1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::Constant *getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::Constant *getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::Constant *getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::Constant *getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::Constant *getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::Constant *getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::Constant *getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::Constant *getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::Constant *getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::Constant *getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::Constant *getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::Constant *GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::Constant *getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::Constant *getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::Constant *getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::Constant *getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::Constant *getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::Constant *getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::Constant *getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::Constant *getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::Constant *getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::Constant *getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::Constant *getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::Constant *getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::Constant *getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::Constant *getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::Constant *getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::Constant *getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::Constant *getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::Constant *getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::Constant *getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::Constant *getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::Constant *getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 719 } 720 721 llvm::Constant *getObjCBeginCatchFn() { 722 llvm::Type *params[] = { Int8PtrTy }; 723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 724 params, false), 725 "objc_begin_catch"); 726 } 727 728 llvm::StructType *EHTypeTy; 729 llvm::Type *EHTypePtrTy; 730 731 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 732 }; 733 734 enum class ObjCLabelType { 735 ClassName, 736 MethodVarName, 737 MethodVarType, 738 PropertyName, 739 }; 740 741 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 742 public: 743 class SKIP_SCAN { 744 public: 745 unsigned skip; 746 unsigned scan; 747 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 748 : skip(_skip), scan(_scan) {} 749 }; 750 751 /// opcode for captured block variables layout 'instructions'. 752 /// In the following descriptions, 'I' is the value of the immediate field. 753 /// (field following the opcode). 754 /// 755 enum BLOCK_LAYOUT_OPCODE { 756 /// An operator which affects how the following layout should be 757 /// interpreted. 758 /// I == 0: Halt interpretation and treat everything else as 759 /// a non-pointer. Note that this instruction is equal 760 /// to '\0'. 761 /// I != 0: Currently unused. 762 BLOCK_LAYOUT_OPERATOR = 0, 763 764 /// The next I+1 bytes do not contain a value of object pointer type. 765 /// Note that this can leave the stream unaligned, meaning that 766 /// subsequent word-size instructions do not begin at a multiple of 767 /// the pointer size. 768 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 769 770 /// The next I+1 words do not contain a value of object pointer type. 771 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 772 /// when the required skip quantity is a multiple of the pointer size. 773 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 774 775 /// The next I+1 words are __strong pointers to Objective-C 776 /// objects or blocks. 777 BLOCK_LAYOUT_STRONG = 3, 778 779 /// The next I+1 words are pointers to __block variables. 780 BLOCK_LAYOUT_BYREF = 4, 781 782 /// The next I+1 words are __weak pointers to Objective-C 783 /// objects or blocks. 784 BLOCK_LAYOUT_WEAK = 5, 785 786 /// The next I+1 words are __unsafe_unretained pointers to 787 /// Objective-C objects or blocks. 788 BLOCK_LAYOUT_UNRETAINED = 6 789 790 /// The next I+1 words are block or object pointers with some 791 /// as-yet-unspecified ownership semantics. If we add more 792 /// flavors of ownership semantics, values will be taken from 793 /// this range. 794 /// 795 /// This is included so that older tools can at least continue 796 /// processing the layout past such things. 797 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 798 799 /// All other opcodes are reserved. Halt interpretation and 800 /// treat everything else as opaque. 801 }; 802 803 class RUN_SKIP { 804 public: 805 enum BLOCK_LAYOUT_OPCODE opcode; 806 CharUnits block_var_bytepos; 807 CharUnits block_var_size; 808 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 809 CharUnits BytePos = CharUnits::Zero(), 810 CharUnits Size = CharUnits::Zero()) 811 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 812 813 // Allow sorting based on byte pos. 814 bool operator<(const RUN_SKIP &b) const { 815 return block_var_bytepos < b.block_var_bytepos; 816 } 817 }; 818 819 protected: 820 llvm::LLVMContext &VMContext; 821 // FIXME! May not be needing this after all. 822 unsigned ObjCABI; 823 824 // arc/mrr layout of captured block literal variables. 825 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 826 827 /// LazySymbols - Symbols to generate a lazy reference for. See 828 /// DefinedSymbols and FinishModule(). 829 llvm::SetVector<IdentifierInfo*> LazySymbols; 830 831 /// DefinedSymbols - External symbols which are defined by this 832 /// module. The symbols in this list and LazySymbols are used to add 833 /// special linker symbols which ensure that Objective-C modules are 834 /// linked properly. 835 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 836 837 /// ClassNames - uniqued class names. 838 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 839 840 /// MethodVarNames - uniqued method variable names. 841 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 842 843 /// DefinedCategoryNames - list of category names in form Class_Category. 844 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 845 846 /// MethodVarTypes - uniqued method type signatures. We have to use 847 /// a StringMap here because have no other unique reference. 848 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 849 850 /// MethodDefinitions - map of methods which have been defined in 851 /// this translation unit. 852 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 853 854 /// PropertyNames - uniqued method variable names. 855 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 856 857 /// ClassReferences - uniqued class references. 858 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 859 860 /// SelectorReferences - uniqued selector references. 861 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 862 863 /// Protocols - Protocols for which an objc_protocol structure has 864 /// been emitted. Forward declarations are handled by creating an 865 /// empty structure whose initializer is filled in when/if defined. 866 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 867 868 /// DefinedProtocols - Protocols which have actually been 869 /// defined. We should not need this, see FIXME in GenerateProtocol. 870 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 871 872 /// DefinedClasses - List of defined classes. 873 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 874 875 /// ImplementedClasses - List of @implemented classes. 876 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 877 878 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 879 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 880 881 /// DefinedCategories - List of defined categories. 882 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 883 884 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 885 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 886 887 /// Cached reference to the class for constant strings. This value has type 888 /// int * but is actually an Obj-C class pointer. 889 llvm::WeakTrackingVH ConstantStringClassRef; 890 891 /// \brief The LLVM type corresponding to NSConstantString. 892 llvm::StructType *NSConstantStringType = nullptr; 893 894 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 895 896 /// GetNameForMethod - Return a name for the given method. 897 /// \param[out] NameOut - The return value. 898 void GetNameForMethod(const ObjCMethodDecl *OMD, 899 const ObjCContainerDecl *CD, 900 SmallVectorImpl<char> &NameOut); 901 902 /// GetMethodVarName - Return a unique constant for the given 903 /// selector's name. The return value has type char *. 904 llvm::Constant *GetMethodVarName(Selector Sel); 905 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 906 907 /// GetMethodVarType - Return a unique constant for the given 908 /// method's type encoding string. The return value has type char *. 909 910 // FIXME: This is a horrible name. 911 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 912 bool Extended = false); 913 llvm::Constant *GetMethodVarType(const FieldDecl *D); 914 915 /// GetPropertyName - Return a unique constant for the given 916 /// name. The return value has type char *. 917 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 918 919 // FIXME: This can be dropped once string functions are unified. 920 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 921 const Decl *Container); 922 923 /// GetClassName - Return a unique constant for the given selector's 924 /// runtime name (which may change via use of objc_runtime_name attribute on 925 /// class or protocol definition. The return value has type char *. 926 llvm::Constant *GetClassName(StringRef RuntimeName); 927 928 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 929 930 /// BuildIvarLayout - Builds ivar layout bitmap for the class 931 /// implementation for the __strong or __weak case. 932 /// 933 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 934 /// are any weak ivars defined directly in the class. Meaningless unless 935 /// building a weak layout. Does not guarantee that the layout will 936 /// actually have any entries, because the ivar might be under-aligned. 937 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 938 CharUnits beginOffset, 939 CharUnits endOffset, 940 bool forStrongLayout, 941 bool hasMRCWeakIvars); 942 943 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 944 CharUnits beginOffset, 945 CharUnits endOffset) { 946 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 947 } 948 949 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 950 CharUnits beginOffset, 951 CharUnits endOffset, 952 bool hasMRCWeakIvars) { 953 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 954 } 955 956 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 957 958 void UpdateRunSkipBlockVars(bool IsByref, 959 Qualifiers::ObjCLifetime LifeTime, 960 CharUnits FieldOffset, 961 CharUnits FieldSize); 962 963 void BuildRCBlockVarRecordLayout(const RecordType *RT, 964 CharUnits BytePos, bool &HasUnion, 965 bool ByrefLayout=false); 966 967 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 968 const RecordDecl *RD, 969 ArrayRef<const FieldDecl*> RecFields, 970 CharUnits BytePos, bool &HasUnion, 971 bool ByrefLayout); 972 973 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 974 975 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 976 977 /// GetIvarLayoutName - Returns a unique constant for the given 978 /// ivar layout bitmap. 979 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 980 const ObjCCommonTypesHelper &ObjCTypes); 981 982 /// EmitPropertyList - Emit the given property list. The return 983 /// value has type PropertyListPtrTy. 984 llvm::Constant *EmitPropertyList(Twine Name, 985 const Decl *Container, 986 const ObjCContainerDecl *OCD, 987 const ObjCCommonTypesHelper &ObjCTypes, 988 bool IsClassProperty); 989 990 /// EmitProtocolMethodTypes - Generate the array of extended method type 991 /// strings. The return value has type Int8PtrPtrTy. 992 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 993 ArrayRef<llvm::Constant*> MethodTypes, 994 const ObjCCommonTypesHelper &ObjCTypes); 995 996 /// GetProtocolRef - Return a reference to the internal protocol 997 /// description, creating an empty one if it has not been 998 /// defined. The return value has type ProtocolPtrTy. 999 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1000 1001 /// Return a reference to the given Class using runtime calls rather than 1002 /// by a symbol reference. 1003 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1004 const ObjCInterfaceDecl *ID, 1005 ObjCCommonTypesHelper &ObjCTypes); 1006 1007 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1008 1009 public: 1010 /// CreateMetadataVar - Create a global variable with internal 1011 /// linkage for use by the Objective-C runtime. 1012 /// 1013 /// This is a convenience wrapper which not only creates the 1014 /// variable, but also sets the section and alignment and adds the 1015 /// global to the "llvm.used" list. 1016 /// 1017 /// \param Name - The variable name. 1018 /// \param Init - The variable initializer; this is also used to 1019 /// define the type of the variable. 1020 /// \param Section - The section the variable should go into, or empty. 1021 /// \param Align - The alignment for the variable, or 0. 1022 /// \param AddToUsed - Whether the variable should be added to 1023 /// "llvm.used". 1024 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1025 ConstantStructBuilder &Init, 1026 StringRef Section, CharUnits Align, 1027 bool AddToUsed); 1028 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1029 llvm::Constant *Init, 1030 StringRef Section, CharUnits Align, 1031 bool AddToUsed); 1032 1033 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1034 ObjCLabelType LabelType, 1035 bool ForceNonFragileABI = false, 1036 bool NullTerminate = true); 1037 1038 protected: 1039 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1040 ReturnValueSlot Return, 1041 QualType ResultType, 1042 llvm::Value *Sel, 1043 llvm::Value *Arg0, 1044 QualType Arg0Ty, 1045 bool IsSuper, 1046 const CallArgList &CallArgs, 1047 const ObjCMethodDecl *OMD, 1048 const ObjCInterfaceDecl *ClassReceiver, 1049 const ObjCCommonTypesHelper &ObjCTypes); 1050 1051 /// EmitImageInfo - Emit the image info marker used to encode some module 1052 /// level information. 1053 void EmitImageInfo(); 1054 1055 public: 1056 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1057 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1058 1059 bool isNonFragileABI() const { 1060 return ObjCABI == 2; 1061 } 1062 1063 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1064 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1065 1066 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1067 const ObjCContainerDecl *CD=nullptr) override; 1068 1069 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1070 1071 /// GetOrEmitProtocol - Get the protocol object for the given 1072 /// declaration, emitting it if necessary. The return value has type 1073 /// ProtocolPtrTy. 1074 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1075 1076 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1077 /// object for the given declaration, emitting it if needed. These 1078 /// forward references will be filled in with empty bodies if no 1079 /// definition is seen. The return value has type ProtocolPtrTy. 1080 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1081 1082 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1083 1084 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1085 const CGBlockInfo &blockInfo) override; 1086 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1087 const CGBlockInfo &blockInfo) override; 1088 1089 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1090 QualType T) override; 1091 }; 1092 1093 namespace { 1094 1095 enum class MethodListType { 1096 CategoryInstanceMethods, 1097 CategoryClassMethods, 1098 InstanceMethods, 1099 ClassMethods, 1100 ProtocolInstanceMethods, 1101 ProtocolClassMethods, 1102 OptionalProtocolInstanceMethods, 1103 OptionalProtocolClassMethods, 1104 }; 1105 1106 /// A convenience class for splitting the methods of a protocol into 1107 /// the four interesting groups. 1108 class ProtocolMethodLists { 1109 public: 1110 enum Kind { 1111 RequiredInstanceMethods, 1112 RequiredClassMethods, 1113 OptionalInstanceMethods, 1114 OptionalClassMethods 1115 }; 1116 enum { 1117 NumProtocolMethodLists = 4 1118 }; 1119 1120 static MethodListType getMethodListKind(Kind kind) { 1121 switch (kind) { 1122 case RequiredInstanceMethods: 1123 return MethodListType::ProtocolInstanceMethods; 1124 case RequiredClassMethods: 1125 return MethodListType::ProtocolClassMethods; 1126 case OptionalInstanceMethods: 1127 return MethodListType::OptionalProtocolInstanceMethods; 1128 case OptionalClassMethods: 1129 return MethodListType::OptionalProtocolClassMethods; 1130 } 1131 llvm_unreachable("bad kind"); 1132 } 1133 1134 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1135 1136 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1137 ProtocolMethodLists result; 1138 1139 for (auto MD : PD->methods()) { 1140 size_t index = (2 * size_t(MD->isOptional())) 1141 + (size_t(MD->isClassMethod())); 1142 result.Methods[index].push_back(MD); 1143 } 1144 1145 return result; 1146 } 1147 1148 template <class Self> 1149 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1150 // In both ABIs, the method types list is parallel with the 1151 // concatenation of the methods arrays in the following order: 1152 // instance methods 1153 // class methods 1154 // optional instance methods 1155 // optional class methods 1156 SmallVector<llvm::Constant*, 8> result; 1157 1158 // Methods is already in the correct order for both ABIs. 1159 for (auto &list : Methods) { 1160 for (auto MD : list) { 1161 result.push_back(self->GetMethodVarType(MD, true)); 1162 } 1163 } 1164 1165 return result; 1166 } 1167 1168 template <class Self> 1169 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1170 Kind kind) const { 1171 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1172 getMethodListKind(kind), Methods[kind]); 1173 } 1174 }; 1175 1176 } // end anonymous namespace 1177 1178 class CGObjCMac : public CGObjCCommonMac { 1179 private: 1180 friend ProtocolMethodLists; 1181 1182 ObjCTypesHelper ObjCTypes; 1183 1184 /// EmitModuleInfo - Another marker encoding module level 1185 /// information. 1186 void EmitModuleInfo(); 1187 1188 /// EmitModuleSymols - Emit module symbols, the list of defined 1189 /// classes and categories. The result has type SymtabPtrTy. 1190 llvm::Constant *EmitModuleSymbols(); 1191 1192 /// FinishModule - Write out global data structures at the end of 1193 /// processing a translation unit. 1194 void FinishModule(); 1195 1196 /// EmitClassExtension - Generate the class extension structure used 1197 /// to store the weak ivar layout and properties. The return value 1198 /// has type ClassExtensionPtrTy. 1199 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1200 CharUnits instanceSize, 1201 bool hasMRCWeakIvars, 1202 bool isMetaclass); 1203 1204 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1205 /// for the given class. 1206 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1207 const ObjCInterfaceDecl *ID); 1208 1209 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1210 IdentifierInfo *II); 1211 1212 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1213 1214 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1215 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1216 1217 /// EmitIvarList - Emit the ivar list for the given 1218 /// implementation. If ForClass is true the list of class ivars 1219 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1220 /// interface ivars will be emitted. The return value has type 1221 /// IvarListPtrTy. 1222 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1223 bool ForClass); 1224 1225 /// EmitMetaClass - Emit a forward reference to the class structure 1226 /// for the metaclass of the given interface. The return value has 1227 /// type ClassPtrTy. 1228 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1229 1230 /// EmitMetaClass - Emit a class structure for the metaclass of the 1231 /// given implementation. The return value has type ClassPtrTy. 1232 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1233 llvm::Constant *Protocols, 1234 ArrayRef<const ObjCMethodDecl *> Methods); 1235 1236 void emitMethodConstant(ConstantArrayBuilder &builder, 1237 const ObjCMethodDecl *MD); 1238 1239 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1240 const ObjCMethodDecl *MD); 1241 1242 /// EmitMethodList - Emit the method list for the given 1243 /// implementation. The return value has type MethodListPtrTy. 1244 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1245 ArrayRef<const ObjCMethodDecl *> Methods); 1246 1247 /// GetOrEmitProtocol - Get the protocol object for the given 1248 /// declaration, emitting it if necessary. The return value has type 1249 /// ProtocolPtrTy. 1250 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1251 1252 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1253 /// object for the given declaration, emitting it if needed. These 1254 /// forward references will be filled in with empty bodies if no 1255 /// definition is seen. The return value has type ProtocolPtrTy. 1256 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1257 1258 /// EmitProtocolExtension - Generate the protocol extension 1259 /// structure used to store optional instance and class methods, and 1260 /// protocol properties. The return value has type 1261 /// ProtocolExtensionPtrTy. 1262 llvm::Constant * 1263 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1264 const ProtocolMethodLists &methodLists); 1265 1266 /// EmitProtocolList - Generate the list of referenced 1267 /// protocols. The return value has type ProtocolListPtrTy. 1268 llvm::Constant *EmitProtocolList(Twine Name, 1269 ObjCProtocolDecl::protocol_iterator begin, 1270 ObjCProtocolDecl::protocol_iterator end); 1271 1272 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1273 /// for the given selector. 1274 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1275 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1276 1277 public: 1278 CGObjCMac(CodeGen::CodeGenModule &cgm); 1279 1280 llvm::Constant *getNSConstantStringClassRef() override; 1281 1282 llvm::Function *ModuleInitFunction() override; 1283 1284 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1285 ReturnValueSlot Return, 1286 QualType ResultType, 1287 Selector Sel, llvm::Value *Receiver, 1288 const CallArgList &CallArgs, 1289 const ObjCInterfaceDecl *Class, 1290 const ObjCMethodDecl *Method) override; 1291 1292 CodeGen::RValue 1293 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1294 ReturnValueSlot Return, QualType ResultType, 1295 Selector Sel, const ObjCInterfaceDecl *Class, 1296 bool isCategoryImpl, llvm::Value *Receiver, 1297 bool IsClassMessage, const CallArgList &CallArgs, 1298 const ObjCMethodDecl *Method) override; 1299 1300 llvm::Value *GetClass(CodeGenFunction &CGF, 1301 const ObjCInterfaceDecl *ID) override; 1302 1303 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1304 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1305 1306 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1307 /// untyped one. 1308 llvm::Value *GetSelector(CodeGenFunction &CGF, 1309 const ObjCMethodDecl *Method) override; 1310 1311 llvm::Constant *GetEHType(QualType T) override; 1312 1313 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1314 1315 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1316 1317 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1318 1319 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1320 const ObjCProtocolDecl *PD) override; 1321 1322 llvm::Constant *GetPropertyGetFunction() override; 1323 llvm::Constant *GetPropertySetFunction() override; 1324 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1325 bool copy) override; 1326 llvm::Constant *GetGetStructFunction() override; 1327 llvm::Constant *GetSetStructFunction() override; 1328 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1329 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1330 llvm::Constant *EnumerationMutationFunction() override; 1331 1332 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1333 const ObjCAtTryStmt &S) override; 1334 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1335 const ObjCAtSynchronizedStmt &S) override; 1336 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1337 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1338 bool ClearInsertionPoint=true) override; 1339 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1340 Address AddrWeakObj) override; 1341 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1342 llvm::Value *src, Address dst) override; 1343 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1344 llvm::Value *src, Address dest, 1345 bool threadlocal = false) override; 1346 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1347 llvm::Value *src, Address dest, 1348 llvm::Value *ivarOffset) override; 1349 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1350 llvm::Value *src, Address dest) override; 1351 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1352 Address dest, Address src, 1353 llvm::Value *size) override; 1354 1355 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1356 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1357 unsigned CVRQualifiers) override; 1358 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1359 const ObjCInterfaceDecl *Interface, 1360 const ObjCIvarDecl *Ivar) override; 1361 }; 1362 1363 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1364 private: 1365 friend ProtocolMethodLists; 1366 ObjCNonFragileABITypesHelper ObjCTypes; 1367 llvm::GlobalVariable* ObjCEmptyCacheVar; 1368 llvm::Constant* ObjCEmptyVtableVar; 1369 1370 /// SuperClassReferences - uniqued super class references. 1371 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1372 1373 /// MetaClassReferences - uniqued meta class references. 1374 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1375 1376 /// EHTypeReferences - uniqued class ehtype references. 1377 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1378 1379 /// VTableDispatchMethods - List of methods for which we generate 1380 /// vtable-based message dispatch. 1381 llvm::DenseSet<Selector> VTableDispatchMethods; 1382 1383 /// DefinedMetaClasses - List of defined meta-classes. 1384 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1385 1386 /// isVTableDispatchedSelector - Returns true if SEL is a 1387 /// vtable-based selector. 1388 bool isVTableDispatchedSelector(Selector Sel); 1389 1390 /// FinishNonFragileABIModule - Write out global data structures at the end of 1391 /// processing a translation unit. 1392 void FinishNonFragileABIModule(); 1393 1394 /// AddModuleClassList - Add the given list of class pointers to the 1395 /// module with the provided symbol and section names. 1396 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1397 StringRef SymbolName, StringRef SectionName); 1398 1399 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1400 unsigned InstanceStart, 1401 unsigned InstanceSize, 1402 const ObjCImplementationDecl *ID); 1403 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1404 bool isMetaclass, 1405 llvm::Constant *IsAGV, 1406 llvm::Constant *SuperClassGV, 1407 llvm::Constant *ClassRoGV, 1408 bool HiddenVisibility); 1409 1410 void emitMethodConstant(ConstantArrayBuilder &builder, 1411 const ObjCMethodDecl *MD, 1412 bool forProtocol); 1413 1414 /// Emit the method list for the given implementation. The return value 1415 /// has type MethodListnfABITy. 1416 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1417 ArrayRef<const ObjCMethodDecl *> Methods); 1418 1419 /// EmitIvarList - Emit the ivar list for the given 1420 /// implementation. If ForClass is true the list of class ivars 1421 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1422 /// interface ivars will be emitted. The return value has type 1423 /// IvarListnfABIPtrTy. 1424 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1425 1426 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1427 const ObjCIvarDecl *Ivar, 1428 unsigned long int offset); 1429 1430 /// GetOrEmitProtocol - Get the protocol object for the given 1431 /// declaration, emitting it if necessary. The return value has type 1432 /// ProtocolPtrTy. 1433 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1434 1435 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1436 /// object for the given declaration, emitting it if needed. These 1437 /// forward references will be filled in with empty bodies if no 1438 /// definition is seen. The return value has type ProtocolPtrTy. 1439 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1440 1441 /// EmitProtocolList - Generate the list of referenced 1442 /// protocols. The return value has type ProtocolListPtrTy. 1443 llvm::Constant *EmitProtocolList(Twine Name, 1444 ObjCProtocolDecl::protocol_iterator begin, 1445 ObjCProtocolDecl::protocol_iterator end); 1446 1447 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1448 ReturnValueSlot Return, 1449 QualType ResultType, 1450 Selector Sel, 1451 llvm::Value *Receiver, 1452 QualType Arg0Ty, 1453 bool IsSuper, 1454 const CallArgList &CallArgs, 1455 const ObjCMethodDecl *Method); 1456 1457 /// GetClassGlobal - Return the global variable for the Objective-C 1458 /// class of the given name. 1459 llvm::Constant *GetClassGlobal(StringRef Name, 1460 ForDefinition_t IsForDefinition, 1461 bool Weak = false, bool DLLImport = false); 1462 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1463 bool isMetaclass, 1464 ForDefinition_t isForDefinition); 1465 1466 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1467 /// for the given class reference. 1468 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1469 const ObjCInterfaceDecl *ID); 1470 1471 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1472 IdentifierInfo *II, 1473 const ObjCInterfaceDecl *ID); 1474 1475 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1476 1477 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1478 /// for the given super class reference. 1479 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1480 const ObjCInterfaceDecl *ID); 1481 1482 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1483 /// meta-data 1484 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1485 const ObjCInterfaceDecl *ID, bool Weak); 1486 1487 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1488 /// the given ivar. 1489 /// 1490 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1491 const ObjCInterfaceDecl *ID, 1492 const ObjCIvarDecl *Ivar); 1493 1494 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1495 /// for the given selector. 