
4582     if (!AllMatched)
4583       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4584 
4585     if (HasFinally) {
4586       // Emit the exception handler for the @catch blocks.
4587       CGF.EmitBlock(CatchHandler);
4588 
4589       // In theory we might now need a write hazard, but actually it's
4590       // unnecessary because there's no local-accessing code between
4591       // the try's write hazard and here.
4592       //Hazards.emitWriteHazard();
4593 
4594       // Extract the new exception and save it to the
4595       // propagating-exception slot.
4596       assert(PropagatingExnVar.isValid());
4597       llvm::CallInst *NewCaught =
4598         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4599                                     ExceptionData.getPointer(), "caught");
4600       CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4601 
4602       // Don't pop the catch handler; the throw already did.
4603       CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4604       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4605     }
4606   }
4607 
4608   // Insert read hazards as required in the new blocks.
4609   Hazards.emitHazardsInNewBlocks();
4610 
4611   // Pop the cleanup.
4612   CGF.Builder.restoreIP(TryFallthroughIP);
4613   if (CGF.HaveInsertPoint())
4614     CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4615   CGF.PopCleanupBlock();
4616   CGF.EmitBlock(FinallyEnd.getBlock(), true);
4617 
4618   // Emit the rethrow block.
4619   CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4620   CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4621   if (CGF.HaveInsertPoint()) {
4622     // If we have a propagating-exception variable, check it.
4623     llvm::Value *PropagatingExn;
4624     if (PropagatingExnVar.isValid()) {
4625       PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4626 
4627     // Otherwise, just look in the buffer for the exception to throw.
4628     } else {
4629       llvm::CallInst *Caught =
4630         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4631                                     ExceptionData.getPointer());
4632       PropagatingExn = Caught;
4633     }
4634 
4635     CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4636                                 PropagatingExn);
4637     CGF.Builder.CreateUnreachable();
4638   }
4639 
4640   CGF.Builder.restoreIP(SavedIP);
4641 }
4642 
4643 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4644                               const ObjCAtThrowStmt &S,
4645                               bool ClearInsertionPoint) {
4646   llvm::Value *ExceptionAsObject;
4647 
4648   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4649     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4650     ExceptionAsObject =
4651       CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4652   } else {
4653     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4654            "Unexpected rethrow outside @catch block.");
4655     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4656   }
4657 
4658   CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4659     ->setDoesNotReturn();
4660   CGF.Builder.CreateUnreachable();
4661 
4662   // Clear the insertion point to indicate we are in unreachable code.
4663   if (ClearInsertionPoint)
4664     CGF.Builder.ClearInsertionPoint();
4665 }
4666 
4667 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4668 /// object: objc_read_weak (id *src)
4669 ///
4670 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4671                                           Address AddrWeakObj) {
4672   llvm::Type* DestTy = AddrWeakObj.getElementType();
4673   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
4674                                           ObjCTypes.PtrObjectPtrTy);
4675   llvm::Value *read_weak =
4676     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4677                                 AddrWeakObj.getPointer(), "weakread");
4678   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4679   return read_weak;
4680 }
4681 
4682 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4683 /// objc_assign_weak (id src, id *dst)
4684 ///
4685 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4686                                    llvm::Value *src, Address dst) {
4687   llvm::Type * SrcTy = src->getType();
4688   if (!isa<llvm::PointerType>(SrcTy)) {
4689     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4690     assert(Size <= 8 && "does not support size > 8");
4691     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4692                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4693     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4694   }
4695   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4696   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4697   llvm::Value *args[] = { src, dst.getPointer() };
4698   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4699                               args, "weakassign");
4700 }
4701 
4702 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4703 /// objc_assign_global (id src, id *dst)
4704 ///
4705 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4706                                      llvm::Value *src, Address dst,
4707                                      bool threadlocal) {
4708   llvm::Type * SrcTy = src->getType();
4709   if (!isa<llvm::PointerType>(SrcTy)) {
4710     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4711     assert(Size <= 8 && "does not support size > 8");
4712     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4713                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4714     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4715   }
4716   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4717   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4718   llvm::Value *args[] = { src, dst.getPointer() };
4719   if (!threadlocal)
4720     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4721                                 args, "globalassign");
4722   else
4723     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4724                                 args, "threadlocalassign");
4725 }
4726 
4727 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4728 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4729 ///
4730 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4731                                    llvm::Value *src, Address dst,
4732                                    llvm::Value *ivarOffset) {
4733   assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4734   llvm::Type * SrcTy = src->getType();
4735   if (!isa<llvm::PointerType>(SrcTy)) {
4736     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4737     assert(Size <= 8 && "does not support size > 8");
4738     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4739                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4740     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4741   }
4742   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4743   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4744   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
4745   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4746 }
4747 
4748 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4749 /// objc_assign_strongCast (id src, id *dst)
4750 ///
4751 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4752                                          llvm::Value *src, Address dst) {
4753   llvm::Type * SrcTy = src->getType();
4754   if (!isa<llvm::PointerType>(SrcTy)) {
4755     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4756     assert(Size <= 8 && "does not support size > 8");
4757     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4758                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4759     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4760   }
4761   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4762   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4763   llvm::Value *args[] = { src, dst.getPointer() };
4764   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
4765                               args, "strongassign");
4766 }
4767 
4768 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
4769                                          Address DestPtr,
4770                                          Address SrcPtr,
4771                                          llvm::Value *size) {
4772   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
4773   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
4774   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
4775   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
4776 }
4777 
4778 /// EmitObjCValueForIvar - Code Gen for ivar reference.
4779 ///
4780 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
4781                                        QualType ObjectTy,
4782                                        llvm::Value *BaseValue,
4783                                        const ObjCIvarDecl *Ivar,
4784                                        unsigned CVRQualifiers) {
4785   const ObjCInterfaceDecl *ID =
4786     ObjectTy->getAs<ObjCObjectType>()->getInterface();
4787   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4788                                   EmitIvarOffset(CGF, ID, Ivar));
4789 }
4790 
4791 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
4792                                        const ObjCInterfaceDecl *Interface,
4793                                        const ObjCIvarDecl *Ivar) {
4794   uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
4795   return llvm::ConstantInt::get(
4796     CGM.getTypes().ConvertType(CGM.getContext().LongTy),
4797     Offset);
4798 }
4799 
4800 /* *** Private Interface *** */
4801 
4802 std::string CGObjCCommonMac::GetSectionName(StringRef Section,
4803                                             StringRef MachOAttributes) {
4804   switch (CGM.getTriple().getObjectFormat()) {
4805   default:
4806     llvm_unreachable("unexpected object file format");
4807   case llvm::Triple::MachO: {
4808     if (MachOAttributes.empty())
4809       return ("__DATA," + Section).str();
4810     return ("__DATA," + Section + "," + MachOAttributes).str();
4811   }
4812   case llvm::Triple::ELF:
4813     assert(Section.substr(0, 2) == "__" &&
4814            "expected the name to begin with __");
4815     return Section.substr(2).str();
4816   case llvm::Triple::COFF:
4817     assert(Section.substr(0, 2) == "__" &&
4818            "expected the name to begin with __");
4819     return ("." + Section.substr(2) + "$B").str();
4820   }
4821 }
4822 
4823 /// EmitImageInfo - Emit the image info marker used to encode some module
4824 /// level information.
4825 ///
4826 /// See: <rdr://4810609&4810587&4810587>
4827 /// struct IMAGE_INFO {
4828 ///   unsigned version;
4829 ///   unsigned flags;
4830 /// };
4831 enum ImageInfoFlags {
4832   eImageInfo_FixAndContinue      = (1 << 0), // This flag is no longer set by clang.
4833   eImageInfo_GarbageCollected    = (1 << 1),
4834   eImageInfo_GCOnly              = (1 << 2),
4835   eImageInfo_OptimizedByDyld     = (1 << 3), // This flag is set by the dyld shared cache.
4836 
4837   // A flag indicating that the module has no instances of a @synthesize of a
4838   // superclass variable. <rdar://problem/6803242>
4839   eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
4840   eImageInfo_ImageIsSimulated    = (1 << 5),
4841   eImageInfo_ClassProperties     = (1 << 6)
4842 };
4843 
4844 void CGObjCCommonMac::EmitImageInfo() {
4845   unsigned version = 0; // Version is unused?
4846   std::string Section =
4847       (ObjCABI == 1)
4848           ? "__OBJC,__image_info,regular"
4849           : GetSectionName("__objc_imageinfo", "regular,no_dead_strip");
4850 
4851   // Generate module-level named metadata to convey this information to the
4852   // linker and code-gen.
4853   llvm::Module &Mod = CGM.getModule();
4854 
4855   // Add the ObjC ABI version to the module flags.
4856   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
4857   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
4858                     version);
4859   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
4860                     llvm::MDString::get(VMContext, Section));
4861 
4862   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
4863     // Non-GC overrides those files which specify GC.
4864     Mod.addModuleFlag(llvm::Module::Override,
4865                       "Objective-C Garbage Collection", (uint32_t)0);
4866   } else {
4867     // Add the ObjC garbage collection value.
4868     Mod.addModuleFlag(llvm::Module::Error,
4869                       "Objective-C Garbage Collection",
4870                       eImageInfo_GarbageCollected);
4871 
4872     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
4873       // Add the ObjC GC Only value.
4874       Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
4875                         eImageInfo_GCOnly);
4876 
4877       // Require that GC be specified and set to eImageInfo_GarbageCollected.
4878       llvm::Metadata *Ops[2] = {
4879           llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
4880           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
4881               llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))};
4882       Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
4883                         llvm::MDNode::get(VMContext, Ops));
4884     }
4885   }
4886 
4887   // Indicate whether we're compiling this to run on a simulator.
4888   const llvm::Triple &Triple = CGM.getTarget().getTriple();
4889   if ((Triple.isiOS() || Triple.isWatchOS()) &&
4890       (Triple.getArch() == llvm::Triple::x86 ||
4891        Triple.getArch() == llvm::Triple::x86_64))
4892     Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
4893                       eImageInfo_ImageIsSimulated);
4894 
4895   // Indicate whether we are generating class properties.
4896   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties",
4897                     eImageInfo_ClassProperties);
4898 }
4899 
4900 // struct objc_module {
4901 //   unsigned long version;
4902 //   unsigned long size;
4903 //   const char *name;
4904 //   Symtab symtab;
4905 // };
4906 
4907 // FIXME: Get from somewhere
4908 static const int ModuleVersion = 7;
4909 
4910 void CGObjCMac::EmitModuleInfo() {
4911   uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
4912 
4913   ConstantInitBuilder builder(CGM);
4914   auto values = builder.beginStruct(ObjCTypes.ModuleTy);
4915   values.addInt(ObjCTypes.LongTy, ModuleVersion);
4916   values.addInt(ObjCTypes.LongTy, Size);
4917   // This used to be the filename, now it is unused. <rdr://4327263>
4918   values.add(GetClassName(StringRef("")));
4919   values.add(EmitModuleSymbols());
4920   CreateMetadataVar("OBJC_MODULES", values,
4921                     "__OBJC,__module_info,regular,no_dead_strip",
4922                     CGM.getPointerAlign(), true);
4923 }
4924 
4925 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
4926   unsigned NumClasses = DefinedClasses.size();
4927   unsigned NumCategories = DefinedCategories.size();
4928 
4929   // Return null if no symbols were defined.
4930   if (!NumClasses && !NumCategories)
4931     return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
4932 
4933   ConstantInitBuilder builder(CGM);
4934   auto values = builder.beginStruct();
4935   values.addInt(ObjCTypes.LongTy, 0);
4936   values.addNullPointer(ObjCTypes.SelectorPtrTy);
4937   values.addInt(ObjCTypes.ShortTy, NumClasses);
4938   values.addInt(ObjCTypes.ShortTy, NumCategories);
4939 
4940   // The runtime expects exactly the list of defined classes followed
4941   // by the list of defined categories, in a single array.
4942   auto array = values.beginArray(ObjCTypes.Int8PtrTy);
4943   for (unsigned i=0; i<NumClasses; i++) {
4944     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
4945     assert(ID);
4946     if (ObjCImplementationDecl *IMP = ID->getImplementation())
4947       // We are implementing a weak imported interface. Give it external linkage
4948       if (ID->isWeakImported() && !IMP->isWeakImported())
4949         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
4950 
4951     array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy);
4952   }
4953   for (unsigned i=0; i<NumCategories; i++)
4954     array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy);
4955 
4956   array.finishAndAddTo(values);
4957 
4958   llvm::GlobalVariable *GV = CreateMetadataVar(
4959       "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip",
4960       CGM.getPointerAlign(), true);
4961   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
4962 }
4963 
4964 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
4965                                            IdentifierInfo *II) {
4966   LazySymbols.insert(II);
4967 
4968   llvm::GlobalVariable *&Entry = ClassReferences[II];
4969 
4970   if (!Entry) {
4971     llvm::Constant *Casted =
4972     llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
4973                                    ObjCTypes.ClassPtrTy);
4974     Entry = CreateMetadataVar(
4975         "OBJC_CLASS_REFERENCES_", Casted,
4976         "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
4977         CGM.getPointerAlign(), true);
4978   }
4979 
4980   return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign());
4981 }
4982 
4983 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
4984                                      const ObjCInterfaceDecl *ID) {
4985   // If the class has the objc_runtime_visible attribute, we need to
4986   // use the Objective-C runtime to get the class.
