1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Support/ScopedPrinter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::FunctionCallee getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::FunctionCallee getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 } 85 86 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 87 /// 88 /// The messenger used when the return value is returned on the x87 89 /// floating-point stack; without a special entrypoint, the nil case 90 /// would be unbalanced. 91 llvm::FunctionCallee getMessageSendFpretFn() const { 92 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 93 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 94 params, true), 95 "objc_msgSend_fpret"); 96 } 97 98 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 99 /// 100 /// The messenger used when the return value is returned in two values on the 101 /// x87 floating point stack; without a special entrypoint, the nil case 102 /// would be unbalanced. Only used on 64-bit X86. 103 llvm::FunctionCallee getMessageSendFp2retFn() const { 104 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 105 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 106 llvm::Type *resultType = 107 llvm::StructType::get(longDoubleType, longDoubleType); 108 109 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 110 params, true), 111 "objc_msgSend_fp2ret"); 112 } 113 114 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 115 /// 116 /// The messenger used for super calls, which have different dispatch 117 /// semantics. The class passed is the superclass of the current 118 /// class. 119 llvm::FunctionCallee getMessageSendSuperFn() const { 120 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 121 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 122 params, true), 123 "objc_msgSendSuper"); 124 } 125 126 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 127 /// 128 /// A slightly different messenger used for super calls. The class 129 /// passed is the current class. 130 llvm::FunctionCallee getMessageSendSuperFn2() const { 131 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 132 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 133 params, true), 134 "objc_msgSendSuper2"); 135 } 136 137 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 138 /// SEL op, ...) 139 /// 140 /// The messenger used for super calls which return an aggregate indirectly. 141 llvm::FunctionCallee getMessageSendSuperStretFn() const { 142 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 143 return CGM.CreateRuntimeFunction( 144 llvm::FunctionType::get(CGM.VoidTy, params, true), 145 "objc_msgSendSuper_stret"); 146 } 147 148 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 149 /// SEL op, ...) 150 /// 151 /// objc_msgSendSuper_stret with the super2 semantics. 152 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 153 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 154 return CGM.CreateRuntimeFunction( 155 llvm::FunctionType::get(CGM.VoidTy, params, true), 156 "objc_msgSendSuper2_stret"); 157 } 158 159 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 160 // There is no objc_msgSendSuper_fpret? How can that work? 161 return getMessageSendSuperFn(); 162 } 163 164 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 165 // There is no objc_msgSendSuper_fpret? How can that work? 166 return getMessageSendSuperFn2(); 167 } 168 169 protected: 170 CodeGen::CodeGenModule &CGM; 171 172 public: 173 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 174 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 175 llvm::Type *IvarOffsetVarTy; 176 177 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 178 llvm::PointerType *ObjectPtrTy; 179 180 /// PtrObjectPtrTy - LLVM type for id * 181 llvm::PointerType *PtrObjectPtrTy; 182 183 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 184 llvm::PointerType *SelectorPtrTy; 185 186 private: 187 /// ProtocolPtrTy - LLVM type for external protocol handles 188 /// (typeof(Protocol)) 189 llvm::Type *ExternalProtocolPtrTy; 190 191 public: 192 llvm::Type *getExternalProtocolPtrTy() { 193 if (!ExternalProtocolPtrTy) { 194 // FIXME: It would be nice to unify this with the opaque type, so that the 195 // IR comes out a bit cleaner. 196 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 197 ASTContext &Ctx = CGM.getContext(); 198 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 199 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 200 } 201 202 return ExternalProtocolPtrTy; 203 } 204 205 // SuperCTy - clang type for struct objc_super. 206 QualType SuperCTy; 207 // SuperPtrCTy - clang type for struct objc_super *. 208 QualType SuperPtrCTy; 209 210 /// SuperTy - LLVM type for struct objc_super. 211 llvm::StructType *SuperTy; 212 /// SuperPtrTy - LLVM type for struct objc_super *. 213 llvm::PointerType *SuperPtrTy; 214 215 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 216 /// in GCC parlance). 217 llvm::StructType *PropertyTy; 218 219 /// PropertyListTy - LLVM type for struct objc_property_list 220 /// (_prop_list_t in GCC parlance). 221 llvm::StructType *PropertyListTy; 222 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 223 llvm::PointerType *PropertyListPtrTy; 224 225 // MethodTy - LLVM type for struct objc_method. 226 llvm::StructType *MethodTy; 227 228 /// CacheTy - LLVM type for struct objc_cache. 229 llvm::Type *CacheTy; 230 /// CachePtrTy - LLVM type for struct objc_cache *. 231 llvm::PointerType *CachePtrTy; 232 233 llvm::FunctionCallee getGetPropertyFn() { 234 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 235 ASTContext &Ctx = CGM.getContext(); 236 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 237 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 238 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 239 CanQualType Params[] = { 240 IdType, SelType, 241 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 242 llvm::FunctionType *FTy = 243 Types.GetFunctionType( 244 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 245 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 246 } 247 248 llvm::FunctionCallee getSetPropertyFn() { 249 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 250 ASTContext &Ctx = CGM.getContext(); 251 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 252 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 253 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 254 CanQualType Params[] = { 255 IdType, 256 SelType, 257 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 258 IdType, 259 Ctx.BoolTy, 260 Ctx.BoolTy}; 261 llvm::FunctionType *FTy = 262 Types.GetFunctionType( 263 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 264 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 265 } 266 267 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 268 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 269 ASTContext &Ctx = CGM.getContext(); 270 // void objc_setProperty_atomic(id self, SEL _cmd, 271 // id newValue, ptrdiff_t offset); 272 // void objc_setProperty_nonatomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 279 SmallVector<CanQualType,4> Params; 280 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 281 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 282 Params.push_back(IdType); 283 Params.push_back(SelType); 284 Params.push_back(IdType); 285 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 286 llvm::FunctionType *FTy = 287 Types.GetFunctionType( 288 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 289 const char *name; 290 if (atomic && copy) 291 name = "objc_setProperty_atomic_copy"; 292 else if (atomic && !copy) 293 name = "objc_setProperty_atomic"; 294 else if (!atomic && copy) 295 name = "objc_setProperty_nonatomic_copy"; 296 else 297 name = "objc_setProperty_nonatomic"; 298 299 return CGM.CreateRuntimeFunction(FTy, name); 300 } 301 302 llvm::FunctionCallee getCopyStructFn() { 303 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 304 ASTContext &Ctx = CGM.getContext(); 305 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 306 SmallVector<CanQualType,5> Params; 307 Params.push_back(Ctx.VoidPtrTy); 308 Params.push_back(Ctx.VoidPtrTy); 309 Params.push_back(Ctx.getSizeType()); 310 Params.push_back(Ctx.BoolTy); 311 Params.push_back(Ctx.BoolTy); 312 llvm::FunctionType *FTy = 313 Types.GetFunctionType( 314 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 315 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 316 } 317 318 /// This routine declares and returns address of: 319 /// void objc_copyCppObjectAtomic( 320 /// void *dest, const void *src, 321 /// void (*copyHelper) (void *dest, const void *source)); 322 llvm::FunctionCallee getCppAtomicObjectFunction() { 323 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 324 ASTContext &Ctx = CGM.getContext(); 325 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 326 SmallVector<CanQualType,3> Params; 327 Params.push_back(Ctx.VoidPtrTy); 328 Params.push_back(Ctx.VoidPtrTy); 329 Params.push_back(Ctx.VoidPtrTy); 330 llvm::FunctionType *FTy = 331 Types.GetFunctionType( 332 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 333 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 334 } 335 336 llvm::FunctionCallee getEnumerationMutationFn() { 337 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 338 ASTContext &Ctx = CGM.getContext(); 339 // void objc_enumerationMutation (id) 340 SmallVector<CanQualType,1> Params; 341 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 342 llvm::FunctionType *FTy = 343 Types.GetFunctionType( 344 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 345 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 346 } 347 348 llvm::FunctionCallee getLookUpClassFn() { 349 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 350 ASTContext &Ctx = CGM.getContext(); 351 // Class objc_lookUpClass (const char *) 352 SmallVector<CanQualType,1> Params; 353 Params.push_back( 354 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 355 llvm::FunctionType *FTy = 356 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 357 Ctx.getCanonicalType(Ctx.getObjCClassType()), 358 Params)); 359 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 360 } 361 362 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 363 llvm::FunctionCallee getGcReadWeakFn() { 364 // id objc_read_weak (id *) 365 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 366 llvm::FunctionType *FTy = 367 llvm::FunctionType::get(ObjectPtrTy, args, false); 368 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 369 } 370 371 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 372 llvm::FunctionCallee getGcAssignWeakFn() { 373 // id objc_assign_weak (id, id *) 374 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 375 llvm::FunctionType *FTy = 376 llvm::FunctionType::get(ObjectPtrTy, args, false); 377 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 378 } 379 380 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 381 llvm::FunctionCallee getGcAssignGlobalFn() { 382 // id objc_assign_global(id, id *) 383 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 384 llvm::FunctionType *FTy = 385 llvm::FunctionType::get(ObjectPtrTy, args, false); 386 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 387 } 388 389 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 390 llvm::FunctionCallee getGcAssignThreadLocalFn() { 391 // id objc_assign_threadlocal(id src, id * dest) 392 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 393 llvm::FunctionType *FTy = 394 llvm::FunctionType::get(ObjectPtrTy, args, false); 395 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 396 } 397 398 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 399 llvm::FunctionCallee getGcAssignIvarFn() { 400 // id objc_assign_ivar(id, id *, ptrdiff_t) 401 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 402 CGM.PtrDiffTy }; 403 llvm::FunctionType *FTy = 404 llvm::FunctionType::get(ObjectPtrTy, args, false); 405 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 406 } 407 408 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 409 llvm::FunctionCallee GcMemmoveCollectableFn() { 410 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 411 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 412 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 413 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 414 } 415 416 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 417 llvm::FunctionCallee getGcAssignStrongCastFn() { 418 // id objc_assign_strongCast(id, id *) 419 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 420 llvm::FunctionType *FTy = 421 llvm::FunctionType::get(ObjectPtrTy, args, false); 422 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 423 } 424 425 /// ExceptionThrowFn - LLVM objc_exception_throw function. 426 llvm::FunctionCallee getExceptionThrowFn() { 427 // void objc_exception_throw(id) 428 llvm::Type *args[] = { ObjectPtrTy }; 429 llvm::FunctionType *FTy = 430 llvm::FunctionType::get(CGM.VoidTy, args, false); 431 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 432 } 433 434 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 435 llvm::FunctionCallee getExceptionRethrowFn() { 436 // void objc_exception_rethrow(void) 437 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 438 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 439 } 440 441 /// SyncEnterFn - LLVM object_sync_enter function. 442 llvm::FunctionCallee getSyncEnterFn() { 443 // int objc_sync_enter (id) 444 llvm::Type *args[] = { ObjectPtrTy }; 445 llvm::FunctionType *FTy = 446 llvm::FunctionType::get(CGM.IntTy, args, false); 447 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 448 } 449 450 /// SyncExitFn - LLVM object_sync_exit function. 451 llvm::FunctionCallee getSyncExitFn() { 452 // int objc_sync_exit (id) 453 llvm::Type *args[] = { ObjectPtrTy }; 454 llvm::FunctionType *FTy = 455 llvm::FunctionType::get(CGM.IntTy, args, false); 456 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 457 } 458 459 llvm::FunctionCallee getSendFn(bool IsSuper) const { 460 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 461 } 462 463 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 464 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 465 } 466 467 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 468 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 469 } 470 471 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 472 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 473 } 474 475 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 476 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 477 } 478 479 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 480 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 481 } 482 483 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 484 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 485 } 486 487 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 488 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 489 } 490 491 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 492 }; 493 494 /// ObjCTypesHelper - Helper class that encapsulates lazy 495 /// construction of varies types used during ObjC generation. 496 class ObjCTypesHelper : public ObjCCommonTypesHelper { 497 public: 498 /// SymtabTy - LLVM type for struct objc_symtab. 499 llvm::StructType *SymtabTy; 500 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 501 llvm::PointerType *SymtabPtrTy; 502 /// ModuleTy - LLVM type for struct objc_module. 503 llvm::StructType *ModuleTy; 504 505 /// ProtocolTy - LLVM type for struct objc_protocol. 506 llvm::StructType *ProtocolTy; 507 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 508 llvm::PointerType *ProtocolPtrTy; 509 /// ProtocolExtensionTy - LLVM type for struct 510 /// objc_protocol_extension. 511 llvm::StructType *ProtocolExtensionTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension *. 514 llvm::PointerType *ProtocolExtensionPtrTy; 515 /// MethodDescriptionTy - LLVM type for struct 516 /// objc_method_description. 517 llvm::StructType *MethodDescriptionTy; 518 /// MethodDescriptionListTy - LLVM type for struct 519 /// objc_method_description_list. 520 llvm::StructType *MethodDescriptionListTy; 521 /// MethodDescriptionListPtrTy - LLVM type for struct 522 /// objc_method_description_list *. 523 llvm::PointerType *MethodDescriptionListPtrTy; 524 /// ProtocolListTy - LLVM type for struct objc_property_list. 525 llvm::StructType *ProtocolListTy; 526 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 527 llvm::PointerType *ProtocolListPtrTy; 528 /// CategoryTy - LLVM type for struct objc_category. 529 llvm::StructType *CategoryTy; 530 /// ClassTy - LLVM type for struct objc_class. 531 llvm::StructType *ClassTy; 532 /// ClassPtrTy - LLVM type for struct objc_class *. 533 llvm::PointerType *ClassPtrTy; 534 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 535 llvm::StructType *ClassExtensionTy; 536 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 537 llvm::PointerType *ClassExtensionPtrTy; 538 // IvarTy - LLVM type for struct objc_ivar. 539 llvm::StructType *IvarTy; 540 /// IvarListTy - LLVM type for struct objc_ivar_list. 541 llvm::StructType *IvarListTy; 542 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 543 llvm::PointerType *IvarListPtrTy; 544 /// MethodListTy - LLVM type for struct objc_method_list. 545 llvm::StructType *MethodListTy; 546 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 547 llvm::PointerType *MethodListPtrTy; 548 549 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 550 llvm::StructType *ExceptionDataTy; 551 552 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 553 llvm::FunctionCallee getExceptionTryEnterFn() { 554 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 555 return CGM.CreateRuntimeFunction( 556 llvm::FunctionType::get(CGM.VoidTy, params, false), 557 "objc_exception_try_enter"); 558 } 559 560 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 561 llvm::FunctionCallee getExceptionTryExitFn() { 562 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 563 return CGM.CreateRuntimeFunction( 564 llvm::FunctionType::get(CGM.VoidTy, params, false), 565 "objc_exception_try_exit"); 566 } 567 568 /// ExceptionExtractFn - LLVM objc_exception_extract function. 569 llvm::FunctionCallee getExceptionExtractFn() { 570 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 571 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 572 params, false), 573 "objc_exception_extract"); 574 } 575 576 /// ExceptionMatchFn - LLVM objc_exception_match function. 577 llvm::FunctionCallee getExceptionMatchFn() { 578 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 579 return CGM.CreateRuntimeFunction( 580 llvm::FunctionType::get(CGM.Int32Ty, params, false), 581 "objc_exception_match"); 582 } 583 584 /// SetJmpFn - LLVM _setjmp function. 585 llvm::FunctionCallee getSetJmpFn() { 586 // This is specifically the prototype for x86. 587 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 588 return CGM.CreateRuntimeFunction( 589 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 590 llvm::AttributeList::get(CGM.getLLVMContext(), 591 llvm::AttributeList::FunctionIndex, 592 llvm::Attribute::NonLazyBind)); 593 } 594 595 public: 596 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 597 }; 598 599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600 /// modern abi 601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602 public: 603 // MethodListnfABITy - LLVM for struct _method_list_t 604 llvm::StructType *MethodListnfABITy; 605 606 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 607 llvm::PointerType *MethodListnfABIPtrTy; 608 609 // ProtocolnfABITy = LLVM for struct _protocol_t 610 llvm::StructType *ProtocolnfABITy; 611 612 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 613 llvm::PointerType *ProtocolnfABIPtrTy; 614 615 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 616 llvm::StructType *ProtocolListnfABITy; 617 618 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 619 llvm::PointerType *ProtocolListnfABIPtrTy; 620 621 // ClassnfABITy - LLVM for struct _class_t 622 llvm::StructType *ClassnfABITy; 623 624 // ClassnfABIPtrTy - LLVM for struct _class_t* 625 llvm::PointerType *ClassnfABIPtrTy; 626 627 // IvarnfABITy - LLVM for struct _ivar_t 628 llvm::StructType *IvarnfABITy; 629 630 // IvarListnfABITy - LLVM for struct _ivar_list_t 631 llvm::StructType *IvarListnfABITy; 632 633 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 634 llvm::PointerType *IvarListnfABIPtrTy; 635 636 // ClassRonfABITy - LLVM for struct _class_ro_t 637 llvm::StructType *ClassRonfABITy; 638 639 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 640 llvm::PointerType *ImpnfABITy; 641 642 // CategorynfABITy - LLVM for struct _category_t 643 llvm::StructType *CategorynfABITy; 644 645 // New types for nonfragile abi messaging. 646 647 // MessageRefTy - LLVM for: 648 // struct _message_ref_t { 649 // IMP messenger; 650 // SEL name; 651 // }; 652 llvm::StructType *MessageRefTy; 653 // MessageRefCTy - clang type for struct _message_ref_t 654 QualType MessageRefCTy; 655 656 // MessageRefPtrTy - LLVM for struct _message_ref_t* 657 llvm::Type *MessageRefPtrTy; 658 // MessageRefCPtrTy - clang type for struct _message_ref_t* 659 QualType MessageRefCPtrTy; 660 661 // SuperMessageRefTy - LLVM for: 662 // struct _super_message_ref_t { 663 // SUPER_IMP messenger; 664 // SEL name; 665 // }; 666 llvm::StructType *SuperMessageRefTy; 667 668 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 669 llvm::PointerType *SuperMessageRefPtrTy; 670 671 llvm::FunctionCallee getMessageSendFixupFn() { 672 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 673 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 674 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 675 params, true), 676 "objc_msgSend_fixup"); 677 } 678 679 llvm::FunctionCallee getMessageSendFpretFixupFn() { 680 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 681 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 682 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 683 params, true), 684 "objc_msgSend_fpret_fixup"); 685 } 686 687 llvm::FunctionCallee getMessageSendStretFixupFn() { 688 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 689 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 690 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 691 params, true), 692 "objc_msgSend_stret_fixup"); 693 } 694 695 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 696 // id objc_msgSendSuper2_fixup (struct objc_super *, 697 // struct _super_message_ref_t*, ...) 698 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 699 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 700 params, true), 701 "objc_msgSendSuper2_fixup"); 702 } 703 704 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 705 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 706 // struct _super_message_ref_t*, ...) 707 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 708 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 709 params, true), 710 "objc_msgSendSuper2_stret_fixup"); 711 } 712 713 llvm::FunctionCallee getObjCEndCatchFn() { 714 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 715 "objc_end_catch"); 716 } 717 718 llvm::FunctionCallee getObjCBeginCatchFn() { 719 llvm::Type *params[] = { Int8PtrTy }; 720 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 721 params, false), 722 "objc_begin_catch"); 723 } 724 725 /// Class objc_loadClassref (void *) 726 /// 727 /// Loads from a classref. For Objective-C stub classes, this invokes the 728 /// initialization callback stored inside the stub. For all other classes 729 /// this simply dereferences the pointer. 730 llvm::FunctionCallee getLoadClassrefFn() const { 731 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 732 // be called a lot. 733 // 734 // Also it is safe to make it readnone, since we never load or store the 735 // classref except by calling this function. 736 llvm::Type *params[] = { Int8PtrPtrTy }; 737 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 738 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 739 "objc_loadClassref", 740 llvm::AttributeList::get(CGM.getLLVMContext(), 741 llvm::AttributeList::FunctionIndex, 742 {llvm::Attribute::NonLazyBind, 743 llvm::Attribute::ReadNone, 744 llvm::Attribute::NoUnwind})); 745 if (!CGM.getTriple().isOSBinFormatCOFF()) 746 cast<llvm::Function>(F.getCallee())->setLinkage( 747 llvm::Function::ExternalWeakLinkage); 748 749 return F; 750 } 751 752 llvm::StructType *EHTypeTy; 753 llvm::Type *EHTypePtrTy; 754 755 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 756 }; 757 758 enum class ObjCLabelType { 759 ClassName, 760 MethodVarName, 761 MethodVarType, 762 PropertyName, 763 }; 764 765 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 766 public: 767 class SKIP_SCAN { 768 public: 769 unsigned skip; 770 unsigned scan; 771 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 772 : skip(_skip), scan(_scan) {} 773 }; 774 775 /// opcode for captured block variables layout 'instructions'. 776 /// In the following descriptions, 'I' is the value of the immediate field. 777 /// (field following the opcode). 778 /// 779 enum BLOCK_LAYOUT_OPCODE { 780 /// An operator which affects how the following layout should be 781 /// interpreted. 782 /// I == 0: Halt interpretation and treat everything else as 783 /// a non-pointer. Note that this instruction is equal 784 /// to '\0'. 785 /// I != 0: Currently unused. 786 BLOCK_LAYOUT_OPERATOR = 0, 787 788 /// The next I+1 bytes do not contain a value of object pointer type. 789 /// Note that this can leave the stream unaligned, meaning that 790 /// subsequent word-size instructions do not begin at a multiple of 791 /// the pointer size. 792 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 793 794 /// The next I+1 words do not contain a value of object pointer type. 795 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 796 /// when the required skip quantity is a multiple of the pointer size. 797 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 798 799 /// The next I+1 words are __strong pointers to Objective-C 800 /// objects or blocks. 801 BLOCK_LAYOUT_STRONG = 3, 802 803 /// The next I+1 words are pointers to __block variables. 804 BLOCK_LAYOUT_BYREF = 4, 805 806 /// The next I+1 words are __weak pointers to Objective-C 807 /// objects or blocks. 808 BLOCK_LAYOUT_WEAK = 5, 809 810 /// The next I+1 words are __unsafe_unretained pointers to 811 /// Objective-C objects or blocks. 812 BLOCK_LAYOUT_UNRETAINED = 6 813 814 /// The next I+1 words are block or object pointers with some 815 /// as-yet-unspecified ownership semantics. If we add more 816 /// flavors of ownership semantics, values will be taken from 817 /// this range. 818 /// 819 /// This is included so that older tools can at least continue 820 /// processing the layout past such things. 821 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 822 823 /// All other opcodes are reserved. Halt interpretation and 824 /// treat everything else as opaque. 825 }; 826 827 class RUN_SKIP { 828 public: 829 enum BLOCK_LAYOUT_OPCODE opcode; 830 CharUnits block_var_bytepos; 831 CharUnits block_var_size; 832 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 833 CharUnits BytePos = CharUnits::Zero(), 834 CharUnits Size = CharUnits::Zero()) 835 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 836 837 // Allow sorting based on byte pos. 838 bool operator<(const RUN_SKIP &b) const { 839 return block_var_bytepos < b.block_var_bytepos; 840 } 841 }; 842 843 protected: 844 llvm::LLVMContext &VMContext; 845 // FIXME! May not be needing this after all. 846 unsigned ObjCABI; 847 848 // arc/mrr layout of captured block literal variables. 849 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 850 851 /// LazySymbols - Symbols to generate a lazy reference for. See 852 /// DefinedSymbols and FinishModule(). 853 llvm::SetVector<IdentifierInfo*> LazySymbols; 854 855 /// DefinedSymbols - External symbols which are defined by this 856 /// module. The symbols in this list and LazySymbols are used to add 857 /// special linker symbols which ensure that Objective-C modules are 858 /// linked properly. 859 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 860 861 /// ClassNames - uniqued class names. 862 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 863 864 /// MethodVarNames - uniqued method variable names. 865 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 866 867 /// DefinedCategoryNames - list of category names in form Class_Category. 868 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 869 870 /// MethodVarTypes - uniqued method type signatures. We have to use 871 /// a StringMap here because have no other unique reference. 872 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 873 874 /// MethodDefinitions - map of methods which have been defined in 875 /// this translation unit. 876 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 877 878 /// DirectMethodDefinitions - map of direct methods which have been defined in 879 /// this translation unit. 880 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 881 882 /// PropertyNames - uniqued method variable names. 883 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 884 885 /// ClassReferences - uniqued class references. 886 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 887 888 /// SelectorReferences - uniqued selector references. 889 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 890 891 /// Protocols - Protocols for which an objc_protocol structure has 892 /// been emitted. Forward declarations are handled by creating an 893 /// empty structure whose initializer is filled in when/if defined. 894 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 895 896 /// DefinedProtocols - Protocols which have actually been 897 /// defined. We should not need this, see FIXME in GenerateProtocol. 898 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 899 900 /// DefinedClasses - List of defined classes. 901 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 902 903 /// ImplementedClasses - List of @implemented classes. 904 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 905 906 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 908 909 /// DefinedCategories - List of defined categories. 910 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 911 912 /// DefinedStubCategories - List of defined categories on class stubs. 913 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 914 915 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 917 918 /// Cached reference to the class for constant strings. This value has type 919 /// int * but is actually an Obj-C class pointer. 920 llvm::WeakTrackingVH ConstantStringClassRef; 921 922 /// The LLVM type corresponding to NSConstantString. 923 llvm::StructType *NSConstantStringType = nullptr; 924 925 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 926 927 /// GetNameForMethod - Return a name for the given method. 928 /// \param[out] NameOut - The return value. 929 void GetNameForMethod(const ObjCMethodDecl *OMD, 930 const ObjCContainerDecl *CD, 931 SmallVectorImpl<char> &NameOut, 932 bool ignoreCategoryNamespace = false); 933 934 /// GetMethodVarName - Return a unique constant for the given 935 /// selector's name. The return value has type char *. 936 llvm::Constant *GetMethodVarName(Selector Sel); 937 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 938 939 /// GetMethodVarType - Return a unique constant for the given 940 /// method's type encoding string. The return value has type char *. 941 942 // FIXME: This is a horrible name. 943 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 944 bool Extended = false); 945 llvm::Constant *GetMethodVarType(const FieldDecl *D); 946 947 /// GetPropertyName - Return a unique constant for the given 948 /// name. The return value has type char *. 949 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 950 951 // FIXME: This can be dropped once string functions are unified. 952 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 953 const Decl *Container); 954 955 /// GetClassName - Return a unique constant for the given selector's 956 /// runtime name (which may change via use of objc_runtime_name attribute on 957 /// class or protocol definition. The return value has type char *. 958 llvm::Constant *GetClassName(StringRef RuntimeName); 959 960 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 961 962 /// BuildIvarLayout - Builds ivar layout bitmap for the class 963 /// implementation for the __strong or __weak case. 964 /// 965 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 966 /// are any weak ivars defined directly in the class. Meaningless unless 967 /// building a weak layout. Does not guarantee that the layout will 968 /// actually have any entries, because the ivar might be under-aligned. 969 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 970 CharUnits beginOffset, 971 CharUnits endOffset, 972 bool forStrongLayout, 973 bool hasMRCWeakIvars); 974 975 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 976 CharUnits beginOffset, 977 CharUnits endOffset) { 978 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 979 } 980 981 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 982 CharUnits beginOffset, 983 CharUnits endOffset, 984 bool hasMRCWeakIvars) { 985 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 986 } 987 988 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 989 990 void UpdateRunSkipBlockVars(bool IsByref, 991 Qualifiers::ObjCLifetime LifeTime, 992 CharUnits FieldOffset, 993 CharUnits FieldSize); 994 995 void BuildRCBlockVarRecordLayout(const RecordType *RT, 996 CharUnits BytePos, bool &HasUnion, 997 bool ByrefLayout=false); 998 999 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 1000 const RecordDecl *RD, 1001 ArrayRef<const FieldDecl*> RecFields, 1002 CharUnits BytePos, bool &HasUnion, 1003 bool ByrefLayout); 1004 1005 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1006 1007 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1008 1009 /// GetIvarLayoutName - Returns a unique constant for the given 1010 /// ivar layout bitmap. 1011 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1012 const ObjCCommonTypesHelper &ObjCTypes); 1013 1014 /// EmitPropertyList - Emit the given property list. The return 1015 /// value has type PropertyListPtrTy. 1016 llvm::Constant *EmitPropertyList(Twine Name, 1017 const Decl *Container, 1018 const ObjCContainerDecl *OCD, 1019 const ObjCCommonTypesHelper &ObjCTypes, 1020 bool IsClassProperty); 1021 1022 /// EmitProtocolMethodTypes - Generate the array of extended method type 1023 /// strings. The return value has type Int8PtrPtrTy. 1024 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1025 ArrayRef<llvm::Constant*> MethodTypes, 1026 const ObjCCommonTypesHelper &ObjCTypes); 1027 1028 /// GetProtocolRef - Return a reference to the internal protocol 1029 /// description, creating an empty one if it has not been 1030 /// defined. The return value has type ProtocolPtrTy. 1031 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1032 1033 /// Return a reference to the given Class using runtime calls rather than 1034 /// by a symbol reference. 1035 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1036 const ObjCInterfaceDecl *ID, 1037 ObjCCommonTypesHelper &ObjCTypes); 1038 1039 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1040 1041 public: 1042 /// CreateMetadataVar - Create a global variable with internal 1043 /// linkage for use by the Objective-C runtime. 