1496 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1497 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1498 1499 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1500 /// interface. The return value has type EHTypePtrTy. 1501 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1502 ForDefinition_t IsForDefinition); 1503 1504 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1505 1506 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1507 1508 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1509 uint32_t &InstanceStart, 1510 uint32_t &InstanceSize); 1511 1512 // Shamelessly stolen from Analysis/CFRefCount.cpp 1513 Selector GetNullarySelector(const char* name) const { 1514 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1515 return CGM.getContext().Selectors.getSelector(0, &II); 1516 } 1517 1518 Selector GetUnarySelector(const char* name) const { 1519 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1520 return CGM.getContext().Selectors.getSelector(1, &II); 1521 } 1522 1523 /// ImplementationIsNonLazy - Check whether the given category or 1524 /// class implementation is "non-lazy". 1525 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1526 1527 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1528 const ObjCIvarDecl *IV) { 1529 // Annotate the load as an invariant load iff inside an instance method 1530 // and ivar belongs to instance method's class and one of its super class. 1531 // This check is needed because the ivar offset is a lazily 1532 // initialised value that may depend on objc_msgSend to perform a fixup on 1533 // the first message dispatch. 1534 // 1535 // An additional opportunity to mark the load as invariant arises when the 1536 // base of the ivar access is a parameter to an Objective C method. 1537 // However, because the parameters are not available in the current 1538 // interface, we cannot perform this check. 1539 if (const ObjCMethodDecl *MD = 1540 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1541 if (MD->isInstanceMethod()) 1542 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1543 return IV->getContainingInterface()->isSuperClassOf(ID); 1544 return false; 1545 } 1546 1547 public: 1548 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1549 1550 llvm::Constant *getNSConstantStringClassRef() override; 1551 1552 llvm::Function *ModuleInitFunction() override; 1553 1554 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1555 ReturnValueSlot Return, 1556 QualType ResultType, Selector Sel, 1557 llvm::Value *Receiver, 1558 const CallArgList &CallArgs, 1559 const ObjCInterfaceDecl *Class, 1560 const ObjCMethodDecl *Method) override; 1561 1562 CodeGen::RValue 1563 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1564 ReturnValueSlot Return, QualType ResultType, 1565 Selector Sel, const ObjCInterfaceDecl *Class, 1566 bool isCategoryImpl, llvm::Value *Receiver, 1567 bool IsClassMessage, const CallArgList &CallArgs, 1568 const ObjCMethodDecl *Method) override; 1569 1570 llvm::Value *GetClass(CodeGenFunction &CGF, 1571 const ObjCInterfaceDecl *ID) override; 1572 1573 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1574 { return EmitSelector(CGF, Sel); } 1575 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1576 { return EmitSelectorAddr(CGF, Sel); } 1577 1578 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1579 /// untyped one. 1580 llvm::Value *GetSelector(CodeGenFunction &CGF, 1581 const ObjCMethodDecl *Method) override 1582 { return EmitSelector(CGF, Method->getSelector()); } 1583 1584 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1585 1586 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1587 1588 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1589 1590 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1591 const ObjCProtocolDecl *PD) override; 1592 1593 llvm::Constant *GetEHType(QualType T) override; 1594 1595 llvm::Constant *GetPropertyGetFunction() override { 1596 return ObjCTypes.getGetPropertyFn(); 1597 } 1598 llvm::Constant *GetPropertySetFunction() override { 1599 return ObjCTypes.getSetPropertyFn(); 1600 } 1601 1602 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1603 bool copy) override { 1604 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1605 } 1606 1607 llvm::Constant *GetSetStructFunction() override { 1608 return ObjCTypes.getCopyStructFn(); 1609 } 1610 1611 llvm::Constant *GetGetStructFunction() override { 1612 return ObjCTypes.getCopyStructFn(); 1613 } 1614 1615 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1616 return ObjCTypes.getCppAtomicObjectFunction(); 1617 } 1618 1619 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1620 return ObjCTypes.getCppAtomicObjectFunction(); 1621 } 1622 1623 llvm::Constant *EnumerationMutationFunction() override { 1624 return ObjCTypes.getEnumerationMutationFn(); 1625 } 1626 1627 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1628 const ObjCAtTryStmt &S) override; 1629 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1630 const ObjCAtSynchronizedStmt &S) override; 1631 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1632 bool ClearInsertionPoint=true) override; 1633 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1634 Address AddrWeakObj) override; 1635 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1636 llvm::Value *src, Address edst) override; 1637 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1638 llvm::Value *src, Address dest, 1639 bool threadlocal = false) override; 1640 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1641 llvm::Value *src, Address dest, 1642 llvm::Value *ivarOffset) override; 1643 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1644 llvm::Value *src, Address dest) override; 1645 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1646 Address dest, Address src, 1647 llvm::Value *size) override; 1648 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1649 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1650 unsigned CVRQualifiers) override; 1651 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1652 const ObjCInterfaceDecl *Interface, 1653 const ObjCIvarDecl *Ivar) override; 1654 }; 1655 1656 /// A helper class for performing the null-initialization of a return 1657 /// value. 1658 struct NullReturnState { 1659 llvm::BasicBlock *NullBB; 1660 NullReturnState() : NullBB(nullptr) {} 1661 1662 /// Perform a null-check of the given receiver. 1663 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1664 // Make blocks for the null-receiver and call edges. 1665 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1666 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1667 1668 // Check for a null receiver and, if there is one, jump to the 1669 // null-receiver block. There's no point in trying to avoid it: 1670 // we're always going to put *something* there, because otherwise 1671 // we shouldn't have done this null-check in the first place. 1672 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1673 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1674 1675 // Otherwise, start performing the call. 1676 CGF.EmitBlock(callBB); 1677 } 1678 1679 /// Complete the null-return operation. It is valid to call this 1680 /// regardless of whether 'init' has been called. 1681 RValue complete(CodeGenFunction &CGF, 1682 ReturnValueSlot returnSlot, 1683 RValue result, 1684 QualType resultType, 1685 const CallArgList &CallArgs, 1686 const ObjCMethodDecl *Method) { 1687 // If we never had to do a null-check, just use the raw result. 1688 if (!NullBB) return result; 1689 1690 // The continuation block. This will be left null if we don't have an 1691 // IP, which can happen if the method we're calling is marked noreturn. 1692 llvm::BasicBlock *contBB = nullptr; 1693 1694 // Finish the call path. 1695 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1696 if (callBB) { 1697 contBB = CGF.createBasicBlock("msgSend.cont"); 1698 CGF.Builder.CreateBr(contBB); 1699 } 1700 1701 // Okay, start emitting the null-receiver block. 1702 CGF.EmitBlock(NullBB); 1703 1704 // Release any consumed arguments we've got. 1705 if (Method) { 1706 CallArgList::const_iterator I = CallArgs.begin(); 1707 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1708 e = Method->param_end(); i != e; ++i, ++I) { 1709 const ParmVarDecl *ParamDecl = (*i); 1710 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1711 RValue RV = I->RV; 1712 assert(RV.isScalar() && 1713 "NullReturnState::complete - arg not on object"); 1714 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1715 } 1716 } 1717 } 1718 1719 // The phi code below assumes that we haven't needed any control flow yet. 1720 assert(CGF.Builder.GetInsertBlock() == NullBB); 1721 1722 // If we've got a void return, just jump to the continuation block. 1723 if (result.isScalar() && resultType->isVoidType()) { 1724 // No jumps required if the message-send was noreturn. 1725 if (contBB) CGF.EmitBlock(contBB); 1726 return result; 1727 } 1728 1729 // If we've got a scalar return, build a phi. 1730 if (result.isScalar()) { 1731 // Derive the null-initialization value. 1732 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1733 1734 // If no join is necessary, just flow out. 1735 if (!contBB) return RValue::get(null); 1736 1737 // Otherwise, build a phi. 1738 CGF.EmitBlock(contBB); 1739 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1740 phi->addIncoming(result.getScalarVal(), callBB); 1741 phi->addIncoming(null, NullBB); 1742 return RValue::get(phi); 1743 } 1744 1745 // If we've got an aggregate return, null the buffer out. 1746 // FIXME: maybe we should be doing things differently for all the 1747 // cases where the ABI has us returning (1) non-agg values in 1748 // memory or (2) agg values in registers. 1749 if (result.isAggregate()) { 1750 assert(result.isAggregate() && "null init of non-aggregate result?"); 1751 if (!returnSlot.isUnused()) 1752 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1753 if (contBB) CGF.EmitBlock(contBB); 1754 return result; 1755 } 1756 1757 // Complex types. 1758 CGF.EmitBlock(contBB); 1759 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1760 1761 // Find the scalar type and its zero value. 1762 llvm::Type *scalarTy = callResult.first->getType(); 1763 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1764 1765 // Build phis for both coordinates. 1766 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1767 real->addIncoming(callResult.first, callBB); 1768 real->addIncoming(scalarZero, NullBB); 1769 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1770 imag->addIncoming(callResult.second, callBB); 1771 imag->addIncoming(scalarZero, NullBB); 1772 return RValue::getComplex(real, imag); 1773 } 1774 }; 1775 1776 } // end anonymous namespace 1777 1778 /* *** Helper Functions *** */ 1779 1780 /// getConstantGEP() - Help routine to construct simple GEPs. 1781 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1782 llvm::GlobalVariable *C, unsigned idx0, 1783 unsigned idx1) { 1784 llvm::Value *Idxs[] = { 1785 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1786 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1787 }; 1788 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1789 } 1790 1791 /// hasObjCExceptionAttribute - Return true if this class or any super 1792 /// class has the __objc_exception__ attribute. 1793 static bool hasObjCExceptionAttribute(ASTContext &Context, 1794 const ObjCInterfaceDecl *OID) { 1795 if (OID->hasAttr<ObjCExceptionAttr>()) 1796 return true; 1797 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1798 return hasObjCExceptionAttribute(Context, Super); 1799 return false; 1800 } 1801 1802 /* *** CGObjCMac Public Interface *** */ 1803 1804 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1805 ObjCTypes(cgm) { 1806 ObjCABI = 1; 1807 EmitImageInfo(); 1808 } 1809 1810 /// GetClass - Return a reference to the class for the given interface 1811 /// decl. 1812 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1813 const ObjCInterfaceDecl *ID) { 1814 return EmitClassRef(CGF, ID); 1815 } 1816 1817 /// GetSelector - Return the pointer to the unique'd string for this selector. 1818 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1819 return EmitSelector(CGF, Sel); 1820 } 1821 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1822 return EmitSelectorAddr(CGF, Sel); 1823 } 1824 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1825 *Method) { 1826 return EmitSelector(CGF, Method->getSelector()); 1827 } 1828 1829 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1830 if (T->isObjCIdType() || 1831 T->isObjCQualifiedIdType()) { 1832 return CGM.GetAddrOfRTTIDescriptor( 1833 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1834 } 1835 if (T->isObjCClassType() || 1836 T->isObjCQualifiedClassType()) { 1837 return CGM.GetAddrOfRTTIDescriptor( 1838 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1839 } 1840 if (T->isObjCObjectPointerType()) 1841 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1842 1843 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1844 } 1845 1846 /// Generate a constant CFString object. 1847 /* 1848 struct __builtin_CFString { 1849 const int *isa; // point to __CFConstantStringClassReference 1850 int flags; 1851 const char *str; 1852 long length; 1853 }; 1854 */ 1855 1856 /// or Generate a constant NSString object. 1857 /* 1858 struct __builtin_NSString { 1859 const int *isa; // point to __NSConstantStringClassReference 1860 const char *str; 1861 unsigned int length; 1862 }; 1863 */ 1864 1865 ConstantAddress 1866 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1867 return (!CGM.getLangOpts().NoConstantCFStrings 1868 ? CGM.GetAddrOfConstantCFString(SL) 1869 : GenerateConstantNSString(SL)); 1870 } 1871 1872 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1873 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1874 const StringLiteral *Literal, unsigned &StringLength) { 1875 StringRef String = Literal->getString(); 1876 StringLength = String.size(); 1877 return *Map.insert(std::make_pair(String, nullptr)).first; 1878 } 1879 1880 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1881 if (llvm::Value *V = ConstantStringClassRef) 1882 return cast<llvm::Constant>(V); 1883 1884 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1885 std::string str = 1886 StringClass.empty() ? "_NSConstantStringClassReference" 1887 : "_" + StringClass + "ClassReference"; 1888 1889 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1890 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1891 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1892 ConstantStringClassRef = V; 1893 return V; 1894 } 1895 1896 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1897 if (llvm::Value *V = ConstantStringClassRef) 1898 return cast<llvm::Constant>(V); 1899 1900 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1901 std::string str = 1902 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1903 : "OBJC_CLASS_$_" + StringClass; 1904 auto GV = GetClassGlobal(str, NotForDefinition); 1905 1906 // Make sure the result is of the correct type. 1907 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1908 1909 ConstantStringClassRef = V; 1910 return V; 1911 } 1912 1913 ConstantAddress 1914 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1915 unsigned StringLength = 0; 1916 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1917 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1918 1919 if (auto *C = Entry.second) 1920 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 1921 1922 // If we don't already have it, get _NSConstantStringClassReference. 1923 llvm::Constant *Class = getNSConstantStringClassRef(); 1924 1925 // If we don't already have it, construct the type for a constant NSString. 1926 if (!NSConstantStringType) { 1927 NSConstantStringType = 1928 llvm::StructType::create({ 1929 CGM.Int32Ty->getPointerTo(), 1930 CGM.Int8PtrTy, 1931 CGM.IntTy 1932 }, "struct.__builtin_NSString"); 1933 } 1934 1935 ConstantInitBuilder Builder(CGM); 1936 auto Fields = Builder.beginStruct(NSConstantStringType); 1937 1938 // Class pointer. 1939 Fields.add(Class); 1940 1941 // String pointer. 1942 llvm::Constant *C = 1943 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 1944 1945 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 1946 bool isConstant = !CGM.getLangOpts().WritableStrings; 1947 1948 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 1949 Linkage, C, ".str"); 1950 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1951 // Don't enforce the target's minimum global alignment, since the only use 1952 // of the string is via this class initializer. 1953 GV->setAlignment(1); 1954 Fields.addBitCast(GV, CGM.Int8PtrTy); 1955 1956 // String length. 1957 Fields.addInt(CGM.IntTy, StringLength); 1958 1959 // The struct. 1960 CharUnits Alignment = CGM.getPointerAlign(); 1961 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 1962 /*constant*/ true, 1963 llvm::GlobalVariable::PrivateLinkage); 1964 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 1965 const char *NSStringNonFragileABISection = 1966 "__DATA,__objc_stringobj,regular,no_dead_strip"; 1967 // FIXME. Fix section. 1968 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 1969 ? NSStringNonFragileABISection 1970 : NSStringSection); 1971 Entry.second = GV; 1972 1973 return ConstantAddress(GV, Alignment); 1974 } 1975 1976 enum { 1977 kCFTaggedObjectID_Integer = (1 << 1) + 1 1978 }; 1979 1980 /// Generates a message send where the super is the receiver. This is 1981 /// a message send to self with special delivery semantics indicating 1982 /// which class's method should be called. 1983 CodeGen::RValue 1984 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1985 ReturnValueSlot Return, 1986 QualType ResultType, 1987 Selector Sel, 1988 const ObjCInterfaceDecl *Class, 1989 bool isCategoryImpl, 1990 llvm::Value *Receiver, 1991 bool IsClassMessage, 1992 const CodeGen::CallArgList &CallArgs, 1993 const ObjCMethodDecl *Method) { 1994 // Create and init a super structure; this is a (receiver, class) 1995 // pair we will pass to objc_msgSendSuper. 1996 Address ObjCSuper = 1997 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1998 "objc_super"); 1999 llvm::Value *ReceiverAsObject = 2000 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2001 CGF.Builder.CreateStore( 2002 ReceiverAsObject, 2003 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 2004 2005 // If this is a class message the metaclass is passed as the target. 2006 llvm::Value *Target; 2007 if (IsClassMessage) { 2008 if (isCategoryImpl) { 2009 // Message sent to 'super' in a class method defined in a category 2010 // implementation requires an odd treatment. 2011 // If we are in a class method, we must retrieve the 2012 // _metaclass_ for the current class, pointed at by 2013 // the class's "isa" pointer. The following assumes that 2014 // isa" is the first ivar in a class (which it must be). 2015 Target = EmitClassRef(CGF, Class->getSuperClass()); 2016 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2017 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2018 } else { 2019 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2020 llvm::Value *SuperPtr = 2021 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2022 llvm::Value *Super = 2023 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2024 Target = Super; 2025 } 2026 } else if (isCategoryImpl) 2027 Target = EmitClassRef(CGF, Class->getSuperClass()); 2028 else { 2029 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2030 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2031 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2032 } 2033 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2034 // ObjCTypes types. 2035 llvm::Type *ClassTy = 2036 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2037 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2038 CGF.Builder.CreateStore(Target, 2039 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 2040 return EmitMessageSend(CGF, Return, ResultType, 2041 EmitSelector(CGF, Sel), 2042 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 2043 true, CallArgs, Method, Class, ObjCTypes); 2044 } 2045 2046 /// Generate code for a message send expression. 2047 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2048 ReturnValueSlot Return, 2049 QualType ResultType, 2050 Selector Sel, 2051 llvm::Value *Receiver, 2052 const CallArgList &CallArgs, 2053 const ObjCInterfaceDecl *Class, 2054 const ObjCMethodDecl *Method) { 2055 return EmitMessageSend(CGF, Return, ResultType, 2056 EmitSelector(CGF, Sel), 2057 Receiver, CGF.getContext().getObjCIdType(), 2058 false, CallArgs, Method, Class, ObjCTypes); 2059 } 2060 2061 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2062 do { 2063 if (ID->isWeakImported()) 2064 return true; 2065 } while ((ID = ID->getSuperClass())); 2066 2067 return false; 2068 } 2069 2070 CodeGen::RValue 2071 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2072 ReturnValueSlot Return, 2073 QualType ResultType, 2074 llvm::Value *Sel, 2075 llvm::Value *Arg0, 2076 QualType Arg0Ty, 2077 bool IsSuper, 2078 const CallArgList &CallArgs, 2079 const ObjCMethodDecl *Method, 2080 const ObjCInterfaceDecl *ClassReceiver, 2081 const ObjCCommonTypesHelper &ObjCTypes) { 2082 CallArgList ActualArgs; 2083 if (!IsSuper) 2084 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2085 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2086 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 2087 ActualArgs.addFrom(CallArgs); 2088 2089 // If we're calling a method, use the formal signature. 2090 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2091 2092 if (Method) 2093 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2094 CGM.getContext().getCanonicalType(ResultType) && 2095 "Result type mismatch!"); 2096 2097 bool ReceiverCanBeNull = true; 2098 2099 // Super dispatch assumes that self is non-null; even the messenger 2100 // doesn't have a null check internally. 2101 if (IsSuper) { 2102 ReceiverCanBeNull = false; 2103 2104 // If this is a direct dispatch of a class method, check whether the class, 2105 // or anything in its hierarchy, was weak-linked. 2106 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2107 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2108 2109 // If we're emitting a method, and self is const (meaning just ARC, for now), 2110 // and the receiver is a load of self, then self is a valid object. 2111 } else if (auto CurMethod = 2112 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2113 auto Self = CurMethod->getSelfDecl(); 2114 if (Self->getType().isConstQualified()) { 2115 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2116 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2117 if (SelfAddr == LI->getPointerOperand()) { 2118 ReceiverCanBeNull = false; 2119 } 2120 } 2121 } 2122 } 2123 2124 bool RequiresNullCheck = false; 2125 2126 llvm::Constant *Fn = nullptr; 2127 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2128 if (ReceiverCanBeNull) RequiresNullCheck = true; 2129 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2130 : ObjCTypes.getSendStretFn(IsSuper); 2131 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2132 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2133 : ObjCTypes.getSendFpretFn(IsSuper); 2134 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2135 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2136 : ObjCTypes.getSendFp2retFn(IsSuper); 2137 } else { 2138 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2139 // must be made for it. 2140 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2141 RequiresNullCheck = true; 2142 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2143 : ObjCTypes.getSendFn(IsSuper); 2144 } 2145 2146 // We don't need to emit a null check to zero out an indirect result if the 2147 // result is ignored. 2148 if (Return.isUnused()) 2149 RequiresNullCheck = false; 2150 2151 // Emit a null-check if there's a consumed argument other than the receiver. 2152 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2153 for (const auto *ParamDecl : Method->parameters()) { 2154 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2155 RequiresNullCheck = true; 2156 break; 2157 } 2158 } 2159 } 2160 2161 NullReturnState nullReturn; 2162 if (RequiresNullCheck) { 2163 nullReturn.init(CGF, Arg0); 2164 } 2165 2166 llvm::Instruction *CallSite; 2167 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 2168 CGCallee Callee = CGCallee::forDirect(Fn); 2169 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2170 &CallSite); 2171 2172 // Mark the call as noreturn if the method is marked noreturn and the 2173 // receiver cannot be null. 2174 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2175 llvm::CallSite(CallSite).setDoesNotReturn(); 2176 } 2177 2178 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2179 RequiresNullCheck ? Method : nullptr); 2180 } 2181 2182 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2183 bool pointee = false) { 2184 // Note that GC qualification applies recursively to C pointer types 2185 // that aren't otherwise decorated. This is weird, but it's probably 2186 // an intentional workaround to the unreliable placement of GC qualifiers. 2187 if (FQT.isObjCGCStrong()) 2188 return Qualifiers::Strong; 2189 2190 if (FQT.isObjCGCWeak()) 2191 return Qualifiers::Weak; 2192 2193 if (auto ownership = FQT.getObjCLifetime()) { 2194 // Ownership does not apply recursively to C pointer types. 2195 if (pointee) return Qualifiers::GCNone; 2196 switch (ownership) { 2197 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2198 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2199 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2200 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2201 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2202 } 2203 llvm_unreachable("bad objc ownership"); 2204 } 2205 2206 // Treat unqualified retainable pointers as strong. 2207 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2208 return Qualifiers::Strong; 2209 2210 // Walk into C pointer types, but only in GC. 2211 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2212 if (const PointerType *PT = FQT->getAs<PointerType>()) 2213 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2214 } 2215 2216 return Qualifiers::GCNone; 2217 } 2218 2219 namespace { 2220 struct IvarInfo { 2221 CharUnits Offset; 2222 uint64_t SizeInWords; 2223 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2224 : Offset(offset), SizeInWords(sizeInWords) {} 2225 2226 // Allow sorting based on byte pos. 2227 bool operator<(const IvarInfo &other) const { 2228 return Offset < other.Offset; 2229 } 2230 }; 2231 2232 /// A helper class for building GC layout strings. 2233 class IvarLayoutBuilder { 2234 CodeGenModule &CGM; 2235 2236 /// The start of the layout. Offsets will be relative to this value, 2237 /// and entries less than this value will be silently discarded. 2238 CharUnits InstanceBegin; 2239 2240 /// The end of the layout. Offsets will never exceed this value. 2241 CharUnits InstanceEnd; 2242 2243 /// Whether we're generating the strong layout or the weak layout. 2244 bool ForStrongLayout; 2245 2246 /// Whether the offsets in IvarsInfo might be out-of-order. 2247 bool IsDisordered = false; 2248 2249 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2250 2251 public: 2252 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2253 CharUnits instanceEnd, bool forStrongLayout) 2254 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2255 ForStrongLayout(forStrongLayout) { 2256 } 2257 2258 void visitRecord(const RecordType *RT, CharUnits offset); 2259 2260 template <class Iterator, class GetOffsetFn> 2261 void visitAggregate(Iterator begin, Iterator end, 2262 CharUnits aggrOffset, 2263 const GetOffsetFn &getOffset); 2264 2265 void visitField(const FieldDecl *field, CharUnits offset); 2266 2267 /// Add the layout of a block implementation. 2268 void visitBlock(const CGBlockInfo &blockInfo); 2269 2270 /// Is there any information for an interesting bitmap? 2271 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2272 2273 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2274 llvm::SmallVectorImpl<unsigned char> &buffer); 2275 2276 static void dump(ArrayRef<unsigned char> buffer) { 2277 const unsigned char *s = buffer.data(); 2278 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2279 if (!(s[i] & 0xf0)) 2280 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2281 else 2282 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2283 printf("\n"); 2284 } 2285 }; 2286 } // end anonymous namespace 2287 2288 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2289 const CGBlockInfo &blockInfo) { 2290 2291 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2292 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2293 return nullPtr; 2294 2295 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2296 /*for strong layout*/ true); 2297 2298 builder.visitBlock(blockInfo); 2299 2300 if (!builder.hasBitmapData()) 2301 return nullPtr; 2302 2303 llvm::SmallVector<unsigned char, 32> buffer; 2304 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2305 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2306 printf("\n block variable layout for block: "); 2307 builder.dump(buffer); 2308 } 2309 2310 return C; 2311 } 2312 2313 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2314 // __isa is the first field in block descriptor and must assume by runtime's 2315 // convention that it is GC'able. 2316 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2317 2318 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2319 2320 // Ignore the optional 'this' capture: C++ objects are not assumed 2321 // to be GC'ed. 2322 2323 CharUnits lastFieldOffset; 2324 2325 // Walk the captured variables. 2326 for (const auto &CI : blockDecl->captures()) { 2327 const VarDecl *variable = CI.getVariable(); 2328 QualType type = variable->getType(); 2329 2330 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2331 2332 // Ignore constant captures. 2333 if (capture.isConstant()) continue; 2334 2335 CharUnits fieldOffset = capture.getOffset(); 2336 2337 // Block fields are not necessarily ordered; if we detect that we're 2338 // adding them out-of-order, make sure we sort later. 2339 if (fieldOffset < lastFieldOffset) 2340 IsDisordered = true; 2341 lastFieldOffset = fieldOffset; 2342 2343 // __block variables are passed by their descriptor address. 2344 if (CI.isByRef()) { 2345 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2346 continue; 2347 } 2348 2349 assert(!type->isArrayType() && "array variable should not be caught"); 2350 if (const RecordType *record = type->getAs<RecordType>()) { 2351 visitRecord(record, fieldOffset); 2352 continue; 2353 } 2354 2355 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2356 2357 if (GCAttr == Qualifiers::Strong) { 2358 assert(CGM.getContext().getTypeSize(type) 2359 == CGM.getTarget().getPointerWidth(0)); 2360 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2361 } 2362 } 2363 } 2364 2365 /// getBlockCaptureLifetime - This routine returns life time of the captured 2366 /// block variable for the purpose of block layout meta-data generation. FQT is 2367 /// the type of the variable captured in the block. 