4987   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
4988     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
4989 
4990   return EmitClassRefFromId(CGF, ID->getIdentifier());
4991 }
4992 
4993 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
4994   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
4995   return EmitClassRefFromId(CGF, II);
4996 }
4997 
4998 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
4999   return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel));
5000 }
5001 
5002 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) {
5003   CharUnits Align = CGF.getPointerAlign();
5004 
5005   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
5006   if (!Entry) {
5007     llvm::Constant *Casted =
5008       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
5009                                      ObjCTypes.SelectorPtrTy);
5010     Entry = CreateMetadataVar(
5011         "OBJC_SELECTOR_REFERENCES_", Casted,
5012         "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
5013     Entry->setExternallyInitialized(true);
5014   }
5015 
5016   return Address(Entry, Align);
5017 }
5018 
5019 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
5020     llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
5021     if (!Entry)
5022       Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName);
5023     return getConstantGEP(VMContext, Entry, 0, 0);
5024 }
5025 
5026 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
5027   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
5028       I = MethodDefinitions.find(MD);
5029   if (I != MethodDefinitions.end())
5030     return I->second;
5031 
5032   return nullptr;
5033 }
5034 
5035 /// GetIvarLayoutName - Returns a unique constant for the given
5036 /// ivar layout bitmap.
5037 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
5038                                        const ObjCCommonTypesHelper &ObjCTypes) {
5039   return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
5040 }
5041 
5042 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
5043                                     CharUnits offset) {
5044   const RecordDecl *RD = RT->getDecl();
5045 
5046   // If this is a union, remember that we had one, because it might mess
5047   // up the ordering of layout entries.
5048   if (RD->isUnion())
5049     IsDisordered = true;
5050 
5051   const ASTRecordLayout *recLayout = nullptr;
5052   visitAggregate(RD->field_begin(), RD->field_end(), offset,
5053                  [&](const FieldDecl *field) -> CharUnits {
5054     if (!recLayout)
5055       recLayout = &CGM.getContext().getASTRecordLayout(RD);
5056     auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
5057     return CGM.getContext().toCharUnitsFromBits(offsetInBits);
5058   });
5059 }
5060 
5061 template <class Iterator, class GetOffsetFn>
5062 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
5063                                        CharUnits aggregateOffset,
5064                                        const GetOffsetFn &getOffset) {
5065   for (; begin != end; ++begin) {
5066     auto field = *begin;
5067 
5068     // Skip over bitfields.
5069     if (field->isBitField()) {
5070       continue;
5071     }
5072 
5073     // Compute the offset of the field within the aggregate.
5074     CharUnits fieldOffset = aggregateOffset + getOffset(field);
5075 
5076     visitField(field, fieldOffset);
5077   }
5078 }
5079 
5080 /// Collect layout information for the given fields into IvarsInfo.
5081 void IvarLayoutBuilder::visitField(const FieldDecl *field,
5082                                    CharUnits fieldOffset) {
5083   QualType fieldType = field->getType();
5084 
5085   // Drill down into arrays.
5086   uint64_t numElts = 1;
5087   if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) {
5088     numElts = 0;
5089     fieldType = arrayType->getElementType();
5090   }
5091   // Unlike incomplete arrays, constant arrays can be nested.
5092   while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
5093     numElts *= arrayType->getSize().getZExtValue();
5094     fieldType = arrayType->getElementType();
5095   }
5096 
5097   assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
5098 
5099   // If we ended up with a zero-sized array, we've done what we can do within
5100   // the limits of this layout encoding.
5101   if (numElts == 0) return;
5102 
5103   // Recurse if the base element type is a record type.
5104   if (auto recType = fieldType->getAs<RecordType>()) {
5105     size_t oldEnd = IvarsInfo.size();
5106 
5107     visitRecord(recType, fieldOffset);
5108 
5109     // If we have an array, replicate the first entry's layout information.
5110     auto numEltEntries = IvarsInfo.size() - oldEnd;
5111     if (numElts != 1 && numEltEntries != 0) {
5112       CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
5113       for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
5114         // Copy the last numEltEntries onto the end of the array, adjusting
5115         // each for the element size.
5116         for (size_t i = 0; i != numEltEntries; ++i) {
5117           auto firstEntry = IvarsInfo[oldEnd + i];
5118           IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
5119                                        firstEntry.SizeInWords));
5120         }
5121       }
5122     }
5123 
5124     return;
5125   }
5126 
5127   // Classify the element type.
5128   Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
5129 
5130   // If it matches what we're looking for, add an entry.
5131   if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
5132       || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
5133     assert(CGM.getContext().getTypeSizeInChars(fieldType)
5134              == CGM.getPointerSize());
5135     IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
5136   }
5137 }
5138 
5139 /// buildBitmap - This routine does the horsework of taking the offsets of
5140 /// strong/weak references and creating a bitmap.  The bitmap is also
5141 /// returned in the given buffer, suitable for being passed to \c dump().
5142 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
5143                                 llvm::SmallVectorImpl<unsigned char> &buffer) {
5144   // The bitmap is a series of skip/scan instructions, aligned to word
5145   // boundaries.  The skip is performed first.
5146   const unsigned char MaxNibble = 0xF;
5147   const unsigned char SkipMask = 0xF0, SkipShift = 4;
5148   const unsigned char ScanMask = 0x0F, ScanShift = 0;
5149 
5150   assert(!IvarsInfo.empty() && "generating bitmap for no data");
5151 
5152   // Sort the ivar info on byte position in case we encounterred a
5153   // union nested in the ivar list.
5154   if (IsDisordered) {
5155     // This isn't a stable sort, but our algorithm should handle it fine.
5156     llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
5157   } else {
5158     assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end()));
5159   }
5160   assert(IvarsInfo.back().Offset < InstanceEnd);
5161 
5162   assert(buffer.empty());
5163 
5164   // Skip the next N words.
5165   auto skip = [&](unsigned numWords) {
5166     assert(numWords > 0);
5167 
5168     // Try to merge into the previous byte.  Since scans happen second, we
5169     // can't do this if it includes a scan.
5170     if (!buffer.empty() && !(buffer.back() & ScanMask)) {
5171       unsigned lastSkip = buffer.back() >> SkipShift;
5172       if (lastSkip < MaxNibble) {
5173         unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
5174         numWords -= claimed;
5175         lastSkip += claimed;
5176         buffer.back() = (lastSkip << SkipShift);
5177       }
5178     }
5179 
5180     while (numWords >= MaxNibble) {
5181       buffer.push_back(MaxNibble << SkipShift);
5182       numWords -= MaxNibble;
5183     }
5184     if (numWords) {
5185       buffer.push_back(numWords << SkipShift);
5186     }
5187   };
5188 
5189   // Scan the next N words.
5190   auto scan = [&](unsigned numWords) {
5191     assert(numWords > 0);
5192 
5193     // Try to merge into the previous byte.  Since scans happen second, we can
5194     // do this even if it includes a skip.
5195     if (!buffer.empty()) {
5196       unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
5197       if (lastScan < MaxNibble) {
5198         unsigned claimed = std::min(MaxNibble - lastScan, numWords);
5199         numWords -= claimed;
5200         lastScan += claimed;
5201         buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
5202       }
5203     }
5204 
5205     while (numWords >= MaxNibble) {
5206       buffer.push_back(MaxNibble << ScanShift);
5207       numWords -= MaxNibble;
5208     }
5209     if (numWords) {
5210       buffer.push_back(numWords << ScanShift);
5211     }
5212   };
5213 
5214   // One past the end of the last scan.
5215   unsigned endOfLastScanInWords = 0;
5216   const CharUnits WordSize = CGM.getPointerSize();
5217 
5218   // Consider all the scan requests.
5219   for (auto &request : IvarsInfo) {
5220     CharUnits beginOfScan = request.Offset - InstanceBegin;
5221 
5222     // Ignore scan requests that don't start at an even multiple of the
5223     // word size.  We can't encode them.
5224     if ((beginOfScan % WordSize) != 0) continue;
5225 
5226     // Ignore scan requests that start before the instance start.
5227     // This assumes that scans never span that boundary.  The boundary
5228     // isn't the true start of the ivars, because in the fragile-ARC case
5229     // it's rounded up to word alignment, but the test above should leave
5230     // us ignoring that possibility.
5231     if (beginOfScan.isNegative()) {
5232       assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
5233       continue;
5234     }
5235 
5236     unsigned beginOfScanInWords = beginOfScan / WordSize;
5237     unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
5238 
5239     // If the scan starts some number of words after the last one ended,
5240     // skip forward.
5241     if (beginOfScanInWords > endOfLastScanInWords) {
5242       skip(beginOfScanInWords - endOfLastScanInWords);
5243 
5244     // Otherwise, start scanning where the last left off.
5245     } else {
5246       beginOfScanInWords = endOfLastScanInWords;
5247 
5248       // If that leaves us with nothing to scan, ignore this request.
5249       if (beginOfScanInWords >= endOfScanInWords) continue;
5250     }
5251 
5252     // Scan to the end of the request.
5253     assert(beginOfScanInWords < endOfScanInWords);
5254     scan(endOfScanInWords - beginOfScanInWords);
5255     endOfLastScanInWords = endOfScanInWords;
5256   }
5257 
5258   if (buffer.empty())
5259     return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
5260 
5261   // For GC layouts, emit a skip to the end of the allocation so that we
5262   // have precise information about the entire thing.  This isn't useful
5263   // or necessary for the ARC-style layout strings.
5264   if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5265     unsigned lastOffsetInWords =
5266       (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
5267     if (lastOffsetInWords > endOfLastScanInWords) {
5268       skip(lastOffsetInWords - endOfLastScanInWords);
5269     }
5270   }
5271 
5272   // Null terminate the string.
5273   buffer.push_back(0);
5274 
5275   auto *Entry = CGObjC.CreateCStringLiteral(
5276       reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName);
5277   return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
5278 }
5279 
5280 /// BuildIvarLayout - Builds ivar layout bitmap for the class
5281 /// implementation for the __strong or __weak case.
5282 /// The layout map displays which words in ivar list must be skipped
5283 /// and which must be scanned by GC (see below). String is built of bytes.
5284 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
5285 /// of words to skip and right nibble is count of words to scan. So, each
5286 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
5287 /// represented by a 0x00 byte which also ends the string.
5288 /// 1. when ForStrongLayout is true, following ivars are scanned:
5289 /// - id, Class
5290 /// - object *
5291 /// - __strong anything
5292 ///
5293 /// 2. When ForStrongLayout is false, following ivars are scanned:
5294 /// - __weak anything
5295 ///
5296 llvm::Constant *
5297 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
5298                                  CharUnits beginOffset, CharUnits endOffset,
5299                                  bool ForStrongLayout, bool HasMRCWeakIvars) {
5300   // If this is MRC, and we're either building a strong layout or there
5301   // are no weak ivars, bail out early.
5302   llvm::Type *PtrTy = CGM.Int8PtrTy;
5303   if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
5304       !CGM.getLangOpts().ObjCAutoRefCount &&
5305       (ForStrongLayout || !HasMRCWeakIvars))
5306     return llvm::Constant::getNullValue(PtrTy);
5307 
5308   const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5309   SmallVector<const ObjCIvarDecl*, 32> ivars;
5310 
5311   // GC layout strings include the complete object layout, possibly
5312   // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5313   // up.
5314   //
5315   // ARC layout strings only include the class's ivars.  In non-fragile
5316   // runtimes, that means starting at InstanceStart, rounded up to word
5317   // alignment.  In fragile runtimes, there's no InstanceStart, so it means
5318   // starting at the offset of the first ivar, rounded up to word alignment.
5319   //
5320   // MRC weak layout strings follow the ARC style.
5321   CharUnits baseOffset;
5322   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5323     for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5324          IVD; IVD = IVD->getNextIvar())
5325       ivars.push_back(IVD);
5326 
5327     if (isNonFragileABI()) {
5328       baseOffset = beginOffset; // InstanceStart
5329     } else if (!ivars.empty()) {
5330       baseOffset =
5331         CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
5332     } else {
5333       baseOffset = CharUnits::Zero();
5334     }
5335 
5336     baseOffset = baseOffset.alignTo(CGM.getPointerAlign());
5337   }
5338   else {
5339     CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
5340 
5341     baseOffset = CharUnits::Zero();
5342   }
5343 
5344   if (ivars.empty())
5345     return llvm::Constant::getNullValue(PtrTy);
5346 
5347   IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5348 
5349   builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
5350                          [&](const ObjCIvarDecl *ivar) -> CharUnits {
5351       return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
5352   });
5353 
5354   if (!builder.hasBitmapData())
5355     return llvm::Constant::getNullValue(PtrTy);
5356 
5357   llvm::SmallVector<unsigned char, 4> buffer;
5358   llvm::Constant *C = builder.buildBitmap(*this, buffer);
5359 
5360    if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5361     printf("\n%s ivar layout for class '%s': ",
5362            ForStrongLayout ? "strong" : "weak",
5363            OMD->getClassInterface()->getName().str().c_str());
5364     builder.dump(buffer);
5365   }
5366   return C;
5367 }
5368 
5369 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5370   llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5371   // FIXME: Avoid std::string in "Sel.getAsString()"
5372   if (!Entry)
5373     Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName);
5374   return getConstantGEP(VMContext, Entry, 0, 0);
5375 }
5376 
5377 // FIXME: Merge into a single cstring creation function.