1044 /// 1045 /// This is a convenience wrapper which not only creates the 1046 /// variable, but also sets the section and alignment and adds the 1047 /// global to the "llvm.used" list. 1048 /// 1049 /// \param Name - The variable name. 1050 /// \param Init - The variable initializer; this is also used to 1051 /// define the type of the variable. 1052 /// \param Section - The section the variable should go into, or empty. 1053 /// \param Align - The alignment for the variable, or 0. 1054 /// \param AddToUsed - Whether the variable should be added to 1055 /// "llvm.used". 1056 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1057 ConstantStructBuilder &Init, 1058 StringRef Section, CharUnits Align, 1059 bool AddToUsed); 1060 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1061 llvm::Constant *Init, 1062 StringRef Section, CharUnits Align, 1063 bool AddToUsed); 1064 1065 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1066 ObjCLabelType LabelType, 1067 bool ForceNonFragileABI = false, 1068 bool NullTerminate = true); 1069 1070 protected: 1071 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1072 ReturnValueSlot Return, 1073 QualType ResultType, 1074 Selector Sel, 1075 llvm::Value *Arg0, 1076 QualType Arg0Ty, 1077 bool IsSuper, 1078 const CallArgList &CallArgs, 1079 const ObjCMethodDecl *OMD, 1080 const ObjCInterfaceDecl *ClassReceiver, 1081 const ObjCCommonTypesHelper &ObjCTypes); 1082 1083 /// EmitImageInfo - Emit the image info marker used to encode some module 1084 /// level information. 1085 void EmitImageInfo(); 1086 1087 public: 1088 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1089 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1090 1091 bool isNonFragileABI() const { 1092 return ObjCABI == 2; 1093 } 1094 1095 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1096 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1097 1098 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1099 const ObjCContainerDecl *CD=nullptr) override; 1100 1101 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1102 const ObjCContainerDecl *CD); 1103 1104 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1105 const ObjCMethodDecl *OMD, 1106 const ObjCContainerDecl *CD) override; 1107 1108 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1109 1110 /// GetOrEmitProtocol - Get the protocol object for the given 1111 /// declaration, emitting it if necessary. The return value has type 1112 /// ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1114 1115 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1116 /// object for the given declaration, emitting it if needed. These 1117 /// forward references will be filled in with empty bodies if no 1118 /// definition is seen. The return value has type ProtocolPtrTy. 1119 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1120 1121 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1122 1123 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1124 const CGBlockInfo &blockInfo) override; 1125 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1126 const CGBlockInfo &blockInfo) override; 1127 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1128 const CGBlockInfo &blockInfo) override; 1129 1130 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1131 QualType T) override; 1132 1133 private: 1134 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1135 }; 1136 1137 namespace { 1138 1139 enum class MethodListType { 1140 CategoryInstanceMethods, 1141 CategoryClassMethods, 1142 InstanceMethods, 1143 ClassMethods, 1144 ProtocolInstanceMethods, 1145 ProtocolClassMethods, 1146 OptionalProtocolInstanceMethods, 1147 OptionalProtocolClassMethods, 1148 }; 1149 1150 /// A convenience class for splitting the methods of a protocol into 1151 /// the four interesting groups. 1152 class ProtocolMethodLists { 1153 public: 1154 enum Kind { 1155 RequiredInstanceMethods, 1156 RequiredClassMethods, 1157 OptionalInstanceMethods, 1158 OptionalClassMethods 1159 }; 1160 enum { 1161 NumProtocolMethodLists = 4 1162 }; 1163 1164 static MethodListType getMethodListKind(Kind kind) { 1165 switch (kind) { 1166 case RequiredInstanceMethods: 1167 return MethodListType::ProtocolInstanceMethods; 1168 case RequiredClassMethods: 1169 return MethodListType::ProtocolClassMethods; 1170 case OptionalInstanceMethods: 1171 return MethodListType::OptionalProtocolInstanceMethods; 1172 case OptionalClassMethods: 1173 return MethodListType::OptionalProtocolClassMethods; 1174 } 1175 llvm_unreachable("bad kind"); 1176 } 1177 1178 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1179 1180 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1181 ProtocolMethodLists result; 1182 1183 for (auto MD : PD->methods()) { 1184 size_t index = (2 * size_t(MD->isOptional())) 1185 + (size_t(MD->isClassMethod())); 1186 result.Methods[index].push_back(MD); 1187 } 1188 1189 return result; 1190 } 1191 1192 template <class Self> 1193 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1194 // In both ABIs, the method types list is parallel with the 1195 // concatenation of the methods arrays in the following order: 1196 // instance methods 1197 // class methods 1198 // optional instance methods 1199 // optional class methods 1200 SmallVector<llvm::Constant*, 8> result; 1201 1202 // Methods is already in the correct order for both ABIs. 1203 for (auto &list : Methods) { 1204 for (auto MD : list) { 1205 result.push_back(self->GetMethodVarType(MD, true)); 1206 } 1207 } 1208 1209 return result; 1210 } 1211 1212 template <class Self> 1213 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1214 Kind kind) const { 1215 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1216 getMethodListKind(kind), Methods[kind]); 1217 } 1218 }; 1219 1220 } // end anonymous namespace 1221 1222 class CGObjCMac : public CGObjCCommonMac { 1223 private: 1224 friend ProtocolMethodLists; 1225 1226 ObjCTypesHelper ObjCTypes; 1227 1228 /// EmitModuleInfo - Another marker encoding module level 1229 /// information. 1230 void EmitModuleInfo(); 1231 1232 /// EmitModuleSymols - Emit module symbols, the list of defined 1233 /// classes and categories. The result has type SymtabPtrTy. 1234 llvm::Constant *EmitModuleSymbols(); 1235 1236 /// FinishModule - Write out global data structures at the end of 1237 /// processing a translation unit. 1238 void FinishModule(); 1239 1240 /// EmitClassExtension - Generate the class extension structure used 1241 /// to store the weak ivar layout and properties. The return value 1242 /// has type ClassExtensionPtrTy. 1243 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1244 CharUnits instanceSize, 1245 bool hasMRCWeakIvars, 1246 bool isMetaclass); 1247 1248 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1249 /// for the given class. 1250 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1251 const ObjCInterfaceDecl *ID); 1252 1253 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1254 IdentifierInfo *II); 1255 1256 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1257 1258 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1259 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1260 1261 /// EmitIvarList - Emit the ivar list for the given 1262 /// implementation. If ForClass is true the list of class ivars 1263 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1264 /// interface ivars will be emitted. The return value has type 1265 /// IvarListPtrTy. 1266 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1267 bool ForClass); 1268 1269 /// EmitMetaClass - Emit a forward reference to the class structure 1270 /// for the metaclass of the given interface. The return value has 1271 /// type ClassPtrTy. 1272 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1273 1274 /// EmitMetaClass - Emit a class structure for the metaclass of the 1275 /// given implementation. The return value has type ClassPtrTy. 1276 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1277 llvm::Constant *Protocols, 1278 ArrayRef<const ObjCMethodDecl *> Methods); 1279 1280 void emitMethodConstant(ConstantArrayBuilder &builder, 1281 const ObjCMethodDecl *MD); 1282 1283 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1284 const ObjCMethodDecl *MD); 1285 1286 /// EmitMethodList - Emit the method list for the given 1287 /// implementation. The return value has type MethodListPtrTy. 1288 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1289 ArrayRef<const ObjCMethodDecl *> Methods); 1290 1291 /// GetOrEmitProtocol - Get the protocol object for the given 1292 /// declaration, emitting it if necessary. The return value has type 1293 /// ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1295 1296 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1297 /// object for the given declaration, emitting it if needed. These 1298 /// forward references will be filled in with empty bodies if no 1299 /// definition is seen. The return value has type ProtocolPtrTy. 1300 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1301 1302 /// EmitProtocolExtension - Generate the protocol extension 1303 /// structure used to store optional instance and class methods, and 1304 /// protocol properties. The return value has type 1305 /// ProtocolExtensionPtrTy. 1306 llvm::Constant * 1307 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1308 const ProtocolMethodLists &methodLists); 1309 1310 /// EmitProtocolList - Generate the list of referenced 1311 /// protocols. The return value has type ProtocolListPtrTy. 1312 llvm::Constant *EmitProtocolList(Twine Name, 1313 ObjCProtocolDecl::protocol_iterator begin, 1314 ObjCProtocolDecl::protocol_iterator end); 1315 1316 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1317 /// for the given selector. 1318 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1319 Address EmitSelectorAddr(Selector Sel); 1320 1321 public: 1322 CGObjCMac(CodeGen::CodeGenModule &cgm); 1323 1324 llvm::Constant *getNSConstantStringClassRef() override; 1325 1326 llvm::Function *ModuleInitFunction() override; 1327 1328 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1329 ReturnValueSlot Return, 1330 QualType ResultType, 1331 Selector Sel, llvm::Value *Receiver, 1332 const CallArgList &CallArgs, 1333 const ObjCInterfaceDecl *Class, 1334 const ObjCMethodDecl *Method) override; 1335 1336 CodeGen::RValue 1337 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1338 ReturnValueSlot Return, QualType ResultType, 1339 Selector Sel, const ObjCInterfaceDecl *Class, 1340 bool isCategoryImpl, llvm::Value *Receiver, 1341 bool IsClassMessage, const CallArgList &CallArgs, 1342 const ObjCMethodDecl *Method) override; 1343 1344 llvm::Value *GetClass(CodeGenFunction &CGF, 1345 const ObjCInterfaceDecl *ID) override; 1346 1347 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1348 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1349 1350 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1351 /// untyped one. 1352 llvm::Value *GetSelector(CodeGenFunction &CGF, 1353 const ObjCMethodDecl *Method) override; 1354 1355 llvm::Constant *GetEHType(QualType T) override; 1356 1357 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1358 1359 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1360 1361 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1362 1363 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1364 const ObjCProtocolDecl *PD) override; 1365 1366 llvm::FunctionCallee GetPropertyGetFunction() override; 1367 llvm::FunctionCallee GetPropertySetFunction() override; 1368 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1369 bool copy) override; 1370 llvm::FunctionCallee GetGetStructFunction() override; 1371 llvm::FunctionCallee GetSetStructFunction() override; 1372 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1373 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1374 llvm::FunctionCallee EnumerationMutationFunction() override; 1375 1376 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1377 const ObjCAtTryStmt &S) override; 1378 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1379 const ObjCAtSynchronizedStmt &S) override; 1380 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1381 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1382 bool ClearInsertionPoint=true) override; 1383 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1384 Address AddrWeakObj) override; 1385 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1386 llvm::Value *src, Address dst) override; 1387 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest, 1389 bool threadlocal = false) override; 1390 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1391 llvm::Value *src, Address dest, 1392 llvm::Value *ivarOffset) override; 1393 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1394 llvm::Value *src, Address dest) override; 1395 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1396 Address dest, Address src, 1397 llvm::Value *size) override; 1398 1399 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1400 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1401 unsigned CVRQualifiers) override; 1402 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1403 const ObjCInterfaceDecl *Interface, 1404 const ObjCIvarDecl *Ivar) override; 1405 }; 1406 1407 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1408 private: 1409 friend ProtocolMethodLists; 1410 ObjCNonFragileABITypesHelper ObjCTypes; 1411 llvm::GlobalVariable* ObjCEmptyCacheVar; 1412 llvm::Constant* ObjCEmptyVtableVar; 1413 1414 /// SuperClassReferences - uniqued super class references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1416 1417 /// MetaClassReferences - uniqued meta class references. 1418 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1419 1420 /// EHTypeReferences - uniqued class ehtype references. 1421 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1422 1423 /// VTableDispatchMethods - List of methods for which we generate 1424 /// vtable-based message dispatch. 1425 llvm::DenseSet<Selector> VTableDispatchMethods; 1426 1427 /// DefinedMetaClasses - List of defined meta-classes. 1428 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1429 1430 /// isVTableDispatchedSelector - Returns true if SEL is a 1431 /// vtable-based selector. 1432 bool isVTableDispatchedSelector(Selector Sel); 1433 1434 /// FinishNonFragileABIModule - Write out global data structures at the end of 1435 /// processing a translation unit. 1436 void FinishNonFragileABIModule(); 1437 1438 /// AddModuleClassList - Add the given list of class pointers to the 1439 /// module with the provided symbol and section names. 1440 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1441 StringRef SymbolName, StringRef SectionName); 1442 1443 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1444 unsigned InstanceStart, 1445 unsigned InstanceSize, 1446 const ObjCImplementationDecl *ID); 1447 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1448 bool isMetaclass, 1449 llvm::Constant *IsAGV, 1450 llvm::Constant *SuperClassGV, 1451 llvm::Constant *ClassRoGV, 1452 bool HiddenVisibility); 1453 1454 void emitMethodConstant(ConstantArrayBuilder &builder, 1455 const ObjCMethodDecl *MD, 1456 bool forProtocol); 1457 1458 /// Emit the method list for the given implementation. The return value 1459 /// has type MethodListnfABITy. 1460 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1461 ArrayRef<const ObjCMethodDecl *> Methods); 1462 1463 /// EmitIvarList - Emit the ivar list for the given 1464 /// implementation. If ForClass is true the list of class ivars 1465 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1466 /// interface ivars will be emitted. The return value has type 1467 /// IvarListnfABIPtrTy. 1468 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1469 1470 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1471 const ObjCIvarDecl *Ivar, 1472 unsigned long int offset); 1473 1474 /// GetOrEmitProtocol - Get the protocol object for the given 1475 /// declaration, emitting it if necessary. The return value has type 1476 /// ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1478 1479 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1480 /// object for the given declaration, emitting it if needed. These 1481 /// forward references will be filled in with empty bodies if no 1482 /// definition is seen. The return value has type ProtocolPtrTy. 1483 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1484 1485 /// EmitProtocolList - Generate the list of referenced 1486 /// protocols. The return value has type ProtocolListPtrTy. 1487 llvm::Constant *EmitProtocolList(Twine Name, 1488 ObjCProtocolDecl::protocol_iterator begin, 1489 ObjCProtocolDecl::protocol_iterator end); 1490 1491 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1492 ReturnValueSlot Return, 1493 QualType ResultType, 1494 Selector Sel, 1495 llvm::Value *Receiver, 1496 QualType Arg0Ty, 1497 bool IsSuper, 1498 const CallArgList &CallArgs, 1499 const ObjCMethodDecl *Method); 1500 1501 /// GetClassGlobal - Return the global variable for the Objective-C 1502 /// class of the given name. 1503 llvm::Constant *GetClassGlobal(StringRef Name, 1504 ForDefinition_t IsForDefinition, 1505 bool Weak = false, bool DLLImport = false); 1506 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1507 bool isMetaclass, 1508 ForDefinition_t isForDefinition); 1509 1510 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1511 1512 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID, 1514 llvm::GlobalVariable *Entry); 1515 1516 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1517 /// for the given class reference. 1518 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1519 const ObjCInterfaceDecl *ID); 1520 1521 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1522 IdentifierInfo *II, 1523 const ObjCInterfaceDecl *ID); 1524 1525 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1526 1527 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1528 /// for the given super class reference. 1529 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1530 const ObjCInterfaceDecl *ID); 1531 1532 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1533 /// meta-data 1534 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1535 const ObjCInterfaceDecl *ID, bool Weak); 1536 1537 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1538 /// the given ivar. 1539 /// 1540 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1541 const ObjCInterfaceDecl *ID, 1542 const ObjCIvarDecl *Ivar); 1543 1544 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1545 /// for the given selector. 1546 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1547 Address EmitSelectorAddr(Selector Sel); 1548 1549 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1550 /// interface. The return value has type EHTypePtrTy. 1551 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1552 ForDefinition_t IsForDefinition); 1553 1554 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1555 1556 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1557 1558 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1559 uint32_t &InstanceStart, 1560 uint32_t &InstanceSize); 1561 1562 // Shamelessly stolen from Analysis/CFRefCount.cpp 1563 Selector GetNullarySelector(const char* name) const { 1564 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1565 return CGM.getContext().Selectors.getSelector(0, &II); 1566 } 1567 1568 Selector GetUnarySelector(const char* name) const { 1569 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1570 return CGM.getContext().Selectors.getSelector(1, &II); 1571 } 1572 1573 /// ImplementationIsNonLazy - Check whether the given category or 1574 /// class implementation is "non-lazy". 1575 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1576 1577 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1578 const ObjCIvarDecl *IV) { 1579 // Annotate the load as an invariant load iff inside an instance method 1580 // and ivar belongs to instance method's class and one of its super class. 1581 // This check is needed because the ivar offset is a lazily 1582 // initialised value that may depend on objc_msgSend to perform a fixup on 1583 // the first message dispatch. 1584 // 1585 // An additional opportunity to mark the load as invariant arises when the 1586 // base of the ivar access is a parameter to an Objective C method. 1587 // However, because the parameters are not available in the current 1588 // interface, we cannot perform this check. 1589 // 1590 // Note that for direct methods, because objc_msgSend is skipped, 1591 // and that the method may be inlined, this optimization actually 1592 // can't be performed. 1593 if (const ObjCMethodDecl *MD = 1594 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1595 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1596 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1597 return IV->getContainingInterface()->isSuperClassOf(ID); 1598 return false; 1599 } 1600 1601 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1602 // NSObject is a fixed size. If we can see the @implementation of a class 1603 // which inherits from NSObject then we know that all it's offsets also must 1604 // be fixed. FIXME: Can we do this if see a chain of super classes with 1605 // implementations leading to NSObject? 1606 return ID->getImplementation() && ID->getSuperClass() && 1607 ID->getSuperClass()->getName() == "NSObject"; 1608 } 1609 1610 public: 1611 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1612 1613 llvm::Constant *getNSConstantStringClassRef() override; 1614 1615 llvm::Function *ModuleInitFunction() override; 1616 1617 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1618 ReturnValueSlot Return, 1619 QualType ResultType, Selector Sel, 1620 llvm::Value *Receiver, 1621 const CallArgList &CallArgs, 1622 const ObjCInterfaceDecl *Class, 1623 const ObjCMethodDecl *Method) override; 1624 1625 CodeGen::RValue 1626 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1627 ReturnValueSlot Return, QualType ResultType, 1628 Selector Sel, const ObjCInterfaceDecl *Class, 1629 bool isCategoryImpl, llvm::Value *Receiver, 1630 bool IsClassMessage, const CallArgList &CallArgs, 1631 const ObjCMethodDecl *Method) override; 1632 1633 llvm::Value *GetClass(CodeGenFunction &CGF, 1634 const ObjCInterfaceDecl *ID) override; 1635 1636 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1637 { return EmitSelector(CGF, Sel); } 1638 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1639 { return EmitSelectorAddr(Sel); } 1640 1641 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1642 /// untyped one. 1643 llvm::Value *GetSelector(CodeGenFunction &CGF, 1644 const ObjCMethodDecl *Method) override 1645 { return EmitSelector(CGF, Method->getSelector()); } 1646 1647 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1648 1649 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1650 1651 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1652 1653 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1654 const ObjCProtocolDecl *PD) override; 1655 1656 llvm::Constant *GetEHType(QualType T) override; 1657 1658 llvm::FunctionCallee GetPropertyGetFunction() override { 1659 return ObjCTypes.getGetPropertyFn(); 1660 } 1661 llvm::FunctionCallee GetPropertySetFunction() override { 1662 return ObjCTypes.getSetPropertyFn(); 1663 } 1664 1665 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1666 bool copy) override { 1667 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1668 } 1669 1670 llvm::FunctionCallee GetSetStructFunction() override { 1671 return ObjCTypes.getCopyStructFn(); 1672 } 1673 1674 llvm::FunctionCallee GetGetStructFunction() override { 1675 return ObjCTypes.getCopyStructFn(); 1676 } 1677 1678 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1679 return ObjCTypes.getCppAtomicObjectFunction(); 1680 } 1681 1682 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1683 return ObjCTypes.getCppAtomicObjectFunction(); 1684 } 1685 1686 llvm::FunctionCallee EnumerationMutationFunction() override { 1687 return ObjCTypes.getEnumerationMutationFn(); 1688 } 1689 1690 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1691 const ObjCAtTryStmt &S) override; 1692 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1693 const ObjCAtSynchronizedStmt &S) override; 1694 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1695 bool ClearInsertionPoint=true) override; 1696 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1697 Address AddrWeakObj) override; 1698 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1699 llvm::Value *src, Address edst) override; 1700 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest, 1702 bool threadlocal = false) override; 1703 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1704 llvm::Value *src, Address dest, 1705 llvm::Value *ivarOffset) override; 1706 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1707 llvm::Value *src, Address dest) override; 1708 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1709 Address dest, Address src, 1710 llvm::Value *size) override; 1711 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1712 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1713 unsigned CVRQualifiers) override; 1714 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1715 const ObjCInterfaceDecl *Interface, 1716 const ObjCIvarDecl *Ivar) override; 1717 }; 1718 1719 /// A helper class for performing the null-initialization of a return 1720 /// value. 1721 struct NullReturnState { 1722 llvm::BasicBlock *NullBB; 1723 NullReturnState() : NullBB(nullptr) {} 1724 1725 /// Perform a null-check of the given receiver. 1726 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1727 // Make blocks for the null-receiver and call edges. 1728 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1729 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1730 1731 // Check for a null receiver and, if there is one, jump to the 1732 // null-receiver block. There's no point in trying to avoid it: 1733 // we're always going to put *something* there, because otherwise 1734 // we shouldn't have done this null-check in the first place. 1735 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1736 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1737 1738 // Otherwise, start performing the call. 1739 CGF.EmitBlock(callBB); 1740 } 1741 1742 /// Complete the null-return operation. It is valid to call this 1743 /// regardless of whether 'init' has been called. 1744 RValue complete(CodeGenFunction &CGF, 1745 ReturnValueSlot returnSlot, 1746 RValue result, 1747 QualType resultType, 1748 const CallArgList &CallArgs, 1749 const ObjCMethodDecl *Method) { 1750 // If we never had to do a null-check, just use the raw result. 1751 if (!NullBB) return result; 1752 1753 // The continuation block. This will be left null if we don't have an 1754 // IP, which can happen if the method we're calling is marked noreturn. 1755 llvm::BasicBlock *contBB = nullptr; 1756 1757 // Finish the call path. 1758 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1759 if (callBB) { 1760 contBB = CGF.createBasicBlock("msgSend.cont"); 1761 CGF.Builder.CreateBr(contBB); 1762 } 1763 1764 // Okay, start emitting the null-receiver block. 1765 CGF.EmitBlock(NullBB); 1766 1767 // Release any consumed arguments we've got. 1768 if (Method) { 1769 CallArgList::const_iterator I = CallArgs.begin(); 1770 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1771 e = Method->param_end(); i != e; ++i, ++I) { 1772 const ParmVarDecl *ParamDecl = (*i); 1773 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1774 RValue RV = I->getRValue(CGF); 1775 assert(RV.isScalar() && 1776 "NullReturnState::complete - arg not on object"); 1777 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1778 } 1779 } 1780 } 1781 1782 // The phi code below assumes that we haven't needed any control flow yet. 1783 assert(CGF.Builder.GetInsertBlock() == NullBB); 1784 1785 // If we've got a void return, just jump to the continuation block. 1786 if (result.isScalar() && resultType->isVoidType()) { 1787 // No jumps required if the message-send was noreturn. 1788 if (contBB) CGF.EmitBlock(contBB); 1789 return result; 1790 } 1791 1792 // If we've got a scalar return, build a phi. 1793 if (result.isScalar()) { 1794 // Derive the null-initialization value. 1795 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1796 1797 // If no join is necessary, just flow out. 1798 if (!contBB) return RValue::get(null); 1799 1800 // Otherwise, build a phi. 1801 CGF.EmitBlock(contBB); 1802 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1803 phi->addIncoming(result.getScalarVal(), callBB); 1804 phi->addIncoming(null, NullBB); 1805 return RValue::get(phi); 1806 } 1807 1808 // If we've got an aggregate return, null the buffer out. 1809 // FIXME: maybe we should be doing things differently for all the 1810 // cases where the ABI has us returning (1) non-agg values in 1811 // memory or (2) agg values in registers. 1812 if (result.isAggregate()) { 1813 assert(result.isAggregate() && "null init of non-aggregate result?"); 1814 if (!returnSlot.isUnused()) 1815 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1816 if (contBB) CGF.EmitBlock(contBB); 1817 return result; 1818 } 1819 1820 // Complex types. 1821 CGF.EmitBlock(contBB); 1822 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1823 1824 // Find the scalar type and its zero value. 1825 llvm::Type *scalarTy = callResult.first->getType(); 1826 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1827 1828 // Build phis for both coordinates. 1829 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1830 real->addIncoming(callResult.first, callBB); 1831 real->addIncoming(scalarZero, NullBB); 1832 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1833 imag->addIncoming(callResult.second, callBB); 1834 imag->addIncoming(scalarZero, NullBB); 1835 return RValue::getComplex(real, imag); 1836 } 1837 }; 1838 1839 } // end anonymous namespace 1840 1841 /* *** Helper Functions *** */ 1842 1843 /// getConstantGEP() - Help routine to construct simple GEPs. 1844 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1845 llvm::GlobalVariable *C, unsigned idx0, 1846 unsigned idx1) { 1847 llvm::Value *Idxs[] = { 1848 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1849 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1850 }; 1851 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1852 } 1853 1854 /// hasObjCExceptionAttribute - Return true if this class or any super 1855 /// class has the __objc_exception__ attribute. 1856 static bool hasObjCExceptionAttribute(ASTContext &Context, 1857 const ObjCInterfaceDecl *OID) { 1858 if (OID->hasAttr<ObjCExceptionAttr>()) 1859 return true; 1860 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1861 return hasObjCExceptionAttribute(Context, Super); 1862 return false; 1863 } 1864 1865 static llvm::GlobalValue::LinkageTypes 1866 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1867 if (CGM.getTriple().isOSBinFormatMachO() && 1868 (Section.empty() || Section.startswith("__DATA"))) 1869 return llvm::GlobalValue::InternalLinkage; 1870 return llvm::GlobalValue::PrivateLinkage; 1871 } 1872 1873 /// A helper function to create an internal or private global variable. 1874 static llvm::GlobalVariable * 1875 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1876 const llvm::Twine &Name, CodeGenModule &CGM) { 1877 std::string SectionName; 1878 if (CGM.getTriple().isOSBinFormatMachO()) 1879 SectionName = "__DATA, __objc_const"; 1880 auto *GV = Builder.finishAndCreateGlobal( 1881 Name, CGM.getPointerAlign(), /*constant*/ false, 1882 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1883 GV->setSection(SectionName); 1884 return GV; 1885 } 1886 1887 /* *** CGObjCMac Public Interface *** */ 1888 1889 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1890 ObjCTypes(cgm) { 1891 ObjCABI = 1; 1892 EmitImageInfo(); 1893 } 1894 1895 /// GetClass - Return a reference to the class for the given interface 1896 /// decl. 1897 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1898 const ObjCInterfaceDecl *ID) { 1899 return EmitClassRef(CGF, ID); 1900 } 1901 1902 /// GetSelector - Return the pointer to the unique'd string for this selector. 1903 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1904 return EmitSelector(CGF, Sel); 1905 } 1906 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1907 return EmitSelectorAddr(Sel); 1908 } 1909 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1910 *Method) { 1911 return EmitSelector(CGF, Method->getSelector()); 1912 } 1913 1914 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1915 if (T->isObjCIdType() || 1916 T->isObjCQualifiedIdType()) { 1917 return CGM.GetAddrOfRTTIDescriptor( 1918 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1919 } 1920 if (T->isObjCClassType() || 1921 T->isObjCQualifiedClassType()) { 1922 return CGM.GetAddrOfRTTIDescriptor( 1923 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1924 } 1925 if (T->isObjCObjectPointerType()) 1926 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1927 1928 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1929 } 1930 1931 /// Generate a constant CFString object. 1932 /* 1933 struct __builtin_CFString { 1934 const int *isa; // point to __CFConstantStringClassReference 1935 int flags; 1936 const char *str; 1937 long length; 1938 }; 1939 */ 1940 1941 /// or Generate a constant NSString object. 1942 /* 1943 struct __builtin_NSString { 1944 const int *isa; // point to __NSConstantStringClassReference 1945 const char *str; 1946 unsigned int length; 1947 }; 1948 */ 1949 1950 ConstantAddress 1951 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1952 return (!CGM.getLangOpts().NoConstantCFStrings 1953 ? CGM.GetAddrOfConstantCFString(SL) 1954 : GenerateConstantNSString(SL)); 1955 } 1956 1957 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1958 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1959 const StringLiteral *Literal, unsigned &StringLength) { 1960 StringRef String = Literal->getString(); 1961 StringLength = String.size(); 1962 return *Map.insert(std::make_pair(String, nullptr)).first; 1963 } 1964 1965 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1966 if (llvm::Value *V = ConstantStringClassRef) 1967 return cast<llvm::Constant>(V); 1968 1969 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1970 std::string str = 1971 StringClass.empty() ? "_NSConstantStringClassReference" 1972 : "_" + StringClass + "ClassReference"; 1973 1974 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1975 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1976 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1977 ConstantStringClassRef = V; 1978 return V; 1979 } 1980 1981 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1982 if (llvm::Value *V = ConstantStringClassRef) 1983 return cast<llvm::Constant>(V); 1984 1985 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1986 std::string str = 1987 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1988 : "OBJC_CLASS_$_" + StringClass; 1989 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1990 1991 // Make sure the result is of the correct type. 1992 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1993 1994 ConstantStringClassRef = V; 1995 return V; 1996 } 1997 1998 ConstantAddress 1999 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 2000 unsigned StringLength = 0; 2001 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2002 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 2003 2004 if (auto *C = Entry.second) 2005 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2006 2007 // If we don't already have it, get _NSConstantStringClassReference. 