2368 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2369 bool ByrefLayout) { 2370 // If it has an ownership qualifier, we're done. 2371 if (auto lifetime = FQT.getObjCLifetime()) 2372 return lifetime; 2373 2374 // If it doesn't, and this is ARC, it has no ownership. 2375 if (CGM.getLangOpts().ObjCAutoRefCount) 2376 return Qualifiers::OCL_None; 2377 2378 // In MRC, retainable pointers are owned by non-__block variables. 2379 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2380 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2381 2382 return Qualifiers::OCL_None; 2383 } 2384 2385 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2386 Qualifiers::ObjCLifetime LifeTime, 2387 CharUnits FieldOffset, 2388 CharUnits FieldSize) { 2389 // __block variables are passed by their descriptor address. 2390 if (IsByref) 2391 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2392 FieldSize)); 2393 else if (LifeTime == Qualifiers::OCL_Strong) 2394 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2395 FieldSize)); 2396 else if (LifeTime == Qualifiers::OCL_Weak) 2397 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2398 FieldSize)); 2399 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2400 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2401 FieldSize)); 2402 else 2403 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2404 FieldOffset, 2405 FieldSize)); 2406 } 2407 2408 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2409 const RecordDecl *RD, 2410 ArrayRef<const FieldDecl*> RecFields, 2411 CharUnits BytePos, bool &HasUnion, 2412 bool ByrefLayout) { 2413 bool IsUnion = (RD && RD->isUnion()); 2414 CharUnits MaxUnionSize = CharUnits::Zero(); 2415 const FieldDecl *MaxField = nullptr; 2416 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2417 CharUnits MaxFieldOffset = CharUnits::Zero(); 2418 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2419 2420 if (RecFields.empty()) 2421 return; 2422 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2423 2424 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2425 const FieldDecl *Field = RecFields[i]; 2426 // Note that 'i' here is actually the field index inside RD of Field, 2427 // although this dependency is hidden. 2428 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2429 CharUnits FieldOffset = 2430 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2431 2432 // Skip over unnamed or bitfields 2433 if (!Field->getIdentifier() || Field->isBitField()) { 2434 LastFieldBitfieldOrUnnamed = Field; 2435 LastBitfieldOrUnnamedOffset = FieldOffset; 2436 continue; 2437 } 2438 2439 LastFieldBitfieldOrUnnamed = nullptr; 2440 QualType FQT = Field->getType(); 2441 if (FQT->isRecordType() || FQT->isUnionType()) { 2442 if (FQT->isUnionType()) 2443 HasUnion = true; 2444 2445 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2446 BytePos + FieldOffset, HasUnion); 2447 continue; 2448 } 2449 2450 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2451 const ConstantArrayType *CArray = 2452 dyn_cast_or_null<ConstantArrayType>(Array); 2453 uint64_t ElCount = CArray->getSize().getZExtValue(); 2454 assert(CArray && "only array with known element size is supported"); 2455 FQT = CArray->getElementType(); 2456 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2457 const ConstantArrayType *CArray = 2458 dyn_cast_or_null<ConstantArrayType>(Array); 2459 ElCount *= CArray->getSize().getZExtValue(); 2460 FQT = CArray->getElementType(); 2461 } 2462 if (FQT->isRecordType() && ElCount) { 2463 int OldIndex = RunSkipBlockVars.size() - 1; 2464 const RecordType *RT = FQT->getAs<RecordType>(); 2465 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2466 HasUnion); 2467 2468 // Replicate layout information for each array element. Note that 2469 // one element is already done. 2470 uint64_t ElIx = 1; 2471 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2472 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2473 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2474 RunSkipBlockVars.push_back( 2475 RUN_SKIP(RunSkipBlockVars[i].opcode, 2476 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2477 RunSkipBlockVars[i].block_var_size)); 2478 } 2479 continue; 2480 } 2481 } 2482 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2483 if (IsUnion) { 2484 CharUnits UnionIvarSize = FieldSize; 2485 if (UnionIvarSize > MaxUnionSize) { 2486 MaxUnionSize = UnionIvarSize; 2487 MaxField = Field; 2488 MaxFieldOffset = FieldOffset; 2489 } 2490 } else { 2491 UpdateRunSkipBlockVars(false, 2492 getBlockCaptureLifetime(FQT, ByrefLayout), 2493 BytePos + FieldOffset, 2494 FieldSize); 2495 } 2496 } 2497 2498 if (LastFieldBitfieldOrUnnamed) { 2499 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2500 // Last field was a bitfield. Must update the info. 2501 uint64_t BitFieldSize 2502 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2503 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2504 ((BitFieldSize % ByteSizeInBits) != 0); 2505 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2506 Size += LastBitfieldOrUnnamedOffset; 2507 UpdateRunSkipBlockVars(false, 2508 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2509 ByrefLayout), 2510 BytePos + LastBitfieldOrUnnamedOffset, 2511 Size); 2512 } else { 2513 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2514 // Last field was unnamed. Must update skip info. 2515 CharUnits FieldSize 2516 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2517 UpdateRunSkipBlockVars(false, 2518 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2519 ByrefLayout), 2520 BytePos + LastBitfieldOrUnnamedOffset, 2521 FieldSize); 2522 } 2523 } 2524 2525 if (MaxField) 2526 UpdateRunSkipBlockVars(false, 2527 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2528 BytePos + MaxFieldOffset, 2529 MaxUnionSize); 2530 } 2531 2532 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2533 CharUnits BytePos, 2534 bool &HasUnion, 2535 bool ByrefLayout) { 2536 const RecordDecl *RD = RT->getDecl(); 2537 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2538 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2539 const llvm::StructLayout *RecLayout = 2540 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2541 2542 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2543 } 2544 2545 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2546 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2547 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2548 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2549 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2550 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2551 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2552 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2553 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2554 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2555 SmallVectorImpl<unsigned char> &Layout) { 2556 uint64_t Result = 0; 2557 if (Layout.size() <= 3) { 2558 unsigned size = Layout.size(); 2559 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2560 unsigned char inst; 2561 enum BLOCK_LAYOUT_OPCODE opcode ; 2562 switch (size) { 2563 case 3: 2564 inst = Layout[0]; 2565 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2566 if (opcode == BLOCK_LAYOUT_STRONG) 2567 strong_word_count = (inst & 0xF)+1; 2568 else 2569 return 0; 2570 inst = Layout[1]; 2571 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2572 if (opcode == BLOCK_LAYOUT_BYREF) 2573 byref_word_count = (inst & 0xF)+1; 2574 else 2575 return 0; 2576 inst = Layout[2]; 2577 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2578 if (opcode == BLOCK_LAYOUT_WEAK) 2579 weak_word_count = (inst & 0xF)+1; 2580 else 2581 return 0; 2582 break; 2583 2584 case 2: 2585 inst = Layout[0]; 2586 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2587 if (opcode == BLOCK_LAYOUT_STRONG) { 2588 strong_word_count = (inst & 0xF)+1; 2589 inst = Layout[1]; 2590 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2591 if (opcode == BLOCK_LAYOUT_BYREF) 2592 byref_word_count = (inst & 0xF)+1; 2593 else if (opcode == BLOCK_LAYOUT_WEAK) 2594 weak_word_count = (inst & 0xF)+1; 2595 else 2596 return 0; 2597 } 2598 else if (opcode == BLOCK_LAYOUT_BYREF) { 2599 byref_word_count = (inst & 0xF)+1; 2600 inst = Layout[1]; 2601 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2602 if (opcode == BLOCK_LAYOUT_WEAK) 2603 weak_word_count = (inst & 0xF)+1; 2604 else 2605 return 0; 2606 } 2607 else 2608 return 0; 2609 break; 2610 2611 case 1: 2612 inst = Layout[0]; 2613 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2614 if (opcode == BLOCK_LAYOUT_STRONG) 2615 strong_word_count = (inst & 0xF)+1; 2616 else if (opcode == BLOCK_LAYOUT_BYREF) 2617 byref_word_count = (inst & 0xF)+1; 2618 else if (opcode == BLOCK_LAYOUT_WEAK) 2619 weak_word_count = (inst & 0xF)+1; 2620 else 2621 return 0; 2622 break; 2623 2624 default: 2625 return 0; 2626 } 2627 2628 // Cannot inline when any of the word counts is 15. Because this is one less 2629 // than the actual work count (so 15 means 16 actual word counts), 2630 // and we can only display 0 thru 15 word counts. 2631 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2632 return 0; 2633 2634 unsigned count = 2635 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2636 2637 if (size == count) { 2638 if (strong_word_count) 2639 Result = strong_word_count; 2640 Result <<= 4; 2641 if (byref_word_count) 2642 Result += byref_word_count; 2643 Result <<= 4; 2644 if (weak_word_count) 2645 Result += weak_word_count; 2646 } 2647 } 2648 return Result; 2649 } 2650 2651 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2652 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2653 if (RunSkipBlockVars.empty()) 2654 return nullPtr; 2655 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2656 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2657 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2658 2659 // Sort on byte position; captures might not be allocated in order, 2660 // and unions can do funny things. 2661 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2662 SmallVector<unsigned char, 16> Layout; 2663 2664 unsigned size = RunSkipBlockVars.size(); 2665 for (unsigned i = 0; i < size; i++) { 2666 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2667 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2668 CharUnits end_byte_pos = start_byte_pos; 2669 unsigned j = i+1; 2670 while (j < size) { 2671 if (opcode == RunSkipBlockVars[j].opcode) { 2672 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2673 i++; 2674 } 2675 else 2676 break; 2677 } 2678 CharUnits size_in_bytes = 2679 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2680 if (j < size) { 2681 CharUnits gap = 2682 RunSkipBlockVars[j].block_var_bytepos - 2683 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2684 size_in_bytes += gap; 2685 } 2686 CharUnits residue_in_bytes = CharUnits::Zero(); 2687 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2688 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2689 size_in_bytes -= residue_in_bytes; 2690 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2691 } 2692 2693 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2694 while (size_in_words >= 16) { 2695 // Note that value in imm. is one less that the actual 2696 // value. So, 0xf means 16 words follow! 2697 unsigned char inst = (opcode << 4) | 0xf; 2698 Layout.push_back(inst); 2699 size_in_words -= 16; 2700 } 2701 if (size_in_words > 0) { 2702 // Note that value in imm. is one less that the actual 2703 // value. So, we subtract 1 away! 2704 unsigned char inst = (opcode << 4) | (size_in_words-1); 2705 Layout.push_back(inst); 2706 } 2707 if (residue_in_bytes > CharUnits::Zero()) { 2708 unsigned char inst = 2709 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2710 Layout.push_back(inst); 2711 } 2712 } 2713 2714 while (!Layout.empty()) { 2715 unsigned char inst = Layout.back(); 2716 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2717 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2718 Layout.pop_back(); 2719 else 2720 break; 2721 } 2722 2723 uint64_t Result = InlineLayoutInstruction(Layout); 2724 if (Result != 0) { 2725 // Block variable layout instruction has been inlined. 2726 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2727 if (ComputeByrefLayout) 2728 printf("\n Inline BYREF variable layout: "); 2729 else 2730 printf("\n Inline block variable layout: "); 2731 printf("0x0%" PRIx64 "", Result); 2732 if (auto numStrong = (Result & 0xF00) >> 8) 2733 printf(", BL_STRONG:%d", (int) numStrong); 2734 if (auto numByref = (Result & 0x0F0) >> 4) 2735 printf(", BL_BYREF:%d", (int) numByref); 2736 if (auto numWeak = (Result & 0x00F) >> 0) 2737 printf(", BL_WEAK:%d", (int) numWeak); 2738 printf(", BL_OPERATOR:0\n"); 2739 } 2740 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2741 } 2742 2743 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2744 Layout.push_back(inst); 2745 std::string BitMap; 2746 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2747 BitMap += Layout[i]; 2748 2749 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2750 if (ComputeByrefLayout) 2751 printf("\n Byref variable layout: "); 2752 else 2753 printf("\n Block variable layout: "); 2754 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2755 unsigned char inst = BitMap[i]; 2756 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2757 unsigned delta = 1; 2758 switch (opcode) { 2759 case BLOCK_LAYOUT_OPERATOR: 2760 printf("BL_OPERATOR:"); 2761 delta = 0; 2762 break; 2763 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2764 printf("BL_NON_OBJECT_BYTES:"); 2765 break; 2766 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2767 printf("BL_NON_OBJECT_WORD:"); 2768 break; 2769 case BLOCK_LAYOUT_STRONG: 2770 printf("BL_STRONG:"); 2771 break; 2772 case BLOCK_LAYOUT_BYREF: 2773 printf("BL_BYREF:"); 2774 break; 2775 case BLOCK_LAYOUT_WEAK: 2776 printf("BL_WEAK:"); 2777 break; 2778 case BLOCK_LAYOUT_UNRETAINED: 2779 printf("BL_UNRETAINED:"); 2780 break; 2781 } 2782 // Actual value of word count is one more that what is in the imm. 2783 // field of the instruction 2784 printf("%d", (inst & 0xf) + delta); 2785 if (i < e-1) 2786 printf(", "); 2787 else 2788 printf("\n"); 2789 } 2790 } 2791 2792 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2793 /*ForceNonFragileABI=*/true, 2794 /*NullTerminate=*/false); 2795 return getConstantGEP(VMContext, Entry, 0, 0); 2796 } 2797 2798 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2799 const CGBlockInfo &blockInfo) { 2800 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2801 2802 RunSkipBlockVars.clear(); 2803 bool hasUnion = false; 2804 2805 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2806 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2807 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2808 2809 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2810 2811 // Calculate the basic layout of the block structure. 2812 const llvm::StructLayout *layout = 2813 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2814 2815 // Ignore the optional 'this' capture: C++ objects are not assumed 2816 // to be GC'ed. 2817 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2818 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2819 blockInfo.BlockHeaderForcedGapOffset, 2820 blockInfo.BlockHeaderForcedGapSize); 2821 // Walk the captured variables. 2822 for (const auto &CI : blockDecl->captures()) { 2823 const VarDecl *variable = CI.getVariable(); 2824 QualType type = variable->getType(); 2825 2826 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2827 2828 // Ignore constant captures. 2829 if (capture.isConstant()) continue; 2830 2831 CharUnits fieldOffset = 2832 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2833 2834 assert(!type->isArrayType() && "array variable should not be caught"); 2835 if (!CI.isByRef()) 2836 if (const RecordType *record = type->getAs<RecordType>()) { 2837 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2838 continue; 2839 } 2840 CharUnits fieldSize; 2841 if (CI.isByRef()) 2842 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2843 else 2844 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2845 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2846 fieldOffset, fieldSize); 2847 } 2848 return getBitmapBlockLayout(false); 2849 } 2850 2851 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2852 QualType T) { 2853 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2854 assert(!T->isArrayType() && "__block array variable should not be caught"); 2855 CharUnits fieldOffset; 2856 RunSkipBlockVars.clear(); 2857 bool hasUnion = false; 2858 if (const RecordType *record = T->getAs<RecordType>()) { 2859 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2860 llvm::Constant *Result = getBitmapBlockLayout(true); 2861 if (isa<llvm::ConstantInt>(Result)) 2862 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2863 return Result; 2864 } 2865 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2866 return nullPtr; 2867 } 2868 2869 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2870 const ObjCProtocolDecl *PD) { 2871 // FIXME: I don't understand why gcc generates this, or where it is 2872 // resolved. Investigate. Its also wasteful to look this up over and over. 2873 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2874 2875 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2876 ObjCTypes.getExternalProtocolPtrTy()); 2877 } 2878 2879 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2880 // FIXME: We shouldn't need this, the protocol decl should contain enough 2881 // information to tell us whether this was a declaration or a definition. 2882 DefinedProtocols.insert(PD->getIdentifier()); 2883 2884 // If we have generated a forward reference to this protocol, emit 2885 // it now. Otherwise do nothing, the protocol objects are lazily 2886 // emitted. 2887 if (Protocols.count(PD->getIdentifier())) 2888 GetOrEmitProtocol(PD); 2889 } 2890 2891 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2892 if (DefinedProtocols.count(PD->getIdentifier())) 2893 return GetOrEmitProtocol(PD); 2894 2895 return GetOrEmitProtocolRef(PD); 2896 } 2897 2898 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2899 CodeGenFunction &CGF, 2900 const ObjCInterfaceDecl *ID, 2901 ObjCCommonTypesHelper &ObjCTypes) { 2902 llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2903 2904 llvm::Value *className = 2905 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 2906 .getPointer(); 2907 ASTContext &ctx = CGF.CGM.getContext(); 2908 className = 2909 CGF.Builder.CreateBitCast(className, 2910 CGF.ConvertType( 2911 ctx.getPointerType(ctx.CharTy.withConst()))); 2912 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 2913 call->setDoesNotThrow(); 2914 return call; 2915 } 2916 2917 /* 2918 // Objective-C 1.0 extensions 2919 struct _objc_protocol { 2920 struct _objc_protocol_extension *isa; 2921 char *protocol_name; 2922 struct _objc_protocol_list *protocol_list; 2923 struct _objc__method_prototype_list *instance_methods; 2924 struct _objc__method_prototype_list *class_methods 2925 }; 2926 2927 See EmitProtocolExtension(). 2928 */ 2929 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2930 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2931 2932 // Early exit if a defining object has already been generated. 2933 if (Entry && Entry->hasInitializer()) 2934 return Entry; 2935 2936 // Use the protocol definition, if there is one. 2937 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2938 PD = Def; 2939 2940 // FIXME: I don't understand why gcc generates this, or where it is 2941 // resolved. Investigate. Its also wasteful to look this up over and over. 2942 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2943 2944 // Construct method lists. 2945 auto methodLists = ProtocolMethodLists::get(PD); 2946 2947 ConstantInitBuilder builder(CGM); 2948 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 2949 values.add(EmitProtocolExtension(PD, methodLists)); 2950 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 2951 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2952 PD->protocol_begin(), PD->protocol_end())); 2953 values.add(methodLists.emitMethodList(this, PD, 2954 ProtocolMethodLists::RequiredInstanceMethods)); 2955 values.add(methodLists.emitMethodList(this, PD, 2956 ProtocolMethodLists::RequiredClassMethods)); 2957 2958 if (Entry) { 2959 // Already created, update the initializer. 2960 assert(Entry->hasPrivateLinkage()); 2961 values.finishAndSetAsInitializer(Entry); 2962 } else { 2963 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 2964 CGM.getPointerAlign(), 2965 /*constant*/ false, 2966 llvm::GlobalValue::PrivateLinkage); 2967 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2968 2969 Protocols[PD->getIdentifier()] = Entry; 2970 } 2971 CGM.addCompilerUsedGlobal(Entry); 2972 2973 return Entry; 2974 } 2975 2976 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2977 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2978 2979 if (!Entry) { 2980 // We use the initializer as a marker of whether this is a forward 2981 // reference or not. At module finalization we add the empty 2982 // contents for protocols which were referenced but never defined. 2983 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2984 false, llvm::GlobalValue::PrivateLinkage, 2985 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2986 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2987 // FIXME: Is this necessary? Why only for protocol? 2988 Entry->setAlignment(4); 2989 } 2990 2991 return Entry; 2992 } 2993 2994 /* 2995 struct _objc_protocol_extension { 2996 uint32_t size; 2997 struct objc_method_description_list *optional_instance_methods; 2998 struct objc_method_description_list *optional_class_methods; 2999 struct objc_property_list *instance_properties; 3000 const char ** extendedMethodTypes; 3001 struct objc_property_list *class_properties; 3002 }; 3003 */ 3004 llvm::Constant * 3005 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3006 const ProtocolMethodLists &methodLists) { 3007 auto optInstanceMethods = 3008 methodLists.emitMethodList(this, PD, 3009 ProtocolMethodLists::OptionalInstanceMethods); 3010 auto optClassMethods = 3011 methodLists.emitMethodList(this, PD, 3012 ProtocolMethodLists::OptionalClassMethods); 3013 3014 auto extendedMethodTypes = 3015 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3016 methodLists.emitExtendedTypesArray(this), 3017 ObjCTypes); 3018 3019 auto instanceProperties = 3020 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3021 ObjCTypes, false); 3022 auto classProperties = 3023 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3024 PD, ObjCTypes, true); 3025 3026 // Return null if no extension bits are used. 3027 if (optInstanceMethods->isNullValue() && 3028 optClassMethods->isNullValue() && 3029 extendedMethodTypes->isNullValue() && 3030 instanceProperties->isNullValue() && 3031 classProperties->isNullValue()) { 3032 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3033 } 3034 3035 uint64_t size = 3036 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3037 3038 ConstantInitBuilder builder(CGM); 3039 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3040 values.addInt(ObjCTypes.IntTy, size); 3041 values.add(optInstanceMethods); 3042 values.add(optClassMethods); 3043 values.add(instanceProperties); 3044 values.add(extendedMethodTypes); 3045 values.add(classProperties); 3046 3047 // No special section, but goes in llvm.used 3048 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3049 StringRef(), CGM.getPointerAlign(), true); 3050 } 3051 3052 /* 3053 struct objc_protocol_list { 3054 struct objc_protocol_list *next; 3055 long count; 3056 Protocol *list[]; 3057 }; 3058 */ 3059 llvm::Constant * 3060 CGObjCMac::EmitProtocolList(Twine name, 3061 ObjCProtocolDecl::protocol_iterator begin, 3062 ObjCProtocolDecl::protocol_iterator end) { 3063 // Just return null for empty protocol lists 3064 if (begin == end) 3065 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3066 3067 ConstantInitBuilder builder(CGM); 3068 auto values = builder.beginStruct(); 3069 3070 // This field is only used by the runtime. 3071 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3072 3073 // Reserve a slot for the count. 3074 auto countSlot = values.addPlaceholder(); 3075 3076 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3077 for (; begin != end; ++begin) { 3078 refsArray.add(GetProtocolRef(*begin)); 3079 } 3080 auto count = refsArray.size(); 3081 3082 // This list is null terminated. 3083 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3084 3085 refsArray.finishAndAddTo(values); 3086 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3087 3088 StringRef section; 3089 if (CGM.getTriple().isOSBinFormatMachO()) 3090 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3091 3092 llvm::GlobalVariable *GV = 3093 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3094 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3095 } 3096 3097 static void 3098 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3099 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3100 const ObjCProtocolDecl *Proto, 3101 bool IsClassProperty) { 3102 for (const auto *P : Proto->protocols()) 3103 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3104 3105 for (const auto *PD : Proto->properties()) { 3106 if (IsClassProperty != PD->isClassProperty()) 3107 continue; 3108 if (!PropertySet.insert(PD->getIdentifier()).second) 3109 continue; 3110 Properties.push_back(PD); 3111 } 3112 } 3113 3114 /* 3115 struct _objc_property { 3116 const char * const name; 3117 const char * const attributes; 3118 }; 3119 3120 struct _objc_property_list { 3121 uint32_t entsize; // sizeof (struct _objc_property) 3122 uint32_t prop_count; 3123 struct _objc_property[prop_count]; 3124 }; 3125 */ 3126 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3127 const Decl *Container, 3128 const ObjCContainerDecl *OCD, 3129 const ObjCCommonTypesHelper &ObjCTypes, 3130 bool IsClassProperty) { 3131 if (IsClassProperty) { 3132 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3133 // with deployment target < 9.0. 3134 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3135 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3136 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3137 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3138 } 3139 3140 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3141 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3142 3143 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3144 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3145 for (auto *PD : ClassExt->properties()) { 3146 if (IsClassProperty != PD->isClassProperty()) 3147 continue; 3148 PropertySet.insert(PD->getIdentifier()); 3149 Properties.push_back(PD); 3150 } 3151 3152 for (const auto *PD : OCD->properties()) { 3153 if (IsClassProperty != PD->isClassProperty()) 3154 continue; 3155 // Don't emit duplicate metadata for properties that were already in a 3156 // class extension. 3157 if (!PropertySet.insert(PD->getIdentifier()).second) 3158 continue; 3159 Properties.push_back(PD); 3160 } 3161 3162 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3163 for (const auto *P : OID->all_referenced_protocols()) 3164 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3165 } 3166 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3167 for (const auto *P : CD->protocols()) 3168 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3169 } 3170 3171 // Return null for empty list. 3172 if (Properties.empty()) 3173 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3174 3175 unsigned propertySize = 3176 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3177 3178 ConstantInitBuilder builder(CGM); 3179 auto values = builder.beginStruct(); 3180 values.addInt(ObjCTypes.IntTy, propertySize); 3181 values.addInt(ObjCTypes.IntTy, Properties.size()); 3182 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3183 for (auto PD : Properties) { 3184 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3185 property.add(GetPropertyName(PD->getIdentifier())); 3186 property.add(GetPropertyTypeString(PD, Container)); 3187 property.finishAndAddTo(propertiesArray); 3188 } 3189 propertiesArray.finishAndAddTo(values); 3190 3191 StringRef Section; 3192 if (CGM.getTriple().isOSBinFormatMachO()) 3193 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3194 : "__OBJC,__property,regular,no_dead_strip"; 3195 3196 llvm::GlobalVariable *GV = 3197 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3198 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3199 } 3200 3201 llvm::Constant * 3202 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3203 ArrayRef<llvm::Constant*> MethodTypes, 3204 const ObjCCommonTypesHelper &ObjCTypes) { 3205 // Return null for empty list. 3206 if (MethodTypes.empty()) 3207 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3208 3209 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3210 MethodTypes.size()); 3211 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3212 3213 StringRef Section; 3214 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3215 Section = "__DATA, __objc_const"; 3216 3217 llvm::GlobalVariable *GV = 3218 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3219 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3220 } 3221 3222 /* 3223 struct _objc_category { 3224 char *category_name; 3225 char *class_name; 3226 struct _objc_method_list *instance_methods; 3227 struct _objc_method_list *class_methods; 3228 struct _objc_protocol_list *protocols; 3229 uint32_t size; // <rdar://4585769> 3230 struct _objc_property_list *instance_properties; 3231 struct _objc_property_list *class_properties; 3232 }; 3233 */ 3234 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3235 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3236 3237 // FIXME: This is poor design, the OCD should have a pointer to the category 3238 // decl. Additionally, note that Category can be null for the @implementation 3239 // w/o an @interface case. Sema should just create one for us as it does for 3240 // @implementation so everyone else can live life under a clear blue sky. 3241 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3242 const ObjCCategoryDecl *Category = 3243 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3244 3245 SmallString<256> ExtName; 3246 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3247 << OCD->getName(); 3248 3249 ConstantInitBuilder Builder(CGM); 3250 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3251 3252 enum { 3253 InstanceMethods, 3254 ClassMethods, 3255 NumMethodLists 3256 }; 3257 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3258 for (const auto *MD : OCD->methods()) { 3259 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3260 } 3261 3262 Values.add(GetClassName(OCD->getName())); 3263 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3264 LazySymbols.insert(Interface->getIdentifier()); 3265 3266 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3267 Methods[InstanceMethods])); 3268 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3269 Methods[ClassMethods])); 3270 if (Category) { 3271 Values.add( 3272 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3273 Category->protocol_begin(), Category->protocol_end())); 3274 } else { 3275 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3276 } 3277 Values.addInt(ObjCTypes.IntTy, Size); 3278 3279 // If there is no category @interface then there can be no properties. 