5378 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5379   return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5380 }
5381 
5382 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5383   std::string TypeStr;
5384   CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5385 
5386   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5387   if (!Entry)
5388     Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5389   return getConstantGEP(VMContext, Entry, 0, 0);
5390 }
5391 
5392 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5393                                                   bool Extended) {
5394   std::string TypeStr =
5395     CGM.getContext().getObjCEncodingForMethodDecl(D, Extended);
5396 
5397   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5398   if (!Entry)
5399     Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5400   return getConstantGEP(VMContext, Entry, 0, 0);
5401 }
5402 
5403 // FIXME: Merge into a single cstring creation function.
5404 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5405   llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5406   if (!Entry)
5407     Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName);
5408   return getConstantGEP(VMContext, Entry, 0, 0);
5409 }
5410 
5411 // FIXME: Merge into a single cstring creation function.
5412 // FIXME: This Decl should be more precise.
5413 llvm::Constant *
5414 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5415                                        const Decl *Container) {
5416   std::string TypeStr =
5417     CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
5418   return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5419 }
5420 
5421 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
5422                                        const ObjCContainerDecl *CD,
5423                                        SmallVectorImpl<char> &Name) {
5424   llvm::raw_svector_ostream OS(Name);
5425   assert (CD && "Missing container decl in GetNameForMethod");
5426   OS << '\01' << (D->isInstanceMethod() ? '-' : '+')
5427      << '[' << CD->getName();
5428   if (const ObjCCategoryImplDecl *CID =
5429       dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext()))
5430     OS << '(' << *CID << ')';
5431   OS << ' ' << D->getSelector().getAsString() << ']';
5432 }
5433 
5434 void CGObjCMac::FinishModule() {
5435   EmitModuleInfo();
5436 
5437   // Emit the dummy bodies for any protocols which were referenced but
5438   // never defined.
5439   for (auto &entry : Protocols) {
5440     llvm::GlobalVariable *global = entry.second;
5441     if (global->hasInitializer())
5442       continue;
5443 
5444     ConstantInitBuilder builder(CGM);
5445     auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
5446     values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy);
5447     values.add(GetClassName(entry.first->getName()));
5448     values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
5449     values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5450     values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5451     values.finishAndSetAsInitializer(global);
5452     CGM.addCompilerUsedGlobal(global);
5453   }
5454 
5455   // Add assembler directives to add lazy undefined symbol references
5456   // for classes which are referenced but not defined. This is
5457   // important for correct linker interaction.
5458   //
5459   // FIXME: It would be nice if we had an LLVM construct for this.
5460   if ((!LazySymbols.empty() || !DefinedSymbols.empty()) &&
5461       CGM.getTriple().isOSBinFormatMachO()) {
5462     SmallString<256> Asm;
5463     Asm += CGM.getModule().getModuleInlineAsm();
5464     if (!Asm.empty() && Asm.back() != '\n')
5465       Asm += '\n';
5466 
5467     llvm::raw_svector_ostream OS(Asm);
5468     for (const auto *Sym : DefinedSymbols)
5469       OS << "\t.objc_class_name_" << Sym->getName() << "=0\n"
5470          << "\t.globl .objc_class_name_" << Sym->getName() << "\n";
5471     for (const auto *Sym : LazySymbols)
5472       OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n";
5473     for (const auto &Category : DefinedCategoryNames)
5474       OS << "\t.objc_category_name_" << Category << "=0\n"
5475          << "\t.globl .objc_category_name_" << Category << "\n";
5476 
5477     CGM.getModule().setModuleInlineAsm(OS.str());
5478   }
5479 }
5480 
5481 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5482     : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr),
5483       ObjCEmptyVtableVar(nullptr) {
5484   ObjCABI = 2;
5485 }
5486 
5487 /* *** */
5488 
5489 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5490   : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5491 {
5492   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5493   ASTContext &Ctx = CGM.getContext();
5494 
5495   ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy));
5496   IntTy = CGM.IntTy;
5497   LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy));
5498   Int8PtrTy = CGM.Int8PtrTy;
5499   Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5500 
5501   // arm64 targets use "int" ivar offset variables. All others,
5502   // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5503   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5504     IvarOffsetVarTy = IntTy;
5505   else
5506     IvarOffsetVarTy = LongTy;
5507 
5508   ObjectPtrTy =
5509     cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType()));
5510   PtrObjectPtrTy =
5511     llvm::PointerType::getUnqual(ObjectPtrTy);
5512   SelectorPtrTy =
5513     cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType()));
5514 
5515   // I'm not sure I like this. The implicit coordination is a bit
5516   // gross. We should solve this in a reasonable fashion because this
5517   // is a pretty common task (match some runtime data structure with
5518   // an LLVM data structure).
5519 
5520   // FIXME: This is leaked.
5521   // FIXME: Merge with rewriter code?
5522 
5523   // struct _objc_super {
5524   //   id self;
5525   //   Class cls;
5526   // }
5527   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5528                                       Ctx.getTranslationUnitDecl(),
5529                                       SourceLocation(), SourceLocation(),
5530                                       &Ctx.Idents.get("_objc_super"));
5531   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5532                                 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5533                                 false, ICIS_NoInit));
5534   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5535                                 nullptr, Ctx.getObjCClassType(), nullptr,
5536                                 nullptr, false, ICIS_NoInit));
5537   RD->completeDefinition();
5538 
5539   SuperCTy = Ctx.getTagDeclType(RD);
5540   SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5541 
5542   SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5543   SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5544 
5545   // struct _prop_t {
5546   //   char *name;
5547   //   char *attributes;
5548   // }
5549   PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy);
5550 
5551   // struct _prop_list_t {
5552   //   uint32_t entsize;      // sizeof(struct _prop_t)
5553   //   uint32_t count_of_properties;
5554   //   struct _prop_t prop_list[count_of_properties];
5555   // }
5556   PropertyListTy = llvm::StructType::create(
5557       "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0));
5558   // struct _prop_list_t *
5559   PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5560 
5561   // struct _objc_method {
5562   //   SEL _cmd;
5563   //   char *method_type;
5564   //   char *_imp;
5565   // }
5566   MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy,
5567                                       Int8PtrTy, Int8PtrTy);
5568 
5569   // struct _objc_cache *
5570   CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5571   CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5572 }
5573 
5574 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5575   : ObjCCommonTypesHelper(cgm) {
5576   // struct _objc_method_description {
5577   //   SEL name;
5578   //   char *types;
5579   // }
5580   MethodDescriptionTy = llvm::StructType::create(
5581       "struct._objc_method_description", SelectorPtrTy, Int8PtrTy);
5582 
5583   // struct _objc_method_description_list {
5584   //   int count;
5585   //   struct _objc_method_description[1];
5586   // }
5587   MethodDescriptionListTy =
5588       llvm::StructType::create("struct._objc_method_description_list", IntTy,
5589                                llvm::ArrayType::get(MethodDescriptionTy, 0));
5590 
5591   // struct _objc_method_description_list *
5592   MethodDescriptionListPtrTy =
5593     llvm::PointerType::getUnqual(MethodDescriptionListTy);
5594 
5595   // Protocol description structures
5596 
5597   // struct _objc_protocol_extension {
5598   //   uint32_t size;  // sizeof(struct _objc_protocol_extension)
5599   //   struct _objc_method_description_list *optional_instance_methods;
5600   //   struct _objc_method_description_list *optional_class_methods;
5601   //   struct _objc_property_list *instance_properties;
5602   //   const char ** extendedMethodTypes;
5603   //   struct _objc_property_list *class_properties;
5604   // }
5605   ProtocolExtensionTy = llvm::StructType::create(
5606       "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy,
5607       MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy,
5608       PropertyListPtrTy);
5609 
5610   // struct _objc_protocol_extension *
5611   ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5612 
5613   // Handle recursive construction of Protocol and ProtocolList types
5614 
5615   ProtocolTy =
5616     llvm::StructType::create(VMContext, "struct._objc_protocol");
5617 
5618   ProtocolListTy =
5619     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5620   ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy,
5621                           llvm::ArrayType::get(ProtocolTy, 0));
5622 
5623   // struct _objc_protocol {
5624   //   struct _objc_protocol_extension *isa;
5625   //   char *protocol_name;
5626   //   struct _objc_protocol **_objc_protocol_list;
5627   //   struct _objc_method_description_list *instance_methods;
5628   //   struct _objc_method_description_list *class_methods;
5629   // }
5630   ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5631                       llvm::PointerType::getUnqual(ProtocolListTy),
5632                       MethodDescriptionListPtrTy, MethodDescriptionListPtrTy);
5633 
5634   // struct _objc_protocol_list *
5635   ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5636 
5637   ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5638 
5639   // Class description structures
5640 
5641   // struct _objc_ivar {
5642   //   char *ivar_name;
5643   //   char *ivar_type;
5644   //   int  ivar_offset;
5645   // }
5646   IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy,
5647                                     IntTy);
5648 
5649   // struct _objc_ivar_list *
5650   IvarListTy =
5651     llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5652   IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5653 
5654   // struct _objc_method_list *
5655   MethodListTy =
5656     llvm::StructType::create(VMContext, "struct._objc_method_list");
5657   MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5658 
5659   // struct _objc_class_extension *
5660   ClassExtensionTy = llvm::StructType::create(
5661       "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy);
5662   ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5663 
5664   ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5665 
5666   // struct _objc_class {
5667   //   Class isa;
5668   //   Class super_class;
5669   //   char *name;
5670   //   long version;
5671   //   long info;
5672   //   long instance_size;
5673   //   struct _objc_ivar_list *ivars;
5674   //   struct _objc_method_list *methods;
5675   //   struct _objc_cache *cache;
5676   //   struct _objc_protocol_list *protocols;
5677   //   char *ivar_layout;
5678   //   struct _objc_class_ext *ext;
5679   // };
5680   ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5681                    llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy,
5682                    LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy,
5683                    ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy);
5684 
5685   ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5686 
5687   // struct _objc_category {
5688   //   char *category_name;
5689   //   char *class_name;
5690   //   struct _objc_method_list *instance_method;
5691   //   struct _objc_method_list *class_method;
5692   //   struct _objc_protocol_list *protocols;
5693   //   uint32_t size;  // sizeof(struct _objc_category)
5694   //   struct _objc_property_list *instance_properties;// category's @property
5695   //   struct _objc_property_list *class_properties;
5696   // }
5697   CategoryTy = llvm::StructType::create(
5698       "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5699       MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy,
5700       PropertyListPtrTy);
5701 
5702   // Global metadata structures
5703 
5704   // struct _objc_symtab {
5705   //   long sel_ref_cnt;
5706   //   SEL *refs;
5707   //   short cls_def_cnt;
5708   //   short cat_def_cnt;
5709   //   char *defs[cls_def_cnt + cat_def_cnt];
5710   // }
5711   SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy,
5712                                       SelectorPtrTy, ShortTy, ShortTy,
5713                                       llvm::ArrayType::get(Int8PtrTy, 0));
5714   SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5715 
5716   // struct _objc_module {
5717   //   long version;
5718   //   long size;   // sizeof(struct _objc_module)
5719   //   char *name;
5720   //   struct _objc_symtab* symtab;
5721   //  }
5722   ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy,
5723                                       Int8PtrTy, SymtabPtrTy);
5724 
5725   // FIXME: This is the size of the setjmp buffer and should be target
5726   // specific. 18 is what's used on 32-bit X86.