2008 llvm::Constant *Class = getNSConstantStringClassRef(); 2009 2010 // If we don't already have it, construct the type for a constant NSString. 2011 if (!NSConstantStringType) { 2012 NSConstantStringType = 2013 llvm::StructType::create({ 2014 CGM.Int32Ty->getPointerTo(), 2015 CGM.Int8PtrTy, 2016 CGM.IntTy 2017 }, "struct.__builtin_NSString"); 2018 } 2019 2020 ConstantInitBuilder Builder(CGM); 2021 auto Fields = Builder.beginStruct(NSConstantStringType); 2022 2023 // Class pointer. 2024 Fields.add(Class); 2025 2026 // String pointer. 2027 llvm::Constant *C = 2028 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2029 2030 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2031 bool isConstant = !CGM.getLangOpts().WritableStrings; 2032 2033 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2034 Linkage, C, ".str"); 2035 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2036 // Don't enforce the target's minimum global alignment, since the only use 2037 // of the string is via this class initializer. 2038 GV->setAlignment(llvm::Align(1)); 2039 Fields.addBitCast(GV, CGM.Int8PtrTy); 2040 2041 // String length. 2042 Fields.addInt(CGM.IntTy, StringLength); 2043 2044 // The struct. 2045 CharUnits Alignment = CGM.getPointerAlign(); 2046 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2047 /*constant*/ true, 2048 llvm::GlobalVariable::PrivateLinkage); 2049 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2050 const char *NSStringNonFragileABISection = 2051 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2052 // FIXME. Fix section. 2053 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2054 ? NSStringNonFragileABISection 2055 : NSStringSection); 2056 Entry.second = GV; 2057 2058 return ConstantAddress(GV, Alignment); 2059 } 2060 2061 enum { 2062 kCFTaggedObjectID_Integer = (1 << 1) + 1 2063 }; 2064 2065 /// Generates a message send where the super is the receiver. This is 2066 /// a message send to self with special delivery semantics indicating 2067 /// which class's method should be called. 2068 CodeGen::RValue 2069 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2070 ReturnValueSlot Return, 2071 QualType ResultType, 2072 Selector Sel, 2073 const ObjCInterfaceDecl *Class, 2074 bool isCategoryImpl, 2075 llvm::Value *Receiver, 2076 bool IsClassMessage, 2077 const CodeGen::CallArgList &CallArgs, 2078 const ObjCMethodDecl *Method) { 2079 // Create and init a super structure; this is a (receiver, class) 2080 // pair we will pass to objc_msgSendSuper. 2081 Address ObjCSuper = 2082 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2083 "objc_super"); 2084 llvm::Value *ReceiverAsObject = 2085 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2086 CGF.Builder.CreateStore(ReceiverAsObject, 2087 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2088 2089 // If this is a class message the metaclass is passed as the target. 2090 llvm::Value *Target; 2091 if (IsClassMessage) { 2092 if (isCategoryImpl) { 2093 // Message sent to 'super' in a class method defined in a category 2094 // implementation requires an odd treatment. 2095 // If we are in a class method, we must retrieve the 2096 // _metaclass_ for the current class, pointed at by 2097 // the class's "isa" pointer. The following assumes that 2098 // isa" is the first ivar in a class (which it must be). 2099 Target = EmitClassRef(CGF, Class->getSuperClass()); 2100 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2101 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2102 } else { 2103 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2104 llvm::Value *SuperPtr = 2105 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2106 llvm::Value *Super = 2107 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2108 Target = Super; 2109 } 2110 } else if (isCategoryImpl) 2111 Target = EmitClassRef(CGF, Class->getSuperClass()); 2112 else { 2113 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2114 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2115 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2116 } 2117 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2118 // ObjCTypes types. 2119 llvm::Type *ClassTy = 2120 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2121 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2122 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2123 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2124 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2125 ObjCTypes); 2126 } 2127 2128 /// Generate code for a message send expression. 2129 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2130 ReturnValueSlot Return, 2131 QualType ResultType, 2132 Selector Sel, 2133 llvm::Value *Receiver, 2134 const CallArgList &CallArgs, 2135 const ObjCInterfaceDecl *Class, 2136 const ObjCMethodDecl *Method) { 2137 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2138 CGF.getContext().getObjCIdType(), false, CallArgs, 2139 Method, Class, ObjCTypes); 2140 } 2141 2142 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2143 do { 2144 if (ID->isWeakImported()) 2145 return true; 2146 } while ((ID = ID->getSuperClass())); 2147 2148 return false; 2149 } 2150 2151 CodeGen::RValue 2152 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2153 ReturnValueSlot Return, 2154 QualType ResultType, 2155 Selector Sel, 2156 llvm::Value *Arg0, 2157 QualType Arg0Ty, 2158 bool IsSuper, 2159 const CallArgList &CallArgs, 2160 const ObjCMethodDecl *Method, 2161 const ObjCInterfaceDecl *ClassReceiver, 2162 const ObjCCommonTypesHelper &ObjCTypes) { 2163 CodeGenTypes &Types = CGM.getTypes(); 2164 auto selTy = CGF.getContext().getObjCSelType(); 2165 llvm::Value *SelValue; 2166 2167 if (Method && Method->isDirectMethod()) { 2168 // Direct methods will synthesize the proper `_cmd` internally, 2169 // so just don't bother with setting the `_cmd` argument. 2170 assert(!IsSuper); 2171 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2172 } else { 2173 SelValue = GetSelector(CGF, Sel); 2174 } 2175 2176 CallArgList ActualArgs; 2177 if (!IsSuper) 2178 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2179 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2180 ActualArgs.add(RValue::get(SelValue), selTy); 2181 ActualArgs.addFrom(CallArgs); 2182 2183 // If we're calling a method, use the formal signature. 2184 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2185 2186 if (Method) 2187 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2188 CGM.getContext().getCanonicalType(ResultType) && 2189 "Result type mismatch!"); 2190 2191 bool ReceiverCanBeNull = true; 2192 2193 // Super dispatch assumes that self is non-null; even the messenger 2194 // doesn't have a null check internally. 2195 if (IsSuper) { 2196 ReceiverCanBeNull = false; 2197 2198 // If this is a direct dispatch of a class method, check whether the class, 2199 // or anything in its hierarchy, was weak-linked. 2200 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2201 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2202 2203 // If we're emitting a method, and self is const (meaning just ARC, for now), 2204 // and the receiver is a load of self, then self is a valid object. 2205 } else if (auto CurMethod = 2206 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2207 auto Self = CurMethod->getSelfDecl(); 2208 if (Self->getType().isConstQualified()) { 2209 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2210 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2211 if (SelfAddr == LI->getPointerOperand()) { 2212 ReceiverCanBeNull = false; 2213 } 2214 } 2215 } 2216 } 2217 2218 bool RequiresNullCheck = false; 2219 2220 llvm::FunctionCallee Fn = nullptr; 2221 if (Method && Method->isDirectMethod()) { 2222 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2223 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2224 if (ReceiverCanBeNull) RequiresNullCheck = true; 2225 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2226 : ObjCTypes.getSendStretFn(IsSuper); 2227 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2228 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2229 : ObjCTypes.getSendFpretFn(IsSuper); 2230 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2231 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2232 : ObjCTypes.getSendFp2retFn(IsSuper); 2233 } else { 2234 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2235 // must be made for it. 2236 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2237 RequiresNullCheck = true; 2238 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2239 : ObjCTypes.getSendFn(IsSuper); 2240 } 2241 2242 // Cast function to proper signature 2243 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2244 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2245 2246 // We don't need to emit a null check to zero out an indirect result if the 2247 // result is ignored. 2248 if (Return.isUnused()) 2249 RequiresNullCheck = false; 2250 2251 // Emit a null-check if there's a consumed argument other than the receiver. 2252 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2253 for (const auto *ParamDecl : Method->parameters()) { 2254 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2255 RequiresNullCheck = true; 2256 break; 2257 } 2258 } 2259 } 2260 2261 NullReturnState nullReturn; 2262 if (RequiresNullCheck) { 2263 nullReturn.init(CGF, Arg0); 2264 } 2265 2266 llvm::CallBase *CallSite; 2267 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2268 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2269 &CallSite); 2270 2271 // Mark the call as noreturn if the method is marked noreturn and the 2272 // receiver cannot be null. 2273 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2274 CallSite->setDoesNotReturn(); 2275 } 2276 2277 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2278 RequiresNullCheck ? Method : nullptr); 2279 } 2280 2281 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2282 bool pointee = false) { 2283 // Note that GC qualification applies recursively to C pointer types 2284 // that aren't otherwise decorated. This is weird, but it's probably 2285 // an intentional workaround to the unreliable placement of GC qualifiers. 2286 if (FQT.isObjCGCStrong()) 2287 return Qualifiers::Strong; 2288 2289 if (FQT.isObjCGCWeak()) 2290 return Qualifiers::Weak; 2291 2292 if (auto ownership = FQT.getObjCLifetime()) { 2293 // Ownership does not apply recursively to C pointer types. 2294 if (pointee) return Qualifiers::GCNone; 2295 switch (ownership) { 2296 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2297 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2298 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2299 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2300 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2301 } 2302 llvm_unreachable("bad objc ownership"); 2303 } 2304 2305 // Treat unqualified retainable pointers as strong. 2306 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2307 return Qualifiers::Strong; 2308 2309 // Walk into C pointer types, but only in GC. 2310 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2311 if (const PointerType *PT = FQT->getAs<PointerType>()) 2312 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2313 } 2314 2315 return Qualifiers::GCNone; 2316 } 2317 2318 namespace { 2319 struct IvarInfo { 2320 CharUnits Offset; 2321 uint64_t SizeInWords; 2322 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2323 : Offset(offset), SizeInWords(sizeInWords) {} 2324 2325 // Allow sorting based on byte pos. 2326 bool operator<(const IvarInfo &other) const { 2327 return Offset < other.Offset; 2328 } 2329 }; 2330 2331 /// A helper class for building GC layout strings. 2332 class IvarLayoutBuilder { 2333 CodeGenModule &CGM; 2334 2335 /// The start of the layout. Offsets will be relative to this value, 2336 /// and entries less than this value will be silently discarded. 2337 CharUnits InstanceBegin; 2338 2339 /// The end of the layout. Offsets will never exceed this value. 2340 CharUnits InstanceEnd; 2341 2342 /// Whether we're generating the strong layout or the weak layout. 2343 bool ForStrongLayout; 2344 2345 /// Whether the offsets in IvarsInfo might be out-of-order. 2346 bool IsDisordered = false; 2347 2348 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2349 2350 public: 2351 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2352 CharUnits instanceEnd, bool forStrongLayout) 2353 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2354 ForStrongLayout(forStrongLayout) { 2355 } 2356 2357 void visitRecord(const RecordType *RT, CharUnits offset); 2358 2359 template <class Iterator, class GetOffsetFn> 2360 void visitAggregate(Iterator begin, Iterator end, 2361 CharUnits aggrOffset, 2362 const GetOffsetFn &getOffset); 2363 2364 void visitField(const FieldDecl *field, CharUnits offset); 2365 2366 /// Add the layout of a block implementation. 2367 void visitBlock(const CGBlockInfo &blockInfo); 2368 2369 /// Is there any information for an interesting bitmap? 2370 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2371 2372 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2373 llvm::SmallVectorImpl<unsigned char> &buffer); 2374 2375 static void dump(ArrayRef<unsigned char> buffer) { 2376 const unsigned char *s = buffer.data(); 2377 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2378 if (!(s[i] & 0xf0)) 2379 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2380 else 2381 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2382 printf("\n"); 2383 } 2384 }; 2385 } // end anonymous namespace 2386 2387 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2388 const CGBlockInfo &blockInfo) { 2389 2390 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2391 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2392 return nullPtr; 2393 2394 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2395 /*for strong layout*/ true); 2396 2397 builder.visitBlock(blockInfo); 2398 2399 if (!builder.hasBitmapData()) 2400 return nullPtr; 2401 2402 llvm::SmallVector<unsigned char, 32> buffer; 2403 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2404 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2405 printf("\n block variable layout for block: "); 2406 builder.dump(buffer); 2407 } 2408 2409 return C; 2410 } 2411 2412 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2413 // __isa is the first field in block descriptor and must assume by runtime's 2414 // convention that it is GC'able. 2415 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2416 2417 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2418 2419 // Ignore the optional 'this' capture: C++ objects are not assumed 2420 // to be GC'ed. 2421 2422 CharUnits lastFieldOffset; 2423 2424 // Walk the captured variables. 2425 for (const auto &CI : blockDecl->captures()) { 2426 const VarDecl *variable = CI.getVariable(); 2427 QualType type = variable->getType(); 2428 2429 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2430 2431 // Ignore constant captures. 2432 if (capture.isConstant()) continue; 2433 2434 CharUnits fieldOffset = capture.getOffset(); 2435 2436 // Block fields are not necessarily ordered; if we detect that we're 2437 // adding them out-of-order, make sure we sort later. 2438 if (fieldOffset < lastFieldOffset) 2439 IsDisordered = true; 2440 lastFieldOffset = fieldOffset; 2441 2442 // __block variables are passed by their descriptor address. 2443 if (CI.isByRef()) { 2444 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2445 continue; 2446 } 2447 2448 assert(!type->isArrayType() && "array variable should not be caught"); 2449 if (const RecordType *record = type->getAs<RecordType>()) { 2450 visitRecord(record, fieldOffset); 2451 continue; 2452 } 2453 2454 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2455 2456 if (GCAttr == Qualifiers::Strong) { 2457 assert(CGM.getContext().getTypeSize(type) 2458 == CGM.getTarget().getPointerWidth(0)); 2459 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2460 } 2461 } 2462 } 2463 2464 /// getBlockCaptureLifetime - This routine returns life time of the captured 2465 /// block variable for the purpose of block layout meta-data generation. FQT is 2466 /// the type of the variable captured in the block. 2467 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2468 bool ByrefLayout) { 2469 // If it has an ownership qualifier, we're done. 2470 if (auto lifetime = FQT.getObjCLifetime()) 2471 return lifetime; 2472 2473 // If it doesn't, and this is ARC, it has no ownership. 2474 if (CGM.getLangOpts().ObjCAutoRefCount) 2475 return Qualifiers::OCL_None; 2476 2477 // In MRC, retainable pointers are owned by non-__block variables. 2478 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2479 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2480 2481 return Qualifiers::OCL_None; 2482 } 2483 2484 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2485 Qualifiers::ObjCLifetime LifeTime, 2486 CharUnits FieldOffset, 2487 CharUnits FieldSize) { 2488 // __block variables are passed by their descriptor address. 2489 if (IsByref) 2490 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2491 FieldSize)); 2492 else if (LifeTime == Qualifiers::OCL_Strong) 2493 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2494 FieldSize)); 2495 else if (LifeTime == Qualifiers::OCL_Weak) 2496 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2497 FieldSize)); 2498 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2499 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2500 FieldSize)); 2501 else 2502 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2503 FieldOffset, 2504 FieldSize)); 2505 } 2506 2507 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2508 const RecordDecl *RD, 2509 ArrayRef<const FieldDecl*> RecFields, 2510 CharUnits BytePos, bool &HasUnion, 2511 bool ByrefLayout) { 2512 bool IsUnion = (RD && RD->isUnion()); 2513 CharUnits MaxUnionSize = CharUnits::Zero(); 2514 const FieldDecl *MaxField = nullptr; 2515 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2516 CharUnits MaxFieldOffset = CharUnits::Zero(); 2517 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2518 2519 if (RecFields.empty()) 2520 return; 2521 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2522 2523 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2524 const FieldDecl *Field = RecFields[i]; 2525 // Note that 'i' here is actually the field index inside RD of Field, 2526 // although this dependency is hidden. 2527 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2528 CharUnits FieldOffset = 2529 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2530 2531 // Skip over unnamed or bitfields 2532 if (!Field->getIdentifier() || Field->isBitField()) { 2533 LastFieldBitfieldOrUnnamed = Field; 2534 LastBitfieldOrUnnamedOffset = FieldOffset; 2535 continue; 2536 } 2537 2538 LastFieldBitfieldOrUnnamed = nullptr; 2539 QualType FQT = Field->getType(); 2540 if (FQT->isRecordType() || FQT->isUnionType()) { 2541 if (FQT->isUnionType()) 2542 HasUnion = true; 2543 2544 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2545 BytePos + FieldOffset, HasUnion); 2546 continue; 2547 } 2548 2549 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2550 auto *CArray = cast<ConstantArrayType>(Array); 2551 uint64_t ElCount = CArray->getSize().getZExtValue(); 2552 assert(CArray && "only array with known element size is supported"); 2553 FQT = CArray->getElementType(); 2554 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2555 auto *CArray = cast<ConstantArrayType>(Array); 2556 ElCount *= CArray->getSize().getZExtValue(); 2557 FQT = CArray->getElementType(); 2558 } 2559 if (FQT->isRecordType() && ElCount) { 2560 int OldIndex = RunSkipBlockVars.size() - 1; 2561 const RecordType *RT = FQT->getAs<RecordType>(); 2562 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2563 HasUnion); 2564 2565 // Replicate layout information for each array element. Note that 2566 // one element is already done. 2567 uint64_t ElIx = 1; 2568 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2569 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2570 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2571 RunSkipBlockVars.push_back( 2572 RUN_SKIP(RunSkipBlockVars[i].opcode, 2573 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2574 RunSkipBlockVars[i].block_var_size)); 2575 } 2576 continue; 2577 } 2578 } 2579 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2580 if (IsUnion) { 2581 CharUnits UnionIvarSize = FieldSize; 2582 if (UnionIvarSize > MaxUnionSize) { 2583 MaxUnionSize = UnionIvarSize; 2584 MaxField = Field; 2585 MaxFieldOffset = FieldOffset; 2586 } 2587 } else { 2588 UpdateRunSkipBlockVars(false, 2589 getBlockCaptureLifetime(FQT, ByrefLayout), 2590 BytePos + FieldOffset, 2591 FieldSize); 2592 } 2593 } 2594 2595 if (LastFieldBitfieldOrUnnamed) { 2596 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2597 // Last field was a bitfield. Must update the info. 2598 uint64_t BitFieldSize 2599 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2600 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2601 ((BitFieldSize % ByteSizeInBits) != 0); 2602 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2603 Size += LastBitfieldOrUnnamedOffset; 2604 UpdateRunSkipBlockVars(false, 2605 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2606 ByrefLayout), 2607 BytePos + LastBitfieldOrUnnamedOffset, 2608 Size); 2609 } else { 2610 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2611 // Last field was unnamed. Must update skip info. 2612 CharUnits FieldSize 2613 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2614 UpdateRunSkipBlockVars(false, 2615 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2616 ByrefLayout), 2617 BytePos + LastBitfieldOrUnnamedOffset, 2618 FieldSize); 2619 } 2620 } 2621 2622 if (MaxField) 2623 UpdateRunSkipBlockVars(false, 2624 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2625 BytePos + MaxFieldOffset, 2626 MaxUnionSize); 2627 } 2628 2629 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2630 CharUnits BytePos, 2631 bool &HasUnion, 2632 bool ByrefLayout) { 2633 const RecordDecl *RD = RT->getDecl(); 2634 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2635 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2636 const llvm::StructLayout *RecLayout = 2637 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2638 2639 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2640 } 2641 2642 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2643 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2644 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2645 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2646 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2647 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2648 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2649 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2650 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2651 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2652 SmallVectorImpl<unsigned char> &Layout) { 2653 uint64_t Result = 0; 2654 if (Layout.size() <= 3) { 2655 unsigned size = Layout.size(); 2656 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2657 unsigned char inst; 2658 enum BLOCK_LAYOUT_OPCODE opcode ; 2659 switch (size) { 2660 case 3: 2661 inst = Layout[0]; 2662 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2663 if (opcode == BLOCK_LAYOUT_STRONG) 2664 strong_word_count = (inst & 0xF)+1; 2665 else 2666 return 0; 2667 inst = Layout[1]; 2668 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2669 if (opcode == BLOCK_LAYOUT_BYREF) 2670 byref_word_count = (inst & 0xF)+1; 2671 else 2672 return 0; 2673 inst = Layout[2]; 2674 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2675 if (opcode == BLOCK_LAYOUT_WEAK) 2676 weak_word_count = (inst & 0xF)+1; 2677 else 2678 return 0; 2679 break; 2680 2681 case 2: 2682 inst = Layout[0]; 2683 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2684 if (opcode == BLOCK_LAYOUT_STRONG) { 2685 strong_word_count = (inst & 0xF)+1; 2686 inst = Layout[1]; 2687 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2688 if (opcode == BLOCK_LAYOUT_BYREF) 2689 byref_word_count = (inst & 0xF)+1; 2690 else if (opcode == BLOCK_LAYOUT_WEAK) 2691 weak_word_count = (inst & 0xF)+1; 2692 else 2693 return 0; 2694 } 2695 else if (opcode == BLOCK_LAYOUT_BYREF) { 2696 byref_word_count = (inst & 0xF)+1; 2697 inst = Layout[1]; 2698 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2699 if (opcode == BLOCK_LAYOUT_WEAK) 2700 weak_word_count = (inst & 0xF)+1; 2701 else 2702 return 0; 2703 } 2704 else 2705 return 0; 2706 break; 2707 2708 case 1: 2709 inst = Layout[0]; 2710 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2711 if (opcode == BLOCK_LAYOUT_STRONG) 2712 strong_word_count = (inst & 0xF)+1; 2713 else if (opcode == BLOCK_LAYOUT_BYREF) 2714 byref_word_count = (inst & 0xF)+1; 2715 else if (opcode == BLOCK_LAYOUT_WEAK) 2716 weak_word_count = (inst & 0xF)+1; 2717 else 2718 return 0; 2719 break; 2720 2721 default: 2722 return 0; 2723 } 2724 2725 // Cannot inline when any of the word counts is 15. Because this is one less 2726 // than the actual work count (so 15 means 16 actual word counts), 2727 // and we can only display 0 thru 15 word counts. 2728 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2729 return 0; 2730 2731 unsigned count = 2732 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2733 2734 if (size == count) { 2735 if (strong_word_count) 2736 Result = strong_word_count; 2737 Result <<= 4; 2738 if (byref_word_count) 2739 Result += byref_word_count; 2740 Result <<= 4; 2741 if (weak_word_count) 2742 Result += weak_word_count; 2743 } 2744 } 2745 return Result; 2746 } 2747 2748 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2749 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2750 if (RunSkipBlockVars.empty()) 2751 return nullPtr; 2752 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2753 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2754 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2755 2756 // Sort on byte position; captures might not be allocated in order, 2757 // and unions can do funny things. 2758 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2759 SmallVector<unsigned char, 16> Layout; 2760 2761 unsigned size = RunSkipBlockVars.size(); 2762 for (unsigned i = 0; i < size; i++) { 2763 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2764 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2765 CharUnits end_byte_pos = start_byte_pos; 2766 unsigned j = i+1; 2767 while (j < size) { 2768 if (opcode == RunSkipBlockVars[j].opcode) { 2769 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2770 i++; 2771 } 2772 else 2773 break; 2774 } 2775 CharUnits size_in_bytes = 2776 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2777 if (j < size) { 2778 CharUnits gap = 2779 RunSkipBlockVars[j].block_var_bytepos - 2780 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2781 size_in_bytes += gap; 2782 } 2783 CharUnits residue_in_bytes = CharUnits::Zero(); 2784 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2785 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2786 size_in_bytes -= residue_in_bytes; 2787 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2788 } 2789 2790 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2791 while (size_in_words >= 16) { 2792 // Note that value in imm. is one less that the actual 2793 // value. So, 0xf means 16 words follow! 2794 unsigned char inst = (opcode << 4) | 0xf; 2795 Layout.push_back(inst); 2796 size_in_words -= 16; 2797 } 2798 if (size_in_words > 0) { 2799 // Note that value in imm. is one less that the actual 2800 // value. So, we subtract 1 away! 2801 unsigned char inst = (opcode << 4) | (size_in_words-1); 2802 Layout.push_back(inst); 2803 } 2804 if (residue_in_bytes > CharUnits::Zero()) { 2805 unsigned char inst = 2806 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2807 Layout.push_back(inst); 2808 } 2809 } 2810 2811 while (!Layout.empty()) { 2812 unsigned char inst = Layout.back(); 2813 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2814 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2815 Layout.pop_back(); 2816 else 2817 break; 2818 } 2819 2820 uint64_t Result = InlineLayoutInstruction(Layout); 2821 if (Result != 0) { 2822 // Block variable layout instruction has been inlined. 2823 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2824 if (ComputeByrefLayout) 2825 printf("\n Inline BYREF variable layout: "); 2826 else 2827 printf("\n Inline block variable layout: "); 2828 printf("0x0%" PRIx64 "", Result); 2829 if (auto numStrong = (Result & 0xF00) >> 8) 2830 printf(", BL_STRONG:%d", (int) numStrong); 2831 if (auto numByref = (Result & 0x0F0) >> 4) 2832 printf(", BL_BYREF:%d", (int) numByref); 2833 if (auto numWeak = (Result & 0x00F) >> 0) 2834 printf(", BL_WEAK:%d", (int) numWeak); 2835 printf(", BL_OPERATOR:0\n"); 2836 } 2837 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2838 } 2839 2840 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2841 Layout.push_back(inst); 2842 std::string BitMap; 2843 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2844 BitMap += Layout[i]; 2845 2846 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2847 if (ComputeByrefLayout) 2848 printf("\n Byref variable layout: "); 2849 else 2850 printf("\n Block variable layout: "); 2851 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2852 unsigned char inst = BitMap[i]; 2853 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2854 unsigned delta = 1; 2855 switch (opcode) { 2856 case BLOCK_LAYOUT_OPERATOR: 2857 printf("BL_OPERATOR:"); 2858 delta = 0; 2859 break; 2860 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2861 printf("BL_NON_OBJECT_BYTES:"); 2862 break; 2863 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2864 printf("BL_NON_OBJECT_WORD:"); 2865 break; 2866 case BLOCK_LAYOUT_STRONG: 2867 printf("BL_STRONG:"); 2868 break; 2869 case BLOCK_LAYOUT_BYREF: 2870 printf("BL_BYREF:"); 2871 break; 2872 case BLOCK_LAYOUT_WEAK: 2873 printf("BL_WEAK:"); 2874 break; 2875 case BLOCK_LAYOUT_UNRETAINED: 2876 printf("BL_UNRETAINED:"); 2877 break; 2878 } 2879 // Actual value of word count is one more that what is in the imm. 2880 // field of the instruction 2881 printf("%d", (inst & 0xf) + delta); 2882 if (i < e-1) 2883 printf(", "); 2884 else 2885 printf("\n"); 2886 } 2887 } 2888 2889 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2890 /*ForceNonFragileABI=*/true, 2891 /*NullTerminate=*/false); 2892 return getConstantGEP(VMContext, Entry, 0, 0); 2893 } 2894 2895 static std::string getBlockLayoutInfoString( 2896 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2897 bool HasCopyDisposeHelpers) { 2898 std::string Str; 2899 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2900 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2901 // Copy/dispose helpers don't have any information about 2902 // __unsafe_unretained captures, so unconditionally concatenate a string. 2903 Str += "u"; 2904 } else if (HasCopyDisposeHelpers) { 2905 // Information about __strong, __weak, or byref captures has already been 2906 // encoded into the names of the copy/dispose helpers. We have to add a 2907 // string here only when the copy/dispose helpers aren't generated (which 2908 // happens when the block is non-escaping). 2909 continue; 2910 } else { 2911 switch (R.opcode) { 2912 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2913 Str += "s"; 2914 break; 2915 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2916 Str += "r"; 2917 break; 2918 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2919 Str += "w"; 2920 break; 2921 default: 2922 continue; 2923 } 2924 } 2925 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2926 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2927 } 2928 return Str; 2929 } 2930 2931 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2932 const CGBlockInfo &blockInfo) { 2933 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2934 2935 RunSkipBlockVars.clear(); 2936 bool hasUnion = false; 2937 2938 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2939 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2940 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2941 2942 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2943 2944 // Calculate the basic layout of the block structure. 2945 const llvm::StructLayout *layout = 2946 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2947 2948 // Ignore the optional 'this' capture: C++ objects are not assumed 2949 // to be GC'ed. 2950 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2951 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2952 blockInfo.BlockHeaderForcedGapOffset, 2953 blockInfo.BlockHeaderForcedGapSize); 2954 // Walk the captured variables. 2955 for (const auto &CI : blockDecl->captures()) { 2956 const VarDecl *variable = CI.getVariable(); 2957 QualType type = variable->getType(); 2958 2959 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2960 2961 // Ignore constant captures. 2962 if (capture.isConstant()) continue; 2963 2964 CharUnits fieldOffset = 2965 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2966 2967 assert(!type->isArrayType() && "array variable should not be caught"); 2968 if (!CI.isByRef()) 2969 if (const RecordType *record = type->getAs<RecordType>()) { 2970 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2971 continue; 2972 } 2973 CharUnits fieldSize; 2974 if (CI.isByRef()) 2975 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2976 else 2977 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2978 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2979 fieldOffset, fieldSize); 2980 } 2981 } 2982 2983 llvm::Constant * 2984 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2985 const CGBlockInfo &blockInfo) { 2986 fillRunSkipBlockVars(CGM, blockInfo); 2987 return getBitmapBlockLayout(false); 2988 } 2989 2990 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2991 const CGBlockInfo &blockInfo) { 2992 fillRunSkipBlockVars(CGM, blockInfo); 2993 return getBlockLayoutInfoString(RunSkipBlockVars, 2994 blockInfo.needsCopyDisposeHelpers()); 2995 } 2996 2997 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2998 QualType T) { 2999 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3000 assert(!T->isArrayType() && "__block array variable should not be caught"); 3001 CharUnits fieldOffset; 3002 RunSkipBlockVars.clear(); 3003 bool hasUnion = false; 3004 if (const RecordType *record = T->getAs<RecordType>()) { 3005 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 3006 llvm::Constant *Result = getBitmapBlockLayout(true); 3007 if (isa<llvm::ConstantInt>(Result)) 3008 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 3009 return Result; 3010 } 3011 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 3012 return nullPtr; 3013 } 3014 3015 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 3016 const ObjCProtocolDecl *PD) { 3017 // FIXME: I don't understand why gcc generates this, or where it is 3018 // resolved. Investigate. Its also wasteful to look this up over and over. 3019 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3020 3021 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 3022 ObjCTypes.getExternalProtocolPtrTy()); 3023 } 3024 3025 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 3026 // FIXME: We shouldn't need this, the protocol decl should contain enough 3027 // information to tell us whether this was a declaration or a definition. 