3280 if (Category) { 3281 Values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3282 OCD, Category, ObjCTypes, false)); 3283 Values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3284 OCD, Category, ObjCTypes, true)); 3285 } else { 3286 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3287 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3288 } 3289 3290 llvm::GlobalVariable *GV = 3291 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3292 "__OBJC,__category,regular,no_dead_strip", 3293 CGM.getPointerAlign(), true); 3294 DefinedCategories.push_back(GV); 3295 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3296 // method definition entries must be clear for next implementation. 3297 MethodDefinitions.clear(); 3298 } 3299 3300 enum FragileClassFlags { 3301 /// Apparently: is not a meta-class. 3302 FragileABI_Class_Factory = 0x00001, 3303 3304 /// Is a meta-class. 3305 FragileABI_Class_Meta = 0x00002, 3306 3307 /// Has a non-trivial constructor or destructor. 3308 FragileABI_Class_HasCXXStructors = 0x02000, 3309 3310 /// Has hidden visibility. 3311 FragileABI_Class_Hidden = 0x20000, 3312 3313 /// Class implementation was compiled under ARC. 3314 FragileABI_Class_CompiledByARC = 0x04000000, 3315 3316 /// Class implementation was compiled under MRC and has MRC weak ivars. 3317 /// Exclusive with CompiledByARC. 3318 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3319 }; 3320 3321 enum NonFragileClassFlags { 3322 /// Is a meta-class. 3323 NonFragileABI_Class_Meta = 0x00001, 3324 3325 /// Is a root class. 3326 NonFragileABI_Class_Root = 0x00002, 3327 3328 /// Has a non-trivial constructor or destructor. 3329 NonFragileABI_Class_HasCXXStructors = 0x00004, 3330 3331 /// Has hidden visibility. 3332 NonFragileABI_Class_Hidden = 0x00010, 3333 3334 /// Has the exception attribute. 3335 NonFragileABI_Class_Exception = 0x00020, 3336 3337 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3338 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3339 3340 /// Class implementation was compiled under ARC. 3341 NonFragileABI_Class_CompiledByARC = 0x00080, 3342 3343 /// Class has non-trivial destructors, but zero-initialization is okay. 3344 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3345 3346 /// Class implementation was compiled under MRC and has MRC weak ivars. 3347 /// Exclusive with CompiledByARC. 3348 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3349 }; 3350 3351 static bool hasWeakMember(QualType type) { 3352 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3353 return true; 3354 } 3355 3356 if (auto recType = type->getAs<RecordType>()) { 3357 for (auto field : recType->getDecl()->fields()) { 3358 if (hasWeakMember(field->getType())) 3359 return true; 3360 } 3361 } 3362 3363 return false; 3364 } 3365 3366 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3367 /// (and actually fill in a layout string) if we really do have any 3368 /// __weak ivars. 3369 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3370 const ObjCImplementationDecl *ID) { 3371 if (!CGM.getLangOpts().ObjCWeak) return false; 3372 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3373 3374 for (const ObjCIvarDecl *ivar = 3375 ID->getClassInterface()->all_declared_ivar_begin(); 3376 ivar; ivar = ivar->getNextIvar()) { 3377 if (hasWeakMember(ivar->getType())) 3378 return true; 3379 } 3380 3381 return false; 3382 } 3383 3384 /* 3385 struct _objc_class { 3386 Class isa; 3387 Class super_class; 3388 const char *name; 3389 long version; 3390 long info; 3391 long instance_size; 3392 struct _objc_ivar_list *ivars; 3393 struct _objc_method_list *methods; 3394 struct _objc_cache *cache; 3395 struct _objc_protocol_list *protocols; 3396 // Objective-C 1.0 extensions (<rdr://4585769>) 3397 const char *ivar_layout; 3398 struct _objc_class_ext *ext; 3399 }; 3400 3401 See EmitClassExtension(); 3402 */ 3403 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3404 DefinedSymbols.insert(ID->getIdentifier()); 3405 3406 std::string ClassName = ID->getNameAsString(); 3407 // FIXME: Gross 3408 ObjCInterfaceDecl *Interface = 3409 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3410 llvm::Constant *Protocols = 3411 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3412 Interface->all_referenced_protocol_begin(), 3413 Interface->all_referenced_protocol_end()); 3414 unsigned Flags = FragileABI_Class_Factory; 3415 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3416 Flags |= FragileABI_Class_HasCXXStructors; 3417 3418 bool hasMRCWeak = false; 3419 3420 if (CGM.getLangOpts().ObjCAutoRefCount) 3421 Flags |= FragileABI_Class_CompiledByARC; 3422 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3423 Flags |= FragileABI_Class_HasMRCWeakIvars; 3424 3425 CharUnits Size = 3426 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3427 3428 // FIXME: Set CXX-structors flag. 3429 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3430 Flags |= FragileABI_Class_Hidden; 3431 3432 enum { 3433 InstanceMethods, 3434 ClassMethods, 3435 NumMethodLists 3436 }; 3437 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3438 for (const auto *MD : ID->methods()) { 3439 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3440 } 3441 3442 for (const auto *PID : ID->property_impls()) { 3443 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3444 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3445 3446 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3447 if (GetMethodDefinition(MD)) 3448 Methods[InstanceMethods].push_back(MD); 3449 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3450 if (GetMethodDefinition(MD)) 3451 Methods[InstanceMethods].push_back(MD); 3452 } 3453 } 3454 3455 ConstantInitBuilder builder(CGM); 3456 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3457 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3458 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3459 // Record a reference to the super class. 3460 LazySymbols.insert(Super->getIdentifier()); 3461 3462 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3463 ObjCTypes.ClassPtrTy); 3464 } else { 3465 values.addNullPointer(ObjCTypes.ClassPtrTy); 3466 } 3467 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3468 // Version is always 0. 3469 values.addInt(ObjCTypes.LongTy, 0); 3470 values.addInt(ObjCTypes.LongTy, Flags); 3471 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3472 values.add(EmitIvarList(ID, false)); 3473 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3474 Methods[InstanceMethods])); 3475 // cache is always NULL. 3476 values.addNullPointer(ObjCTypes.CachePtrTy); 3477 values.add(Protocols); 3478 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3479 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3480 /*isMetaclass*/ false)); 3481 3482 std::string Name("OBJC_CLASS_"); 3483 Name += ClassName; 3484 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3485 // Check for a forward reference. 3486 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3487 if (GV) { 3488 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3489 "Forward metaclass reference has incorrect type."); 3490 values.finishAndSetAsInitializer(GV); 3491 GV->setSection(Section); 3492 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3493 CGM.addCompilerUsedGlobal(GV); 3494 } else 3495 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3496 DefinedClasses.push_back(GV); 3497 ImplementedClasses.push_back(Interface); 3498 // method definition entries must be clear for next implementation. 3499 MethodDefinitions.clear(); 3500 } 3501 3502 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3503 llvm::Constant *Protocols, 3504 ArrayRef<const ObjCMethodDecl*> Methods) { 3505 unsigned Flags = FragileABI_Class_Meta; 3506 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3507 3508 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3509 Flags |= FragileABI_Class_Hidden; 3510 3511 ConstantInitBuilder builder(CGM); 3512 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3513 // The isa for the metaclass is the root of the hierarchy. 3514 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3515 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3516 Root = Super; 3517 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3518 ObjCTypes.ClassPtrTy); 3519 // The super class for the metaclass is emitted as the name of the 3520 // super class. The runtime fixes this up to point to the 3521 // *metaclass* for the super class. 3522 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3523 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3524 ObjCTypes.ClassPtrTy); 3525 } else { 3526 values.addNullPointer(ObjCTypes.ClassPtrTy); 3527 } 3528 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3529 // Version is always 0. 3530 values.addInt(ObjCTypes.LongTy, 0); 3531 values.addInt(ObjCTypes.LongTy, Flags); 3532 values.addInt(ObjCTypes.LongTy, Size); 3533 values.add(EmitIvarList(ID, true)); 3534 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3535 Methods)); 3536 // cache is always NULL. 3537 values.addNullPointer(ObjCTypes.CachePtrTy); 3538 values.add(Protocols); 3539 // ivar_layout for metaclass is always NULL. 3540 values.addNullPointer(ObjCTypes.Int8PtrTy); 3541 // The class extension is used to store class properties for metaclasses. 3542 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3543 /*isMetaclass*/true)); 3544 3545 std::string Name("OBJC_METACLASS_"); 3546 Name += ID->getName(); 3547 3548 // Check for a forward reference. 3549 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3550 if (GV) { 3551 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3552 "Forward metaclass reference has incorrect type."); 3553 values.finishAndSetAsInitializer(GV); 3554 } else { 3555 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3556 /*constant*/ false, 3557 llvm::GlobalValue::PrivateLinkage); 3558 } 3559 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3560 CGM.addCompilerUsedGlobal(GV); 3561 3562 return GV; 3563 } 3564 3565 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3566 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3567 3568 // FIXME: Should we look these up somewhere other than the module. Its a bit 3569 // silly since we only generate these while processing an implementation, so 3570 // exactly one pointer would work if know when we entered/exitted an 3571 // implementation block. 3572 3573 // Check for an existing forward reference. 3574 // Previously, metaclass with internal linkage may have been defined. 3575 // pass 'true' as 2nd argument so it is returned. 3576 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3577 if (!GV) 3578 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3579 llvm::GlobalValue::PrivateLinkage, nullptr, 3580 Name); 3581 3582 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3583 "Forward metaclass reference has incorrect type."); 3584 return GV; 3585 } 3586 3587 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3588 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3589 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3590 3591 if (!GV) 3592 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3593 llvm::GlobalValue::PrivateLinkage, nullptr, 3594 Name); 3595 3596 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3597 "Forward class metadata reference has incorrect type."); 3598 return GV; 3599 } 3600 3601 /* 3602 Emit a "class extension", which in this specific context means extra 3603 data that doesn't fit in the normal fragile-ABI class structure, and 3604 has nothing to do with the language concept of a class extension. 3605 3606 struct objc_class_ext { 3607 uint32_t size; 3608 const char *weak_ivar_layout; 3609 struct _objc_property_list *properties; 3610 }; 3611 */ 3612 llvm::Constant * 3613 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3614 CharUnits InstanceSize, bool hasMRCWeakIvars, 3615 bool isMetaclass) { 3616 // Weak ivar layout. 3617 llvm::Constant *layout; 3618 if (isMetaclass) { 3619 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3620 } else { 3621 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3622 hasMRCWeakIvars); 3623 } 3624 3625 // Properties. 3626 llvm::Constant *propertyList = 3627 EmitPropertyList((isMetaclass ? Twine("\01l_OBJC_$_CLASS_PROP_LIST_") 3628 : Twine("\01l_OBJC_$_PROP_LIST_")) 3629 + ID->getName(), 3630 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3631 3632 // Return null if no extension bits are used. 3633 if (layout->isNullValue() && propertyList->isNullValue()) { 3634 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3635 } 3636 3637 uint64_t size = 3638 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3639 3640 ConstantInitBuilder builder(CGM); 3641 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3642 values.addInt(ObjCTypes.IntTy, size); 3643 values.add(layout); 3644 values.add(propertyList); 3645 3646 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3647 "__OBJC,__class_ext,regular,no_dead_strip", 3648 CGM.getPointerAlign(), true); 3649 } 3650 3651 /* 3652 struct objc_ivar { 3653 char *ivar_name; 3654 char *ivar_type; 3655 int ivar_offset; 3656 }; 3657 3658 struct objc_ivar_list { 3659 int ivar_count; 3660 struct objc_ivar list[count]; 3661 }; 3662 */ 3663 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3664 bool ForClass) { 3665 // When emitting the root class GCC emits ivar entries for the 3666 // actual class structure. It is not clear if we need to follow this 3667 // behavior; for now lets try and get away with not doing it. If so, 3668 // the cleanest solution would be to make up an ObjCInterfaceDecl 3669 // for the class. 3670 if (ForClass) 3671 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3672 3673 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3674 3675 ConstantInitBuilder builder(CGM); 3676 auto ivarList = builder.beginStruct(); 3677 auto countSlot = ivarList.addPlaceholder(); 3678 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3679 3680 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3681 IVD; IVD = IVD->getNextIvar()) { 3682 // Ignore unnamed bit-fields. 3683 if (!IVD->getDeclName()) 3684 continue; 3685 3686 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3687 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3688 ivar.add(GetMethodVarType(IVD)); 3689 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3690 ivar.finishAndAddTo(ivars); 3691 } 3692 3693 // Return null for empty list. 3694 auto count = ivars.size(); 3695 if (count == 0) { 3696 ivars.abandon(); 3697 ivarList.abandon(); 3698 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3699 } 3700 3701 ivars.finishAndAddTo(ivarList); 3702 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3703 3704 llvm::GlobalVariable *GV; 3705 if (ForClass) 3706 GV = 3707 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3708 "__OBJC,__class_vars,regular,no_dead_strip", 3709 CGM.getPointerAlign(), true); 3710 else 3711 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3712 "__OBJC,__instance_vars,regular,no_dead_strip", 3713 CGM.getPointerAlign(), true); 3714 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3715 } 3716 3717 /// Build a struct objc_method_description constant for the given method. 3718 /// 3719 /// struct objc_method_description { 3720 /// SEL method_name; 3721 /// char *method_types; 3722 /// }; 3723 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3724 const ObjCMethodDecl *MD) { 3725 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3726 description.addBitCast(GetMethodVarName(MD->getSelector()), 3727 ObjCTypes.SelectorPtrTy); 3728 description.add(GetMethodVarType(MD)); 3729 description.finishAndAddTo(builder); 3730 } 3731 3732 /// Build a struct objc_method constant for the given method. 3733 /// 3734 /// struct objc_method { 3735 /// SEL method_name; 3736 /// char *method_types; 3737 /// void *method; 3738 /// }; 3739 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3740 const ObjCMethodDecl *MD) { 3741 llvm::Function *fn = GetMethodDefinition(MD); 3742 assert(fn && "no definition registered for method"); 3743 3744 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3745 method.addBitCast(GetMethodVarName(MD->getSelector()), 3746 ObjCTypes.SelectorPtrTy); 3747 method.add(GetMethodVarType(MD)); 3748 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3749 method.finishAndAddTo(builder); 3750 } 3751 3752 /// Build a struct objc_method_list or struct objc_method_description_list, 3753 /// as appropriate. 3754 /// 3755 /// struct objc_method_list { 3756 /// struct objc_method_list *obsolete; 3757 /// int count; 3758 /// struct objc_method methods_list[count]; 3759 /// }; 3760 /// 3761 /// struct objc_method_description_list { 3762 /// int count; 3763 /// struct objc_method_description list[count]; 3764 /// }; 3765 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3766 ArrayRef<const ObjCMethodDecl *> methods) { 3767 StringRef prefix; 3768 StringRef section; 3769 bool forProtocol = false; 3770 switch (MLT) { 3771 case MethodListType::CategoryInstanceMethods: 3772 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3773 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3774 forProtocol = false; 3775 break; 3776 case MethodListType::CategoryClassMethods: 3777 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3778 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3779 forProtocol = false; 3780 break; 3781 case MethodListType::InstanceMethods: 3782 prefix = "OBJC_INSTANCE_METHODS_"; 3783 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3784 forProtocol = false; 3785 break; 3786 case MethodListType::ClassMethods: 3787 prefix = "OBJC_CLASS_METHODS_"; 3788 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3789 forProtocol = false; 3790 break; 3791 case MethodListType::ProtocolInstanceMethods: 3792 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3793 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3794 forProtocol = true; 3795 break; 3796 case MethodListType::ProtocolClassMethods: 3797 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3798 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3799 forProtocol = true; 3800 break; 3801 case MethodListType::OptionalProtocolInstanceMethods: 3802 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3803 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3804 forProtocol = true; 3805 break; 3806 case MethodListType::OptionalProtocolClassMethods: 3807 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3808 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3809 forProtocol = true; 3810 break; 3811 } 3812 3813 // Return null for empty list. 3814 if (methods.empty()) 3815 return llvm::Constant::getNullValue(forProtocol 3816 ? ObjCTypes.MethodDescriptionListPtrTy 3817 : ObjCTypes.MethodListPtrTy); 3818 3819 // For protocols, this is an objc_method_description_list, which has 3820 // a slightly different structure. 3821 if (forProtocol) { 3822 ConstantInitBuilder builder(CGM); 3823 auto values = builder.beginStruct(); 3824 values.addInt(ObjCTypes.IntTy, methods.size()); 3825 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3826 for (auto MD : methods) { 3827 emitMethodDescriptionConstant(methodArray, MD); 3828 } 3829 methodArray.finishAndAddTo(values); 3830 3831 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3832 CGM.getPointerAlign(), true); 3833 return llvm::ConstantExpr::getBitCast(GV, 3834 ObjCTypes.MethodDescriptionListPtrTy); 3835 } 3836 3837 // Otherwise, it's an objc_method_list. 3838 ConstantInitBuilder builder(CGM); 3839 auto values = builder.beginStruct(); 3840 values.addNullPointer(ObjCTypes.Int8PtrTy); 3841 values.addInt(ObjCTypes.IntTy, methods.size()); 3842 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3843 for (auto MD : methods) { 3844 emitMethodConstant(methodArray, MD); 3845 } 3846 methodArray.finishAndAddTo(values); 3847 3848 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3849 CGM.getPointerAlign(), true); 3850 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3851 } 3852 3853 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3854 const ObjCContainerDecl *CD) { 3855 SmallString<256> Name; 3856 GetNameForMethod(OMD, CD, Name); 3857 3858 CodeGenTypes &Types = CGM.getTypes(); 3859 llvm::FunctionType *MethodTy = 3860 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3861 llvm::Function *Method = 3862 llvm::Function::Create(MethodTy, 3863 llvm::GlobalValue::InternalLinkage, 3864 Name.str(), 3865 &CGM.getModule()); 3866 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3867 3868 return Method; 3869 } 3870 3871 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3872 ConstantStructBuilder &Init, 3873 StringRef Section, 3874 CharUnits Align, 3875 bool AddToUsed) { 3876 llvm::GlobalVariable *GV = 3877 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, 3878 llvm::GlobalValue::PrivateLinkage); 3879 if (!Section.empty()) 3880 GV->setSection(Section); 3881 if (AddToUsed) 3882 CGM.addCompilerUsedGlobal(GV); 3883 return GV; 3884 } 3885 3886 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3887 llvm::Constant *Init, 3888 StringRef Section, 3889 CharUnits Align, 3890 bool AddToUsed) { 3891 llvm::Type *Ty = Init->getType(); 3892 llvm::GlobalVariable *GV = 3893 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3894 llvm::GlobalValue::PrivateLinkage, Init, Name); 3895 if (!Section.empty()) 3896 GV->setSection(Section); 3897 GV->setAlignment(Align.getQuantity()); 3898 if (AddToUsed) 3899 CGM.addCompilerUsedGlobal(GV); 3900 return GV; 3901 } 3902 3903 llvm::GlobalVariable * 3904 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 3905 bool ForceNonFragileABI, 3906 bool NullTerminate) { 3907 StringRef Label; 3908 switch (Type) { 3909 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 3910 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 3911 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 3912 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 3913 } 3914 3915 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 3916 3917 StringRef Section; 3918 switch (Type) { 3919 case ObjCLabelType::ClassName: 3920 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 3921 : "__TEXT,__cstring,cstring_literals"; 3922 break; 3923 case ObjCLabelType::MethodVarName: 3924 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 3925 : "__TEXT,__cstring,cstring_literals"; 3926 break; 3927 case ObjCLabelType::MethodVarType: 3928 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 3929 : "__TEXT,__cstring,cstring_literals"; 3930 break; 3931 case ObjCLabelType::PropertyName: 3932 Section = "__TEXT,__cstring,cstring_literals"; 3933 break; 3934 } 3935 3936 llvm::Constant *Value = 3937 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 3938 llvm::GlobalVariable *GV = 3939 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 3940 /*isConstant=*/true, 3941 llvm::GlobalValue::PrivateLinkage, Value, Label); 3942 if (CGM.getTriple().isOSBinFormatMachO()) 3943 GV->setSection(Section); 3944 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3945 GV->setAlignment(CharUnits::One().getQuantity()); 3946 CGM.addCompilerUsedGlobal(GV); 3947 3948 return GV; 3949 } 3950 3951 llvm::Function *CGObjCMac::ModuleInitFunction() { 3952 // Abuse this interface function as a place to finalize. 3953 FinishModule(); 3954 return nullptr; 3955 } 3956 3957 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3958 return ObjCTypes.getGetPropertyFn(); 3959 } 3960 3961 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3962 return ObjCTypes.getSetPropertyFn(); 3963 } 3964 3965 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3966 bool copy) { 3967 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3968 } 3969 3970 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3971 return ObjCTypes.getCopyStructFn(); 3972 } 3973 3974 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3975 return ObjCTypes.getCopyStructFn(); 3976 } 3977 3978 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3979 return ObjCTypes.getCppAtomicObjectFunction(); 3980 } 3981 3982 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3983 return ObjCTypes.getCppAtomicObjectFunction(); 3984 } 3985 3986 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3987 return ObjCTypes.getEnumerationMutationFn(); 3988 } 3989 3990 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3991 return EmitTryOrSynchronizedStmt(CGF, S); 3992 } 3993 3994 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3995 const ObjCAtSynchronizedStmt &S) { 3996 return EmitTryOrSynchronizedStmt(CGF, S); 3997 } 3998 3999 namespace { 4000 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4001 const Stmt &S; 4002 Address SyncArgSlot; 4003 Address CallTryExitVar; 4004 Address ExceptionData; 4005 ObjCTypesHelper &ObjCTypes; 4006 PerformFragileFinally(const Stmt *S, 4007 Address SyncArgSlot, 4008 Address CallTryExitVar, 4009 Address ExceptionData, 4010 ObjCTypesHelper *ObjCTypes) 4011 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4012 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4013 4014 void Emit(CodeGenFunction &CGF, Flags flags) override { 4015 // Check whether we need to call objc_exception_try_exit. 4016 // In optimized code, this branch will always be folded. 4017 llvm::BasicBlock *FinallyCallExit = 4018 CGF.createBasicBlock("finally.call_exit"); 4019 llvm::BasicBlock *FinallyNoCallExit = 4020 CGF.createBasicBlock("finally.no_call_exit"); 4021 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4022 FinallyCallExit, FinallyNoCallExit); 4023 4024 CGF.EmitBlock(FinallyCallExit); 4025 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4026 ExceptionData.getPointer()); 4027 4028 CGF.EmitBlock(FinallyNoCallExit); 4029 4030 if (isa<ObjCAtTryStmt>(S)) { 4031 if (const ObjCAtFinallyStmt* FinallyStmt = 4032 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4033 // Don't try to do the @finally if this is an EH cleanup. 4034 if (flags.isForEHCleanup()) return; 4035 4036 // Save the current cleanup destination in case there's 4037 // control flow inside the finally statement. 4038 llvm::Value *CurCleanupDest = 4039 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4040 4041 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4042 4043 if (CGF.HaveInsertPoint()) { 4044 CGF.Builder.CreateStore(CurCleanupDest, 4045 CGF.getNormalCleanupDestSlot()); 4046 } else { 4047 // Currently, the end of the cleanup must always exist. 4048 CGF.EnsureInsertPoint(); 4049 } 4050 } 4051 } else { 4052 // Emit objc_sync_exit(expr); as finally's sole statement for 4053 // @synchronized. 4054 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4055 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4056 } 4057 } 4058 }; 4059 4060 class FragileHazards { 4061 CodeGenFunction &CGF; 4062 SmallVector<llvm::Value*, 20> Locals; 4063 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4064 4065 llvm::InlineAsm *ReadHazard; 4066 llvm::InlineAsm *WriteHazard; 4067 4068 llvm::FunctionType *GetAsmFnType(); 4069 4070 void collectLocals(); 4071 void emitReadHazard(CGBuilderTy &Builder); 4072 4073 public: 4074 FragileHazards(CodeGenFunction &CGF); 4075 4076 void emitWriteHazard(); 4077 void emitHazardsInNewBlocks(); 4078 }; 4079 } // end anonymous namespace 4080 4081 /// Create the fragile-ABI read and write hazards based on the current 4082 /// state of the function, which is presumed to be immediately prior 4083 /// to a @try block. These hazards are used to maintain correct 4084 /// semantics in the face of optimization and the fragile ABI's 4085 /// cavalier use of setjmp/longjmp. 4086 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4087 collectLocals(); 4088 4089 if (Locals.empty()) return; 4090 4091 // Collect all the blocks in the function. 4092 for (llvm::Function::iterator 4093 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4094 BlocksBeforeTry.insert(&*I); 4095 4096 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4097 4098 // Create a read hazard for the allocas. This inhibits dead-store 4099 // optimizations and forces the values to memory. This hazard is 4100 // inserted before any 'throwing' calls in the protected scope to 4101 // reflect the possibility that the variables might be read from the 4102 // catch block if the call throws. 4103 { 4104 std::string Constraint; 4105 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4106 if (I) Constraint += ','; 4107 Constraint += "*m"; 4108 } 4109 4110 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4111 } 4112 4113 // Create a write hazard for the allocas. This inhibits folding 4114 // loads across the hazard. This hazard is inserted at the 4115 // beginning of the catch path to reflect the possibility that the 4116 // variables might have been written within the protected scope. 4117 { 4118 std::string Constraint; 4119 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4120 if (I) Constraint += ','; 4121 Constraint += "=*m"; 4122 } 4123 4124 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4125 } 4126 } 4127 4128 /// Emit a write hazard at the current location. 4129 void FragileHazards::emitWriteHazard() { 4130 if (Locals.empty()) return; 4131 4132 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4133 } 4134 4135 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4136 assert(!Locals.empty()); 4137 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4138 call->setDoesNotThrow(); 4139 call->setCallingConv(CGF.getRuntimeCC()); 4140 } 4141 4142 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4143 /// which have been inserted since the beginning of the try. 4144 void FragileHazards::emitHazardsInNewBlocks() { 4145 if (Locals.empty()) return; 4146 4147 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4148 4149 // Iterate through all blocks, skipping those prior to the try. 4150 for (llvm::Function::iterator 4151 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4152 llvm::BasicBlock &BB = *FI; 4153 if (BlocksBeforeTry.count(&BB)) continue; 4154 4155 // Walk through all the calls in the block. 4156 for (llvm::BasicBlock::iterator 4157 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4158 llvm::Instruction &I = *BI; 4159 4160 // Ignore instructions that aren't non-intrinsic calls. 4161 // These are the only calls that can possibly call longjmp. 4162 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 4163 if (isa<llvm::IntrinsicInst>(I)) 4164 continue; 4165 4166 // Ignore call sites marked nounwind. This may be questionable, 4167 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4168 llvm::CallSite CS(&I); 4169 if (CS.doesNotThrow()) continue; 4170 4171 // Insert a read hazard before the call. This will ensure that 4172 // any writes to the locals are performed before making the 4173 // call. If the call throws, then this is sufficient to 4174 // guarantee correctness as long as it doesn't also write to any 4175 // locals. 4176 Builder.SetInsertPoint(&BB, BI); 4177 emitReadHazard(Builder); 4178 } 4179 } 4180 } 4181 4182 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 4183 if (V) S.insert(V); 4184 } 4185 4186 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4187 if (V.isValid()) S.insert(V.getPointer()); 4188 } 4189 4190 void FragileHazards::collectLocals() { 4191 // Compute a set of allocas to ignore. 4192 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4193 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4194 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4195 4196 // Collect all the allocas currently in the function. This is 4197 // probably way too aggressive. 