5727   uint64_t SetJmpBufferSize = 18;
5728 
5729   // Exceptions
5730   llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5731 
5732   ExceptionDataTy = llvm::StructType::create(
5733       "struct._objc_exception_data",
5734       llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy);
5735 }
5736 
5737 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5738   : ObjCCommonTypesHelper(cgm) {
5739   // struct _method_list_t {
5740   //   uint32_t entsize;  // sizeof(struct _objc_method)
5741   //   uint32_t method_count;
5742   //   struct _objc_method method_list[method_count];
5743   // }
5744   MethodListnfABITy =
5745       llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5746                                llvm::ArrayType::get(MethodTy, 0));
5747   // struct method_list_t *
5748   MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5749 
5750   // struct _protocol_t {
5751   //   id isa;  // NULL
5752   //   const char * const protocol_name;
5753   //   const struct _protocol_list_t * protocol_list; // super protocols
5754   //   const struct method_list_t * const instance_methods;
5755   //   const struct method_list_t * const class_methods;
5756   //   const struct method_list_t *optionalInstanceMethods;
5757   //   const struct method_list_t *optionalClassMethods;
5758   //   const struct _prop_list_t * properties;
5759   //   const uint32_t size;  // sizeof(struct _protocol_t)
5760   //   const uint32_t flags;  // = 0
5761   //   const char ** extendedMethodTypes;
5762   //   const char *demangledName;
5763   //   const struct _prop_list_t * class_properties;
5764   // }
5765 
5766   // Holder for struct _protocol_list_t *
5767   ProtocolListnfABITy =
5768     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5769 
5770   ProtocolnfABITy = llvm::StructType::create(
5771       "struct._protocol_t", ObjectPtrTy, Int8PtrTy,
5772       llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy,
5773       MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5774       PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy,
5775       PropertyListPtrTy);
5776 
5777   // struct _protocol_t*
5778   ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
5779 
5780   // struct _protocol_list_t {
5781   //   long protocol_count;   // Note, this is 32/64 bit
5782   //   struct _protocol_t *[protocol_count];
5783   // }
5784   ProtocolListnfABITy->setBody(LongTy,
5785                                llvm::ArrayType::get(ProtocolnfABIPtrTy, 0));
5786 
5787   // struct _objc_protocol_list*
5788   ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
5789 
5790   // struct _ivar_t {
5791   //   unsigned [long] int *offset;  // pointer to ivar offset location
5792   //   char *name;
5793   //   char *type;
5794   //   uint32_t alignment;
5795   //   uint32_t size;
5796   // }
5797   IvarnfABITy = llvm::StructType::create(
5798       "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
5799       Int8PtrTy, Int8PtrTy, IntTy, IntTy);
5800 
5801   // struct _ivar_list_t {
5802   //   uint32 entsize;  // sizeof(struct _ivar_t)
5803   //   uint32 count;
5804   //   struct _iver_t list[count];
5805   // }
5806   IvarListnfABITy =
5807       llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
5808                                llvm::ArrayType::get(IvarnfABITy, 0));
5809 
5810   IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
5811 
5812   // struct _class_ro_t {
5813   //   uint32_t const flags;
5814   //   uint32_t const instanceStart;
5815   //   uint32_t const instanceSize;
5816   //   uint32_t const reserved;  // only when building for 64bit targets
5817   //   const uint8_t * const ivarLayout;
5818   //   const char *const name;
5819   //   const struct _method_list_t * const baseMethods;
5820   //   const struct _objc_protocol_list *const baseProtocols;
5821   //   const struct _ivar_list_t *const ivars;
5822   //   const uint8_t * const weakIvarLayout;
5823   //   const struct _prop_list_t * const properties;
5824   // }
5825 
5826   // FIXME. Add 'reserved' field in 64bit abi mode!
5827   ClassRonfABITy = llvm::StructType::create(
5828       "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy,
5829       MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy,
5830       Int8PtrTy, PropertyListPtrTy);
5831 
5832   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
5833   llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
5834   ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
5835                  ->getPointerTo();
5836 
5837   // struct _class_t {
5838   //   struct _class_t *isa;
5839   //   struct _class_t * const superclass;
5840   //   void *cache;
5841   //   IMP *vtable;
5842   //   struct class_ro_t *ro;
5843   // }
5844 
5845   ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
5846   ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
5847                         llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy,
5848                         llvm::PointerType::getUnqual(ImpnfABITy),
5849                         llvm::PointerType::getUnqual(ClassRonfABITy));
5850 
5851   // LLVM for struct _class_t *
5852   ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
5853 
5854   // struct _category_t {
5855   //   const char * const name;
5856   //   struct _class_t *const cls;
5857   //   const struct _method_list_t * const instance_methods;
5858   //   const struct _method_list_t * const class_methods;
5859   //   const struct _protocol_list_t * const protocols;
5860   //   const struct _prop_list_t * const properties;
5861   //   const struct _prop_list_t * const class_properties;
5862   //   const uint32_t size;
5863   // }
5864   CategorynfABITy = llvm::StructType::create(
5865       "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy,
5866       MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy,
5867       PropertyListPtrTy, IntTy);
5868 
5869   // New types for nonfragile abi messaging.
5870   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5871   ASTContext &Ctx = CGM.getContext();
5872 
5873   // MessageRefTy - LLVM for:
5874   // struct _message_ref_t {
5875   //   IMP messenger;
5876   //   SEL name;
5877   // };
5878 
5879   // First the clang type for struct _message_ref_t
5880   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5881                                       Ctx.getTranslationUnitDecl(),
5882                                       SourceLocation(), SourceLocation(),
5883                                       &Ctx.Idents.get("_message_ref_t"));
5884   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5885                                 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
5886                                 ICIS_NoInit));
5887   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5888                                 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
5889                                 false, ICIS_NoInit));
5890   RD->completeDefinition();
5891 
5892   MessageRefCTy = Ctx.getTagDeclType(RD);
5893   MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
5894   MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
5895 
5896   // MessageRefPtrTy - LLVM for struct _message_ref_t*
5897   MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
5898 
5899   // SuperMessageRefTy - LLVM for:
5900   // struct _super_message_ref_t {
5901   //   SUPER_IMP messenger;
5902   //   SEL name;
5903   // };
5904   SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t",
5905                                                ImpnfABITy, SelectorPtrTy);
5906 
5907   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
5908   SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
5909 
5910 
5911   // struct objc_typeinfo {
5912   //   const void** vtable; // objc_ehtype_vtable + 2
5913   //   const char*  name;    // c++ typeinfo string
5914   //   Class        cls;
5915   // };
5916   EHTypeTy = llvm::StructType::create("struct._objc_typeinfo",
5917                                       llvm::PointerType::getUnqual(Int8PtrTy),
5918                                       Int8PtrTy, ClassnfABIPtrTy);
5919   EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
5920 }
5921 
5922 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
5923   FinishNonFragileABIModule();
5924 
5925   return nullptr;
5926 }
5927 
5928 void CGObjCNonFragileABIMac::AddModuleClassList(
5929     ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
5930     StringRef SectionName) {
5931   unsigned NumClasses = Container.size();
5932 
5933   if (!NumClasses)
5934     return;
5935 
5936   SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
5937   for (unsigned i=0; i<NumClasses; i++)
5938     Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
5939                                                 ObjCTypes.Int8PtrTy);
5940   llvm::Constant *Init =
5941     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
5942                                                   Symbols.size()),
5943                              Symbols);
5944 
5945   llvm::GlobalVariable *GV =
5946     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
5947                              llvm::GlobalValue::PrivateLinkage,
5948                              Init,
5949                              SymbolName);
5950   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
5951   GV->setSection(SectionName);
5952   CGM.addCompilerUsedGlobal(GV);
5953 }
5954 
5955 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
5956   // nonfragile abi has no module definition.
5957 
5958   // Build list of all implemented class addresses in array
5959   // L_OBJC_LABEL_CLASS_$.
5960 
5961   for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
5962     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5963     assert(ID);
5964     if (ObjCImplementationDecl *IMP = ID->getImplementation())
5965       // We are implementing a weak imported interface. Give it external linkage
5966       if (ID->isWeakImported() && !IMP->isWeakImported()) {
5967         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5968         DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5969       }
5970   }
5971 
5972   AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
5973                      GetSectionName("__objc_classlist",
5974                                     "regular,no_dead_strip"));
5975 
5976   AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
5977                      GetSectionName("__objc_nlclslist",
5978                                     "regular,no_dead_strip"));
5979 
5980   // Build list of all implemented category addresses in array
5981   // L_OBJC_LABEL_CATEGORY_$.
5982   AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
5983                      GetSectionName("__objc_catlist",
5984                                     "regular,no_dead_strip"));
5985   AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
5986                      GetSectionName("__objc_nlcatlist",
5987                                     "regular,no_dead_strip"));
5988 
5989   EmitImageInfo();
5990 }
5991 
5992 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
5993 /// VTableDispatchMethods; false otherwise. What this means is that
5994 /// except for the 19 selectors in the list, we generate 32bit-style
5995 /// message dispatch call for all the rest.
5996 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
5997   // At various points we've experimented with using vtable-based
5998   // dispatch for all methods.
5999   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
6000   case CodeGenOptions::Legacy:
6001     return false;
6002   case CodeGenOptions::NonLegacy:
6003     return true;
6004   case CodeGenOptions::Mixed:
6005     break;
6006   }
6007 
6008   // If so, see whether this selector is in the white-list of things which must
6009   // use the new dispatch convention. We lazily build a dense set for this.
6010   if (VTableDispatchMethods.empty()) {
6011     VTableDispatchMethods.insert(GetNullarySelector("alloc"));
6012     VTableDispatchMethods.insert(GetNullarySelector("class"));
6013     VTableDispatchMethods.insert(GetNullarySelector("self"));
6014     VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
6015     VTableDispatchMethods.insert(GetNullarySelector("length"));
6016     VTableDispatchMethods.insert(GetNullarySelector("count"));
6017 
6018     // These are vtable-based if GC is disabled.
6019     // Optimistically use vtable dispatch for hybrid compiles.
6020     if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
6021       VTableDispatchMethods.insert(GetNullarySelector("retain"));
6022       VTableDispatchMethods.insert(GetNullarySelector("release"));
6023       VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
6024     }
6025 
6026     VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
6027     VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
6028     VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
6029     VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
6030     VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
6031     VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
6032     VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
6033 
6034     // These are vtable-based if GC is enabled.
6035     // Optimistically use vtable dispatch for hybrid compiles.
6036     if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
6037       VTableDispatchMethods.insert(GetNullarySelector("hash"));
6038       VTableDispatchMethods.insert(GetUnarySelector("addObject"));
6039 
6040       // "countByEnumeratingWithState:objects:count"
6041       IdentifierInfo *KeyIdents[] = {
6042         &CGM.getContext().Idents.get("countByEnumeratingWithState"),
6043         &CGM.getContext().Idents.get("objects"),
6044         &CGM.getContext().Idents.get("count")
6045       };
6046       VTableDispatchMethods.insert(
6047         CGM.getContext().Selectors.getSelector(3, KeyIdents));
6048     }
6049   }
6050 
6051   return VTableDispatchMethods.count(Sel);
6052 }
6053 
6054 /// BuildClassRoTInitializer - generate meta-data for:
6055 /// struct _class_ro_t {
6056 ///   uint32_t const flags;
6057 ///   uint32_t const instanceStart;
6058 ///   uint32_t const instanceSize;
6059 ///   uint32_t const reserved;  // only when building for 64bit targets
6060 ///   const uint8_t * const ivarLayout;
6061 ///   const char *const name;
6062 ///   const struct _method_list_t * const baseMethods;
6063 ///   const struct _protocol_list_t *const baseProtocols;
6064 ///   const struct _ivar_list_t *const ivars;
6065 ///   const uint8_t * const weakIvarLayout;
6066 ///   const struct _prop_list_t * const properties;
6067 /// }
6068 ///
6069 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
6070   unsigned flags,
6071   unsigned InstanceStart,
6072   unsigned InstanceSize,
6073   const ObjCImplementationDecl *ID) {
6074   std::string ClassName = ID->getObjCRuntimeNameAsString();
6075 
6076   CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
6077   CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
6078 
6079   bool hasMRCWeak = false;
6080   if (CGM.getLangOpts().ObjCAutoRefCount)
6081     flags |= NonFragileABI_Class_CompiledByARC;
6082   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
6083     flags |= NonFragileABI_Class_HasMRCWeakIvars;
6084 
6085   ConstantInitBuilder builder(CGM);
6086   auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy);
6087 
6088   values.addInt(ObjCTypes.IntTy, flags);
6089   values.addInt(ObjCTypes.IntTy, InstanceStart);
6090   values.addInt(ObjCTypes.IntTy, InstanceSize);
6091   values.add((flags & NonFragileABI_Class_Meta)
6092                 ? GetIvarLayoutName(nullptr, ObjCTypes)
6093                 : BuildStrongIvarLayout(ID, beginInstance, endInstance));
6094   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
6095 
6096   // const struct _method_list_t * const baseMethods;
6097   SmallVector<const ObjCMethodDecl*, 16> methods;
6098   if (flags & NonFragileABI_Class_Meta) {
6099     for (const auto *MD : ID->class_methods())
6100       methods.push_back(MD);
6101   } else {
6102     for (const auto *MD : ID->instance_methods())
6103       methods.push_back(MD);
6104 
6105     for (const auto *PID : ID->property_impls()) {
6106       if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
6107         ObjCPropertyDecl *PD = PID->getPropertyDecl();
6108 
6109         if (auto MD = PD->getGetterMethodDecl())
6110           if (GetMethodDefinition(MD))
6111             methods.push_back(MD);
6112         if (auto MD = PD->getSetterMethodDecl())
6113           if (GetMethodDefinition(MD))
6114             methods.push_back(MD);
6115       }
6116     }
6117   }
6118 
6119   values.add(emitMethodList(ID->getObjCRuntimeNameAsString(),
6120                             (flags & NonFragileABI_Class_Meta)
6121                                ? MethodListType::ClassMethods
6122                                : MethodListType::InstanceMethods,
6123                             methods));
6124 
6125   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6126   assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
6127   values.add(EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
6128                                 + OID->getObjCRuntimeNameAsString(),
6129                               OID->all_referenced_protocol_begin(),
6130                               OID->all_referenced_protocol_end()));
6131 
6132   if (flags & NonFragileABI_Class_Meta) {
6133     values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy);
6134     values.add(GetIvarLayoutName(nullptr, ObjCTypes));
6135     values.add(EmitPropertyList(
6136         "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6137         ID, ID->getClassInterface(), ObjCTypes, true));
6138   } else {
6139     values.add(EmitIvarList(ID));
6140     values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak));
6141     values.add(EmitPropertyList(
6142         "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6143         ID, ID->getClassInterface(), ObjCTypes, false));
6144   }
6145 
6146   llvm::SmallString<64> roLabel;
6147   llvm::raw_svector_ostream(roLabel)
6148       << ((flags & NonFragileABI_Class_Meta) ? "\01l_OBJC_METACLASS_RO_$_"
6149                                              : "\01l_OBJC_CLASS_RO_$_")
6150       << ClassName;
6151 
6152   llvm::GlobalVariable *CLASS_RO_GV =
6153     values.finishAndCreateGlobal(roLabel, CGM.getPointerAlign(),
6154                                  /*constant*/ false,
6155                                  llvm::GlobalValue::PrivateLinkage);
6156   if (CGM.getTriple().isOSBinFormatMachO())
6157     CLASS_RO_GV->setSection("__DATA, __objc_const");
6158   return CLASS_RO_GV;
6159 }
6160 
6161 /// Build the metaclass object for a class.