3028 DefinedProtocols.insert(PD->getIdentifier()); 3029 3030 // If we have generated a forward reference to this protocol, emit 3031 // it now. Otherwise do nothing, the protocol objects are lazily 3032 // emitted. 3033 if (Protocols.count(PD->getIdentifier())) 3034 GetOrEmitProtocol(PD); 3035 } 3036 3037 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 3038 if (DefinedProtocols.count(PD->getIdentifier())) 3039 return GetOrEmitProtocol(PD); 3040 3041 return GetOrEmitProtocolRef(PD); 3042 } 3043 3044 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 3045 CodeGenFunction &CGF, 3046 const ObjCInterfaceDecl *ID, 3047 ObjCCommonTypesHelper &ObjCTypes) { 3048 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3049 3050 llvm::Value *className = CGF.CGM 3051 .GetAddrOfConstantCString(std::string( 3052 ID->getObjCRuntimeNameAsString())) 3053 .getPointer(); 3054 ASTContext &ctx = CGF.CGM.getContext(); 3055 className = 3056 CGF.Builder.CreateBitCast(className, 3057 CGF.ConvertType( 3058 ctx.getPointerType(ctx.CharTy.withConst()))); 3059 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3060 call->setDoesNotThrow(); 3061 return call; 3062 } 3063 3064 /* 3065 // Objective-C 1.0 extensions 3066 struct _objc_protocol { 3067 struct _objc_protocol_extension *isa; 3068 char *protocol_name; 3069 struct _objc_protocol_list *protocol_list; 3070 struct _objc__method_prototype_list *instance_methods; 3071 struct _objc__method_prototype_list *class_methods 3072 }; 3073 3074 See EmitProtocolExtension(). 3075 */ 3076 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3077 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3078 3079 // Early exit if a defining object has already been generated. 3080 if (Entry && Entry->hasInitializer()) 3081 return Entry; 3082 3083 // Use the protocol definition, if there is one. 3084 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3085 PD = Def; 3086 3087 // FIXME: I don't understand why gcc generates this, or where it is 3088 // resolved. Investigate. Its also wasteful to look this up over and over. 3089 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3090 3091 // Construct method lists. 3092 auto methodLists = ProtocolMethodLists::get(PD); 3093 3094 ConstantInitBuilder builder(CGM); 3095 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3096 values.add(EmitProtocolExtension(PD, methodLists)); 3097 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3098 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3099 PD->protocol_begin(), PD->protocol_end())); 3100 values.add(methodLists.emitMethodList(this, PD, 3101 ProtocolMethodLists::RequiredInstanceMethods)); 3102 values.add(methodLists.emitMethodList(this, PD, 3103 ProtocolMethodLists::RequiredClassMethods)); 3104 3105 if (Entry) { 3106 // Already created, update the initializer. 3107 assert(Entry->hasPrivateLinkage()); 3108 values.finishAndSetAsInitializer(Entry); 3109 } else { 3110 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3111 CGM.getPointerAlign(), 3112 /*constant*/ false, 3113 llvm::GlobalValue::PrivateLinkage); 3114 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3115 3116 Protocols[PD->getIdentifier()] = Entry; 3117 } 3118 CGM.addCompilerUsedGlobal(Entry); 3119 3120 return Entry; 3121 } 3122 3123 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3124 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3125 3126 if (!Entry) { 3127 // We use the initializer as a marker of whether this is a forward 3128 // reference or not. At module finalization we add the empty 3129 // contents for protocols which were referenced but never defined. 3130 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3131 false, llvm::GlobalValue::PrivateLinkage, 3132 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3133 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3134 // FIXME: Is this necessary? Why only for protocol? 3135 Entry->setAlignment(llvm::Align(4)); 3136 } 3137 3138 return Entry; 3139 } 3140 3141 /* 3142 struct _objc_protocol_extension { 3143 uint32_t size; 3144 struct objc_method_description_list *optional_instance_methods; 3145 struct objc_method_description_list *optional_class_methods; 3146 struct objc_property_list *instance_properties; 3147 const char ** extendedMethodTypes; 3148 struct objc_property_list *class_properties; 3149 }; 3150 */ 3151 llvm::Constant * 3152 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3153 const ProtocolMethodLists &methodLists) { 3154 auto optInstanceMethods = 3155 methodLists.emitMethodList(this, PD, 3156 ProtocolMethodLists::OptionalInstanceMethods); 3157 auto optClassMethods = 3158 methodLists.emitMethodList(this, PD, 3159 ProtocolMethodLists::OptionalClassMethods); 3160 3161 auto extendedMethodTypes = 3162 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3163 methodLists.emitExtendedTypesArray(this), 3164 ObjCTypes); 3165 3166 auto instanceProperties = 3167 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3168 ObjCTypes, false); 3169 auto classProperties = 3170 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3171 PD, ObjCTypes, true); 3172 3173 // Return null if no extension bits are used. 3174 if (optInstanceMethods->isNullValue() && 3175 optClassMethods->isNullValue() && 3176 extendedMethodTypes->isNullValue() && 3177 instanceProperties->isNullValue() && 3178 classProperties->isNullValue()) { 3179 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3180 } 3181 3182 uint64_t size = 3183 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3184 3185 ConstantInitBuilder builder(CGM); 3186 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3187 values.addInt(ObjCTypes.IntTy, size); 3188 values.add(optInstanceMethods); 3189 values.add(optClassMethods); 3190 values.add(instanceProperties); 3191 values.add(extendedMethodTypes); 3192 values.add(classProperties); 3193 3194 // No special section, but goes in llvm.used 3195 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3196 StringRef(), CGM.getPointerAlign(), true); 3197 } 3198 3199 /* 3200 struct objc_protocol_list { 3201 struct objc_protocol_list *next; 3202 long count; 3203 Protocol *list[]; 3204 }; 3205 */ 3206 llvm::Constant * 3207 CGObjCMac::EmitProtocolList(Twine name, 3208 ObjCProtocolDecl::protocol_iterator begin, 3209 ObjCProtocolDecl::protocol_iterator end) { 3210 // Just return null for empty protocol lists 3211 if (begin == end) 3212 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3213 3214 ConstantInitBuilder builder(CGM); 3215 auto values = builder.beginStruct(); 3216 3217 // This field is only used by the runtime. 3218 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3219 3220 // Reserve a slot for the count. 3221 auto countSlot = values.addPlaceholder(); 3222 3223 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3224 for (; begin != end; ++begin) { 3225 refsArray.add(GetProtocolRef(*begin)); 3226 } 3227 auto count = refsArray.size(); 3228 3229 // This list is null terminated. 3230 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3231 3232 refsArray.finishAndAddTo(values); 3233 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3234 3235 StringRef section; 3236 if (CGM.getTriple().isOSBinFormatMachO()) 3237 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3238 3239 llvm::GlobalVariable *GV = 3240 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3241 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3242 } 3243 3244 static void 3245 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3246 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3247 const ObjCProtocolDecl *Proto, 3248 bool IsClassProperty) { 3249 for (const auto *PD : Proto->properties()) { 3250 if (IsClassProperty != PD->isClassProperty()) 3251 continue; 3252 if (!PropertySet.insert(PD->getIdentifier()).second) 3253 continue; 3254 Properties.push_back(PD); 3255 } 3256 3257 for (const auto *P : Proto->protocols()) 3258 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3259 } 3260 3261 /* 3262 struct _objc_property { 3263 const char * const name; 3264 const char * const attributes; 3265 }; 3266 3267 struct _objc_property_list { 3268 uint32_t entsize; // sizeof (struct _objc_property) 3269 uint32_t prop_count; 3270 struct _objc_property[prop_count]; 3271 }; 3272 */ 3273 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3274 const Decl *Container, 3275 const ObjCContainerDecl *OCD, 3276 const ObjCCommonTypesHelper &ObjCTypes, 3277 bool IsClassProperty) { 3278 if (IsClassProperty) { 3279 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3280 // with deployment target < 9.0. 3281 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3282 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3283 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3284 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3285 } 3286 3287 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3288 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3289 3290 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3291 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3292 for (auto *PD : ClassExt->properties()) { 3293 if (IsClassProperty != PD->isClassProperty()) 3294 continue; 3295 if (PD->isDirectProperty()) 3296 continue; 3297 PropertySet.insert(PD->getIdentifier()); 3298 Properties.push_back(PD); 3299 } 3300 3301 for (const auto *PD : OCD->properties()) { 3302 if (IsClassProperty != PD->isClassProperty()) 3303 continue; 3304 // Don't emit duplicate metadata for properties that were already in a 3305 // class extension. 3306 if (!PropertySet.insert(PD->getIdentifier()).second) 3307 continue; 3308 if (PD->isDirectProperty()) 3309 continue; 3310 Properties.push_back(PD); 3311 } 3312 3313 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3314 for (const auto *P : OID->all_referenced_protocols()) 3315 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3316 } 3317 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3318 for (const auto *P : CD->protocols()) 3319 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3320 } 3321 3322 // Return null for empty list. 3323 if (Properties.empty()) 3324 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3325 3326 unsigned propertySize = 3327 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3328 3329 ConstantInitBuilder builder(CGM); 3330 auto values = builder.beginStruct(); 3331 values.addInt(ObjCTypes.IntTy, propertySize); 3332 values.addInt(ObjCTypes.IntTy, Properties.size()); 3333 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3334 for (auto PD : Properties) { 3335 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3336 property.add(GetPropertyName(PD->getIdentifier())); 3337 property.add(GetPropertyTypeString(PD, Container)); 3338 property.finishAndAddTo(propertiesArray); 3339 } 3340 propertiesArray.finishAndAddTo(values); 3341 3342 StringRef Section; 3343 if (CGM.getTriple().isOSBinFormatMachO()) 3344 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3345 : "__OBJC,__property,regular,no_dead_strip"; 3346 3347 llvm::GlobalVariable *GV = 3348 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3349 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3350 } 3351 3352 llvm::Constant * 3353 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3354 ArrayRef<llvm::Constant*> MethodTypes, 3355 const ObjCCommonTypesHelper &ObjCTypes) { 3356 // Return null for empty list. 3357 if (MethodTypes.empty()) 3358 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3359 3360 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3361 MethodTypes.size()); 3362 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3363 3364 StringRef Section; 3365 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3366 Section = "__DATA, __objc_const"; 3367 3368 llvm::GlobalVariable *GV = 3369 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3370 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3371 } 3372 3373 /* 3374 struct _objc_category { 3375 char *category_name; 3376 char *class_name; 3377 struct _objc_method_list *instance_methods; 3378 struct _objc_method_list *class_methods; 3379 struct _objc_protocol_list *protocols; 3380 uint32_t size; // <rdar://4585769> 3381 struct _objc_property_list *instance_properties; 3382 struct _objc_property_list *class_properties; 3383 }; 3384 */ 3385 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3386 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3387 3388 // FIXME: This is poor design, the OCD should have a pointer to the category 3389 // decl. Additionally, note that Category can be null for the @implementation 3390 // w/o an @interface case. Sema should just create one for us as it does for 3391 // @implementation so everyone else can live life under a clear blue sky. 3392 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3393 const ObjCCategoryDecl *Category = 3394 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3395 3396 SmallString<256> ExtName; 3397 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3398 << OCD->getName(); 3399 3400 ConstantInitBuilder Builder(CGM); 3401 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3402 3403 enum { 3404 InstanceMethods, 3405 ClassMethods, 3406 NumMethodLists 3407 }; 3408 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3409 for (const auto *MD : OCD->methods()) { 3410 if (!MD->isDirectMethod()) 3411 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3412 } 3413 3414 Values.add(GetClassName(OCD->getName())); 3415 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3416 LazySymbols.insert(Interface->getIdentifier()); 3417 3418 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3419 Methods[InstanceMethods])); 3420 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3421 Methods[ClassMethods])); 3422 if (Category) { 3423 Values.add( 3424 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3425 Category->protocol_begin(), Category->protocol_end())); 3426 } else { 3427 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3428 } 3429 Values.addInt(ObjCTypes.IntTy, Size); 3430 3431 // If there is no category @interface then there can be no properties. 3432 if (Category) { 3433 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3434 OCD, Category, ObjCTypes, false)); 3435 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3436 OCD, Category, ObjCTypes, true)); 3437 } else { 3438 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3439 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3440 } 3441 3442 llvm::GlobalVariable *GV = 3443 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3444 "__OBJC,__category,regular,no_dead_strip", 3445 CGM.getPointerAlign(), true); 3446 DefinedCategories.push_back(GV); 3447 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3448 // method definition entries must be clear for next implementation. 3449 MethodDefinitions.clear(); 3450 } 3451 3452 enum FragileClassFlags { 3453 /// Apparently: is not a meta-class. 3454 FragileABI_Class_Factory = 0x00001, 3455 3456 /// Is a meta-class. 3457 FragileABI_Class_Meta = 0x00002, 3458 3459 /// Has a non-trivial constructor or destructor. 3460 FragileABI_Class_HasCXXStructors = 0x02000, 3461 3462 /// Has hidden visibility. 3463 FragileABI_Class_Hidden = 0x20000, 3464 3465 /// Class implementation was compiled under ARC. 3466 FragileABI_Class_CompiledByARC = 0x04000000, 3467 3468 /// Class implementation was compiled under MRC and has MRC weak ivars. 3469 /// Exclusive with CompiledByARC. 3470 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3471 }; 3472 3473 enum NonFragileClassFlags { 3474 /// Is a meta-class. 3475 NonFragileABI_Class_Meta = 0x00001, 3476 3477 /// Is a root class. 3478 NonFragileABI_Class_Root = 0x00002, 3479 3480 /// Has a non-trivial constructor or destructor. 3481 NonFragileABI_Class_HasCXXStructors = 0x00004, 3482 3483 /// Has hidden visibility. 3484 NonFragileABI_Class_Hidden = 0x00010, 3485 3486 /// Has the exception attribute. 3487 NonFragileABI_Class_Exception = 0x00020, 3488 3489 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3490 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3491 3492 /// Class implementation was compiled under ARC. 3493 NonFragileABI_Class_CompiledByARC = 0x00080, 3494 3495 /// Class has non-trivial destructors, but zero-initialization is okay. 3496 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3497 3498 /// Class implementation was compiled under MRC and has MRC weak ivars. 3499 /// Exclusive with CompiledByARC. 3500 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3501 }; 3502 3503 static bool hasWeakMember(QualType type) { 3504 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3505 return true; 3506 } 3507 3508 if (auto recType = type->getAs<RecordType>()) { 3509 for (auto field : recType->getDecl()->fields()) { 3510 if (hasWeakMember(field->getType())) 3511 return true; 3512 } 3513 } 3514 3515 return false; 3516 } 3517 3518 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3519 /// (and actually fill in a layout string) if we really do have any 3520 /// __weak ivars. 3521 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3522 const ObjCImplementationDecl *ID) { 3523 if (!CGM.getLangOpts().ObjCWeak) return false; 3524 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3525 3526 for (const ObjCIvarDecl *ivar = 3527 ID->getClassInterface()->all_declared_ivar_begin(); 3528 ivar; ivar = ivar->getNextIvar()) { 3529 if (hasWeakMember(ivar->getType())) 3530 return true; 3531 } 3532 3533 return false; 3534 } 3535 3536 /* 3537 struct _objc_class { 3538 Class isa; 3539 Class super_class; 3540 const char *name; 3541 long version; 3542 long info; 3543 long instance_size; 3544 struct _objc_ivar_list *ivars; 3545 struct _objc_method_list *methods; 3546 struct _objc_cache *cache; 3547 struct _objc_protocol_list *protocols; 3548 // Objective-C 1.0 extensions (<rdr://4585769>) 3549 const char *ivar_layout; 3550 struct _objc_class_ext *ext; 3551 }; 3552 3553 See EmitClassExtension(); 3554 */ 3555 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3556 IdentifierInfo *RuntimeName = 3557 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3558 DefinedSymbols.insert(RuntimeName); 3559 3560 std::string ClassName = ID->getNameAsString(); 3561 // FIXME: Gross 3562 ObjCInterfaceDecl *Interface = 3563 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3564 llvm::Constant *Protocols = 3565 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3566 Interface->all_referenced_protocol_begin(), 3567 Interface->all_referenced_protocol_end()); 3568 unsigned Flags = FragileABI_Class_Factory; 3569 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3570 Flags |= FragileABI_Class_HasCXXStructors; 3571 3572 bool hasMRCWeak = false; 3573 3574 if (CGM.getLangOpts().ObjCAutoRefCount) 3575 Flags |= FragileABI_Class_CompiledByARC; 3576 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3577 Flags |= FragileABI_Class_HasMRCWeakIvars; 3578 3579 CharUnits Size = 3580 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3581 3582 // FIXME: Set CXX-structors flag. 3583 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3584 Flags |= FragileABI_Class_Hidden; 3585 3586 enum { 3587 InstanceMethods, 3588 ClassMethods, 3589 NumMethodLists 3590 }; 3591 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3592 for (const auto *MD : ID->methods()) { 3593 if (!MD->isDirectMethod()) 3594 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3595 } 3596 3597 for (const auto *PID : ID->property_impls()) { 3598 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3599 if (PID->getPropertyDecl()->isDirectProperty()) 3600 continue; 3601 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3602 if (GetMethodDefinition(MD)) 3603 Methods[InstanceMethods].push_back(MD); 3604 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3605 if (GetMethodDefinition(MD)) 3606 Methods[InstanceMethods].push_back(MD); 3607 } 3608 } 3609 3610 ConstantInitBuilder builder(CGM); 3611 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3612 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3613 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3614 // Record a reference to the super class. 3615 LazySymbols.insert(Super->getIdentifier()); 3616 3617 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3618 ObjCTypes.ClassPtrTy); 3619 } else { 3620 values.addNullPointer(ObjCTypes.ClassPtrTy); 3621 } 3622 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3623 // Version is always 0. 3624 values.addInt(ObjCTypes.LongTy, 0); 3625 values.addInt(ObjCTypes.LongTy, Flags); 3626 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3627 values.add(EmitIvarList(ID, false)); 3628 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3629 Methods[InstanceMethods])); 3630 // cache is always NULL. 3631 values.addNullPointer(ObjCTypes.CachePtrTy); 3632 values.add(Protocols); 3633 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3634 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3635 /*isMetaclass*/ false)); 3636 3637 std::string Name("OBJC_CLASS_"); 3638 Name += ClassName; 3639 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3640 // Check for a forward reference. 3641 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3642 if (GV) { 3643 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3644 "Forward metaclass reference has incorrect type."); 3645 values.finishAndSetAsInitializer(GV); 3646 GV->setSection(Section); 3647 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3648 CGM.addCompilerUsedGlobal(GV); 3649 } else 3650 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3651 DefinedClasses.push_back(GV); 3652 ImplementedClasses.push_back(Interface); 3653 // method definition entries must be clear for next implementation. 3654 MethodDefinitions.clear(); 3655 } 3656 3657 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3658 llvm::Constant *Protocols, 3659 ArrayRef<const ObjCMethodDecl*> Methods) { 3660 unsigned Flags = FragileABI_Class_Meta; 3661 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3662 3663 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3664 Flags |= FragileABI_Class_Hidden; 3665 3666 ConstantInitBuilder builder(CGM); 3667 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3668 // The isa for the metaclass is the root of the hierarchy. 3669 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3670 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3671 Root = Super; 3672 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3673 ObjCTypes.ClassPtrTy); 3674 // The super class for the metaclass is emitted as the name of the 3675 // super class. The runtime fixes this up to point to the 3676 // *metaclass* for the super class. 3677 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3678 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3679 ObjCTypes.ClassPtrTy); 3680 } else { 3681 values.addNullPointer(ObjCTypes.ClassPtrTy); 3682 } 3683 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3684 // Version is always 0. 3685 values.addInt(ObjCTypes.LongTy, 0); 3686 values.addInt(ObjCTypes.LongTy, Flags); 3687 values.addInt(ObjCTypes.LongTy, Size); 3688 values.add(EmitIvarList(ID, true)); 3689 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3690 Methods)); 3691 // cache is always NULL. 3692 values.addNullPointer(ObjCTypes.CachePtrTy); 3693 values.add(Protocols); 3694 // ivar_layout for metaclass is always NULL. 3695 values.addNullPointer(ObjCTypes.Int8PtrTy); 3696 // The class extension is used to store class properties for metaclasses. 3697 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3698 /*isMetaclass*/true)); 3699 3700 std::string Name("OBJC_METACLASS_"); 3701 Name += ID->getName(); 3702 3703 // Check for a forward reference. 3704 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3705 if (GV) { 3706 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3707 "Forward metaclass reference has incorrect type."); 3708 values.finishAndSetAsInitializer(GV); 3709 } else { 3710 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3711 /*constant*/ false, 3712 llvm::GlobalValue::PrivateLinkage); 3713 } 3714 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3715 CGM.addCompilerUsedGlobal(GV); 3716 3717 return GV; 3718 } 3719 3720 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3721 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3722 3723 // FIXME: Should we look these up somewhere other than the module. Its a bit 3724 // silly since we only generate these while processing an implementation, so 3725 // exactly one pointer would work if know when we entered/exitted an 3726 // implementation block. 3727 3728 // Check for an existing forward reference. 3729 // Previously, metaclass with internal linkage may have been defined. 3730 // pass 'true' as 2nd argument so it is returned. 3731 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3732 if (!GV) 3733 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3734 llvm::GlobalValue::PrivateLinkage, nullptr, 3735 Name); 3736 3737 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3738 "Forward metaclass reference has incorrect type."); 3739 return GV; 3740 } 3741 3742 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3743 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3744 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3745 3746 if (!GV) 3747 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3748 llvm::GlobalValue::PrivateLinkage, nullptr, 3749 Name); 3750 3751 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3752 "Forward class metadata reference has incorrect type."); 3753 return GV; 3754 } 3755 3756 /* 3757 Emit a "class extension", which in this specific context means extra 3758 data that doesn't fit in the normal fragile-ABI class structure, and 3759 has nothing to do with the language concept of a class extension. 3760 3761 struct objc_class_ext { 3762 uint32_t size; 3763 const char *weak_ivar_layout; 3764 struct _objc_property_list *properties; 3765 }; 3766 */ 3767 llvm::Constant * 3768 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3769 CharUnits InstanceSize, bool hasMRCWeakIvars, 3770 bool isMetaclass) { 3771 // Weak ivar layout. 3772 llvm::Constant *layout; 3773 if (isMetaclass) { 3774 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3775 } else { 3776 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3777 hasMRCWeakIvars); 3778 } 3779 3780 // Properties. 3781 llvm::Constant *propertyList = 3782 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3783 : Twine("_OBJC_$_PROP_LIST_")) 3784 + ID->getName(), 3785 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3786 3787 // Return null if no extension bits are used. 3788 if (layout->isNullValue() && propertyList->isNullValue()) { 3789 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3790 } 3791 3792 uint64_t size = 3793 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3794 3795 ConstantInitBuilder builder(CGM); 3796 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3797 values.addInt(ObjCTypes.IntTy, size); 3798 values.add(layout); 3799 values.add(propertyList); 3800 3801 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3802 "__OBJC,__class_ext,regular,no_dead_strip", 3803 CGM.getPointerAlign(), true); 3804 } 3805 3806 /* 3807 struct objc_ivar { 3808 char *ivar_name; 3809 char *ivar_type; 3810 int ivar_offset; 3811 }; 3812 3813 struct objc_ivar_list { 3814 int ivar_count; 3815 struct objc_ivar list[count]; 3816 }; 3817 */ 3818 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3819 bool ForClass) { 3820 // When emitting the root class GCC emits ivar entries for the 3821 // actual class structure. It is not clear if we need to follow this 3822 // behavior; for now lets try and get away with not doing it. If so, 3823 // the cleanest solution would be to make up an ObjCInterfaceDecl 3824 // for the class. 3825 if (ForClass) 3826 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3827 3828 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3829 3830 ConstantInitBuilder builder(CGM); 3831 auto ivarList = builder.beginStruct(); 3832 auto countSlot = ivarList.addPlaceholder(); 3833 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3834 3835 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3836 IVD; IVD = IVD->getNextIvar()) { 3837 // Ignore unnamed bit-fields. 3838 if (!IVD->getDeclName()) 3839 continue; 3840 3841 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3842 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3843 ivar.add(GetMethodVarType(IVD)); 3844 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3845 ivar.finishAndAddTo(ivars); 3846 } 3847 3848 // Return null for empty list. 3849 auto count = ivars.size(); 3850 if (count == 0) { 3851 ivars.abandon(); 3852 ivarList.abandon(); 3853 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3854 } 3855 3856 ivars.finishAndAddTo(ivarList); 3857 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3858 3859 llvm::GlobalVariable *GV; 3860 if (ForClass) 3861 GV = 3862 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3863 "__OBJC,__class_vars,regular,no_dead_strip", 3864 CGM.getPointerAlign(), true); 3865 else 3866 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3867 "__OBJC,__instance_vars,regular,no_dead_strip", 3868 CGM.getPointerAlign(), true); 3869 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3870 } 3871 3872 /// Build a struct objc_method_description constant for the given method. 3873 /// 3874 /// struct objc_method_description { 3875 /// SEL method_name; 3876 /// char *method_types; 3877 /// }; 3878 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3879 const ObjCMethodDecl *MD) { 3880 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3881 description.addBitCast(GetMethodVarName(MD->getSelector()), 3882 ObjCTypes.SelectorPtrTy); 3883 description.add(GetMethodVarType(MD)); 3884 description.finishAndAddTo(builder); 3885 } 3886 3887 /// Build a struct objc_method constant for the given method. 3888 /// 3889 /// struct objc_method { 3890 /// SEL method_name; 3891 /// char *method_types; 3892 /// void *method; 3893 /// }; 3894 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3895 const ObjCMethodDecl *MD) { 3896 llvm::Function *fn = GetMethodDefinition(MD); 3897 assert(fn && "no definition registered for method"); 3898 3899 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3900 method.addBitCast(GetMethodVarName(MD->getSelector()), 3901 ObjCTypes.SelectorPtrTy); 3902 method.add(GetMethodVarType(MD)); 3903 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3904 method.finishAndAddTo(builder); 3905 } 3906 3907 /// Build a struct objc_method_list or struct objc_method_description_list, 3908 /// as appropriate. 3909 /// 3910 /// struct objc_method_list { 3911 /// struct objc_method_list *obsolete; 3912 /// int count; 3913 /// struct objc_method methods_list[count]; 3914 /// }; 3915 /// 3916 /// struct objc_method_description_list { 3917 /// int count; 3918 /// struct objc_method_description list[count]; 3919 /// }; 3920 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3921 ArrayRef<const ObjCMethodDecl *> methods) { 3922 StringRef prefix; 3923 StringRef section; 3924 bool forProtocol = false; 3925 switch (MLT) { 3926 case MethodListType::CategoryInstanceMethods: 3927 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3928 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3929 forProtocol = false; 3930 break; 3931 case MethodListType::CategoryClassMethods: 3932 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3933 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3934 forProtocol = false; 3935 break; 3936 case MethodListType::InstanceMethods: 3937 prefix = "OBJC_INSTANCE_METHODS_"; 3938 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3939 forProtocol = false; 3940 break; 3941 case MethodListType::ClassMethods: 3942 prefix = "OBJC_CLASS_METHODS_"; 3943 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3944 forProtocol = false; 3945 break; 3946 case MethodListType::ProtocolInstanceMethods: 3947 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3948 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3949 forProtocol = true; 3950 break; 3951 case MethodListType::ProtocolClassMethods: 3952 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3953 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3954 forProtocol = true; 3955 break; 3956 case MethodListType::OptionalProtocolInstanceMethods: 3957 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3958 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3959 forProtocol = true; 3960 break; 3961 case MethodListType::OptionalProtocolClassMethods: 3962 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3963 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3964 forProtocol = true; 3965 break; 3966 } 3967 3968 // Return null for empty list. 3969 if (methods.empty()) 3970 return llvm::Constant::getNullValue(forProtocol 3971 ? ObjCTypes.MethodDescriptionListPtrTy 3972 : ObjCTypes.MethodListPtrTy); 3973 3974 // For protocols, this is an objc_method_description_list, which has 3975 // a slightly different structure. 3976 if (forProtocol) { 3977 ConstantInitBuilder builder(CGM); 3978 auto values = builder.beginStruct(); 3979 values.addInt(ObjCTypes.IntTy, methods.size()); 3980 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3981 for (auto MD : methods) { 3982 emitMethodDescriptionConstant(methodArray, MD); 3983 } 3984 methodArray.finishAndAddTo(values); 3985 3986 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3987 CGM.getPointerAlign(), true); 3988 return llvm::ConstantExpr::getBitCast(GV, 3989 ObjCTypes.MethodDescriptionListPtrTy); 3990 } 3991 3992 // Otherwise, it's an objc_method_list. 3993 ConstantInitBuilder builder(CGM); 3994 auto values = builder.beginStruct(); 3995 values.addNullPointer(ObjCTypes.Int8PtrTy); 3996 values.addInt(ObjCTypes.IntTy, methods.size()); 3997 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3998 for (auto MD : methods) { 3999 if (!MD->isDirectMethod()) 4000 emitMethodConstant(methodArray, MD); 4001 } 4002 methodArray.finishAndAddTo(values); 4003 4004 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 4005 CGM.getPointerAlign(), true); 4006 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 4007 } 4008 4009 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 4010 const ObjCContainerDecl *CD) { 4011 llvm::Function *Method; 4012 4013 if (OMD->isDirectMethod()) { 4014 Method = GenerateDirectMethod(OMD, CD); 4015 } else { 4016 SmallString<256> Name; 4017 GetNameForMethod(OMD, CD, Name); 4018 4019 CodeGenTypes &Types = CGM.getTypes(); 4020 llvm::FunctionType *MethodTy = 4021 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4022 Method = 4023 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 4024 Name.str(), &CGM.getModule()); 4025 } 4026 4027 MethodDefinitions.insert(std::make_pair(OMD, Method)); 4028 4029 return Method; 4030 } 4031 4032 llvm::Function * 4033 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 4034 const ObjCContainerDecl *CD) { 4035 auto *COMD = OMD->getCanonicalDecl(); 4036 auto I = DirectMethodDefinitions.find(COMD); 4037 llvm::Function *OldFn = nullptr, *Fn = nullptr; 4038 4039 if (I != DirectMethodDefinitions.end()) { 4040 // Objective-C allows for the declaration and implementation types 4041 // to differ slightly. 