4198 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4199 for (llvm::BasicBlock::iterator 4200 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4201 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4202 Locals.push_back(&*I); 4203 } 4204 4205 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4206 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4207 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4208 tys[i] = Locals[i]->getType(); 4209 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4210 } 4211 4212 /* 4213 4214 Objective-C setjmp-longjmp (sjlj) Exception Handling 4215 -- 4216 4217 A catch buffer is a setjmp buffer plus: 4218 - a pointer to the exception that was caught 4219 - a pointer to the previous exception data buffer 4220 - two pointers of reserved storage 4221 Therefore catch buffers form a stack, with a pointer to the top 4222 of the stack kept in thread-local storage. 4223 4224 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4225 objc_exception_try_exit pops the given catch buffer, which is 4226 required to be the top of the EH stack. 4227 objc_exception_throw pops the top of the EH stack, writes the 4228 thrown exception into the appropriate field, and longjmps 4229 to the setjmp buffer. It crashes the process (with a printf 4230 and an abort()) if there are no catch buffers on the stack. 4231 objc_exception_extract just reads the exception pointer out of the 4232 catch buffer. 4233 4234 There's no reason an implementation couldn't use a light-weight 4235 setjmp here --- something like __builtin_setjmp, but API-compatible 4236 with the heavyweight setjmp. This will be more important if we ever 4237 want to implement correct ObjC/C++ exception interactions for the 4238 fragile ABI. 4239 4240 Note that for this use of setjmp/longjmp to be correct, we may need 4241 to mark some local variables volatile: if a non-volatile local 4242 variable is modified between the setjmp and the longjmp, it has 4243 indeterminate value. For the purposes of LLVM IR, it may be 4244 sufficient to make loads and stores within the @try (to variables 4245 declared outside the @try) volatile. This is necessary for 4246 optimized correctness, but is not currently being done; this is 4247 being tracked as rdar://problem/8160285 4248 4249 The basic framework for a @try-catch-finally is as follows: 4250 { 4251 objc_exception_data d; 4252 id _rethrow = null; 4253 bool _call_try_exit = true; 4254 4255 objc_exception_try_enter(&d); 4256 if (!setjmp(d.jmp_buf)) { 4257 ... try body ... 4258 } else { 4259 // exception path 4260 id _caught = objc_exception_extract(&d); 4261 4262 // enter new try scope for handlers 4263 if (!setjmp(d.jmp_buf)) { 4264 ... match exception and execute catch blocks ... 4265 4266 // fell off end, rethrow. 4267 _rethrow = _caught; 4268 ... jump-through-finally to finally_rethrow ... 4269 } else { 4270 // exception in catch block 4271 _rethrow = objc_exception_extract(&d); 4272 _call_try_exit = false; 4273 ... jump-through-finally to finally_rethrow ... 4274 } 4275 } 4276 ... jump-through-finally to finally_end ... 4277 4278 finally: 4279 if (_call_try_exit) 4280 objc_exception_try_exit(&d); 4281 4282 ... finally block .... 4283 ... dispatch to finally destination ... 4284 4285 finally_rethrow: 4286 objc_exception_throw(_rethrow); 4287 4288 finally_end: 4289 } 4290 4291 This framework differs slightly from the one gcc uses, in that gcc 4292 uses _rethrow to determine if objc_exception_try_exit should be called 4293 and if the object should be rethrown. This breaks in the face of 4294 throwing nil and introduces unnecessary branches. 4295 4296 We specialize this framework for a few particular circumstances: 4297 4298 - If there are no catch blocks, then we avoid emitting the second 4299 exception handling context. 4300 4301 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4302 e)) we avoid emitting the code to rethrow an uncaught exception. 4303 4304 - FIXME: If there is no @finally block we can do a few more 4305 simplifications. 4306 4307 Rethrows and Jumps-Through-Finally 4308 -- 4309 4310 '@throw;' is supported by pushing the currently-caught exception 4311 onto ObjCEHStack while the @catch blocks are emitted. 4312 4313 Branches through the @finally block are handled with an ordinary 4314 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4315 exceptions are not compatible with C++ exceptions, and this is 4316 hardly the only place where this will go wrong. 4317 4318 @synchronized(expr) { stmt; } is emitted as if it were: 4319 id synch_value = expr; 4320 objc_sync_enter(synch_value); 4321 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4322 */ 4323 4324 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4325 const Stmt &S) { 4326 bool isTry = isa<ObjCAtTryStmt>(S); 4327 4328 // A destination for the fall-through edges of the catch handlers to 4329 // jump to. 4330 CodeGenFunction::JumpDest FinallyEnd = 4331 CGF.getJumpDestInCurrentScope("finally.end"); 4332 4333 // A destination for the rethrow edge of the catch handlers to jump 4334 // to. 4335 CodeGenFunction::JumpDest FinallyRethrow = 4336 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4337 4338 // For @synchronized, call objc_sync_enter(sync.expr). The 4339 // evaluation of the expression must occur before we enter the 4340 // @synchronized. We can't avoid a temp here because we need the 4341 // value to be preserved. If the backend ever does liveness 4342 // correctly after setjmp, this will be unnecessary. 4343 Address SyncArgSlot = Address::invalid(); 4344 if (!isTry) { 4345 llvm::Value *SyncArg = 4346 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4347 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4348 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4349 4350 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4351 CGF.getPointerAlign(), "sync.arg"); 4352 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4353 } 4354 4355 // Allocate memory for the setjmp buffer. This needs to be kept 4356 // live throughout the try and catch blocks. 4357 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4358 CGF.getPointerAlign(), 4359 "exceptiondata.ptr"); 4360 4361 // Create the fragile hazards. Note that this will not capture any 4362 // of the allocas required for exception processing, but will 4363 // capture the current basic block (which extends all the way to the 4364 // setjmp call) as "before the @try". 4365 FragileHazards Hazards(CGF); 4366 4367 // Create a flag indicating whether the cleanup needs to call 4368 // objc_exception_try_exit. This is true except when 4369 // - no catches match and we're branching through the cleanup 4370 // just to rethrow the exception, or 4371 // - a catch matched and we're falling out of the catch handler. 4372 // The setjmp-safety rule here is that we should always store to this 4373 // variable in a place that dominates the branch through the cleanup 4374 // without passing through any setjmps. 4375 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4376 CharUnits::One(), 4377 "_call_try_exit"); 4378 4379 // A slot containing the exception to rethrow. Only needed when we 4380 // have both a @catch and a @finally. 4381 Address PropagatingExnVar = Address::invalid(); 4382 4383 // Push a normal cleanup to leave the try scope. 4384 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4385 SyncArgSlot, 4386 CallTryExitVar, 4387 ExceptionData, 4388 &ObjCTypes); 4389 4390 // Enter a try block: 4391 // - Call objc_exception_try_enter to push ExceptionData on top of 4392 // the EH stack. 4393 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4394 ExceptionData.getPointer()); 4395 4396 // - Call setjmp on the exception data buffer. 4397 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4398 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4399 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4400 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4401 "setjmp_buffer"); 4402 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4403 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4404 SetJmpResult->setCanReturnTwice(); 4405 4406 // If setjmp returned 0, enter the protected block; otherwise, 4407 // branch to the handler. 4408 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4409 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4410 llvm::Value *DidCatch = 4411 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4412 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4413 4414 // Emit the protected block. 4415 CGF.EmitBlock(TryBlock); 4416 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4417 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4418 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4419 4420 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4421 4422 // Emit the exception handler block. 4423 CGF.EmitBlock(TryHandler); 4424 4425 // Don't optimize loads of the in-scope locals across this point. 4426 Hazards.emitWriteHazard(); 4427 4428 // For a @synchronized (or a @try with no catches), just branch 4429 // through the cleanup to the rethrow block. 4430 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4431 // Tell the cleanup not to re-pop the exit. 4432 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4433 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4434 4435 // Otherwise, we have to match against the caught exceptions. 4436 } else { 4437 // Retrieve the exception object. We may emit multiple blocks but 4438 // nothing can cross this so the value is already in SSA form. 4439 llvm::CallInst *Caught = 4440 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4441 ExceptionData.getPointer(), "caught"); 4442 4443 // Push the exception to rethrow onto the EH value stack for the 4444 // benefit of any @throws in the handlers. 4445 CGF.ObjCEHValueStack.push_back(Caught); 4446 4447 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4448 4449 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4450 4451 llvm::BasicBlock *CatchBlock = nullptr; 4452 llvm::BasicBlock *CatchHandler = nullptr; 4453 if (HasFinally) { 4454 // Save the currently-propagating exception before 4455 // objc_exception_try_enter clears the exception slot. 4456 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4457 CGF.getPointerAlign(), 4458 "propagating_exception"); 4459 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4460 4461 // Enter a new exception try block (in case a @catch block 4462 // throws an exception). 4463 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4464 ExceptionData.getPointer()); 4465 4466 llvm::CallInst *SetJmpResult = 4467 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4468 SetJmpBuffer, "setjmp.result"); 4469 SetJmpResult->setCanReturnTwice(); 4470 4471 llvm::Value *Threw = 4472 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4473 4474 CatchBlock = CGF.createBasicBlock("catch"); 4475 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4476 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4477 4478 CGF.EmitBlock(CatchBlock); 4479 } 4480 4481 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4482 4483 // Handle catch list. As a special case we check if everything is 4484 // matched and avoid generating code for falling off the end if 4485 // so. 4486 bool AllMatched = false; 4487 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4488 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4489 4490 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4491 const ObjCObjectPointerType *OPT = nullptr; 4492 4493 // catch(...) always matches. 4494 if (!CatchParam) { 4495 AllMatched = true; 4496 } else { 4497 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4498 4499 // catch(id e) always matches under this ABI, since only 4500 // ObjC exceptions end up here in the first place. 4501 // FIXME: For the time being we also match id<X>; this should 4502 // be rejected by Sema instead. 4503 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4504 AllMatched = true; 4505 } 4506 4507 // If this is a catch-all, we don't need to test anything. 4508 if (AllMatched) { 4509 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4510 4511 if (CatchParam) { 4512 CGF.EmitAutoVarDecl(*CatchParam); 4513 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4514 4515 // These types work out because ConvertType(id) == i8*. 4516 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4517 } 4518 4519 CGF.EmitStmt(CatchStmt->getCatchBody()); 4520 4521 // The scope of the catch variable ends right here. 4522 CatchVarCleanups.ForceCleanup(); 4523 4524 CGF.EmitBranchThroughCleanup(FinallyEnd); 4525 break; 4526 } 4527 4528 assert(OPT && "Unexpected non-object pointer type in @catch"); 4529 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4530 4531 // FIXME: @catch (Class c) ? 4532 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4533 assert(IDecl && "Catch parameter must have Objective-C type!"); 4534 4535 // Check if the @catch block matches the exception object. 4536 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4537 4538 llvm::Value *matchArgs[] = { Class, Caught }; 4539 llvm::CallInst *Match = 4540 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4541 matchArgs, "match"); 4542 4543 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4544 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4545 4546 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4547 MatchedBlock, NextCatchBlock); 4548 4549 // Emit the @catch block. 4550 CGF.EmitBlock(MatchedBlock); 4551 4552 // Collect any cleanups for the catch variable. The scope lasts until 4553 // the end of the catch body. 4554 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4555 4556 CGF.EmitAutoVarDecl(*CatchParam); 4557 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4558 4559 // Initialize the catch variable. 4560 llvm::Value *Tmp = 4561 CGF.Builder.CreateBitCast(Caught, 4562 CGF.ConvertType(CatchParam->getType())); 4563 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4564 4565 CGF.EmitStmt(CatchStmt->getCatchBody()); 4566 4567 // We're done with the catch variable. 4568 CatchVarCleanups.ForceCleanup(); 4569 4570 CGF.EmitBranchThroughCleanup(FinallyEnd); 4571 4572 CGF.EmitBlock(NextCatchBlock); 4573 } 4574 4575 CGF.ObjCEHValueStack.pop_back(); 4576 4577 // If nothing wanted anything to do with the caught exception, 4578 // kill the extract call. 4579 if (Caught->use_empty()) 4580 Caught->eraseFromParent(); 4581 4582 if (!AllMatched) 4583 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4584 4585 if (HasFinally) { 4586 // Emit the exception handler for the @catch blocks. 4587 CGF.EmitBlock(CatchHandler); 4588 4589 // In theory we might now need a write hazard, but actually it's 4590 // unnecessary because there's no local-accessing code between 4591 // the try's write hazard and here. 4592 //Hazards.emitWriteHazard(); 4593 4594 // Extract the new exception and save it to the 4595 // propagating-exception slot. 4596 assert(PropagatingExnVar.isValid()); 4597 llvm::CallInst *NewCaught = 4598 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4599 ExceptionData.getPointer(), "caught"); 4600 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4601 4602 // Don't pop the catch handler; the throw already did. 4603 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4604 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4605 } 4606 } 4607 4608 // Insert read hazards as required in the new blocks. 4609 Hazards.emitHazardsInNewBlocks(); 4610 4611 // Pop the cleanup. 4612 CGF.Builder.restoreIP(TryFallthroughIP); 4613 if (CGF.HaveInsertPoint()) 4614 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4615 CGF.PopCleanupBlock(); 4616 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4617 4618 // Emit the rethrow block. 4619 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4620 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4621 if (CGF.HaveInsertPoint()) { 4622 // If we have a propagating-exception variable, check it. 4623 llvm::Value *PropagatingExn; 4624 if (PropagatingExnVar.isValid()) { 4625 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4626 4627 // Otherwise, just look in the buffer for the exception to throw. 4628 } else { 4629 llvm::CallInst *Caught = 4630 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4631 ExceptionData.getPointer()); 4632 PropagatingExn = Caught; 4633 } 4634 4635 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4636 PropagatingExn); 4637 CGF.Builder.CreateUnreachable(); 4638 } 4639 4640 CGF.Builder.restoreIP(SavedIP); 4641 } 4642 4643 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4644 const ObjCAtThrowStmt &S, 4645 bool ClearInsertionPoint) { 4646 llvm::Value *ExceptionAsObject; 4647 4648 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4649 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4650 ExceptionAsObject = 4651 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4652 } else { 4653 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4654 "Unexpected rethrow outside @catch block."); 4655 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4656 } 4657 4658 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4659 ->setDoesNotReturn(); 4660 CGF.Builder.CreateUnreachable(); 4661 4662 // Clear the insertion point to indicate we are in unreachable code. 4663 if (ClearInsertionPoint) 4664 CGF.Builder.ClearInsertionPoint(); 4665 } 4666 4667 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4668 /// object: objc_read_weak (id *src) 4669 /// 4670 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4671 Address AddrWeakObj) { 4672 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4673 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4674 ObjCTypes.PtrObjectPtrTy); 4675 llvm::Value *read_weak = 4676 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4677 AddrWeakObj.getPointer(), "weakread"); 4678 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4679 return read_weak; 4680 } 4681 4682 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4683 /// objc_assign_weak (id src, id *dst) 4684 /// 4685 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4686 llvm::Value *src, Address dst) { 4687 llvm::Type * SrcTy = src->getType(); 4688 if (!isa<llvm::PointerType>(SrcTy)) { 4689 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4690 assert(Size <= 8 && "does not support size > 8"); 4691 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4692 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4693 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4694 } 4695 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4696 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4697 llvm::Value *args[] = { src, dst.getPointer() }; 4698 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4699 args, "weakassign"); 4700 } 4701 4702 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4703 /// objc_assign_global (id src, id *dst) 4704 /// 4705 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4706 llvm::Value *src, Address dst, 4707 bool threadlocal) { 4708 llvm::Type * SrcTy = src->getType(); 4709 if (!isa<llvm::PointerType>(SrcTy)) { 4710 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4711 assert(Size <= 8 && "does not support size > 8"); 4712 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4713 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4714 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4715 } 4716 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4717 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4718 llvm::Value *args[] = { src, dst.getPointer() }; 4719 if (!threadlocal) 4720 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4721 args, "globalassign"); 4722 else 4723 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4724 args, "threadlocalassign"); 4725 } 4726 4727 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4728 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4729 /// 4730 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4731 llvm::Value *src, Address dst, 4732 llvm::Value *ivarOffset) { 4733 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4734 llvm::Type * SrcTy = src->getType(); 4735 if (!isa<llvm::PointerType>(SrcTy)) { 4736 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4737 assert(Size <= 8 && "does not support size > 8"); 4738 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4739 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4740 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4741 } 4742 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4743 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4744 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4745 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4746 } 4747 4748 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4749 /// objc_assign_strongCast (id src, id *dst) 4750 /// 4751 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4752 llvm::Value *src, Address dst) { 4753 llvm::Type * SrcTy = src->getType(); 4754 if (!isa<llvm::PointerType>(SrcTy)) { 4755 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4756 assert(Size <= 8 && "does not support size > 8"); 4757 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4758 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4759 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4760 } 4761 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4762 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4763 llvm::Value *args[] = { src, dst.getPointer() }; 4764 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4765 args, "strongassign"); 4766 } 4767 4768 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4769 Address DestPtr, 4770 Address SrcPtr, 4771 llvm::Value *size) { 4772 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4773 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4774 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4775 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4776 } 4777 4778 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4779 /// 4780 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4781 QualType ObjectTy, 4782 llvm::Value *BaseValue, 4783 const ObjCIvarDecl *Ivar, 4784 unsigned CVRQualifiers) { 4785 const ObjCInterfaceDecl *ID = 4786 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4787 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4788 EmitIvarOffset(CGF, ID, Ivar)); 4789 } 4790 4791 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4792 const ObjCInterfaceDecl *Interface, 4793 const ObjCIvarDecl *Ivar) { 4794 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4795 return llvm::ConstantInt::get( 4796 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4797 Offset); 4798 } 4799 4800 /* *** Private Interface *** */ 4801 4802 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 4803 StringRef MachOAttributes) { 4804 switch (CGM.getTriple().getObjectFormat()) { 4805 default: 4806 llvm_unreachable("unexpected object file format"); 4807 case llvm::Triple::MachO: { 4808 if (MachOAttributes.empty()) 4809 return ("__DATA," + Section).str(); 4810 return ("__DATA," + Section + "," + MachOAttributes).str(); 4811 } 4812 case llvm::Triple::ELF: 4813 assert(Section.substr(0, 2) == "__" && 4814 "expected the name to begin with __"); 4815 return Section.substr(2).str(); 4816 case llvm::Triple::COFF: 4817 assert(Section.substr(0, 2) == "__" && 4818 "expected the name to begin with __"); 4819 return ("." + Section.substr(2) + "$B").str(); 4820 } 4821 } 4822 4823 /// EmitImageInfo - Emit the image info marker used to encode some module 4824 /// level information. 4825 /// 4826 /// See: <rdr://4810609&4810587&4810587> 4827 /// struct IMAGE_INFO { 4828 /// unsigned version; 4829 /// unsigned flags; 4830 /// }; 4831 enum ImageInfoFlags { 4832 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4833 eImageInfo_GarbageCollected = (1 << 1), 4834 eImageInfo_GCOnly = (1 << 2), 4835 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4836 4837 // A flag indicating that the module has no instances of a @synthesize of a 4838 // superclass variable. <rdar://problem/6803242> 4839 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4840 eImageInfo_ImageIsSimulated = (1 << 5), 4841 eImageInfo_ClassProperties = (1 << 6) 4842 }; 4843 4844 void CGObjCCommonMac::EmitImageInfo() { 4845 unsigned version = 0; // Version is unused? 4846 std::string Section = 4847 (ObjCABI == 1) 4848 ? "__OBJC,__image_info,regular" 4849 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 4850 4851 // Generate module-level named metadata to convey this information to the 4852 // linker and code-gen. 4853 llvm::Module &Mod = CGM.getModule(); 4854 4855 // Add the ObjC ABI version to the module flags. 4856 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4857 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4858 version); 4859 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4860 llvm::MDString::get(VMContext, Section)); 4861 4862 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4863 // Non-GC overrides those files which specify GC. 4864 Mod.addModuleFlag(llvm::Module::Override, 4865 "Objective-C Garbage Collection", (uint32_t)0); 4866 } else { 4867 // Add the ObjC garbage collection value. 4868 Mod.addModuleFlag(llvm::Module::Error, 4869 "Objective-C Garbage Collection", 4870 eImageInfo_GarbageCollected); 4871 4872 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4873 // Add the ObjC GC Only value. 4874 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4875 eImageInfo_GCOnly); 4876 4877 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4878 llvm::Metadata *Ops[2] = { 4879 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4880 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4881 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4882 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4883 llvm::MDNode::get(VMContext, Ops)); 4884 } 4885 } 4886 4887 // Indicate whether we're compiling this to run on a simulator. 4888 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4889 if ((Triple.isiOS() || Triple.isWatchOS()) && 4890 (Triple.getArch() == llvm::Triple::x86 || 4891 Triple.getArch() == llvm::Triple::x86_64)) 4892 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4893 eImageInfo_ImageIsSimulated); 4894 4895 // Indicate whether we are generating class properties. 4896 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 4897 eImageInfo_ClassProperties); 4898 } 4899 4900 // struct objc_module { 4901 // unsigned long version; 4902 // unsigned long size; 4903 // const char *name; 4904 // Symtab symtab; 4905 // }; 4906 4907 // FIXME: Get from somewhere 4908 static const int ModuleVersion = 7; 4909 4910 void CGObjCMac::EmitModuleInfo() { 4911 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4912 4913 ConstantInitBuilder builder(CGM); 4914 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 4915 values.addInt(ObjCTypes.LongTy, ModuleVersion); 4916 values.addInt(ObjCTypes.LongTy, Size); 4917 // This used to be the filename, now it is unused. <rdr://4327263> 4918 values.add(GetClassName(StringRef(""))); 4919 values.add(EmitModuleSymbols()); 4920 CreateMetadataVar("OBJC_MODULES", values, 4921 "__OBJC,__module_info,regular,no_dead_strip", 4922 CGM.getPointerAlign(), true); 4923 } 4924 4925 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4926 unsigned NumClasses = DefinedClasses.size(); 4927 unsigned NumCategories = DefinedCategories.size(); 4928 4929 // Return null if no symbols were defined. 4930 if (!NumClasses && !NumCategories) 4931 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4932 4933 ConstantInitBuilder builder(CGM); 4934 auto values = builder.beginStruct(); 4935 values.addInt(ObjCTypes.LongTy, 0); 4936 values.addNullPointer(ObjCTypes.SelectorPtrTy); 4937 values.addInt(ObjCTypes.ShortTy, NumClasses); 4938 values.addInt(ObjCTypes.ShortTy, NumCategories); 4939 4940 // The runtime expects exactly the list of defined classes followed 4941 // by the list of defined categories, in a single array. 4942 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 4943 for (unsigned i=0; i<NumClasses; i++) { 4944 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4945 assert(ID); 4946 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4947 // We are implementing a weak imported interface. Give it external linkage 4948 if (ID->isWeakImported() && !IMP->isWeakImported()) 4949 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4950 4951 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 4952 } 4953 for (unsigned i=0; i<NumCategories; i++) 4954 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 4955 4956 array.finishAndAddTo(values); 4957 4958 llvm::GlobalVariable *GV = CreateMetadataVar( 4959 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 4960 CGM.getPointerAlign(), true); 4961 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4962 } 4963 4964 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4965 IdentifierInfo *II) { 4966 LazySymbols.insert(II); 4967 4968 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4969 4970 if (!Entry) { 4971 llvm::Constant *Casted = 4972 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4973 ObjCTypes.ClassPtrTy); 4974 Entry = CreateMetadataVar( 4975 "OBJC_CLASS_REFERENCES_", Casted, 4976 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4977 CGM.getPointerAlign(), true); 4978 } 4979 4980 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4981 } 4982 4983 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4984 const ObjCInterfaceDecl *ID) { 4985 // If the class has the objc_runtime_visible attribute, we need to 4986 // use the Objective-C runtime to get the class. 4987 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 4988 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 4989 4990 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4991 } 4992 4993 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4994 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4995 return EmitClassRefFromId(CGF, II); 4996 } 4997 4998 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4999 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 5000 } 5001 5002 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 5003 CharUnits Align = CGF.getPointerAlign(); 5004 5005 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5006 if (!Entry) { 5007 llvm::Constant *Casted = 5008 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5009 ObjCTypes.SelectorPtrTy); 5010 Entry = CreateMetadataVar( 5011 "OBJC_SELECTOR_REFERENCES_", Casted, 5012 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5013 Entry->setExternallyInitialized(true); 5014 } 5015 5016 return Address(Entry, Align); 5017 } 5018 5019 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5020 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5021 if (!Entry) 5022 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5023 return getConstantGEP(VMContext, Entry, 0, 0); 5024 } 5025 5026 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5027 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5028 I = MethodDefinitions.find(MD); 5029 if (I != MethodDefinitions.end()) 5030 return I->second; 5031 5032 return nullptr; 5033 } 5034 5035 /// GetIvarLayoutName - Returns a unique constant for the given 5036 /// ivar layout bitmap. 