6162 ///
6163 /// struct _class_t {
6164 ///   struct _class_t *isa;
6165 ///   struct _class_t * const superclass;
6166 ///   void *cache;
6167 ///   IMP *vtable;
6168 ///   struct class_ro_t *ro;
6169 /// }
6170 ///
6171 llvm::GlobalVariable *
6172 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI,
6173                                          bool isMetaclass,
6174                                          llvm::Constant *IsAGV,
6175                                          llvm::Constant *SuperClassGV,
6176                                          llvm::Constant *ClassRoGV,
6177                                          bool HiddenVisibility) {
6178   ConstantInitBuilder builder(CGM);
6179   auto values = builder.beginStruct(ObjCTypes.ClassnfABITy);
6180   values.add(IsAGV);
6181   if (SuperClassGV) {
6182     values.add(SuperClassGV);
6183   } else {
6184     values.addNullPointer(ObjCTypes.ClassnfABIPtrTy);
6185   }
6186   values.add(ObjCEmptyCacheVar);
6187   values.add(ObjCEmptyVtableVar);
6188   values.add(ClassRoGV);
6189 
6190   llvm::GlobalVariable *GV =
6191     cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition));
6192   values.finishAndSetAsInitializer(GV);
6193 
6194   if (CGM.getTriple().isOSBinFormatMachO())
6195     GV->setSection("__DATA, __objc_data");
6196   GV->setAlignment(
6197       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy));
6198   if (!CGM.getTriple().isOSBinFormatCOFF())
6199     if (HiddenVisibility)
6200       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6201   return GV;
6202 }
6203 
6204 bool
6205 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
6206   return OD->getClassMethod(GetNullarySelector("load")) != nullptr;
6207 }
6208 
6209 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
6210                                               uint32_t &InstanceStart,
6211                                               uint32_t &InstanceSize) {
6212   const ASTRecordLayout &RL =
6213     CGM.getContext().getASTObjCImplementationLayout(OID);
6214 
6215   // InstanceSize is really instance end.
6216   InstanceSize = RL.getDataSize().getQuantity();
6217 
6218   // If there are no fields, the start is the same as the end.
6219   if (!RL.getFieldCount())
6220     InstanceStart = InstanceSize;
6221   else
6222     InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
6223 }
6224 
6225 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM,
6226                                                           StringRef Name) {
6227   IdentifierInfo &II = CGM.getContext().Idents.get(Name);
6228   TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
6229   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6230 
6231   const VarDecl *VD = nullptr;
6232   for (const auto &Result : DC->lookup(&II))
6233     if ((VD = dyn_cast<VarDecl>(Result)))
6234       break;
6235 
6236   if (!VD)
6237     return llvm::GlobalValue::DLLImportStorageClass;
6238   if (VD->hasAttr<DLLExportAttr>())
6239     return llvm::GlobalValue::DLLExportStorageClass;
6240   if (VD->hasAttr<DLLImportAttr>())
6241     return llvm::GlobalValue::DLLImportStorageClass;
6242   return llvm::GlobalValue::DefaultStorageClass;
6243 }
6244 
6245 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
6246   if (!ObjCEmptyCacheVar) {
6247     ObjCEmptyCacheVar =
6248         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false,
6249                                  llvm::GlobalValue::ExternalLinkage, nullptr,
6250                                  "_objc_empty_cache");
6251     if (CGM.getTriple().isOSBinFormatCOFF())
6252       ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache"));
6253 
6254     // Only OS X with deployment version <10.9 use the empty vtable symbol
6255     const llvm::Triple &Triple = CGM.getTarget().getTriple();
6256     if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9))
6257       ObjCEmptyVtableVar =
6258           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false,
6259                                    llvm::GlobalValue::ExternalLinkage, nullptr,
6260                                    "_objc_empty_vtable");
6261     else
6262       ObjCEmptyVtableVar =
6263         llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo());
6264   }
6265 
6266   // FIXME: Is this correct (that meta class size is never computed)?
6267   uint32_t InstanceStart =
6268     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
6269   uint32_t InstanceSize = InstanceStart;
6270   uint32_t flags = NonFragileABI_Class_Meta;
6271 
6272   llvm::Constant *SuperClassGV, *IsAGV;
6273 
6274   const auto *CI = ID->getClassInterface();
6275   assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0");
6276 
6277   // Build the flags for the metaclass.
6278   bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF())
6279                            ? !CI->hasAttr<DLLExportAttr>()
6280                            : CI->getVisibility() == HiddenVisibility;
6281   if (classIsHidden)
6282     flags |= NonFragileABI_Class_Hidden;
6283 
6284   // FIXME: why is this flag set on the metaclass?
6285   // ObjC metaclasses have no fields and don't really get constructed.
6286   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6287     flags |= NonFragileABI_Class_HasCXXStructors;
6288     if (!ID->hasNonZeroConstructors())
6289       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6290   }
6291 
6292   if (!CI->getSuperClass()) {
6293     // class is root
6294     flags |= NonFragileABI_Class_Root;
6295 
6296     SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition);
6297     IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition);
6298   } else {
6299     // Has a root. Current class is not a root.
6300     const ObjCInterfaceDecl *Root = ID->getClassInterface();
6301     while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6302       Root = Super;
6303 
6304     const auto *Super = CI->getSuperClass();
6305     IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition);
6306     SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition);
6307   }
6308 
6309   llvm::GlobalVariable *CLASS_RO_GV =
6310       BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6311 
6312   llvm::GlobalVariable *MetaTClass =
6313     BuildClassObject(CI, /*metaclass*/ true,
6314                      IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden);
6315   if (CGM.getTriple().isOSBinFormatCOFF())
6316     if (CI->hasAttr<DLLExportAttr>())
6317       MetaTClass->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6318   DefinedMetaClasses.push_back(MetaTClass);
6319 
6320   // Metadata for the class
6321   flags = 0;
6322   if (classIsHidden)
6323     flags |= NonFragileABI_Class_Hidden;
6324 
6325   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6326     flags |= NonFragileABI_Class_HasCXXStructors;
6327 
6328     // Set a flag to enable a runtime optimization when a class has
6329     // fields that require destruction but which don't require
6330     // anything except zero-initialization during construction.  This
6331     // is most notably true of __strong and __weak types, but you can
6332     // also imagine there being C++ types with non-trivial default
6333     // constructors that merely set all fields to null.
6334     if (!ID->hasNonZeroConstructors())
6335       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6336   }
6337 
6338   if (hasObjCExceptionAttribute(CGM.getContext(), CI))
6339     flags |= NonFragileABI_Class_Exception;
6340 
6341   if (!CI->getSuperClass()) {
6342     flags |= NonFragileABI_Class_Root;
6343     SuperClassGV = nullptr;
6344   } else {
6345     // Has a root. Current class is not a root.
6346     const auto *Super = CI->getSuperClass();
6347     SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition);
6348   }
6349 
6350   GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6351   CLASS_RO_GV =
6352       BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6353 
6354   llvm::GlobalVariable *ClassMD =
6355     BuildClassObject(CI, /*metaclass*/ false,
6356                      MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden);
6357   if (CGM.getTriple().isOSBinFormatCOFF())
6358     if (CI->hasAttr<DLLExportAttr>())
6359       ClassMD->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6360   DefinedClasses.push_back(ClassMD);
6361   ImplementedClasses.push_back(CI);
6362 
6363   // Determine if this class is also "non-lazy".
6364   if (ImplementationIsNonLazy(ID))
6365     DefinedNonLazyClasses.push_back(ClassMD);
6366 
6367   // Force the definition of the EHType if necessary.
6368   if (flags & NonFragileABI_Class_Exception)
6369     (void) GetInterfaceEHType(CI, ForDefinition);
6370   // Make sure method definition entries are all clear for next implementation.
6371   MethodDefinitions.clear();
6372 }
6373 
6374 /// GenerateProtocolRef - This routine is called to generate code for
6375 /// a protocol reference expression; as in:
6376 /// @code
6377 ///   @protocol(Proto1);
6378 /// @endcode
6379 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6380 /// which will hold address of the protocol meta-data.
6381 ///
6382 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6383                                                          const ObjCProtocolDecl *PD) {
6384 
6385   // This routine is called for @protocol only. So, we must build definition
6386   // of protocol's meta-data (not a reference to it!)
6387   //
6388   llvm::Constant *Init =
6389     llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6390                                    ObjCTypes.getExternalProtocolPtrTy());
6391 
6392   std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
6393   ProtocolName += PD->getObjCRuntimeNameAsString();
6394 
6395   CharUnits Align = CGF.getPointerAlign();
6396 
6397   llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6398   if (PTGV)
6399     return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6400   PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6401                                   llvm::GlobalValue::WeakAnyLinkage, Init,
6402                                   ProtocolName);
6403   PTGV->setSection(GetSectionName("__objc_protorefs",
6404                                   "coalesced,no_dead_strip"));
6405   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6406   PTGV->setAlignment(Align.getQuantity());
6407   if (!CGM.getTriple().isOSBinFormatMachO())
6408     PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName));
6409   CGM.addCompilerUsedGlobal(PTGV);
6410   return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6411 }
6412 
6413 /// GenerateCategory - Build metadata for a category implementation.
6414 /// struct _category_t {
6415 ///   const char * const name;
6416 ///   struct _class_t *const cls;
6417 ///   const struct _method_list_t * const instance_methods;
6418 ///   const struct _method_list_t * const class_methods;
6419 ///   const struct _protocol_list_t * const protocols;
6420 ///   const struct _prop_list_t * const properties;
6421 ///   const struct _prop_list_t * const class_properties;
6422 ///   const uint32_t size;
6423 /// }
6424 ///
6425 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6426   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6427   const char *Prefix = "\01l_OBJC_$_CATEGORY_";
6428 
6429   llvm::SmallString<64> ExtCatName(Prefix);
6430   ExtCatName += Interface->getObjCRuntimeNameAsString();
6431   ExtCatName += "_$_";
6432   ExtCatName += OCD->getNameAsString();
6433 
6434   ConstantInitBuilder builder(CGM);
6435   auto values = builder.beginStruct(ObjCTypes.CategorynfABITy);
6436   values.add(GetClassName(OCD->getIdentifier()->getName()));
6437   // meta-class entry symbol
6438   values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition));
6439   std::string listName =
6440       (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str();
6441 
6442   SmallVector<const ObjCMethodDecl *, 16> instanceMethods;
6443   SmallVector<const ObjCMethodDecl *, 8> classMethods;
6444   for (const auto *MD : OCD->methods()) {
6445     if (MD->isInstanceMethod()) {
6446       instanceMethods.push_back(MD);
6447     } else {
6448       classMethods.push_back(MD);
6449     }
6450   }
6451 
6452   values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods,
6453                             instanceMethods));
6454   values.add(emitMethodList(listName, MethodListType::CategoryClassMethods,
6455                             classMethods));
6456 
6457   const ObjCCategoryDecl *Category =
6458     Interface->FindCategoryDeclaration(OCD->getIdentifier());
6459   if (Category) {
6460     SmallString<256> ExtName;
6461     llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_"
6462                                        << OCD->getName();
6463     values.add(EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
6464                                    + Interface->getObjCRuntimeNameAsString() + "_$_"
6465                                    + Category->getName(),
6466                                 Category->protocol_begin(),
6467                                 Category->protocol_end()));
6468     values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
6469                                 OCD, Category, ObjCTypes, false));
6470     values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
6471                                 OCD, Category, ObjCTypes, true));
6472   } else {
6473     values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy);
6474     values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6475     values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6476   }
6477 
6478   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6479   values.addInt(ObjCTypes.IntTy, Size);
6480 
6481   llvm::GlobalVariable *GCATV =
6482     values.finishAndCreateGlobal(ExtCatName.str(), CGM.getPointerAlign(),
6483                                  /*constant*/ false,
6484                                  llvm::GlobalValue::PrivateLinkage);
6485   if (CGM.getTriple().isOSBinFormatMachO())
6486     GCATV->setSection("__DATA, __objc_const");
6487   CGM.addCompilerUsedGlobal(GCATV);
6488   DefinedCategories.push_back(GCATV);
6489 
6490   // Determine if this category is also "non-lazy".