4042 // 4043 // If we're being asked for the Function associated for a method 4044 // implementation, a previous value might have been cached 4045 // based on the type of the canonical declaration. 4046 // 4047 // If these do not match, then we'll replace this function with 4048 // a new one that has the proper type below. 4049 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4050 return I->second; 4051 OldFn = I->second; 4052 } 4053 4054 CodeGenTypes &Types = CGM.getTypes(); 4055 llvm::FunctionType *MethodTy = 4056 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4057 4058 if (OldFn) { 4059 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4060 "", &CGM.getModule()); 4061 Fn->takeName(OldFn); 4062 OldFn->replaceAllUsesWith( 4063 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4064 OldFn->eraseFromParent(); 4065 4066 // Replace the cached function in the map. 4067 I->second = Fn; 4068 } else { 4069 SmallString<256> Name; 4070 GetNameForMethod(OMD, CD, Name, /*ignoreCategoryNamespace*/ true); 4071 4072 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4073 Name.str(), &CGM.getModule()); 4074 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4075 } 4076 4077 return Fn; 4078 } 4079 4080 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4081 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4082 const ObjCContainerDecl *CD) { 4083 auto &Builder = CGF.Builder; 4084 bool ReceiverCanBeNull = true; 4085 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4086 auto selfValue = Builder.CreateLoad(selfAddr); 4087 4088 // Generate: 4089 // 4090 // /* for class methods only to force class lazy initialization */ 4091 // self = [self self]; 4092 // 4093 // /* unless the receiver is never NULL */ 4094 // if (self == nil) { 4095 // return (ReturnType){ }; 4096 // } 4097 // 4098 // _cmd = @selector(...) 4099 // ... 4100 4101 if (OMD->isClassMethod()) { 4102 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4103 assert(OID && 4104 "GenerateDirectMethod() should be called with the Class Interface"); 4105 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4106 auto ResultType = CGF.getContext().getObjCIdType(); 4107 RValue result; 4108 CallArgList Args; 4109 4110 // TODO: If this method is inlined, the caller might know that `self` is 4111 // already initialized; for example, it might be an ordinary Objective-C 4112 // method which always receives an initialized `self`, or it might have just 4113 // forced initialization on its own. 4114 // 4115 // We should find a way to eliminate this unnecessary initialization in such 4116 // cases in LLVM. 4117 result = GeneratePossiblySpecializedMessageSend( 4118 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4119 nullptr, true); 4120 Builder.CreateStore(result.getScalarVal(), selfAddr); 4121 4122 // Nullable `Class` expressions cannot be messaged with a direct method 4123 // so the only reason why the receive can be null would be because 4124 // of weak linking. 4125 ReceiverCanBeNull = isWeakLinkedClass(OID); 4126 } 4127 4128 if (ReceiverCanBeNull) { 4129 llvm::BasicBlock *SelfIsNilBlock = 4130 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4131 llvm::BasicBlock *ContBlock = 4132 CGF.createBasicBlock("objc_direct_method.cont"); 4133 4134 // if (self == nil) { 4135 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4136 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4137 4138 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4139 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4140 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4141 4142 CGF.EmitBlock(SelfIsNilBlock); 4143 4144 // return (ReturnType){ }; 4145 auto retTy = OMD->getReturnType(); 4146 Builder.SetInsertPoint(SelfIsNilBlock); 4147 if (!retTy->isVoidType()) { 4148 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4149 } 4150 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4151 // } 4152 4153 // rest of the body 4154 CGF.EmitBlock(ContBlock); 4155 Builder.SetInsertPoint(ContBlock); 4156 } 4157 4158 // only synthesize _cmd if it's referenced 4159 if (OMD->getCmdDecl()->isUsed()) { 4160 Builder.CreateStore(GetSelector(CGF, OMD), 4161 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4162 } 4163 } 4164 4165 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4166 ConstantStructBuilder &Init, 4167 StringRef Section, 4168 CharUnits Align, 4169 bool AddToUsed) { 4170 llvm::GlobalValue::LinkageTypes LT = 4171 getLinkageTypeForObjCMetadata(CGM, Section); 4172 llvm::GlobalVariable *GV = 4173 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4174 if (!Section.empty()) 4175 GV->setSection(Section); 4176 if (AddToUsed) 4177 CGM.addCompilerUsedGlobal(GV); 4178 return GV; 4179 } 4180 4181 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4182 llvm::Constant *Init, 4183 StringRef Section, 4184 CharUnits Align, 4185 bool AddToUsed) { 4186 llvm::Type *Ty = Init->getType(); 4187 llvm::GlobalValue::LinkageTypes LT = 4188 getLinkageTypeForObjCMetadata(CGM, Section); 4189 llvm::GlobalVariable *GV = 4190 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4191 if (!Section.empty()) 4192 GV->setSection(Section); 4193 GV->setAlignment(Align.getAsAlign()); 4194 if (AddToUsed) 4195 CGM.addCompilerUsedGlobal(GV); 4196 return GV; 4197 } 4198 4199 llvm::GlobalVariable * 4200 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4201 bool ForceNonFragileABI, 4202 bool NullTerminate) { 4203 StringRef Label; 4204 switch (Type) { 4205 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4206 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4207 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4208 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4209 } 4210 4211 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4212 4213 StringRef Section; 4214 switch (Type) { 4215 case ObjCLabelType::ClassName: 4216 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4217 : "__TEXT,__cstring,cstring_literals"; 4218 break; 4219 case ObjCLabelType::MethodVarName: 4220 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4221 : "__TEXT,__cstring,cstring_literals"; 4222 break; 4223 case ObjCLabelType::MethodVarType: 4224 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4225 : "__TEXT,__cstring,cstring_literals"; 4226 break; 4227 case ObjCLabelType::PropertyName: 4228 Section = "__TEXT,__cstring,cstring_literals"; 4229 break; 4230 } 4231 4232 llvm::Constant *Value = 4233 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4234 llvm::GlobalVariable *GV = 4235 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4236 /*isConstant=*/true, 4237 llvm::GlobalValue::PrivateLinkage, Value, Label); 4238 if (CGM.getTriple().isOSBinFormatMachO()) 4239 GV->setSection(Section); 4240 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4241 GV->setAlignment(CharUnits::One().getAsAlign()); 4242 CGM.addCompilerUsedGlobal(GV); 4243 4244 return GV; 4245 } 4246 4247 llvm::Function *CGObjCMac::ModuleInitFunction() { 4248 // Abuse this interface function as a place to finalize. 4249 FinishModule(); 4250 return nullptr; 4251 } 4252 4253 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4254 return ObjCTypes.getGetPropertyFn(); 4255 } 4256 4257 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4258 return ObjCTypes.getSetPropertyFn(); 4259 } 4260 4261 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4262 bool copy) { 4263 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4264 } 4265 4266 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4267 return ObjCTypes.getCopyStructFn(); 4268 } 4269 4270 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4271 return ObjCTypes.getCopyStructFn(); 4272 } 4273 4274 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4275 return ObjCTypes.getCppAtomicObjectFunction(); 4276 } 4277 4278 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4279 return ObjCTypes.getCppAtomicObjectFunction(); 4280 } 4281 4282 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4283 return ObjCTypes.getEnumerationMutationFn(); 4284 } 4285 4286 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4287 return EmitTryOrSynchronizedStmt(CGF, S); 4288 } 4289 4290 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4291 const ObjCAtSynchronizedStmt &S) { 4292 return EmitTryOrSynchronizedStmt(CGF, S); 4293 } 4294 4295 namespace { 4296 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4297 const Stmt &S; 4298 Address SyncArgSlot; 4299 Address CallTryExitVar; 4300 Address ExceptionData; 4301 ObjCTypesHelper &ObjCTypes; 4302 PerformFragileFinally(const Stmt *S, 4303 Address SyncArgSlot, 4304 Address CallTryExitVar, 4305 Address ExceptionData, 4306 ObjCTypesHelper *ObjCTypes) 4307 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4308 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4309 4310 void Emit(CodeGenFunction &CGF, Flags flags) override { 4311 // Check whether we need to call objc_exception_try_exit. 4312 // In optimized code, this branch will always be folded. 4313 llvm::BasicBlock *FinallyCallExit = 4314 CGF.createBasicBlock("finally.call_exit"); 4315 llvm::BasicBlock *FinallyNoCallExit = 4316 CGF.createBasicBlock("finally.no_call_exit"); 4317 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4318 FinallyCallExit, FinallyNoCallExit); 4319 4320 CGF.EmitBlock(FinallyCallExit); 4321 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4322 ExceptionData.getPointer()); 4323 4324 CGF.EmitBlock(FinallyNoCallExit); 4325 4326 if (isa<ObjCAtTryStmt>(S)) { 4327 if (const ObjCAtFinallyStmt* FinallyStmt = 4328 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4329 // Don't try to do the @finally if this is an EH cleanup. 4330 if (flags.isForEHCleanup()) return; 4331 4332 // Save the current cleanup destination in case there's 4333 // control flow inside the finally statement. 4334 llvm::Value *CurCleanupDest = 4335 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4336 4337 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4338 4339 if (CGF.HaveInsertPoint()) { 4340 CGF.Builder.CreateStore(CurCleanupDest, 4341 CGF.getNormalCleanupDestSlot()); 4342 } else { 4343 // Currently, the end of the cleanup must always exist. 4344 CGF.EnsureInsertPoint(); 4345 } 4346 } 4347 } else { 4348 // Emit objc_sync_exit(expr); as finally's sole statement for 4349 // @synchronized. 4350 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4351 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4352 } 4353 } 4354 }; 4355 4356 class FragileHazards { 4357 CodeGenFunction &CGF; 4358 SmallVector<llvm::Value*, 20> Locals; 4359 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4360 4361 llvm::InlineAsm *ReadHazard; 4362 llvm::InlineAsm *WriteHazard; 4363 4364 llvm::FunctionType *GetAsmFnType(); 4365 4366 void collectLocals(); 4367 void emitReadHazard(CGBuilderTy &Builder); 4368 4369 public: 4370 FragileHazards(CodeGenFunction &CGF); 4371 4372 void emitWriteHazard(); 4373 void emitHazardsInNewBlocks(); 4374 }; 4375 } // end anonymous namespace 4376 4377 /// Create the fragile-ABI read and write hazards based on the current 4378 /// state of the function, which is presumed to be immediately prior 4379 /// to a @try block. These hazards are used to maintain correct 4380 /// semantics in the face of optimization and the fragile ABI's 4381 /// cavalier use of setjmp/longjmp. 4382 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4383 collectLocals(); 4384 4385 if (Locals.empty()) return; 4386 4387 // Collect all the blocks in the function. 4388 for (llvm::Function::iterator 4389 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4390 BlocksBeforeTry.insert(&*I); 4391 4392 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4393 4394 // Create a read hazard for the allocas. This inhibits dead-store 4395 // optimizations and forces the values to memory. This hazard is 4396 // inserted before any 'throwing' calls in the protected scope to 4397 // reflect the possibility that the variables might be read from the 4398 // catch block if the call throws. 4399 { 4400 std::string Constraint; 4401 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4402 if (I) Constraint += ','; 4403 Constraint += "*m"; 4404 } 4405 4406 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4407 } 4408 4409 // Create a write hazard for the allocas. This inhibits folding 4410 // loads across the hazard. This hazard is inserted at the 4411 // beginning of the catch path to reflect the possibility that the 4412 // variables might have been written within the protected scope. 4413 { 4414 std::string Constraint; 4415 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4416 if (I) Constraint += ','; 4417 Constraint += "=*m"; 4418 } 4419 4420 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4421 } 4422 } 4423 4424 /// Emit a write hazard at the current location. 4425 void FragileHazards::emitWriteHazard() { 4426 if (Locals.empty()) return; 4427 4428 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4429 } 4430 4431 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4432 assert(!Locals.empty()); 4433 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4434 call->setDoesNotThrow(); 4435 call->setCallingConv(CGF.getRuntimeCC()); 4436 } 4437 4438 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4439 /// which have been inserted since the beginning of the try. 4440 void FragileHazards::emitHazardsInNewBlocks() { 4441 if (Locals.empty()) return; 4442 4443 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4444 4445 // Iterate through all blocks, skipping those prior to the try. 4446 for (llvm::Function::iterator 4447 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4448 llvm::BasicBlock &BB = *FI; 4449 if (BlocksBeforeTry.count(&BB)) continue; 4450 4451 // Walk through all the calls in the block. 4452 for (llvm::BasicBlock::iterator 4453 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4454 llvm::Instruction &I = *BI; 4455 4456 // Ignore instructions that aren't non-intrinsic calls. 4457 // These are the only calls that can possibly call longjmp. 4458 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4459 continue; 4460 if (isa<llvm::IntrinsicInst>(I)) 4461 continue; 4462 4463 // Ignore call sites marked nounwind. This may be questionable, 4464 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4465 if (cast<llvm::CallBase>(I).doesNotThrow()) 4466 continue; 4467 4468 // Insert a read hazard before the call. This will ensure that 4469 // any writes to the locals are performed before making the 4470 // call. If the call throws, then this is sufficient to 4471 // guarantee correctness as long as it doesn't also write to any 4472 // locals. 4473 Builder.SetInsertPoint(&BB, BI); 4474 emitReadHazard(Builder); 4475 } 4476 } 4477 } 4478 4479 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4480 if (V.isValid()) S.insert(V.getPointer()); 4481 } 4482 4483 void FragileHazards::collectLocals() { 4484 // Compute a set of allocas to ignore. 4485 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4486 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4487 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4488 4489 // Collect all the allocas currently in the function. This is 4490 // probably way too aggressive. 4491 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4492 for (llvm::BasicBlock::iterator 4493 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4494 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4495 Locals.push_back(&*I); 4496 } 4497 4498 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4499 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4500 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4501 tys[i] = Locals[i]->getType(); 4502 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4503 } 4504 4505 /* 4506 4507 Objective-C setjmp-longjmp (sjlj) Exception Handling 4508 -- 4509 4510 A catch buffer is a setjmp buffer plus: 4511 - a pointer to the exception that was caught 4512 - a pointer to the previous exception data buffer 4513 - two pointers of reserved storage 4514 Therefore catch buffers form a stack, with a pointer to the top 4515 of the stack kept in thread-local storage. 4516 4517 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4518 objc_exception_try_exit pops the given catch buffer, which is 4519 required to be the top of the EH stack. 4520 objc_exception_throw pops the top of the EH stack, writes the 4521 thrown exception into the appropriate field, and longjmps 4522 to the setjmp buffer. It crashes the process (with a printf 4523 and an abort()) if there are no catch buffers on the stack. 4524 objc_exception_extract just reads the exception pointer out of the 4525 catch buffer. 4526 4527 There's no reason an implementation couldn't use a light-weight 4528 setjmp here --- something like __builtin_setjmp, but API-compatible 4529 with the heavyweight setjmp. This will be more important if we ever 4530 want to implement correct ObjC/C++ exception interactions for the 4531 fragile ABI. 4532 4533 Note that for this use of setjmp/longjmp to be correct, we may need 4534 to mark some local variables volatile: if a non-volatile local 4535 variable is modified between the setjmp and the longjmp, it has 4536 indeterminate value. For the purposes of LLVM IR, it may be 4537 sufficient to make loads and stores within the @try (to variables 4538 declared outside the @try) volatile. This is necessary for 4539 optimized correctness, but is not currently being done; this is 4540 being tracked as rdar://problem/8160285 4541 4542 The basic framework for a @try-catch-finally is as follows: 4543 { 4544 objc_exception_data d; 4545 id _rethrow = null; 4546 bool _call_try_exit = true; 4547 4548 objc_exception_try_enter(&d); 4549 if (!setjmp(d.jmp_buf)) { 4550 ... try body ... 4551 } else { 4552 // exception path 4553 id _caught = objc_exception_extract(&d); 4554 4555 // enter new try scope for handlers 4556 if (!setjmp(d.jmp_buf)) { 4557 ... match exception and execute catch blocks ... 4558 4559 // fell off end, rethrow. 4560 _rethrow = _caught; 4561 ... jump-through-finally to finally_rethrow ... 4562 } else { 4563 // exception in catch block 4564 _rethrow = objc_exception_extract(&d); 4565 _call_try_exit = false; 4566 ... jump-through-finally to finally_rethrow ... 4567 } 4568 } 4569 ... jump-through-finally to finally_end ... 4570 4571 finally: 4572 if (_call_try_exit) 4573 objc_exception_try_exit(&d); 4574 4575 ... finally block .... 4576 ... dispatch to finally destination ... 4577 4578 finally_rethrow: 4579 objc_exception_throw(_rethrow); 4580 4581 finally_end: 4582 } 4583 4584 This framework differs slightly from the one gcc uses, in that gcc 4585 uses _rethrow to determine if objc_exception_try_exit should be called 4586 and if the object should be rethrown. This breaks in the face of 4587 throwing nil and introduces unnecessary branches. 4588 4589 We specialize this framework for a few particular circumstances: 4590 4591 - If there are no catch blocks, then we avoid emitting the second 4592 exception handling context. 4593 4594 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4595 e)) we avoid emitting the code to rethrow an uncaught exception. 4596 4597 - FIXME: If there is no @finally block we can do a few more 4598 simplifications. 4599 4600 Rethrows and Jumps-Through-Finally 4601 -- 4602 4603 '@throw;' is supported by pushing the currently-caught exception 4604 onto ObjCEHStack while the @catch blocks are emitted. 4605 4606 Branches through the @finally block are handled with an ordinary 4607 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4608 exceptions are not compatible with C++ exceptions, and this is 4609 hardly the only place where this will go wrong. 4610 4611 @synchronized(expr) { stmt; } is emitted as if it were: 4612 id synch_value = expr; 4613 objc_sync_enter(synch_value); 4614 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4615 */ 4616 4617 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4618 const Stmt &S) { 4619 bool isTry = isa<ObjCAtTryStmt>(S); 4620 4621 // A destination for the fall-through edges of the catch handlers to 4622 // jump to. 4623 CodeGenFunction::JumpDest FinallyEnd = 4624 CGF.getJumpDestInCurrentScope("finally.end"); 4625 4626 // A destination for the rethrow edge of the catch handlers to jump 4627 // to. 4628 CodeGenFunction::JumpDest FinallyRethrow = 4629 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4630 4631 // For @synchronized, call objc_sync_enter(sync.expr). The 4632 // evaluation of the expression must occur before we enter the 4633 // @synchronized. We can't avoid a temp here because we need the 4634 // value to be preserved. If the backend ever does liveness 4635 // correctly after setjmp, this will be unnecessary. 4636 Address SyncArgSlot = Address::invalid(); 4637 if (!isTry) { 4638 llvm::Value *SyncArg = 4639 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4640 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4641 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4642 4643 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4644 CGF.getPointerAlign(), "sync.arg"); 4645 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4646 } 4647 4648 // Allocate memory for the setjmp buffer. This needs to be kept 4649 // live throughout the try and catch blocks. 4650 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4651 CGF.getPointerAlign(), 4652 "exceptiondata.ptr"); 4653 4654 // Create the fragile hazards. Note that this will not capture any 4655 // of the allocas required for exception processing, but will 4656 // capture the current basic block (which extends all the way to the 4657 // setjmp call) as "before the @try". 4658 FragileHazards Hazards(CGF); 4659 4660 // Create a flag indicating whether the cleanup needs to call 4661 // objc_exception_try_exit. This is true except when 4662 // - no catches match and we're branching through the cleanup 4663 // just to rethrow the exception, or 4664 // - a catch matched and we're falling out of the catch handler. 4665 // The setjmp-safety rule here is that we should always store to this 4666 // variable in a place that dominates the branch through the cleanup 4667 // without passing through any setjmps. 4668 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4669 CharUnits::One(), 4670 "_call_try_exit"); 4671 4672 // A slot containing the exception to rethrow. Only needed when we 4673 // have both a @catch and a @finally. 4674 Address PropagatingExnVar = Address::invalid(); 4675 4676 // Push a normal cleanup to leave the try scope. 4677 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4678 SyncArgSlot, 4679 CallTryExitVar, 4680 ExceptionData, 4681 &ObjCTypes); 4682 4683 // Enter a try block: 4684 // - Call objc_exception_try_enter to push ExceptionData on top of 4685 // the EH stack. 4686 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4687 ExceptionData.getPointer()); 4688 4689 // - Call setjmp on the exception data buffer. 4690 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4691 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4692 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4693 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4694 "setjmp_buffer"); 4695 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4696 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4697 SetJmpResult->setCanReturnTwice(); 4698 4699 // If setjmp returned 0, enter the protected block; otherwise, 4700 // branch to the handler. 4701 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4702 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4703 llvm::Value *DidCatch = 4704 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4705 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4706 4707 // Emit the protected block. 4708 CGF.EmitBlock(TryBlock); 4709 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4710 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4711 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4712 4713 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4714 4715 // Emit the exception handler block. 4716 CGF.EmitBlock(TryHandler); 4717 4718 // Don't optimize loads of the in-scope locals across this point. 4719 Hazards.emitWriteHazard(); 4720 4721 // For a @synchronized (or a @try with no catches), just branch 4722 // through the cleanup to the rethrow block. 4723 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4724 // Tell the cleanup not to re-pop the exit. 4725 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4726 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4727 4728 // Otherwise, we have to match against the caught exceptions. 4729 } else { 4730 // Retrieve the exception object. We may emit multiple blocks but 4731 // nothing can cross this so the value is already in SSA form. 4732 llvm::CallInst *Caught = 4733 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4734 ExceptionData.getPointer(), "caught"); 4735 4736 // Push the exception to rethrow onto the EH value stack for the 4737 // benefit of any @throws in the handlers. 4738 CGF.ObjCEHValueStack.push_back(Caught); 4739 4740 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4741 4742 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4743 4744 llvm::BasicBlock *CatchBlock = nullptr; 4745 llvm::BasicBlock *CatchHandler = nullptr; 4746 if (HasFinally) { 4747 // Save the currently-propagating exception before 4748 // objc_exception_try_enter clears the exception slot. 4749 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4750 CGF.getPointerAlign(), 4751 "propagating_exception"); 4752 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4753 4754 // Enter a new exception try block (in case a @catch block 4755 // throws an exception). 4756 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4757 ExceptionData.getPointer()); 4758 4759 llvm::CallInst *SetJmpResult = 4760 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4761 SetJmpBuffer, "setjmp.result"); 4762 SetJmpResult->setCanReturnTwice(); 4763 4764 llvm::Value *Threw = 4765 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4766 4767 CatchBlock = CGF.createBasicBlock("catch"); 4768 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4769 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4770 4771 CGF.EmitBlock(CatchBlock); 4772 } 4773 4774 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4775 4776 // Handle catch list. As a special case we check if everything is 4777 // matched and avoid generating code for falling off the end if 4778 // so. 4779 bool AllMatched = false; 4780 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4781 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4782 4783 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4784 const ObjCObjectPointerType *OPT = nullptr; 4785 4786 // catch(...) always matches. 4787 if (!CatchParam) { 4788 AllMatched = true; 4789 } else { 4790 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4791 4792 // catch(id e) always matches under this ABI, since only 4793 // ObjC exceptions end up here in the first place. 4794 // FIXME: For the time being we also match id<X>; this should 4795 // be rejected by Sema instead. 4796 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4797 AllMatched = true; 4798 } 4799 4800 // If this is a catch-all, we don't need to test anything. 4801 if (AllMatched) { 4802 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4803 4804 if (CatchParam) { 4805 CGF.EmitAutoVarDecl(*CatchParam); 4806 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4807 4808 // These types work out because ConvertType(id) == i8*. 4809 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4810 } 4811 4812 CGF.EmitStmt(CatchStmt->getCatchBody()); 4813 4814 // The scope of the catch variable ends right here. 4815 CatchVarCleanups.ForceCleanup(); 4816 4817 CGF.EmitBranchThroughCleanup(FinallyEnd); 4818 break; 4819 } 4820 4821 assert(OPT && "Unexpected non-object pointer type in @catch"); 4822 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4823 4824 // FIXME: @catch (Class c) ? 4825 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4826 assert(IDecl && "Catch parameter must have Objective-C type!"); 4827 4828 // Check if the @catch block matches the exception object. 4829 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4830 4831 llvm::Value *matchArgs[] = { Class, Caught }; 4832 llvm::CallInst *Match = 4833 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4834 matchArgs, "match"); 4835 4836 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4837 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4838 4839 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4840 MatchedBlock, NextCatchBlock); 4841 4842 // Emit the @catch block. 4843 CGF.EmitBlock(MatchedBlock); 4844 4845 // Collect any cleanups for the catch variable. The scope lasts until 4846 // the end of the catch body. 4847 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4848 4849 CGF.EmitAutoVarDecl(*CatchParam); 4850 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4851 4852 // Initialize the catch variable. 4853 llvm::Value *Tmp = 4854 CGF.Builder.CreateBitCast(Caught, 4855 CGF.ConvertType(CatchParam->getType())); 4856 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4857 4858 CGF.EmitStmt(CatchStmt->getCatchBody()); 4859 4860 // We're done with the catch variable. 4861 CatchVarCleanups.ForceCleanup(); 4862 4863 CGF.EmitBranchThroughCleanup(FinallyEnd); 4864 4865 CGF.EmitBlock(NextCatchBlock); 4866 } 4867 4868 CGF.ObjCEHValueStack.pop_back(); 4869 4870 // If nothing wanted anything to do with the caught exception, 4871 // kill the extract call. 4872 if (Caught->use_empty()) 4873 Caught->eraseFromParent(); 4874 4875 if (!AllMatched) 4876 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4877 4878 if (HasFinally) { 4879 // Emit the exception handler for the @catch blocks. 4880 CGF.EmitBlock(CatchHandler); 4881 4882 // In theory we might now need a write hazard, but actually it's 4883 // unnecessary because there's no local-accessing code between 4884 // the try's write hazard and here. 4885 //Hazards.emitWriteHazard(); 4886 4887 // Extract the new exception and save it to the 4888 // propagating-exception slot. 4889 assert(PropagatingExnVar.isValid()); 4890 llvm::CallInst *NewCaught = 4891 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4892 ExceptionData.getPointer(), "caught"); 4893 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4894 4895 // Don't pop the catch handler; the throw already did. 4896 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4897 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4898 } 4899 } 4900 4901 // Insert read hazards as required in the new blocks. 4902 Hazards.emitHazardsInNewBlocks(); 4903 4904 // Pop the cleanup. 4905 CGF.Builder.restoreIP(TryFallthroughIP); 4906 if (CGF.HaveInsertPoint()) 4907 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4908 CGF.PopCleanupBlock(); 4909 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4910 4911 // Emit the rethrow block. 4912 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4913 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4914 if (CGF.HaveInsertPoint()) { 4915 // If we have a propagating-exception variable, check it. 4916 llvm::Value *PropagatingExn; 4917 if (PropagatingExnVar.isValid()) { 4918 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4919 4920 // Otherwise, just look in the buffer for the exception to throw. 4921 } else { 4922 llvm::CallInst *Caught = 4923 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4924 ExceptionData.getPointer()); 4925 PropagatingExn = Caught; 4926 } 4927 4928 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4929 PropagatingExn); 4930 CGF.Builder.CreateUnreachable(); 4931 } 4932 4933 CGF.Builder.restoreIP(SavedIP); 4934 } 4935 4936 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4937 const ObjCAtThrowStmt &S, 4938 bool ClearInsertionPoint) { 4939 llvm::Value *ExceptionAsObject; 4940 4941 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4942 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4943 ExceptionAsObject = 4944 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4945 } else { 4946 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4947 "Unexpected rethrow outside @catch block."); 4948 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4949 } 4950 4951 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4952 ->setDoesNotReturn(); 4953 CGF.Builder.CreateUnreachable(); 4954 4955 // Clear the insertion point to indicate we are in unreachable code. 4956 if (ClearInsertionPoint) 4957 CGF.Builder.ClearInsertionPoint(); 4958 } 4959 4960 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4961 /// object: objc_read_weak (id *src) 4962 /// 4963 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4964 Address AddrWeakObj) { 4965 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4966 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4967 ObjCTypes.PtrObjectPtrTy); 4968 llvm::Value *read_weak = 4969 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4970 AddrWeakObj.getPointer(), "weakread"); 4971 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4972 return read_weak; 4973 } 4974 4975 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4976 /// objc_assign_weak (id src, id *dst) 4977 /// 4978 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4979 llvm::Value *src, Address dst) { 4980 llvm::Type * SrcTy = src->getType(); 4981 if (!isa<llvm::PointerType>(SrcTy)) { 4982 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4983 assert(Size <= 8 && "does not support size > 8"); 4984 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4985 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4986 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4987 } 4988 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4989 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4990 llvm::Value *args[] = { src, dst.getPointer() }; 4991 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4992 args, "weakassign"); 4993 } 4994 4995 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4996 /// objc_assign_global (id src, id *dst) 4997 /// 4998 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4999 llvm::Value *src, Address dst, 5000 bool threadlocal) { 5001 llvm::Type * SrcTy = src->getType(); 5002 if (!isa<llvm::PointerType>(SrcTy)) { 5003 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5004 assert(Size <= 8 && "does not support size > 8"); 5005 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5006 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5007 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5008 } 5009 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5010 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5011 llvm::Value *args[] = { src, dst.getPointer() }; 5012 if (!threadlocal) 5013 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 5014 args, "globalassign"); 5015 else 5016 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 5017 args, "threadlocalassign"); 5018 } 5019 5020 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 5021 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 5022 /// 5023 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 5024 llvm::Value *src, Address dst, 5025 llvm::Value *ivarOffset) { 5026 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 5027 llvm::Type * SrcTy = src->getType(); 5028 if (!isa<llvm::PointerType>(SrcTy)) { 5029 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5030 assert(Size <= 8 && "does not support size > 8"); 5031 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5032 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5033 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5034 } 5035 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5036 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5037 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 5038 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 5039 } 5040 5041 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5042 /// objc_assign_strongCast (id src, id *dst) 5043 /// 5044 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5045 llvm::Value *src, Address dst) { 5046 llvm::Type * SrcTy = src->getType(); 5047 if (!isa<llvm::PointerType>(SrcTy)) { 5048 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5049 assert(Size <= 8 && "does not support size > 8"); 5050 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5051 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5052 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5053 } 5054 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5055 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5056 llvm::Value *args[] = { src, dst.getPointer() }; 5057 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5058 args, "strongassign"); 5059 } 5060 5061 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5062 Address DestPtr, 5063 Address SrcPtr, 5064 llvm::Value *size) { 5065 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5066 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5067 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5068 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5069 } 5070 5071 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5072 /// 5073 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5074 QualType ObjectTy, 5075 llvm::Value *BaseValue, 5076 const ObjCIvarDecl *Ivar, 5077 unsigned CVRQualifiers) { 5078 const ObjCInterfaceDecl *ID = 5079 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5080 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5081 EmitIvarOffset(CGF, ID, Ivar)); 5082 } 5083 5084 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5085 const ObjCInterfaceDecl *Interface, 5086 const ObjCIvarDecl *Ivar) { 5087 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5088 return llvm::ConstantInt::get( 5089 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5090 Offset); 5091 } 5092 5093 /* *** Private Interface *** */ 5094 5095 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5096 StringRef MachOAttributes) { 5097 switch (CGM.getTriple().getObjectFormat()) { 5098 case llvm::Triple::UnknownObjectFormat: 5099 llvm_unreachable("unexpected object file format"); 5100 case llvm::Triple::MachO: { 5101 if (MachOAttributes.empty()) 5102 return ("__DATA," + Section).str(); 5103 return ("__DATA," + Section + "," + MachOAttributes).str(); 5104 } 5105 case llvm::Triple::ELF: 5106 assert(Section.substr(0, 2) == "__" && 5107 "expected the name to begin with __"); 5108 return Section.substr(2).str(); 5109 case llvm::Triple::COFF: 5110 assert(Section.substr(0, 2) == "__" && 5111 "expected the name to begin with __"); 5112 return ("." + Section.substr(2) + "$B").str(); 5113 case llvm::Triple::Wasm: 5114 case llvm::Triple::XCOFF: 5115 llvm::report_fatal_error( 5116 "Objective-C support is unimplemented for object file format."); 5117 } 5118 5119 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5120 } 5121 5122 /// EmitImageInfo - Emit the image info marker used to encode some module 5123 /// level information. 