5037 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5038 const ObjCCommonTypesHelper &ObjCTypes) { 5039 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5040 } 5041 5042 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5043 CharUnits offset) { 5044 const RecordDecl *RD = RT->getDecl(); 5045 5046 // If this is a union, remember that we had one, because it might mess 5047 // up the ordering of layout entries. 5048 if (RD->isUnion()) 5049 IsDisordered = true; 5050 5051 const ASTRecordLayout *recLayout = nullptr; 5052 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5053 [&](const FieldDecl *field) -> CharUnits { 5054 if (!recLayout) 5055 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5056 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5057 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5058 }); 5059 } 5060 5061 template <class Iterator, class GetOffsetFn> 5062 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5063 CharUnits aggregateOffset, 5064 const GetOffsetFn &getOffset) { 5065 for (; begin != end; ++begin) { 5066 auto field = *begin; 5067 5068 // Skip over bitfields. 5069 if (field->isBitField()) { 5070 continue; 5071 } 5072 5073 // Compute the offset of the field within the aggregate. 5074 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5075 5076 visitField(field, fieldOffset); 5077 } 5078 } 5079 5080 /// Collect layout information for the given fields into IvarsInfo. 5081 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5082 CharUnits fieldOffset) { 5083 QualType fieldType = field->getType(); 5084 5085 // Drill down into arrays. 5086 uint64_t numElts = 1; 5087 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5088 numElts *= arrayType->getSize().getZExtValue(); 5089 fieldType = arrayType->getElementType(); 5090 } 5091 5092 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5093 5094 // If we ended up with a zero-sized array, we've done what we can do within 5095 // the limits of this layout encoding. 5096 if (numElts == 0) return; 5097 5098 // Recurse if the base element type is a record type. 5099 if (auto recType = fieldType->getAs<RecordType>()) { 5100 size_t oldEnd = IvarsInfo.size(); 5101 5102 visitRecord(recType, fieldOffset); 5103 5104 // If we have an array, replicate the first entry's layout information. 5105 auto numEltEntries = IvarsInfo.size() - oldEnd; 5106 if (numElts != 1 && numEltEntries != 0) { 5107 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5108 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5109 // Copy the last numEltEntries onto the end of the array, adjusting 5110 // each for the element size. 5111 for (size_t i = 0; i != numEltEntries; ++i) { 5112 auto firstEntry = IvarsInfo[oldEnd + i]; 5113 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5114 firstEntry.SizeInWords)); 5115 } 5116 } 5117 } 5118 5119 return; 5120 } 5121 5122 // Classify the element type. 5123 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5124 5125 // If it matches what we're looking for, add an entry. 5126 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5127 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5128 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5129 == CGM.getPointerSize()); 5130 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5131 } 5132 } 5133 5134 /// buildBitmap - This routine does the horsework of taking the offsets of 5135 /// strong/weak references and creating a bitmap. The bitmap is also 5136 /// returned in the given buffer, suitable for being passed to \c dump(). 5137 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5138 llvm::SmallVectorImpl<unsigned char> &buffer) { 5139 // The bitmap is a series of skip/scan instructions, aligned to word 5140 // boundaries. The skip is performed first. 5141 const unsigned char MaxNibble = 0xF; 5142 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5143 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5144 5145 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5146 5147 // Sort the ivar info on byte position in case we encounterred a 5148 // union nested in the ivar list. 5149 if (IsDisordered) { 5150 // This isn't a stable sort, but our algorithm should handle it fine. 5151 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5152 } else { 5153 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5154 } 5155 assert(IvarsInfo.back().Offset < InstanceEnd); 5156 5157 assert(buffer.empty()); 5158 5159 // Skip the next N words. 5160 auto skip = [&](unsigned numWords) { 5161 assert(numWords > 0); 5162 5163 // Try to merge into the previous byte. Since scans happen second, we 5164 // can't do this if it includes a scan. 5165 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5166 unsigned lastSkip = buffer.back() >> SkipShift; 5167 if (lastSkip < MaxNibble) { 5168 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5169 numWords -= claimed; 5170 lastSkip += claimed; 5171 buffer.back() = (lastSkip << SkipShift); 5172 } 5173 } 5174 5175 while (numWords >= MaxNibble) { 5176 buffer.push_back(MaxNibble << SkipShift); 5177 numWords -= MaxNibble; 5178 } 5179 if (numWords) { 5180 buffer.push_back(numWords << SkipShift); 5181 } 5182 }; 5183 5184 // Scan the next N words. 5185 auto scan = [&](unsigned numWords) { 5186 assert(numWords > 0); 5187 5188 // Try to merge into the previous byte. Since scans happen second, we can 5189 // do this even if it includes a skip. 5190 if (!buffer.empty()) { 5191 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5192 if (lastScan < MaxNibble) { 5193 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5194 numWords -= claimed; 5195 lastScan += claimed; 5196 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5197 } 5198 } 5199 5200 while (numWords >= MaxNibble) { 5201 buffer.push_back(MaxNibble << ScanShift); 5202 numWords -= MaxNibble; 5203 } 5204 if (numWords) { 5205 buffer.push_back(numWords << ScanShift); 5206 } 5207 }; 5208 5209 // One past the end of the last scan. 5210 unsigned endOfLastScanInWords = 0; 5211 const CharUnits WordSize = CGM.getPointerSize(); 5212 5213 // Consider all the scan requests. 5214 for (auto &request : IvarsInfo) { 5215 CharUnits beginOfScan = request.Offset - InstanceBegin; 5216 5217 // Ignore scan requests that don't start at an even multiple of the 5218 // word size. We can't encode them. 5219 if ((beginOfScan % WordSize) != 0) continue; 5220 5221 // Ignore scan requests that start before the instance start. 5222 // This assumes that scans never span that boundary. The boundary 5223 // isn't the true start of the ivars, because in the fragile-ARC case 5224 // it's rounded up to word alignment, but the test above should leave 5225 // us ignoring that possibility. 5226 if (beginOfScan.isNegative()) { 5227 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5228 continue; 5229 } 5230 5231 unsigned beginOfScanInWords = beginOfScan / WordSize; 5232 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5233 5234 // If the scan starts some number of words after the last one ended, 5235 // skip forward. 5236 if (beginOfScanInWords > endOfLastScanInWords) { 5237 skip(beginOfScanInWords - endOfLastScanInWords); 5238 5239 // Otherwise, start scanning where the last left off. 5240 } else { 5241 beginOfScanInWords = endOfLastScanInWords; 5242 5243 // If that leaves us with nothing to scan, ignore this request. 5244 if (beginOfScanInWords >= endOfScanInWords) continue; 5245 } 5246 5247 // Scan to the end of the request. 5248 assert(beginOfScanInWords < endOfScanInWords); 5249 scan(endOfScanInWords - beginOfScanInWords); 5250 endOfLastScanInWords = endOfScanInWords; 5251 } 5252 5253 if (buffer.empty()) 5254 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5255 5256 // For GC layouts, emit a skip to the end of the allocation so that we 5257 // have precise information about the entire thing. This isn't useful 5258 // or necessary for the ARC-style layout strings. 5259 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5260 unsigned lastOffsetInWords = 5261 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5262 if (lastOffsetInWords > endOfLastScanInWords) { 5263 skip(lastOffsetInWords - endOfLastScanInWords); 5264 } 5265 } 5266 5267 // Null terminate the string. 5268 buffer.push_back(0); 5269 5270 auto *Entry = CGObjC.CreateCStringLiteral( 5271 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5272 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5273 } 5274 5275 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5276 /// implementation for the __strong or __weak case. 5277 /// The layout map displays which words in ivar list must be skipped 5278 /// and which must be scanned by GC (see below). String is built of bytes. 5279 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5280 /// of words to skip and right nibble is count of words to scan. So, each 5281 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5282 /// represented by a 0x00 byte which also ends the string. 5283 /// 1. when ForStrongLayout is true, following ivars are scanned: 5284 /// - id, Class 5285 /// - object * 5286 /// - __strong anything 5287 /// 5288 /// 2. When ForStrongLayout is false, following ivars are scanned: 5289 /// - __weak anything 5290 /// 5291 llvm::Constant * 5292 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5293 CharUnits beginOffset, CharUnits endOffset, 5294 bool ForStrongLayout, bool HasMRCWeakIvars) { 5295 // If this is MRC, and we're either building a strong layout or there 5296 // are no weak ivars, bail out early. 5297 llvm::Type *PtrTy = CGM.Int8PtrTy; 5298 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5299 !CGM.getLangOpts().ObjCAutoRefCount && 5300 (ForStrongLayout || !HasMRCWeakIvars)) 5301 return llvm::Constant::getNullValue(PtrTy); 5302 5303 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5304 SmallVector<const ObjCIvarDecl*, 32> ivars; 5305 5306 // GC layout strings include the complete object layout, possibly 5307 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5308 // up. 5309 // 5310 // ARC layout strings only include the class's ivars. In non-fragile 5311 // runtimes, that means starting at InstanceStart, rounded up to word 5312 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5313 // starting at the offset of the first ivar, rounded up to word alignment. 5314 // 5315 // MRC weak layout strings follow the ARC style. 5316 CharUnits baseOffset; 5317 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5318 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5319 IVD; IVD = IVD->getNextIvar()) 5320 ivars.push_back(IVD); 5321 5322 if (isNonFragileABI()) { 5323 baseOffset = beginOffset; // InstanceStart 5324 } else if (!ivars.empty()) { 5325 baseOffset = 5326 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5327 } else { 5328 baseOffset = CharUnits::Zero(); 5329 } 5330 5331 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5332 } 5333 else { 5334 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5335 5336 baseOffset = CharUnits::Zero(); 5337 } 5338 5339 if (ivars.empty()) 5340 return llvm::Constant::getNullValue(PtrTy); 5341 5342 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5343 5344 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5345 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5346 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5347 }); 5348 5349 if (!builder.hasBitmapData()) 5350 return llvm::Constant::getNullValue(PtrTy); 5351 5352 llvm::SmallVector<unsigned char, 4> buffer; 5353 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5354 5355 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5356 printf("\n%s ivar layout for class '%s': ", 5357 ForStrongLayout ? "strong" : "weak", 5358 OMD->getClassInterface()->getName().str().c_str()); 5359 builder.dump(buffer); 5360 } 5361 return C; 5362 } 5363 5364 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5365 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5366 // FIXME: Avoid std::string in "Sel.getAsString()" 5367 if (!Entry) 5368 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5369 return getConstantGEP(VMContext, Entry, 0, 0); 5370 } 5371 5372 // FIXME: Merge into a single cstring creation function. 5373 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5374 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5375 } 5376 5377 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5378 std::string TypeStr; 5379 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5380 5381 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5382 if (!Entry) 5383 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5384 return getConstantGEP(VMContext, Entry, 0, 0); 5385 } 5386 5387 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5388 bool Extended) { 5389 std::string TypeStr = 5390 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5391 5392 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5393 if (!Entry) 5394 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5395 return getConstantGEP(VMContext, Entry, 0, 0); 5396 } 5397 5398 // FIXME: Merge into a single cstring creation function. 5399 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5400 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5401 if (!Entry) 5402 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5403 return getConstantGEP(VMContext, Entry, 0, 0); 5404 } 5405 5406 // FIXME: Merge into a single cstring creation function. 5407 // FIXME: This Decl should be more precise. 5408 llvm::Constant * 5409 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5410 const Decl *Container) { 5411 std::string TypeStr = 5412 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5413 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5414 } 5415 5416 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5417 const ObjCContainerDecl *CD, 5418 SmallVectorImpl<char> &Name) { 5419 llvm::raw_svector_ostream OS(Name); 5420 assert (CD && "Missing container decl in GetNameForMethod"); 5421 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5422 << '[' << CD->getName(); 5423 if (const ObjCCategoryImplDecl *CID = 5424 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5425 OS << '(' << *CID << ')'; 5426 OS << ' ' << D->getSelector().getAsString() << ']'; 5427 } 5428 5429 void CGObjCMac::FinishModule() { 5430 EmitModuleInfo(); 5431 5432 // Emit the dummy bodies for any protocols which were referenced but 5433 // never defined. 5434 for (auto &entry : Protocols) { 5435 llvm::GlobalVariable *global = entry.second; 5436 if (global->hasInitializer()) 5437 continue; 5438 5439 ConstantInitBuilder builder(CGM); 5440 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5441 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5442 values.add(GetClassName(entry.first->getName())); 5443 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5444 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5445 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5446 values.finishAndSetAsInitializer(global); 5447 CGM.addCompilerUsedGlobal(global); 5448 } 5449 5450 // Add assembler directives to add lazy undefined symbol references 5451 // for classes which are referenced but not defined. This is 5452 // important for correct linker interaction. 5453 // 5454 // FIXME: It would be nice if we had an LLVM construct for this. 5455 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5456 CGM.getTriple().isOSBinFormatMachO()) { 5457 SmallString<256> Asm; 5458 Asm += CGM.getModule().getModuleInlineAsm(); 5459 if (!Asm.empty() && Asm.back() != '\n') 5460 Asm += '\n'; 5461 5462 llvm::raw_svector_ostream OS(Asm); 5463 for (const auto *Sym : DefinedSymbols) 5464 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5465 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5466 for (const auto *Sym : LazySymbols) 5467 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5468 for (const auto &Category : DefinedCategoryNames) 5469 OS << "\t.objc_category_name_" << Category << "=0\n" 5470 << "\t.globl .objc_category_name_" << Category << "\n"; 5471 5472 CGM.getModule().setModuleInlineAsm(OS.str()); 5473 } 5474 } 5475 5476 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5477 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5478 ObjCEmptyVtableVar(nullptr) { 5479 ObjCABI = 2; 5480 } 5481 5482 /* *** */ 5483 5484 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5485 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5486 { 5487 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5488 ASTContext &Ctx = CGM.getContext(); 5489 5490 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5491 IntTy = CGM.IntTy; 5492 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5493 Int8PtrTy = CGM.Int8PtrTy; 5494 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5495 5496 // arm64 targets use "int" ivar offset variables. All others, 5497 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5498 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5499 IvarOffsetVarTy = IntTy; 5500 else 5501 IvarOffsetVarTy = LongTy; 5502 5503 ObjectPtrTy = 5504 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5505 PtrObjectPtrTy = 5506 llvm::PointerType::getUnqual(ObjectPtrTy); 5507 SelectorPtrTy = 5508 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5509 5510 // I'm not sure I like this. The implicit coordination is a bit 5511 // gross. We should solve this in a reasonable fashion because this 5512 // is a pretty common task (match some runtime data structure with 5513 // an LLVM data structure). 5514 5515 // FIXME: This is leaked. 5516 // FIXME: Merge with rewriter code? 5517 5518 // struct _objc_super { 5519 // id self; 5520 // Class cls; 5521 // } 5522 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5523 Ctx.getTranslationUnitDecl(), 5524 SourceLocation(), SourceLocation(), 5525 &Ctx.Idents.get("_objc_super")); 5526 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5527 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5528 false, ICIS_NoInit)); 5529 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5530 nullptr, Ctx.getObjCClassType(), nullptr, 5531 nullptr, false, ICIS_NoInit)); 5532 RD->completeDefinition(); 5533 5534 SuperCTy = Ctx.getTagDeclType(RD); 5535 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5536 5537 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5538 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5539 5540 // struct _prop_t { 5541 // char *name; 5542 // char *attributes; 5543 // } 5544 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5545 5546 // struct _prop_list_t { 5547 // uint32_t entsize; // sizeof(struct _prop_t) 5548 // uint32_t count_of_properties; 5549 // struct _prop_t prop_list[count_of_properties]; 5550 // } 5551 PropertyListTy = llvm::StructType::create( 5552 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5553 // struct _prop_list_t * 5554 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5555 5556 // struct _objc_method { 5557 // SEL _cmd; 5558 // char *method_type; 5559 // char *_imp; 5560 // } 5561 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5562 Int8PtrTy, Int8PtrTy); 5563 5564 // struct _objc_cache * 5565 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5566 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5567 } 5568 5569 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5570 : ObjCCommonTypesHelper(cgm) { 5571 // struct _objc_method_description { 5572 // SEL name; 5573 // char *types; 5574 // } 5575 MethodDescriptionTy = llvm::StructType::create( 5576 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5577 5578 // struct _objc_method_description_list { 5579 // int count; 5580 // struct _objc_method_description[1]; 5581 // } 5582 MethodDescriptionListTy = 5583 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5584 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5585 5586 // struct _objc_method_description_list * 5587 MethodDescriptionListPtrTy = 5588 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5589 5590 // Protocol description structures 5591 5592 // struct _objc_protocol_extension { 5593 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5594 // struct _objc_method_description_list *optional_instance_methods; 5595 // struct _objc_method_description_list *optional_class_methods; 5596 // struct _objc_property_list *instance_properties; 5597 // const char ** extendedMethodTypes; 5598 // struct _objc_property_list *class_properties; 5599 // } 5600 ProtocolExtensionTy = llvm::StructType::create( 5601 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5602 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5603 PropertyListPtrTy); 5604 5605 // struct _objc_protocol_extension * 5606 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5607 5608 // Handle recursive construction of Protocol and ProtocolList types 5609 5610 ProtocolTy = 5611 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5612 5613 ProtocolListTy = 5614 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5615 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5616 llvm::ArrayType::get(ProtocolTy, 0)); 5617 5618 // struct _objc_protocol { 5619 // struct _objc_protocol_extension *isa; 5620 // char *protocol_name; 5621 // struct _objc_protocol **_objc_protocol_list; 5622 // struct _objc_method_description_list *instance_methods; 5623 // struct _objc_method_description_list *class_methods; 5624 // } 5625 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5626 llvm::PointerType::getUnqual(ProtocolListTy), 5627 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5628 5629 // struct _objc_protocol_list * 5630 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5631 5632 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5633 5634 // Class description structures 5635 5636 // struct _objc_ivar { 5637 // char *ivar_name; 5638 // char *ivar_type; 5639 // int ivar_offset; 5640 // } 5641 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5642 IntTy); 5643 5644 // struct _objc_ivar_list * 5645 IvarListTy = 5646 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5647 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5648 5649 // struct _objc_method_list * 5650 MethodListTy = 5651 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5652 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5653 5654 // struct _objc_class_extension * 5655 ClassExtensionTy = llvm::StructType::create( 5656 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5657 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5658 5659 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5660 5661 // struct _objc_class { 5662 // Class isa; 5663 // Class super_class; 5664 // char *name; 5665 // long version; 5666 // long info; 5667 // long instance_size; 5668 // struct _objc_ivar_list *ivars; 5669 // struct _objc_method_list *methods; 5670 // struct _objc_cache *cache; 5671 // struct _objc_protocol_list *protocols; 5672 // char *ivar_layout; 5673 // struct _objc_class_ext *ext; 5674 // }; 5675 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5676 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5677 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5678 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5679 5680 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5681 5682 // struct _objc_category { 5683 // char *category_name; 5684 // char *class_name; 5685 // struct _objc_method_list *instance_method; 5686 // struct _objc_method_list *class_method; 5687 // struct _objc_protocol_list *protocols; 5688 // uint32_t size; // sizeof(struct _objc_category) 5689 // struct _objc_property_list *instance_properties;// category's @property 5690 // struct _objc_property_list *class_properties; 5691 // } 5692 CategoryTy = llvm::StructType::create( 5693 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5694 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5695 PropertyListPtrTy); 5696 5697 // Global metadata structures 5698 5699 // struct _objc_symtab { 5700 // long sel_ref_cnt; 5701 // SEL *refs; 5702 // short cls_def_cnt; 5703 // short cat_def_cnt; 5704 // char *defs[cls_def_cnt + cat_def_cnt]; 5705 // } 5706 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5707 SelectorPtrTy, ShortTy, ShortTy, 5708 llvm::ArrayType::get(Int8PtrTy, 0)); 5709 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5710 5711 // struct _objc_module { 5712 // long version; 5713 // long size; // sizeof(struct _objc_module) 5714 // char *name; 5715 // struct _objc_symtab* symtab; 5716 // } 5717 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5718 Int8PtrTy, SymtabPtrTy); 5719 5720 // FIXME: This is the size of the setjmp buffer and should be target 5721 // specific. 18 is what's used on 32-bit X86. 5722 uint64_t SetJmpBufferSize = 18; 5723 5724 // Exceptions 5725 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5726 5727 ExceptionDataTy = llvm::StructType::create( 5728 "struct._objc_exception_data", 5729 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5730 } 5731 5732 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5733 : ObjCCommonTypesHelper(cgm) { 5734 // struct _method_list_t { 5735 // uint32_t entsize; // sizeof(struct _objc_method) 5736 // uint32_t method_count; 5737 // struct _objc_method method_list[method_count]; 5738 // } 5739 MethodListnfABITy = 5740 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5741 llvm::ArrayType::get(MethodTy, 0)); 5742 // struct method_list_t * 5743 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5744 5745 // struct _protocol_t { 5746 // id isa; // NULL 5747 // const char * const protocol_name; 5748 // const struct _protocol_list_t * protocol_list; // super protocols 5749 // const struct method_list_t * const instance_methods; 5750 // const struct method_list_t * const class_methods; 5751 // const struct method_list_t *optionalInstanceMethods; 5752 // const struct method_list_t *optionalClassMethods; 5753 // const struct _prop_list_t * properties; 5754 // const uint32_t size; // sizeof(struct _protocol_t) 5755 // const uint32_t flags; // = 0 5756 // const char ** extendedMethodTypes; 5757 // const char *demangledName; 5758 // const struct _prop_list_t * class_properties; 5759 // } 5760 5761 // Holder for struct _protocol_list_t * 5762 ProtocolListnfABITy = 5763 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5764 5765 ProtocolnfABITy = llvm::StructType::create( 5766 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5767 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 5768 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5769 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 5770 PropertyListPtrTy); 5771 5772 // struct _protocol_t* 5773 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5774 5775 // struct _protocol_list_t { 5776 // long protocol_count; // Note, this is 32/64 bit 5777 // struct _protocol_t *[protocol_count]; 5778 // } 5779 ProtocolListnfABITy->setBody(LongTy, 5780 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 5781 5782 // struct _objc_protocol_list* 5783 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5784 5785 // struct _ivar_t { 5786 // unsigned [long] int *offset; // pointer to ivar offset location 5787 // char *name; 5788 // char *type; 5789 // uint32_t alignment; 5790 // uint32_t size; 5791 // } 5792 IvarnfABITy = llvm::StructType::create( 5793 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5794 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 5795 5796 // struct _ivar_list_t { 5797 // uint32 entsize; // sizeof(struct _ivar_t) 5798 // uint32 count; 5799 // struct _iver_t list[count]; 5800 // } 5801 IvarListnfABITy = 5802 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5803 llvm::ArrayType::get(IvarnfABITy, 0)); 5804 5805 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5806 5807 // struct _class_ro_t { 5808 // uint32_t const flags; 5809 // uint32_t const instanceStart; 5810 // uint32_t const instanceSize; 5811 // uint32_t const reserved; // only when building for 64bit targets 5812 // const uint8_t * const ivarLayout; 5813 // const char *const name; 5814 // const struct _method_list_t * const baseMethods; 5815 // const struct _objc_protocol_list *const baseProtocols; 5816 // const struct _ivar_list_t *const ivars; 5817 // const uint8_t * const weakIvarLayout; 5818 // const struct _prop_list_t * const properties; 5819 // } 5820 5821 // FIXME. Add 'reserved' field in 64bit abi mode! 5822 ClassRonfABITy = llvm::StructType::create( 5823 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 5824 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 5825 Int8PtrTy, PropertyListPtrTy); 5826 5827 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5828 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5829 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5830 ->getPointerTo(); 5831 5832 // struct _class_t { 5833 // struct _class_t *isa; 5834 // struct _class_t * const superclass; 5835 // void *cache; 5836 // IMP *vtable; 5837 // struct class_ro_t *ro; 5838 // } 5839 5840 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5841 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5842 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 5843 llvm::PointerType::getUnqual(ImpnfABITy), 5844 llvm::PointerType::getUnqual(ClassRonfABITy)); 5845 5846 // LLVM for struct _class_t * 5847 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5848 5849 // struct _category_t { 5850 // const char * const name; 5851 // struct _class_t *const cls; 5852 // const struct _method_list_t * const instance_methods; 5853 // const struct _method_list_t * const class_methods; 5854 // const struct _protocol_list_t * const protocols; 5855 // const struct _prop_list_t * const properties; 5856 // const struct _prop_list_t * const class_properties; 5857 // const uint32_t size; 5858 // } 5859 CategorynfABITy = llvm::StructType::create( 5860 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 5861 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 5862 PropertyListPtrTy, IntTy); 5863 5864 // New types for nonfragile abi messaging. 5865 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5866 ASTContext &Ctx = CGM.getContext(); 5867 5868 // MessageRefTy - LLVM for: 5869 // struct _message_ref_t { 5870 // IMP messenger; 5871 // SEL name; 5872 // }; 5873 5874 // First the clang type for struct _message_ref_t 5875 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5876 Ctx.getTranslationUnitDecl(), 5877 SourceLocation(), SourceLocation(), 5878 &Ctx.Idents.get("_message_ref_t")); 5879 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5880 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5881 ICIS_NoInit)); 5882 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5883 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5884 false, ICIS_NoInit)); 5885 RD->completeDefinition(); 5886 5887 MessageRefCTy = Ctx.getTagDeclType(RD); 5888 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5889 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5890 5891 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5892 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5893 5894 // SuperMessageRefTy - LLVM for: 5895 // struct _super_message_ref_t { 5896 // SUPER_IMP messenger; 5897 // SEL name; 5898 // }; 5899 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 5900 ImpnfABITy, SelectorPtrTy); 5901 5902 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5903 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5904 5905 5906 // struct objc_typeinfo { 5907 // const void** vtable; // objc_ehtype_vtable + 2 5908 // const char* name; // c++ typeinfo string 5909 // Class cls; 5910 // }; 5911 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 5912 llvm::PointerType::getUnqual(Int8PtrTy), 5913 Int8PtrTy, ClassnfABIPtrTy); 5914 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5915 } 5916 5917 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5918 FinishNonFragileABIModule(); 5919 5920 return nullptr; 5921 } 5922 5923 void CGObjCNonFragileABIMac::AddModuleClassList( 5924 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 5925 StringRef SectionName) { 5926 unsigned NumClasses = Container.size(); 5927 5928 if (!NumClasses) 5929 return; 5930 5931 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5932 for (unsigned i=0; i<NumClasses; i++) 5933 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5934 ObjCTypes.Int8PtrTy); 5935 llvm::Constant *Init = 5936 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5937 Symbols.size()), 5938 Symbols); 5939 5940 llvm::GlobalVariable *GV = 5941 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5942 llvm::GlobalValue::PrivateLinkage, 5943 Init, 5944 SymbolName); 5945 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5946 GV->setSection(SectionName); 5947 CGM.addCompilerUsedGlobal(GV); 5948 } 5949 5950 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5951 // nonfragile abi has no module definition. 