6491   if (ImplementationIsNonLazy(OCD))
6492     DefinedNonLazyCategories.push_back(GCATV);
6493   // method definition entries must be clear for next implementation.
6494   MethodDefinitions.clear();
6495 }
6496 
6497 /// emitMethodConstant - Return a struct objc_method constant.  If
6498 /// forProtocol is true, the implementation will be null; otherwise,
6499 /// the method must have a definition registered with the runtime.
6500 ///
6501 /// struct _objc_method {
6502 ///   SEL _cmd;
6503 ///   char *method_type;
6504 ///   char *_imp;
6505 /// }
6506 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder,
6507                                                 const ObjCMethodDecl *MD,
6508                                                 bool forProtocol) {
6509   auto method = builder.beginStruct(ObjCTypes.MethodTy);
6510   method.addBitCast(GetMethodVarName(MD->getSelector()),
6511                     ObjCTypes.SelectorPtrTy);
6512   method.add(GetMethodVarType(MD));
6513 
6514   if (forProtocol) {
6515     // Protocol methods have no implementation. So, this entry is always NULL.
6516     method.addNullPointer(ObjCTypes.Int8PtrTy);
6517   } else {
6518     llvm::Function *fn = GetMethodDefinition(MD);
6519     assert(fn && "no definition for method?");
6520     method.addBitCast(fn, ObjCTypes.Int8PtrTy);
6521   }
6522 
6523   method.finishAndAddTo(builder);
6524 }
6525 
6526 /// Build meta-data for method declarations.
6527 ///
6528 /// struct _method_list_t {
6529 ///   uint32_t entsize;  // sizeof(struct _objc_method)
6530 ///   uint32_t method_count;
6531 ///   struct _objc_method method_list[method_count];
6532 /// }
6533 ///
6534 llvm::Constant *
6535 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind,
6536                               ArrayRef<const ObjCMethodDecl *> methods) {
6537   // Return null for empty list.
6538   if (methods.empty())
6539     return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6540 
6541   StringRef prefix;
6542   bool forProtocol;
6543   switch (kind) {
6544   case MethodListType::CategoryInstanceMethods:
6545     prefix = "\01l_OBJC_$_CATEGORY_INSTANCE_METHODS_";
6546     forProtocol = false;
6547     break;
6548   case MethodListType::CategoryClassMethods:
6549     prefix = "\01l_OBJC_$_CATEGORY_CLASS_METHODS_";
6550     forProtocol = false;
6551     break;
6552   case MethodListType::InstanceMethods:
6553     prefix = "\01l_OBJC_$_INSTANCE_METHODS_";
6554     forProtocol = false;
6555     break;
6556   case MethodListType::ClassMethods:
6557     prefix = "\01l_OBJC_$_CLASS_METHODS_";
6558     forProtocol = false;
6559     break;
6560 
6561   case MethodListType::ProtocolInstanceMethods:
6562     prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_";
6563     forProtocol = true;
6564     break;
6565   case MethodListType::ProtocolClassMethods:
6566     prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_";
6567     forProtocol = true;
6568     break;
6569   case MethodListType::OptionalProtocolInstanceMethods:
6570     prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_";
6571     forProtocol = true;
6572     break;
6573   case MethodListType::OptionalProtocolClassMethods:
6574     prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_";
6575     forProtocol = true;
6576     break;
6577   }
6578 
6579   ConstantInitBuilder builder(CGM);
6580   auto values = builder.beginStruct();
6581 
6582   // sizeof(struct _objc_method)
6583   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6584   values.addInt(ObjCTypes.IntTy, Size);
6585   // method_count
6586   values.addInt(ObjCTypes.IntTy, methods.size());
6587   auto methodArray = values.beginArray(ObjCTypes.MethodTy);
6588   for (auto MD : methods) {
6589     emitMethodConstant(methodArray, MD, forProtocol);
6590   }
6591   methodArray.finishAndAddTo(values);
6592 
6593   auto *GV = values.finishAndCreateGlobal(prefix + name, CGM.getPointerAlign(),
6594                                           /*constant*/ false,
6595                                           llvm::GlobalValue::PrivateLinkage);
6596   if (CGM.getTriple().isOSBinFormatMachO())
6597     GV->setSection("__DATA, __objc_const");
6598   CGM.addCompilerUsedGlobal(GV);
6599   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6600 }
6601 
6602 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6603 /// the given ivar.
6604 llvm::GlobalVariable *
6605 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6606                                                const ObjCIvarDecl *Ivar) {
6607   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6608   llvm::SmallString<64> Name("OBJC_IVAR_$_");
6609   Name += Container->getObjCRuntimeNameAsString();
6610   Name += ".";
6611   Name += Ivar->getName();
6612   llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name);
6613   if (!IvarOffsetGV) {
6614     IvarOffsetGV =
6615         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy,
6616                                  false, llvm::GlobalValue::ExternalLinkage,
6617                                  nullptr, Name.str());
6618     if (CGM.getTriple().isOSBinFormatCOFF()) {
6619       bool IsPrivateOrPackage =
6620           Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6621           Ivar->getAccessControl() == ObjCIvarDecl::Package;
6622 
6623       const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface();
6624 
6625       if (ContainingID->hasAttr<DLLImportAttr>())
6626         IvarOffsetGV
6627             ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6628       else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage)
6629         IvarOffsetGV
6630             ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6631     }
6632   }
6633   return IvarOffsetGV;
6634 }
6635 
6636 llvm::Constant *
6637 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6638                                           const ObjCIvarDecl *Ivar,
6639                                           unsigned long int Offset) {
6640   llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6641   IvarOffsetGV->setInitializer(
6642       llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6643   IvarOffsetGV->setAlignment(
6644       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy));
6645 
6646   if (!CGM.getTriple().isOSBinFormatCOFF()) {
6647     // FIXME: This matches gcc, but shouldn't the visibility be set on the use
6648     // as well (i.e., in ObjCIvarOffsetVariable).
6649     if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6650         Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6651         ID->getVisibility() == HiddenVisibility)
6652       IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6653     else
6654       IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6655   }
6656 
6657   if (CGM.getTriple().isOSBinFormatMachO())
6658     IvarOffsetGV->setSection("__DATA, __objc_ivar");
6659   return IvarOffsetGV;
6660 }
6661 
6662 /// EmitIvarList - Emit the ivar list for the given
6663 /// implementation. The return value has type
6664 /// IvarListnfABIPtrTy.
6665 ///  struct _ivar_t {
6666 ///   unsigned [long] int *offset;  // pointer to ivar offset location
6667 ///   char *name;
6668 ///   char *type;
6669 ///   uint32_t alignment;
6670 ///   uint32_t size;
6671 /// }
6672 /// struct _ivar_list_t {
6673 ///   uint32 entsize;  // sizeof(struct _ivar_t)
6674 ///   uint32 count;
6675 ///   struct _iver_t list[count];
6676 /// }
6677 ///
6678 
6679 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6680   const ObjCImplementationDecl *ID) {
6681 
6682   ConstantInitBuilder builder(CGM);
6683   auto ivarList = builder.beginStruct();
6684   ivarList.addInt(ObjCTypes.IntTy,
6685                   CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy));
6686   auto ivarCountSlot = ivarList.addPlaceholder();
6687   auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy);
6688 
6689   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6690   assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6691 
6692   // FIXME. Consolidate this with similar code in GenerateClass.
6693 
6694   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6695        IVD; IVD = IVD->getNextIvar()) {
6696     // Ignore unnamed bit-fields.
6697     if (!IVD->getDeclName())
6698       continue;
6699 
6700     auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy);
6701     ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6702                                ComputeIvarBaseOffset(CGM, ID, IVD)));
6703     ivar.add(GetMethodVarName(IVD->getIdentifier()));
6704     ivar.add(GetMethodVarType(IVD));
6705     llvm::Type *FieldTy =
6706       CGM.getTypes().ConvertTypeForMem(IVD->getType());
6707     unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6708     unsigned Align = CGM.getContext().getPreferredTypeAlign(
6709       IVD->getType().getTypePtr()) >> 3;
6710     Align = llvm::Log2_32(Align);
6711     ivar.addInt(ObjCTypes.IntTy, Align);
6712     // NOTE. Size of a bitfield does not match gcc's, because of the
6713     // way bitfields are treated special in each. But I am told that
6714     // 'size' for bitfield ivars is ignored by the runtime so it does
6715     // not matter.  If it matters, there is enough info to get the
6716     // bitfield right!
6717     ivar.addInt(ObjCTypes.IntTy, Size);
6718     ivar.finishAndAddTo(ivars);
6719   }
6720   // Return null for empty list.
6721   if (ivars.empty()) {
6722     ivars.abandon();
6723     ivarList.abandon();
6724     return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6725   }
6726 
6727   auto ivarCount = ivars.size();
6728   ivars.finishAndAddTo(ivarList);
6729   ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount);
6730 
6731   const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
6732   llvm::GlobalVariable *GV =
6733     ivarList.finishAndCreateGlobal(Prefix + OID->getObjCRuntimeNameAsString(),
6734                                    CGM.getPointerAlign(), /*constant*/ false,
6735                                    llvm::GlobalValue::PrivateLinkage);
6736   if (CGM.getTriple().isOSBinFormatMachO())
6737     GV->setSection("__DATA, __objc_const");
6738   CGM.addCompilerUsedGlobal(GV);
6739   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6740 }
6741 
6742 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6743   const ObjCProtocolDecl *PD) {
6744   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6745 
6746   if (!Entry) {
6747     // We use the initializer as a marker of whether this is a forward
6748     // reference or not. At module finalization we add the empty
6749     // contents for protocols which were referenced but never defined.
6750     llvm::SmallString<64> Protocol;
6751     llvm::raw_svector_ostream(Protocol) << "\01l_OBJC_PROTOCOL_$_"
6752                                         << PD->getObjCRuntimeNameAsString();
6753 
6754     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6755                                      false, llvm::GlobalValue::ExternalLinkage,
6756                                      nullptr, Protocol);
6757     if (!CGM.getTriple().isOSBinFormatMachO())
6758       Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol));
6759   }
6760 
6761   return Entry;
6762 }
6763 
6764 /// GetOrEmitProtocol - Generate the protocol meta-data:
6765 /// @code
6766 /// struct _protocol_t {
6767 ///   id isa;  // NULL
6768 ///   const char * const protocol_name;
6769 ///   const struct _protocol_list_t * protocol_list; // super protocols
6770 ///   const struct method_list_t * const instance_methods;
6771 ///   const struct method_list_t * const class_methods;
6772 ///   const struct method_list_t *optionalInstanceMethods;
6773 ///   const struct method_list_t *optionalClassMethods;
6774 ///   const struct _prop_list_t * properties;
6775 ///   const uint32_t size;  // sizeof(struct _protocol_t)
6776 ///   const uint32_t flags;  // = 0
6777 ///   const char ** extendedMethodTypes;
6778 ///   const char *demangledName;
6779 ///   const struct _prop_list_t * class_properties;
6780 /// }
6781 /// @endcode
6782 ///
6783 
6784 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
6785   const ObjCProtocolDecl *PD) {
6786   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
6787 
6788   // Early exit if a defining object has already been generated.
6789   if (Entry && Entry->hasInitializer())
6790     return Entry;
6791 
6792   // Use the protocol definition, if there is one.
6793   if (const ObjCProtocolDecl *Def = PD->getDefinition())
6794     PD = Def;
6795 
6796   auto methodLists = ProtocolMethodLists::get(PD);
6797 
6798   ConstantInitBuilder builder(CGM);
6799   auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy);
6800 
6801   // isa is NULL
6802   values.addNullPointer(ObjCTypes.ObjectPtrTy);
6803   values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
6804   values.add(EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_"
6805                                 + PD->getObjCRuntimeNameAsString(),
6806                                PD->protocol_begin(),
6807                                PD->protocol_end()));
6808   values.add(methodLists.emitMethodList(this, PD,
6809                                  ProtocolMethodLists::RequiredInstanceMethods));
6810   values.add(methodLists.emitMethodList(this, PD,
6811                                  ProtocolMethodLists::RequiredClassMethods));
6812   values.add(methodLists.emitMethodList(this, PD,
6813                                  ProtocolMethodLists::OptionalInstanceMethods));
6814   values.add(methodLists.emitMethodList(this, PD,
6815                                  ProtocolMethodLists::OptionalClassMethods));
6816   values.add(EmitPropertyList(
6817                "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6818                nullptr, PD, ObjCTypes, false));
6819   uint32_t Size =
6820     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
6821   values.addInt(ObjCTypes.IntTy, Size);
6822   values.addInt(ObjCTypes.IntTy, 0);
6823   values.add(EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_"
6824                                        + PD->getObjCRuntimeNameAsString(),
6825                                      methodLists.emitExtendedTypesArray(this),
6826                                      ObjCTypes));
6827 
6828   // const char *demangledName;
6829   values.addNullPointer(ObjCTypes.Int8PtrTy);
6830 
6831   values.add(EmitPropertyList(
6832       "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6833       nullptr, PD, ObjCTypes, true));
6834 
6835   if (Entry) {
6836     // Already created, fix the linkage and update the initializer.