5124 /// 5125 /// See: <rdr://4810609&4810587&4810587> 5126 /// struct IMAGE_INFO { 5127 /// unsigned version; 5128 /// unsigned flags; 5129 /// }; 5130 enum ImageInfoFlags { 5131 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5132 eImageInfo_GarbageCollected = (1 << 1), 5133 eImageInfo_GCOnly = (1 << 2), 5134 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5135 5136 // A flag indicating that the module has no instances of a @synthesize of a 5137 // superclass variable. <rdar://problem/6803242> 5138 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5139 eImageInfo_ImageIsSimulated = (1 << 5), 5140 eImageInfo_ClassProperties = (1 << 6) 5141 }; 5142 5143 void CGObjCCommonMac::EmitImageInfo() { 5144 unsigned version = 0; // Version is unused? 5145 std::string Section = 5146 (ObjCABI == 1) 5147 ? "__OBJC,__image_info,regular" 5148 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5149 5150 // Generate module-level named metadata to convey this information to the 5151 // linker and code-gen. 5152 llvm::Module &Mod = CGM.getModule(); 5153 5154 // Add the ObjC ABI version to the module flags. 5155 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5156 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5157 version); 5158 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5159 llvm::MDString::get(VMContext, Section)); 5160 5161 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5162 // Non-GC overrides those files which specify GC. 5163 Mod.addModuleFlag(llvm::Module::Override, 5164 "Objective-C Garbage Collection", (uint32_t)0); 5165 } else { 5166 // Add the ObjC garbage collection value. 5167 Mod.addModuleFlag(llvm::Module::Error, 5168 "Objective-C Garbage Collection", 5169 eImageInfo_GarbageCollected); 5170 5171 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5172 // Add the ObjC GC Only value. 5173 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5174 eImageInfo_GCOnly); 5175 5176 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5177 llvm::Metadata *Ops[2] = { 5178 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5179 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5180 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 5181 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5182 llvm::MDNode::get(VMContext, Ops)); 5183 } 5184 } 5185 5186 // Indicate whether we're compiling this to run on a simulator. 5187 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5188 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5189 eImageInfo_ImageIsSimulated); 5190 5191 // Indicate whether we are generating class properties. 5192 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5193 eImageInfo_ClassProperties); 5194 } 5195 5196 // struct objc_module { 5197 // unsigned long version; 5198 // unsigned long size; 5199 // const char *name; 5200 // Symtab symtab; 5201 // }; 5202 5203 // FIXME: Get from somewhere 5204 static const int ModuleVersion = 7; 5205 5206 void CGObjCMac::EmitModuleInfo() { 5207 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5208 5209 ConstantInitBuilder builder(CGM); 5210 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5211 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5212 values.addInt(ObjCTypes.LongTy, Size); 5213 // This used to be the filename, now it is unused. <rdr://4327263> 5214 values.add(GetClassName(StringRef(""))); 5215 values.add(EmitModuleSymbols()); 5216 CreateMetadataVar("OBJC_MODULES", values, 5217 "__OBJC,__module_info,regular,no_dead_strip", 5218 CGM.getPointerAlign(), true); 5219 } 5220 5221 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5222 unsigned NumClasses = DefinedClasses.size(); 5223 unsigned NumCategories = DefinedCategories.size(); 5224 5225 // Return null if no symbols were defined. 5226 if (!NumClasses && !NumCategories) 5227 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5228 5229 ConstantInitBuilder builder(CGM); 5230 auto values = builder.beginStruct(); 5231 values.addInt(ObjCTypes.LongTy, 0); 5232 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5233 values.addInt(ObjCTypes.ShortTy, NumClasses); 5234 values.addInt(ObjCTypes.ShortTy, NumCategories); 5235 5236 // The runtime expects exactly the list of defined classes followed 5237 // by the list of defined categories, in a single array. 5238 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5239 for (unsigned i=0; i<NumClasses; i++) { 5240 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5241 assert(ID); 5242 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5243 // We are implementing a weak imported interface. Give it external linkage 5244 if (ID->isWeakImported() && !IMP->isWeakImported()) 5245 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5246 5247 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5248 } 5249 for (unsigned i=0; i<NumCategories; i++) 5250 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5251 5252 array.finishAndAddTo(values); 5253 5254 llvm::GlobalVariable *GV = CreateMetadataVar( 5255 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5256 CGM.getPointerAlign(), true); 5257 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5258 } 5259 5260 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5261 IdentifierInfo *II) { 5262 LazySymbols.insert(II); 5263 5264 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5265 5266 if (!Entry) { 5267 llvm::Constant *Casted = 5268 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5269 ObjCTypes.ClassPtrTy); 5270 Entry = CreateMetadataVar( 5271 "OBJC_CLASS_REFERENCES_", Casted, 5272 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5273 CGM.getPointerAlign(), true); 5274 } 5275 5276 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 5277 } 5278 5279 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5280 const ObjCInterfaceDecl *ID) { 5281 // If the class has the objc_runtime_visible attribute, we need to 5282 // use the Objective-C runtime to get the class. 5283 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5284 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5285 5286 IdentifierInfo *RuntimeName = 5287 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5288 return EmitClassRefFromId(CGF, RuntimeName); 5289 } 5290 5291 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5292 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5293 return EmitClassRefFromId(CGF, II); 5294 } 5295 5296 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5297 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5298 } 5299 5300 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5301 CharUnits Align = CGM.getPointerAlign(); 5302 5303 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5304 if (!Entry) { 5305 llvm::Constant *Casted = 5306 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5307 ObjCTypes.SelectorPtrTy); 5308 Entry = CreateMetadataVar( 5309 "OBJC_SELECTOR_REFERENCES_", Casted, 5310 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5311 Entry->setExternallyInitialized(true); 5312 } 5313 5314 return Address(Entry, Align); 5315 } 5316 5317 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5318 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5319 if (!Entry) 5320 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5321 return getConstantGEP(VMContext, Entry, 0, 0); 5322 } 5323 5324 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5325 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5326 I = MethodDefinitions.find(MD); 5327 if (I != MethodDefinitions.end()) 5328 return I->second; 5329 5330 return nullptr; 5331 } 5332 5333 /// GetIvarLayoutName - Returns a unique constant for the given 5334 /// ivar layout bitmap. 5335 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5336 const ObjCCommonTypesHelper &ObjCTypes) { 5337 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5338 } 5339 5340 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5341 CharUnits offset) { 5342 const RecordDecl *RD = RT->getDecl(); 5343 5344 // If this is a union, remember that we had one, because it might mess 5345 // up the ordering of layout entries. 5346 if (RD->isUnion()) 5347 IsDisordered = true; 5348 5349 const ASTRecordLayout *recLayout = nullptr; 5350 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5351 [&](const FieldDecl *field) -> CharUnits { 5352 if (!recLayout) 5353 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5354 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5355 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5356 }); 5357 } 5358 5359 template <class Iterator, class GetOffsetFn> 5360 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5361 CharUnits aggregateOffset, 5362 const GetOffsetFn &getOffset) { 5363 for (; begin != end; ++begin) { 5364 auto field = *begin; 5365 5366 // Skip over bitfields. 5367 if (field->isBitField()) { 5368 continue; 5369 } 5370 5371 // Compute the offset of the field within the aggregate. 5372 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5373 5374 visitField(field, fieldOffset); 5375 } 5376 } 5377 5378 /// Collect layout information for the given fields into IvarsInfo. 5379 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5380 CharUnits fieldOffset) { 5381 QualType fieldType = field->getType(); 5382 5383 // Drill down into arrays. 5384 uint64_t numElts = 1; 5385 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5386 numElts = 0; 5387 fieldType = arrayType->getElementType(); 5388 } 5389 // Unlike incomplete arrays, constant arrays can be nested. 5390 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5391 numElts *= arrayType->getSize().getZExtValue(); 5392 fieldType = arrayType->getElementType(); 5393 } 5394 5395 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5396 5397 // If we ended up with a zero-sized array, we've done what we can do within 5398 // the limits of this layout encoding. 5399 if (numElts == 0) return; 5400 5401 // Recurse if the base element type is a record type. 5402 if (auto recType = fieldType->getAs<RecordType>()) { 5403 size_t oldEnd = IvarsInfo.size(); 5404 5405 visitRecord(recType, fieldOffset); 5406 5407 // If we have an array, replicate the first entry's layout information. 5408 auto numEltEntries = IvarsInfo.size() - oldEnd; 5409 if (numElts != 1 && numEltEntries != 0) { 5410 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5411 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5412 // Copy the last numEltEntries onto the end of the array, adjusting 5413 // each for the element size. 5414 for (size_t i = 0; i != numEltEntries; ++i) { 5415 auto firstEntry = IvarsInfo[oldEnd + i]; 5416 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5417 firstEntry.SizeInWords)); 5418 } 5419 } 5420 } 5421 5422 return; 5423 } 5424 5425 // Classify the element type. 5426 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5427 5428 // If it matches what we're looking for, add an entry. 5429 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5430 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5431 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5432 == CGM.getPointerSize()); 5433 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5434 } 5435 } 5436 5437 /// buildBitmap - This routine does the horsework of taking the offsets of 5438 /// strong/weak references and creating a bitmap. The bitmap is also 5439 /// returned in the given buffer, suitable for being passed to \c dump(). 5440 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5441 llvm::SmallVectorImpl<unsigned char> &buffer) { 5442 // The bitmap is a series of skip/scan instructions, aligned to word 5443 // boundaries. The skip is performed first. 5444 const unsigned char MaxNibble = 0xF; 5445 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5446 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5447 5448 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5449 5450 // Sort the ivar info on byte position in case we encounterred a 5451 // union nested in the ivar list. 5452 if (IsDisordered) { 5453 // This isn't a stable sort, but our algorithm should handle it fine. 5454 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5455 } else { 5456 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5457 } 5458 assert(IvarsInfo.back().Offset < InstanceEnd); 5459 5460 assert(buffer.empty()); 5461 5462 // Skip the next N words. 5463 auto skip = [&](unsigned numWords) { 5464 assert(numWords > 0); 5465 5466 // Try to merge into the previous byte. Since scans happen second, we 5467 // can't do this if it includes a scan. 5468 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5469 unsigned lastSkip = buffer.back() >> SkipShift; 5470 if (lastSkip < MaxNibble) { 5471 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5472 numWords -= claimed; 5473 lastSkip += claimed; 5474 buffer.back() = (lastSkip << SkipShift); 5475 } 5476 } 5477 5478 while (numWords >= MaxNibble) { 5479 buffer.push_back(MaxNibble << SkipShift); 5480 numWords -= MaxNibble; 5481 } 5482 if (numWords) { 5483 buffer.push_back(numWords << SkipShift); 5484 } 5485 }; 5486 5487 // Scan the next N words. 5488 auto scan = [&](unsigned numWords) { 5489 assert(numWords > 0); 5490 5491 // Try to merge into the previous byte. Since scans happen second, we can 5492 // do this even if it includes a skip. 5493 if (!buffer.empty()) { 5494 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5495 if (lastScan < MaxNibble) { 5496 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5497 numWords -= claimed; 5498 lastScan += claimed; 5499 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5500 } 5501 } 5502 5503 while (numWords >= MaxNibble) { 5504 buffer.push_back(MaxNibble << ScanShift); 5505 numWords -= MaxNibble; 5506 } 5507 if (numWords) { 5508 buffer.push_back(numWords << ScanShift); 5509 } 5510 }; 5511 5512 // One past the end of the last scan. 5513 unsigned endOfLastScanInWords = 0; 5514 const CharUnits WordSize = CGM.getPointerSize(); 5515 5516 // Consider all the scan requests. 5517 for (auto &request : IvarsInfo) { 5518 CharUnits beginOfScan = request.Offset - InstanceBegin; 5519 5520 // Ignore scan requests that don't start at an even multiple of the 5521 // word size. We can't encode them. 5522 if ((beginOfScan % WordSize) != 0) continue; 5523 5524 // Ignore scan requests that start before the instance start. 5525 // This assumes that scans never span that boundary. The boundary 5526 // isn't the true start of the ivars, because in the fragile-ARC case 5527 // it's rounded up to word alignment, but the test above should leave 5528 // us ignoring that possibility. 5529 if (beginOfScan.isNegative()) { 5530 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5531 continue; 5532 } 5533 5534 unsigned beginOfScanInWords = beginOfScan / WordSize; 5535 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5536 5537 // If the scan starts some number of words after the last one ended, 5538 // skip forward. 5539 if (beginOfScanInWords > endOfLastScanInWords) { 5540 skip(beginOfScanInWords - endOfLastScanInWords); 5541 5542 // Otherwise, start scanning where the last left off. 5543 } else { 5544 beginOfScanInWords = endOfLastScanInWords; 5545 5546 // If that leaves us with nothing to scan, ignore this request. 5547 if (beginOfScanInWords >= endOfScanInWords) continue; 5548 } 5549 5550 // Scan to the end of the request. 5551 assert(beginOfScanInWords < endOfScanInWords); 5552 scan(endOfScanInWords - beginOfScanInWords); 5553 endOfLastScanInWords = endOfScanInWords; 5554 } 5555 5556 if (buffer.empty()) 5557 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5558 5559 // For GC layouts, emit a skip to the end of the allocation so that we 5560 // have precise information about the entire thing. This isn't useful 5561 // or necessary for the ARC-style layout strings. 5562 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5563 unsigned lastOffsetInWords = 5564 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5565 if (lastOffsetInWords > endOfLastScanInWords) { 5566 skip(lastOffsetInWords - endOfLastScanInWords); 5567 } 5568 } 5569 5570 // Null terminate the string. 5571 buffer.push_back(0); 5572 5573 auto *Entry = CGObjC.CreateCStringLiteral( 5574 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5575 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5576 } 5577 5578 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5579 /// implementation for the __strong or __weak case. 5580 /// The layout map displays which words in ivar list must be skipped 5581 /// and which must be scanned by GC (see below). String is built of bytes. 5582 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5583 /// of words to skip and right nibble is count of words to scan. So, each 5584 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5585 /// represented by a 0x00 byte which also ends the string. 5586 /// 1. when ForStrongLayout is true, following ivars are scanned: 5587 /// - id, Class 5588 /// - object * 5589 /// - __strong anything 5590 /// 5591 /// 2. When ForStrongLayout is false, following ivars are scanned: 5592 /// - __weak anything 5593 /// 5594 llvm::Constant * 5595 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5596 CharUnits beginOffset, CharUnits endOffset, 5597 bool ForStrongLayout, bool HasMRCWeakIvars) { 5598 // If this is MRC, and we're either building a strong layout or there 5599 // are no weak ivars, bail out early. 5600 llvm::Type *PtrTy = CGM.Int8PtrTy; 5601 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5602 !CGM.getLangOpts().ObjCAutoRefCount && 5603 (ForStrongLayout || !HasMRCWeakIvars)) 5604 return llvm::Constant::getNullValue(PtrTy); 5605 5606 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5607 SmallVector<const ObjCIvarDecl*, 32> ivars; 5608 5609 // GC layout strings include the complete object layout, possibly 5610 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5611 // up. 5612 // 5613 // ARC layout strings only include the class's ivars. In non-fragile 5614 // runtimes, that means starting at InstanceStart, rounded up to word 5615 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5616 // starting at the offset of the first ivar, rounded up to word alignment. 5617 // 5618 // MRC weak layout strings follow the ARC style. 5619 CharUnits baseOffset; 5620 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5621 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5622 IVD; IVD = IVD->getNextIvar()) 5623 ivars.push_back(IVD); 5624 5625 if (isNonFragileABI()) { 5626 baseOffset = beginOffset; // InstanceStart 5627 } else if (!ivars.empty()) { 5628 baseOffset = 5629 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5630 } else { 5631 baseOffset = CharUnits::Zero(); 5632 } 5633 5634 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5635 } 5636 else { 5637 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5638 5639 baseOffset = CharUnits::Zero(); 5640 } 5641 5642 if (ivars.empty()) 5643 return llvm::Constant::getNullValue(PtrTy); 5644 5645 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5646 5647 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5648 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5649 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5650 }); 5651 5652 if (!builder.hasBitmapData()) 5653 return llvm::Constant::getNullValue(PtrTy); 5654 5655 llvm::SmallVector<unsigned char, 4> buffer; 5656 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5657 5658 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5659 printf("\n%s ivar layout for class '%s': ", 5660 ForStrongLayout ? "strong" : "weak", 5661 OMD->getClassInterface()->getName().str().c_str()); 5662 builder.dump(buffer); 5663 } 5664 return C; 5665 } 5666 5667 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5668 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5669 // FIXME: Avoid std::string in "Sel.getAsString()" 5670 if (!Entry) 5671 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5672 return getConstantGEP(VMContext, Entry, 0, 0); 5673 } 5674 5675 // FIXME: Merge into a single cstring creation function. 5676 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5677 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5678 } 5679 5680 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5681 std::string TypeStr; 5682 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5683 5684 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5685 if (!Entry) 5686 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5687 return getConstantGEP(VMContext, Entry, 0, 0); 5688 } 5689 5690 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5691 bool Extended) { 5692 std::string TypeStr = 5693 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5694 5695 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5696 if (!Entry) 5697 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5698 return getConstantGEP(VMContext, Entry, 0, 0); 5699 } 5700 5701 // FIXME: Merge into a single cstring creation function. 5702 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5703 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5704 if (!Entry) 5705 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5706 return getConstantGEP(VMContext, Entry, 0, 0); 5707 } 5708 5709 // FIXME: Merge into a single cstring creation function. 5710 // FIXME: This Decl should be more precise. 5711 llvm::Constant * 5712 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5713 const Decl *Container) { 5714 std::string TypeStr = 5715 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5716 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5717 } 5718 5719 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5720 const ObjCContainerDecl *CD, 5721 SmallVectorImpl<char> &Name, 5722 bool ignoreCategoryNamespace) { 5723 llvm::raw_svector_ostream OS(Name); 5724 assert (CD && "Missing container decl in GetNameForMethod"); 5725 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5726 << '[' << CD->getName(); 5727 if (!ignoreCategoryNamespace) 5728 if (const ObjCCategoryImplDecl *CID = 5729 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5730 OS << '(' << *CID << ')'; 5731 OS << ' ' << D->getSelector().getAsString() << ']'; 5732 } 5733 5734 void CGObjCMac::FinishModule() { 5735 EmitModuleInfo(); 5736 5737 // Emit the dummy bodies for any protocols which were referenced but 5738 // never defined. 5739 for (auto &entry : Protocols) { 5740 llvm::GlobalVariable *global = entry.second; 5741 if (global->hasInitializer()) 5742 continue; 5743 5744 ConstantInitBuilder builder(CGM); 5745 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5746 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5747 values.add(GetClassName(entry.first->getName())); 5748 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5749 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5750 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5751 values.finishAndSetAsInitializer(global); 5752 CGM.addCompilerUsedGlobal(global); 5753 } 5754 5755 // Add assembler directives to add lazy undefined symbol references 5756 // for classes which are referenced but not defined. This is 5757 // important for correct linker interaction. 5758 // 5759 // FIXME: It would be nice if we had an LLVM construct for this. 5760 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5761 CGM.getTriple().isOSBinFormatMachO()) { 5762 SmallString<256> Asm; 5763 Asm += CGM.getModule().getModuleInlineAsm(); 5764 if (!Asm.empty() && Asm.back() != '\n') 5765 Asm += '\n'; 5766 5767 llvm::raw_svector_ostream OS(Asm); 5768 for (const auto *Sym : DefinedSymbols) 5769 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5770 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5771 for (const auto *Sym : LazySymbols) 5772 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5773 for (const auto &Category : DefinedCategoryNames) 5774 OS << "\t.objc_category_name_" << Category << "=0\n" 5775 << "\t.globl .objc_category_name_" << Category << "\n"; 5776 5777 CGM.getModule().setModuleInlineAsm(OS.str()); 5778 } 5779 } 5780 5781 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5782 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5783 ObjCEmptyVtableVar(nullptr) { 5784 ObjCABI = 2; 5785 } 5786 5787 /* *** */ 5788 5789 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5790 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5791 { 5792 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5793 ASTContext &Ctx = CGM.getContext(); 5794 5795 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5796 IntTy = CGM.IntTy; 5797 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5798 Int8PtrTy = CGM.Int8PtrTy; 5799 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5800 5801 // arm64 targets use "int" ivar offset variables. All others, 5802 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5803 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5804 IvarOffsetVarTy = IntTy; 5805 else 5806 IvarOffsetVarTy = LongTy; 5807 5808 ObjectPtrTy = 5809 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5810 PtrObjectPtrTy = 5811 llvm::PointerType::getUnqual(ObjectPtrTy); 5812 SelectorPtrTy = 5813 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5814 5815 // I'm not sure I like this. The implicit coordination is a bit 5816 // gross. We should solve this in a reasonable fashion because this 5817 // is a pretty common task (match some runtime data structure with 5818 // an LLVM data structure). 5819 5820 // FIXME: This is leaked. 5821 // FIXME: Merge with rewriter code? 5822 5823 // struct _objc_super { 5824 // id self; 5825 // Class cls; 5826 // } 5827 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5828 Ctx.getTranslationUnitDecl(), 5829 SourceLocation(), SourceLocation(), 5830 &Ctx.Idents.get("_objc_super")); 5831 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5832 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5833 false, ICIS_NoInit)); 5834 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5835 nullptr, Ctx.getObjCClassType(), nullptr, 5836 nullptr, false, ICIS_NoInit)); 5837 RD->completeDefinition(); 5838 5839 SuperCTy = Ctx.getTagDeclType(RD); 5840 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5841 5842 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5843 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5844 5845 // struct _prop_t { 5846 // char *name; 5847 // char *attributes; 5848 // } 5849 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5850 5851 // struct _prop_list_t { 5852 // uint32_t entsize; // sizeof(struct _prop_t) 5853 // uint32_t count_of_properties; 5854 // struct _prop_t prop_list[count_of_properties]; 5855 // } 5856 PropertyListTy = llvm::StructType::create( 5857 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5858 // struct _prop_list_t * 5859 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5860 5861 // struct _objc_method { 5862 // SEL _cmd; 5863 // char *method_type; 5864 // char *_imp; 5865 // } 5866 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5867 Int8PtrTy, Int8PtrTy); 5868 5869 // struct _objc_cache * 5870 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5871 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5872 } 5873 5874 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5875 : ObjCCommonTypesHelper(cgm) { 5876 // struct _objc_method_description { 5877 // SEL name; 5878 // char *types; 5879 // } 5880 MethodDescriptionTy = llvm::StructType::create( 5881 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5882 5883 // struct _objc_method_description_list { 5884 // int count; 5885 // struct _objc_method_description[1]; 5886 // } 5887 MethodDescriptionListTy = 5888 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5889 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5890 5891 // struct _objc_method_description_list * 5892 MethodDescriptionListPtrTy = 5893 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5894 5895 // Protocol description structures 5896 5897 // struct _objc_protocol_extension { 5898 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5899 // struct _objc_method_description_list *optional_instance_methods; 5900 // struct _objc_method_description_list *optional_class_methods; 5901 // struct _objc_property_list *instance_properties; 5902 // const char ** extendedMethodTypes; 5903 // struct _objc_property_list *class_properties; 5904 // } 5905 ProtocolExtensionTy = llvm::StructType::create( 5906 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5907 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5908 PropertyListPtrTy); 5909 5910 // struct _objc_protocol_extension * 5911 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5912 5913 // Handle recursive construction of Protocol and ProtocolList types 5914 5915 ProtocolTy = 5916 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5917 5918 ProtocolListTy = 5919 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5920 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5921 llvm::ArrayType::get(ProtocolTy, 0)); 5922 5923 // struct _objc_protocol { 5924 // struct _objc_protocol_extension *isa; 5925 // char *protocol_name; 5926 // struct _objc_protocol **_objc_protocol_list; 5927 // struct _objc_method_description_list *instance_methods; 5928 // struct _objc_method_description_list *class_methods; 5929 // } 5930 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5931 llvm::PointerType::getUnqual(ProtocolListTy), 5932 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5933 5934 // struct _objc_protocol_list * 5935 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5936 5937 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5938 5939 // Class description structures 5940 5941 // struct _objc_ivar { 5942 // char *ivar_name; 5943 // char *ivar_type; 5944 // int ivar_offset; 5945 // } 5946 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5947 IntTy); 5948 5949 // struct _objc_ivar_list * 5950 IvarListTy = 5951 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5952 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5953 5954 // struct _objc_method_list * 5955 MethodListTy = 5956 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5957 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5958 5959 // struct _objc_class_extension * 5960 ClassExtensionTy = llvm::StructType::create( 5961 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5962 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5963 5964 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5965 5966 // struct _objc_class { 5967 // Class isa; 5968 // Class super_class; 5969 // char *name; 5970 // long version; 5971 // long info; 5972 // long instance_size; 5973 // struct _objc_ivar_list *ivars; 5974 // struct _objc_method_list *methods; 5975 // struct _objc_cache *cache; 5976 // struct _objc_protocol_list *protocols; 5977 // char *ivar_layout; 5978 // struct _objc_class_ext *ext; 5979 // }; 5980 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5981 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5982 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5983 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5984 5985 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5986 5987 // struct _objc_category { 5988 // char *category_name; 5989 // char *class_name; 5990 // struct _objc_method_list *instance_method; 5991 // struct _objc_method_list *class_method; 5992 // struct _objc_protocol_list *protocols; 5993 // uint32_t size; // sizeof(struct _objc_category) 5994 // struct _objc_property_list *instance_properties;// category's @property 5995 // struct _objc_property_list *class_properties; 5996 // } 5997 CategoryTy = llvm::StructType::create( 5998 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5999 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 6000 PropertyListPtrTy); 6001 6002 // Global metadata structures 6003 6004 // struct _objc_symtab { 6005 // long sel_ref_cnt; 6006 // SEL *refs; 6007 // short cls_def_cnt; 6008 // short cat_def_cnt; 6009 // char *defs[cls_def_cnt + cat_def_cnt]; 6010 // } 6011 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 6012 SelectorPtrTy, ShortTy, ShortTy, 6013 llvm::ArrayType::get(Int8PtrTy, 0)); 6014 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 6015 6016 // struct _objc_module { 6017 // long version; 6018 // long size; // sizeof(struct _objc_module) 6019 // char *name; 6020 // struct _objc_symtab* symtab; 6021 // } 6022 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 6023 Int8PtrTy, SymtabPtrTy); 6024 6025 // FIXME: This is the size of the setjmp buffer and should be target 6026 // specific. 