5952 5953 // Build list of all implemented class addresses in array 5954 // L_OBJC_LABEL_CLASS_$. 5955 5956 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5957 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5958 assert(ID); 5959 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5960 // We are implementing a weak imported interface. Give it external linkage 5961 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5962 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5963 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5964 } 5965 } 5966 5967 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5968 GetSectionName("__objc_classlist", 5969 "regular,no_dead_strip")); 5970 5971 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5972 GetSectionName("__objc_nlclslist", 5973 "regular,no_dead_strip")); 5974 5975 // Build list of all implemented category addresses in array 5976 // L_OBJC_LABEL_CATEGORY_$. 5977 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5978 GetSectionName("__objc_catlist", 5979 "regular,no_dead_strip")); 5980 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5981 GetSectionName("__objc_nlcatlist", 5982 "regular,no_dead_strip")); 5983 5984 EmitImageInfo(); 5985 } 5986 5987 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5988 /// VTableDispatchMethods; false otherwise. What this means is that 5989 /// except for the 19 selectors in the list, we generate 32bit-style 5990 /// message dispatch call for all the rest. 5991 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5992 // At various points we've experimented with using vtable-based 5993 // dispatch for all methods. 5994 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5995 case CodeGenOptions::Legacy: 5996 return false; 5997 case CodeGenOptions::NonLegacy: 5998 return true; 5999 case CodeGenOptions::Mixed: 6000 break; 6001 } 6002 6003 // If so, see whether this selector is in the white-list of things which must 6004 // use the new dispatch convention. We lazily build a dense set for this. 6005 if (VTableDispatchMethods.empty()) { 6006 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6007 VTableDispatchMethods.insert(GetNullarySelector("class")); 6008 VTableDispatchMethods.insert(GetNullarySelector("self")); 6009 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6010 VTableDispatchMethods.insert(GetNullarySelector("length")); 6011 VTableDispatchMethods.insert(GetNullarySelector("count")); 6012 6013 // These are vtable-based if GC is disabled. 6014 // Optimistically use vtable dispatch for hybrid compiles. 6015 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6016 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6017 VTableDispatchMethods.insert(GetNullarySelector("release")); 6018 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6019 } 6020 6021 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6022 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6023 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6024 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6025 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6026 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6027 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6028 6029 // These are vtable-based if GC is enabled. 6030 // Optimistically use vtable dispatch for hybrid compiles. 6031 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6032 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6033 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6034 6035 // "countByEnumeratingWithState:objects:count" 6036 IdentifierInfo *KeyIdents[] = { 6037 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6038 &CGM.getContext().Idents.get("objects"), 6039 &CGM.getContext().Idents.get("count") 6040 }; 6041 VTableDispatchMethods.insert( 6042 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6043 } 6044 } 6045 6046 return VTableDispatchMethods.count(Sel); 6047 } 6048 6049 /// BuildClassRoTInitializer - generate meta-data for: 6050 /// struct _class_ro_t { 6051 /// uint32_t const flags; 6052 /// uint32_t const instanceStart; 6053 /// uint32_t const instanceSize; 6054 /// uint32_t const reserved; // only when building for 64bit targets 6055 /// const uint8_t * const ivarLayout; 6056 /// const char *const name; 6057 /// const struct _method_list_t * const baseMethods; 6058 /// const struct _protocol_list_t *const baseProtocols; 6059 /// const struct _ivar_list_t *const ivars; 6060 /// const uint8_t * const weakIvarLayout; 6061 /// const struct _prop_list_t * const properties; 6062 /// } 6063 /// 6064 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6065 unsigned flags, 6066 unsigned InstanceStart, 6067 unsigned InstanceSize, 6068 const ObjCImplementationDecl *ID) { 6069 std::string ClassName = ID->getObjCRuntimeNameAsString(); 6070 6071 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6072 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6073 6074 bool hasMRCWeak = false; 6075 if (CGM.getLangOpts().ObjCAutoRefCount) 6076 flags |= NonFragileABI_Class_CompiledByARC; 6077 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6078 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6079 6080 ConstantInitBuilder builder(CGM); 6081 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6082 6083 values.addInt(ObjCTypes.IntTy, flags); 6084 values.addInt(ObjCTypes.IntTy, InstanceStart); 6085 values.addInt(ObjCTypes.IntTy, InstanceSize); 6086 values.add((flags & NonFragileABI_Class_Meta) 6087 ? GetIvarLayoutName(nullptr, ObjCTypes) 6088 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6089 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6090 6091 // const struct _method_list_t * const baseMethods; 6092 SmallVector<const ObjCMethodDecl*, 16> methods; 6093 if (flags & NonFragileABI_Class_Meta) { 6094 for (const auto *MD : ID->class_methods()) 6095 methods.push_back(MD); 6096 } else { 6097 for (const auto *MD : ID->instance_methods()) 6098 methods.push_back(MD); 6099 6100 for (const auto *PID : ID->property_impls()) { 6101 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 6102 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6103 6104 if (auto MD = PD->getGetterMethodDecl()) 6105 if (GetMethodDefinition(MD)) 6106 methods.push_back(MD); 6107 if (auto MD = PD->getSetterMethodDecl()) 6108 if (GetMethodDefinition(MD)) 6109 methods.push_back(MD); 6110 } 6111 } 6112 } 6113 6114 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6115 (flags & NonFragileABI_Class_Meta) 6116 ? MethodListType::ClassMethods 6117 : MethodListType::InstanceMethods, 6118 methods)); 6119 6120 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6121 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6122 values.add(EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 6123 + OID->getObjCRuntimeNameAsString(), 6124 OID->all_referenced_protocol_begin(), 6125 OID->all_referenced_protocol_end())); 6126 6127 if (flags & NonFragileABI_Class_Meta) { 6128 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6129 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6130 values.add(EmitPropertyList( 6131 "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6132 ID, ID->getClassInterface(), ObjCTypes, true)); 6133 } else { 6134 values.add(EmitIvarList(ID)); 6135 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6136 values.add(EmitPropertyList( 6137 "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6138 ID, ID->getClassInterface(), ObjCTypes, false)); 6139 } 6140 6141 llvm::SmallString<64> roLabel; 6142 llvm::raw_svector_ostream(roLabel) 6143 << ((flags & NonFragileABI_Class_Meta) ? "\01l_OBJC_METACLASS_RO_$_" 6144 : "\01l_OBJC_CLASS_RO_$_") 6145 << ClassName; 6146 6147 llvm::GlobalVariable *CLASS_RO_GV = 6148 values.finishAndCreateGlobal(roLabel, CGM.getPointerAlign(), 6149 /*constant*/ false, 6150 llvm::GlobalValue::PrivateLinkage); 6151 if (CGM.getTriple().isOSBinFormatMachO()) 6152 CLASS_RO_GV->setSection("__DATA, __objc_const"); 6153 return CLASS_RO_GV; 6154 } 6155 6156 /// Build the metaclass object for a class. 6157 /// 6158 /// struct _class_t { 6159 /// struct _class_t *isa; 6160 /// struct _class_t * const superclass; 6161 /// void *cache; 6162 /// IMP *vtable; 6163 /// struct class_ro_t *ro; 6164 /// } 6165 /// 6166 llvm::GlobalVariable * 6167 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6168 bool isMetaclass, 6169 llvm::Constant *IsAGV, 6170 llvm::Constant *SuperClassGV, 6171 llvm::Constant *ClassRoGV, 6172 bool HiddenVisibility) { 6173 ConstantInitBuilder builder(CGM); 6174 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6175 values.add(IsAGV); 6176 if (SuperClassGV) { 6177 values.add(SuperClassGV); 6178 } else { 6179 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6180 } 6181 values.add(ObjCEmptyCacheVar); 6182 values.add(ObjCEmptyVtableVar); 6183 values.add(ClassRoGV); 6184 6185 llvm::GlobalVariable *GV = 6186 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6187 values.finishAndSetAsInitializer(GV); 6188 6189 if (CGM.getTriple().isOSBinFormatMachO()) 6190 GV->setSection("__DATA, __objc_data"); 6191 GV->setAlignment( 6192 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 6193 if (!CGM.getTriple().isOSBinFormatCOFF()) 6194 if (HiddenVisibility) 6195 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6196 return GV; 6197 } 6198 6199 bool 6200 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 6201 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 6202 } 6203 6204 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6205 uint32_t &InstanceStart, 6206 uint32_t &InstanceSize) { 6207 const ASTRecordLayout &RL = 6208 CGM.getContext().getASTObjCImplementationLayout(OID); 6209 6210 // InstanceSize is really instance end. 6211 InstanceSize = RL.getDataSize().getQuantity(); 6212 6213 // If there are no fields, the start is the same as the end. 6214 if (!RL.getFieldCount()) 6215 InstanceStart = InstanceSize; 6216 else 6217 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6218 } 6219 6220 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6221 StringRef Name) { 6222 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6223 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6224 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6225 6226 const VarDecl *VD = nullptr; 6227 for (const auto &Result : DC->lookup(&II)) 6228 if ((VD = dyn_cast<VarDecl>(Result))) 6229 break; 6230 6231 if (!VD) 6232 return llvm::GlobalValue::DLLImportStorageClass; 6233 if (VD->hasAttr<DLLExportAttr>()) 6234 return llvm::GlobalValue::DLLExportStorageClass; 6235 if (VD->hasAttr<DLLImportAttr>()) 6236 return llvm::GlobalValue::DLLImportStorageClass; 6237 return llvm::GlobalValue::DefaultStorageClass; 6238 } 6239 6240 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6241 if (!ObjCEmptyCacheVar) { 6242 ObjCEmptyCacheVar = 6243 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6244 llvm::GlobalValue::ExternalLinkage, nullptr, 6245 "_objc_empty_cache"); 6246 if (CGM.getTriple().isOSBinFormatCOFF()) 6247 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6248 6249 // Only OS X with deployment version <10.9 use the empty vtable symbol 6250 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6251 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6252 ObjCEmptyVtableVar = 6253 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6254 llvm::GlobalValue::ExternalLinkage, nullptr, 6255 "_objc_empty_vtable"); 6256 else 6257 ObjCEmptyVtableVar = 6258 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6259 } 6260 6261 // FIXME: Is this correct (that meta class size is never computed)? 6262 uint32_t InstanceStart = 6263 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6264 uint32_t InstanceSize = InstanceStart; 6265 uint32_t flags = NonFragileABI_Class_Meta; 6266 6267 llvm::Constant *SuperClassGV, *IsAGV; 6268 6269 const auto *CI = ID->getClassInterface(); 6270 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6271 6272 // Build the flags for the metaclass. 6273 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6274 ? !CI->hasAttr<DLLExportAttr>() 6275 : CI->getVisibility() == HiddenVisibility; 6276 if (classIsHidden) 6277 flags |= NonFragileABI_Class_Hidden; 6278 6279 // FIXME: why is this flag set on the metaclass? 6280 // ObjC metaclasses have no fields and don't really get constructed. 6281 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6282 flags |= NonFragileABI_Class_HasCXXStructors; 6283 if (!ID->hasNonZeroConstructors()) 6284 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6285 } 6286 6287 if (!CI->getSuperClass()) { 6288 // class is root 6289 flags |= NonFragileABI_Class_Root; 6290 6291 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6292 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6293 } else { 6294 // Has a root. Current class is not a root. 6295 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6296 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6297 Root = Super; 6298 6299 const auto *Super = CI->getSuperClass(); 6300 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6301 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6302 } 6303 6304 llvm::GlobalVariable *CLASS_RO_GV = 6305 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6306 6307 llvm::GlobalVariable *MetaTClass = 6308 BuildClassObject(CI, /*metaclass*/ true, 6309 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6310 if (CGM.getTriple().isOSBinFormatCOFF()) 6311 if (CI->hasAttr<DLLExportAttr>()) 6312 MetaTClass->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6313 DefinedMetaClasses.push_back(MetaTClass); 6314 6315 // Metadata for the class 6316 flags = 0; 6317 if (classIsHidden) 6318 flags |= NonFragileABI_Class_Hidden; 6319 6320 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6321 flags |= NonFragileABI_Class_HasCXXStructors; 6322 6323 // Set a flag to enable a runtime optimization when a class has 6324 // fields that require destruction but which don't require 6325 // anything except zero-initialization during construction. This 6326 // is most notably true of __strong and __weak types, but you can 6327 // also imagine there being C++ types with non-trivial default 6328 // constructors that merely set all fields to null. 6329 if (!ID->hasNonZeroConstructors()) 6330 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6331 } 6332 6333 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6334 flags |= NonFragileABI_Class_Exception; 6335 6336 if (!CI->getSuperClass()) { 6337 flags |= NonFragileABI_Class_Root; 6338 SuperClassGV = nullptr; 6339 } else { 6340 // Has a root. Current class is not a root. 6341 const auto *Super = CI->getSuperClass(); 6342 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6343 } 6344 6345 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6346 CLASS_RO_GV = 6347 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6348 6349 llvm::GlobalVariable *ClassMD = 6350 BuildClassObject(CI, /*metaclass*/ false, 6351 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6352 if (CGM.getTriple().isOSBinFormatCOFF()) 6353 if (CI->hasAttr<DLLExportAttr>()) 6354 ClassMD->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6355 DefinedClasses.push_back(ClassMD); 6356 ImplementedClasses.push_back(CI); 6357 6358 // Determine if this class is also "non-lazy". 6359 if (ImplementationIsNonLazy(ID)) 6360 DefinedNonLazyClasses.push_back(ClassMD); 6361 6362 // Force the definition of the EHType if necessary. 6363 if (flags & NonFragileABI_Class_Exception) 6364 (void) GetInterfaceEHType(CI, ForDefinition); 6365 // Make sure method definition entries are all clear for next implementation. 6366 MethodDefinitions.clear(); 6367 } 6368 6369 /// GenerateProtocolRef - This routine is called to generate code for 6370 /// a protocol reference expression; as in: 6371 /// @code 6372 /// @protocol(Proto1); 6373 /// @endcode 6374 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6375 /// which will hold address of the protocol meta-data. 6376 /// 6377 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6378 const ObjCProtocolDecl *PD) { 6379 6380 // This routine is called for @protocol only. So, we must build definition 6381 // of protocol's meta-data (not a reference to it!) 6382 // 6383 llvm::Constant *Init = 6384 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6385 ObjCTypes.getExternalProtocolPtrTy()); 6386 6387 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6388 ProtocolName += PD->getObjCRuntimeNameAsString(); 6389 6390 CharUnits Align = CGF.getPointerAlign(); 6391 6392 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6393 if (PTGV) 6394 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6395 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6396 llvm::GlobalValue::WeakAnyLinkage, Init, 6397 ProtocolName); 6398 PTGV->setSection(GetSectionName("__objc_protorefs", 6399 "coalesced,no_dead_strip")); 6400 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6401 PTGV->setAlignment(Align.getQuantity()); 6402 if (!CGM.getTriple().isOSBinFormatMachO()) 6403 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6404 CGM.addCompilerUsedGlobal(PTGV); 6405 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6406 } 6407 6408 /// GenerateCategory - Build metadata for a category implementation. 6409 /// struct _category_t { 6410 /// const char * const name; 6411 /// struct _class_t *const cls; 6412 /// const struct _method_list_t * const instance_methods; 6413 /// const struct _method_list_t * const class_methods; 6414 /// const struct _protocol_list_t * const protocols; 6415 /// const struct _prop_list_t * const properties; 6416 /// const struct _prop_list_t * const class_properties; 6417 /// const uint32_t size; 6418 /// } 6419 /// 6420 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6421 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6422 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6423 6424 llvm::SmallString<64> ExtCatName(Prefix); 6425 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6426 ExtCatName += "_$_"; 6427 ExtCatName += OCD->getNameAsString(); 6428 6429 ConstantInitBuilder builder(CGM); 6430 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6431 values.add(GetClassName(OCD->getIdentifier()->getName())); 6432 // meta-class entry symbol 6433 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6434 std::string listName = 6435 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6436 6437 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6438 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6439 for (const auto *MD : OCD->methods()) { 6440 if (MD->isInstanceMethod()) { 6441 instanceMethods.push_back(MD); 6442 } else { 6443 classMethods.push_back(MD); 6444 } 6445 } 6446 6447 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6448 instanceMethods)); 6449 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6450 classMethods)); 6451 6452 const ObjCCategoryDecl *Category = 6453 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6454 if (Category) { 6455 SmallString<256> ExtName; 6456 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6457 << OCD->getName(); 6458 values.add(EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6459 + Interface->getObjCRuntimeNameAsString() + "_$_" 6460 + Category->getName(), 6461 Category->protocol_begin(), 6462 Category->protocol_end())); 6463 values.add(EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6464 OCD, Category, ObjCTypes, false)); 6465 values.add(EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6466 OCD, Category, ObjCTypes, true)); 6467 } else { 6468 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6469 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6470 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6471 } 6472 6473 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6474 values.addInt(ObjCTypes.IntTy, Size); 6475 6476 llvm::GlobalVariable *GCATV = 6477 values.finishAndCreateGlobal(ExtCatName.str(), CGM.getPointerAlign(), 6478 /*constant*/ false, 6479 llvm::GlobalValue::PrivateLinkage); 6480 if (CGM.getTriple().isOSBinFormatMachO()) 6481 GCATV->setSection("__DATA, __objc_const"); 6482 CGM.addCompilerUsedGlobal(GCATV); 6483 DefinedCategories.push_back(GCATV); 6484 6485 // Determine if this category is also "non-lazy". 6486 if (ImplementationIsNonLazy(OCD)) 6487 DefinedNonLazyCategories.push_back(GCATV); 6488 // method definition entries must be clear for next implementation. 6489 MethodDefinitions.clear(); 6490 } 6491 6492 /// emitMethodConstant - Return a struct objc_method constant. If 6493 /// forProtocol is true, the implementation will be null; otherwise, 6494 /// the method must have a definition registered with the runtime. 6495 /// 6496 /// struct _objc_method { 6497 /// SEL _cmd; 6498 /// char *method_type; 6499 /// char *_imp; 6500 /// } 6501 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6502 const ObjCMethodDecl *MD, 6503 bool forProtocol) { 6504 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6505 method.addBitCast(GetMethodVarName(MD->getSelector()), 6506 ObjCTypes.SelectorPtrTy); 6507 method.add(GetMethodVarType(MD)); 6508 6509 if (forProtocol) { 6510 // Protocol methods have no implementation. So, this entry is always NULL. 6511 method.addNullPointer(ObjCTypes.Int8PtrTy); 6512 } else { 6513 llvm::Function *fn = GetMethodDefinition(MD); 6514 assert(fn && "no definition for method?"); 6515 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6516 } 6517 6518 method.finishAndAddTo(builder); 6519 } 6520 6521 /// Build meta-data for method declarations. 6522 /// 6523 /// struct _method_list_t { 6524 /// uint32_t entsize; // sizeof(struct _objc_method) 6525 /// uint32_t method_count; 6526 /// struct _objc_method method_list[method_count]; 6527 /// } 6528 /// 6529 llvm::Constant * 6530 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6531 ArrayRef<const ObjCMethodDecl *> methods) { 6532 // Return null for empty list. 6533 if (methods.empty()) 6534 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6535 6536 StringRef prefix; 6537 bool forProtocol; 6538 switch (kind) { 6539 case MethodListType::CategoryInstanceMethods: 6540 prefix = "\01l_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6541 forProtocol = false; 6542 break; 6543 case MethodListType::CategoryClassMethods: 6544 prefix = "\01l_OBJC_$_CATEGORY_CLASS_METHODS_"; 6545 forProtocol = false; 6546 break; 6547 case MethodListType::InstanceMethods: 6548 prefix = "\01l_OBJC_$_INSTANCE_METHODS_"; 6549 forProtocol = false; 6550 break; 6551 case MethodListType::ClassMethods: 6552 prefix = "\01l_OBJC_$_CLASS_METHODS_"; 6553 forProtocol = false; 6554 break; 6555 6556 case MethodListType::ProtocolInstanceMethods: 6557 prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6558 forProtocol = true; 6559 break; 6560 case MethodListType::ProtocolClassMethods: 6561 prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6562 forProtocol = true; 6563 break; 6564 case MethodListType::OptionalProtocolInstanceMethods: 6565 prefix = "\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6566 forProtocol = true; 6567 break; 6568 case MethodListType::OptionalProtocolClassMethods: 6569 prefix = "\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6570 forProtocol = true; 6571 break; 6572 } 6573 6574 ConstantInitBuilder builder(CGM); 6575 auto values = builder.beginStruct(); 6576 6577 // sizeof(struct _objc_method) 6578 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6579 values.addInt(ObjCTypes.IntTy, Size); 6580 // method_count 6581 values.addInt(ObjCTypes.IntTy, methods.size()); 6582 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6583 for (auto MD : methods) { 6584 emitMethodConstant(methodArray, MD, forProtocol); 6585 } 6586 methodArray.finishAndAddTo(values); 6587 6588 auto *GV = values.finishAndCreateGlobal(prefix + name, CGM.getPointerAlign(), 6589 /*constant*/ false, 6590 llvm::GlobalValue::PrivateLinkage); 6591 if (CGM.getTriple().isOSBinFormatMachO()) 6592 GV->setSection("__DATA, __objc_const"); 6593 CGM.addCompilerUsedGlobal(GV); 6594 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6595 } 6596 6597 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6598 /// the given ivar. 6599 llvm::GlobalVariable * 6600 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6601 const ObjCIvarDecl *Ivar) { 6602 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6603 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6604 Name += Container->getObjCRuntimeNameAsString(); 6605 Name += "."; 6606 Name += Ivar->getName(); 6607 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6608 if (!IvarOffsetGV) { 6609 IvarOffsetGV = 6610 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6611 false, llvm::GlobalValue::ExternalLinkage, 6612 nullptr, Name.str()); 6613 if (CGM.getTriple().isOSBinFormatCOFF()) { 6614 bool IsPrivateOrPackage = 6615 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6616 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6617 6618 if (ID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6619 IvarOffsetGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6620 else if (ID->hasAttr<DLLImportAttr>()) 6621 IvarOffsetGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6622 } 6623 } 6624 return IvarOffsetGV; 6625 } 6626 6627 llvm::Constant * 6628 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6629 const ObjCIvarDecl *Ivar, 6630 unsigned long int Offset) { 6631 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6632 IvarOffsetGV->setInitializer( 6633 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6634 IvarOffsetGV->setAlignment( 6635 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6636 6637 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6638 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6639 // as well (i.e., in ObjCIvarOffsetVariable). 6640 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6641 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6642 ID->getVisibility() == HiddenVisibility) 6643 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6644 else 6645 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6646 } 6647 6648 if (CGM.getTriple().isOSBinFormatMachO()) 6649 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6650 return IvarOffsetGV; 6651 } 6652 6653 /// EmitIvarList - Emit the ivar list for the given 6654 /// implementation. The return value has type 6655 /// IvarListnfABIPtrTy. 6656 /// struct _ivar_t { 6657 /// unsigned [long] int *offset; // pointer to ivar offset location 6658 /// char *name; 6659 /// char *type; 6660 /// uint32_t alignment; 6661 /// uint32_t size; 6662 /// } 6663 /// struct _ivar_list_t { 6664 /// uint32 entsize; // sizeof(struct _ivar_t) 6665 /// uint32 count; 6666 /// struct _iver_t list[count]; 6667 /// } 6668 /// 6669 6670 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6671 const ObjCImplementationDecl *ID) { 6672 6673 ConstantInitBuilder builder(CGM); 6674 auto ivarList = builder.beginStruct(); 6675 ivarList.addInt(ObjCTypes.IntTy, 6676 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6677 auto ivarCountSlot = ivarList.addPlaceholder(); 6678 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6679 6680 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6681 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6682 6683 // FIXME. Consolidate this with similar code in GenerateClass. 6684 6685 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6686 IVD; IVD = IVD->getNextIvar()) { 6687 // Ignore unnamed bit-fields. 6688 if (!IVD->getDeclName()) 6689 continue; 6690 6691 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6692 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6693 ComputeIvarBaseOffset(CGM, ID, IVD))); 6694 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6695 ivar.add(GetMethodVarType(IVD)); 6696 llvm::Type *FieldTy = 6697 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6698 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6699 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6700 IVD->getType().getTypePtr()) >> 3; 6701 Align = llvm::Log2_32(Align); 6702 ivar.addInt(ObjCTypes.IntTy, Align); 6703 // NOTE. Size of a bitfield does not match gcc's, because of the 6704 // way bitfields are treated special in each. But I am told that 6705 // 'size' for bitfield ivars is ignored by the runtime so it does 6706 // not matter. If it matters, there is enough info to get the 6707 // bitfield right! 6708 ivar.addInt(ObjCTypes.IntTy, Size); 6709 ivar.finishAndAddTo(ivars); 6710 } 6711 // Return null for empty list. 6712 if (ivars.empty()) { 6713 ivars.abandon(); 6714 ivarList.abandon(); 6715 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6716 } 6717 6718 auto ivarCount = ivars.size(); 6719 ivars.finishAndAddTo(ivarList); 6720 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6721 6722 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6723 llvm::GlobalVariable *GV = 6724 ivarList.finishAndCreateGlobal(Prefix + OID->getObjCRuntimeNameAsString(), 6725 CGM.getPointerAlign(), /*constant*/ false, 6726 llvm::GlobalValue::PrivateLinkage); 6727 if (CGM.getTriple().isOSBinFormatMachO()) 6728 GV->setSection("__DATA, __objc_const"); 6729 CGM.addCompilerUsedGlobal(GV); 6730 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6731 } 6732 6733 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6734 const ObjCProtocolDecl *PD) { 6735 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6736 6737 if (!Entry) { 6738 // We use the initializer as a marker of whether this is a forward 6739 // reference or not. At module finalization we add the empty 6740 // contents for protocols which were referenced but never defined. 