6837     Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6838     values.finishAndSetAsInitializer(Entry);
6839   } else {
6840     llvm::SmallString<64> symbolName;
6841     llvm::raw_svector_ostream(symbolName)
6842       << "\01l_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString();
6843 
6844     Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(),
6845                                          /*constant*/ false,
6846                                          llvm::GlobalValue::WeakAnyLinkage);
6847     if (!CGM.getTriple().isOSBinFormatMachO())
6848       Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName));
6849 
6850     Protocols[PD->getIdentifier()] = Entry;
6851   }
6852   Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
6853   CGM.addCompilerUsedGlobal(Entry);
6854 
6855   // Use this protocol meta-data to build protocol list table in section
6856   // __DATA, __objc_protolist
6857   llvm::SmallString<64> ProtocolRef;
6858   llvm::raw_svector_ostream(ProtocolRef) << "\01l_OBJC_LABEL_PROTOCOL_$_"
6859                                          << PD->getObjCRuntimeNameAsString();
6860 
6861   llvm::GlobalVariable *PTGV =
6862     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
6863                              false, llvm::GlobalValue::WeakAnyLinkage, Entry,
6864                              ProtocolRef);
6865   if (!CGM.getTriple().isOSBinFormatMachO())
6866     PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef));
6867   PTGV->setAlignment(
6868     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
6869   PTGV->setSection(GetSectionName("__objc_protolist",
6870                                   "coalesced,no_dead_strip"));
6871   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6872   CGM.addCompilerUsedGlobal(PTGV);
6873   return Entry;
6874 }
6875 
6876 /// EmitProtocolList - Generate protocol list meta-data:
6877 /// @code
6878 /// struct _protocol_list_t {
6879 ///   long protocol_count;   // Note, this is 32/64 bit
6880 ///   struct _protocol_t[protocol_count];
6881 /// }
6882 /// @endcode
6883 ///
6884 llvm::Constant *
6885 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
6886                                       ObjCProtocolDecl::protocol_iterator begin,
6887                                       ObjCProtocolDecl::protocol_iterator end) {
6888   SmallVector<llvm::Constant *, 16> ProtocolRefs;
6889 
6890   // Just return null for empty protocol lists
6891   if (begin == end)
6892     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6893 
6894   // FIXME: We shouldn't need to do this lookup here, should we?
6895   SmallString<256> TmpName;
6896   Name.toVector(TmpName);
6897   llvm::GlobalVariable *GV =
6898     CGM.getModule().getGlobalVariable(TmpName.str(), true);
6899   if (GV)
6900     return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
6901 
6902   ConstantInitBuilder builder(CGM);
6903   auto values = builder.beginStruct();
6904   auto countSlot = values.addPlaceholder();
6905 
6906   // A null-terminated array of protocols.
6907   auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy);
6908   for (; begin != end; ++begin)
6909     array.add(GetProtocolRef(*begin));  // Implemented???
6910   auto count = array.size();
6911   array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy);
6912 
6913   array.finishAndAddTo(values);
6914   values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
6915 
6916   GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
6917                                     /*constant*/ false,
6918                                     llvm::GlobalValue::PrivateLinkage);
6919   if (CGM.getTriple().isOSBinFormatMachO())
6920     GV->setSection("__DATA, __objc_const");
6921   CGM.addCompilerUsedGlobal(GV);
6922   return llvm::ConstantExpr::getBitCast(GV,
6923                                         ObjCTypes.ProtocolListnfABIPtrTy);
6924 }
6925 
6926 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
6927 /// This code gen. amounts to generating code for:
6928 /// @code
6929 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
6930 /// @encode
6931 ///
6932 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
6933                                                CodeGen::CodeGenFunction &CGF,
6934                                                QualType ObjectTy,
6935                                                llvm::Value *BaseValue,
6936                                                const ObjCIvarDecl *Ivar,
6937                                                unsigned CVRQualifiers) {
6938   ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface();
6939   llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
6940   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
6941                                   Offset);
6942 }
6943 
6944 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset(
6945   CodeGen::CodeGenFunction &CGF,
6946   const ObjCInterfaceDecl *Interface,
6947   const ObjCIvarDecl *Ivar) {
6948   llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar);
6949   IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue,
6950                                                   CGF.getSizeAlign(), "ivar");
6951   if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
6952     cast<llvm::LoadInst>(IvarOffsetValue)
6953         ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
6954                       llvm::MDNode::get(VMContext, None));
6955 
6956   // This could be 32bit int or 64bit integer depending on the architecture.
6957   // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
6958   //  as this is what caller always expectes.
6959   if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
6960     IvarOffsetValue = CGF.Builder.CreateIntCast(
6961         IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
6962   return IvarOffsetValue;
6963 }
6964 
6965 static void appendSelectorForMessageRefTable(std::string &buffer,
6966                                              Selector selector) {
6967   if (selector.isUnarySelector()) {
6968     buffer += selector.getNameForSlot(0);
6969     return;
6970   }
6971 
6972   for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
6973     buffer += selector.getNameForSlot(i);
6974     buffer += '_';
6975   }
6976 }
6977 
6978 /// Emit a "vtable" message send.  We emit a weak hidden-visibility
6979 /// struct, initially containing the selector pointer and a pointer to
6980 /// a "fixup" variant of the appropriate objc_msgSend.  To call, we
6981 /// load and call the function pointer, passing the address of the
6982 /// struct as the second parameter.  The runtime determines whether
6983 /// the selector is currently emitted using vtable dispatch; if so, it
6984 /// substitutes a stub function which simply tail-calls through the
6985 /// appropriate vtable slot, and if not, it substitues a stub function
6986 /// which tail-calls objc_msgSend.  Both stubs adjust the selector
6987 /// argument to correctly point to the selector.
6988 RValue
6989 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
6990                                               ReturnValueSlot returnSlot,
6991                                               QualType resultType,
6992                                               Selector selector,
6993                                               llvm::Value *arg0,
6994                                               QualType arg0Type,
6995                                               bool isSuper,
6996                                               const CallArgList &formalArgs,
6997                                               const ObjCMethodDecl *method) {
6998   // Compute the actual arguments.
6999   CallArgList args;
7000 
7001   // First argument: the receiver / super-call structure.
7002   if (!isSuper)
7003     arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
7004   args.add(RValue::get(arg0), arg0Type);
7005 
7006   // Second argument: a pointer to the message ref structure.  Leave
7007   // the actual argument value blank for now.
7008   args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
7009 
7010   args.insert(args.end(), formalArgs.begin(), formalArgs.end());
7011 
7012   MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
7013 
7014   NullReturnState nullReturn;
7015 
7016   // Find the function to call and the mangled name for the message
7017   // ref structure.  Using a different mangled name wouldn't actually
7018   // be a problem; it would just be a waste.
7019   //
7020   // The runtime currently never uses vtable dispatch for anything
7021   // except normal, non-super message-sends.
7022   // FIXME: don't use this for that.
7023   llvm::Constant *fn = nullptr;
7024   std::string messageRefName("\01l_");
7025   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
7026     if (isSuper) {
7027       fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
7028       messageRefName += "objc_msgSendSuper2_stret_fixup";
7029     } else {
7030       nullReturn.init(CGF, arg0);
7031       fn = ObjCTypes.getMessageSendStretFixupFn();
7032       messageRefName += "objc_msgSend_stret_fixup";
7033     }
7034   } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
7035     fn = ObjCTypes.getMessageSendFpretFixupFn();
7036     messageRefName += "objc_msgSend_fpret_fixup";
7037   } else {
7038     if (isSuper) {
7039       fn = ObjCTypes.getMessageSendSuper2FixupFn();
7040       messageRefName += "objc_msgSendSuper2_fixup";
7041     } else {
7042       fn = ObjCTypes.getMessageSendFixupFn();
7043       messageRefName += "objc_msgSend_fixup";
7044     }
7045   }
7046   assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
7047   messageRefName += '_';
7048 
7049   // Append the selector name, except use underscores anywhere we
7050   // would have used colons.
7051   appendSelectorForMessageRefTable(messageRefName, selector);
7052 
7053   llvm::GlobalVariable *messageRef
7054     = CGM.getModule().getGlobalVariable(messageRefName);
7055   if (!messageRef) {
7056     // Build the message ref structure.
7057     ConstantInitBuilder builder(CGM);
7058     auto values = builder.beginStruct();
7059     values.add(fn);
7060     values.add(GetMethodVarName(selector));
7061     messageRef = values.finishAndCreateGlobal(messageRefName,
7062                                               CharUnits::fromQuantity(16),
7063                                               /*constant*/ false,
7064                                         llvm::GlobalValue::WeakAnyLinkage);
7065     messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
7066     messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced"));
7067   }
7068 
7069   bool requiresnullCheck = false;
7070   if (CGM.getLangOpts().ObjCAutoRefCount && method)
7071     for (const auto *ParamDecl : method->parameters()) {
7072       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
7073         if (!nullReturn.NullBB)
7074           nullReturn.init(CGF, arg0);
7075         requiresnullCheck = true;
7076         break;
7077       }
7078     }
7079 
7080   Address mref =
7081     Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
7082             CGF.getPointerAlign());
7083 
7084   // Update the message ref argument.
7085   args[1].RV = RValue::get(mref.getPointer());
7086 
7087   // Load the function to call from the message ref table.
7088   Address calleeAddr =
7089       CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero());
7090   llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
7091 
7092   calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType);
7093   CGCallee callee(CGCalleeInfo(), calleePtr);
7094 
7095   RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
7096   return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs,
7097                              requiresnullCheck ? method : nullptr);
7098 }
7099 
7100 /// Generate code for a message send expression in the nonfragile abi.
7101 CodeGen::RValue
7102 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
7103                                             ReturnValueSlot Return,
7104                                             QualType ResultType,
7105                                             Selector Sel,
7106                                             llvm::Value *Receiver,
7107                                             const CallArgList &CallArgs,
7108                                             const ObjCInterfaceDecl *Class,
7109                                             const ObjCMethodDecl *Method) {
7110   return isVTableDispatchedSelector(Sel)
7111     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7112                             Receiver, CGF.getContext().getObjCIdType(),
7113                             false, CallArgs, Method)
7114     : EmitMessageSend(CGF, Return, ResultType,
7115                       EmitSelector(CGF, Sel),
7116                       Receiver, CGF.getContext().getObjCIdType(),
7117                       false, CallArgs, Method, Class, ObjCTypes);
7118 }
7119 
7120 llvm::Constant *
7121 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID,
7122                                        bool metaclass,
7123                                        ForDefinition_t isForDefinition) {
7124   auto prefix =
7125     (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix());
7126   return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(),
7127                         isForDefinition,
7128                         ID->isWeakImported(),
7129                         !isForDefinition
7130                           && CGM.getTriple().isOSBinFormatCOFF()
7131                           && ID->hasAttr<DLLImportAttr>());
7132 }
7133 
7134 llvm::Constant *
7135 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name,
7136                                        ForDefinition_t IsForDefinition,
7137                                        bool Weak, bool DLLImport) {
7138   llvm::GlobalValue::LinkageTypes L =
7139       Weak ? llvm::GlobalValue::ExternalWeakLinkage
7140            : llvm::GlobalValue::ExternalLinkage;
7141 
7142 
7143 
7144   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
7145   if (!GV) {
7146     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy,
7147                                   false, L, nullptr, Name);
7148 
7149     if (DLLImport)
7150       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
7151   }
7152 
7153   assert(GV->getLinkage() == L);
7154   return GV;
7155 }
7156 
7157 llvm::Value *
7158 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
7159                                            IdentifierInfo *II,
7160                                            const ObjCInterfaceDecl *ID) {
7161   CharUnits Align = CGF.getPointerAlign();
7162   llvm::GlobalVariable *&Entry = ClassReferences[II];
7163 
7164   if (!Entry) {
7165     llvm::Constant *ClassGV;
7166     if (ID) {
7167       ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7168     } else {
7169       ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(),
7170                                NotForDefinition);
7171     }
7172 
7173     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7174                                      false, llvm::GlobalValue::PrivateLinkage,
7175                                      ClassGV, "OBJC_CLASSLIST_REFERENCES_$_");
7176     Entry->setAlignment(Align.getQuantity());
7177     Entry->setSection(GetSectionName("__objc_classrefs",
7178                                      "regular,no_dead_strip"));
7179     CGM.addCompilerUsedGlobal(Entry);
7180   }
7181   return CGF.Builder.CreateAlignedLoad(Entry, Align);
7182 }
7183 
7184 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
7185                                                   const ObjCInterfaceDecl *ID) {
7186   // If the class has the objc_runtime_visible attribute, we need to
7187   // use the Objective-C runtime to get the class.