18 is what's used on 32-bit X86. 6027 uint64_t SetJmpBufferSize = 18; 6028 6029 // Exceptions 6030 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 6031 6032 ExceptionDataTy = llvm::StructType::create( 6033 "struct._objc_exception_data", 6034 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 6035 } 6036 6037 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 6038 : ObjCCommonTypesHelper(cgm) { 6039 // struct _method_list_t { 6040 // uint32_t entsize; // sizeof(struct _objc_method) 6041 // uint32_t method_count; 6042 // struct _objc_method method_list[method_count]; 6043 // } 6044 MethodListnfABITy = 6045 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 6046 llvm::ArrayType::get(MethodTy, 0)); 6047 // struct method_list_t * 6048 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 6049 6050 // struct _protocol_t { 6051 // id isa; // NULL 6052 // const char * const protocol_name; 6053 // const struct _protocol_list_t * protocol_list; // super protocols 6054 // const struct method_list_t * const instance_methods; 6055 // const struct method_list_t * const class_methods; 6056 // const struct method_list_t *optionalInstanceMethods; 6057 // const struct method_list_t *optionalClassMethods; 6058 // const struct _prop_list_t * properties; 6059 // const uint32_t size; // sizeof(struct _protocol_t) 6060 // const uint32_t flags; // = 0 6061 // const char ** extendedMethodTypes; 6062 // const char *demangledName; 6063 // const struct _prop_list_t * class_properties; 6064 // } 6065 6066 // Holder for struct _protocol_list_t * 6067 ProtocolListnfABITy = 6068 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6069 6070 ProtocolnfABITy = llvm::StructType::create( 6071 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6072 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6073 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6074 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6075 PropertyListPtrTy); 6076 6077 // struct _protocol_t* 6078 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6079 6080 // struct _protocol_list_t { 6081 // long protocol_count; // Note, this is 32/64 bit 6082 // struct _protocol_t *[protocol_count]; 6083 // } 6084 ProtocolListnfABITy->setBody(LongTy, 6085 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6086 6087 // struct _objc_protocol_list* 6088 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6089 6090 // struct _ivar_t { 6091 // unsigned [long] int *offset; // pointer to ivar offset location 6092 // char *name; 6093 // char *type; 6094 // uint32_t alignment; 6095 // uint32_t size; 6096 // } 6097 IvarnfABITy = llvm::StructType::create( 6098 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6099 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6100 6101 // struct _ivar_list_t { 6102 // uint32 entsize; // sizeof(struct _ivar_t) 6103 // uint32 count; 6104 // struct _iver_t list[count]; 6105 // } 6106 IvarListnfABITy = 6107 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6108 llvm::ArrayType::get(IvarnfABITy, 0)); 6109 6110 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6111 6112 // struct _class_ro_t { 6113 // uint32_t const flags; 6114 // uint32_t const instanceStart; 6115 // uint32_t const instanceSize; 6116 // uint32_t const reserved; // only when building for 64bit targets 6117 // const uint8_t * const ivarLayout; 6118 // const char *const name; 6119 // const struct _method_list_t * const baseMethods; 6120 // const struct _objc_protocol_list *const baseProtocols; 6121 // const struct _ivar_list_t *const ivars; 6122 // const uint8_t * const weakIvarLayout; 6123 // const struct _prop_list_t * const properties; 6124 // } 6125 6126 // FIXME. Add 'reserved' field in 64bit abi mode! 6127 ClassRonfABITy = llvm::StructType::create( 6128 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6129 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6130 Int8PtrTy, PropertyListPtrTy); 6131 6132 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6133 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6134 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6135 ->getPointerTo(); 6136 6137 // struct _class_t { 6138 // struct _class_t *isa; 6139 // struct _class_t * const superclass; 6140 // void *cache; 6141 // IMP *vtable; 6142 // struct class_ro_t *ro; 6143 // } 6144 6145 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6146 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6147 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6148 llvm::PointerType::getUnqual(ImpnfABITy), 6149 llvm::PointerType::getUnqual(ClassRonfABITy)); 6150 6151 // LLVM for struct _class_t * 6152 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6153 6154 // struct _category_t { 6155 // const char * const name; 6156 // struct _class_t *const cls; 6157 // const struct _method_list_t * const instance_methods; 6158 // const struct _method_list_t * const class_methods; 6159 // const struct _protocol_list_t * const protocols; 6160 // const struct _prop_list_t * const properties; 6161 // const struct _prop_list_t * const class_properties; 6162 // const uint32_t size; 6163 // } 6164 CategorynfABITy = llvm::StructType::create( 6165 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6166 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6167 PropertyListPtrTy, IntTy); 6168 6169 // New types for nonfragile abi messaging. 6170 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6171 ASTContext &Ctx = CGM.getContext(); 6172 6173 // MessageRefTy - LLVM for: 6174 // struct _message_ref_t { 6175 // IMP messenger; 6176 // SEL name; 6177 // }; 6178 6179 // First the clang type for struct _message_ref_t 6180 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6181 Ctx.getTranslationUnitDecl(), 6182 SourceLocation(), SourceLocation(), 6183 &Ctx.Idents.get("_message_ref_t")); 6184 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6185 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6186 ICIS_NoInit)); 6187 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6188 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6189 false, ICIS_NoInit)); 6190 RD->completeDefinition(); 6191 6192 MessageRefCTy = Ctx.getTagDeclType(RD); 6193 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6194 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6195 6196 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6197 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6198 6199 // SuperMessageRefTy - LLVM for: 6200 // struct _super_message_ref_t { 6201 // SUPER_IMP messenger; 6202 // SEL name; 6203 // }; 6204 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6205 ImpnfABITy, SelectorPtrTy); 6206 6207 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6208 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6209 6210 6211 // struct objc_typeinfo { 6212 // const void** vtable; // objc_ehtype_vtable + 2 6213 // const char* name; // c++ typeinfo string 6214 // Class cls; 6215 // }; 6216 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6217 llvm::PointerType::getUnqual(Int8PtrTy), 6218 Int8PtrTy, ClassnfABIPtrTy); 6219 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6220 } 6221 6222 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6223 FinishNonFragileABIModule(); 6224 6225 return nullptr; 6226 } 6227 6228 void CGObjCNonFragileABIMac::AddModuleClassList( 6229 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6230 StringRef SectionName) { 6231 unsigned NumClasses = Container.size(); 6232 6233 if (!NumClasses) 6234 return; 6235 6236 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6237 for (unsigned i=0; i<NumClasses; i++) 6238 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6239 ObjCTypes.Int8PtrTy); 6240 llvm::Constant *Init = 6241 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6242 Symbols.size()), 6243 Symbols); 6244 6245 // Section name is obtained by calling GetSectionName, which returns 6246 // sections in the __DATA segment on MachO. 6247 assert((!CGM.getTriple().isOSBinFormatMachO() || 6248 SectionName.startswith("__DATA")) && 6249 "SectionName expected to start with __DATA on MachO"); 6250 llvm::GlobalValue::LinkageTypes LT = 6251 getLinkageTypeForObjCMetadata(CGM, SectionName); 6252 llvm::GlobalVariable *GV = 6253 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, LT, Init, 6254 SymbolName); 6255 GV->setAlignment( 6256 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6257 GV->setSection(SectionName); 6258 CGM.addCompilerUsedGlobal(GV); 6259 } 6260 6261 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6262 // nonfragile abi has no module definition. 6263 6264 // Build list of all implemented class addresses in array 6265 // L_OBJC_LABEL_CLASS_$. 6266 6267 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6268 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6269 assert(ID); 6270 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6271 // We are implementing a weak imported interface. Give it external linkage 6272 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6273 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6274 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6275 } 6276 } 6277 6278 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6279 GetSectionName("__objc_classlist", 6280 "regular,no_dead_strip")); 6281 6282 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6283 GetSectionName("__objc_nlclslist", 6284 "regular,no_dead_strip")); 6285 6286 // Build list of all implemented category addresses in array 6287 // L_OBJC_LABEL_CATEGORY_$. 6288 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6289 GetSectionName("__objc_catlist", 6290 "regular,no_dead_strip")); 6291 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6292 GetSectionName("__objc_catlist2", 6293 "regular,no_dead_strip")); 6294 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6295 GetSectionName("__objc_nlcatlist", 6296 "regular,no_dead_strip")); 6297 6298 EmitImageInfo(); 6299 } 6300 6301 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6302 /// VTableDispatchMethods; false otherwise. What this means is that 6303 /// except for the 19 selectors in the list, we generate 32bit-style 6304 /// message dispatch call for all the rest. 6305 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6306 // At various points we've experimented with using vtable-based 6307 // dispatch for all methods. 6308 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6309 case CodeGenOptions::Legacy: 6310 return false; 6311 case CodeGenOptions::NonLegacy: 6312 return true; 6313 case CodeGenOptions::Mixed: 6314 break; 6315 } 6316 6317 // If so, see whether this selector is in the white-list of things which must 6318 // use the new dispatch convention. We lazily build a dense set for this. 6319 if (VTableDispatchMethods.empty()) { 6320 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6321 VTableDispatchMethods.insert(GetNullarySelector("class")); 6322 VTableDispatchMethods.insert(GetNullarySelector("self")); 6323 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6324 VTableDispatchMethods.insert(GetNullarySelector("length")); 6325 VTableDispatchMethods.insert(GetNullarySelector("count")); 6326 6327 // These are vtable-based if GC is disabled. 6328 // Optimistically use vtable dispatch for hybrid compiles. 6329 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6330 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6331 VTableDispatchMethods.insert(GetNullarySelector("release")); 6332 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6333 } 6334 6335 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6336 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6337 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6338 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6339 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6340 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6341 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6342 6343 // These are vtable-based if GC is enabled. 6344 // Optimistically use vtable dispatch for hybrid compiles. 6345 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6346 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6347 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6348 6349 // "countByEnumeratingWithState:objects:count" 6350 IdentifierInfo *KeyIdents[] = { 6351 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6352 &CGM.getContext().Idents.get("objects"), 6353 &CGM.getContext().Idents.get("count") 6354 }; 6355 VTableDispatchMethods.insert( 6356 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6357 } 6358 } 6359 6360 return VTableDispatchMethods.count(Sel); 6361 } 6362 6363 /// BuildClassRoTInitializer - generate meta-data for: 6364 /// struct _class_ro_t { 6365 /// uint32_t const flags; 6366 /// uint32_t const instanceStart; 6367 /// uint32_t const instanceSize; 6368 /// uint32_t const reserved; // only when building for 64bit targets 6369 /// const uint8_t * const ivarLayout; 6370 /// const char *const name; 6371 /// const struct _method_list_t * const baseMethods; 6372 /// const struct _protocol_list_t *const baseProtocols; 6373 /// const struct _ivar_list_t *const ivars; 6374 /// const uint8_t * const weakIvarLayout; 6375 /// const struct _prop_list_t * const properties; 6376 /// } 6377 /// 6378 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6379 unsigned flags, 6380 unsigned InstanceStart, 6381 unsigned InstanceSize, 6382 const ObjCImplementationDecl *ID) { 6383 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6384 6385 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6386 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6387 6388 bool hasMRCWeak = false; 6389 if (CGM.getLangOpts().ObjCAutoRefCount) 6390 flags |= NonFragileABI_Class_CompiledByARC; 6391 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6392 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6393 6394 ConstantInitBuilder builder(CGM); 6395 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6396 6397 values.addInt(ObjCTypes.IntTy, flags); 6398 values.addInt(ObjCTypes.IntTy, InstanceStart); 6399 values.addInt(ObjCTypes.IntTy, InstanceSize); 6400 values.add((flags & NonFragileABI_Class_Meta) 6401 ? GetIvarLayoutName(nullptr, ObjCTypes) 6402 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6403 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6404 6405 // const struct _method_list_t * const baseMethods; 6406 SmallVector<const ObjCMethodDecl*, 16> methods; 6407 if (flags & NonFragileABI_Class_Meta) { 6408 for (const auto *MD : ID->class_methods()) 6409 if (!MD->isDirectMethod()) 6410 methods.push_back(MD); 6411 } else { 6412 for (const auto *MD : ID->instance_methods()) 6413 if (!MD->isDirectMethod()) 6414 methods.push_back(MD); 6415 } 6416 6417 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6418 (flags & NonFragileABI_Class_Meta) 6419 ? MethodListType::ClassMethods 6420 : MethodListType::InstanceMethods, 6421 methods)); 6422 6423 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6424 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6425 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6426 + OID->getObjCRuntimeNameAsString(), 6427 OID->all_referenced_protocol_begin(), 6428 OID->all_referenced_protocol_end())); 6429 6430 if (flags & NonFragileABI_Class_Meta) { 6431 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6432 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6433 values.add(EmitPropertyList( 6434 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6435 ID, ID->getClassInterface(), ObjCTypes, true)); 6436 } else { 6437 values.add(EmitIvarList(ID)); 6438 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6439 values.add(EmitPropertyList( 6440 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6441 ID, ID->getClassInterface(), ObjCTypes, false)); 6442 } 6443 6444 llvm::SmallString<64> roLabel; 6445 llvm::raw_svector_ostream(roLabel) 6446 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6447 : "_OBJC_CLASS_RO_$_") 6448 << ClassName; 6449 6450 return finishAndCreateGlobal(values, roLabel, CGM); 6451 } 6452 6453 /// Build the metaclass object for a class. 6454 /// 6455 /// struct _class_t { 6456 /// struct _class_t *isa; 6457 /// struct _class_t * const superclass; 6458 /// void *cache; 6459 /// IMP *vtable; 6460 /// struct class_ro_t *ro; 6461 /// } 6462 /// 6463 llvm::GlobalVariable * 6464 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6465 bool isMetaclass, 6466 llvm::Constant *IsAGV, 6467 llvm::Constant *SuperClassGV, 6468 llvm::Constant *ClassRoGV, 6469 bool HiddenVisibility) { 6470 ConstantInitBuilder builder(CGM); 6471 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6472 values.add(IsAGV); 6473 if (SuperClassGV) { 6474 values.add(SuperClassGV); 6475 } else { 6476 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6477 } 6478 values.add(ObjCEmptyCacheVar); 6479 values.add(ObjCEmptyVtableVar); 6480 values.add(ClassRoGV); 6481 6482 llvm::GlobalVariable *GV = 6483 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6484 values.finishAndSetAsInitializer(GV); 6485 6486 if (CGM.getTriple().isOSBinFormatMachO()) 6487 GV->setSection("__DATA, __objc_data"); 6488 GV->setAlignment(llvm::Align( 6489 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6490 if (!CGM.getTriple().isOSBinFormatCOFF()) 6491 if (HiddenVisibility) 6492 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6493 return GV; 6494 } 6495 6496 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6497 const ObjCImplDecl *OD) const { 6498 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6499 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6500 OD->hasAttr<ObjCNonLazyClassAttr>(); 6501 } 6502 6503 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6504 uint32_t &InstanceStart, 6505 uint32_t &InstanceSize) { 6506 const ASTRecordLayout &RL = 6507 CGM.getContext().getASTObjCImplementationLayout(OID); 6508 6509 // InstanceSize is really instance end. 6510 InstanceSize = RL.getDataSize().getQuantity(); 6511 6512 // If there are no fields, the start is the same as the end. 6513 if (!RL.getFieldCount()) 6514 InstanceStart = InstanceSize; 6515 else 6516 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6517 } 6518 6519 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6520 StringRef Name) { 6521 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6522 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6523 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6524 6525 const VarDecl *VD = nullptr; 6526 for (const auto &Result : DC->lookup(&II)) 6527 if ((VD = dyn_cast<VarDecl>(Result))) 6528 break; 6529 6530 if (!VD) 6531 return llvm::GlobalValue::DLLImportStorageClass; 6532 if (VD->hasAttr<DLLExportAttr>()) 6533 return llvm::GlobalValue::DLLExportStorageClass; 6534 if (VD->hasAttr<DLLImportAttr>()) 6535 return llvm::GlobalValue::DLLImportStorageClass; 6536 return llvm::GlobalValue::DefaultStorageClass; 6537 } 6538 6539 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6540 if (!ObjCEmptyCacheVar) { 6541 ObjCEmptyCacheVar = 6542 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6543 llvm::GlobalValue::ExternalLinkage, nullptr, 6544 "_objc_empty_cache"); 6545 if (CGM.getTriple().isOSBinFormatCOFF()) 6546 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6547 6548 // Only OS X with deployment version <10.9 use the empty vtable symbol 6549 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6550 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6551 ObjCEmptyVtableVar = 6552 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6553 llvm::GlobalValue::ExternalLinkage, nullptr, 6554 "_objc_empty_vtable"); 6555 else 6556 ObjCEmptyVtableVar = 6557 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6558 } 6559 6560 // FIXME: Is this correct (that meta class size is never computed)? 6561 uint32_t InstanceStart = 6562 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6563 uint32_t InstanceSize = InstanceStart; 6564 uint32_t flags = NonFragileABI_Class_Meta; 6565 6566 llvm::Constant *SuperClassGV, *IsAGV; 6567 6568 const auto *CI = ID->getClassInterface(); 6569 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6570 6571 // Build the flags for the metaclass. 6572 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6573 ? !CI->hasAttr<DLLExportAttr>() 6574 : CI->getVisibility() == HiddenVisibility; 6575 if (classIsHidden) 6576 flags |= NonFragileABI_Class_Hidden; 6577 6578 // FIXME: why is this flag set on the metaclass? 6579 // ObjC metaclasses have no fields and don't really get constructed. 6580 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6581 flags |= NonFragileABI_Class_HasCXXStructors; 6582 if (!ID->hasNonZeroConstructors()) 6583 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6584 } 6585 6586 if (!CI->getSuperClass()) { 6587 // class is root 6588 flags |= NonFragileABI_Class_Root; 6589 6590 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6591 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6592 } else { 6593 // Has a root. Current class is not a root. 6594 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6595 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6596 Root = Super; 6597 6598 const auto *Super = CI->getSuperClass(); 6599 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6600 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6601 } 6602 6603 llvm::GlobalVariable *CLASS_RO_GV = 6604 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6605 6606 llvm::GlobalVariable *MetaTClass = 6607 BuildClassObject(CI, /*metaclass*/ true, 6608 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6609 CGM.setGVProperties(MetaTClass, CI); 6610 DefinedMetaClasses.push_back(MetaTClass); 6611 6612 // Metadata for the class 6613 flags = 0; 6614 if (classIsHidden) 6615 flags |= NonFragileABI_Class_Hidden; 6616 6617 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6618 flags |= NonFragileABI_Class_HasCXXStructors; 6619 6620 // Set a flag to enable a runtime optimization when a class has 6621 // fields that require destruction but which don't require 6622 // anything except zero-initialization during construction. This 6623 // is most notably true of __strong and __weak types, but you can 6624 // also imagine there being C++ types with non-trivial default 6625 // constructors that merely set all fields to null. 6626 if (!ID->hasNonZeroConstructors()) 6627 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6628 } 6629 6630 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6631 flags |= NonFragileABI_Class_Exception; 6632 6633 if (!CI->getSuperClass()) { 6634 flags |= NonFragileABI_Class_Root; 6635 SuperClassGV = nullptr; 6636 } else { 6637 // Has a root. Current class is not a root. 6638 const auto *Super = CI->getSuperClass(); 6639 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6640 } 6641 6642 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6643 CLASS_RO_GV = 6644 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6645 6646 llvm::GlobalVariable *ClassMD = 6647 BuildClassObject(CI, /*metaclass*/ false, 6648 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6649 CGM.setGVProperties(ClassMD, CI); 6650 DefinedClasses.push_back(ClassMD); 6651 ImplementedClasses.push_back(CI); 6652 6653 // Determine if this class is also "non-lazy". 6654 if (ImplementationIsNonLazy(ID)) 6655 DefinedNonLazyClasses.push_back(ClassMD); 6656 6657 // Force the definition of the EHType if necessary. 6658 if (flags & NonFragileABI_Class_Exception) 6659 (void) GetInterfaceEHType(CI, ForDefinition); 6660 // Make sure method definition entries are all clear for next implementation. 6661 MethodDefinitions.clear(); 6662 } 6663 6664 /// GenerateProtocolRef - This routine is called to generate code for 6665 /// a protocol reference expression; as in: 6666 /// @code 6667 /// @protocol(Proto1); 6668 /// @endcode 6669 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6670 /// which will hold address of the protocol meta-data. 6671 /// 6672 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6673 const ObjCProtocolDecl *PD) { 6674 6675 // This routine is called for @protocol only. So, we must build definition 6676 // of protocol's meta-data (not a reference to it!) 6677 // 6678 llvm::Constant *Init = 6679 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6680 ObjCTypes.getExternalProtocolPtrTy()); 6681 6682 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6683 ProtocolName += PD->getObjCRuntimeNameAsString(); 6684 6685 CharUnits Align = CGF.getPointerAlign(); 6686 6687 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6688 if (PTGV) 6689 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6690 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6691 llvm::GlobalValue::WeakAnyLinkage, Init, 6692 ProtocolName); 6693 PTGV->setSection(GetSectionName("__objc_protorefs", 6694 "coalesced,no_dead_strip")); 6695 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6696 PTGV->setAlignment(Align.getAsAlign()); 6697 if (!CGM.getTriple().isOSBinFormatMachO()) 6698 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6699 CGM.addUsedGlobal(PTGV); 6700 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6701 } 6702 6703 /// GenerateCategory - Build metadata for a category implementation. 6704 /// struct _category_t { 6705 /// const char * const name; 6706 /// struct _class_t *const cls; 6707 /// const struct _method_list_t * const instance_methods; 6708 /// const struct _method_list_t * const class_methods; 6709 /// const struct _protocol_list_t * const protocols; 6710 /// const struct _prop_list_t * const properties; 6711 /// const struct _prop_list_t * const class_properties; 6712 /// const uint32_t size; 6713 /// } 6714 /// 6715 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6716 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6717 const char *Prefix = "_OBJC_$_CATEGORY_"; 6718 6719 llvm::SmallString<64> ExtCatName(Prefix); 6720 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6721 ExtCatName += "_$_"; 6722 ExtCatName += OCD->getNameAsString(); 6723 6724 ConstantInitBuilder builder(CGM); 6725 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6726 values.add(GetClassName(OCD->getIdentifier()->getName())); 6727 // meta-class entry symbol 6728 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6729 std::string listName = 6730 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6731 6732 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6733 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6734 for (const auto *MD : OCD->methods()) { 6735 if (MD->isDirectMethod()) 6736 continue; 6737 if (MD->isInstanceMethod()) { 6738 instanceMethods.push_back(MD); 6739 } else { 6740 classMethods.push_back(MD); 6741 } 6742 } 6743 6744 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6745 instanceMethods)); 6746 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6747 classMethods)); 6748 6749 const ObjCCategoryDecl *Category = 6750 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6751 if (Category) { 6752 SmallString<256> ExtName; 6753 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6754 << OCD->getName(); 6755 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6756 + Interface->getObjCRuntimeNameAsString() + "_$_" 6757 + Category->getName(), 6758 Category->protocol_begin(), 6759 Category->protocol_end())); 6760 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6761 OCD, Category, ObjCTypes, false)); 6762 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6763 OCD, Category, ObjCTypes, true)); 6764 } else { 6765 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6766 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6767 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6768 } 6769 6770 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6771 values.addInt(ObjCTypes.IntTy, Size); 6772 6773 llvm::GlobalVariable *GCATV = 6774 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6775 CGM.addCompilerUsedGlobal(GCATV); 6776 if (Interface->hasAttr<ObjCClassStubAttr>()) 6777 DefinedStubCategories.push_back(GCATV); 6778 else 6779 DefinedCategories.push_back(GCATV); 6780 6781 // Determine if this category is also "non-lazy". 6782 if (ImplementationIsNonLazy(OCD)) 6783 DefinedNonLazyCategories.push_back(GCATV); 6784 // method definition entries must be clear for next implementation. 6785 MethodDefinitions.clear(); 6786 } 6787 6788 /// emitMethodConstant - Return a struct objc_method constant. If 6789 /// forProtocol is true, the implementation will be null; otherwise, 6790 /// the method must have a definition registered with the runtime. 6791 /// 6792 /// struct _objc_method { 6793 /// SEL _cmd; 6794 /// char *method_type; 6795 /// char *_imp; 6796 /// } 6797 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6798 const ObjCMethodDecl *MD, 6799 bool forProtocol) { 6800 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6801 method.addBitCast(GetMethodVarName(MD->getSelector()), 6802 ObjCTypes.SelectorPtrTy); 6803 method.add(GetMethodVarType(MD)); 6804 6805 if (forProtocol) { 6806 // Protocol methods have no implementation. So, this entry is always NULL. 6807 method.addNullPointer(ObjCTypes.Int8PtrTy); 6808 } else { 6809 llvm::Function *fn = GetMethodDefinition(MD); 6810 assert(fn && "no definition for method?"); 6811 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6812 } 6813 6814 method.finishAndAddTo(builder); 6815 } 6816 6817 /// Build meta-data for method declarations. 6818 /// 6819 /// struct _method_list_t { 6820 /// uint32_t entsize; // sizeof(struct _objc_method) 6821 /// uint32_t method_count; 6822 /// struct _objc_method method_list[method_count]; 6823 /// } 6824 /// 6825 llvm::Constant * 6826 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6827 ArrayRef<const ObjCMethodDecl *> methods) { 6828 // Return null for empty list. 6829 if (methods.empty()) 6830 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6831 6832 StringRef prefix; 6833 bool forProtocol; 6834 switch (kind) { 6835 case MethodListType::CategoryInstanceMethods: 6836 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6837 forProtocol = false; 6838 break; 6839 case MethodListType::CategoryClassMethods: 6840 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6841 forProtocol = false; 6842 break; 6843 case MethodListType::InstanceMethods: 6844 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6845 forProtocol = false; 6846 break; 6847 case MethodListType::ClassMethods: 6848 prefix = "_OBJC_$_CLASS_METHODS_"; 6849 forProtocol = false; 6850 break; 6851 6852 case MethodListType::ProtocolInstanceMethods: 6853 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6854 forProtocol = true; 6855 break; 6856 case MethodListType::ProtocolClassMethods: 6857 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6858 forProtocol = true; 6859 break; 6860 case MethodListType::OptionalProtocolInstanceMethods: 6861 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6862 forProtocol = true; 6863 break; 6864 case MethodListType::OptionalProtocolClassMethods: 6865 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6866 forProtocol = true; 6867 break; 6868 } 6869 6870 ConstantInitBuilder builder(CGM); 6871 auto values = builder.beginStruct(); 6872 6873 // sizeof(struct _objc_method) 6874 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6875 values.addInt(ObjCTypes.IntTy, Size); 6876 // method_count 6877 values.addInt(ObjCTypes.IntTy, methods.size()); 6878 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6879 for (auto MD : methods) 6880 emitMethodConstant(methodArray, MD, forProtocol); 6881 methodArray.finishAndAddTo(values); 6882 6883 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6884 CGM.addCompilerUsedGlobal(GV); 6885 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6886 } 6887 6888 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6889 /// the given ivar. 6890 llvm::GlobalVariable * 6891 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6892 const ObjCIvarDecl *Ivar) { 6893 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6894 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6895 Name += Container->getObjCRuntimeNameAsString(); 6896 Name += "."; 6897 Name += Ivar->getName(); 6898 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6899 if (!IvarOffsetGV) { 6900 IvarOffsetGV = 6901 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6902 false, llvm::GlobalValue::ExternalLinkage, 6903 nullptr, Name.str()); 6904 if (CGM.getTriple().isOSBinFormatCOFF()) { 6905 bool IsPrivateOrPackage = 6906 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6907 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6908 6909 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6910 6911 if (ContainingID->hasAttr<DLLImportAttr>()) 6912 IvarOffsetGV 6913 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6914 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6915 IvarOffsetGV 6916 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6917 } 6918 } 6919 return IvarOffsetGV; 6920 } 6921 6922 llvm::Constant * 6923 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6924 const ObjCIvarDecl *Ivar, 6925 unsigned long int Offset) { 6926 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6927 IvarOffsetGV->setInitializer( 6928 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6929 IvarOffsetGV->setAlignment(llvm::Align( 6930 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6931 6932 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6933 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6934 // as well (i.e., in ObjCIvarOffsetVariable). 6935 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6936 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6937 ID->getVisibility() == HiddenVisibility) 6938 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6939 else 6940 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6941 } 6942 6943 // If ID's layout is known, then make the global constant. This serves as a 6944 // useful assertion: we'll never use this variable to calculate ivar offsets, 6945 // so if the runtime tries to patch it then we should crash. 6946 if (isClassLayoutKnownStatically(ID)) 6947 IvarOffsetGV->setConstant(true); 6948 6949 if (CGM.getTriple().isOSBinFormatMachO()) 6950 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6951 return IvarOffsetGV; 6952 } 6953 6954 /// EmitIvarList - Emit the ivar list for the given 6955 /// implementation. The return value has type 6956 /// IvarListnfABIPtrTy. 6957 /// struct _ivar_t { 6958 /// unsigned [long] int *offset; // pointer to ivar offset location 6959 /// char *name; 6960 /// char *type; 6961 /// uint32_t alignment; 6962 /// uint32_t size; 6963 /// } 6964 /// struct _ivar_list_t { 6965 /// uint32 entsize; // sizeof(struct _ivar_t) 6966 /// uint32 count; 6967 /// struct _iver_t list[count]; 6968 /// } 6969 /// 6970 6971 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6972 const ObjCImplementationDecl *ID) { 6973 6974 ConstantInitBuilder builder(CGM); 6975 auto ivarList = builder.beginStruct(); 6976 ivarList.addInt(ObjCTypes.IntTy, 6977 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6978 auto ivarCountSlot = ivarList.addPlaceholder(); 6979 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6980 6981 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6982 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6983 6984 // FIXME. Consolidate this with similar code in GenerateClass. 