6741 llvm::SmallString<64> Protocol; 6742 llvm::raw_svector_ostream(Protocol) << "\01l_OBJC_PROTOCOL_$_" 6743 << PD->getObjCRuntimeNameAsString(); 6744 6745 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6746 false, llvm::GlobalValue::ExternalLinkage, 6747 nullptr, Protocol); 6748 if (!CGM.getTriple().isOSBinFormatMachO()) 6749 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 6750 } 6751 6752 return Entry; 6753 } 6754 6755 /// GetOrEmitProtocol - Generate the protocol meta-data: 6756 /// @code 6757 /// struct _protocol_t { 6758 /// id isa; // NULL 6759 /// const char * const protocol_name; 6760 /// const struct _protocol_list_t * protocol_list; // super protocols 6761 /// const struct method_list_t * const instance_methods; 6762 /// const struct method_list_t * const class_methods; 6763 /// const struct method_list_t *optionalInstanceMethods; 6764 /// const struct method_list_t *optionalClassMethods; 6765 /// const struct _prop_list_t * properties; 6766 /// const uint32_t size; // sizeof(struct _protocol_t) 6767 /// const uint32_t flags; // = 0 6768 /// const char ** extendedMethodTypes; 6769 /// const char *demangledName; 6770 /// const struct _prop_list_t * class_properties; 6771 /// } 6772 /// @endcode 6773 /// 6774 6775 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6776 const ObjCProtocolDecl *PD) { 6777 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6778 6779 // Early exit if a defining object has already been generated. 6780 if (Entry && Entry->hasInitializer()) 6781 return Entry; 6782 6783 // Use the protocol definition, if there is one. 6784 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6785 PD = Def; 6786 6787 auto methodLists = ProtocolMethodLists::get(PD); 6788 6789 ConstantInitBuilder builder(CGM); 6790 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 6791 6792 // isa is NULL 6793 values.addNullPointer(ObjCTypes.ObjectPtrTy); 6794 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 6795 values.add(EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" 6796 + PD->getObjCRuntimeNameAsString(), 6797 PD->protocol_begin(), 6798 PD->protocol_end())); 6799 values.add(methodLists.emitMethodList(this, PD, 6800 ProtocolMethodLists::RequiredInstanceMethods)); 6801 values.add(methodLists.emitMethodList(this, PD, 6802 ProtocolMethodLists::RequiredClassMethods)); 6803 values.add(methodLists.emitMethodList(this, PD, 6804 ProtocolMethodLists::OptionalInstanceMethods)); 6805 values.add(methodLists.emitMethodList(this, PD, 6806 ProtocolMethodLists::OptionalClassMethods)); 6807 values.add(EmitPropertyList( 6808 "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6809 nullptr, PD, ObjCTypes, false)); 6810 uint32_t Size = 6811 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6812 values.addInt(ObjCTypes.IntTy, Size); 6813 values.addInt(ObjCTypes.IntTy, 0); 6814 values.add(EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6815 + PD->getObjCRuntimeNameAsString(), 6816 methodLists.emitExtendedTypesArray(this), 6817 ObjCTypes)); 6818 6819 // const char *demangledName; 6820 values.addNullPointer(ObjCTypes.Int8PtrTy); 6821 6822 values.add(EmitPropertyList( 6823 "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6824 nullptr, PD, ObjCTypes, true)); 6825 6826 if (Entry) { 6827 // Already created, fix the linkage and update the initializer. 6828 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6829 values.finishAndSetAsInitializer(Entry); 6830 } else { 6831 llvm::SmallString<64> symbolName; 6832 llvm::raw_svector_ostream(symbolName) 6833 << "\01l_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 6834 6835 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 6836 /*constant*/ false, 6837 llvm::GlobalValue::WeakAnyLinkage); 6838 if (!CGM.getTriple().isOSBinFormatMachO()) 6839 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 6840 6841 Protocols[PD->getIdentifier()] = Entry; 6842 } 6843 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6844 CGM.addCompilerUsedGlobal(Entry); 6845 6846 // Use this protocol meta-data to build protocol list table in section 6847 // __DATA, __objc_protolist 6848 llvm::SmallString<64> ProtocolRef; 6849 llvm::raw_svector_ostream(ProtocolRef) << "\01l_OBJC_LABEL_PROTOCOL_$_" 6850 << PD->getObjCRuntimeNameAsString(); 6851 6852 llvm::GlobalVariable *PTGV = 6853 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6854 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6855 ProtocolRef); 6856 if (!CGM.getTriple().isOSBinFormatMachO()) 6857 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 6858 PTGV->setAlignment( 6859 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6860 PTGV->setSection(GetSectionName("__objc_protolist", 6861 "coalesced,no_dead_strip")); 6862 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6863 CGM.addCompilerUsedGlobal(PTGV); 6864 return Entry; 6865 } 6866 6867 /// EmitProtocolList - Generate protocol list meta-data: 6868 /// @code 6869 /// struct _protocol_list_t { 6870 /// long protocol_count; // Note, this is 32/64 bit 6871 /// struct _protocol_t[protocol_count]; 6872 /// } 6873 /// @endcode 6874 /// 6875 llvm::Constant * 6876 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6877 ObjCProtocolDecl::protocol_iterator begin, 6878 ObjCProtocolDecl::protocol_iterator end) { 6879 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6880 6881 // Just return null for empty protocol lists 6882 if (begin == end) 6883 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6884 6885 // FIXME: We shouldn't need to do this lookup here, should we? 6886 SmallString<256> TmpName; 6887 Name.toVector(TmpName); 6888 llvm::GlobalVariable *GV = 6889 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6890 if (GV) 6891 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6892 6893 ConstantInitBuilder builder(CGM); 6894 auto values = builder.beginStruct(); 6895 auto countSlot = values.addPlaceholder(); 6896 6897 // A null-terminated array of protocols. 6898 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 6899 for (; begin != end; ++begin) 6900 array.add(GetProtocolRef(*begin)); // Implemented??? 6901 auto count = array.size(); 6902 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 6903 6904 array.finishAndAddTo(values); 6905 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 6906 6907 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 6908 /*constant*/ false, 6909 llvm::GlobalValue::PrivateLinkage); 6910 if (CGM.getTriple().isOSBinFormatMachO()) 6911 GV->setSection("__DATA, __objc_const"); 6912 CGM.addCompilerUsedGlobal(GV); 6913 return llvm::ConstantExpr::getBitCast(GV, 6914 ObjCTypes.ProtocolListnfABIPtrTy); 6915 } 6916 6917 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6918 /// This code gen. amounts to generating code for: 6919 /// @code 6920 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6921 /// @encode 6922 /// 6923 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6924 CodeGen::CodeGenFunction &CGF, 6925 QualType ObjectTy, 6926 llvm::Value *BaseValue, 6927 const ObjCIvarDecl *Ivar, 6928 unsigned CVRQualifiers) { 6929 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6930 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6931 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6932 Offset); 6933 } 6934 6935 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6936 CodeGen::CodeGenFunction &CGF, 6937 const ObjCInterfaceDecl *Interface, 6938 const ObjCIvarDecl *Ivar) { 6939 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6940 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6941 CGF.getSizeAlign(), "ivar"); 6942 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6943 cast<llvm::LoadInst>(IvarOffsetValue) 6944 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6945 llvm::MDNode::get(VMContext, None)); 6946 6947 // This could be 32bit int or 64bit integer depending on the architecture. 6948 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6949 // as this is what caller always expectes. 6950 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6951 IvarOffsetValue = CGF.Builder.CreateIntCast( 6952 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6953 return IvarOffsetValue; 6954 } 6955 6956 static void appendSelectorForMessageRefTable(std::string &buffer, 6957 Selector selector) { 6958 if (selector.isUnarySelector()) { 6959 buffer += selector.getNameForSlot(0); 6960 return; 6961 } 6962 6963 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6964 buffer += selector.getNameForSlot(i); 6965 buffer += '_'; 6966 } 6967 } 6968 6969 /// Emit a "vtable" message send. We emit a weak hidden-visibility 6970 /// struct, initially containing the selector pointer and a pointer to 6971 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6972 /// load and call the function pointer, passing the address of the 6973 /// struct as the second parameter. The runtime determines whether 6974 /// the selector is currently emitted using vtable dispatch; if so, it 6975 /// substitutes a stub function which simply tail-calls through the 6976 /// appropriate vtable slot, and if not, it substitues a stub function 6977 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6978 /// argument to correctly point to the selector. 6979 RValue 6980 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6981 ReturnValueSlot returnSlot, 6982 QualType resultType, 6983 Selector selector, 6984 llvm::Value *arg0, 6985 QualType arg0Type, 6986 bool isSuper, 6987 const CallArgList &formalArgs, 6988 const ObjCMethodDecl *method) { 6989 // Compute the actual arguments. 6990 CallArgList args; 6991 6992 // First argument: the receiver / super-call structure. 6993 if (!isSuper) 6994 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6995 args.add(RValue::get(arg0), arg0Type); 6996 6997 // Second argument: a pointer to the message ref structure. Leave 6998 // the actual argument value blank for now. 6999 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7000 7001 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7002 7003 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7004 7005 NullReturnState nullReturn; 7006 7007 // Find the function to call and the mangled name for the message 7008 // ref structure. Using a different mangled name wouldn't actually 7009 // be a problem; it would just be a waste. 7010 // 7011 // The runtime currently never uses vtable dispatch for anything 7012 // except normal, non-super message-sends. 7013 // FIXME: don't use this for that. 7014 llvm::Constant *fn = nullptr; 7015 std::string messageRefName("\01l_"); 7016 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7017 if (isSuper) { 7018 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7019 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7020 } else { 7021 nullReturn.init(CGF, arg0); 7022 fn = ObjCTypes.getMessageSendStretFixupFn(); 7023 messageRefName += "objc_msgSend_stret_fixup"; 7024 } 7025 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7026 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7027 messageRefName += "objc_msgSend_fpret_fixup"; 7028 } else { 7029 if (isSuper) { 7030 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7031 messageRefName += "objc_msgSendSuper2_fixup"; 7032 } else { 7033 fn = ObjCTypes.getMessageSendFixupFn(); 7034 messageRefName += "objc_msgSend_fixup"; 7035 } 7036 } 7037 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7038 messageRefName += '_'; 7039 7040 // Append the selector name, except use underscores anywhere we 7041 // would have used colons. 7042 appendSelectorForMessageRefTable(messageRefName, selector); 7043 7044 llvm::GlobalVariable *messageRef 7045 = CGM.getModule().getGlobalVariable(messageRefName); 7046 if (!messageRef) { 7047 // Build the message ref structure. 7048 ConstantInitBuilder builder(CGM); 7049 auto values = builder.beginStruct(); 7050 values.add(fn); 7051 values.add(GetMethodVarName(selector)); 7052 messageRef = values.finishAndCreateGlobal(messageRefName, 7053 CharUnits::fromQuantity(16), 7054 /*constant*/ false, 7055 llvm::GlobalValue::WeakAnyLinkage); 7056 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7057 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7058 } 7059 7060 bool requiresnullCheck = false; 7061 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7062 for (const auto *ParamDecl : method->parameters()) { 7063 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7064 if (!nullReturn.NullBB) 7065 nullReturn.init(CGF, arg0); 7066 requiresnullCheck = true; 7067 break; 7068 } 7069 } 7070 7071 Address mref = 7072 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7073 CGF.getPointerAlign()); 7074 7075 // Update the message ref argument. 7076 args[1].RV = RValue::get(mref.getPointer()); 7077 7078 // Load the function to call from the message ref table. 7079 Address calleeAddr = 7080 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 7081 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7082 7083 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7084 CGCallee callee(CGCalleeInfo(), calleePtr); 7085 7086 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7087 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7088 requiresnullCheck ? method : nullptr); 7089 } 7090 7091 /// Generate code for a message send expression in the nonfragile abi. 7092 CodeGen::RValue 7093 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7094 ReturnValueSlot Return, 7095 QualType ResultType, 7096 Selector Sel, 7097 llvm::Value *Receiver, 7098 const CallArgList &CallArgs, 7099 const ObjCInterfaceDecl *Class, 7100 const ObjCMethodDecl *Method) { 7101 return isVTableDispatchedSelector(Sel) 7102 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7103 Receiver, CGF.getContext().getObjCIdType(), 7104 false, CallArgs, Method) 7105 : EmitMessageSend(CGF, Return, ResultType, 7106 EmitSelector(CGF, Sel), 7107 Receiver, CGF.getContext().getObjCIdType(), 7108 false, CallArgs, Method, Class, ObjCTypes); 7109 } 7110 7111 llvm::Constant * 7112 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7113 bool metaclass, 7114 ForDefinition_t isForDefinition) { 7115 auto prefix = 7116 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7117 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7118 isForDefinition, 7119 ID->isWeakImported(), 7120 !isForDefinition 7121 && CGM.getTriple().isOSBinFormatCOFF() 7122 && ID->hasAttr<DLLImportAttr>()); 7123 } 7124 7125 llvm::Constant * 7126 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7127 ForDefinition_t IsForDefinition, 7128 bool Weak, bool DLLImport) { 7129 llvm::GlobalValue::LinkageTypes L = 7130 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7131 : llvm::GlobalValue::ExternalLinkage; 7132 7133 7134 7135 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7136 if (!GV) { 7137 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 7138 false, L, nullptr, Name); 7139 7140 if (DLLImport) 7141 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7142 } 7143 7144 assert(GV->getLinkage() == L); 7145 return GV; 7146 } 7147 7148 llvm::Value * 7149 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7150 IdentifierInfo *II, 7151 const ObjCInterfaceDecl *ID) { 7152 CharUnits Align = CGF.getPointerAlign(); 7153 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7154 7155 if (!Entry) { 7156 llvm::Constant *ClassGV; 7157 if (ID) { 7158 ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7159 } else { 7160 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7161 NotForDefinition); 7162 } 7163 7164 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7165 false, llvm::GlobalValue::PrivateLinkage, 7166 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 7167 Entry->setAlignment(Align.getQuantity()); 7168 Entry->setSection(GetSectionName("__objc_classrefs", 7169 "regular,no_dead_strip")); 7170 CGM.addCompilerUsedGlobal(Entry); 7171 } 7172 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7173 } 7174 7175 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7176 const ObjCInterfaceDecl *ID) { 7177 // If the class has the objc_runtime_visible attribute, we need to 7178 // use the Objective-C runtime to get the class. 7179 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7180 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7181 7182 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7183 } 7184 7185 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7186 CodeGenFunction &CGF) { 7187 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7188 return EmitClassRefFromId(CGF, II, nullptr); 7189 } 7190 7191 llvm::Value * 7192 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7193 const ObjCInterfaceDecl *ID) { 7194 CharUnits Align = CGF.getPointerAlign(); 7195 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7196 7197 if (!Entry) { 7198 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7199 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7200 false, llvm::GlobalValue::PrivateLinkage, 7201 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7202 Entry->setAlignment(Align.getQuantity()); 7203 Entry->setSection(GetSectionName("__objc_superrefs", 7204 "regular,no_dead_strip")); 7205 CGM.addCompilerUsedGlobal(Entry); 7206 } 7207 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7208 } 7209 7210 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7211 /// meta-data 7212 /// 7213 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7214 const ObjCInterfaceDecl *ID, 7215 bool Weak) { 7216 CharUnits Align = CGF.getPointerAlign(); 7217 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7218 if (!Entry) { 7219 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7220 7221 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7222 false, llvm::GlobalValue::PrivateLinkage, 7223 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7224 Entry->setAlignment(Align.getQuantity()); 7225 7226 Entry->setSection(GetSectionName("__objc_superrefs", 7227 "regular,no_dead_strip")); 7228 CGM.addCompilerUsedGlobal(Entry); 7229 } 7230 7231 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7232 } 7233 7234 /// GetClass - Return a reference to the class for the given interface 7235 /// decl. 7236 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7237 const ObjCInterfaceDecl *ID) { 7238 if (ID->isWeakImported()) { 7239 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7240 (void)ClassGV; 7241 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7242 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7243 } 7244 7245 return EmitClassRef(CGF, ID); 7246 } 7247 7248 /// Generates a message send where the super is the receiver. This is 7249 /// a message send to self with special delivery semantics indicating 7250 /// which class's method should be called. 7251 CodeGen::RValue 7252 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7253 ReturnValueSlot Return, 7254 QualType ResultType, 7255 Selector Sel, 7256 const ObjCInterfaceDecl *Class, 7257 bool isCategoryImpl, 7258 llvm::Value *Receiver, 7259 bool IsClassMessage, 7260 const CodeGen::CallArgList &CallArgs, 7261 const ObjCMethodDecl *Method) { 7262 // ... 7263 // Create and init a super structure; this is a (receiver, class) 7264 // pair we will pass to objc_msgSendSuper. 7265 Address ObjCSuper = 7266 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7267 "objc_super"); 7268 7269 llvm::Value *ReceiverAsObject = 7270 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7271 CGF.Builder.CreateStore( 7272 ReceiverAsObject, 7273 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 7274 7275 // If this is a class message the metaclass is passed as the target. 7276 llvm::Value *Target; 7277 if (IsClassMessage) 7278 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7279 else 7280 Target = EmitSuperClassRef(CGF, Class); 7281 7282 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7283 // ObjCTypes types. 7284 llvm::Type *ClassTy = 7285 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7286 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7287 CGF.Builder.CreateStore( 7288 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 7289 7290 return (isVTableDispatchedSelector(Sel)) 7291 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7292 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7293 true, CallArgs, Method) 7294 : EmitMessageSend(CGF, Return, ResultType, 7295 EmitSelector(CGF, Sel), 7296 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7297 true, CallArgs, Method, Class, ObjCTypes); 7298 } 7299 7300 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7301 Selector Sel) { 7302 Address Addr = EmitSelectorAddr(CGF, Sel); 7303 7304 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7305 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7306 llvm::MDNode::get(VMContext, None)); 7307 return LI; 7308 } 7309 7310 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 7311 Selector Sel) { 7312 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7313 7314 CharUnits Align = CGF.getPointerAlign(); 7315 if (!Entry) { 7316 llvm::Constant *Casted = 7317 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7318 ObjCTypes.SelectorPtrTy); 7319 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 7320 false, llvm::GlobalValue::PrivateLinkage, 7321 Casted, "OBJC_SELECTOR_REFERENCES_"); 7322 Entry->setExternallyInitialized(true); 7323 Entry->setSection(GetSectionName("__objc_selrefs", 7324 "literal_pointers,no_dead_strip")); 7325 Entry->setAlignment(Align.getQuantity()); 7326 CGM.addCompilerUsedGlobal(Entry); 7327 } 7328 7329 return Address(Entry, Align); 7330 } 7331 7332 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7333 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7334 /// 7335 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7336 llvm::Value *src, 7337 Address dst, 7338 llvm::Value *ivarOffset) { 7339 llvm::Type * SrcTy = src->getType(); 7340 if (!isa<llvm::PointerType>(SrcTy)) { 7341 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7342 assert(Size <= 8 && "does not support size > 8"); 7343 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7344 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7345 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7346 } 7347 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7348 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7349 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7350 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7351 } 7352 7353 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7354 /// objc_assign_strongCast (id src, id *dst) 7355 /// 7356 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7357 CodeGen::CodeGenFunction &CGF, 7358 llvm::Value *src, Address dst) { 7359 llvm::Type * SrcTy = src->getType(); 7360 if (!isa<llvm::PointerType>(SrcTy)) { 7361 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7362 assert(Size <= 8 && "does not support size > 8"); 7363 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7364 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7365 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7366 } 7367 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7368 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7369 llvm::Value *args[] = { src, dst.getPointer() }; 7370 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7371 args, "weakassign"); 7372 } 7373 7374 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7375 CodeGen::CodeGenFunction &CGF, 7376 Address DestPtr, 7377 Address SrcPtr, 7378 llvm::Value *Size) { 7379 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7380 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7381 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7382 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7383 } 7384 7385 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7386 /// object: objc_read_weak (id *src) 7387 /// 7388 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7389 CodeGen::CodeGenFunction &CGF, 7390 Address AddrWeakObj) { 7391 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7392 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7393 llvm::Value *read_weak = 7394 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7395 AddrWeakObj.getPointer(), "weakread"); 7396 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7397 return read_weak; 7398 } 7399 7400 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7401 /// objc_assign_weak (id src, id *dst) 7402 /// 7403 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7404 llvm::Value *src, Address dst) { 7405 llvm::Type * SrcTy = src->getType(); 7406 if (!isa<llvm::PointerType>(SrcTy)) { 7407 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7408 assert(Size <= 8 && "does not support size > 8"); 7409 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7410 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7411 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7412 } 7413 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7414 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7415 llvm::Value *args[] = { src, dst.getPointer() }; 7416 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7417 args, "weakassign"); 7418 } 7419 7420 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7421 /// objc_assign_global (id src, id *dst) 7422 /// 7423 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7424 llvm::Value *src, Address dst, 7425 bool threadlocal) { 7426 llvm::Type * SrcTy = src->getType(); 7427 if (!isa<llvm::PointerType>(SrcTy)) { 7428 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7429 assert(Size <= 8 && "does not support size > 8"); 7430 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7431 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7432 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7433 } 7434 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7435 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7436 llvm::Value *args[] = { src, dst.getPointer() }; 7437 if (!threadlocal) 7438 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7439 args, "globalassign"); 7440 else 7441 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7442 args, "threadlocalassign"); 7443 } 7444 7445 void 7446 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7447 const ObjCAtSynchronizedStmt &S) { 7448 EmitAtSynchronizedStmt(CGF, S, 7449 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7450 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7451 } 7452 7453 llvm::Constant * 7454 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7455 // There's a particular fixed type info for 'id'. 7456 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7457 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7458 if (!IDEHType) { 7459 IDEHType = 7460 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7461 llvm::GlobalValue::ExternalLinkage, nullptr, 7462 "OBJC_EHTYPE_id"); 7463 if (CGM.getTriple().isOSBinFormatCOFF()) 7464 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7465 } 7466 return IDEHType; 7467 } 7468 7469 // All other types should be Objective-C interface pointer types. 7470 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7471 assert(PT && "Invalid @catch type."); 7472 7473 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7474 assert(IT && "Invalid @catch type."); 7475 7476 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7477 } 7478 7479 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7480 const ObjCAtTryStmt &S) { 7481 EmitTryCatchStmt(CGF, S, 7482 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7483 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7484 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7485 } 7486 7487 /// EmitThrowStmt - Generate code for a throw statement. 7488 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7489 const ObjCAtThrowStmt &S, 7490 bool ClearInsertionPoint) { 7491 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7492 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7493 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7494 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7495 .setDoesNotReturn(); 7496 } else { 7497 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7498 .setDoesNotReturn(); 7499 } 7500 7501 CGF.Builder.CreateUnreachable(); 7502 if (ClearInsertionPoint) 7503 CGF.Builder.ClearInsertionPoint(); 7504 } 7505 7506 llvm::Constant * 7507 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7508 ForDefinition_t IsForDefinition) { 7509 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7510 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7511 7512 // If we don't need a definition, return the entry if found or check 7513 // if we use an external reference. 7514 if (!IsForDefinition) { 7515 if (Entry) 7516 return Entry; 7517 7518 // If this type (or a super class) has the __objc_exception__ 7519 // attribute, emit an external reference. 7520 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7521 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7522 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7523 false, llvm::GlobalValue::ExternalLinkage, 7524 nullptr, EHTypeName); 7525 if (CGM.getTriple().isOSBinFormatCOFF()) { 7526 if (ID->hasAttr<DLLExportAttr>()) 7527 Entry->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 7528 else if (ID->hasAttr<DLLImportAttr>()) 7529 Entry->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7530 } 7531 return Entry; 7532 } 7533 } 7534 7535 // Otherwise we need to either make a new entry or fill in the initializer. 7536 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7537 7538 std::string VTableName = "objc_ehtype_vtable"; 7539 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7540 if (!VTableGV) { 7541 VTableGV = 7542 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7543 llvm::GlobalValue::ExternalLinkage, nullptr, 7544 VTableName); 7545 if (CGM.getTriple().isOSBinFormatCOFF()) 7546 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7547 } 7548 7549 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7550 ConstantInitBuilder builder(CGM); 7551 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7552 values.add(llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), 7553 VTableGV, VTableIdx)); 7554 values.add(GetClassName(ClassName)); 7555 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7556 7557 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7558 ? llvm::GlobalValue::ExternalLinkage 7559 : llvm::GlobalValue::WeakAnyLinkage; 7560 if (Entry) { 7561 values.finishAndSetAsInitializer(Entry); 7562 Entry->setAlignment(CGM.getPointerAlign().getQuantity()); 7563 } else { 7564 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7565 CGM.getPointerAlign(), 7566 /*constant*/ false, 7567 L); 7568 if (CGM.getTriple().isOSBinFormatCOFF()) 7569 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7570 if (ID->hasAttr<DLLExportAttr>()) 7571 Entry->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 7572 } 7573 assert(Entry->getLinkage() == L); 7574 7575 if (!CGM.getTriple().isOSBinFormatCOFF()) 7576 if (ID->getVisibility() == HiddenVisibility) 7577 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7578 7579 if (IsForDefinition) 7580 if (CGM.getTriple().isOSBinFormatMachO()) 7581 Entry->setSection("__DATA,__objc_const"); 7582 7583 return Entry; 7584 } 7585 7586 /* *** */ 7587 7588 CodeGen::CGObjCRuntime * 7589 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7590 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7591 case ObjCRuntime::FragileMacOSX: 7592 return new CGObjCMac(CGM); 7593 7594 case ObjCRuntime::MacOSX: 7595 case ObjCRuntime::iOS: 7596 case ObjCRuntime::WatchOS: 7597 return new CGObjCNonFragileABIMac(CGM); 7598 7599 case ObjCRuntime::GNUstep: 7600 case ObjCRuntime::GCC: 7601 case ObjCRuntime::ObjFW: 7602 llvm_unreachable("these runtimes are not Mac runtimes"); 7603 } 7604 llvm_unreachable("bad runtime"); 7605 } 7606