7188   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
7189     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
7190 
7191   return EmitClassRefFromId(CGF, ID->getIdentifier(), ID);
7192 }
7193 
7194 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
7195                                                     CodeGenFunction &CGF) {
7196   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
7197   return EmitClassRefFromId(CGF, II, nullptr);
7198 }
7199 
7200 llvm::Value *
7201 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
7202                                           const ObjCInterfaceDecl *ID) {
7203   CharUnits Align = CGF.getPointerAlign();
7204   llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
7205 
7206   if (!Entry) {
7207     auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7208     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7209                                      false, llvm::GlobalValue::PrivateLinkage,
7210                                      ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7211     Entry->setAlignment(Align.getQuantity());
7212     Entry->setSection(GetSectionName("__objc_superrefs",
7213                                      "regular,no_dead_strip"));
7214     CGM.addCompilerUsedGlobal(Entry);
7215   }
7216   return CGF.Builder.CreateAlignedLoad(Entry, Align);
7217 }
7218 
7219 /// EmitMetaClassRef - Return a Value * of the address of _class_t
7220 /// meta-data
7221 ///
7222 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
7223                                                       const ObjCInterfaceDecl *ID,
7224                                                       bool Weak) {
7225   CharUnits Align = CGF.getPointerAlign();
7226   llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
7227   if (!Entry) {
7228     auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition);
7229 
7230     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7231                                      false, llvm::GlobalValue::PrivateLinkage,
7232                                      MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7233     Entry->setAlignment(Align.getQuantity());
7234 
7235     Entry->setSection(GetSectionName("__objc_superrefs",
7236                                      "regular,no_dead_strip"));
7237     CGM.addCompilerUsedGlobal(Entry);
7238   }
7239 
7240   return CGF.Builder.CreateAlignedLoad(Entry, Align);
7241 }
7242 
7243 /// GetClass - Return a reference to the class for the given interface
7244 /// decl.
7245 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
7246                                               const ObjCInterfaceDecl *ID) {
7247   if (ID->isWeakImported()) {
7248     auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7249     (void)ClassGV;
7250     assert(!isa<llvm::GlobalVariable>(ClassGV) ||
7251            cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage());
7252   }
7253 
7254   return EmitClassRef(CGF, ID);
7255 }
7256 
7257 /// Generates a message send where the super is the receiver.  This is
7258 /// a message send to self with special delivery semantics indicating
7259 /// which class's method should be called.
7260 CodeGen::RValue
7261 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
7262                                                  ReturnValueSlot Return,
7263                                                  QualType ResultType,
7264                                                  Selector Sel,
7265                                                  const ObjCInterfaceDecl *Class,
7266                                                  bool isCategoryImpl,
7267                                                  llvm::Value *Receiver,
7268                                                  bool IsClassMessage,
7269                                                  const CodeGen::CallArgList &CallArgs,
7270                                                  const ObjCMethodDecl *Method) {
7271   // ...
7272   // Create and init a super structure; this is a (receiver, class)
7273   // pair we will pass to objc_msgSendSuper.
7274   Address ObjCSuper =
7275     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
7276                          "objc_super");
7277 
7278   llvm::Value *ReceiverAsObject =
7279     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7280   CGF.Builder.CreateStore(
7281       ReceiverAsObject,
7282       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
7283 
7284   // If this is a class message the metaclass is passed as the target.
7285   llvm::Value *Target;
7286   if (IsClassMessage)
7287       Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
7288   else
7289     Target = EmitSuperClassRef(CGF, Class);
7290 
7291   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7292   // ObjCTypes types.
7293   llvm::Type *ClassTy =
7294     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
7295   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
7296   CGF.Builder.CreateStore(
7297       Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
7298 
7299   return (isVTableDispatchedSelector(Sel))
7300     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7301                             ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7302                             true, CallArgs, Method)
7303     : EmitMessageSend(CGF, Return, ResultType,
7304                       EmitSelector(CGF, Sel),
7305                       ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7306                       true, CallArgs, Method, Class, ObjCTypes);
7307 }
7308 
7309 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7310                                                   Selector Sel) {
7311   Address Addr = EmitSelectorAddr(CGF, Sel);
7312 
7313   llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7314   LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7315                   llvm::MDNode::get(VMContext, None));
7316   return LI;
7317 }
7318 
7319 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF,
7320                                                  Selector Sel) {
7321   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7322 
7323   CharUnits Align = CGF.getPointerAlign();
7324   if (!Entry) {
7325     llvm::Constant *Casted =
7326       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
7327                                      ObjCTypes.SelectorPtrTy);
7328     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy,
7329                                      false, llvm::GlobalValue::PrivateLinkage,
7330                                      Casted, "OBJC_SELECTOR_REFERENCES_");
7331     Entry->setExternallyInitialized(true);
7332     Entry->setSection(GetSectionName("__objc_selrefs",
7333                                      "literal_pointers,no_dead_strip"));
7334     Entry->setAlignment(Align.getQuantity());
7335     CGM.addCompilerUsedGlobal(Entry);
7336   }
7337 
7338   return Address(Entry, Align);
7339 }
7340 
7341 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7342 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7343 ///
7344 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7345                                                 llvm::Value *src,
7346                                                 Address dst,
7347                                                 llvm::Value *ivarOffset) {
7348   llvm::Type * SrcTy = src->getType();
7349   if (!isa<llvm::PointerType>(SrcTy)) {
7350     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7351     assert(Size <= 8 && "does not support size > 8");
7352     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7353            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7354     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7355   }
7356   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7357   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7358   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
7359   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7360 }
7361 
7362 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7363 /// objc_assign_strongCast (id src, id *dst)
7364 ///
7365 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7366   CodeGen::CodeGenFunction &CGF,
7367   llvm::Value *src, Address dst) {
7368   llvm::Type * SrcTy = src->getType();
7369   if (!isa<llvm::PointerType>(SrcTy)) {
7370     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7371     assert(Size <= 8 && "does not support size > 8");
7372     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7373            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7374     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7375   }
7376   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7377   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7378   llvm::Value *args[] = { src, dst.getPointer() };
7379   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7380                               args, "weakassign");
7381 }
7382 
7383 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7384   CodeGen::CodeGenFunction &CGF,
7385   Address DestPtr,
7386   Address SrcPtr,
7387   llvm::Value *Size) {
7388   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
7389   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
7390   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7391   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7392 }
7393 
7394 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7395 /// object: objc_read_weak (id *src)
7396 ///
7397 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7398   CodeGen::CodeGenFunction &CGF,
7399   Address AddrWeakObj) {
7400   llvm::Type *DestTy = AddrWeakObj.getElementType();
7401   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
7402   llvm::Value *read_weak =
7403     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7404                                 AddrWeakObj.getPointer(), "weakread");
7405   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7406   return read_weak;
7407 }
7408 
7409 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7410 /// objc_assign_weak (id src, id *dst)
7411 ///
7412 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7413                                                 llvm::Value *src, Address dst) {
7414   llvm::Type * SrcTy = src->getType();
7415   if (!isa<llvm::PointerType>(SrcTy)) {
7416     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7417     assert(Size <= 8 && "does not support size > 8");
7418     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7419            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7420     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7421   }
7422   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7423   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7424   llvm::Value *args[] = { src, dst.getPointer() };
7425   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7426                               args, "weakassign");
7427 }
7428 
7429 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7430 /// objc_assign_global (id src, id *dst)
7431 ///
7432 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7433                                           llvm::Value *src, Address dst,
7434                                           bool threadlocal) {
7435   llvm::Type * SrcTy = src->getType();
7436   if (!isa<llvm::PointerType>(SrcTy)) {
7437     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7438     assert(Size <= 8 && "does not support size > 8");
7439     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7440            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7441     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7442   }
7443   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7444   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7445   llvm::Value *args[] = { src, dst.getPointer() };
7446   if (!threadlocal)
7447     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7448                                 args, "globalassign");
7449   else
7450     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7451                                 args, "threadlocalassign");
7452 }
7453 
7454 void
7455 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7456                                              const ObjCAtSynchronizedStmt &S) {
7457   EmitAtSynchronizedStmt(CGF, S,
7458       cast<llvm::Function>(ObjCTypes.getSyncEnterFn()),
7459       cast<llvm::Function>(ObjCTypes.getSyncExitFn()));
7460 }
7461 
7462 llvm::Constant *
7463 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7464   // There's a particular fixed type info for 'id'.
7465   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
7466     auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7467     if (!IDEHType) {
7468       IDEHType =
7469           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7470                                    llvm::GlobalValue::ExternalLinkage, nullptr,
7471                                    "OBJC_EHTYPE_id");
7472       if (CGM.getTriple().isOSBinFormatCOFF())
7473         IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id"));
7474     }
7475     return IDEHType;
7476   }
7477 
7478   // All other types should be Objective-C interface pointer types.
7479   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
7480   assert(PT && "Invalid @catch type.");
7481 
7482   const ObjCInterfaceType *IT = PT->getInterfaceType();
7483   assert(IT && "Invalid @catch type.");
7484 
7485   return GetInterfaceEHType(IT->getDecl(), NotForDefinition);
7486 }
7487 
7488 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7489                                          const ObjCAtTryStmt &S) {
7490   EmitTryCatchStmt(CGF, S,
7491       cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()),
7492       cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()),
7493       cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn()));
7494 }
7495 
7496 /// EmitThrowStmt - Generate code for a throw statement.
7497 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7498                                            const ObjCAtThrowStmt &S,
7499                                            bool ClearInsertionPoint) {
7500   if (const Expr *ThrowExpr = S.getThrowExpr()) {
7501     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7502     Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7503     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception)
7504       .setDoesNotReturn();
7505   } else {
7506     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn())
7507       .setDoesNotReturn();
7508   }
7509 
7510   CGF.Builder.CreateUnreachable();
7511   if (ClearInsertionPoint)
7512     CGF.Builder.ClearInsertionPoint();
7513 }
7514 
7515 llvm::Constant *
7516 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7517                                            ForDefinition_t IsForDefinition) {
7518   llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7519   StringRef ClassName = ID->getObjCRuntimeNameAsString();
7520 
7521   // If we don't need a definition, return the entry if found or check
7522   // if we use an external reference.
7523   if (!IsForDefinition) {
7524     if (Entry)
7525       return Entry;
7526 
7527     // If this type (or a super class) has the __objc_exception__
7528     // attribute, emit an external reference.
7529     if (hasObjCExceptionAttribute(CGM.getContext(), ID)) {
7530       std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str();
7531       Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7532                                        false, llvm::GlobalValue::ExternalLinkage,
7533                                        nullptr, EHTypeName);
7534       if (CGM.getTriple().isOSBinFormatCOFF()) {
7535         if (ID->hasAttr<DLLExportAttr>())
7536           Entry->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
7537         else if (ID->hasAttr<DLLImportAttr>())
7538           Entry->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
7539       }
7540       return Entry;
7541     }
7542   }
7543 
7544   // Otherwise we need to either make a new entry or fill in the initializer.
7545   assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7546 
7547   std::string VTableName = "objc_ehtype_vtable";
7548   auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName);
7549   if (!VTableGV) {
7550     VTableGV =
7551         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false,
7552                                  llvm::GlobalValue::ExternalLinkage, nullptr,
7553                                  VTableName);
7554     if (CGM.getTriple().isOSBinFormatCOFF())
7555       VTableGV->setDLLStorageClass(getStorage(CGM, VTableName));
7556   }
7557 
7558   llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7559   ConstantInitBuilder builder(CGM);
7560   auto values = builder.beginStruct(ObjCTypes.EHTypeTy);
7561   values.add(llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(),
7562                                                   VTableGV, VTableIdx));
7563   values.add(GetClassName(ClassName));
7564   values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition));
7565 
7566   llvm::GlobalValue::LinkageTypes L = IsForDefinition
7567                                           ? llvm::GlobalValue::ExternalLinkage
7568                                           : llvm::GlobalValue::WeakAnyLinkage;
7569   if (Entry) {
7570     values.finishAndSetAsInitializer(Entry);
7571     Entry->setAlignment(CGM.getPointerAlign().getQuantity());
7572   } else {
7573     Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName,
7574                                          CGM.getPointerAlign(),
7575                                          /*constant*/ false,
7576                                          L);
7577     if (CGM.getTriple().isOSBinFormatCOFF())
7578       if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7579         if (ID->hasAttr<DLLExportAttr>())
7580           Entry->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
7581   }
7582   assert(Entry->getLinkage() == L);
7583 
7584   if (!CGM.getTriple().isOSBinFormatCOFF())
7585     if (ID->getVisibility() == HiddenVisibility)
7586       Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7587 
7588   if (IsForDefinition)
7589     if (CGM.getTriple().isOSBinFormatMachO())
7590       Entry->setSection("__DATA,__objc_const");
7591 
7592   return Entry;
7593 }
7594 
7595 /* *** */
7596 
7597 CodeGen::CGObjCRuntime *
7598 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7599   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7600   case ObjCRuntime::FragileMacOSX:
7601   return new CGObjCMac(CGM);
7602 
7603   case ObjCRuntime::MacOSX:
7604   case ObjCRuntime::iOS:
7605   case ObjCRuntime::WatchOS:
7606     return new CGObjCNonFragileABIMac(CGM);
7607 
7608   case ObjCRuntime::GNUstep:
7609   case ObjCRuntime::GCC:
7610   case ObjCRuntime::ObjFW:
7611     llvm_unreachable("these runtimes are not Mac runtimes");
7612   }
7613   llvm_unreachable("bad runtime");
7614 }
7615