6985 6986 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6987 IVD; IVD = IVD->getNextIvar()) { 6988 // Ignore unnamed bit-fields. 6989 if (!IVD->getDeclName()) 6990 continue; 6991 6992 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6993 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6994 ComputeIvarBaseOffset(CGM, ID, IVD))); 6995 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6996 ivar.add(GetMethodVarType(IVD)); 6997 llvm::Type *FieldTy = 6998 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6999 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 7000 unsigned Align = CGM.getContext().getPreferredTypeAlign( 7001 IVD->getType().getTypePtr()) >> 3; 7002 Align = llvm::Log2_32(Align); 7003 ivar.addInt(ObjCTypes.IntTy, Align); 7004 // NOTE. Size of a bitfield does not match gcc's, because of the 7005 // way bitfields are treated special in each. But I am told that 7006 // 'size' for bitfield ivars is ignored by the runtime so it does 7007 // not matter. If it matters, there is enough info to get the 7008 // bitfield right! 7009 ivar.addInt(ObjCTypes.IntTy, Size); 7010 ivar.finishAndAddTo(ivars); 7011 } 7012 // Return null for empty list. 7013 if (ivars.empty()) { 7014 ivars.abandon(); 7015 ivarList.abandon(); 7016 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 7017 } 7018 7019 auto ivarCount = ivars.size(); 7020 ivars.finishAndAddTo(ivarList); 7021 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 7022 7023 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 7024 llvm::GlobalVariable *GV = finishAndCreateGlobal( 7025 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 7026 CGM.addCompilerUsedGlobal(GV); 7027 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 7028 } 7029 7030 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 7031 const ObjCProtocolDecl *PD) { 7032 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 7033 7034 if (!Entry) { 7035 // We use the initializer as a marker of whether this is a forward 7036 // reference or not. At module finalization we add the empty 7037 // contents for protocols which were referenced but never defined. 7038 llvm::SmallString<64> Protocol; 7039 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7040 << PD->getObjCRuntimeNameAsString(); 7041 7042 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7043 false, llvm::GlobalValue::ExternalLinkage, 7044 nullptr, Protocol); 7045 if (!CGM.getTriple().isOSBinFormatMachO()) 7046 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7047 } 7048 7049 return Entry; 7050 } 7051 7052 /// GetOrEmitProtocol - Generate the protocol meta-data: 7053 /// @code 7054 /// struct _protocol_t { 7055 /// id isa; // NULL 7056 /// const char * const protocol_name; 7057 /// const struct _protocol_list_t * protocol_list; // super protocols 7058 /// const struct method_list_t * const instance_methods; 7059 /// const struct method_list_t * const class_methods; 7060 /// const struct method_list_t *optionalInstanceMethods; 7061 /// const struct method_list_t *optionalClassMethods; 7062 /// const struct _prop_list_t * properties; 7063 /// const uint32_t size; // sizeof(struct _protocol_t) 7064 /// const uint32_t flags; // = 0 7065 /// const char ** extendedMethodTypes; 7066 /// const char *demangledName; 7067 /// const struct _prop_list_t * class_properties; 7068 /// } 7069 /// @endcode 7070 /// 7071 7072 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7073 const ObjCProtocolDecl *PD) { 7074 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7075 7076 // Early exit if a defining object has already been generated. 7077 if (Entry && Entry->hasInitializer()) 7078 return Entry; 7079 7080 // Use the protocol definition, if there is one. 7081 assert(PD->hasDefinition() && 7082 "emitting protocol metadata without definition"); 7083 PD = PD->getDefinition(); 7084 7085 auto methodLists = ProtocolMethodLists::get(PD); 7086 7087 ConstantInitBuilder builder(CGM); 7088 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7089 7090 // isa is NULL 7091 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7092 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7093 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7094 + PD->getObjCRuntimeNameAsString(), 7095 PD->protocol_begin(), 7096 PD->protocol_end())); 7097 values.add(methodLists.emitMethodList(this, PD, 7098 ProtocolMethodLists::RequiredInstanceMethods)); 7099 values.add(methodLists.emitMethodList(this, PD, 7100 ProtocolMethodLists::RequiredClassMethods)); 7101 values.add(methodLists.emitMethodList(this, PD, 7102 ProtocolMethodLists::OptionalInstanceMethods)); 7103 values.add(methodLists.emitMethodList(this, PD, 7104 ProtocolMethodLists::OptionalClassMethods)); 7105 values.add(EmitPropertyList( 7106 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7107 nullptr, PD, ObjCTypes, false)); 7108 uint32_t Size = 7109 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7110 values.addInt(ObjCTypes.IntTy, Size); 7111 values.addInt(ObjCTypes.IntTy, 0); 7112 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7113 + PD->getObjCRuntimeNameAsString(), 7114 methodLists.emitExtendedTypesArray(this), 7115 ObjCTypes)); 7116 7117 // const char *demangledName; 7118 values.addNullPointer(ObjCTypes.Int8PtrTy); 7119 7120 values.add(EmitPropertyList( 7121 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7122 nullptr, PD, ObjCTypes, true)); 7123 7124 if (Entry) { 7125 // Already created, fix the linkage and update the initializer. 7126 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7127 values.finishAndSetAsInitializer(Entry); 7128 } else { 7129 llvm::SmallString<64> symbolName; 7130 llvm::raw_svector_ostream(symbolName) 7131 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7132 7133 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7134 /*constant*/ false, 7135 llvm::GlobalValue::WeakAnyLinkage); 7136 if (!CGM.getTriple().isOSBinFormatMachO()) 7137 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7138 7139 Protocols[PD->getIdentifier()] = Entry; 7140 } 7141 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7142 CGM.addUsedGlobal(Entry); 7143 7144 // Use this protocol meta-data to build protocol list table in section 7145 // __DATA, __objc_protolist 7146 llvm::SmallString<64> ProtocolRef; 7147 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7148 << PD->getObjCRuntimeNameAsString(); 7149 7150 llvm::GlobalVariable *PTGV = 7151 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7152 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7153 ProtocolRef); 7154 if (!CGM.getTriple().isOSBinFormatMachO()) 7155 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7156 PTGV->setAlignment(llvm::Align( 7157 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7158 PTGV->setSection(GetSectionName("__objc_protolist", 7159 "coalesced,no_dead_strip")); 7160 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7161 CGM.addUsedGlobal(PTGV); 7162 return Entry; 7163 } 7164 7165 /// EmitProtocolList - Generate protocol list meta-data: 7166 /// @code 7167 /// struct _protocol_list_t { 7168 /// long protocol_count; // Note, this is 32/64 bit 7169 /// struct _protocol_t[protocol_count]; 7170 /// } 7171 /// @endcode 7172 /// 7173 llvm::Constant * 7174 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7175 ObjCProtocolDecl::protocol_iterator begin, 7176 ObjCProtocolDecl::protocol_iterator end) { 7177 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7178 7179 // Just return null for empty protocol lists 7180 if (begin == end) 7181 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7182 7183 // FIXME: We shouldn't need to do this lookup here, should we? 7184 SmallString<256> TmpName; 7185 Name.toVector(TmpName); 7186 llvm::GlobalVariable *GV = 7187 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7188 if (GV) 7189 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7190 7191 ConstantInitBuilder builder(CGM); 7192 auto values = builder.beginStruct(); 7193 auto countSlot = values.addPlaceholder(); 7194 7195 // A null-terminated array of protocols. 7196 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7197 for (; begin != end; ++begin) 7198 array.add(GetProtocolRef(*begin)); // Implemented??? 7199 auto count = array.size(); 7200 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7201 7202 array.finishAndAddTo(values); 7203 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7204 7205 GV = finishAndCreateGlobal(values, Name, CGM); 7206 CGM.addCompilerUsedGlobal(GV); 7207 return llvm::ConstantExpr::getBitCast(GV, 7208 ObjCTypes.ProtocolListnfABIPtrTy); 7209 } 7210 7211 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7212 /// This code gen. amounts to generating code for: 7213 /// @code 7214 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7215 /// @encode 7216 /// 7217 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7218 CodeGen::CodeGenFunction &CGF, 7219 QualType ObjectTy, 7220 llvm::Value *BaseValue, 7221 const ObjCIvarDecl *Ivar, 7222 unsigned CVRQualifiers) { 7223 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7224 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7225 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7226 Offset); 7227 } 7228 7229 llvm::Value * 7230 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7231 const ObjCInterfaceDecl *Interface, 7232 const ObjCIvarDecl *Ivar) { 7233 llvm::Value *IvarOffsetValue; 7234 if (isClassLayoutKnownStatically(Interface)) { 7235 IvarOffsetValue = llvm::ConstantInt::get( 7236 ObjCTypes.IvarOffsetVarTy, 7237 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7238 } else { 7239 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7240 IvarOffsetValue = 7241 CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar"); 7242 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7243 cast<llvm::LoadInst>(IvarOffsetValue) 7244 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7245 llvm::MDNode::get(VMContext, None)); 7246 } 7247 7248 // This could be 32bit int or 64bit integer depending on the architecture. 7249 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7250 // as this is what caller always expects. 7251 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7252 IvarOffsetValue = CGF.Builder.CreateIntCast( 7253 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7254 return IvarOffsetValue; 7255 } 7256 7257 static void appendSelectorForMessageRefTable(std::string &buffer, 7258 Selector selector) { 7259 if (selector.isUnarySelector()) { 7260 buffer += selector.getNameForSlot(0); 7261 return; 7262 } 7263 7264 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7265 buffer += selector.getNameForSlot(i); 7266 buffer += '_'; 7267 } 7268 } 7269 7270 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7271 /// struct, initially containing the selector pointer and a pointer to 7272 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7273 /// load and call the function pointer, passing the address of the 7274 /// struct as the second parameter. The runtime determines whether 7275 /// the selector is currently emitted using vtable dispatch; if so, it 7276 /// substitutes a stub function which simply tail-calls through the 7277 /// appropriate vtable slot, and if not, it substitues a stub function 7278 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7279 /// argument to correctly point to the selector. 7280 RValue 7281 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7282 ReturnValueSlot returnSlot, 7283 QualType resultType, 7284 Selector selector, 7285 llvm::Value *arg0, 7286 QualType arg0Type, 7287 bool isSuper, 7288 const CallArgList &formalArgs, 7289 const ObjCMethodDecl *method) { 7290 // Compute the actual arguments. 7291 CallArgList args; 7292 7293 // First argument: the receiver / super-call structure. 7294 if (!isSuper) 7295 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7296 args.add(RValue::get(arg0), arg0Type); 7297 7298 // Second argument: a pointer to the message ref structure. Leave 7299 // the actual argument value blank for now. 7300 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7301 7302 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7303 7304 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7305 7306 NullReturnState nullReturn; 7307 7308 // Find the function to call and the mangled name for the message 7309 // ref structure. Using a different mangled name wouldn't actually 7310 // be a problem; it would just be a waste. 7311 // 7312 // The runtime currently never uses vtable dispatch for anything 7313 // except normal, non-super message-sends. 7314 // FIXME: don't use this for that. 7315 llvm::FunctionCallee fn = nullptr; 7316 std::string messageRefName("_"); 7317 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7318 if (isSuper) { 7319 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7320 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7321 } else { 7322 nullReturn.init(CGF, arg0); 7323 fn = ObjCTypes.getMessageSendStretFixupFn(); 7324 messageRefName += "objc_msgSend_stret_fixup"; 7325 } 7326 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7327 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7328 messageRefName += "objc_msgSend_fpret_fixup"; 7329 } else { 7330 if (isSuper) { 7331 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7332 messageRefName += "objc_msgSendSuper2_fixup"; 7333 } else { 7334 fn = ObjCTypes.getMessageSendFixupFn(); 7335 messageRefName += "objc_msgSend_fixup"; 7336 } 7337 } 7338 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7339 messageRefName += '_'; 7340 7341 // Append the selector name, except use underscores anywhere we 7342 // would have used colons. 7343 appendSelectorForMessageRefTable(messageRefName, selector); 7344 7345 llvm::GlobalVariable *messageRef 7346 = CGM.getModule().getGlobalVariable(messageRefName); 7347 if (!messageRef) { 7348 // Build the message ref structure. 7349 ConstantInitBuilder builder(CGM); 7350 auto values = builder.beginStruct(); 7351 values.add(cast<llvm::Constant>(fn.getCallee())); 7352 values.add(GetMethodVarName(selector)); 7353 messageRef = values.finishAndCreateGlobal(messageRefName, 7354 CharUnits::fromQuantity(16), 7355 /*constant*/ false, 7356 llvm::GlobalValue::WeakAnyLinkage); 7357 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7358 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7359 } 7360 7361 bool requiresnullCheck = false; 7362 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7363 for (const auto *ParamDecl : method->parameters()) { 7364 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7365 if (!nullReturn.NullBB) 7366 nullReturn.init(CGF, arg0); 7367 requiresnullCheck = true; 7368 break; 7369 } 7370 } 7371 7372 Address mref = 7373 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7374 CGF.getPointerAlign()); 7375 7376 // Update the message ref argument. 7377 args[1].setRValue(RValue::get(mref.getPointer())); 7378 7379 // Load the function to call from the message ref table. 7380 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7381 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7382 7383 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7384 CGCallee callee(CGCalleeInfo(), calleePtr); 7385 7386 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7387 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7388 requiresnullCheck ? method : nullptr); 7389 } 7390 7391 /// Generate code for a message send expression in the nonfragile abi. 7392 CodeGen::RValue 7393 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7394 ReturnValueSlot Return, 7395 QualType ResultType, 7396 Selector Sel, 7397 llvm::Value *Receiver, 7398 const CallArgList &CallArgs, 7399 const ObjCInterfaceDecl *Class, 7400 const ObjCMethodDecl *Method) { 7401 return isVTableDispatchedSelector(Sel) 7402 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7403 Receiver, CGF.getContext().getObjCIdType(), 7404 false, CallArgs, Method) 7405 : EmitMessageSend(CGF, Return, ResultType, Sel, 7406 Receiver, CGF.getContext().getObjCIdType(), 7407 false, CallArgs, Method, Class, ObjCTypes); 7408 } 7409 7410 llvm::Constant * 7411 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7412 bool metaclass, 7413 ForDefinition_t isForDefinition) { 7414 auto prefix = 7415 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7416 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7417 isForDefinition, 7418 ID->isWeakImported(), 7419 !isForDefinition 7420 && CGM.getTriple().isOSBinFormatCOFF() 7421 && ID->hasAttr<DLLImportAttr>()); 7422 } 7423 7424 llvm::Constant * 7425 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7426 ForDefinition_t IsForDefinition, 7427 bool Weak, bool DLLImport) { 7428 llvm::GlobalValue::LinkageTypes L = 7429 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7430 : llvm::GlobalValue::ExternalLinkage; 7431 7432 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7433 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7434 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7435 nullptr, Name); 7436 7437 if (DLLImport) 7438 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7439 7440 if (GV) { 7441 GV->replaceAllUsesWith( 7442 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7443 GV->eraseFromParent(); 7444 } 7445 GV = NewGV; 7446 CGM.getModule().getGlobalList().push_back(GV); 7447 } 7448 7449 assert(GV->getLinkage() == L); 7450 return GV; 7451 } 7452 7453 llvm::Constant * 7454 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7455 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7456 NotForDefinition); 7457 7458 if (!ID->hasAttr<ObjCClassStubAttr>()) 7459 return ClassGV; 7460 7461 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7462 7463 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7464 // must set the least significant bit set to 1. 7465 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7466 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7467 } 7468 7469 llvm::Value * 7470 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7471 const ObjCInterfaceDecl *ID, 7472 llvm::GlobalVariable *Entry) { 7473 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7474 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7475 // a special runtime function. 7476 return CGF.EmitRuntimeCall( 7477 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7478 } 7479 7480 CharUnits Align = CGF.getPointerAlign(); 7481 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7482 } 7483 7484 llvm::Value * 7485 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7486 IdentifierInfo *II, 7487 const ObjCInterfaceDecl *ID) { 7488 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7489 7490 if (!Entry) { 7491 llvm::Constant *ClassGV; 7492 if (ID) { 7493 ClassGV = GetClassGlobalForClassRef(ID); 7494 } else { 7495 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7496 NotForDefinition); 7497 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7498 "classref was emitted with the wrong type?"); 7499 } 7500 7501 std::string SectionName = 7502 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7503 Entry = new llvm::GlobalVariable( 7504 CGM.getModule(), ClassGV->getType(), false, 7505 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7506 "OBJC_CLASSLIST_REFERENCES_$_"); 7507 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7508 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7509 Entry->setSection(SectionName); 7510 7511 CGM.addCompilerUsedGlobal(Entry); 7512 } 7513 7514 return EmitLoadOfClassRef(CGF, ID, Entry); 7515 } 7516 7517 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7518 const ObjCInterfaceDecl *ID) { 7519 // If the class has the objc_runtime_visible attribute, we need to 7520 // use the Objective-C runtime to get the class. 7521 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7522 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7523 7524 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7525 } 7526 7527 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7528 CodeGenFunction &CGF) { 7529 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7530 return EmitClassRefFromId(CGF, II, nullptr); 7531 } 7532 7533 llvm::Value * 7534 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7535 const ObjCInterfaceDecl *ID) { 7536 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7537 7538 if (!Entry) { 7539 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7540 std::string SectionName = 7541 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7542 Entry = new llvm::GlobalVariable( 7543 CGM.getModule(), ClassGV->getType(), false, 7544 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7545 "OBJC_CLASSLIST_SUP_REFS_$_"); 7546 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7547 Entry->setSection(SectionName); 7548 CGM.addCompilerUsedGlobal(Entry); 7549 } 7550 7551 return EmitLoadOfClassRef(CGF, ID, Entry); 7552 } 7553 7554 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7555 /// meta-data 7556 /// 7557 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7558 const ObjCInterfaceDecl *ID, 7559 bool Weak) { 7560 CharUnits Align = CGF.getPointerAlign(); 7561 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7562 if (!Entry) { 7563 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7564 std::string SectionName = 7565 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7566 Entry = new llvm::GlobalVariable( 7567 CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false, 7568 getLinkageTypeForObjCMetadata(CGM, SectionName), MetaClassGV, 7569 "OBJC_CLASSLIST_SUP_REFS_$_"); 7570 Entry->setAlignment(Align.getAsAlign()); 7571 Entry->setSection(SectionName); 7572 CGM.addCompilerUsedGlobal(Entry); 7573 } 7574 7575 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7576 } 7577 7578 /// GetClass - Return a reference to the class for the given interface 7579 /// decl. 7580 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7581 const ObjCInterfaceDecl *ID) { 7582 if (ID->isWeakImported()) { 7583 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7584 (void)ClassGV; 7585 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7586 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7587 } 7588 7589 return EmitClassRef(CGF, ID); 7590 } 7591 7592 /// Generates a message send where the super is the receiver. This is 7593 /// a message send to self with special delivery semantics indicating 7594 /// which class's method should be called. 7595 CodeGen::RValue 7596 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7597 ReturnValueSlot Return, 7598 QualType ResultType, 7599 Selector Sel, 7600 const ObjCInterfaceDecl *Class, 7601 bool isCategoryImpl, 7602 llvm::Value *Receiver, 7603 bool IsClassMessage, 7604 const CodeGen::CallArgList &CallArgs, 7605 const ObjCMethodDecl *Method) { 7606 // ... 7607 // Create and init a super structure; this is a (receiver, class) 7608 // pair we will pass to objc_msgSendSuper. 7609 Address ObjCSuper = 7610 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7611 "objc_super"); 7612 7613 llvm::Value *ReceiverAsObject = 7614 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7615 CGF.Builder.CreateStore(ReceiverAsObject, 7616 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7617 7618 // If this is a class message the metaclass is passed as the target. 7619 llvm::Value *Target; 7620 if (IsClassMessage) 7621 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7622 else 7623 Target = EmitSuperClassRef(CGF, Class); 7624 7625 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7626 // ObjCTypes types. 7627 llvm::Type *ClassTy = 7628 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7629 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7630 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7631 7632 return (isVTableDispatchedSelector(Sel)) 7633 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7634 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7635 true, CallArgs, Method) 7636 : EmitMessageSend(CGF, Return, ResultType, Sel, 7637 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7638 true, CallArgs, Method, Class, ObjCTypes); 7639 } 7640 7641 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7642 Selector Sel) { 7643 Address Addr = EmitSelectorAddr(Sel); 7644 7645 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7646 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7647 llvm::MDNode::get(VMContext, None)); 7648 return LI; 7649 } 7650 7651 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7652 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7653 CharUnits Align = CGM.getPointerAlign(); 7654 if (!Entry) { 7655 llvm::Constant *Casted = 7656 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7657 ObjCTypes.SelectorPtrTy); 7658 std::string SectionName = 7659 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7660 Entry = new llvm::GlobalVariable( 7661 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7662 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7663 "OBJC_SELECTOR_REFERENCES_"); 7664 Entry->setExternallyInitialized(true); 7665 Entry->setSection(SectionName); 7666 Entry->setAlignment(Align.getAsAlign()); 7667 CGM.addCompilerUsedGlobal(Entry); 7668 } 7669 7670 return Address(Entry, Align); 7671 } 7672 7673 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7674 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7675 /// 7676 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7677 llvm::Value *src, 7678 Address dst, 7679 llvm::Value *ivarOffset) { 7680 llvm::Type * SrcTy = src->getType(); 7681 if (!isa<llvm::PointerType>(SrcTy)) { 7682 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7683 assert(Size <= 8 && "does not support size > 8"); 7684 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7685 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7686 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7687 } 7688 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7689 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7690 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7691 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7692 } 7693 7694 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7695 /// objc_assign_strongCast (id src, id *dst) 7696 /// 7697 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7698 CodeGen::CodeGenFunction &CGF, 7699 llvm::Value *src, Address dst) { 7700 llvm::Type * SrcTy = src->getType(); 7701 if (!isa<llvm::PointerType>(SrcTy)) { 7702 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7703 assert(Size <= 8 && "does not support size > 8"); 7704 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7705 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7706 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7707 } 7708 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7709 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7710 llvm::Value *args[] = { src, dst.getPointer() }; 7711 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7712 args, "weakassign"); 7713 } 7714 7715 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7716 CodeGen::CodeGenFunction &CGF, 7717 Address DestPtr, 7718 Address SrcPtr, 7719 llvm::Value *Size) { 7720 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7721 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7722 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7723 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7724 } 7725 7726 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7727 /// object: objc_read_weak (id *src) 7728 /// 7729 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7730 CodeGen::CodeGenFunction &CGF, 7731 Address AddrWeakObj) { 7732 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7733 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7734 llvm::Value *read_weak = 7735 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7736 AddrWeakObj.getPointer(), "weakread"); 7737 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7738 return read_weak; 7739 } 7740 7741 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7742 /// objc_assign_weak (id src, id *dst) 7743 /// 7744 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7745 llvm::Value *src, Address dst) { 7746 llvm::Type * SrcTy = src->getType(); 7747 if (!isa<llvm::PointerType>(SrcTy)) { 7748 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7749 assert(Size <= 8 && "does not support size > 8"); 7750 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7751 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7752 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7753 } 7754 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7755 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7756 llvm::Value *args[] = { src, dst.getPointer() }; 7757 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7758 args, "weakassign"); 7759 } 7760 7761 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7762 /// objc_assign_global (id src, id *dst) 7763 /// 7764 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7765 llvm::Value *src, Address dst, 7766 bool threadlocal) { 7767 llvm::Type * SrcTy = src->getType(); 7768 if (!isa<llvm::PointerType>(SrcTy)) { 7769 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7770 assert(Size <= 8 && "does not support size > 8"); 7771 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7772 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7773 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7774 } 7775 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7776 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7777 llvm::Value *args[] = { src, dst.getPointer() }; 7778 if (!threadlocal) 7779 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7780 args, "globalassign"); 7781 else 7782 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7783 args, "threadlocalassign"); 7784 } 7785 7786 void 7787 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7788 const ObjCAtSynchronizedStmt &S) { 7789 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7790 ObjCTypes.getSyncExitFn()); 7791 } 7792 7793 llvm::Constant * 7794 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7795 // There's a particular fixed type info for 'id'. 7796 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7797 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7798 if (!IDEHType) { 7799 IDEHType = 7800 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7801 llvm::GlobalValue::ExternalLinkage, nullptr, 7802 "OBJC_EHTYPE_id"); 7803 if (CGM.getTriple().isOSBinFormatCOFF()) 7804 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7805 } 7806 return IDEHType; 7807 } 7808 7809 // All other types should be Objective-C interface pointer types. 7810 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7811 assert(PT && "Invalid @catch type."); 7812 7813 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7814 assert(IT && "Invalid @catch type."); 7815 7816 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7817 } 7818 7819 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7820 const ObjCAtTryStmt &S) { 7821 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7822 ObjCTypes.getObjCEndCatchFn(), 7823 ObjCTypes.getExceptionRethrowFn()); 7824 } 7825 7826 /// EmitThrowStmt - Generate code for a throw statement. 7827 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7828 const ObjCAtThrowStmt &S, 7829 bool ClearInsertionPoint) { 7830 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7831 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7832 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7833 llvm::CallBase *Call = 7834 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7835 Call->setDoesNotReturn(); 7836 } else { 7837 llvm::CallBase *Call = 7838 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7839 Call->setDoesNotReturn(); 7840 } 7841 7842 CGF.Builder.CreateUnreachable(); 7843 if (ClearInsertionPoint) 7844 CGF.Builder.ClearInsertionPoint(); 7845 } 7846 7847 llvm::Constant * 7848 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7849 ForDefinition_t IsForDefinition) { 7850 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7851 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7852 7853 // If we don't need a definition, return the entry if found or check 7854 // if we use an external reference. 7855 if (!IsForDefinition) { 7856 if (Entry) 7857 return Entry; 7858 7859 // If this type (or a super class) has the __objc_exception__ 7860 // attribute, emit an external reference. 7861 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7862 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7863 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7864 false, llvm::GlobalValue::ExternalLinkage, 7865 nullptr, EHTypeName); 7866 CGM.setGVProperties(Entry, ID); 7867 return Entry; 7868 } 7869 } 7870 7871 // Otherwise we need to either make a new entry or fill in the initializer. 7872 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7873 7874 std::string VTableName = "objc_ehtype_vtable"; 7875 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7876 if (!VTableGV) { 7877 VTableGV = 7878 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7879 llvm::GlobalValue::ExternalLinkage, nullptr, 7880 VTableName); 7881 if (CGM.getTriple().isOSBinFormatCOFF()) 7882 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7883 } 7884 7885 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7886 ConstantInitBuilder builder(CGM); 7887 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7888 values.add( 7889 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7890 VTableGV, VTableIdx)); 7891 values.add(GetClassName(ClassName)); 7892 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7893 7894 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7895 ? llvm::GlobalValue::ExternalLinkage 7896 : llvm::GlobalValue::WeakAnyLinkage; 7897 if (Entry) { 7898 values.finishAndSetAsInitializer(Entry); 7899 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7900 } else { 7901 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7902 CGM.getPointerAlign(), 7903 /*constant*/ false, 7904 L); 7905 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7906 CGM.setGVProperties(Entry, ID); 7907 } 7908 assert(Entry->getLinkage() == L); 7909 7910 if (!CGM.getTriple().isOSBinFormatCOFF()) 7911 if (ID->getVisibility() == HiddenVisibility) 7912 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7913 7914 if (IsForDefinition) 7915 if (CGM.getTriple().isOSBinFormatMachO()) 7916 Entry->setSection("__DATA,__objc_const"); 7917 7918 return Entry; 7919 } 7920 7921 /* *** */ 7922 7923 CodeGen::CGObjCRuntime * 7924 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7925 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7926 case ObjCRuntime::FragileMacOSX: 7927 return new CGObjCMac(CGM); 7928 7929 case ObjCRuntime::MacOSX: 7930 case ObjCRuntime::iOS: 7931 case ObjCRuntime::WatchOS: 7932 return new CGObjCNonFragileABIMac(CGM); 7933 7934 case ObjCRuntime::GNUstep: 7935 case ObjCRuntime::GCC: 7936 case ObjCRuntime::ObjFW: 7937 llvm_unreachable("these runtimes are not Mac runtimes"); 7938 } 7939 llvm_unreachable("bad runtime"); 7940 } 7941